http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Cannabis Origin Determination
Using Plant and Soil Elemental Profiles

Dion James Sheppard

A thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Forensic Science,
The University of Auckland, 2000
Abstract

Forensic laboratories examining *Cannabis* may be asked to determine if a sample is from a particular geographical location. They may also be asked to determine if two separate seizures of cannabis were once part of one larger sample. A variety of methods have been published for investigating these two related origin determination questions. This thesis presents an examination of the elemental profiles of cannabis plant material and the soil the plants were grown on, as a method for origin determination.

Cannabis plants were cultivated on three different soil profiles under controlled conditions. Plant samples, harvested at various stages of growth, were subjected to a nitric acid digestion procedure developed specifically for this investigation. The soil samples were extracted with dilute acetic acid to determine the plant available concentration of soil elements. Both the plant and soil samples were analysed on a HP 4500 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) operated in the semiquant mode. Fifty-eight different elements were quantified in every sample. Plant and soil samples were also subjected to total element analysis methods.

A high level of precision was achieved for both the plant and soil analysis procedures. The accuracy of the plant digestion process was determined with the analysis of a standard reference material and showed good agreement with certified and recommended values. The accuracy of the soil extraction method was not determined, as a reference soil extraction sample was not available.

From the comparison of plant results it was possible to conclude that plants grown on the same soil display the same element profile. This was true for plants of different sex and plants material harvested at different stages of development all from the same soil. In addition to this, plants from different soils had different elemental profiles. Twenty-two elements were identified as being significantly different between plants from different soils with the ANOVA univariate statistical test. These differences lead to clear group separation when samples were analysed with the canonical discriminant analysis multivariate statistical test.
The comparison of plant concentrations and extracted soil elements identified a limited number of positive correlations between plants and the soil they were grown on. These results indicate that a relationship does exist between Cannabis plants and the soil it was grown, however the acetic acid soil extracted process does not precisely represent the elements absorbed by Cannabis.

The elemental method for the origin determination of cannabis presented in this thesis answered one of the two questions posed. It was possible to identify cannabis plants that had been grown on the same soils and to separate plants from different soils. However, using the correlation between plant elements and extracted soil elements it would not be possible to offer strong conclusions about the relationship between a cannabis sample and possible soil origin.
Acknowledgements

A large number of people have made valuable contributions towards this thesis. Of particular importance was the guidance and support of my supervisor, Dr Gordon Miskelly. Thank you for always offering solutions to the endless stream of questions and for reading all of those drafts. I would also like to thank Dr Harry van Enckevort for suggesting the initial Cannabis origin determination question.

I am grateful to those who assisted with the preparation and analysis of samples. Thank you Dr Ann Coxon and the staff of the ESR Drugs Laboratory for assisting with the production of the cannabis crop. Thank you Dr Mark McKeage and Dr Peter Galettis for allowing me to use the ICP-MS and for assisting with the instrument set up and analysis of samples. Thank you Mr Glenn Boyes for assisting with the AAS analysis and for loaning glassware and other equipment. Thank you Mr Lawrence Pickston for performing the ICP-MS analysis of total digested plant and soil samples. Thank you Mr John Wilmshurst for performing the XRF analysis of the soil samples.

I also wish to thank Monique McKenzie and Carl Donovan for helping me to come to grips with the statistical interpretation of my data.

Finally a special thanks goes my friends and my family. In particular Sally, Mum, Dad, Cameron, Amanda and Clayton. Thank you for all your love and support. Without you this would not have been possible.
Table of Contents

Abstract .. i
Acknowledgements ... iii
Table of Contents .. iv
Table of Tables .. x
Table of Figures .. xii
Glossary of Terms and Abbreviations ... xv

Chapter 1. Introduction

1.1 Introduction .. 1
1.2 Background .. 2
 1.2.1 Terminology ... 2
 1.2.2 Physical and Chemical Features of Cannabis ... 3
 1.2.3 Forensic Analysis .. 5
 1.2.4 Use and Abuse .. 5
 1.2.5 New Zealand Legislation ... 6
1.3 Origin Determination ... 7
 1.3.1 Organic Chemical Analysis .. 7
 1.3.2 Additional Organic Analyses .. 10
 1.3.2.1 DNA Analysis .. 10
 1.3.2.2 Pollen Analysis ... 11
 1.3.2.3 Insect Analysis ... 12
 1.3.3 Elemental Analysis .. 12
 1.3.4 Elemental Profiling Technique ... 15
 1.3.4.1 Soil Components ... 15
 1.3.4.2 Soil Element Availability ... 16
 1.3.4.3 Element Uptake by Plants .. 18
1.4 The New Zealand Situation ... 19
 1.4.1 New Zealand Cannabis ... 19
 1.4.2 New Zealand Soil .. 20
 1.4.3 Origin Determination in New Zealand .. 20
1.5 Aims and Objectives ... 21
1.6 Thesis Outline .. 23
Chapter 7. Comparison of Plant and Soil Results ... 211
 7.1 Introduction ... 211
 7.2 Plant Results and Extracted Soil Elements ... 212
 7.2.1 Elemental Comparison .. 212
 7.3 Plant Results and Total Soil Elements ... 220
 7.3.1 Elemental Comparison .. 220
 7.4 Soil Properties and Plant Elements .. 225
 7.5 Conclusion .. 227

