Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
STUDIES ON THE ENDOCRINOLOGY OF

PARTURITION IN THE GUINEA-PIG

by

JUNE ZETA KENDALL

Postgraduate School of Obstetrics and Gynaecology

The University of Auckland

Thesis submitted for the Degree of Doctor of Philosophy

May 1977
ACKNOWLEDGEMENTS

The assistance, instruction and advice given by my supervisor Professor G.C. Liggins and the instruction and advice given by my supervisor Professor G.D. Thorburn are deeply appreciated.

I am indebted to Professor G.S. Dawes and Professor A.C. Turnbull, University of Oxford for providing the opportunity and facilities for carrying out some of this research programme.

Thanks are due to Dr. F. Marriott, Department of Biomathematics, University of Oxford and Dr. P. McInerney and Mr. P. Mullins of the Postgraduate School of Obstetrics and Gynaecology, University of Auckland for the assistance with the statistical analyses of the plasma hormone concentrations, foetal weights and drug-treated animals.

I wish to express my appreciation to the following colleagues: Dr. J.T. France, Mr. B.S. Knox and Ms T. Fitzgerald who performed some of the hormone analyses; Ms G. Morton, Ms M. Trethaway and Ms J. Holt who assisted with surgical procedures; Dr. J. Stewart, Ms G. Dunlop and the staff of the radiography department, National Women's Hospital who provided X-ray films of the animals; Mr. Johanssen for assistance with art work.

I wish to express my appreciation also to Ms C. Forster who with the assistance of Ms P. Bigelow undertook the onerous task of collating the thesis. I wish to thank Ms J. Ashman for typing the thesis.

Finally I am indebted to Professor R.V. Short, Dr. M. Reed and Dr. P. Hunter for their encouragement and assistance.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>PURPOSE OF THE WORK</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>PARTURITION IN THE EWE</td>
<td>8</td>
</tr>
<tr>
<td>Function of the Foetal Pituitary-adrenal Axis</td>
<td></td>
</tr>
<tr>
<td>Progesterone</td>
<td>16</td>
</tr>
<tr>
<td>Oestrogen</td>
<td>19</td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>24</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>27</td>
</tr>
<tr>
<td>ASPECTS OF GUINEA-PIG PREGNANCY</td>
<td>31</td>
</tr>
<tr>
<td>Duration of Pregnancy</td>
<td></td>
</tr>
<tr>
<td>THE ENDOCRINOLOGY OF LATE PREGNANCY IN GUINEA-PIGS</td>
<td>35</td>
</tr>
<tr>
<td>Hormones in Plasma and Tissues</td>
<td></td>
</tr>
<tr>
<td>The concentration of progesterone</td>
<td>41</td>
</tr>
<tr>
<td>The concentration of oestrogen</td>
<td>43</td>
</tr>
<tr>
<td>The concentration of prostaglandins</td>
<td></td>
</tr>
<tr>
<td>The concentration of corticosteroids in maternal plasma</td>
<td>45</td>
</tr>
<tr>
<td>The concentration of corticosteroids in foetal plasma</td>
<td>47</td>
</tr>
<tr>
<td>The concentration of neurohypophysial hormones</td>
<td>49</td>
</tr>
<tr>
<td>The concentration of relaxin</td>
<td></td>
</tr>
<tr>
<td>Endocrine Influences on Myometrial Activity</td>
<td>50</td>
</tr>
<tr>
<td>Progesterone and oestrogen</td>
<td></td>
</tr>
<tr>
<td>Relaxin</td>
<td>57</td>
</tr>
</tbody>
</table>
Innervation of the guinea-pig uterus

(a) Adrenergic 58
(b) Cholinergic 59
(c) Purinergic 60

Prostaglandins

Oxytocin 61

Separation of the Pubic Symphysis

Endocrine Control of Cervical Dilatation 64

Ablation of Endocrine Organs; Gestation Length and Parturition 65

Hypophysectomy or hypothalamic lesions of the dam 66

Hypothalamic-pituitary lesions in the foetus 67

EXPERIMENTS 68

INVESTIGATIONS INTO THE POSSIBLE ROLE OF THE FOETAL ADRENAL GLAND IN PARTURITION 69

STIMULATION OR AUGMENTATION OF FOETAL ADRENAL FUNCTION

Materials and Methods

Animals

Preparations 70

Foetal Weights 71

Microscopic Examination of the Foetal Adrenal Gland

Foetal Injection of Depot Tetracosactrin (Synacthen)

