Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
PREVENTION OF BRAIN INJURY IN CARDIAC SURGERY

Dr Simon J. Mitchell

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Medicine.

Faculty of Medicine and Health Sciences
University of Auckland
2000
DEDICATION

This work is dedicated to my parents:

Alan Grant Mitchell

and

Jennifer Mitchell
ABSTRACT

Background: Stroke and neurocognitive deficits may follow heart surgery and have been linked to peri-operative cerebral embolism. Lignocaine exhibits cerebral protection in animal models of cerebral arterial gas embolism. This study began as randomised trial of lignocaine in brain protection in left heart valve surgery patients. Carotid Doppler emboli counting, developed to control for emboli exposure in the trial groups, revealed that most emboli occurred at the termination of cardiopulmonary bypass (CPB), and that “deairing” techniques used to remove air from the heart were not effective. Doppler monitoring also suggested that emboli were generated by the hard shell venous reservoir (HSVR) component of the CPB circuit, and that contrary to popular perception, air entrained into the CPB venous return line did pass through the circuit back to the patient.

Methods: Salvaged CPB circuits were used *in vitro* to investigate emboli generation by Medtronic Maxima HSVRs, and the passage of entrained venous line air through the CPB circuit. The efficacy of a novel left heart deairing technique was audited clinically using the Doppler device. Finally, a randomised double blind trial of lignocaine in cerebral protection during cardiac surgery was conducted. Sixty five patients underwent pre-operative neuropsychological (NP) testing and were randomised to receive lignocaine in a standard antiarrhythmic dose, or a placebo, in a double blinded infusion over 48 hours beginning at surgery. The NP tests were repeated at 10 days, 10 weeks and 6 months post-operatively.

Results: The Medtronic Maxima HSVRs were found to generate bubbles when operated at blood volumes well above the manufacturer’s recommended minimum. These bubbles, and air entrained to the CPB venous return line, were found to readily
transit the CPB circuit. Patients deaired using the novel technique were exposed to more than 10-fold less emboli after removal of the aortic clamp and withdrawal of CPB. Lignocaine treated patients exhibited a significantly reduced incidence of NP deficits at 10 days and 10 weeks postoperatively, and reported better memory at 10 weeks and 6 months postoperatively.

Conclusions: The Medtronic Maxima HSVRs should not be operated at blood volumes lower than 600 – 700 ml. Attempts should always be made to eliminate air entrainment to the CPB venous line, especially where vacuum assisted drainage is used. The novel de-airing technique is markedly superior to conventional methods. Lignocaine is a potentially useful cerebro-protective agent during cardiac surgery.
ACKNOWLEDGEMENTS

The following individuals and groups are acknowledged for their assistance in the conduct of this work:

Professor Des Gorman for being my mentor as I broke into the field of diving medicine, and for his simply outstanding supervision and encouragement in this work;

Mr Timothy Willcox for making the *in vitro* work possible, and for his friendship;

Dr Paget Milsom who let me share in his inventiveness and innovation;

Ms Ora Pellett whose rapport with the patients ensured their successful follow-up;

Dr Alan Kerr for championing this work at his cardiac surgery unit;

Professor Mervyn Merrilees for getting me started in my PhD program;

Dr John McDougall whose lateral thinking led me to Green Lane;

Dr Neil Middleton for his early encouragement and enthusiasm;

Dr Alan Merry for his insightful academic input;

Dr Michael Davis for his encouragement and some fine ideas from afar;

Dr John Faris for being the discrete guardian of all secrets related to the blinding of patients and researchers until the time was right;

The English Freemasons of New Zealand for their long term financial support which made the project possible;

The Health Research Council of New Zealand, also for their financial contribution;

The Green Lane Hospital Perfusion Team for their humour and their unwavering support of the *in vitro* work;

The Green Lane cardiac anaesthetists for their collegial good will, and for never complaining (publicly) about my invasion of their very limited work space;
The Green Lane cardiac surgeons for their co-operation and for never taking the emboli counts personally;

The Green Lane nursing staff for their expert and uncomplaining management of the trial infusions on the wards;

The Royal New Zealand Navy for encouragement and vital flexibility with my working hours;

The Auckland Hospital Biochemistry Laboratory for 3 years of mistake-free assays.

