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1. INTRODUCTION

The metapopulation paradigm provides a useful 
framework to understand connectivity and popula-
tion dynamics. In this context, local populations are 
viewed as discrete spatial entities that interact 
through gene flow and migration (Hanski & Gaggi -
otti 2004). Across species, the factors that influence 
the rate of gene flow between local populations are 
diverse and include dispersal or mobility, geographic 
distance between populations as well as life history 
traits (Allendorf et al. 2013). Environmental hetero-
geneity, and the resulting variation in habitat quality, 
is also a significant factor (Allendorf et al. 2013) as 

demonstrated by the impact of biogeographical bar-
riers across different taxa, including insects (Rabasa 
et al. 2008), amphibians (Smith & Green 2005), birds 
(Esler 2000), fishes (Schtickzelle & Quinn 2007), and 
mammals (Matthiopoulos et al. 2005). Such biogeo-
graphical barriers are frequent in the terrestrial envi-
ronment and significantly partition the landscape, 
creating a mosaic of ecosystems, such as forests, 
deserts, and grasslands (Briggs 1974). 

One of the most challenging aspects of ecological 
studies is to identify population structure in appar-
ently continuous ecosystems with no obvious physi-
cal barriers to dispersal, such as in the marine envi-
ronment, and particularly for highly mobile species 
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(Palumbi 1994). Over the past decade, studies have 
demonstrated that even when dispersal potential 
seems high, population structure can still occur in 
marine groups such as sharks (Geraghty et al. 2014, 
Vignaud et al. 2014), mammals (Andrews et al. 2010, 
Kershaw et al. 2017), and sea turtles (Roden et al. 
2013, Read et al. 2015). In such cases, genetic popu-
lation structure in the marine environment is shaped 
by an array of processes including oceanic condi-
tions, currents, bathymetry, and geographical dis-
tances (Allendorf et al. 2013). Habitat choice, in par-
ticular site fidelity, is another key process that can 
drive population structure by limiting migration rates 
and encouraging assortative mating (Bowen et al. 
2016). The main driver for site fidelity is often re -
source availability, as has been suggested for Hawai-
ian spinner dolphins (Andrews et al. 2010) and reef 
manta rays (Deakos et al. 2011, Couturier et al. 2014, 
Perryman et al. 2019). 

To attain the key goal of conservation, i.e. protect-
ing biodiversity by supporting the long-term per -
sistence of viable, natural populations of wild spe-
cies, requires the identification of population units 
and the geographic boundaries between them. This 
enables management and conservation programmes 
to appropriately focus and prioritise efforts to maxi-
mize evolutionary potential and minimize extinction 
risks (Allendorf et al. 2013). Whilst the presence of 
population structure may increase genetic differenti-
ation through local adaptation, it may also lead to 
reproductive isolation and a reduction of genetic 
diversity (Futuyma 2019). Genetic isolation could 
diminish the resilience of a population or species and 
its capacity to adapt to a rapidly changing environ-
ment (Allendorf et al. 2013, Futuyma 2019). In addi-
tion, certain species are more vulnerable to extinc-
tion due to a combination of characteristics such as 
small population size (Pimm et al. 1988), limited geo-
graphic range (Gaston 1994), specialized habitat 
requirements (Brown 1995), and conservative life 
history traits (e.g. small litters, slow individual 
growth rate, late maturation, long inter-birth inter-
vals, high survival rates; MacArthur & Wilson 1967). 
In the marine environment, these traits are found pri-
marily, but not exclusively, in marine mammals and 
elasmobranchs. 

The reef manta ray Mobula alfredi (Krefft, 1868) is 
a K-selected species and displays several traits that 
make it vulnerable in a changing environment (Mac -
Arthur & Wilson 1967). These characteristics include 
large body size, long life expectancy, low fecundity 
(Couturier et al. 2012), an often fragmented distribu-
tion (Couturier et al. 2011, Marshall et al. 2011, 

Rohner et al. 2013), and small local population sizes 
as estimated in East Australia (Couturier et al. 2014), 
Hawai’i (Deakos et al. 2011), Japan (Kashiwagi 2014), 
and Mozambique (Marshall et al. 2011). As plankti-
vores, these animals depend on specific environmen-
tal conditions and processes that shape the abun-
dance and distribution of their prey (Rohner et al. 
2013, Couturier et al. 2014). Food resource availabil-
ity has been hypothesised to be the main driver of 
manta ray movements, often resulting in aggrega-
tions from a few to hundreds of individuals at feeding 
grounds and cleaning stations (Anderson et al. 2011, 
Couturier et al. 2011).  

Patterns of seasonal or year-round aggregations 
have been found to differ with locations. On the one 
hand, seasonal migrations were correlated with mon-
soonal shifts and productivity in Indonesia (Dewar et 
al. 2008), the Maldives (Anderson et al. 2011, 
Kitchen-Wheeler et al. 2012, Harris et al. 2020), and 
East Australia (Jaine et al. 2012, Couturier et al. 2014) 
while large-scale movements occur along continuous 
continental coastlines (up to 1150 km, Armstrong et 
al. 2019) and between island chains (Germanov & 
Marshall 2014). On the other hand, physical barriers 
such as open expanses of sea and deep-water chan-
nels are thought to be a factor that may reduce the 
chance of reef manta rays transiting even between 
geographically close aggregation sites (e.g. 150 km, 
Deakos et al. 2011). Long-term residence patterns 
(spanning years to decades) have been recorded for 
reef manta rays at sites across the globe, including 
West Australia (Armstrong et al. 2020), East Australia 
(Couturier et al. 2011, 2014, Jaine et al. 2014), 
Hawai’i (Deakos et al. 2011), Mozambique (Marshall 
et al. 2011), the Red Sea (Braun et al. 2015), British 
Indian Ocean Territory (Andrzejaczek et al. 2020), 
and Indonesia (Setyawan et al. 2018, 2020). Such site 
fidelity could leave reef manta rays even more 
exposed to anthropogenic pressure if activities such 
as targeted fishing and bycatch, coastal develop-
ment, or unmanaged tourism occur in critical habitats 
(Anderson et al. 2011, Couturier et al. 2011, 2014, 
Stewart et al. 2018).  

