Appendix 3.5 Schematic diagram for construction of seedfall traps

Appendix 3.1 - Descriptions of maturity stages for selected species.

Developmental stage of flower (1) bud showing, (2) swelling and growing, (3) approximate mature size but still unopened, (4) open. **Developmental stage of fruit** (1) recently fertilised, (2) swollen and growing, (3) approximate mature size

Developmental stage of fruit (1) recently fertilised, (2) swollen and growing, (3) approximate mature size but still unripe, (4) ripe.

The following descriptions are a guide to assigning the fruiting and flowering stage according to the scoring system above. In all described cases stage (2) covers a wide range of phenological stages. The reason for such a large category (2) score is that the main interest is in when fruit or flowers are available as food sources. The rates at which fruit and flowers mature are of interest but the stages through which they go during these processes are not.

Karaka flowers	Stage (1) The round pyramidal much divided inflorescence bud is protruding from the tip of the branch. Flowers only occur on branch tips
	surrounded by older leaves. If the leaves look light green, very new and shinny then there is unlikely to be an inflorescence there. Only score as a
	(1), don't try to count.
	Stage (2) The inflorescence bud is expanding and filling out. The individual
	flower buds become more pronounced. Count the number of inflorescences per cubic metre; don't try to count the number of flowers per inflorescence.
	Stage (3); The inflorescence is fully expanded and separated. Individual
	flower buds look full-sized (about 1 - 2 mm round). Count the number of
	inflorescences per cubic metre. Stage (4) The yellow green flowers have opened. Don't count the number
	open, give a rough percentage of open flower, as a proportion of the cubic
Varaha fruit	metre. Count the number of inflorescences per cubic metre.
Karaka fruit	Stage (1) Individual fruits visible, generally less than 2 mm long. Still hard to count at this stage.
	Stage (2) The fruit is elongating and eventually thickens up and approaches
	full sized. Full sized fruit is anywhere between 3 and 5 cm long and 1 to 2.5
	cm in diameter. Don't include full sized fruit under this category, but do count the number of fruits per cubic metre (and if desired the number of
	panicles within the cubic metre that carry the fruit. In that case the notation
	would be 48 frt/9 pan.)
	Stage (3) The fruit is full sized but has not coloured up yet to a rich golden/apricot yellow. Count the number of fruit per cubic metre (and if
	desired the number of panicles within the cubic metre that carry fruits,
	notation as for stage 2)
	Stage (4) The fruit is full sized and has coloured up to a rich golden/apricot yellow. Count the number of fruit per cubic metre (and if desired the
	number of panicles within the cubic metre that carry fruit, notation as for
	stage 2.)
	Note; sometimes the fruit remains on the tree after it has over-ripened and shrivelled up. Don't count those fruits as they are not acceptable to birds
	any more.
Karaka general notes	- Fruit tends to ripen in bunches, either all or most of a bunch ripens, or the
	bunch/flower panicle does not develop at all. Fruit does not appear to abort at juvenile stages. James (1995) commented that, pigeons did not seem to
	favour karaka even when there were copious amounts on the tree.
	Development of karaka fruit is very rapid, unlike taraire, which seems to
	have a quiescent phase. It looks as if only old shoots produce flower buds, i.e. where new leaves
	were produced over the winter no flower buds appear. This means that for
	some Karaka, which were severely chewed by beetles, there was not much
	opportunity to flower because they were in the process of renewing leaves every year.

	Description of phenological events	p.3
Puriri flowers	Stage (1) The immature inflorescences are visib cannot distinguish the individual flower buds ye	
	 Stage (2) Can see, and perhaps even count, the i within an inflorescence. Some buds might be stapink, but the buds are still tightly packed. Stage (3) The flower buds have achieved full coopen at any time, or are partially open but not in insects could access the nectar at the base of the Stage (4) The flowers are fully open with stame Note, there are a wide variety of puriri flower coryellow to scarlet-pink. The colour varies per tree seasons. To make sure that you are scoring the of flowers in the tree, or on the ground, as a colour 	arting to colour up towards lour and look ready to burst such a way that birds or calyx. n and pistil showing. olours, ranging from whitish- e and possibly also between colour correctly, find open
Puriri fruit	Stage (1) The cupped flower-bases left on the tro off. Can't distinguish between those flowers that	ee, after the flower has fallen
	that were not, so don't even try. Stage (2) The little knob in the base of the flower cup. Count fruit per cubic metre, up to and inclu To determine what full sized-fruit is for that part fruit in or below the tree.	iding nearly full-sized fruit. icular tree locate some ripe
	 Stage (3) The fruit looks full sized but is still greated to colour up. Stage (4) the fruit is full sized and red (or white colour) 	
	colour. Note; Don't bother to count the fruit once it has and/or shrivelled. Fruit in that state is overripe, unlikely to germinate.	
Puriri general notes	Puriri can have all and any of the above stages o In fact sometimes you can find all of the above s (Petrie 1905)	
Taraire flowers	Stage (1) The much divided inflorescence is but the branch. Only score as a (1), don't try to court	nt.
	 Stage (2) The inflorescence bud is expanding an flower buds become more pronounced. Count the per cubic metre, don't try to count the number of Stage (3); The inflorescence is fully expanded a flower buds look full-sized (about 1 - 2 mm rour inflorescences per cubic metre. 	ne number of inflorescences f flowers per inflorescence. nd separated. Individual nd). Count the number of
Taraire fruit	 Stage (4) The red-sepia flowers have opened. D number open, just give a rough percentage of op of the cubic metre. Count the number of inflores Stage (1) The individual fruits are visible, gener Still hard to count at this stage. 	en flowers as a proportion scences per cubic metre. ally less than 2 mm long.
	 Stage (2) The fruit is elongating and eventually full sized. Full sized fruit is anywhere between 3 cm in diameter. Don't include full sized fruit un count the number of fruit per cubic metre (and if panicles within the cubic metre that carry the fru would be 48 frt/9 pan.) Stage (3) The fruit is full sized but has not coloured for the sized but has not coloured for the sized but has not coloured for the sized fruit is full sized but has not coloured for the sized for the sized but has not coloured for the sized for the sized but has not coloured for the sized for t	3 and 5 cm long and 1 to 2.5 ider this category, but do desired the number of it. In that case the notation
	black. Count the number of fruit per cubic metre of panicles within the cubic metre that carry fruit Stage (4) The fruit is full sized and has coloured and no longer has a glaucous sheen. Count the r metre (and if desired the number of panicles with carry fruit, notation as for stage 2.)	e (and if desired the number t, notation as for stage 2.) I up to a dark purpely black number of fruit per cubic

	Description of phenological events	p.4
	Notes; sometimes the fruit remains on the tress shrivelled up. Don't count those fruits as the	
Kohekohe flowers	any more. Stage (1) The much divided inflorescence bu and the trunk of the tree. Only score as a (1)	, don't try to count.
	Stage (2) The inflorescence bud is expanding individual flower buds become more pronout	
	inflorescence per cubic metre, don't try to co inflorescence. However as the inflorescence	
	to estimate the approximate length. A previo	bus, as yet unpublished study,
	showed that there were on average one flowe inflorescence. Male trees will generally have	
	inflorescences than female trees. Stage (3); The inflorescence is fully expanded	ad and senarated Individual
	flower buds look full-sized (about 2 - 5 mm) number of inflorescence per cubic metre, not	long). Count the length and
	Stage (4) the pale cream flowers are open or	opening. Count either the
	number of flowers or length of panicle per cu approximately the same. Flowers on female	trees open with the pollen sacks
	already shrivelled up, otherwise they look id flowers are perfect also and have pollen bulg	
Kohekohe fruit	Refer to Braggins (1999) for more details. Stage (1); This stage can initially be hard to	
Konckone II un	remain attached to the panicles after the flow	er corolla has dropped off.
	However this stage lasts only a week or two. develop in the early stages. Count number o	
	count/measure length of panicles any more b evenly spaced.	
	Stage (2); This stage lasts for nearly 11 mon	
	from 2 to 5 cm in diameter. Count number o Stage (3); The last couple of weeks before the	
	size any more - that is when it can be counted Stage (4); If fruit is scare you are unlikely to	
	opened capsules because the birds will have	found them before you could.
	So count both open empty seed capsules and per cubic metre. This count will drop quite r	
	capsules drop of the tree very quickly.	
	Notes; In more northerly areas of New Zeala flowers, in more southerly areas (form at leas at the same time. Kohekohe tends to have ve	st Taranaki down) both are open
	year cycles. A good flowering year will be f	ollowed by a good fruiting year
	but a bad flowering year. This is probably de year for the fruit to ripen, thus when the tree	
	have the energy to produce many flowers that	it year.
	Male trees seem to flower earlier and more p Also in areas with high possum browse chan	
	flower. Male trees can produce the occasion fruit/cubic metre).	al fruits (up to about 4
Tawa flowers	Stage (1-4); It is very hard to tell what flowe	
	Inflorescences can be found on the tree most to judge whether the flowers are open or not	
	are flowers at eyelevel you might be able to counting the flowers, only score which stage	•
	are at.	
Tawa fruits	Stage (1); It is unlikely that stage 1 fruits are to distinguish from flower buds.	e visible, they are very difficult
	Stage (2); Since the fruit is very cryptic and	
	unlikely that many stage 2 fruits will be spot sight a few occasionally with binoculars, or i	

	Description of phenological events	p.5
	Count fruits per cubic centimetre if possible.	Full sized fruit is about 2 to 4
	cm long and 1 to 2 cm wide. Stage (3); These fruits can be distinguished fr to hang more and move more slowly than the breeze the tawa leaves will rustle while the fru Count fruit per cubic metre.	leaves. Even in a gentle
	Stage (4); The fruit will become quite obviou purplely black. Count number of fruits per cu	• •
Kowhai flowers	Stage (1); Golden brown buds appear. The le look. Just note presence as a 1	
	 Stage (2); The inflorescence as a 1 Stage (2); The inflorescences become more of in the early stages, and if possible multiply the average number of flowers per panicle as the buds are about 1 to 2 cm long. Stage (3); Often the tips of the petals start pro- 	e number of inflorescences by buds get bigger. Full sized
	buds. Count inflorescences per cubic metre a	
	number of flowers per panicle.	t inflorescences and multiply
	Stage (4); Flowers are fully expanded. Count by the number of flowers per panicle	t inforescences and multiply
Kowhai fruit	Stage (1); The stamen of the flower rapidly e	elongates. Counter number of
	elongating stamens per cubic metre. Stage (2); Seedpods fully lengthened and sta	rting to thicken up A fully-
	grown seedpod will have all the lumps and fla	
	still be green. Count number of developing se	
	Stage (3); Fully expanded, looks completely still green. Count number of developing seed	
	Stage (4); Pods ripen to a dry brown husk. C	
	cubic metre.	
	Notes; - From casual observation it seems as might alternate very good flowering seasons v	
	leaves have fewer flowers than trees with few	
	comm.) noted that bellbirds penetrate the side	of the flower to obtain nectar,
	they do not use the corolla. Flower buds appe	
Rewarewa flowers	than leaf buds, still, they are very hard to disti Stage (1); Little pyramidal lumps appear on t	
	colour. Just note presence as a 1 unless really	
	metre.	
	Stage (2); The pyramids lengthen and become expanded inflorescence is about 10 - 12 cm lo Count number of inflorescences per cubic met	ong and 5 to 7 cm in diameter.
	Stage (3); Inflorescences are fully expanded back yet to reveal yellow stamen yet. The inf coarse brush, not a fine "Australian type" bott	lorescences still look like a
	inflorescences per cubic metre.	
	Stage (4); Yellow pollen on the pistil, below curled back to the main stem. The inflorescer outer edges but more solid toward the centre. humming around the flowers. Count number	nce looks more delicate at the Often bees and other insects
Rewarewa seedpods	metre. Stage (1); All of the petals fall off leaving ju has been successfully pollinated this will expa of inflorescences per cubic metre or just note	and and thicken. Note number as stage 1
	Stage (2); Seed capsules continue to lengther capsules become more pronounced and disting seed capsules per cubic metre.	
	 Stage (3); Seed capsules fully grown, 4 - 6 cm opened yet. Can at times be difficult to see if Stage (4); Seed capsules split open lengthwis 	seed capsules open.

	Description of phenological events	p.6
<i>Metrosideros</i> flowers	 Notes; In possum prone areas a lot of the flowers will hav or knocked off. In some areas in the north of New Zealand few possums the seed capsules can stay on the tree for at le seed capsules can be distinguished from new ones because grey to almost black and have lost the tomentum. Don't co just those from the most recent year. Stage (1); Flower buds very hard to tell from leaf shoots, y distinguish them a bit after a few years of practice. Count inflorescences per cubic metre or just note presence of bud Stage (2); Leaf buds elongate very quickly, flower buds st and club-shaped. A fully expanded inflorescence is usually long, or sometimes a bit wider. Count number of inflores metre. 	I where there are east 3 years. Old they are a darker, unt old capsules, you can number of s. ay more rounded y as wide as it is
<i>Metrosideros</i> seeds	 Stage (3); Each branchlet in the inflorescence usually carridoes vary from 1 to 5, but 3 is the most common and probathough this hasn't been checked). When the tips of the bud up then flowering is imminent. Count the number of inflor cubic metre, if a more accurate estimate is required then mestimate of the number of flowers in an average panicle. Stage (4); Usually pretty obvious when the flowers are ful depends on the species. Counting as for stage 3. Stage (1); Is immediately after the flowering has finished. Stage (2); This is probably the longest stage. The flower to becomes rounder. Count number of inflorescences (and mnumber of capsules per inflorescence if desired) Stage (3); The seed capsules are fully expanded but not two opening yet (check with binoculars). Count number of inflorescence flowers (4); Seed capsules are opening, seed can be seen fly (and gets in your eye) and seed capsules are turning brown Stage (3). 	bly the average ds start colouring rescences per ultiply this by an ly open. Colour pase expands and ultiply by average rning brown or lorescences and ence if desired. ing from the tree
Other species		
Tawapou	Flowers hard to see at all stages. Fruit is the same size ran taraire. Ripens from green to yellow to red to black. Pigeo red stage, seem to ignore it at the black stage.	
Kahikatea	Didn't do much counting of kahikatea. Never looked for o flowers and didn't really try to count the fruit, just noted rij small flowered and fruited species, such as rimu, and totara problematical.	peness. Other
Miro & matai	Didn't try counting flower cones, but did note ripeness if the Rimu fruits are easy to see from about half-grown to fully easy unripe matai is to spot, but ripe fruit are obvious black fruits.	red. Not sure how

Appendix 3.2 - Example of phenology data collection form

	Whitford					p.2								
Collect	Collector: Site:				Date:				te:					
		Fl	ower	s				F	ruit				groundfall	
species	total #/m ³	#/m ³			men majo		total #/m ³	# or % ripe/m ³		velop			Circle for flowers,	comments
Kr6	#/ 1110	open	1	2	3	4	#/ 1110	ripe/m ³	1	ge of 2	<u>majo</u> 3	4		
							, · ·			_	-			
WRa6			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
TR8			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Pr3			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Pr4			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Pr5			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh3			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kr9			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh8			1	2	3	4		-	1	2	3	4	1-10 11-25 26-75 76+	
Kh9			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Pr6			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh4			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh10			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Rew1			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Rew2			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Rew3			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Rew4			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Rew5			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Tw4			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh5			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Kh6			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Tr5			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Tr6			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
Tw5			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
do *'s			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
WRa9			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
			1	2	3	4			1	2	3	4		
			1	2	3	4			1	2	3	4	1-10 11-25 26-75 76+	
			1	2	3	4			1	2	3	4		
			1	2	3	4			1	2	3	4		
			1	2	3	4			1	2	3	4		-
			1	2	3	4			1	2	3	4		
			1	2	3	4			1	2	3	4		
1				-	_			·						

Developmental stage of flower (1) bud showing, (2) swelling and growing, (3) approximate mature size but still unopened, (4) open. Developmental stage of fruit (1) recently fertilized, (2) swollen and growing, (3) approximate mature size but still unripe, (4) ripe.

Appendix 3.3 - Descriptions for seedfall trap contents

The contents of each seedfall trap was decanted into pre-labelled bags and allowed to dry so that samples were 'dry to the touch'. This took some experimenting, initially with oven-baking and blow-dryers, but by 27-6-95 the contents of sample bags were decanted into open weave cloth bags and allowed to dry naturally over a couple of nights. This also allowed insects to escape.