I also thank Mr Martin Cawthorn for setting me on the medical path many years ago, Mr Bill Day for his limitless encouragement during my journey along it, and those other special friends who have supported me. They know who they are.

Finally, I thank my partner, Dr Clare Hamilton for her patience, loyalty and support over 5 rewarding but difficult years.
PUBLICATIONS, PRIZES, ABSTRACTS

Publications

The following peer reviewed journal articles based in this work have been published or accepted for publication,

Prizes

This work has received the following awards at international medical meetings.

1. Paper 2 won the Residents Prize for best paper presented by a resident / registrar at the Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society, USA, 1996.

2. Paper 3 won the Terumo Award for best paper at the Annual Scientific Meeting of the Australasian Society of Cardiovascular Perfusionists, Sydney, Australia, 1997.

3. Paper 4 won the Committee Award for Excellence in Presentation at the Annual Scientific Meeting of the South Pacific Underwater Medical Society, New Zealand, 1997.

4. Paper 7 won the Terumo Award for best paper at the Annual Scientific Meeting of the Australasian Society of Cardiovascular Perfusionists, Sydney, Australia, 1999.
Published abstracts

The following abstracts have been published after presentation of this work at various medical meetings.

 Presented at the Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society, Alaska, May 1996

 Presented at the Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society, Cancun, Mexico, June 1997

 Presented at the Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society, Seattle, USA, May 1998

Presented at the Annual Scientific Meeting of the Australasian Society of Cardiovascular Perfusionists, Sydney, Australia, September 1997

Presented at the Outcomes 98 Meeting, Key West, USA, June 1998

Presented at the Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society, Boston, USA, May 1999

And:

The Outcomes 99 Meeting, Key West, USA, June 1999

And:

The Annual Scientific Meeting of the Australasian Society of Cardiovascular Perfusionists, Sydney, Australia, October 1999
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>PUBLICATIONS, PRIZES, AND ABSTRACTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xii</td>
</tr>
<tr>
<td>TABLES AND FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION AND LITERATURE REVIEW

1.1 Thesis overview and research chronology
2
1.2 Historical perspective
5
1.3 Definition, measurement and incidence of brain injury in cardiac surgery
7
 1.3.1 Peri-operative death secondary to brain injury
 1.3.2 Peri-operative stroke
 1.3.3 New neurological symptoms or soft neurological signs
 1.3.4 Neuropsychological deficits
 1.3.4.1 Neuropsychological testing
 1.3.4.2 The incidence of neuropsychological deficits
 1.3.4.3 Clinical significance of neuropsychological deficits
1.4 Comparison of cardiac surgical patients with appropriate control groups 21

1.5 Mechanisms of brain injury in cardiac surgery .. 24

1.5.1 Pathological findings

1.5.2 Cerebral hypoperfusion during CPB

1.5.3 Cerebral embolisation during CPB
 1.5.3.1 Sources of solid emboli
 1.5.3.2 Sources of gaseous emboli
 1.5.3.3 Numbers and distribution of emboli through surgery
 1.5.3.4 Mechanisms of cerebral injury by emboli
 1.5.3.5 Clinical evidence for cerebral injury by emboli during cardiac surgery

1.5.4 The systemic inflammatory response to CPB

1.5.5 Other risk factors for cerebral injury

1.5.6 The cellular pathophysiology of peri-operative brain injury
 1.5.6.1 Initial events in ischaemia

1.6 Strategies for brain protection during cardiac surgery .. 50

1.6.1 Strategies to minimise cerebral emboli exposure
 1.6.1.1 Arterial line filtration
 1.6.1.2 Membrane oxygenation
 1.6.1.3 Cardiac deairing