Listed as Vulnerable to Extinction on the IUCN Red 
List (Marshall et al. 2018), reef manta rays have been 
increasingly targeted by fisheries due to the high 
value of their gill-plates on the Asian market (Cou-
turier et al. 2012, O’Malley et al. 2017). Globally, the 
last IUCN assessment reports a suspected population 
reduction of 30−49% over the past 3 generations, 
with further reduction predicted over future genera-
tions (Marshall et al. 2018). More information is 
needed on population structure and the nature of the 
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drivers that shape the movements and connectivity of 
manta rays to face these conservation challenges. 
Such information is essential to define management 
units and prioritise management efforts, for example 
the establishment of protected areas for genetically 
isolated groups. 

Molecular tools provide opportunities for identify-
ing species boundaries, patterns of gene flow, 
genetic diversity, and spatial structure in elasmo-
branchs (Ovenden et al. 2018). To date, studies on 
manta rays using molecular tools have focussed pri-
marily on taxonomy (Kashiwagi et al. 2012, Hinojosa-
Alvarez et al. 2016, White et al. 2018, Hosegood et al. 
2020). In the first application of genomic tools to 
examine population structure in manta rays, Stewart 
et al. (2016) applied double-digest restriction site-
associated DNA (ddRAD) sequencing methods and 
found significant population structure in oceanic 
manta rays M. birostris at large geographic scales 
within the Indo-Pacific region. However, a more re -
cent examination of a wider subset of M. birostris 
samples by Hosegood (2020) failed to find any popu-
lation structure and suggested global panmixia for 
the species. This species is a close relative of M. 
alfredi and occupies mostly pelagic environments, 
demonstrating greater migration distances than reef 
manta rays (up to 1400 km, Hearn et al. 2014). In reef 
manta rays, genomic studies demonstrated popula-
tion structure at large scales between the Indian and 
Pacific Oceans (Hosegood et al. 2020) and between 
regions separated by the Indian Ocean basin (Ven-
ables et al. 2021). To date, only 1 study has used 
genomic methods to investigate fine-scale popula-
tion structure in reef manta rays and did not find sig-
nificant genetic structure between reef manta rays 
sampled at aggregation sites separated by less than 

100 km (within Mozambique) or less than 1000 km 
(between Mozambique and South Africa) (Venables 
et al. 2021). Molecular tools have also been used 
to  assess structure in ecologically similar species, 
namely large filter-feeding elasmobranchs such as 
whale sharks (Vignaud et al. 2014) and basking 
sharks (Hoelzel et al. 2006), and revealed low levels 
of genetic differentiation among ocean basins. 

Here we applied genomic methods to infer popula-
tion structure and connectivity of reef manta rays at a 
local scale across New Caledonia, and compare pop-
ulations regionally within the western Pacific Ocean 
to East Australia. The coastal waters of New Cale-
donia are listed as a UNESCO World Heritage Site, 
with 6 marine clusters representing a total of almost 
16 000 km2 of reefs, lagoons, and mangroves. Along 
with the Natural Park of the Coral Sea (1 292 967 km2) 
these protected areas are part of an essential man-
agement and conservation process that integrates 
threatened species (GNC 2018). 

In New Caledonia, reef manta rays are observed at 
different aggregation sites, used as cleaning stations 
or feeding grounds, along the outer slopes of the bar-
rier reef of the archipelago (Fig. 1). These sites are 
either connected with continuous habitats, such as 
along coastlines and the barrier reef, or on isolated 
reefs and islands separated from other sites by deep 
open oceanic waters (>2000 m). Preliminary obser-
vations using photo-identification (photo-ID) suggest 
that site fidelity is high but differs among sites, with 
some movement of individuals between sites (up to 
330 km apart, H. Lassauce unpubl. data). In this 
study, we used single nucleotide polymorphisms 
(SNPs) from genotyping by sequencing (Kilian et al. 
2012) to assess the genetic structure and diversity of 
the population of reef manta rays in New Caledonia. 
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Fig. 1. Sampling locations of reef manta rays Mobula alfredi within (A) Queensland, Australia (LEI: Lady Elliot Island, n = 9; 
NSI: North Stradbroke Island, n = 11) and (B) New Caledonia (Noumea, n = 24; Pouembout, n = 8; Ouvea, n = 18; Touho, n = 23)



Endang Species Res 47: 249–264, 2022

Specifically, we compared the genetic differentiation 
at a regional scale, with the inclusion of samples from 
East Australia, and at a local scale (levels of hetero -
zygosity among sites in New Caledonia). In doing so, 
we provide the first estimates of genetic structure 
and diversity for this species in New Caledonia. 

2.  MATERIALS AND METHODS 

2.1.  Study sites 

This study was conducted at 4 sites around New 
Caledonia, an archipelago principally consisting of a 
larger Main Island and 3 smaller islands approxima-
tively 100 km off the east coast known as the Loyalty 
Islands (Fig. 1). The Main Island is surrounded by a 
1600 km barrier reef that shelters the shallow waters 
of a 16 874 km2 lagoon (Andréfouët et al. 2009). The 
continental shelf ends at the barrier reefs, where it 
drops to depths greater than 2000 m. Bathymetry 
around the Loyalty Islands is similar, with a rela-
tively narrow continental shelf and a deep channel 
(>2000 m) between the Loyalty Islands and the main-
land (Fig. 1). 