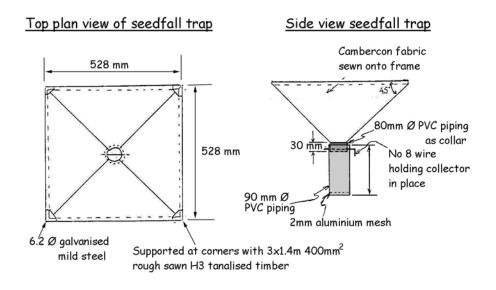
General descriptions	
Flowers	- <u>includes</u> all floral parts, including inflorescence stalks as a measure of floristic effort. To be included in results flowers must be of sufficient size to be weighable, or more than one of a small flower must be present to register a "yes". (From 11-3-95 two categories of "yes" are now indicated by 0.01 "a few present", and 0.05 "more than 2-5 but not easily separated/weighed".)
Leaves & twigs	- <u>includes</u> leaf blades and stalks, and any other woody/stem material of the plant in question as a measure of vegetative effort. Any material not immediately recognised as belonging to one particular species is consigned to the "other" category.
Seed	- <u>includes</u> all parts of the seed, including stalks, husks dried and/or fresh fruit as a measure of reproductive effort. See specific plants for more detailed descriptions.
Other	- <u>includes</u> , all remaining material too small to separate, too mixed up to separate, too small to weigh, other materials such as lichens, mosses, insects, and all categories indicated by "yes" in the weight column. Where no "other" weight is given then the majority of the sample was composed of a recognisable plant part and assigned to that variable, common examples are flowers (e.g. rewarewa, taraire, karaka, tawa or pohutukawa), kowhai leaves, small seeds etc.
<u>Species descriptions</u> Alseuosmia flowers	- <u>trumpet shaped flowers</u> up to 2 cm long, variable number of petals. This plant by Wend tw6 has creamy white flowers with pinky-red flush on the interior. (<i>Alseuosmia macrophylla</i>)
Alseuosmia seed Cabbage tree seed	- <u>a rich port red</u> fruit is about 7-10mm long, fleshy. <u>three lobed green (unripe) of white fruit</u> up to 3/4 cm contains Small black half spiral things.
Coprosma fruit Coprosma seed	- <u>two grass-like seeds</u> enclosed in fleshy tissue. Looks like pale coffee bean. - <u>the grass-like seed from above</u> but without the fleshy tissue and generally separate.
Droppings, mouse Droppings, possum Droppings, rat Droppings, weta	 -<u>not striated</u>, smaller than rat droppings. -<u>single ovoid</u> to deer/sheep like in form. Usually quite smelly. -<u>not striated</u>, quite large. -<u>are striated</u>, sometimes can only see one line, look rather like mouse or rat
Hairy flowers	droppings in other respects, but blunt ended not pointy. - <u>orange coloured flowers</u> with so many stamen that it looks like fine hair- black wattle flowers.
Kahikatea seed	 -<u>consumed</u> look like little round black seeds, often with curvaceous stalks still attached. Not consumed means that the orange receptacle is still attacked. -<u>predated</u>, the little black seeds have holes in them. -<u>Immature</u> seed not completely developed and/or fleshy receptacle not completely developed/mature.
Kanuka flowers	- <u>presence</u> is indicated by the little white floral leaflets in the sample.

Kanuka seed/pods	-have to check this, but it looks like kanuka seedpods always have 5 "seed apertures" whereas rata (<i>Metrosideros perforata</i>) seedpods only have 3. (12-9-95)
Karaka flowers Karaka seed	 -look like taraire flowers but are pale or green in colour. large yellow fruit up to 4 cm long Predation by possums- can see the teeth marks on the fruit. It is interesting to note that the possums only eat the fruit flesh initially (and only the ripe yellow flesh, they avoid the green stuff) but later (about 3 months or more) come back for the kernel. Except for a kernel found at Remiger's Bush on 22-1-97 which had the inside partially eaten. Essentially the possum predation of karaka does not limit germination of the
Karo flowers	seed at a later stage, until the possums come back to the kernels after 6 months. <u>fall apart</u> ; the petals are still reddish brown in colour and curved over. Can also
Kohekohe flower	often find the flower-base in the trap - <u>panicles</u> can be distinguished from titoki by larger flower buds that have a tripartite split (like the fruit). After discussion with Mick about the nectar content of kohekohe flowers (30-5-95) thought about counting kohekohe flowers as well as weighing them, but in the field I count flower panicles, not flowers. As a compromise could count the number of flowers on a panicle in relation to
Kohekohe immature	its size/length. <u>fruit just after flowering</u> . count the swollen floral bases after flowering as immature fruit from 29-6-95 onwards. These look a bit like small spinning tops,
Kohekohe fruit	quite different from immature flowers that are more ovoid in shape. - <u>entire immature fruit capsules</u> are counted and weighed. Individual fruits (one or more seed covered with fruit flesh, often 2 or 3 seeds) are counted and weighed, and any fruit husks are included in the total weight column only. <u>-</u>
Kohekohe seed	<u>ripeness</u> in fruit is indicated by fleshy capsule having split. - <u>individual seeds</u> are counted and weighed, the total column includes the weights and numbers of seed from both "loose" seed and those still contained in a fruit (i.e., still enclosed by fruit flesh. It is quite easy to count the number of seed within a fruit). - <u>consumed seed</u> all fruit flesh removed. These are difficult to determine sometimes, especially when samples have not been immediately processed and the fruit flesh has have allowed to dry out in that ease they are only included in
Kowhai flowers	the fruit flesh has been allowed to dry out, in that case they are only included in the total columns - <u>immature flowers/buds</u> are covered in a golden downy fur. - <u>predation is indicated</u> by a hole chewed in the flower or bud. - <u>loose flower petals</u> can also be found in the seedfall traps. A yellow brown with clear darker brown veins running longitudinally. Weighed in the totals but not counted (as I don't know from how many flowers these come). - <u>it seems likely</u> that we will only be able to count the number of immature flowers in the seedfall trap because mature flowers do not drop intact, instead they loose their leaves. number of flowers is the number of flower bases, with the immature seedpod attached, found in the trap. Whole flowers are not included with flower parts. - <u>differential feeding</u> by tui, Sept 1996 general observation that some fully flowering trees are more favoured by tui than others. There might be a correlation between the colour of the flowers on the tree and attraction/nutritional value. Darker trees seemed less favoured - perhaps the
Kowhai seed/pod	flowers were older? - <u>seedpods</u> are counted and weighed, individual loose seeds are merely weighed. A seedpod (or part there off) containing only one seed is still counted as an entire seedpod.

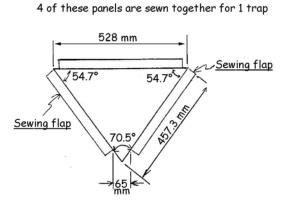
Myrtaceous flower/pods	- <u>not sure if these are rata or kanuka seedpods</u> . They most likely are rata seedpods.
Lacebark seed Nikau seed	 <u>are winged hay coloured</u> seed. Predation shown by holes chewed in to the seed. <u>predated</u>, most of the fruit tissue removed (tissue rubs off very easily, but nikau seed force-fed to pigeons can still have partial flesh on them (pers. comm Rachael Bell)). <u>Classify as rodent predated</u> when can't really distinguish what ate the fruit. If can find tooth marks then assign to appropriate category. I suspect that rats tend to chew into the seed whereas possums only remove the fruit flesh from the outside (possum predation of fruit flesh noted @ Val's bush on 8-1-97) <u>-chewed</u>, seed husk in pieces (usually 4 pieces) indicative of rats. Following discussion with Mick (31-5-95) have decided to tally the number of fruiting nikau along the phenological track at each site to get some indication of available ripe fruit or full sized green fruit.
Pohutukawa flowers	- <u>presence</u> is indicated by red pistils & stamens or by furry silver flower bud scales.
Pohutukawa seed	-Later in the season the flower/seed capsules fall in the traps, immature means that they haven't opened yet and disgorged the seed.
Pohutukawa leaves	- <u>look like tawa leaves</u> except that veins are parallel, not branching, and underside can be (but not always in older leaves) distinctly tomentose. Both tawa and pohutukawa leaves have a tendency to under-curl leaf margins.
Puka seed	small (up 5 mm long) green oval seeds, often found predated by insects. Sometimes multiples still attached to stalk of inflorescence. Also called small green oval fruit (epiphyte) or similar
Puriri flower	 -<u>after baking</u>, fresh flowers become a light brown, distinct from the older, nearly black flowers. -<u>flower stalks</u>, are not counted individually, but weighed as part of flower weight. (this can sometimes skew the results as many more stalks can be in the sample than flowers, however the stalks should be included as a measure of reproductive effort) -<u>flower buds</u> are counted as immature flowers, and weighed as such. -predated by insects indicated by holes at the base of the calyx, shredded flowers are indication of possum predation. Incisions at the base of the flowers or flowers partially torn from the base up are indications of predation by birds, most likely rosella.
Puriri seed	- <u>stalks</u> are not individually counted but weighed as part of seed, if only stalks in sample then only weight is noted. (this can sometimes skew the results as many more stalks can be in the sample than seed, however the stalks should also be included as a measure of reproductive effort) <u>Possum predated</u> puriri seed have the fruit flesh removed in strips, the underlying woody capsule has the appearance of being planed smooth, occasionally tooth marks can be found on the flanges of the capsule or in the remnants of the fruit flesh (first found @ Val's bush on 8-1-97)
Rata flowers	- <u>seedfall presence</u> indicated by flower bases, rather like kanuka capsules, but then shaped more like pohutukawa flower bases, a bit smaller than kanuka seed capsules on average too usually on a stalk, and often stigma still attached. Can't readily see whether seed has been disgorged or not, hence no seed category given. Additional confirmation is the presence of rata leaves in sample. - <u>clear polyurethane</u> looking flower scales come from M. perforata.
Red matipo seed Rewarewa flowers	 -immature fruit is small egg-shaped green with small red stripes. -<u>presence</u> is indicated by any part of the flower being present, the stamen, drumsticks ect. Not counted only weighed when sufficient in sample to warrant this. -<u>immature</u> flowers are the entire inflorescence before it has grown much. -one entire inflorescence had 50 floret positions on it (5-4-96)

Appendix 3.4 - Description of toxins

Talon[®] is produced by Crop Care Holdings Ltd, part of the ICI Group, and contains 0.02g/kg brodifacoum, which is a slow acting second generation anticoagulant poison, with death resulting commonly within one week of ingestion for rats and up to several weeks for possums. Talon was alternated with Pindone to reduce the chance of bait-shyness in possums.


The Pindone cereal pellets contained 0.05% pindone which is a first generation anticoagulant that causes death by haemorrhage in 4 to 11 days after consumption. Pindone pellets were manufactured by Pest Management Services Litd, Waikanae.

Talon 50WB[®], produced by Crop Care Holdings Ltd, part of the ICI Group, is a cold formed wax pellet containing 0.05g/kg brodifacoum.


	October 1996 collected inflorescences from the ground and counted flowers on them. Most flowers come off the main stem in pairs these are called double flowers . There are some flowers that are not paired hence single flowers . Undeveloped flowers look like miniature immature antler buds. The category flowers missing is used when there is an obvious flower scar on the stem but no flower. Sequence of analysis: measure length of inflorescence, check whether end looks abscised or bitten off, check for chew marks, check for flowers missing & undeveloped flowers, then snip off all paired flowers while counting them and count the remaining flowers as singles. From 15-10-1996 started counting individual flowers (i.e. not inflorescences) in seedfall traps.
Rewarewa seed	 -<u>capsules</u> are considered mature when these have split open. <u>Predated</u> when a visible hole can be seen in the juvenile seed capsules. Individual capsules are counted, but the winged seed is just weighed. 23-1-97, Whitford Bush, the possum damaged rewarewa seed capsules that are appearing in the traps look quite old, perhaps they predate the possum poisoning regime? <u>possum predation of rewarewa seed capsules</u> starts happening once the capsules
Taraire flowers	reach about 3 cm long and 4mm in diameter.
Taraire fruit	- <u>look like karaka flowers</u> but are red in colour. - <u>immature</u> fruit is usually blue and has a red tinged swollen receptacle.
	 <u>-ripe fruit</u> exudes a lot of purple pigment when the skin is punctured (this colour comes from the skin) unlike tawa fruit that produces a clear juice. Taraire fruit also has a tendency to go sticky jelly like, whereas tawa decomposes more like a plum does. <u>-dried kernels</u> have a netted appearance, unlike tawa kernels that are more like olive kernels. <u>-predation by possums or rodents</u> begins as soon as the fruit is about 1 cm long!!!
Tawa flowers	- <u>miniature versions of taraire flowers</u> , often hard to separate from the sample because of smallness.
Tawa fruit	 -<u>ripe fruit</u> produces a clear juice when the skin is punctured unlike taraire fruit that exudes a lot of purple pigment (this colour comes from the skin). Tawa decomposes more like a plum does (going soft and mushy, then drying out), whereas taraire fruit has a tendency to go sticky jelly like. -<u>dried kernels</u> look like olive kernels, unlike taraire kernels that have a netted appearance.
Titoki flowers	- <u>look like little black specks</u> with stalks on them. Also includes the inflorescence stalks which are tomentose greeny-yellow. Generally it actually is
	just the stalks of the inflorescences.
Titoki leaves	- <u>description</u> , greeny-yellow in colour, shiny upper surface, matt below, with bright yellow prominent veins on the under-surface.
Totara seed	- <u>Small light green seed</u> , a bit lumpy looking, curvaceous with rounded pointy ends. (from 5-9-95).
Totara flowers	- <u>male cone</u> is about 1 cm long; the one I id still had the sheath at the base from which it emerged.
Small black half spiral thing	s are some sort of monocotyledon (germinated some) occasionally find them
Sman black han spir ar thing	encased in white fruit flesh. Came across one whole fruit, white and about 5 mm
	in diameter (cabbage tree or epiphyte?).
	I germinated some of the seed and it is looking more and more like cabbage tree
	seed. 1-2-97 - Just dissected a cabbage tree fruit and they do have these types of seed in them.
W/honor of lagara	
Wharangi leaves	-as distinct from karaka leaves, feel softer and often have pink tinge when dry.

Wharangi flowers	-light yellowy-green, with 4 petals, 8 stamen and the sepals make quite
	distinctive darker green triangles at the notches between the petals, the whole
	flower is just over 5mm in size.
Wharangi seed/pods	-seeds are shiny blue-black ovoid in shape, have thus far only found them in
	seedfall trays directly beneath wharangi trees (indicating no dispersal)
	-seedpods generally four capsules to a stalk, light brown in colour, shaped to
	tightly enclose seed, with a heavily pocked surface.
Whiteywood seed	-small round fruit on stalks when ripeness is purpley-black

Appendix 3.5 Schematic diagram for construction of seedfall traps

Plan for 1 of 4 Cambercon 7000 SS panels

Appendix 4.1 Common and scientific names of plant species

Common Name	Latin Name
Coprosma	<i>Coprosma</i> spp.
Coral trees	<i>Erythrina</i> spp exotic spp.
Five-finger	Pseudopanax arboreus
Fuchsia	Fuchsia excorticata
Hall's totara	Podocarpus hallii
Hangehange	Geniostoma rupestre
Hawthorn	Crataegus monogyna, -
11uw thorn	exotic spp.
Hinau	Elaeocarpus dentatus
Kahikatea	Darcycarpus dacrydioides
Kaikomako	Pennantia corymbosa
Kamahi	Weinmannia racemosa
Kanuka	Kunzea ericoides
Karaka	Corynocarpus laevigatus
Kawaka	Libocedrus plumosa
Kohekohe	Dysoxylum spectabile
Kowhai	Sophora microphylla
Lancewood	
Mahoe	Pseudopanax crassifolius Melicytus ramiflorus
Maire	0
Mamaku	Mida salicifolia Cyathea medullaris
	Litsea calicaris.
Mangeao Manuka	
	Leptospermum scoparium
Mapou Matai	Myrsine australis
Matai	Prumnopitys taxifolia
Milk tree	Strebulus spp.
Miro	Prumnopitys ferruginea
Monocotyledon	mixture of <i>Cordyline</i>
	australis and Asteliaceae
Mountain beech	Nothofagus solondri var
NT'1	<i>cliffortioides</i>)
Nikau	Rhopalostylis sapida
Northern rata	Metrosideros robusta
Orange climbing	
rata	Metrosideros fulgens
Pahautea	Libocedrus bidwillii
Pigeonwood	Hedycarya arborea
Pohutukawa	Metrosideros excelsa
Puka	Griselinia lucida
Pukatea	Laurelia novae-zelandiae
Puriri	Vitex lucens
Putaputaweta	Carpodetus serratus
Rewarewa	Knightia excelsa
Rimu	Dacrydium cupressinum
Scarlet rata	Metrosideros fulgens
Silver beech	Nothofagus menziesii
Southern rata	Metrosideros umbellata
Supplejack	Ripogonum scandens
Taraire	Beilschmiedia tarairi
Tawa	Beilschmiedia tawa
Tawapou	Pouteria costata
Tawaroa	Beilschmiedia tawaroa

Common NameITitokiAlectriToroMyrsiTotaraPodooTutuCoriaWharangiMelicWhauEnteloWhite climbingratarataMetroWhiteywoodMelicytuWineberryAristo

Latin Name Alectryon excelsus Myrsine salicina Podocarpus totara Coriaria arborea Melicope ternata Entelea arborescens

Metrosideros perforata Melicytus ramiflorus Aristotelia serrata

Appendix 5.3 General Linear Models Procedure for aspects of synchrony analysis.