1.6.2 Strategies to optimise cerebral blood flow
 1.6.2.1 Carbon dioxide management
 1.6.2.2 Pulsatile perfusion

1.6.3 Strategies to enhance cerebral resistance to hypoxia
 1.6.3.1 Hypothermia
1.6.3.2 Cerebro-protective drugs

1.6.4 Strategies to reduce the inflammatory response to CPB
 1.6.4.1 Biocompatible components

1.7 Cerebral protection by lignocaine .. 62
 1.7.1 In vivo evidence for cerebral protection by lignocaine
 1.7.2 Clinical evidence for cerebral protection by lignocaine
 1.7.3 Mechanisms of cerebral protection by lignocaine
 1.7.3.1 Sodium channel blockade 1: prevention of the direct and
 indirect toxicity of sodium influx into neurones
 1.7.3.2 Sodium channel blockade 2: alteration of cellular energy
 metabolism
 1.7.3.3 Modulation of leukocyte activity and other rheological effects
 1.7.3.4 Modulation of haemodynamic parameters
 1.7.3.5 The multiple mechanism hypothesis
 1.7.4 Optimising cerebral protection by lignocaine

1.8 Summary and hypothesis .. 86
 1.8.1 Summary
 1.8.2 Hypothesis

2. DEVELOPMENT OF EMBOLI COUNTING .. 87
 2.1 Introduction ... 88
 2.2 Methods ... 90
 2.2.1 Configuration and design of the emboli counter
 2.2.2 Calibration of the Rimed emboli counter
 2.2.3 Comparison against another Doppler counting device
 2.3 Results ... 99
2.3.1 Calibration of the Rimed emboli counter