Reef manta rays were sampled at 3 sites off the 
Main Island: Noumea in the south and Pouembout in 
the north are located on the west coast, while Touho 
is in the northern part of the east coast. One site, 
Ouvea, is located on the northern island of the Loy-
alty Islands (Fig. 1). At all sites, except Pouembout, 
manta rays are observed primarily on the reef slope 
(between 10 and 15 m deep) near reef channels, at 
cleaning stations. In Pouembout, samples were col-
lected opportunistically from an aggregation of manta 
rays that were found at the surface in shallow waters 
(<12 m), feeding in nutrient-rich waters of the lagoon. 

Additional specimens from 2 sites in Queensland, 
Australia (hereafter referred to as ‘East Australia’, 
see Fig. 1), were included in the study to serve as a 
reference group when determining the genetic pop-
ulation structure within New Caledonia. 

2.2.  Sampling methods 

Tissue samples were collected from the pectoral fin 
of reef manta rays using a biopsy tip attached to a 
2 m spear pole (Pneudart; Stewart et al. 2016). Sam-
pling was conducted via either SCUBA diving or free 
diving, and samples were stored in 95−100% ethanol 
at −20°C. All individuals sampled were photo-identi-
fied and designated as either adult males (based on 

the presence of fully developed claspers), adult fe -
males (based on the presence of mating scars or 
pregnancy), or juveniles (defined by the absence of 
fully developed claspers or mating scars). The excep-
tion to this were manta rays sampled from Pouem-
bout, where the high turbidity of the water did not 
allow for photo-identification or confident observa-
tions of sex. Sampling information is summarized 
in Table S1 in the Supplement at www.int-res.com/
articles/suppl/n047p249_supp.pdf. 

2.3.  Laboratory procedures 

Genomic DNA was extracted from samples using a 
Qiagen DNAeasy Blood & Tissue Kit following the 
manufacturer’s instructions. DNA was quantified using 
the Qubit dsDNA Broad range assay (Thermo Fisher 
Scientific) and then diluted with Qiagen AE buffer 
to 50 ng μl−1 for use in genotyping by sequencing. 

Development and genotyping of SNPs for all sam-
ples was undertaken following the standard DArTseq 
protocol (Kilian et al. 2012). DArT (Di versity Arrays 
Technology) is a genotyping-by-sequencing plat-
form that uses an enzymatic double-digest genome 
complexity reduction following San saloni et al. (2011) 
and next-generation sequencing on the Illumina HiSeq 
2500 platform as described by Georges et al. (2018). In 
this study, the restriction enzymes PstI and SphI were 
used for the double digest of genomic DNA. 

2.4.  Data analysis 

2.4.1.  Data quality check and cleaning 

Sequencing reads were processed using propri-
etary DArT analytical pipelines (Jaccoud et al. 2001, 
Kilian et al. 2012). In the primary pipeline, poor-qual-
ity sequences are filtered, applying more stringent 
selection criteria to the barcode region in comparison 
to the rest of the sequence. Identical sequences were 
then compiled into .fastq files and cleaned through 
the secondary pipeline using the DArT algorithm 
(DArTSoft14, Kilian et al. 2012). This pipeline work -
flow first calls sequence clusters for all pooled sam-
ples and then for each individual. The DArT pipeline 
retained SNPs on the basis of the balance of average 
count for each SNP allele, the reproducibility values 
(>95%), the average count for each se quence or row 
sum (sequencing depth: ≥5), and the call rate (pro-
portion of samples for which the marker is scored: 
>95%). Potential contamination was identified by 
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comparing all reads to bacterial and viral sequences 
from GenBank and a custom DArT database. Lastly, 
we applied the following filters to generate the final 
dataset: <5% of individuals with missing data (call 
rate of >95%), average reproducibility of alleles at a 
locus (>95%), across SNPs that share a sequence tag, 
only 1 random SNP was retained per locus, and 
monomorphic loci were removed. Individuals with a 
call rate <80% were also removed. After this filtering 
process, average heterozygosity per locus per indi-
vidual was plotted and visually inspected for poten-
tial outliers indicative of sample contamination. The 
fine-scale analysis of structure focussed on the clean-
ing station sites, to the exclusion of Pouembout. This 
is because the relationship between cleaning and 
feeding aggregations is unclear, and feeding aggre-
gations could contain manta rays from multiple 
cleaning stations and vice versa, decreasing any pop-
ulation genetic signals. Two datasets were gener-
ated, one including the outgroup (East Australia), 
referred to as the regional dataset, and the other 
excluding this outgroup, called the local dataset (New 
Caledonia only). For the analysis of genetic diversity 
only, loci with minor allele frequencies >0.05 were 
filtered out of these 2 datasets. All filters were 
applied using the ‘gl.filter’ functions in the R pack-
age ‘dartR’ (Gruber et al. 2018). 

2.4.2.  Genetic diversity 

We calculated genetic diversity for each sampling 
site in New Caledonia, for New Caledonia as a 
whole, and for East Australia using the statistical pro-
gramming language R version 3.6.2 (R Core Team 
2019). Specifically, we estimated observed (Ho) and 
expected (He) heterozygosity (Nei 1987) with the 
function ‘gl.basic.stat’ in the R package ‘dartR’ (Gru-
ber et al. 2018). The inbreeding coefficient (FIS) (Weir 
& Cockerham 1984) for each sample partition was 
also calculated using the ‘gl.basic.stat’ function. The 
rarefacted allelic richness (AR) was estimated for 
each sample partition using the function ‘allelic.rich-
ness’ in the ‘adegenet’ package in R (Jombart 2008). 
Since sample partitions have different sample sizes, 
the function used the minimum number of individu-
als (n = 19 for the regional dataset and n = 18 for the 
local dataset). Differences in the diversity between 
sample partitions were tested using ANOVA and t-
tests (equal variance) or Welch’s t-tests (unequal 
variance). Levene’s tests were used to test the homo-
geneity of variances, and a Shapiro-Wilk test as -
sessed the normality of the data. 

2.4.3.  Population differentiation and structure 

We inferred genetic differentiation and population 
structure at a regional scale between East Australia 
and New Caledonia and then at a local scale among 
our study sites. We also compared the genetic diver-
sity at both regional and local scales. 