The SAS System

General Linear Models Procedure for Wenderholm data

Wenderholm PROPGeneral Linear Models ProcedureClass Level InformationClass Levels ValuesSITE1wendSPECIES6kara kohe puri tara tawa tawpNumber of observations in by group = 486

Dependent Variable: Wenderholm PROP (proportion of trees fruiting per visit)

2 openaent + an		Proportion	P and a set of a set	••••••	
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	5.23883859	1.04776772	29.63	0.0001
Error	480	16.97566530	0.03536597		
Corrected Total	485	22.21450389			
	R-Square	C.V.	Root MSE	PROP Mean	
	0.235830	131.9486	0.18805842	0.14252401	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES	5	5.23883859	1.04776772	29.63	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SPECIES	5	5.23883859	1.04776772	29.63	0.0001

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: PROP (proportion of trees fruiting per visit)NOTE: This test controls the type I experimentwise error rate, butgenerally has a higher type II error rate than REGWQ.Alpha= 0.05 df= 480 MSE= 0.035366Critical Value of Studentized Range= 4.046Minimum Significant Difference= 0.0846

Means with the same letter are not significantly different.

Tuk	ey Mean		Ν	SPECIES
Gro	uping			
	Α	0.36255	81	puri
	В	0.15021	81	tara
С	В	0.12593	81	tawp
С	В	0.09835	81	kohe
С		0.06379	81	tawa
С		0.05432	81	kara

Wenderholm DU	JRATN				
General I	Linear Models Pr	ocedure			
Class Lev	vel Information				
Class	Levels	Values			
SITE	1	wend			
SPECIES	5 6	kara kohe puri tara ta	wa tawp		
YEAR	3	234	-		
Number of observations in by group $= 180$					
NOTE: Due to mi	ssing values, only	y 160 observations can	be used in this analy	ysis.	
		n DURATN (Duration		for all trees in the	population,
including those the	rees that did not	t have fruit in any par	rticular year)		
		Sum of	Mean		
Source	DF	Squares	Square F Value	Pr > F	
Model	17	1324.8416667	77.9318627	6.62	0.0001
Error	142	1670.5333333	11.7643192		
Corrected Total	159	2995.3750000			
	R-Square	C.V.	Root MSE	DURATN Mean	
	0.442296	99.77936	3.4299153	3.4375000	
	0.442290	<i>))</i> . <i>(1)</i> 50	5.4277155	5.4575000	
Source	DF	Type I SS	Mean Square F Value	Pr > F	
SPECIES	5	1142.7903846	228.5580769	19.43	0.0001
YEAR	2	3.9219275	1.9609637	0.17	0.8466
SPECIES*YEAR	10	178.1293546	17.8129355	1.51	0.1400
q	DE				
Source	DF	Type III SS	Mean Square F Value	Pr > F	
SPECIES	5	1156.6121212	231.3224242	19.66	0.0001
S. LOILD	2	1100.0121212	201.022.012	12:00	

General Linear Models Procedure

2

10

YEAR

SPECIES*YEAR

Tukey's Studentized Range (HSD) Test for variable: Wenderholm DURATN

11.2333333

178.1293546

5.6166667

17.8129355

0.48

1.51

0.6214

0.1400

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 142 MSE= 11.76432

Critical Value of Studentized Range= 3.350

	Comparisons significant at	the 0.05 level are	indicated by '***'.
YEAR	Simultaneous	Difference	Simultaneous

YEAR	Simultaneous	Difference	Simultaneous
Comparison	Lower	Between	Upper
	Confidence	Means	Confidence
	Limit		Limit
2-3	-1.3416	0.3167	1.9750
2-4	-1.2750	0.3833	2.0416
3-2	-1.9750	-0.3167	1.3416
3-4	-1.4166	0.0667	1.5499
4-2	-2.0416	-0.3833	1.2750
4-3	-1.5499	-0.0667	1.4166

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable:Wenderholm DURATN

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95 df= 142 MSE= 11.76432 Critical Value of Studentized Range= 4.086

Comparisons significant at the 0.05 level are indicated by '***'.

SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
puri - tara	2.7518	5.5000	8.2482	***
puri - tawp	2.9834	5.6385	8.2935	***
puri - kohe	3.6364	6.3846	9.1329	***
puri - tawa	5.0979	7.8462	10.5944	***
puri - kara	5.4825	8.2308	10.9790	***
tara - puri	-8.2482	-5.5000	-2.7518	***
tara - tawp	-2.5166	0.1385	2.7935	
tara - kohe	-1.8636	0.8846	3.6329	
tara - tawa	-0.4021	2.3462	5.0944	
tara - kara	-0.0175	2.7308	5.4790	
tawp - puri	-8.2935	-5.6385	-2.9834	***
tawp - tara	-2.7935	-0.1385	2.5166	
tawp - kohe	-1.9089	0.7462	3.4012	
tawp - tawa	-0.4474	2.2077	4.8627	
tawp - kara	-0.0627	2.5923	5.2474	
kohe - puri	-9.1329	-6.3846	-3.6364	***
kohe - tara	-3.6329	-0.8846	1.8636	
kohe - tawp	-3.4012	-0.7462	1.9089	
kohe - tawa	-1.2867	1.4615	4.2098	
kohe - kara	-0.9021	1.8462	4.5944	
tawa - puri	-10.5944	-7.8462	-5.0979	***
tawa - tara	-5.0944	-2.3462	0.4021	
tawa - tawp	-4.8627	-2.2077	0.4474	
tawa - kohe	-4.2098	-1.4615	1.2867	
tawa - kara	-2.3636	0.3846	3.1329	
kara - puri	-10.9790	-8.2308	-5.4825	***
kara - tara	-5.4790	-2.7308	0.0175	
kara - tawp	-5.2474	-2.5923	0.0627	
kara - kohe	-4.5944	-1.8462	0.9021	
kara - tawa	-3.1329	-0.3846	2.3636	

Wenderholm DAYS

Class Level Information					
Class	Levels	Values			
YEAR	3	234			
SPECIES	6	kara kohe puri tara tawa tawp			
Number of observations in data set $= 104$					

Dependent Variable: Wenderholm DAYS

(number of days that individual trees had fruit, equates to fortnights in table 5.3, and excludes trees that did not produce fruit in any one year)

	Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > F
Model	17	946.29884005	55.66463765	4.86	0.0001
Error	86	984.16269841	11.44375231		
Corrected Total	103	1930.46153846			
	R-Square	C.V.	Root MSE	DAYS Mean	
	0.490193	64.20029	3.3828616	5.2692308	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
YEAR	2	4.00003053	2.00001526	0.17	0.8399
SPECIES	5	769.11155839	153.82231168	13.44	0.0001
YEAR*SPECIES	10	173.18725114	17.31872511	1.51	0.1484
Source	DF	Type III SS	Mean Square	F Value	Pr > F
YEAR	2	10.81104578	5.40552289	0.47	0.6251
SPECIES	5	837.20274573	167.44054915	14.63	0.0001
YEAR*SPECIES	10	173.18725114	17.31872511	1.51	0.1484

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: Wenderholm DAYS

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 86 MSE= 11.44375 Critical Value of Studentized Range= 3.373 Comparisons significant at the 0.05 level are indicated by '***'.

YEAR	Simultaneous	Difference Between	Simultaneous
Comparison	Lower Confidence	Means	Upper Confidence
	Limit		Limit
4-2	-1.7195	0.3135	2.3464
4-3	-1.4007	0.4528	2.3063
2-4	-2.3464	-0.3135	1.7195
2-3	-1.8487	0.1393	2.1273
3-4	-2.3063	-0.4528	1.4007
3-2	-2.1273	-0.1393	1.8487

kara - kohe

kara - tawa

-4.8687

-5.1138

Appendix 5.5	U.L.	INITION aspects of	synchrony analys	18	
General Linear Models Procedure					
Tukey	's Studentized Rang	ge (HSD) Test for	variable: Wender	holm DAYS	
NOTE	: This test controls th	ne type I experiment	ntwise error rate.		
Alpha=	= 0.05 Confiden	ce = 0.95 df = 86 M	MSE= 11.44375		
Critical	Critical Value of Studentized Range= 4.122				
Compa	risons significant at	the 0.05 level are i	indicated by '***'.		
SPECIES	Simultaneous	Difference	Simultaneous		
Comparison	Lower	Between	Upper		
	Confidence	Means	Confidence		
	Limit		Limit		
puri - tara	1.1706	4.2966	7.4225	***	
puri - tawp	1.3118	4.3399	7.3680	***	
puri - kohe	3.6614	6.5720	9.4826	***	
puri - tawa	3.2997	6.8902	10.4806	***	
puri - kara	4.2088	7.7992	11.3897	***	
tara - puri	-7.4225	-4.2966	-1.1706	***	
tara - tawp	-3.2487	0.0433	3.3354		
tara - kohe	-0.9089	2.2754	5.4597		
tara - tawa	-1.2221	2.5936	6.4093		
tara - kara	-0.3130	3.5027	7.3184		
tawp - puri	-7.3680	-4.3399	-1.3118	***	
tawp - tara	-3.3354	-0.0433	3.2487		
tawp - kohe	-0.8563	2.2321	5.3204		
tawp - tawa	-1.1858	2.5502	6.2862		
tawp - kara	-0.2767	3.4593	7.1953		
kohe - puri	-9.4826	-6.5720	-3.6614	***	
kohe - tara	-5.4597	-2.2754	0.9089		
kohe - tawp	-5.3204	-2.2321	0.8563		
kohe - tawa	-3.3232	0.3182	3.9596		
kohe - kara	-2.4141	1.2273	4.8687		
tawa - puri	-10.4806	-6.8902	-3.2997	***	
tawa - tara	-6.4093	-2.5936	1.2221		
tawa - tawp	-6.2862	-2.5502	1.1858		
tawa - kohe	-3.9596	-0.3182	3.3232		
tawa - kara	-3.2956	0.9091	5.1138		
kara - puri	-11.3897	-7.7992	-4.2088	***	
kara - tara	-7.3184	-3.5027	0.3130		
kara - tawp	-7.1953	-3.4593	0.2767		
Irono Iroha	10607	1 2272	2 41 41		

-1.2273

-0.9091

2.4141

3.2956

Wenderholm WITHINSP

General Linear Models Procedure					
Class Level I	nformation				
Class	Levels	Values			
YEAR	3	234			
SPECIES	6	kara kohe puri tara tawa tawp			
Number of observations in data set $= 104$					

Dependent Variable: Wenderholm WITHINSP (within species synchrony) Synchrony within species as per Table 5.3

Synchrony within	Synchrony within species as per 1 able 5.5						
	Sum of	Mean					
Source	DF	Squares	Square	F Value	Pr > F		
Model	17	2.90388020	0.17081648	7.97	0.0001		
Error	86	1.84289395	0.02142900				
Corrected Total	103	4.74677414					
	R-Square	C.V.	Root MSE	WITHINSP Mean			
	0.611759	28.27072	0.14638647	0.51780250			
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
YEAR	2	0.19753062	0.09876531	4.61	0.0125		
SPECIES	5	1.41187212	0.28237442	13.18	0.0001		
YEAR*SPECIES	10	1.29447746	0.12944775	6.04	0.0001		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
YEAR	2	0.34531404	0.17265702	8.06	0.0006		
SPECIES	5	1.46750075	0.29350015	13.70	0.0001		
YEAR*SPECIES	10	1.29447746	0.12944775	6.04	0.0001		

Tukey's Studentized Range (HSD) Test for variable: Wenderholm WITHINSP (within species synchrony)

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 86 MSE= 0.009904 Critical Value of Studentized Range= 3.373 Comparisons significant at the 0.05 level are indicated by '***'.

YEAR	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
2-3	0.00321	0.08923	0.17526	***
2-4	0.01762	0.10560	0.19357	***
3-2	-0.17526	-0.08923	-0.00321	***
3-4	-0.06384	0.01636	0.09657	
4-2	-0.19357	-0.10560	-0.01762	***
4-3	-0.09657	-0.01636	0.06384	

Tukey's Studentized Range (HSD) Test for variable: Wenderholm WITHINSP (within species synchrony)

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 86 MSE= 0.009904

Critical Value of Studentized Range= 4.122

Comparisons significant at the 0.05 level are indicated by '***'.

SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
-	Confidence	Means	Confidence	
	Limit		Limit	
kohe - kara	-0.09830	0.05927	0.21685	
kohe - tara	-0.07232	0.06548	0.20327	
kohe - puri	0.01788	0.14383	0.26978	***
kohe - tawp	0.12541	0.25905	0.39269	***
kohe - tawa	0.19614	0.35372	0.51129	***
kara - kohe	-0.21685	-0.05927	0.09830	
kara - tara	-0.15891	0.00620	0.17132	
kara - puri	-0.07081	0.08456	0.23993	
kara - tawp	0.03811	0.19978	0.36145	***
kara - tawa	0.11249	0.29444	0.47640	***
tara - kohe	-0.20327	-0.06548	0.07232	
tara - kara	-0.17132	-0.00620	0.15891	
tara - puri	-0.05691	0.07836	0.21363	
tara - tawp	0.05112	0.19358	0.33603	***
tara - tawa	0.12312	0.28824	0.45336	***
puri - kohe	-0.26978	-0.14383	-0.01788	***
puri - kara	-0.23993	-0.08456	0.07081	
puri - tara	-0.21363	-0.07836	0.05691	
puri - tawp	-0.01581	0.11522	0.24626	
puri - tawa	0.05451	0.20988	0.36525	***
tawp - kohe	-0.39269	-0.25905	-0.12541	***
tawp - kara	-0.36145	-0.19978	-0.03811	***
tawp - tara	-0.33603	-0.19358	-0.05112	***
tawp - puri	-0.24626	-0.11522	0.01581	
tawp - tawa	-0.06700	0.09466	0.25633	
tawa - kohe	-0.51129	-0.35372	-0.19614	***
tawa - kara	-0.47640	-0.29444	-0.11249	***
tawa - tara	-0.45336	-0.28824	-0.12312	***
tawa - puri	-0.36525	-0.20988	-0.05451	***
tawa - tawp	-0.25633	-0.09466	0.06700	

General Linear Models Procedure for Whitford data

	Whitford PROP				
Class Lev	vel Information				
Class	Levels	Values			
SITE	1	whit			
SPECIES	5 5	kara kohe pu	iri tara tawa		
Number of	of observations in by	y group = 405			
			e •4•	•••	
-	ble: Whitford PRC	· ·		,	
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	15.02711964	3.75677991	80.16	0.0001
Error	400	18.74658132	0.04686645		
Corrected Total	404	33.77370096			
	R-Square	C.V.	Root MSE	PROP Mean	
	0.444936	108.2879	0.21648661	0.19991770	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES	4	15.02711964	3.75677991	80.16	0.0001
0	DE	T III CC		ΓM	D. F
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SPECIES	4	15.02711964	3.75677991	80.16	0.0001

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: PROP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha=0.05 df= 400 MSE=0.046866Critical Value of Studentized Range=3.875Minimum Significant Difference=0.0932Means with the same letter are not significantly different.