2.3.2 Comparison against another Doppler counting device

2.4 Discussion ... 102

3 RANDOMISED TRIAL OF LIGNOCaine IN BRAIN PROTECTION
DURING LEFT HEART VALVE SURGERY 104

3.1 Introduction .. 105

3.2 Methods .. 107

3.2.1 Subjects

3.2.2 Neuropsychological testing

3.2.3 Trial medication administration

3.2.4 Anaesthesia and surgery

3.2.5 Statistics

3.3 Results .. 116

3.3.1 Completion of protocol

3.3.2 Baseline neuropsychological function

3.3.3 Demographic and peri-operative variables

3.3.4 Neurological outcome

3.4 Discussion .. 129

3.4.1 Methodology

3.4.2 Results

3.4.3 Implications of the study

4. PATTERNS OF EMBOLI GENERATION 135

4.1 Introduction ... 136

4.2 Methods .. 137
4.2.1 Patients

4.2.2 Conduct of anaesthesia, CPB and surgery

4.2.3 Right common carotid artery Doppler monitoring

4.3 Results ... 141

4.4 Discussion .. 144

5 AUDIT OF A NOVEL DEAIRING TECHNIQUE .. 147

5.1 Introduction 148

5.2 Methods ... 150

5.2.1 Patient groups

5.2.2 Conduct of anaesthesia and CPB

5.2.3 Right common carotid artery Doppler monitoring

5.2.4 Deairing techniques

5.2.4.1 Conventional deairing: Groups 1, 1a, 1b

5.2.4.2 Dual vent deairing: Group 2

5.2.5 Non-vented CABG patients: Group 3

5.2.6 Myocardial damage

5.2.7 Aortic vent flow

5.2.8 Statistics

5.3 Results ... 160

5.3.1 Group characteristics

5.3.2 Comparison of deairing in Groups 1, 2, and 3

5.3.3 Flow through the aortic vent

5.3.4 Myocardial damage in Group 2

5.4 Discussion .. 166
6 EMBOLI AND THE CPB CIRCUIT ... 170

6.1 Introduction ... 171

6.1.1 CPB venous reservoirs

6.1.2 Clinical observations

6.1.3 In vitro studies

6.2 Methods ... 175

6.2.1 Clinical intervention

6.2.2 Relationship between emboli generation and Maxima reservoir blood volume

6.2.2.1 Recirculation of emboli

6.2.3 Mechanism of emboli generation

6.2.3.1 Maxima reservoir design

6.2.3.2 Gas switching in a hollow fibre oxygenator

6.2.3.3 Gas switching in the reservoir atmosphere

6.2.3.4 Effect of increasing flow

6.2.4 Bubble generation by other venous reservoirs

6.2.4.1 Forte reservoir design

6.2.5 Passage of reservoir generated bubbles through the CPB circuit

6.2.6 Passage of venous air through the CPB circuit

6.2.6.1 Passage of venous air through hard shell venous reservoirs

6.2.6.2 Passage of venous air to the arterial line

6.2.6.3 Effect of vacuum assisted venous drainage on passage of venous air to the arterial line

6.2.6.4 Effect of controlling air entrainment rate on passage of venous air to the arterial line during vacuum assisted venous drainage
6.2.6.5 Effect of entrainment of CO\textsubscript{2} instead of air on passage of venous gas to the arterial line during gravity drainage and vacuum assisted venous drainage

6.3 Results

6.3.1 Clinical intervention

6.3.2 Relationship between emboli generation and Maxima reservoir blood volume

6.3.2.1 Recirculation of emboli

6.3.3 Mechanism of emboli generation

6.3.3.1 Maxima reservoir design

6.3.3.2 Gas switching in a hollow fibre oxygenator

6.3.3.3 Gas switching in the reservoir atmosphere

6.3.3.4 Effect of increasing flow

6.3.4 Bubble generation by other venous reservoirs

6.3.4.1 Effect of reservoir blood volume

6.3.4.2 Effect of increasing flow

6.3.4.3 Forte reservoir design

6.3.5 Passage of reservoir generated bubbles through the CPB circuit

6.3.6 Passage of venous air through the CPB circuit

6.3.6.1 Passage of venous air through hard shell venous reservoirs

6.3.6.2 Passage of venous air to the arterial line

6.3.6.3 Effect of vacuum assisted venous drainage on passage of venous air to the arterial line

6.3.6.4 Effect of controlling air entrainment rate on passage of venous air to the arterial line during vacuum assisted venous drainage

xviii
6.3.6.5 Effect of entrainment of CO₂ instead of air on passage of
venous gas to the arterial line during gravity drainage and
vacuum assisted venous drainage

6.4 Discussion
6.4.1 Bubble generation by hard shell venous reservoirs
6.4.2 Passage of venous air through the CPB circuit

7 SUMMARY
7.1 Prevention of emboli exposure
7.2 Cerebral protection by lignocaine
7.3 Summary statement

BIBLIOGRAPHY
LIST OF TABLES AND FIGURES

TABLES

<table>
<thead>
<tr>
<th>Name</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Studies reporting the incidence of fatal brain injury during cardiac surgery</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Studies reporting the incidence of peri-operative stroke during cardiac surgery.</td>
<td>9</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Studies reporting the incidence of new behavioural abnormalities and / or neurological signs following cardiac surgery.</td>
<td>10</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Studies reporting the incidence of NP deficits following cardiac surgery.</td>
<td>16</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Studies reporting the number of emboli recorded by Doppler devices used to monitor the cerebral circulation during cardiac surgery.</td>
<td>34</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>In vivo investigations of cerebral protection by lignocaine in ischaemic injury.</td>
<td>67</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Emboli count over 5 consecutive 1 minute periods in each of 7 sequential conditions during the calibration experiment.</td>
<td>99</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Tests and sub-scales of the NP test battery.</td>
<td>108</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Comparison of group mean raw scores for all test sub-scales in lignocaine and placebo groups at the pre-operative assessment.</td>
<td>117</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Comparison of lidocaine and placebo groups with respect to demographic and pre-operative variables.</td>
<td>119</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Comparison of lidocaine and placebo groups with respect to surgical and peri-operative variables.</td>
<td>120</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Comparison of lignocaine and placebo groups with respect to post-operative variables.</td>
<td>121</td>
</tr>
</tbody>
</table>
Table 3.6 Number and proportion of patients in the lignocaine and placebo groups exhibiting a decrement in at least one and at least two performance test sub-scales at each review

Table 3.7 Sequential group mean percentage change scores for lignocaine and placebo groups in performance test sub-scales where there was no significant difference between the groups.