Firstly, we estimated pairwise genetic differentiation 
indices for sample partition (FST and Nei’s genetic dis-
tance D), and statistical significance through permuta-
tion tests (10 000) (Wright 1951), using the ‘stamppFst’ 
function within the R package ‘STAMPP’ (Pembleton 
et al. 2013). 

We conducted genetic clustering using 2 comple-
mentary methods: discriminant analysis of principal 
components (DAPC) (Jombart et al. 2010) and the 
program TESS3 (Caye et al. 2016). The outcome of 
the DAPC depends on the number of principal com-
ponents (PCs) used in the analysis and the number of 
clusters in the analysis. To assess the number of PCs 
to be used for each dataset, we examined the mean 
alpha score (difference in reassignment probabilities 
between observed and permuted clusters), using the 
function ‘a.score’ and ‘optim.a.score’ of the R pack-
age ‘adegenet’ (Jombart 2008). Alpha scores were 
calculated using the highest recommended number 
of PCs (N/3, were N is the total number of individuals) 
as recommended by the developer of ‘adegenet’ 
(Jombart 2008). The DAPC was then performed with 
the ‘dapc’ function in the R package ‘adegenet’ (Jom-
bart 2008) without assigning individuals to clusters a 
priori. This method derives a number of potential 
populations from the analysis and produces member-
ship probabilities for each sample based on the data 
from all samples. Classification of a given sample to a 
cluster is based on the highest assignment probabil-
ity. The expected classification rate for each popula-
tion (prior) was compared to the number of correct 
classifications (posterior) generated using the DAPC. 

Population genetic structure was further as -
sessed using Bayesian clustering analysis of indi-
vidual geno types with the ‘TESS3R’ package (Caye 
et al. 2016) in R to estimate individual ancestry co -
efficients assuming admixture of K ancestral genetic 
clusters in our data set. TESS3 implements a spa-
tially explicit Bay esian clustering admixture model. 
By including information on individual geographic 
coordinates, TESS tends to perform better than 
non spatial models implemented in programs using 
a similar algorithm, such as STRUCTURE (Prit -
chard et al. 2000), when the ancestral level of dif-
ferentiation is low (Durand et al. 2009, François & 
Durand 2010). It also performs better when the dis-
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tribution of the studied species tends to be con-
tinuous, with individuals geographically close and 
more prone to share ancestral genotypes (Durand 
et al. 2009). In the latter case, individuals are 
assigned to the most likely cluster on the basis of 
multi-locus genotypes sampled at distinct geo-
graphical locations without assuming predefined 
populations (Du rand et al. 2009). Here, the specified 
spatial prior is weak compared to the amount of 
information contained in the molecular dataset, and 
therefore, deviations from spatial smoothness are 
still al lowed in the posterior inference (Corander et 
al. 2008). We added UTM coordinates for each 
individual and ran 20 replicates of the admixture 
model for each value of the maximal number of 
clusters (K). The best value of K was examined 
from 1 to 10 with a maximum number of 10 000 
iterations per run (20 repetitions) and a tolerance 
value of 10−7. A cross-validation procedure with 
10% of masked data was used to select the best 
value of K according to the asymptote in the plot of 
cross-validation scores (Caye et al. 2016). Given 
that fine-scale population structure has not previ-
ously been described for this species, we did not 
have an a priori expectation of multiple genetic 
clusters within New Caledonia, and performed the 
analysis at both the local and regional scale. The 
analysis was processed for K-values from 2 to 5, 
although only the results for K = 2 and K= 4 are 
presented, as only these clustering results warrant 
a biological interpretation. 

2.4.4.  Gene flow analysis 

Relative directional migration rates were analysed 
using the ‘divMigrate’ function in the ‘diveRsity’ R 

package (Sundqvist et al. 2016). This function gives 
relative migration rates proportionally to the high-
est migration rate between 2 sites, which always 
equals 1. We compared 3 differentiation metrics 
(see Section 3.3.4): ‘d’ (Jost’s D), ‘gst’ (Nei’s GST), 
and ‘Nm’ (Alcala et al. 2014). Migration rates were 
estimated with 10 000 bootstraps, and directional 
gene flow estimates with a rate <0.2 were filtered 
out of the visual outcome. We used samples from 
New Caledonia (Noumea, Touho, and Ouvea) and 
from East Australia for this analysis. 

3.  RESULTS 

3.1.  SNP dataset 

The regional dataset initially comprised a total 
of  5124 bi-allelic SNP loci in 73 reef manta rays 
from 4 locations in New Caledonia and 20 individ-
uals from East Australia (Table 1). One individual 
(MA138) from East Australia was removed due to 
a call rate of less than 80%. The local dataset had 
a total of 3973 bi-allelic SNP loci in 65 reef manta 
rays from 3 locations in New Caledonia. One of 
the sites (Pouembout) was removed from the fine-
scale analysis due to the small sample size (n = 8) 
and difference in habitat type compared with the 
rest of the sites. After the filtering, the total 
number of polymorphic SNP loci was 3619 for 92 
individuals in the regional dataset and 2676 for 65 
individuals in the local dataset. All filtering steps 
are sum marized in Table 1. The mean and distri-
bution of  heterozygosity was similar among indi-
viduals within sample sites and regions with no 
outliers (Fig. S1), indicating no obvious problems 
with contamination. 
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Filter applied                                               Regional dataset                                                   Local dataset 
                                     Loci retained   Loci filtered   No. of individuals    Loci retained   Loci filtered   No. of individuals 
 
Initial SNP dataset                         5124                  0                        92                       3973                  0                        65 
<5% missing data                          4454                670                      92                       3482                491                      65 
>95% repeatability                        3680                774                      92                       2717                765                      65 
Remove secondaries                       3619                 61                       92                       2676                 41                       65 
Remove monomorphic loci           3619                  0                        92                       2676                  0                        65 