Tukey	Mean	Ν	SPECIES
Grouping			
А	0.56790	81	puri
В	0.21056	81	tara
С	0.11207	81	tawa
С	0.05514	81	kara
С	0.05391	81	kohe

Whitford DURATN

General Linea	General Linear Models Procedure					
Class Level In	Class Level Information					
Class	Levels	Values				
SITE	1	whit				
SPECIES	5	kara kohe puri tara tawa				
YEAR	3	234				
Number of ob	servations i	n by group = 135				

NOTE: Due to missing values, only 120 observations can be used in this analysis.

Dependent Variable: Whitford DURATN (Duration of fruit phenology for all trees in the population, including those trees that did not have fruit in any particular year)

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	14	2728.9111111	194.9222222	30.08	0.0001
Error	105	680.3888889	6.4798942		
Corrected Total	119	3409.3000000			
	R-Square	C.V.	Root MSE	DURATN Mean	
	0.800431	58.51870	2.5455636	4.3500000	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SPECIES	4	2484.3801282	621.0950321	95.85	0.0001
YEAR	2	104.7600060	52.3800030	8.08	0.0005
SPECIES*YEAR	8	139.7709769	17.4713721	2.70	0.0097
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SPECIES	4	2444.0387624	611.0096906	94.29	0.0001
YEAR	2	120.2419978	60.1209989	9.28	0.0002
SPECIES*YEAR	8	139.7709769	17.4713721	2.70	0.0097

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: Whitford DURATN

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 105 MSE= 6.479894 Critical Value of Studentized Range= 3.362 Comparisons significant at the 0.05 level are indicated by '***'.

YEAR	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
2-4	0.6180	2.0444	3.4709	***
2-3	1.8180	3.2444	4.6709	***
4-2	-3.4709	-2.0444	-0.6180	***
4-3	-0.0759	1.2000	2.4759	
3-2	-4.6709	-3.2444	-1.8180	***
3-4	-2.4759	-1.2000	0.0759	

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: Whitford DURATN

NOTE: This test controls the type I experimentwise error rate. Confidence= 0.95df= 105 MSE= 6.479894 Alpha= 0.05 Critical Value of Studentized Range= 3.926

Comparisons significant at the 0.05 level are indicated by '***'.

SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
puri - tara	6.7552	8.9583	11.1615	***
puri - tawa	9.9488	12.1154	14.2819	***
puri - kohe	10.8719	13.0385	15.2050	***
puri - kara	11.2565	13.4231	15.5896	***
tara - puri	-11.1615	-8.9583	-6.7552	***
tara - tawa	1.1569	3.1571	5.1572	***
tara - kohe	2.0800	4.0801	6.0803	***
tara - kara	2.4646	4.4647	6.4649	***
tawa - puri	-14.2819	-12.1154	-9.9488	***
tawa - tara	-5.1572	-3.1571	-1.1569	***
tawa - kohe	-1.0366	0.9231	2.8828	
tawa - kara	-0.6520	1.3077	3.2674	
kohe - puri	-15.2050	-13.0385	-10.8719	***
kohe - tara	-6.0803	-4.0801	-2.0800	***
kohe - tawa	-2.8828	-0.9231	1.0366	
kohe - kara	-1.5751	0.3846	2.3443	
kara - puri	-15.5896	-13.4231	-11.2565	***
kara - tara	-6.4649	-4.4647	-2.4646	***
kara - tawa	-3.2674	-1.3077	0.6520	
kara - kohe	-2.3443	-0.3846	1.5751	

Whitford DAYS

Class Level I	nformation	
Class	Levels	Values
YEAR	3	234
SPECIES	5	kara kohe puri tara tawa
Number of ob	servations in dat	ta set = 1946

NOTE: Due to missing values, only 94 observations can be used in this analysis.

Dependent Variable: Whitford DAYS

(Table 5.11)

Source Model Error Corrected Total	DF 14 79 93	Sum of Squares 2285.1844394 496.0496032 2781.2340426	Mean Square 163.2274600 6.2791089	F Value 26.00	Pr > F 0.0001
	R-Square 0.821644	C.V. 45.12387	Root MSE 2.5058150	DAYS Mean 5.5531915	

Source	DF	Type I SS		n Square	F Value	Pr > F
YEAR	2	128.17127		856377	10.21	0.0001
SPECIES	4	2019.8864		9716169	80.42	0.0001
YEAR*SPECI	ES 8	137.12669	63 17.14	408370	2.73	0.0104
Source	DF	Type III S	S Mear	n Square	F Value	Pr > F
YEAR	2	82.630573		152867	6.58	0.0023
SPECIES	4	2052.6131		1532992	81.72	0.0025
YEAR*SPECI		137.12669		408370	2.73	0.0104
	al Linear Models		05 17.1	100570	2.15	0.0104
		Range (HSD) Test	t for variable	• Whitford	DAYS	
		s the type I experir			DITIS	
		dence= $0.95df=79$				
1		tized Range= 3.37		/10/		
		at the 0.05 level at		/ '***'		
YEAR	Simultaneous		Simultaneous	•		
Comparison	Lower		Upper			
companion	Confidence		Confidence			
	Limit		Limit			
2-4	0.4061		3.4871	***		
2-3	1.3836		4.5443	***		
2 3 4-2	-3.4871		-0.4061	***		
4-3	-0.4369		2.4716			
3-2	-4.5443		-1.3836	***		
3-4	-2.4716		0.4369			
0.		110171	011202			
Gener	al Linear Models	Procedure				
Tukey's Studer	ntized Range (HSE) Test for variable	: Whitford DA	YS		
		s the type I experir				
		dence = 0.95 df = 79				
1		tized Range= 3.94				
		at the 0.05 level at		/ '***'.		
Simultaneous	Difference	Simultaneou	is Confic	lence		
Lower	Confidence	Upper	Limit			
SPECIES	Limit	Between				
Comparison		Means				
puri - tara	5.9196	8.1667	10.413	37	***	
puri - kohe	9.0307	11.5769	14.123	32	***	
puri - tawa	9.4584	11.6818	13.905	52	***	
puri - kara	10.8271	13.1000	15.372	29	***	
tara - puri	-10.4137	-8.1667	-5.919	6	***	
tara - kohe	0.9414	3.4103	5.8791	l	***	
tara - tawa	1.3809	3.5152	5.6494	1	***	
tara - kara	2.7476	4.9333	7.1191	l	***	
kohe - puri	-14.1232	-11.5769	-9.030	07	***	
kohe - tara	-5.8791	-3.4103	-0.941	4	***	
kohe - tawa	-2.3424	0.1049	2.5522	2		
kohe - kara	-0.9692	1.5231	4.0154	1		
tawa - puri	-13.9052	-11.6818	-9.458	4	***	
tawa - tara	-5.6494	-3.5152	-1.380	19	***	
tawa - kohe	-2.5522	-0.1049	2.3424	1		
tawa - kara	-0.7432	1.4182	3.5795	5		
kara - puri	-15.3729	-13.1000	-10.82	71	***	
kara - tara	-7.1191	-4.9333	-2.747	6	***	
kara - kohe	-4.0154	-1.5231	0.9692	2		
kara - tawa	-3.5795	-1.4182	0.7432	2		

Whitford WITHINSP

General Linear Models ProcedureClass Level InformationClassLevelsValues

Appendix 5.3	G.	L.M.for aspects of s	ynchrony analysis		p.13
YEAR	3	234			
SPECIES		kara kohe p	ouri tara tawa		
Number	of observations i	n data set = 1946			
NOTE: Due to mi	issing values, onl	y 94 observations can	be used in this analy	ysis.	
		d WITHINSP (wit			
Table 5.11		× ×	1 0		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	14	4.01673714	0.28690980	15.99	0.0001
Error	79	1.41709564	0.01793792		
Corrected Total	93	5.43383278			
	R-Square	C.V.	Root MSE	WITHINSP	
	-			Mean	
	0.739209	25.10595	0.13393252	0.53346929	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
YEAR	2	0.08867427	0.04433714	2.47	0.0909
SPECIES	4	2.03399250	0.50849813	28.35	0.0001
YEAR*SPECIES	8	1.89407036	0.23675880	13.20	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
YEAR	2	0.12601669	0.06300835	3.51	0.0346
SPECIES	4	1.77492698	0.44373175	24.74	0.0001
YEAR*SPECIES	8	1.89407036	0.23675880	13.20	0.0001
General	Linear Models P	rocedure			
Tukey's	Studentized Rang	ge (HSD) Test for var	iable: Whitford WIT	HINSP (within spe	ecies synchrony
NOTE: 7	This test controls	the type I experiment	wise error rate.		
Alpha= (0.05 Confide	ence = 0.95 df = 79 M	SE = 0.010605		
		zed Range= 3.378			
Compari	sons significant a	at the 0.05 level are in	dicated by '***'.		
YEAR S	Simultaneous	Difference Sim	iltaneous		

Comparisons significant at the 0.05 level are indicated by				
YEAR	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
2-4	-0.02476	0.05758	0.13992	
2-3	-0.00826	0.07621	0.16068	

4-2	-0.13992	-0.05758	0.02476
4-3	-0.05910	0.01863	0.09636
3-2	-0.16068	-0.07621	0.00826
3-4	-0.09636	-0.01863	0.05910

Tukey's Studentized Range (HSD) Test for variable: Whitford WITHINSP (within species synchrony) NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 79 MSE= 0.010605 Critical Value of Studentized Range= 3.948

Comparisons significant at the 0.05 level are indicated by '***'.

SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
1	Confidence	Means	Confidence	
	Limit		Limit	
puri - kara	-0.10712	0.01436	0.13585	
puri - kohe	-0.11558	0.02052	0.15661	
puri - tara	0.01581	0.13591	0.25601	***
puri - tawa	0.25704	0.37588	0.49472	***
kara - puri	-0.13585	-0.01436	0.10712	
kara - kohe	-0.12706	0.00615	0.13936	
kara - tara	0.00472	0.12155	0.23837	***
kara - tawa	0.24599	0.36152	0.47704	***
kohe - puri	-0.15661	-0.02052	0.11558	
kohe - kara	-0.13936	-0.00615	0.12706	
kohe - tara	-0.01656	0.11539	0.24735	
kohe - tawa	0.22456	0.35536	0.48616	***
tara - puri	-0.25601	-0.13591	-0.01581	***
tara - kara	-0.23837	-0.12155	-0.00472	***
tara - kohe	-0.24735	-0.11539	0.01656	
tara - tawa	0.12590	0.23997	0.35404	***
tawa - puri	-0.49472	-0.37588	-0.25704	***
tawa - kara	-0.47704	-0.36152	-0.24599	***
tawa - kohe	-0.48616	-0.35536	-0.22456	***
tawa - tara	-0.35404	-0.23997	-0.12590	***

General Linear Models Procedure for Both sites

Both PROP

General Linear	Models Procedure			
Class Level Infe	ormation			
Class	Levels	Values		
SITE	2	wend whit		
SPECIES	6	kara kohe puri tara tawa tawp		
Number of observations in data set $= 891$				

Dependent Variable: both PROP (proportion of trees fruiting per visit)

•	· L	•	U1 /		
Source	DF	Sum of Squares	Mean Square	F Value	$\Pr > F$
Model	10	20.99364066	2.09936407	51.72	0.0001
Error	880	35.72224661	0.04059346		
Corrected Total	890	56.71588727			
	R-Square	C.V.	Root MSE	PROP Mean	
	0.370154	119.4922	0.20147819	0.16861205	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
SITE	1	0.72768242	0.72768242	17.93	0.0001
SPECIES	5	18.82825301	3.76565060	92.76	0.0001
SITE*SPECIES	4	1.43770523	0.35942631	8.85	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SITE	1	0.59211111	0.59211111	14.59	0.0001
SPECIES	5	18.82825301	3.76565060	92.76	0.0001
SITE*SPECIES	4	1.43770523	0.35942631	8.85	0.0001
G					
	l Linear Models Pro				64 6 •4•
-	's Studentized Ra	inge (HSD) Test f	or variable: PRO	P (proportion	of trees fruiting per
visit)					
		e type I experiment			
		II error rate than RE	EGWQ.		
Alpha=		MSE = 0.040593			
	Value of Studentize				
	Im Significant Diffe				
	ING: Cell sizes are nic Mean of cell size				
паппо	the mean of cen size	28= 441.0102			
Means	with the same letter	are not significantly	different		
Tukey Grouping		N N	SITE	ર	
A	0.19992	405	whit		
В	0.14252	486	wend	_	
	al Linear Models P		Well.		
		ge (HSD) Test for v	ariable: PROP (pr	oportion of trees	s fruiting ner visit)
		e type I experiment		oportion of thee	, in anothing point (inster)
Alpha=		ce = 0.95 df = 880 Ms			
	Value of Studentize				
		the 0.05 level are in	dicated by '***'.		
SPECIES	Simultaneous	Difference	Simultaneous		
Comparison	Lower	Between	Upper		
	Confidence	Means	Confidence		
	Limit		Limit		
puri - tara	0.22091	0.28484	0.34878	***	
puri - tawp	0.26099	0.33930	0.41761	***	
puri - tawa	0.31336	0.37730	0.44123	***	
puri - kohe	0.32516	0.38909	0.45303	***	
puri - kara	0.34656	0.41049	0.47443	***	
tara - puri	-0.34878	-0.28484	-0.22091	***	
tara - tawp	-0.02385	0.05446	0.13276	***	
tara - tawa	0.02852	0.09246	0.15639	***	
tara - kohe tara - kara	0.04032 0.06172	0.10425	0.16819 0.18959	***	
tawp - puri	-0.41761	0.12565 -0.33930	-0.26099	***	
tawp - pull tawp - tara	-0.13276	-0.05446	0.02385		
tawp - tawa	-0.04031	0.03800	0.11630		
tawp - kohe	-0.02851	0.04979	0.12810		
tawp - kara	-0.00711	0.07119	0.14950		
tawa - puri	-0.44123	-0.37730	-0.31336	***	
tawa - tara	-0.15639	-0.09246	-0.02852	***	
tawa - tawp	-0.11630	-0.03800	0.04031		
tawa - kohe	-0.05214	0.01180	0.07573		
tawa - kara	-0.03074	0.03320	0.09713		
kohe - puri	-0.45303	-0.38909	-0.32516	***	
kohe - tara	-0.16819	-0.10425	-0.04032	***	
kohe - tawp	-0.12810	-0.04979	0.02851		
kohe - tawa	-0.07573	-0.01180	0.05214		
kohe - kara	-0.04254	0.02140	0.08534		
kara - puri	-0.47443	-0.41049	-0.34656	***	
kara - tara	-0.18959	-0.12565	-0.06172	***	