Table 4.1 Emboli detection by operative phase.

Table 5.1 Patient groups: relevant medical and surgical parameters.

Table 5.2 Emboli count after aortic declamping in Group 2.

Table 5.3 Emboli count recorded after aortic declamping in Group 1 patients stratified according to selected patient and surgical variables.

Table 6.1 RCCA emboli counts during stable CPB in patients monitored before and after recommendation of the 1000 ml minimum venous reservoir volume.

FIGURES

Figure 2.1 Typical Colour flow Doppler displays during monitoring of an *in vitro* circuit

Figure 2.2 *In vitro* circuit configuration for the Doppler counter calibration.

Figure 2.3 Device for mounting the Doppler probe on the *in vitro* circuit tubing

Figure 2.4 Mean emboli count per minute after each alteration to the circuit during the calibration experiment.

Figure 2.5 Mean (± SEM) count recorded over 150 seconds by the Rimed and Hatteland Doppler devices downstream of the reservoir as reservoir blood volume was decreased.

Figure 3.1 Coded vial for trial infusion solutions.
Figure 3.2 Sequential group mean percentage change scores for lignocaine and placebo patients in those performance test subscales where there was a significant difference between the groups.

Figure 3.3 Sequential group mean percentage change scores for lignocaine and placebo groups in the two sub-scales of the Memory Assessment Clinics Self-Report Inventory.

Figure 3.4 Sequential group mean percentage change scores for lignocaine and placebo groups in the Beck Depression and State Trait Anxiety Inventories.

Figure 4.1 Operation of the Doppler emboli counter in the clinical setting.

Figure 4.2 Percentage of the total operative count recorded in each phase averaged over all patients.

Figure 5.1 Schematic of CPB circuit configured for conventional deairing.

Figure 5.2 Schematic of CPB circuit configured for dual vent deairing.

Figure 5.3 Schematic of dual vent deairing early during cardiac recovery.

Figure 5.4 Schematic of the final stage of dual vent deairing.

Figure 5.5 Median (range) emboli count after aortic declamping for each group.

Figure 6.1 *In vitro* circuit configuration for investigation of relationship between emboli formation and blood volume in the Medronic Maxima HSVRs.

Figure 6.2 *In vitro* circuit configuration for investigation of the nature of the emboli generated by the Medtronic Maxima HSVRs.

Figure 6.3 Configuration of salvaged clinical CPB circuits for *in vitro* experiments.

Figure 6.4 Mean emboli count (± SEM) over 5 minutes measured downstream of the Medronic Maxima bottom and top entry HSVRs as reservoir blood volume is reduced.
Figure 6.5 Cut-away view of the Medtronic Maxima Bottom Entry HSVR (from Medtronic promotional material) showing the upwardly directed venous line entry portal in an unconstrained chamber (white arrowhead).

Figure 6.6 Cut-away view of the Medtronic Maxima Top Entry HSVR (from Medtronic promotional material) showing the upwardly deflected venous line entry portal in an unconstrained chamber (white arrowhead).

Figure 6.7 Emboli count downstream of a Medtronic Maxima top entry HSVR and membrane oxygenator during manipulations of reservoir blood volume and oxygenator sweep gas.

Figure 6.8 Emboli count downstream of a Medtronic Maxima top entry HSVR and membrane oxygenator during manipulations of reservoir blood volume and reservoir atmosphere.

Figure 6.9 Mean emboli count (± SEM) over 150 seconds measured downstream of the Medtronic Maxima top entry HSVR as circuit flow rate is increased.

Figure 6.10 Mean (± SEM) emboli count over 150 seconds recorded downstream of the HSVRs tested as blood volume was progressively decreased.

Figure 6.11 Mean (± SEM) emboli count over 150 seconds downstream of the Medtronic Forte HSVR as reservoir blood volume is progressively lowered.

Figure 6.12 Mean (± SEM) emboli count over 150 seconds downstream of the HSVRs tested as flow rate was increased.