In separate datasets 
Minor allele frequency >0.05          1990               1629                     84                       1843                833                      73

Table 1. Number of single nucleotide polymorphism (SNP) loci initially found (Initial SNP dataset) using Diversity Arrays 
Technology (DArT) sequencing in reef manta ray Mobula alfredi samples from both East Australia and New Caledonia 
(Regional dataset) and from only New Caledonia (Local dataset). Also shown are the numbers of loci and individuals retained 
as different quality control filters were applied to the dataset. The final datasets used in the subsequent population genetic  

analyses are shown in the fully bold row and for genetic diversity analyses are shown in the row in italics
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3.2.  Genetic diversity 

Genetic diversity statistics for all sample partitions 
are shown in Table 2. He was significantly higher for 
the East Australian outgroup (t3978 = 6.35, p < 0.001) 
compared with the overall New Caledonian dataset 
while no significant difference was observed for AR 
(t3978 = 0.76, p > 0.05) (Table 2). When considering the 
local dataset, there were no significant differences 
in any genetic diversity statistics between sample 
partitions within New Caledonia (F = 0.05, p > 0.5, 
Table 2). 

Inbreeding coefficients (FIS) were relatively high at 
all levels of population structure, and all were signif-
icantly different from zero (p < 0.001) (Table 2). At 
the sample site level, the average proportions of het-
erozygosity in individuals were significantly different 
(t3816 = 2.18, p < 0.05) between samples from East 
Australia (mean ± SD, FIS = 0.0662 ± 0.03020) and indi-
viduals from all groups of New Caledonia in the 
regional dataset (FIS = 0.0844 ± 0.02093). Among 

groups from New Caledonia, values ranged from 
0.0699 ± 0.02762 in Noumea to 0.0812 ± 0.02918 in 
Ouvea, with no significant differences among sites in 
the local dataset (F = 0.93, p > 0.05). 

3.3.  Population differentiation and structure 

3.3.1.  Pairwise FST and Nei’s genetic distance D 

Statistically significant genetic differentiation was 
observed between all sampling sites (Table 3). The 
highest estimates of genetic differentiation were 
found between East Australia and New Caledonia 
(FST = 0.0958 ± 0.006 SD, p < 0.001, Table 3). The 
degree of differentiation between New Caledonian 
sampling sites was lower but still statistically signifi-
cant (pairwise FST = 0.0116−0.0165, Table 3). Overall 
FST values for the regional and local datasets are pro-
vided in Table 3. Nei’s genetic distances followed the 
same pattern as the fixation indexes. 
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                                  n/m/f/un                         AR                                  Ho                                  He                                    FIS  
 
Local dataset 
Noumea                    23/8/15/−             1.9082 ± 0.1888            0.2879 ± 0.1698           0.3080 ± 0.1467             0.0699 ± 0.0277 
Ouvea                       18/5/13/−             1.9133 ± 0.1949            0.2819 ± 0.1687           0.3070 ± 0.1472             0.0812 ± 0.0292 
Touho                       24/10/14/−            1.9079 ± 0.1824            0.2844 ± 0.1664           0.3052 ± 0.1450             0.0702 ± 0.0281 
Overall                                                  1.9098 ± 0.1888            0.2847 ± 0.1683           0.3067 ± 0.1463             0.0717 ± 0.0283 

Regional dataset                                                                                                                                                                   
New Caledonia       73/25/45/3            1.8815 ± 0.2072            0.2659 ± 0.1533a              0.2878 ± 0.1447a                  0.0844 ± 0.0209a 

East Australia           19/−/−/19             1.8872 ± 0.2616            0.2971 ± 0.1897a              0.3186 ± 0.1613a                  0.0662 ± 0.0302a 

Overall                    92/25/45/22           1.8843 ± 0.2359              0.2815 ± 0.1731             0.3031 ± 0.1540                0.0710 ± 0.0259 
aStatistically significant difference between New Caledonia and East Australia values within the same column

Table 2. Genetic diversity indices (±SD) of reef manta rays Mobula alfredi observed in regional and local datasets (minor allele 
frequency >0.05) using 1990 and 1843 single nucleotide polymorphisms (SNPs), respectively. n: sample size; m: number of males; 
f: number of females; un: number of individuals for which sex is unknown; AR: allelic richness, Ho: observed heterozygosity;  

He: expected heterozygosity; FIS: inbreeding coefficient

Local dataset                     n                          Noumea                                     Ouvea                                               Touho 
 
Noumea                             23                                −                             0.0165 (0.0137−0.0194)                   0.0155 (0.0131−0.0181) 
Ouvea                                18                            0.0126                                           −                                      0.0116 (0.0089−0.0143) 
Touho                                24                            0.0112                                       0.0110                                                    − 
Overall FST                        65                                                                                                                                      0.0145 

Regional dataset               n                     New Caledonia                         East Australia                                                
 
New Caledonia                73                                −                             0.0958 (0.0896−0.1022)                                        
East Australia                   19                            0.0270                                           −                                                           
Overall FST                        92                                                                             0.0958

Table 3. Pairwise FST values (above diagonal, with 95% CI in parentheses) and Nei’s genetic distance (below diagonal) calcu-
lated for reef manta rays Mobula alfredi for regional and local datasets using 3619 and 2676 SNPs, respectively. n: sample size.  

All FST values are significant at p < 0.001
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3.3.2.  DAPC 

Examination of the mean α-score values re -
vealed that the appropriate number of PCs was 30 
for the  regional dataset and 21 for the local data -
set (Tables S2 & S3). 

The DAPC showed individuals clustered into their 
country and sampling site of origin with high confi-
dence (Tables S4 & S5). Considering the regional 
data set first, DAPC revealed a clear distinction across 
all samples from East Australia and New Caledonia, 
with PC1 providing clear discrimination (Fig. 2). Using 
the classification algorithm, all individuals had a 
100% probability of being assigned back to their 
country of origin (Table S5). 