	U.L.	M. for aspects of sy	nchrony analysis		p.16
SPECIES	Simultaneous	Difference	Simultaneous		
Comparison	Lower	Between	Upper		
1	Confidence	Means	Confidence		
	Limit		Limit		
ara - tawp	-0.14950	-0.07119	0.00711		
ara - tawp	-0.09713	-0.03320	0.03074		
ara - kohe	-0.08534	-0.03320	0.04254		
ara - Kone	-0.08554	-0.02140	0.04234		
Both DURATN					
	Linear Models Prod	cedure			
	el Information	7.1			
Class		Values			
SITE		vend whit			
SPECIES		ara kohe puri tara ta	wa tawp		
YEAR		234			
	of observations in o				
			n be used in this analy		
		N (Duration of frui in any particular ye	t phenology for all t ear)	rees in the popula	ation, includin
		Sum of	Mean		
Source	DF	Squares	Square F Value	Pr > F	
Aodel	32	4110.8492063	128.4640377	13.50	0.0001
Error	247	2350.9222222	9.5179037		
Corrected Total	279	6461.7714286			
	R-Square	C.V.	Root MSE	DURATN Mean	
	0.636180	80.58123	3.0851100	3.8285714	
ource	DF	Type I SS	Mean Square	e F Pr > F	
Jouree	DI	1 ype 1 55	Value		
SITE	1	57.0964280	57.0964286	6.00	0.0150
PECIES	5	3342.62950	047 668.5259009	70.24	0.0001
'EAR	2	70.7481789	9 35.3740894	3.72	0.0257
ITE*SPECIES	4	275.292308		7.23	0.0001
SITE*YEAR	2	47.1824542		2.48	0.0859
		254.647228		2.68	0.0040
PECIES*VEAR	10		23.707/220		0.5762
	10 VEAD 8		7 0066270	0.92	
SPECIES*YEAR SITE*SPECIES*Y		63.2531032	2 7.9066379	0.83	0.3702
SITE*SPECIES*Y			S Mean Square		0.3762
SITE*SPECIES*Y	YEAR 8 DF	63.2531032 Type III SS	S Mean Square Value	e F Pr > F	
ITE*SPECIES*N ource ITE	YEAR 8 DF 1	63.2531032 Type III SS 133.497700	5 Mean Square Value 67 133.4977067	e F Pr > F 14.03	0.0002
SITE*SPECIES*N Source SITE SPECIES	YEAR 8 DF 1 5	63.2531032 Type III SS 133.497700 3481.67443	5 Mean Square Value 67 133.4977067 808 696.3348962	e F Pr > F 14.03 2 73.16	0.0002 0.0001
SITE*SPECIES*Y Source SITE SPECIES ZEAR	YEAR 8 DF 1 5 2	63.2531032 Type III SS 133.497700 3481.67448 70.8971112	 Mean Square Value 133.4977067 808 696.3348962 35.4485556 	e F Pr > F 14.03 2 73.16 3.72	0.0002 0.0001 0.0255
SITE*SPECIES*S Source SITE SPECIES GEAR SITE*SPECIES	YEAR 8 DF 1 5 2 4	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.415992	 Mean Square Value 133.4977067 808 696.3348962 35.4485556 64.1039993 	e F Pr > F 14.03 2 73.16 3.72 6.74	0.0002 0.0001 0.0255 0.0001
SITE*SPECIES*Y Source SITE PECIES TEAR SITE*SPECIES SITE*YEAR	YEAR 8 DF 1 5 2 4 2	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415999 16.039964	Mean Square Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821	e F Pr > F 14.03 73.16 3.72 6.74 0.84	0.0002 0.0001 0.0255 0.0001 0.4318
SITE*SPECIES*Y Source SITE SPECIES ZEAR SITE*SPECIES SITE*YEAR SPECIES*YEAR	YEAR 8 DF 1 5 2 4 2 10	63.2531032 Type III SS 133.497700 3481.6744 70.8971112 256.415992 16.039964 255.840492	Mean Square Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SPECIES*YEAR SITE*SPECIES*Y	YEAR 8 DF 1 5 2 4 2 10 YEAR 8	63.2531032 Type III SS 133.497700 3481.67444 70.8971112 256.415992 16.039964 255.840492 63.2531032	Mean Square Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379	e F Pr > F 14.03 73.16 3.72 6.74 0.84	0.0002 0.0001 0.0255 0.0001 0.4318
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y SITE*SPECIES*Y	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.41599 16.039964 255.840492 63.2531032 est for variable:Both	Mean Square Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 a DURATN	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SPECIES*YEAR SITE*SPECIES*Y Sukey's Studentize NOTE: T	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw	S Mean Square Value 57 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
GUTE*SPECIES*Y Gource GITE SPECIES (EAR GITE*SPECIES GITE*YEAR GPECIES*YEAR GITE*SPECIES*Y Sukey's Studentize NOTE: T generally	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE	S Mean Square Value 57 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
GUTE*SPECIES*Y Gource GITE SPECIES (EAR GITE*SPECIES GITE*YEAR GPECIES*YEAR GITE*SPECIES*Y Sukey's Studentize NOTE: T generally	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE	S Mean Square Value 57 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE PECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y Sukey's Studentize NOTE: T generally Alpha= 0	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.41599 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904	S Mean Square Value 57 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y Sukey's Studentize NOTE: T generally Alpha= 0 Critical V	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type 2 .05 df= 247 MSE	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 d Range= 2.785	S Mean Square Value 57 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y Sukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimum	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type .05 df= 247 MSE Value of Studentize a Significant Differ	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 vd Range= 2.785 rence= 0.7338	S Mean Square Value Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES YEAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y Fukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimum WARNIN	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type 1 .05 df= 247 MSE Yalue of Studentize n Significant Differ VG: Cell sizes are p	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 ed Range= 2.785 rence= 0.7338 not equal.	S Mean Square Value Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
ITE*SPECIES*Y ource ITE PECIES 'EAR ITE*SPECIES ITE*YEAR PECIES*YEAR ITE*SPECIES*Y 'ukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimum WARNIN Harmonic	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type .05 df= 247 MSE Yalue of Studentized a Significant Differ NG: Cell sizes are to c Mean of cell size	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 ed Range= 2.785 rence= 0.7338 not equal.	S Mean Square 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but GWQ.	$\begin{array}{cccc} F & Pr > F \\ 14.03 \\ 73.16 \\ 3.72 \\ 6.74 \\ 0.84 \\ 2.69 \end{array}$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
ITE*SPECIES*Y ource ITE PECIES 'EAR ITE*SPECIES ITE*YEAR PECIES*YEAR ITE*SPECIES*Y 'ukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimum WARNIN Harmonic Means wi	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type 1 .05 df= 247 MSE Yalue of Studentize to Significant Differ VG: Cell sizes are to the mean of cell size to the mean of cell size to the mean of the same letter to the mean of cell size to the mean of the same letter to the same same same same same same same sam	63.2531032 Type III SS 133.497700 3481.67448 70.8971112 256.415992 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 d Range= 2.785 rence= 0.7338 not equal. s= 137.1429	S Mean Square 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but GWQ.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SPECIES*YEAR SITE*SPECIES*Y Cukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimurr WARNIN Harmonic Means wi	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type 7 .05 df= 247 MSE Value of Studentize to Significant Differ NG: Cell sizes are to c Mean of cell size with the same letter a Mean	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.415997 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 d Range= 2.785 rence= 0.7338 not equal. s= 137.1429 are not significantly	S Mean Square Value 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but GWQ.	 F Pr > F 14.03 73.16 3.72 6.74 0.84 2.69 0.83 	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038
SITE*SPECIES*Y Source SITE SPECIES (EAR SITE*SPECIES SITE*YEAR SPECIES*YEAR SITE*SPECIES*Y Fukey's Studentize NOTE: T generally Alpha= 0 Critical V Minimum WARNIN Harmonic	YEAR 8 DF 1 5 2 4 2 10 YEAR 8 ed Range (HSD) T his test controls th has a higher type 1 .05 df= 247 MSE Yalue of Studentize to Significant Differ VG: Cell sizes are to the mean of cell size to the mean of cell size to the mean of the same letter to the mean of the same letter to the the same same same same same same same sam	63.2531032 Type III SS 133.497700 3481.67443 70.8971112 256.41599 16.039964 255.840492 63.2531032 est for variable:Both e type I experimentw II error rate than RE = 9.517904 d Range= 2.785 rence= 0.7338 not equal. s= 137.1429 are not significantly	S Mean Square 67 133.4977067 808 696.3348962 2 35.4485556 72 64.1039993 1 8.0199821 34 25.5840493 2 7.9066379 1 DURATN vise error rate, but GWQ.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0002 0.0001 0.0255 0.0001 0.4318 0.0038

Tukey's Studentized Range (HSD) Test for variable:Both DURATN

NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 247 MSE= 9.517904 Critical Value of Studentized Range= 3.335 Comparisons significant at the 0.05 level are indicated by '***'.

YEAR	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
	Confidence	Means	Confidence	
	Limit		Limit	
2-4	-0.0273	1.0952	2.2177	
2-3	0.4489	1.5714	2.6939	***
4-2	-2.2177	-1.0952	0.0273	
4-3	-0.5278	0.4762	1.4802	
3-2	-2.6939	-1.5714	-0.4489	***
3-4	-1.4802	-0.4762	0.5278	

Tukey's Studentized Range (HSD) Test for variable: Both DURATN NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95df= 247 MSE= 9.517904 Critical Value of Studentized Range= 4.062 Comparisons significant at the 0.05 level are indicated by '***'.

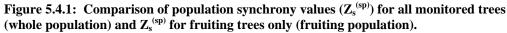
SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower	Between	Upper	
-	Confidence	Means	Confidence	
	Limit		Limit	
puri - tara	4.9411	6.7727	8.6044	***
puri - tawp	5.7747	7.8727	9.9708	***
puri - kohe	7.3999	9.2150	11.0301	***
puri - tawa	7.6692	9.4843	11.2994	***
puri - kara	8.5153	10.3304	12.1455	***
tara - puri	-8.6044	-6.7727	-4.9411	***
tara - tawp	-0.9464	1.1000	3.1464	
tara - kohe	0.6872	2.4423	4.1974	***
tara - tawa	0.9564	2.7115	4.4666	***
tara - kara	1.8026	3.5577	5.3128	***
tawp - puri	-9.9708	-7.8727	-5.7747	***
tawp - tara	-3.1464	-1.1000	0.9464	
tawp - kohe	-0.6893	1.3423	3.3739	
tawp - tawa	-0.4200	1.6115	3.6431	
tawp - kara	0.4261	2.4577	4.4893	***
kohe - puri	-11.0301	-9.2150	-7.3999	***
kohe - tara	-4.1974	-2.4423	-0.6872	***
kohe - tawp	-3.3739	-1.3423	0.6893	
kohe - tawa	-1.4686	0.2692	2.0070	
kohe - kara	-0.6224	1.1154	2.8532	
tawa - puri	-11.2994	-9.4843	-7.6692	***
tawa - tara	-4.4666	-2.7115	-0.9564	***
tawa - tawp	-3.6431	-1.6115	0.4200	
tawa - kohe	-2.0070	-0.2692	1.4686	
tawa - kara	-0.8917	0.8462	2.5840	
kara - puri	-12.1455	-10.3304	-8.5153	***
kara - tara	-5.3128	-3.5577	-1.8026	***
kara - tawp	-4.4893	-2.4577	-0.4261	***
kara - kohe	-2.8532	-1.1154	0.6224	
kara - tawa	-2.5840	-0.8462	0.8917	

Appendix 5.4 Synchrony of the fruiting population versus the whole population.

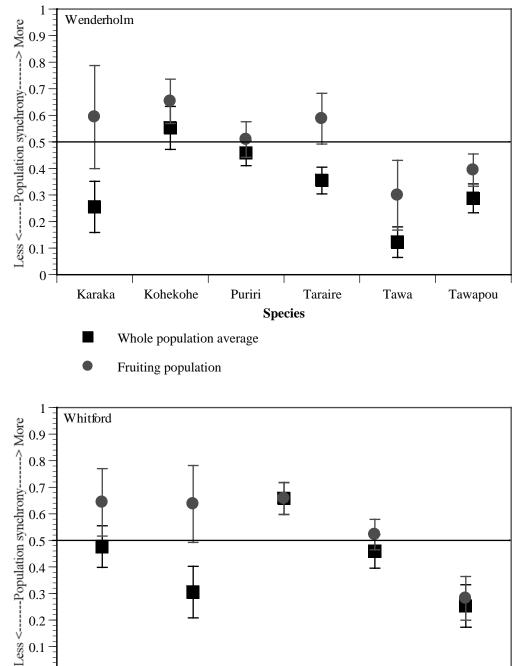
The term n_s , in equation 1a) in section 5.8.1 only included those trees that had one or more fruits during the sampling year. However, for most species not all trees fruited every year (Tables 5.3 and 5.6). For some species, in some years, up to 7 of the 10 trees did not fruit, thus the non-fruiting population can be a significant proportion of the population. This section illustrates that inclusion of non-fruiting individuals, which ultimately also contribute the amount or lack of fruit in any one year, has a significant negative effect on within species synchrony.

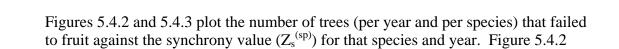
Population synchrony values ($Z_s^{(sp)}$)have been calculated in two ways;

- The first includes only those trees that had fruit in any particular year, as illustrated and discussed in Section 5.8.
- The other includes all individuals of species s, regardless of whether they had fruit that year.


All species at both sites (with the exception of puriri at Whitford Bush because all trees fruited every year) show a marked, and often significantly large, reduction in population synchrony upon the inclusion of non-fruiting trees. When the analysis only includes those trees that fruited in any particular year then karaka, kohekohe, puriri and taraire at Wenderholm Regional Park, and karaka, kohekohe, puriri and taraire at Whitford Bush have greater synchrony values ($Z_s^{(sp)}$) than the critical value ($C_s^{(sp)} = 0.5$) although not always significantly so ($Z_s^{(sp)} \pm 95\%$ confidence interval of the mean) (Figures 5.4.1, 5.4.2 and 5.4.3). Only kohekohe at Wenderholm and puriri at Whitford exceed, or come close to exceeding, the critical synchrony value when all trees are included in the calculations.

The synchrony values for tawa and tawapou also improve when only fruiting trees are considered but not sufficiently to exceed the critical value. The population synchrony values for those species with the greatest number of non-fruiting individuals (refer Tables 5.3 and 5.6) increased the most when non-fruiting trees were excluded.


The amount of fruit produced at a site, and hence the amount of fruit available for dispersal by kereru, in any one year depends not only on the numbers of fruits per tree but also on the number of trees with fruit. The large proportion of non-fruiting trees at a locality or per annum has implications for conservation management, especially with regards to tree density per site, patch size and patch isolation. If there are only a few trees of each species per site than this increases the chance that occasionally no fruit from that species are available at all, with subsequent impacts on native birds. Other studies have found that there are fewer birds in smaller forest patches (Ogle 1987; Willson *et al.* 1994), or that forest patch isolation affects bird species composition (Price *et al.* 1999). Perhaps inconsistent food availability was a contributing factor to the noted reduction of bird species. Further study for a range of species is required to determine what proportion of the trees fail to fruit per annum, whether this is a constant proportion or whether it can be predicted by climatic or environmental conditions.


0

Karaka

For the 'fruiting trees only population' n_s in equation 1a) only included those trees that fruited in that particular year (these were used to assess the synchrony for species in Table 5.3). The whole population included all trees, whether they had produced fruit that year or not. Error bars are $\pm 95\%$ confidence limits of the mean.

Puriri

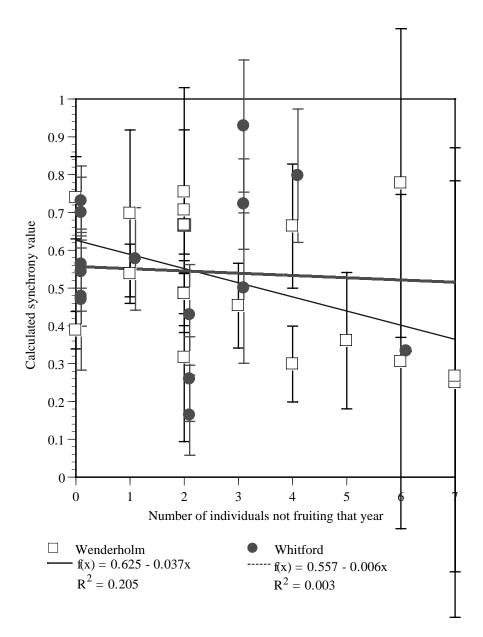
Species

Taraire

Tawa

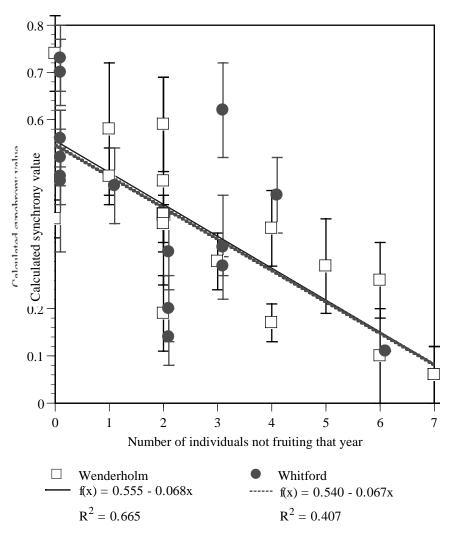
Kohekohe

Whole population average


Fruiting population

compares the fruiting population only; the 95% confidence interval becomes larger as fewer trees within a species have fruit due to smaller sample sizes. Figure 5.4.3 illustrates the entire fruiting population synchrony value versus the number of non-fruiting trees. The regression equation in Figure 5.4.3 can account for about 66% of the observed variance in synchrony values, at Wenderholm Regional Park. Whitford Bush has slightly more unexplained variance, only about 40% can be explained by the linear relationship between the synchrony value and the number of trees not fruiting. It is also noteworthy that the regression lines for Wenderholm Regional Park and Whitford Bush are remarkably similar for the whole population graphs.

