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Background and Motivation

Definition: Patient Harm
Physical or emotional negative consequences to patients directly arising

from health care, beyond the usual consequences of care
and

not attributable ONLY to the patient’s health condition.

Includes: Treatment delays, inconvenience and additional financial costs.

An extensive retrospective review of New Zealand general practice (GP) electronic
health records (EHRs) over a three-year period identified preventable patient safety
issues [1]. However, this review required extensive time, expert knowledge and
resources for collecting, screening and analysing data.

Objectives

This research is an independent study to the retrospective review [1]. However, it
makes use of theNewZealandGPEHRs collected in the original study and employs
machine learning to identify healthcare harm, harm severity and preventability.
It is a feasibility study to determine the viability and limitations of automating
identification of healthcare harm, if any, and providing feedback to the GPs.
To develop a prototype to automatically detect patient harm from medical records.

GP Records Review: Study Design and Data

Tabular Data Free-Text Data Labels
age, gender, ethnicity, consultations notes, (i) harm or no harm
deprivation (NZDep13), prescriptions, referrals, (ii) severity of harm
number of consultations, investigations, (iii) preventable or not
practice size & location discharge summaries (iv) medical codes

De-identified Text Data
De-identified GP EHRs text length: max = 49,226, average = 2,120

Tabular Data

- Age, number of unique medicines prescribed & number of consultations shows
evidence of correlation with patient harm.
- The correlation of patient’s gender, deprivation, ethnicity, practice size& location
with patient harm is approximately 0.

Preliminary Experiments
Binary classification to predict patient harm or no harm was performed, independently, using both EHRs in the form
of free-text and tabular data.

Tabular Data

- Multi-layer perceptrons [3] with categorical variable embeddings was used for the classification task, with the pre-
diction Sensitivity = 0.85 and Specificity = 0.66.
- SHAP (SHapley Additive exPlanations) [5] is used to explain the predictions (as shown in examples 1-2).

Example 1- Prediction and True label: Harm. Example 2- Prediction: Harm; True label: No Harm.

RED features: increase the prediction of true label; BLUE features: decrease the prediction of true label of the model.

Free-Text EHRs

- PubMedBERT [2] was used for the down-streaming task, with the prediction Sensitivity = 0.88 and Specificity =
0.7. EHRs were truncated to 512 tokens due to the model restrictions.
- LIME [4] is used to explain the predictions (as shown in examples 3-4).

Example 3: Prediction and True label: No Harm.

Example 4: Prediction: Harm; True label: No Harm.

GREEN: contributes to the prediction. PINK: detract from the final prediction. Shade of color denotes strength.

Concluding Remarks
- Artificial Intelligence working in conjunction with experts moves us further towards reducing healthcare harm in
New Zealand general practice.
- Only preliminary experiments of free-text EHRs and tabular text are presented here. However, given the availability
of de-identified rich data, with an average length of 2,000 tokens, it is vital to use methods that can handle long se-
quences.
- Furthermore, incorporating tabular data and text data to use the more recent multi-modal transformers may also
improve accuracy of predictions.
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