Considering the local dataset, the first of the two 
DA eigenvalues represented most of the variation 
within this dataset (Fig. 3). The DAPC discrimi-
nated sites along both the north−south (PC1, discrim-
inating Noumea) and east−west axes (PC2, differen-
tiating Ouvea and Touho). Within New Ca le donia, 
the highest assignment probabilities correspond to 
the population of origin for each pre-defined group 
(Table S5, Fig. S2). The average correct classifi -
cation probability was highest for a sample from 
Noumea (mean ± SD, 94.12 ± 13.84), then Touho 
(85.43 ± 27.23), followed by Ouvea (79.79 ± 30.71) 
with only 3 (12%) individuals per site likely to be 
incorrectly classified (Table S5, Fig. S2). 

3.3.3.  Estimation of spatial structure: TESS3 analysis 

For the regional dataset, the TESS3 analysis re -
vealed the most likely number of ancestral popula-
tions/genetic clusters or best value of K as 4 (the 
cross-validation test exhibited a minimum value or a 
significant plateau at K = 4) (Fig. S3), supporting sub-
tle levels of population structure (Caye et al. 2016). At 
K = 2, a strong distinction is revealed between Aus-
tralian individuals and all individuals from New Cale-
donia, with distinct admixture compositions with 2−5 
and 0−9% ancestry proportions of each other’s domi-
nant cluster, respectively. At K = 4, each site has its 
own distinct admixture composition, with a dominant 
ancestral population (Fig. 4). On average, New Cale-
donia individuals have less than 1.4 ± 0.003% ancestry 
proportions of the dominant East Australia cluster. The 
dominant ancestral populations comprise, on average, 
between 76 ± 0.006% (Ouvea) and 84 ± 0.008% (East 
Australia) of ancestry proportion per individual. 

3.3.4.  Gene flow analysis 

Relative directional migration rates were estimated 
using 3 differentiation metrics, but, as the patterns 
were consistent, only Jost’s D results are presented 
(Fig. 5). The values displayed in the figures do not 
represent the magnitude of each mi gration (as a 
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Fig. 2. Inference of population structure of reef manta ray Mobula alfredi from East Australia and New Caledonia (regional 
dataset) using 3619 single nucleotide polymorphisms: plot of individuals based on the first 2 principal components (PCs) of the 
discriminant analysis of principal components (DAPC). The inset shows the eigenvalues of the analysis, representing the pro-
portion of genetic structure captured by each of the PCs. Black PCs were used in the DAPC whereas greyed out ones were not
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measurement of the proportion of migrants per gen-
eration would) but compare migration rates propor-
tionally to the highest, which always equals one. 

The relative migration rates between East Australia 
and all of the New Caledonian sites are low but show 
statistically significantly higher migration rates from 

New Caledonia to East Australia than 
vice versa. Considering the local data -
set, the highest bi-directional migra-
tion rate was found between Ouvea 
and Touho. Comparatively, the rela-
tive migration rates between Noumea 
and both Ouvea and Touho were 
slightly lower but also bi-directional. 

4.  DISCUSSION 

Previous findings have indicated 
ocean-wide genetic differentiation 
and limited regional genetic connec-
tivity in mobulid rays (Stewart et al. 
2016, Hosegood et al. 2020, Venables 
et al. 2021). Here we build on this 
work to provide evidence of fine-scale 
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Fig. 3. Inference of population structure of New Caledonian reef manta rays Mobula alfredi (local dataset) using 2676 single 
nucleotide polymorphisms: plot of individuals based on the first 2 principal components (PCs) of the discriminant analysis of 
principal components (DAPC). The inertia ellipses describe the expected spread of genotype positions assuming a bivariate 
normal distribution. The inset shows the eigenvalues of the analysis, representing the proportion of genetic structure captured  

by each of the PCs. Black PCs were used in the DAPC whereas greyed out ones were not

Fig. 4. Individual admixture compositions of population structure inferred 
using TESS3 with K = 4, based on 3619 single nucleotide polymorphisms from 
85 reef manta ray Mobula alfredi individuals across 4 sites with 18 to 24 indi-
viduals per site. Black vertical lines separate the sample sites. Colours indicate  

ancestral populations
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population genetic structure of reef manta rays, high-
lighting new considerations for the management of 
the species. Despite many calls for studies such as 
ours to provide information on units to conserve and 
to identify drivers of population structure in mobulids, 
only a few studies have investigated the population 
genetics of this taxon (Deakos et al. 2011, Stewart et 
al. 2016, 2018, Setyawan et al. 2018, Perryman et al. 
2019, Hosegood et al. 2020). The only comparable 
study that investigated genetic structure of reef manta 
rays at a similar spatial scale (within hundreds of kilo-
metres) and type of DNA marker (3057 SNPs) was 
conducted within southern Mozambique and found 
no evidence of genetic differentiation (Venables et al. 
2021). Our findings provide evidence that fine-scale 
population genetic structure can exist for the species 
and may depend on its habitat use and the geographi-
cal context, highlighting the need to be assessed on a 
case-by-case basis. 

4.1.  Regional scale population genetic structure 

We found strong genetic differentiation at the 
regional scale, which may indicate that large ex -
panses of water lead to increased genetic differenti-
ation in reef manta rays. This statistically significant 
population structure at a regional level is consistent 
with previous studies on the reef manta ray and its 
close relatives. For example, 2 studies reported 
clear genetic distinction at an ocean basin level 
(>7000 km) for populations of Mobula alfredi 
between the Indian and Pacific Oceans (FST = 0.16, 
Hosegood et al. 2020, FST = 0.38, Venables et al. 
2021). In comparison to our findings, the larger 
magnitude of FST in these papers may be due to the 
greater geographic distance be tween examined 
populations, which can be an important driver of 
genetic differentiation as in other taxa (e.g. sharks, 
Geraghty et al. 2014, Vignaud et al. 2014; humpback 
and southern right whales, Rosenbaum et al. 2017, 
Carroll et al. 2020b). However, further in vestigations 
would be required to validate this statement. While 
Venables et al. (2021) used a similar SNP discovery 
process to our study, a comparison with the study by 
Hosegood et al. (2020) might be biased due to the 
use of a different procedure. The use of common 
methods and sets of genetic markers would allow for 
comparison at a broader geographic extent and en -
able a better understanding of the genetic structure 
and diversity of the species (Domin gues et al. 2018). 