Chapter 8. Discussion and Conclusions ... 229
 8.1 Introduction ... 229
 8.2 Discussion .. 229
 8.3 Conclusions ... 230

Appendix 1 .. 232

References .. 233
Table of Tables

Table 2.1: Temperature Values .. 28
Table 2.2: Total volume of water given to each pot in millilitres... 29
Table 2.3: Sex and Survival of Plants ... 34
Table 2.4: Mean plant data for harvest one.. 39
Table 2.5: Mean plant data for harvest two.. 40
Table 2.6: Mean results for harvest three.. 40
Table 2.7: Mean results for harvest four.. 42
Table 2.8: Mean results for harvest five.. 43
Table 3.1: Cannabis samples homogenised.. 60
Table 3.2: Cannabis samples too small for analysis... 61
Table 3.3: General method parameters ... 66
Table 3.4: Non-rare earth elements in calibration standards.. 67
Table 3.5: The 14 REE for analysis ... 67
Table 3.6: Additional elements not in the calibration standards ... 68
Table 3.7: Tune parameter aims.. 70
Table 3.8: ICP-MS analysis order .. 71
Table 3.9: Interference correction equations.. 74
Table 4.1: Parameters for Flame AAS analysis of Magnesium .. 82
Table 4.2: Microwave digestion program for soil samples ... 87
Table 5.1: Standard deviation and relative standard deviation for three repeated cannabis samples 96
Table 5.2: Percent recovery of elements from SRM 1575 ... 101
Table 5.3: ICP-MS tune parameters and results.. 103
Table 5.4: Tune solution results ... 103
Table 5.5: Relative standard deviation (RSD) for repeated grape and SRM samples 122
Table 5.6: SRM percent element recovery .. 125
Table 5.7: List of elements below and the number above the LOD ... 131
Table 5.8: Results for the ANOVA test of plants from different soils... 142
Table 5.9: Elemental differences between plant types .. 143
Table 5.10: Summary of canonical discriminant scores ... 144
Table 6.1: Soil pH as determined by a water and CaCl₂ suspension ... 155
Table 6.2: Soil pH values for a 1:1 water:soil suspension [106] .. 156
Table 6.3: Organic content in the four soil samples ... 158
Table 6.4: Cation exchange capacity values for the four soils .. 160
Table 6.5: New Zealand soil CEC values [112] .. 160
Table 6.6: Instrument parameters from the analysis of the acetic acid soil extracts 162
Table 6.7: Tune solution results .. 162
Table 6.8: Values calculated to determine the limit of detection ... 172
Table 6.9: Percentage of elements within ± 10% and 20% of the mean .. 181
Table 6.10: List of element below and the number above the LOD ... 189
Table 6.11: ANOVA results for the comparison of soil samples .. 194
Table 6.12: Elemental differences between plant types .. 195
Table 6.13: Summary of canonical discriminant scores .. 196
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Δ-9-tetrahydrocannabinol (THC)</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Cannabinol (CBN)</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Cannabidiol (CBD)</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Photograph of the Cannabis plants in the four seed raising trays. Tuesday 05/05/99</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Graph of average water given to each soil type</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Daily sunshine hours and daylight hours</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Plant size at different stages of growth</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Photograph of potting mix plants before harvesting on 16/08/99</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>Photograph of the five potting mix Cannabis plants before harvest 5. Monday 27/09/99</td>
<td>42</td>
</tr>
<tr>
<td>2.7</td>
<td>Largest female plant produced. Harvested from potting mix pot number two.</td>
<td>43</td>
</tr>
<tr>
<td>2.8</td>
<td>Cannabis Hairs [66]</td>
<td>46</td>
</tr>
<tr>
<td>2.9</td>
<td>TLC plates of results for the chemical analysis of cannabis material</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of a typical ICP-MS instrument [70].</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of HP 4500 ion lenses set up [71].</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of 2 g and 0.5 g grape samples</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of 2 g and 0.5 g cannabis samples</td>
<td>91</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of diluted and undiluted cannabis samples</td>
<td>93</td>
</tr>
<tr>
<td>5.4</td>
<td>Repeated Cannabis samples within one run</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>Repeated Cannabis samples in different runs</td>