The error bars for some species in some years in Figure 5.4.2 are considerable greater than for Figure 5.4.3 due to the small number of trees fruiting for that species during that year. This in part contributed to the lack of significant synchrony for some species as discussed in section 5.8.


Figure 5.4.2: Linear regression of number of trees failing to fruit plotted against synchrony values for fruiting population only.

For each site, each species is represented by three points on the graph, one for each year surveyed, plotted against the associated synchrony value (refer to Tables 5.3 and 5.6). Error bars are 95% confidence intervals for the mean.

Figure 5.4.3: Linear regression of number of trees failing to fruit plotted against synchrony values for entire population.

For each site, each species is represented by three points on the graph, one for each year surveyed, plotted against the associated synchrony value (refer to Tables 5.3 and 5.6). Error bars are 95% confidence intervals for the mean.

Site	weight	sex	maturity	Site	weight	sex	maturity
Robertson's	1400	f	juvenile	Loch Amber	1350	f	juvenile
Robertson's	1100	f	juvenile	Loch Amber	2100	f	juvenile
Robertson's	2250	f	mature	Loch Amber	1570	f	juvenile
Robertson's	2600	f	mature+joey	Loch Amber	1220	f	juvenile
Robertson's	2750	f	mature+joey	Loch Amber	2050	f	mature
Robertson's	1500	m	juvenile	Loch Amber	2350	f	mature
Robertson's	1500	m	juvenile	Loch Amber	2000	f	mature
Robertson's	2250	m	mature	Loch Amber	2300	f	mature
Robertson's	2100	m	mature	Loch Amber	2050	f	mature
Robertson's	2850	m	mature	Loch Amber	2400	f	mature
Remiger's	2000	f	juvenile	Loch Amber	2600	f	mature
Remiger's	1950	f	juvenile	Loch Amber	2600	f	mature
Remiger's	2700	f	mature+joey	Loch Amber	2350	f	mature
Remiger's	1850	m	juvenile	Loch Amber	2200	f	mature
Remiger's	1600	m	juvenile	Loch Amber	2300	f	mature
Remiger's	2300	m	mature	Loch Amber 2		f	mature
Remiger's	2250	m	mature	Loch Amber	1300	m	juvenile
Val's	2000	f	juvenile	Loch Amber	1250	m	juvenile
Val's	2200		juvenile	Loch Amber	1700	m	juvenile
Val's	1850	f	juvenile	Loch Amber	1000	m	juvenile
Val's	1800	f	juvenile	Loch Amber	1000	m	juvenile
Val's	2250	f	mature	Loch Amber	1950	m	juvenile
Val's	1500	f	mature	Loch Amber	1450	m	juvenile
Val's	2400	f	mature	Loch Amber	1300		juvenile
Val's	2000	f	mature	Loch Amber	1400	m	juvenile
Val's	2500	f	mature	Loch Amber	2600	m	mature
Val's	2200	f	mature	Loch Amber	3100	m	mature
Val's	1900	f	mature	Loch Amber	2700	m	mature
Val's	1300	f	mature	Loch Amber	2600	m	mature
Val's	2350		mature				•
Val's	2550	f	mature				
Val's	2150	f	mature				
Val's	2250	m	juvenile				
Val's	1950	m	juvenile				
Val's	2700	m	mature				
\$7.11.	2700	1		1			

2700 m

2700 m

2500 m

2700 m

2600 m

2050 m

2005 m

mature

mature

mature

mature

mature

mature

mature

Val's

Val's

Val's

Val's

Val's

Val's

Val's

Appendix 7.1 Weights and sex of possums caught during final two weeks of study..

Appendix 7.2 Syntax used to analyse various aspects of mammalian predator presence.

A. Number of droppings

proc sort data = work.droptime; by species site; run;

Site nested within pest suppression

proc glm data = work.droptime; class suppress site species ; model dropp = suppress site(suppress) /E1; random suppress / test; by species; means suppress / tukey; run;

Differences between sites

proc glm data = work.droptime; class suppress site species weekno ; model dropp = site weekno site*weekno; by species; means site / tukey; run; end;

Where	
Dropp	the number of traps containing droppings
Species	the type of dropping (e.g. possum, rodent, insect, weta, kereru)
Suppress	1 when the site had pest suppression and 2 when it didn't
Weekno	the number of the sampling period
Site the name	e of the site
	Since the independent variable 'suppress' was defined as random (see below) it was necessary to specify whether the test should be more conservative with regards to Type I or Type II statistical error. E1 specifies that the model produces the Type I sum of squares (SAS Institute Inc. 1990b) and thus the null hypothesis is more likely to be retained unless there are indeed significant differences between the tested variables. (Type I error <i>rejects</i> the null hypothesis when it is true, while a Type II error <i>accepts</i> the null hypothesis when it is false (Rowntree 1991)).
	s set as a random variable since it is theoretically possible to choose different sites with the same, or similar, levels of pest suppression. The level of suppression was not necessarily determined by the site, applied in a predetermined way or fixed to a specific value.

Site, where used, was nested in suppress(ion) since the site was chosen within different levels of pest suppression.

B. Predation, consumption and production of fruit

Analysis by paired sites (e.g. Wenderholm versus Loch Amber) for each category (type of predation, consumption, or total numbers of fruit or total numbers predated).

proc sort data =work.predall; by pair pest; run;

proc glm data = work.predall; class suppress site species pest pair; model result = suppress species species*suppress; by pair pest; means suppress species / tukey; run;

Suppress	Site has possum suppression $= 1$, without possum suppression $= 2$.
Site	Abbreviation of site name
Species	Abbreviation of plant species name
Pest	Category of predation (possum, rodent, insect, unknown), consumption, total immature,
	total fruit, total predated fruit.

Appendix 7.3 SAS output for pest species droppings.

SAS syntax as per Appendix 7.2

----- SPECIES=possum -----

Possum droppings analysis - Site nested within suppression

Class Level Inf	ormation						
	Levels Value	es					
SUPPRESS	2 1 2						
SITE		remi robi vals	wend	whit			
SPECIES .	1 possi						
		ons in by group	= 198	3			
Type I Estimabl Effect	e Functions.	for: SUPPRESS Coefficients					
INTERCEPT	0						
SUPPRESS	1	L2					
	2	-L2					
SITE(SUPPRESS)	remi l	0.3333*L2					
	wend 1	0.3333*L2					
	whit 1	0.3333*L2					
	loch 2	-0.3333*L2					
	robi 2	-0.3333*L2					
	vals 2	-0.3333*L2					
	e Functions.	for: SITE(SUPPRI	ESS)				
Effect		Coefficients					
INTERCEPT	0	_					
SUPPRESS	1	0					
	2	0					
SITE(SUPPRESS)	remi 1	L4					
	wend 1	L5					
	whit 1	-L4-L5					
	loch 2 robi 2	L7					
	vals 2	L8 -L7-L8					
	Vais 2	-11/-110					
Dependent Varia	ble: DROPPIN	GS POSSUM					
Source	DF	Sum of	Mear	n Square	F Va	alue	Pr > F
		Squares		-			
Model	5	1377.47979798	275	.49595960	50.0)9	0.0001
Error	192	1056.06060606	5.50	031566			
Corrected Total	. 197	2433.54040404					
	R-Square	C.V.	Root	: MSE	DROI	PP Mean	
	0.566039	57.39981	2.34	4527518	4.08	8585859	
G	22	T		G		1	D
Source	DF	Type I SS		1 Square	F Va		Pr > F
SUPPRESS	1	488.48989899	488. 9	4898989	88.8	1	0.0001
SITE(SUPPRESS)	4	888.98989899		2474747	40.4	1	0.0001
5112(50111255)	-	000190909099	5		10.1	-	0.0001
Source	Type I Ex	pected Mean Squa	are				
SUPPRESS	Var(Error) + 99 Var(SUPPH	RESS)	+ Q(SITE(SUPPF	RESS))	
SITE(SUPPRESS)	Var(Error) + Q(SITE(SUPPE	RESS))			
		ed Model Analys:	ls of	Variance			
Dependent Varia		GS POSSUM					
Source: SUPPRES Error: MS(Error							
Error. MS(Error	Denominator	Deneminator					
			DE	MO			
	DF 1	Type I MS 488.48989899	DF 10	MS	cr c c	F Value	
	1	400.40909099	19 2	5.5003150	0000	88.8112	2 0.0001
			4				
Source: SITE(SU	IPPRESS)						
Error: MS(Error							
	Denominator	Denominator					
	DF	Type I MS	DF	MS		F Value	e Pr > F
	4	222.24747475	19	5.500315	6566	40.4063	8 0.0001
			2				

Tukey's Studentized Range (HSD) Test for variable: DROPPINGS POSSUM NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 192 MSE= 5.500316 Critical Value of Studentized Range= 2.789 Minimum Significant Difference= 0.6575 Means with the same letter are not significantly different.

Tukey Grouping	Mean	N	SUPPRESS
A	5.6566	99	2
В	2.5152	99	1

Possum droppings analysis - Differences between sites

General Linear Models Procedure Class Level Information					
Class	Levels	Values			
SUPPRESS	2	1 2			
SITE	б	loch remi robi vals wend whit			
SPECIES	1	possum			
WEEKNO	26	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26			
Number of observations in by group = 198					

General Linear Models Procedure

Dependent Variable: DROPPINGS POSSUM						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model Error Corrected Total	155 42 197	2131.04040404 302.5000000 2433.54040404	13.74864777 7.20238095	1.91	0.0080	
	R-Square 0.875696	C.V. 65.68326	Root MSE 2.68372520	DROPP Mean 4.08585859		
Source SITE WEEKNO SITE*WEEKNO	DF 5 25 125	Type I SS 1377.47979798 196.79040404 556.77020202	Mean Square 275.49595960 7.87161616 4.45416162	F Value 38.25 1.09 0.62	Pr > F 0.0001 0.3905 0.9779	
Source SITE WEEKNO SITE*WEEKNO	DF 5 25 125	Type III SS 1320.30555556 196.79040404 556.77020202	Mean Square 264.06111111 7.87161616 4.45416162	F Value 36.66 1.09 0.62	Pr > F 0.0001 0.3905 0.9779	

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 42 MSE= 7.202381 Critical Value of Studentized Range= 4.222 Minimum Significant Difference= 1.9723

Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE 7.5455 33 А vals А 6.0303 33 remi А 5.8485 33 loch 3.5758 В robi 33 С 1.2424 33 whit С 0.2727 33 wend

		SPECI	ES=rat			
Rat droppings a	nalvsis - Site					
	evel Informat	-	ppressiv	on		
Class		s Values				
SUPPRES		1 2				
SITE	6	loch remi ro	bi vals	wend whi	t	
SPECIES	1 f obcorrection	rat ons in by group	- 100			
		nctions for: SUE				
Effect		Coefficients	11200			
INTERCEPT	0					
SUPPRESS	1	L2				
	2	-L2				
SITE(SUPPRESS)	remi i wend 1	0.3333*L2 0.3333*L2				
		0.3333*L2				
	loch 2	-0.3333*L2				
	robi 2	-0.3333*L2				
	vals 2	-0.3333*L2				
Time T I	atimable Fur	nctions for: SII	יה (פוזס חי	RESSI		
Effect	Sermante ful	Coefficients				
INTERCEPT	0					
SUPPRESS	1	0				
0.1mp / 0.1mp = = = = :	2	0				
SITE(SUPPRESS)	remi 1 wend 1	L4 15				
	wend 1 whit 1	L5 -L4-L5				
	loch 2	L7				
	robi 2	L8				
	vals 2	-L7-L8				
Dependent Varia	hle. DRODDIM	מפ האיד				
Source	DIE: DROPPIN DF	Sum of	Mean	Square	F Value	Pr > F
		Squares		1		
Model	5	121.31313131	24.26	262626	31.46	0.0001
Error	192	148.06060606	0.771	14899		
Corrected Total	197 R-Square	269.37373737	Root	MGE	DROPP Mea	n
		184.9722		15089	0.4747474	
Source	DF	Type I SS		Square	F Value	Pr > F
SUPPRESS SITE(SUPPRESS)	1 4	32.32323232 88.98989899		323232 747475	41.92 28.85	0.0001 0.0001
5112(55111255)	-				20.00	0.0001
Source		pected Mean Squ				
SUPPRESS) + 99 Var(SUPP)		Q(SITE(S	UPPRESS))	
SITE(SUPPRESS)	Var(Error) + Q(SITE(SUPP)	RESS))			
Tests of Dependent Varia		for Mixed Model GS RAT	Analy	sis of Va	riance	
	~					
Source: SUPPRES Error: MS(Error						
TTTOL . MO(EITOL		Denominator				
	DF	Type I MS	DF	MS	F Va	lue Pr > F
	1	32.323232323				
Source: SITE(SU Error: MS(Error						
		Denominator				
	DF	Type I MS	DF	MS		lue Pr > F
	4	22.247474747	192	0.771148	9899 28.8	498 0.0001
NOTE: Th general: Alpha= (Critica: Minimum	his test cont ly has a high).05 df= 1 l Value of St Significant	Range (HSD) Tes crols the type I her type II error 92 MSE= 0.77114 udentized Range Difference= 0.2 letter are not	exper: or rate 9 e= 2.78 2462	imentwise than REG 9	error rate NQ.	e, but
Tulana di '	M					
Tukey Grouping	Mean 0 8788	N SUPPRE 99 1	SS			
A B	0.8788 0.0707	99 I 99 2				

Rat droppings analysis - Differences between sites

		els Procedure			
	Level Inform				
Class	Levels Val	les			
SUPPRESS	2 1 2				
SITE		n remi robi vals	wend whit		
SPECIES	1 rat		0 11 10 10 14 1	- 16 18 10 14	
WEEKNO Number		34567891 ions in by group		.5 16 17 18 19	9 20 21 22 23 24 25 26
Conorra	l Tincon Mod	els Procedure			
Dependent Vari		ers Procedure			
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares	-		
Model	155	248.87373737	1.60563702	3.29	0.0001
Error	42	20.5000000	0.48809524		
Corrected	197	269.37373737			
Total					
	R-Square	C.V.	Root MSE	DROPP Mean	
	0.923898	147.1599	0.69863813	0.47474747	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SITE	5	121.31313131	24.26262626	49.71	0.0001
WEEKNO	25	26.95707071	1.07828283	2.21	0.0113
SITE*WEEKNO	125	100.60353535	0.80482828	1.65	0.0322
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SITE	5	136.95000000	27.39000000	56.12	0.0001
WEEKNO	25	26.95707071	1.07828283	2.21	0.0113
SITE*WEEKNO	125	100.60353535	0.80482828	1.65	0.0322
General	l Linear Mod	els Procedure			
Tukey':	s Studentize	d Range (HSD) Te	est for variable	: DROPP	
NOTE: 7	This test co	ntrols the type	I experimentwis	e error rate	, but
		gher type II err		GWQ.	
-		42 MSE= 0.4880			
		Studentized Rang	•		
Minimur	n Significan	t Difference= 0.	5134		
		e letter are not	significantly	different.	
Tukey Grouping		N SIT			
A	2.2121	33 rem			
В	0.3333	33 wer			
В	0.0909	33 rok			
B	0.0909	33 whi			
В	0.0606	33 loc			
В	0.0606	33 val	LS		
		SPECIE	S=rodent		
		010010			
Rodent droppir	nos analysis -	Site nested with	in suppression		

Rodent droppings analysis - Site nested within suppression

Class Level Information Class Levels Values 1 2 loch remi robi vals wend whit SUPPRESS 2 SITE 6 1 SPECIES rodent Number of observations in by group = 198 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS L2 1 2 -L2 SITE(SUPPRESS) remi 1 0.3333*L2 wend 1 0.3333*L2 whit 1 0.3333*L2 -o.3333*L2 robi 2 -0.3333*L2 vals 2 -0.333*L2