Foetal Injection of a Glucocorticoid-Triamcinolone 73

Results 74a

Foetal Injection of Depot Tetracosactrin (ACTH) 75

Foetal Injection of a Glucocorticoid 83

Foetal adrenal weight & gestational age 84

Discussion 86

PRELIMINARY WORK ON A TECHNIQUE FOR CHRONIC CANNULATION OF FOETAL BLOOD VESSELS 92
INVESTIGATIONS INTO THE POSSIBLE ROLE OF MATERNAL HORMONES IN PARTURIATION

I. ADMINISTRATION OF EXOGENOUS HORMONES TO THE DAM

Materials and Methods

Animals

Preparations

Maternal Injections of Depot Tetracosactrin (Synacthen)

Maternal Injections of Stilboestrol

Prostaglandin F\textsubscript{2α} Infusion

Results

Maternally Administered Prostaglandin F\textsubscript{2α}

Maternal Injections of Synacthen

Maternal Injections of Oestrogen

Discussion

II. THE MEASUREMENT OF PLASMA HORMONES IN THE DAM

Materials and Methods (General)

Animals

Surgical Technique for the Insertion of a Catheter into the Inferior Vena Cava

Insertion of a Catheter into a Jugular Vein or a Carotid Artery

Sampling

The Assays

THE LEVELS OF PLASMA PROGESTERONE DURING LATE PREGNANCY

Materials and Methods

A Competitive Protein Binding Assay for Plasma Progesterone and 20α-hydroxyprogesterone

Modifications of the Basic Method

Extraction
Standard curve 120

Evaluation of Method
Specificity 121
Column chromatography
Accuracy 122
Precision 123

A Radioimmunoassay for Plasma Progesterone 124

Reagents
Solvents
The Antibody
Extraction of plasma progesterone 125
Radioimmunoassay of progesterone
Measurement of radioactivity 126

Evaluation of Method
Specificity of antiserum 126b
Precision
Procedural losses

Results 127

Discussion 132

THE LEVELS OF PROSTAGLANDIN F AND 15-KETO-
PROSTAGLANDIN F DURING LATE PREGNANCY 138

Materials and Methods
Radioimmunoassays for Plasma Prostaglandin F and
15-Keto-Prostaglandin F 139

Trivial names
Prostaglandins
Labelled prostaglandins
Glassware
Preparation of the antibody
The antiserum 140
Extraction and purification of plasma prostaglandins 140

Column chromatography

Radioimmunoassay of the F prostaglandins 142

Measurement of radioactivity 143

Evaluation of Method

Specificity of antisera

Accuracy 144

Procedural losses 145

Precision

Results 146

Discussion 150

THE LEVELS OF PLASMA CORTISOL DURING LATE PREGNANCY 160

Materials and Methods

Radioimmunoassays for Plasma Cortisol

Abbreviations and trivial names 161

Steroids

Labelled steroids

Solvents

The antibody

Method A 162

Extraction

Radioimmunoassay of cortisol

Evaluation of Method

Specificity

Accuracy 162a

Procedural losses

Precision

Method B 163

Extraction
SUMMARY

A considerable amount of evidence has accumulated in sheep which ascribes to the foetal-pituitary adrenal system an important role in controlling the production of oestrogen, progesterone and prostaglandin F. Similar studies have shown that the foetus plays an important part in parturition in goats and cows but the extent to which these findings can be extended to other species is a matter of conjecture.

The present study investigates the role of the guinea-pig foetus in the endocrinology of late pregnancy and parturition.

The methods used in the study were:

1. Injections of drugs into the immature foetus.
 (i) Foetal adrenal growth and activity was stimulated by ACTH.
 (ii) Endogenous levels of glucocorticoids were elevated by corticosteroids.

2. Injections or infusions of drugs into the mother.
 (i) Maternal adrenal activity was stimulated to investigate the possibility that the site of action of ACTH administered to the foetus is within the maternal compartment.
 (ii) The effect of raised levels of oestrogen and PGF$_{2a}$ on myometrial activity and on gestation length was observed. (These hormones mediate the action of cortisol on the sheep myometrium).