Stewart et al. (2016) discovered substantially lower 
levels of genetic population structure for the oceanic 
manta ray (FST < 0.004) compared with the reef manta 
ray (FST = 0.02) across the Indian and Pacific Oceans, 
using 3108 SNPs from ddRAD sequencing, but 
employing different discovery and filtering processes 
to those em ployed here. We propose that the inter-
specific difference in population structure found be -
tween oceanic and reef manta rays is largely due to 
different biology and ecology, with some variation 
also due to  the SNP genotyping procedure. Reef 
manta rays under take smaller migrations, have a 
smaller home range, and demonstrate higher site 
fidelity than oceanic manta rays (Couturier et al. 
2012). Oceanic manta rays have been observed to 
undergo long-distance travels be tween sighting lo -
cations (up to 1500 km, Hearn et al. 2014), and 
vagrants are occasionally re corded outside their 
known distribution (Couturier et al. 2015). Strong 
genetic differentiation has also been found in popula-
tions of other reef-associated elasmobranchs sepa-
rated by vast expanses of water (Vignaud et al. 2014, 
Momigliano et al. 2017). Physical barriers such as 
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Fig. 5. Population network and relative migration rates of 
reef manta rays Mobula alfredi based on Jost’s D estimates 
of genetic differentiation for samples from East Australia 
and New Caledonia for the combined regional (East Aus-
tralia and New Caledonia) and the local (only New Caledo-
nia) datasets. The thickness of connecting lines is propor-
tional to the relative rate of migration. Abbreviations are as 
follows; A: East Australia; N: Noumea; O: Ouvea; T: Touho. 
Statistically significant asymmetrical rates are marked with 
an asterisk, and migrations with a relative rate <0.2 are not  

displayed
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open expanses of sea and/or deep-water channels are 
thought to re duce the chance of reef manta rays 
(Deakos et al. 2011) and other reef-associated species 
(Heupel et al. 2019) to transit even between geo-
graphically close aggregation sites (e.g. 150 km, 
Deakos et al. 2011, Setyawan et al. 2018). 

Our analysis found that the admixture composi-
tion of individuals from East Australia showed a 
greater proportion of ancestral genetic clusters most 
common in New Caledonia than the reverse, and 
migration rates were higher from New Caledonia 
toward East Australia. This difference seems to 
indicate that East Australia is a recipient of gene 
flow from New Caledonia. Previous studies on reef 
manta rays along the east coast of Australia have 
reported relatively high connectivity between sites 
separated by 380 km, with a high proportion of indi-
viduals re-sighted at more than one site using 
photo-identification (Couturier et al. 2011, 2014) 
and detected with satellite (Jaine et al. 2014) and 
acoustic tagging (Couturier et al. 2018). In New 
Caledonia, satellite tagging does not indicate any 
offshore movements extending beyond New Cale-
donian waters (H. Lassauce unpubl. data), support-
ing the finding of genetic isolation by suggesting 
that migration is a rare event. Further research is 
needed on the genetic structure of other populations 
of reef manta rays in adjacent countries such as Van-
uatu, Fiji, or the Solomon Islands to extend our 
understanding of the species’ regional connectivity. 

4.2.  Local-scale population genetic structure 

The present study is the first to report fine-scale 
population structure for M. alfredi. In New Caledo-
nia, genetic differentiation was detected in all of our 
analyses between the 3 study sites: pairwise FST val-
ues were low but significant between all sites; DAPC 
distinguished 3 separate clusters and revealed high 
assignment probability rates for most individuals to 
their sampling location; and the TESS3 analysis re -
vealed distinctive admixture compositions between 
samples from each site. Population structure within 
such a relatively small area (maximum oceanic dis-
tance between sites is 335 km) has not been recorded 
for this species, and was not an a priori hypothesis 
going into this study. However, the low level of dif-
ferentiation indicates gene flow between the study 
sites. Therefore, we suggest that the New Caledonian 
reef manta ray exists as a metapopulation with at 
least 3 distinct local populations connected by gene 
flow. 

Our understanding of these results is limited by the 
uncertainty in the spatial and reproductive ecology 
of reef manta rays, which appears to vary between 
regions of the world (Stewart et al. 2018). On the one 
hand, large-scale movements reported from multiple 
locations suggest that populations of reef manta rays 
occupy large areas that include several key aggrega-
tion sites (Anderson et al. 2011, Marshall et al. 2011, 
Germanov & Marshall 2014, Armstrong et al. 2019, 
2020). On the other hand, reef manta rays have also 
been recorded to exhibit high site fidelity with some-
times clear segregation between geographically 
close aggregation sites around the world (Dewar et 
al. 2008, Deakos et al. 2011, Marshall et al. 2011, 
Couturier et al. 2014, Jaine et al. 2014, Setyawan et al. 
2018, 2020, Perryman et al. 2019). For instance, in 
Hawai’i, Clark (2010) and Deakos et al. (2011) 
reported strong evidence through photo-ID of long-
term, high site fidelity and no connection between 2 
known aggregation sites less than 150 km apart. 
Similarly, in Indonesia, Setyawan et al. (2018) found 
high levels of site fidelity with acoustic telemetry and 
the absence of connection between study sites located 
only 150 km apart. High site fidelity has been docu-
mented in other regions of the world, such as in 
Mozambique (Marshall et al. 2011) and Indonesia 
(Setyawan et al. 2020). The habitat types or quality 
that could drive such differences in behaviour are not 
well understood. In New Caledonia, ongoing studies 
involving photo-identification and satellite telemetry 
seem to indicate high site fidelity and only a few con-
nections between all 3 study sites (H. Lassauce 
unpubl. data). Only a few migrants per generation 
are needed to reduce genetic differentiation (Wang 
2004). Therefore, it could be that long-term resi-
dency with limited movement is the norm, with rare 
migration events linking local regions with gene 
flow. 