<td>98</td>
</tr>
<tr>
<td>5.6</td>
<td>SRM results compared with certified and recommended values</td>
<td>100</td>
</tr>
<tr>
<td>5.7</td>
<td>Additional calibration standards</td>
<td>105</td>
</tr>
<tr>
<td>5.8</td>
<td>Check standard ratio plot</td>
<td>107</td>
</tr>
<tr>
<td>5.9</td>
<td>Comparison between Milli-Q water blank and acid blank</td>
<td>109</td>
</tr>
<tr>
<td>5.10</td>
<td>Comparison between the acid blank and the method blank</td>
<td>111</td>
</tr>
<tr>
<td>5.11</td>
<td>Ten method blanks</td>
<td>114</td>
</tr>
<tr>
<td>5.12</td>
<td>Limit of detection and the mean method blank</td>
<td>117</td>
</tr>
<tr>
<td>5.13</td>
<td>Repeated grape samples</td>
<td>120</td>
</tr>
<tr>
<td>5.14</td>
<td>Repeated SRM 1575 samples</td>
<td>121</td>
</tr>
<tr>
<td>5.15</td>
<td>Mean SRM values and certified and recommended values</td>
<td>124</td>
</tr>
</tbody>
</table>
Figure 6.17: Comparison between the mean Northland soil concentration and the LOD188
Figure 6.18: Comparison between the four soil types
Figure 6.19: Canonical discriminant functions
Figure 6.20: X-Ray analysis of the four soil samples
Figure 6.21: Soil total element analysis graph
Figure 6.22: Comparison of total and extractable SRM elements
Figure 6.23: Comparison between total and extractable elements for the seed raising mix
Figure 6.24: Comparison between total and extractable elements for the potting mix
Figure 6.25: Comparison between total and extractable elements for the Blockhouse Bay soil
Figure 6.26: Comparison between total and extractable elements for the Northland soil
Figure 6.27: Percentage of elements extracted, as a proportion of total concentration
Figure 6.28: Extracted element percent for acetic acid procedure
Figure 6.29: Comparison of two total analysis methods
Figure 7.1: Potting mix plant results and extracted soil concentration
Figure 7.2: Northland plant results and extracted soil concentration
Figure 7.3: Blockhouse Bay plant results and extracted soil concentration
Figure 7.4: Correlation of plant and soil REE concentrations for La to Gd
Figure 7.5: Correlation of plant and soil REE concentrations for Tb to Lu
Figure 7.6: Ratio of acetic acid extracted elements to plant concentration
Figure 7.7: Scatter plot of log plant and log soil concentrations for Ni, Zn, Br and Mo
Figure 7.8: Potting mix plant results and total soil concentration
Figure 7.9: Northland plant results and total soil concentration
Figure 7.10: Blockhouse Bay plant results and total soil concentration
Figure 7.11: Scatter plot of log total soil and log plant concentrations for Zn and Cu
Figure 7.12: Total soil concentration as a percent of plant concentration
Figure 7.13: Scatter plot of total soil concentration and plant concentration for Se, Ga, Ni, Mn and Ba
Figure 7.14: Soil organic content and plant Mn and Zn concentration
Figure 7.15: Relationship between soil pH and selected plant elements
Glossary of Terms and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption analysis</td>
</tr>
<tr>
<td>Cannabinoid</td>
<td>Group of chemical compounds found exclusively in Cannabis</td>
</tr>
<tr>
<td>CBD</td>
<td>Cannabidiol. Cannabinoid chemical found in Cannabis</td>
</tr>
<tr>
<td>CBN</td>
<td>Cannabinol. Cannabinoid chemical found in Cannabis</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>Dioecious</td>
<td>A plant with male and female flowers on separate plants</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively Coupled Plasma-Mass Spectrometry</td>
</tr>
<tr>
<td>LA-ICP-MS</td>
<td>Laser ablation-inductively coupled plasma-mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio. Used to separate ions for ICP-MS analysis</td>
</tr>
<tr>
<td>Monoecious</td>
<td>A plant with male and female flowers on the same plants</td>
</tr>
<tr>
<td>NAA</td>
<td>Neutron activation analysis</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>REE</td>
<td>Rare earth elements. A group of 16 elements that have similar chemical</td>
</tr>
<tr>
<td></td>
<td>properties. Includes the elements from La to Lu, and Y and Sc.</td>
</tr>
<tr>
<td>THC</td>
<td>Tetrahydrocannabinol. Psychoactive cannabinoid chemical found in Cannabis</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>torr</td>
<td>Pressure measurement. 1 torr = 1/760 atmosphere</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence analysis</td>
</tr>
<tr>
<td>μg</td>
<td>1 x 10^-6 grams (one millionth of a gram)</td>
</tr>
</tbody>
</table>