3. Observations on foetal adrenal weight.
 (i) Adrenal weight was measured during normal gestation and after birth to obtain a range with which to compare
the results of hormone treatment.

(ii) Adrenal weight was measured after injections of ACTH, glucocorticoids or oestrogen to mother or foetus.

4. Measurements of levels of hormones circulating in the dam in order to recognise changes reflecting preparation for birth.

(i) The concentration of progesterone, cortisol, prostaglandin F and 15-keto-prostaglandin F were measured during the few weeks before birth in serial samples from chronically cannulated dams. Catheters were placed, using sterile techniques, in either a jugular vein, a carotid artery or the inferior vena cava.

(ii) The pattern of progesterone, prostaglandin F, 15-keto-prostaglandin F and cortisol was measured by competitive protein binding or radioimmunoassay techniques.

5. Estimations of the separation of the pubic symphysis during late pregnancy from x-ray plates.

The results of the study show:

(i) Injection of synacthen (ACTH) into all foetuses of a litter caused adrenal growth and shortened gestation length. Adrenal weight and litter size were possible factors related to premature parturition: Large litters and litters with the greatest combined mass of adrenals tended to deliver earlier. The interpretation of the results, however, were complicated by the use of varying doses of ACTH given to two strains of guinea-pigs. More data are required to relate ACTH-induced delivery to the physiology of parturition in guinea-pigs.
(ii) Injection of a glucocorticoid (triamcinolone) into all foetuses of a litter was without effect on gestation length. The dose chosen was equivalent in glucocorticoid potency to other analogues effective in causing premature parturition in ruminants and rodents at a similar stage of gestation.

(iii) Total adrenal weight increased during the last stages of pregnancy. The mean total adrenal weight per litter corrected for body weight declined when plotted against gestational age. In a population of newborns selected for constant litter size, females had larger adrenal glands than males. A population of seven day old guinea-pigs showed no sexual dimorphism in total adrenal weight.

(iv) Injections of ACTH into nonpregnant, adult guinea-pigs stimulated adrenal growth. The same regimen given to the dam between Day 50 - 54 of gestation did not shorten gestation length. Maternally-administered ACTH did not cause growth of the foetal adrenal glands as seen after intrafoetal injections.

(v) Injection of a dose of oestrogen greater than the daily production rate of oestradiol in late pregnancy given either at Day 46 - 48 of gestation or just before term did not affect gestation length. Oestrogen injections near term were associated with enlargement of the foetal adrenal glands. The significance of this observation is unknown.

(vi) Prostaglandin F\(_{2\alpha}\) administered as a continuous intra-arterial infusion caused an increase in the sensitivity
of the uterus to oxytocin, an increase in myometrial activity and premature delivery. No sharp fall in progesterone concentration preceded delivery. The number of observations in these experiments was small and the results are only qualitative. Because of the possible importance of PGF$_{2\alpha}$ in the physiology of parturition more through investigations are warranted.

(vii) There was considerable variation both within and between animals in hormone levels.

The mean concentration of progesterone in maternal blood in serial samples collected at the same time of day declined between Day 40 and 55 of gestation and rose during the last ten days of gestation. Progesterone concentration was high (30-450ng/ml) and there was no abrupt fall during the few days preceding birth. Further work is required to establish the pattern on the day of birth.

Prostaglandin F levels rose on the day of birth and at delivery. 15-keto-prostaglandin F levels rose in most animals at delivery. The concentration of the metabolite was lower than prostaglandin F concentration in the same sample. In three animals that aborted post-operatively the levels of prostaglandin F and 15-keto-PGF were high at delivery.

The concentrations of cortisol was very high (1-11µg/ml) and showed considerable variation some of which may have reflected responses to environmental conditions.
(viii) During the week before birth the pubic symphysis separated in preparation for delivery of young.

It is concluded that the results of the present study do not resolve the question of the mechanism initiating labour in the guinea-pig. Some evidence was found to suggest that activity of the foetal adrenal was involved but how the products of adrenal secretion might influence uterine contractility remains unknown.
PURPOSE OF THE WORK

The work in this thesis was designed to determine whether the foetal guinea-pig initiates parturition in a way similar to that proposed for the foetal lamb.