Figure 6.13 Cut-away view of the Medtronic Forte hard shell venous reservoir (from Medtronic promotional material) showing the upwardly deflected venous line entry portal in a constrained chamber (white arrowhead).

Figure 6.14 Mean (± SEM) emboli count over 150 seconds downstream of the reservoir, oxygenator, and filter as reservoir blood volume is decreased in Medtronic Maxima top entry HSVR.
Figure 6.15 Mean (± SEM) bubble count detected downstream of the HSVRs tested over 180 seconds of pulsed venous air exposure.

Figure 6.16 Mean (± SEM) bubble count in the arterial line downstream from a 40 μm filter after entrainment of air to the venous return line during gravity venous drainage.

Figure 6.17 Mean (± SEM) bubble count in the arterial line downstream from a 40 μm filter after entrainment of air to the venous return line during GVD and VAVD.

Figure 6.18 Mean (± SEM) time to complete entrainment of air under GVD and VAVD.

Figure 6.19 Mean (± SEM) bubble count in the arterial line downstream from a 40 μm filter after entrainment of 50 ml air to the venous return line at unrestricted and restricted rates during GVD and VAVD.

Figure 6.20 Mean (± SEM) bubble count in the arterial line downstream from a 40 μm filter after entrainment of air or CO₂ to the venous return line at unrestricted rates during GVD and VAVD.
LIST OF ABBREVIATIONS AND SYMBOLS

Note: Abbreviations used only in tables or figures and explained in the captions to those tables or figures do not appear in this list.

ANOVA Analysis of variance
AST Aspartate amino transferase
ATP Adenosine triphosphate
AVLT Auditory – verbal learning test
BMI Body mass index
Ca$^{2+}$ Calcium
CAGE Cerebral arterial gas embolism
CBF Cerebral blood flow
CK-MB Creatine kinase (myocardial fraction)
cm Centimetre
CO$_2$ Carbon dioxide
CPB Cardiopulmonary bypass
DCI Decompression illness
EEG Electro-encephalogram
EPSP Excitatory post-synaptic potential
Fe$^{3+}$ Iron ion
g Gram
GVD Gravity venous drainage
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺</td>
<td>Hydrogen ion</td>
</tr>
<tr>
<td>HBO</td>
<td>Hyperbaric oxygen</td>
</tr>
<tr>
<td>HSVR</td>
<td>Hard shell venous reservoir</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial pressure</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>K/AMPA</td>
<td>Kainate / amino-3-hydroxy-5-methyl-4-isoazole propionic acid (receptors)</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LCCA</td>
<td>Left common carotid artery</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>MAC-S</td>
<td>Memory Assessment Clinics self-rating inventory</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td>MCA</td>
<td>Middle cerebral artery</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimetres of mercury</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium ion</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>[Na⁺]ᵢ</td>
<td>Intracellular concentration of sodium ions</td>
</tr>
<tr>
<td>[Na⁺]₀</td>
<td>Extracellular concentration of sodium ions</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NMDA</td>
<td>N methyl D aspartate (receptors)</td>
</tr>
<tr>
<td>NP</td>
<td>Neuropsychological</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>Arterial partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>PaN₂</td>
<td>Arterial partial pressure of nitrogen</td>
</tr>
<tr>
<td>PO₂</td>
<td>Partial pressure of oxygen</td>
</tr>
<tr>
<td>RCCA</td>
<td>Right common carotid artery</td>
</tr>
<tr>
<td>s</td>
<td>Second(s)</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDMT</td>
<td>Symbol digit modality test</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SER</td>
<td>Somatosensory evoked response</td>
</tr>
<tr>
<td>STAI</td>
<td>State–trait anxiety index</td>
</tr>
<tr>
<td>TOE</td>
<td>Transoesophageal echocardiography</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>μmol</td>
<td>Micromol</td>
</tr>
<tr>
<td>VAVD</td>
<td>Vacuum assisted venous drainage</td>
</tr>
<tr>
<td>VSCC</td>
<td>Voltage sensitive calcium channel</td>
</tr>
</tbody>
</table>