Type I Effect INTERCEPT	Estimable Fr	unctions for: S Coefficients	ITE(SUPPRESS)			
SUPPRESS	1 2	0 0				
SITE(SUPPRESS)		L4 L5 -L4-L5 L7 L8 -L7-L8				
Dependent Varia Source	able: DROPPI DF	NGS RODENTS Sum of	Mean Square	F Value	Pr >	> F
		Squares	_			
Model Error Corrected Total	5 192 197	294.58585859 481.45454545 776.04040404	58.91717172 2.50757576	23.50	0.00	001
	R-Square 0.379601		Root MSE 1.58353268	DROPP Mea 1.8585858		
Source	DF	Type I SS	Mean Square			> F
SUPPRESS SITE(SUPPRESS)	1 4	0.32323232 294.26262626	0.32323232 73.56565657			7200)001
Source SUPPRESS SITE(SUPPRESS)	Var(Error)	pected Mean Squ) + 99 Var(SUPP) + Q(SITE(SUPP)	RESS) + Q(SIT	E(SUPPRESS))	
Tests o Dependent Varia		s for Mixed Mod NGS RODENTS	el Analysis o	f Variance		
Source: SUPPRES Error: MS(Error						
EIIOI: MS(EIIOI	Denominator	Denominator			_	
	DF 1	Type I MS 0.32323232323			Value .1289	Pr > F 0.7200
Source: SITE(SU Error: MS(Error						
	Denominator DF 4	Denominator Type I MS 73.565656566	DF MS 192 2.507		Value 9.3374	Pr > F 0.0001
NOTE: T general Alpha= Critica Minimum	his test con ly has a hig 0.05 df= l Value of s Significan	d Range (HSD) T ntrols the type gher type II er 192 MSE= 2.5079 Studentized Ran t Difference= 0 e letter are no	I experiment ror rate than 576 ge= 2.789 .4439	wise error REGWQ.	rate, ł	out
Tukey Grouping A	Mean 1.8990	N SUPPRI 99 1	ESS			
A A						

Rodent droppings analysis - Differences between sites

Genera	l Linear	Models Procedure
Class 1	Level In	formation
Class	Levels	Values
SUPPRESS	2	1 2
SITE	6	loch remi robi vals wend whit
SPECIES	1	rodent
WEEKNO	26	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number	of obse	rvations in by group = 198

General Linear Models Procedure

Genera	ar hrinear Mo	dels Procedure			
Dependent Var	iable: DROPI	PINGS RODENTS			
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares			
Model	155	661.04040404	4.26477680	1.56	0.0473
Error	42	115.00000000	2.73809524		
Corrected	197	776.04040404			
Total					
	R-Square	C.V.	Root MSE	DROPP Mean	
	0.851812	89.03108	1.65471908	1.85858586	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SITE	5	294.58585859	58.91717172	21.52	0.0001
WEEKNO	25	82.20707071	3.28828283	1.20	0.2937
SITE*WEEKNO	125	284.24747475	2.27397980	0.83	0.7843
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SITE	5	310.30370370	62.06074074	22.67	0.0001
WEEKNO	25	82.20707071	3.28828283	1.20	0.2937
SITE*WEEKNO	125	284.24747475	2.27397980	0.83	0.7843

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 42 MSE= 2.738095 Critical Value of Studentized Range= 4.222 Minimum Significant Difference= 1.2161

	Means	with the	same	letter	are	not	significantly	different.
Tukey		Mean			Ν		SITE	
Groupi	ng							
A		4.1818	:		33		remi	
В		2.4545	i		33		robi	
C B		1.7576	;		33		loch	
C B	D	1.2424			33		vals	
С	D	1.1818			33		wend	
	D	0.3333			33		whit	

Appendix 7.4 SAS output; predation and consumption of fruits between site pairs.

SAS syntax as per Appendix 7.2

Suppress Site	Site has possum suppression = 1, without possum suppression = 2. Abbreviation of site name
Species	Abbreviation of plant species name
Pest	Category of predation (possum, rodent, insect, unknown), consumption, total
	immature, total fruit, total predated fruit.
Pair	Values assigned to each experimental pair of sites,
	1 = Wenderholm & Loch Amber,
	2 = Whitford & Robertson's, and
	3 = Remiger's & Val's.
	PAIR=1 PEST=mattot

Wenderholm and Loch Amber -number of mature fruits

(including predated and consumed fruits)

General Linear Models Procedure Class Level Information Levels Values Class SUPPRESS 2 1 2 SITE 2 loch wend SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 mattot PAIR 1 1 Number of observations in by group = 1060

General Linear Models Procedure

Dependent Variable: RESULT = total number of mature fruits (including predated and consumed fruits)

IIUIUS/					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	19	160026.27452830	8422.43550149	6.11	0.0001
Error	1040	1434148.67924528	1378.98911466		
Corrected Total	1059	1594174.95377359			
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.100382	502.2691	37.13474269	7.39339623	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	16114.80094340	16114.80094340	11.69	0.0007
SPECIES	9	79820.96320755	8868.99591195	6.43	0.0001
SUPPRESS*SPECIES	9	64090.51037736	7121.16781971	5.16	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	16114.80094340	16114.80094340	11.69	0.0007
SPECIES	9	79820.96320755	8868.99591195	6.43	0.0001
SUPPRESS*SPECIES	9	64090.51037736	7121.16781971	5.16	0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1378.989 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 4.4762

Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS A 11.292 530 1 B 3.494 530 2 General Linear Models Procedure Tukey's Studentized Parge (MSD) Test for variable: PESULT

Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1378.989 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 16.173

	Means with	n the same	letter are not	significantly	different.
Tukey	Grouping	Mean	N	SPECIES	
	A	28.491	106	kahi	
В	A	14.821	106	puri	
В	A	14.123	106	nika	
В		5.321	106	kara	
В		5.057	106	kohe	
В		2.755	106	rewa	
В		2.660	106	tara	
В		0.509	106	tawa	
В		0.170	106	supl	
В		0.028	106	pige	
			PAIR=1 PE	ST=immtot	

Wenderholm and Loch Amber –number of immature fruits

(including predated immature fruits)

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE 2 loch wend SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 immtot PAIR 1 1 Number of observations in by group = 1060

General Linear Models Procedure Dependent Variable: RESULT =total number of immature fruits (including predated immature fruits) Source DF Sum of Squares Mean Square F Value Pr > F Model 19 19454.69433962 1023.93128103 0.0001 10.22 1040 104205.16981132 100.19727866 Error 123659.86415094 Corrected Total 1059 R-Square C.V. Root MSE **RESULT Mean** 0.157324 332.4076 10.00985907 3.01132075 F Value DF Mean Square Source Type I SS Pr > F346.44905660 0.0632 SUPPRESS 1 346.44905660 3.46 SPECIES 9 13217.48679245 1468.60964361 14.66 0.0001 SUPPRESS*SPECIES 9 5890.75849057 654.52872117 0.0001 6.53 Mean Square F Value Source DF Type III SS Pr > FSUPPRESS 1 346.44905660 346.44905660 3.46 0.0632 SPECIES 9 13217.48679245 1468.60964361 14.66 0.0001 SUPPRESS*SPECIES 9 5890.75849057 654.52872117 6.53 0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 100.1973 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 1.2066

	Means	with	the	same	letter	are	not	significantly	different.
Tukey	Groupin	g	Mear	ı	N		SUPI	PRESS	
A			3.58	330	530		2		
А			2.43	396	530		1		

Tuke NOTE gene Alph Crit	General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 100.1973 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 4.3595							
Moor	a with the same	lottom	n and not gignifigantly different					
		N N	r are not significantly different. SPECIES					
Tukey Group	2							
A	12.340							
В	4.745							
C B	3.934	106	kahi					
C B	3.783	106	nika					
C B	2.623	106	kara					
C B	1.887	106	puri					
C B	0.547	106	kohe					
С	0.255	106	tawa					
C	0.000		pige					
C	0.000	106	supl					
0	0.000	100	2457					
		P	PAIR=1 PEST=predno					

Wenderholm and Loch Amber -number of predated fruits

(mature, immature and any type of predation)

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 loch wend SITE 2 SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 predno 1 PAIR 1 Number of observations in by group = 1060

General Linear Models Procedure Dependent Variable: RESULT = total number of predated fruits (mature, immature and any type of predation)

Source Model Error Corrected Total	DF 19 1040 1059	Sum of Squares 7863.04150943 60077.20754717 67940.24905660	Mean Square 413.84428997 57.76654572	F Value 7.16	Pr > F 0.0001
	R-Square 0.115735	C.V. 524.5089	Root MSE 7.60043063	RESULT Mean 1.44905660	
Source SUPPRESS SPECIES	DF 1 9	Type I SS 891.30566038 3656.34339623	Mean Square 891.30566038 406.26037736	F Value 15.43 7.03	Pr > F 0.0001 0.0001
SUPPRESS*SPECIES	9 DF	3315.39245283 Type III SS	368.37693920 Mean Square	6.38 F Value	0.0001 Pr > F
SUPPRESS SPECIES	1 9	891.30566038 3656.34339623	891.30566038 406.26037736	15.43 7.03	0.0001 0.0001
SUPPRESS*SPECIES	9	3315.39245283	368.37693920	6.38	0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 57.76655 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 0.9162

	Means with	the same	letter are	not	significantly different.
Tukey	Grouping	Mean	N		SUPPRESS
A		2.3660	530		2
В		0.5321	530		1
2		0.3321	550		±

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 57.76655 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 3.3101

Tukey		Mean	N	SPECIES
Grouping				
A		6.028	106	rewa
В	A	2.925	106	tara
В		2.283	106	nika
В		2.179	106	kara
В		0.755	106	puri
В		0.255	106	tawa
В		0.047	106	kohe
В		0.009	106	kahi
В		0.009	106	supl
В		0.000	106	pige

Means with the same letter are not significantly different.

----- PAIR=1 PEST=unpred -----

Wenderholm and Loch Amber -number of unpredated fruits

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 2 loch wend kahi kara kohe nika pige puri rewa supl tara tawa SPECIES 10 PEST 1 unpred PAIR 1 1 Number of observations in by group = 1060

General Linear Models Procedure

Dependent Variable: RESULT = number of unpredated fruits						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	19	207031.90188679	10896.41588878	6.96	0.0001	
Error	1040	1628247.28301887	1565.62238752			
Corrected Total	1059	1835279.18490566				
	R-Square	C.V.	Root MSE	RESULT Mean		
	0.112807	380.3230	39.56794647	10.40377358		
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
SUPPRESS	1	11742.24905660	11742.24905660	7.50	0.0063	
SPECIES	9	100178.48679245	11130.94297694	7.11	0.0001	
SUPPRESS*SPECIES	9	95111.16603774	10567.90733753	6.75	0.0001	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
SUPPRESS	1	11742.24905660	11742.24905660	7.50	0.0063	
SPECIES	9	100178.48679245	11130.94297694	7.11	0.0001	
SUPPRESS*SPECIES	9	95111.16603774	10567.90733753	6.75	0.0001	

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1565.622 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 4.7695

Means with	the same	letter are n	not significantly different.
Tukey Grouping	Mean	N	SUPPRESS
A	13.732	530	1
В	7.075	530	2

11			1		A				
Gene	eral Li	near Mode.	ls Procedure						
Tukey's Studentized Range (HSD) Test for variable: RESULT									
NOTE: This test controls the type I experimentwise error rate, but									
	generally has a higher type II error rate than REGWQ.								
Alph	na= 0.0	5 df= 1	1040 MSE= 15	65.622					
Crit	ical V	alue of St	tudentized Range=	4.484					
			Difference= 17.23						
		-							
Mean	ns with	the same	letter are not si	gnificantly diffe	rent.				
Tukey Group	ing	Mean	N	SPECIES					
A		32.425	106	kahi					
в А		17.906		nika					
	-								
B A	С	16.708	106	puri					
В	С	15.000	106	tara					
В	С	7.943	106	kara					
В		7.500		rewa					
В	С	5.604	106	kohe					
В	С	0.764	106	tawa					
	С	0.160	106	supl					
		0.028		-					
	C	0.020	106	pige					
			PAIR=1 PEST	=consno					
Wenderholn	n and I	och Ambe	er –number of const	umed fruits					
vi endernom			indifficer of cons	unica frants					
Gene	eral Li	near Mode	ls Procedure						
		1 Informat							
Clas	s	Leve.	ls Values						
SUPF	RESS	2	1 2						
SITE		2	loch wend						
				niko nigo numi mo	wa gunl tawa t				
	CIES	10	Kalli Kala Kolle	nika pige puri re	ewa supi tara t	.dwd			
PEST	-	1	consno						
PAIR	2	1	1						
Numb	per of	observatio	ons in by group =	1060					
1101110		022011401	Sing in 27 group	1000					
				_					
Dependent Va	ariable	e: RESULT	=Number of fruits	consumed					
Source		DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model		19	123855 67547170	6518.71976167	6.43	0.0001			
					0.15	0.0001			
Error		1040	1054889.58490566						
Corrected To	otal	1059	1178745.26037736						
		R-Square	C.V.	Root MSE	RESULT Mean				
		-	633.6194						
		0.1050/4	033.0194	31.04034232	5.02641509				
Source		DF	Type I SS	Mean Square	F Value	Pr > F			
SUPPRESS		1	15291.20377358	15291.20377358		0.0001			
SPECIES		9	61511.37358491	6834.59706499		0.0001			
SUPPRESS*SP	ECIES	9	47053.09811321	5228.12201258	5.15	0.0001			
Sourco		DF	TYPE TTT CC	Mean Square	F Value	Dr > 17			
Source		DF	Type III SS			Pr > F			
SUPPRESS		1	15291.20377358	15291.20377358	15.08	0.0001			
SPECIES		9	61511.37358491	6834.59706499	6.74	0.0001			
SUPPRESS*SP	FOIRS	9	47053.09811321	5228.12201258	5.15	0.0001			
SOFFICEDS SF	ECTED	2	47055.09011521	5220.12201250	5.15	0.0001			
Gene	eral Li	near Model	ls Procedure						
Tuke	v's St	udent i zed	Range (HSD) Test	for variable: RES	TTT.TT				
				experimentwise err	or rate, but				
gene	erally	has a higl	her type II error	rate than REGWQ.					
Alph	na= 0.0	5 df= 1	1040 MSE= 10	14.317					
-			tudentized Range=						
			-						
Mini	.mum Si	gnificant	Difference= 3.839)					
Mean	ng with	the same	letter are not si	gnificantly diffe	rent				
Tukey Group	тид	Mean	N SUPPRESS	>					
A		8.825	530 1						
В		1.228	530 2						

	General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1014.317 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 13.87						
	Means	with the same	letter are not a	significantly different.			
Tukey	means	Mean	N	SPECIES			
Groupi	nq						
-	-	24.868	106	kahi			
В	A	12.274	106	nika			
В		6.604	106	puri			
В		4.226	106	kohe			
В		1.453	106	tara			
В		0.500	106	kara			
В		0.217	106	tawa			
В		0.094	106	supl			
В		0.028	106	pige			
В		0.000	106	rewa			
	PAIR=1 PEST=inspre						

Wenderholm and Loch Amber -number of insect predated fruits

(fruits could be mature or immature)

Class Class SUPPRE SITE SPECIE PEST PAIR	255 2 255 10 1 1	ion s Values 1 2 loch wend	e nika pige pur = 1060	i rewa supl ta	ra tawa
Genera	l Linear Model	s Procedure			
Dependent Var	iable: RESULT :	=number of insec	t predated frui	ts (fruits cou	ld be mature or
immature)					
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares			
Model	19	631.96603774		6.37	0.0001
Error Corrected Tot	1040 al 1059	5433.69811321 6065.66415094	5.22470972		
corrected for	R-Square		Root MSE	RESULT Mean	
	0.104187		2.28576239	0.28867925	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	29.22264151	29.22264151	5.59	0.0182
SPECIES	9	330.15471698			0.0001
SUPPRESS*SPEC	IES 9	272.58867925	30.28763103	5.80	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	29.22264151	29.22264151	5.59	0.0182
SPECIES	9	330.15471698	36.68385744	7.02	0.0001
SUPPRESS*SPEC		272.58867925	30.28763103	5.80	0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 5.22471 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 0.2755

	Means	with	the	same	letter	are	not	significantly	different.
Tukey	Groupin	g	Mear	ı	N		SU	JPPRESS	
A			0.45	547	530		2		
В			0.12	226	530		1		