Our results did not suggest that the deep ocean 
was a barrier to the dispersal of manta rays within 
New Caledonia as hypothesised by Deakos et al. 
(2011) in Hawai’i for M. alfredi, where no connection 
was discovered between 2 islands (150 km apart) 
separated by a 2000 m deep channel. In the context 
of our study, the continuous coastal environment, 
specifically the relatively shallow water between 
Noumea and Touho, could favour genetic connectiv-
ity (Couturier et al. 2011, 2014) while the deep-water 
channel separating these sites from Ouvea could act 
as a barrier discouraging gene flow (Deakos et al. 
2011). In New Caledonia, deep diving behaviour of 
reef manta rays has been recorded using satellite 
telemetry (Lassauce et al. 2020). One individual trav-
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elled between Touho and Ouvea via a 2000 m deep 
channel, and several animals made offshore foraging 
excursions (H. Lassauce unpubl. data), behaviours 
consistent with research on other manta ray popula-
tions (Germanov & Marshall 2014, Jaine et al. 2014). 
These observations seem to indicate that deep waters 
may not be a barrier across a small spatial scale and 
that, in fact, other factors, possibly associated with 
the ecology and behaviour of the species, may drive 
fine-scale genetic differentiation. 

Explanations for population structure include social 
behaviour and/or distribution of food resources. In 
New Caledonia, all of our study sites (except Pouem-
bout) are described as cleaning stations. Cleaning 
stations are critical habitats for manta rays. These 
sites are gathering points that enable social interac-
tions between individuals and have been identified 
as essential areas for reproduction (Stevens et al. 
2018) and other social behaviour (Perryman et al. 
2019). The reproductive ecology of reef manta rays is 
still unclear, but some evidence suggests that fe -
males reside longer in areas with high mating poten-
tial and sufficient food resources while males move 
between aggregation sites (Marshall & Bennett 2010, 
Deakos et al. 2011, Stevens 2016, Stevens et al. 2018). 
For instance, the seasonal migration of M. alfredi in 
the Maldives was influenced by monsoon currents 
that promote phytoplankton blooms (Anderson et al. 
2011). Migrations associated with food availability 
have also been documented in Indonesia (Dewar et 
al. 2008) and East Australia (Jaine et al. 2012). It is 
possible that high productivity attracts manta rays and 
variations in conditions provoke migrations (Deakos 
et al. 2011, Setyawan et al. 2018), and so further work 
is needed to investigate correlations be tween migra-
tion events and prey availability. 

4.3.  Genetic diversity 

Genetic diversity was significantly higher in East 
Australia (statistically significantly higher He and 
lower FIS , Table 2) compared with New Caledonia, 
consistent with the larger population size of the for-
mer (Couturier et al. 2014) or its role as a recipient of 
gene flow. Indices of genetic diversity were similar 
among sites in New Caledonia (Table 2). 

Inbreeding coefficients (FIS) revealed significantly 
higher values in New Caledonia (FIS = 0.084) than in 
East Australia (FIS = 0.066), both of which differ from 
the FIS values not significantly different from zero 
presented by Venables et al. (2021) for the species 
using the same standard DArTseq protocol. Another 

study using a similar SNP-calling procedure found 
similar FIS values (ranging from 0.065 to 0.070) for a 
highly migratory species of shark (school shark Galeo -
rhinus galeus) with no genetic structure at a regional 
level (Devloo-Delva et al. 2019). In contrast, Glaus et 
al. (2020) revealed lower inbreeding estimates for bull 
shark Carcharhinus leucas populations from wide-
spread locations across the Indian and Pacific 
Oceans. Additional work that employs next-genera-
tion sequencing is necessary to assess genetic diver-
sity in other populations of reef manta ray. This 
would allow for a broader comparison and a better 
understanding of the genetic diversity of the species 
and its drivers at a global scale to achieve effective 
conservation and management. 

4.4.  Management and conservation 

The challenge for conservation and management 
of mobile species is to identify the relevant manage-
ment units. Information on the extent to which popu-
lations are genetically subdivided is crucial to estab-
lish effective conservation measures (Palsbøll et al. 
2007). The findings presented here suggest that (1) the 
New Caledonian manta ray is a distinct population, 
and potentially a separate evolutionary significant 
unit (Waples & Gaggiotti 2006) from East Australia, 
and (2) New Caledonian manta rays exist in a meta -
population with sites or sub-populations within the 
reef system linked by gene flow. This work con-
tributes to the use of genetic tools to identify ecolog-
ical units for the creation of appropriate conservation 
measures rather than geographically or politically 
based legislation (Deakos et al. 2011, Stewart et al. 
2016, 2018, Setyawan et al. 2018, Perryman et al. 
2019, Hosegood et al. 2020). 

Future genetic monitoring should be used to detect 
changes in connectivity and diversity (Leroy et al. 
2018), which can presage declines across the meta -
population (e.g. Carroll et al. 2020a). Manta rays cur-
rently have no legal protection in New Caledonian 
waters despite the fact that populations of long-lived, 
slow-reproducing species are thought to have poor 
resilience to even low amounts of mortality (Stevens 
et al. 2018). Therefore, a cautionary approach would 
be to combine genetic sampling as part of a broader 
long-term monitoring project that would provide 
estimates of important population parameters over 
time (Clutton-Brock & Sheldon 2010). Such a moni-
toring regime should also include the monitoring of 
any bycatch and population viability analyses to 
assess the impact of possible threats. 
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