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 5.22471 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 0.9955							
Means with t	he same letter ar	re not significantl	y different.				
Tukey Grouping M	lean	Ν	SPECIES				
A 1	L.9057	106	rewa				
в 0).5000	106	nika				
в 0	0.1604	106	kara				
в 0).1415	106	kahi				
в 0).1415	106	tara				
в 0	0.0189	106	puri				
в 0	0.0189	106	tawa				
в 0	0.0000	106	kohe				
в 0	0.0000	106	pige				
в 0	0.0000	106	supl				
	PAI	R=1 PEST=posspr					

Wenderholm and Loch Amber -number of possum predated fruits

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE 2 loch wend SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 posspr PAIR 1 1 Number of observations in by group = 1060

General Linear Models Procedure								
Dependent Variabl	Dependent Variable: RESULT = number of fruits predated by possums							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	19	3087.87169811	162.51956306	6.18	0.0001			
Error	1040	27359.47169811	26.30718433					
Corrected Total	1059	30447.34339623						
	R-Square	C.V.	Root MSE	RESULT Mean				
	0.101417	711.6225	5.12905297	0.72075472				
Source	DF	Type I SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	386.41509434	386.41509434	14.69	0.0001			
SPECIES	9	1350.49433962	150.05492662	5.70	0.0001			
SUPPRESS*SPECIES	9	1350.96226415	150.10691824	5.71	0.0001			
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	386.41509434	386.41509434	14.69	0.0001			
SPECIES	9	1350.49433962	150.05492662	5.70	0.0001			
SUPPRESS*SPECIES	9	1350.96226415	150.10691824	5.71	0.0001			

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 26.30718 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 0.6183

	Means with	the same	letter are no	t significantly dif	ferent.
Tukey	Grouping	Mean	N	SUPPRESS	
A		1.3245	530	2	
В		0.1170	530	1	

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 26.30718 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 2.2338							
	Means wit	th the same let	er are not sign	ificantly different.			
Tukey	Grouping	Mean	N	SPECIES			
	A	3.5566	106	rewa			
В	A	2.0000	106	tara			
В		1.0849	106	kara			
В		0.2736	106	puri			
В		0.1604	106	tawa			
В		0.0849	106	kohe			
В		0.0283	106	kahi			
В		0.0189	106	nika			
В		0.0000	106	pige			
В		0.0000	106	supl			
				-			
PAIR=1 PEST=rodtpr							

Wenderholm and Loch Amber -number of fruits predated by rodents

 General Linear Models Procedure

 Class Level Information

 Class Levels Values

 SUPPRESS
 2

 SITE
 2

 IC
 kani kara kohe nika pige puri rewa supl tara tawa

 PEST
 1

 PAIR
 1

 Number of observations in by group = 1060

 General Linear Models Procedure

 Dependent Variable: RESULT = number of fruits predated by rodents

 Source
 DF

 Sum of
 Mean Square

 F Value
 Pr > F

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error	19 1040	301.09056604 1854.86792453	15.84687190 1.78352685	8.89	0.0001
Corrected Total	1059	2155.95849057			
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.139655	468.7473	1.33548750	0.28490566	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	9.43396226	9.43396226	5.29	0.0217
SPECIES	9	162.75094340	18.08343816	10.14	0.0001
SUPPRESS*SPECIES	9	128.90566038	14.32285115	8.03	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	9.43396226	9.43396226	5.29	0.0217
SPECIES	9	162.75094340	18.08343816	10.14	0.0001
SUPPRESS*SPECIES	9	128.90566038	14.32285115	8.03	0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1.783527 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 0.161

Means with the same letter are not significantly different.Tukey GroupingMeanNSUPPRESSA0.379255302B0.190575301

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 1.783527 Critical Value of Studentized Range= 4.484 Minimum Significant Difference= 0.5816							
Means with the same letter are not significantly different.							
Tukey Grouping Mean N SPECIES							
A 1.3585 106 nika							
B 0.4717 106 kara							
B 0.3962 106 rewa							
B 0.2547 106 tara							
B 0.2264 106 kahi							
B 0.0472 106 tawa							
B 0.0472 106 kohe							
B 0.0377 106 puri							
B 0.0094 106 supl							
B 0.0000 106 pige							
PAIR=1 PEST=unknpr							

Wenderholm and Loch Amber -number of fruits predated by unknown agents

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 2 loch wend SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 unknpr PAIR 1 1 Number of observations in by group = 1060

General Linear Models Procedure Dependent Variable: RESULT =number of fruits predated by unknown agents Source DF Sum of Mean Square F Value Pr > FSquares 19 1.19980139 0.0036 Model 22.79622642 2.11 1040 590.86792453 0.56814224 Error Corrected Total 1059 613.66415094 R-Square C.V. Root MSE RESULT Mean 0.037148 849.9758 0.75375210 0.08867925 DF Source Type I SS Mean Square F Value Pr > FSUPPRESS 1 0.37735849 0.37735849 0.66 0.4153 SPECIES 16.32452830 1.81383648 3.19 0.0008 9 SUPPRESS*SPECIES 9 6.09433962 0.67714885 1.19 0.2963 Source DF Type III SS Mean Square F Value Pr > FSUPPRESS 1 0.37735849 0.37735849 0.66 0.4153 16.32452830 1.81383648 SPECIES 9 3.19 0.0008 SUPPRESS*SPECIES 9 6.09433962 0.67714885 1.19 0.2963

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 1040 MSE= 0.568142 Critical Value of Studentized Range= 2.775 Minimum Significant Difference= 0.0909

Means with the same letter are not significantly different.Tukey GroupingMeanNSUPPRESSA0.107555301A0.069815302

	-		<u>^</u>	2	2				
Ceneral L	inear Models	Drogedure							
			c						
Tukey's Studentized Range (HSD) Test for variable: RESULT									
NOTE: This	NOTE: This test controls the type I experimentwise error rate, but								
generally has a higher type II error rate than REGWQ.									
Alpha= 0.05 df= 1040 MSE= 0.568142									
Critical Value of Studentized Range= 4.484									
		-							
Minimum Si	ignificant l	oifference= 0.328	33						
Means with	n the same l	etter are not si	gnificantly diffe	erent.					
Tukey Grouping	Mean N	SPECIES							
A	0.3962 1	06 kara							
в А	0.2358 1								
B A	0.1132 1 0.0755 1	.06 nika							
B A									
В	0.0283 1	06 tawa							
В	0.0189 1	06 kahi							
В	0.0189 1	06 puri							
В	0.0000 1	.06 kohe							
B									
	0.0000 1								
В	0.0000 1	06 supl							
		PAIR=2 PEST	=mattot						
Whitford and Rob	ertson's –nu	mber of mature fr	uits						
	(:-			:+-)					
			and consumed fru	11S)					
	inear Models								
Class Leve	el Informati	on							
Class	Levels	Values							
SUPPRESS	2	1 2							
SITE									
SPECIES	10	kabi kara koho	nika pige puri r	owa qual tara	t 31/23				
			nika pige puli i	ewa supi tara	Lawa				
PEST	1	mattot							
PAIR	1	2							
		s in by group =							
NOTE: Due to miss	ing values,	only 920 observ	ations can be use	d in this anal	ysis.				
		_			-				
General L	inear Models	Procedure							
			fruita (including	produted and	congumed fruita)				
Dependent Variabl				-					
Source	DF	-	Mean Square		Pr > F				
Model	19	26294.13919196	1383.90206273	4.30	0.0001				
Error	900	289539.20754717	321.71023061						
Corrected Total	919	315833.34673913							
	R-Square			RESULT Mean					
	0.083253								
	0.005255	520.7209	17.95020252	3.37239130					
				1					
Source	DF	Type I SS	-		Pr > F				
SUPPRESS	1	945.77484750	945.77484750	2.94	0.0868				
SPECIES	9	16402.77065217	1822.53007246	5.67	0.0001				
SUPPRESS*SPECIES	9	8945.59369229	993.95485470	3.09	0.0012				
Source	DF	TTTO TTT CC	Mean Square	F Value	Pr > F				
		Type III SS	-						
SUPPRESS	1	945.77484750	945.77484750	2.94	0.0868				
SPECIES	9	19543.99369229	2171.55485470	6.75	0.0001				
SUPPRESS*SPECIES	9	8945.59369229	993.95485470	3.09	0.0012				
General L:	inear Models	Procedure							
Tukev's St	udentized F	ange (HSD) Test	for variable: RES	SULT					
			experimentwise ern						
			rate than REGWQ.	or race, bac					
			Tate than REGWQ.						
Alpha= 0.0		0 MSE= 321.7102							
Critical V	Value of Stu	dentized Range=	2.776						
Minimum S:	ignificant I	ifference= 2.348	35						
	-	re not equal.							
		. sizes= 449.3478	3						
narmonite i	.can or cerr								
Maana witt	the same 1	atter are not a	gnificantly diffe	rent					
			• •	L CIIC.					
Tukey Grouping	Mean		IPPRESS						
A	4.574	390 2							
A	2.523	530 1							

	Tukev's S	Studentized Range	(HSD) Test for	variable: RESULT				
	NOTE: This test controls the type I experimentwise error rate, but							
	generally has a higher type II error rate than REGWQ.							
		.05 df= 900 MSI	-	chan Khowg.				
	-			-				
		Value of Student	-	5				
	Minimum S	Significant Diffe	rence= 8.3877					
	Means wit	th the same lette	r are not signif	icantly different.				
Tukey	' Grouping	Mean	N	SPECIES				
	A	13.902	92	kahi				
В	A	8.402	92	puri				
В		3.783	92	nika				
В		3.152	92	kohe				
В		1.446	92	tara				
В		1.315	92	kara				
В		1.054	92	rewa				
В		0.446	92	tawa				
В		0.359	92	pige				
В		0.065	92	supl				
			PAIR=2 PEST=imm	tot				

Withford and Robertson's -number of immature fruits

General Linear Models Procedure

(including predated immature fruits)

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 2 SITE robi whit SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 immtot PAIR 1 2 Number of observations in by group = 1060 NOTE: Due to missing values, only 920 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT = number of immature fruits (included predated and consumeded fruits) Pr > F Sum of Squares F Value DF Source Mean Square Model 19 81786.26019909 4304.54001048 6.11 0.0001 900 634421.71262700 704.91301403 Error Corrected Total 716207.97282609 919 RESULT Mean R-Square C.V. Root MSE 0.114193 590.7178 26.55019800 4.49456522 Type I SS DF Mean Square F Value Source Pr > FSUPPRESS 687.01806073 687.01806073 0.3238 1 0.97 SPECIES 9 68555.20108696 7617.24456522 10.81 0.0001 SUPPRESS*SPECIES 9 12544.04105141 1393.78233905 1.98 0.0389 DF Mean Square F Value Pr > F Source Type III SS SUPPRESS 1 687.01806073 687.01806073 0.97 0.3238 SPECIES 9 59269.25844271 6585.47316030 9.34 0.0001 SUPPRESS*SPECIES 9 12544.04105141 1393.78233905 1.98 0.0389 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but

NOTE: This test controls the type I experimentwise error rate, b generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 704.913 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 3.4764 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478

Means with	the same	letter	are	not	significantly	different.
Tukey Grouping	Mean	N		SUP	PRESS	
A	5.236	530		1		
A	3.487	390		2		

rippendix 7.0	DI ID Output	t for number of ones	per species and	per visit	P.1
		_			
	inear Models				
Tukey's S	tudentized Ra	nge (HSD) Test for	variable: RESUL	Т	
NOTE: Thi	s test contro	ls the type I exper	imentwise error	rate, but	
generally	has a higher	type II error rate	than REGWQ.		
Alpha= 0.	05 df= 900	MSE= 704.913			
Critical	Value of Stud	lentized Range= 4.48	5		
		fference= 12.416			
Means wit	h the same le	tter are not signif	icantly differe	nt	
Tukey Grouping		N SPECIES	icanciy airicic		
A		92 tara			
В	4.201	92 nika			
В	3.576	92 kahi			
В	1.804	92 rewa			
В	1.772	92 puri			
В	1.804 1.772 1.707 1.522	92 kohe			
В	1.522	92 kara			
В	0.196	92 tawa			
В	0.033	92 pige			
В	0.000	92 supl			
		PAIR=2 PEST=pred	lno		
Whitford and Rob	ertson's –num	ber of predated fruit	s		
,,		(mature, immature a		redation)	
Comerce 1 I	in and Madala		5 51 1	,	
	inear Models				
	el Informatio				
Class	Levels	values			
SUPPRESS	2				
SITE	2	robi whit			
SPECIES	10	robi whit kahi kara kohe nika predno	a pige puri rewa	a supi tara tawa	
PEST					
PAIR	1	2			
		in by group = 1060 only 920 observation		in this analysis	
NOIL: Due co miss	sing values, c	JIIY JZU UDSELVACIU	is call be used i	III CHIIS AHAIYSIS	•
	inear Models	Procedure umber of predated fi	ruits (mature i	immature and any	type of
predation)	Le. KESULI -III	umber of predated if	uits (mature, 1	Inimature and any	cype or
-	DE	Cum of Courses	Moon Course	E Voluo	
Source	DF 10	Sum of Squares			
Model	19 900	1205.01426821		4.81	0.0001
		11860.07160135			
Corrected Total	919	13065.08586957		DEGILE March	
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.092232	417.9876	3.63013186	0.86847826	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	97.87943512	97.87943512	7.43	0.0065
SPECIES	9	871.53152174	96.83683575	7.35	0.0001
SUPPRESS*SPECIES	9	235.60331135	26.17814571	1.99	0.0379
Source	DF	TITO III CC	Moon Sauoro	F Value	Dr > F
		Type III SS	Mean Square		Pr > F
SUPPRESS	1	97.87943512	97.87943512	7.43	0.0065
SPECIES	9	900.80331135	100.08925682	7.60	0.0001
SUPPRESS*SPECIES	9	235.60331135	26.17814571	1.99	0.0379
General I.	inear Models	Procedure			
		nge (HSD) Test for	variable: RESUL	Ψ	
		ols the type I exper			
				rale, bul	
	-	type II error rate	CHAIL REGWQ.		
Alpha= 0.		MSE= 13.17786	c		
		lentized Range= 2.77	σ		
		fference= 0.4753			
	Cell sizes ar	_			
Harmonic	mean of cell	sizes= 449.3478			

Means with	the same	letter are not	significantly different.
Tukey Grouping	Mean	N	SUPPRESS
A	1.2487	390	2
В	0.5887	530	1

	General Linear Models Procedure									
	Tukey's Studentized Range (HSD) Test for variable: RESULT									
	NOTE: This test controls the type I experimentwise error rate, but									
	generally has a higher type II error rate than REGWQ.									
	Alpha= 0.05 df= 900 MSE= 13.17786									
	Critical Value of Studentized Range= 4.485									
	Minimur	n Sign	ificant Dif	ference=	1.6976					
		- J								
	Means w	vith t	he same let	ter are r	not significantly different.					
Tukey			Mean	N	SPECIES					
Groupi	ng									
	A		3.0326	92	nika					
В	А		1.8478	92	rewa					
В	А	С	1.5109	92	kahi					
В	А	С	1.3696	92	tara					
В		С	0.3587	92	puri					
В		С	0.3043	92	kara					
		С	0.1196	92	kohe					
		С	0.0978	92	tawa					
		С	0.0217	92	pige					
		С	0.0217	92	supl					
				PAIR=2	PEST=unpred					

Whitford and Robertson's -number of unpredated fruits

. .

General Linear Models Procedure Class Level Information Levels Values Class SUPPRESS 2 1 2 2 SITE robi whit SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa unpred PEST 1 PAIR 1 2 Number of observations in by group = 1060 NOTE: Due to missing values, only 920 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT =number of unpredated fruits DF Sum of Squares Mean Square Source F Value Pr > F 19 112256.76597463 5908.25084077 0.0001 Model 5.58 900 953717.47750363 Error 1059.68608612 Corrected Total 919 1065974.24347826 Root MSE R-Square c.v. RESULT Mean 412.7425 0.105309 32.55281994 7.88695652 F Value Source DF Type I SS Mean Square Pr > F SUPPRESS 20.63360888 20.63360888 0.02 0.8891 1 SPECIES 9 81481.72173913 9053.52463768 8.54 0.0001 SUPPRESS*SPECIES 9 30754.41062662 3417.15673629 0.0007 3.22 Source DF Type III SS Mean Square F Value Pr > F 20.63360888 0.8891 SUPPRESS 1 20.63360888 0.02 SPECIES 9 77237.94106140 8581.99345127 8.10 0.0001 30754.41062662 SUPPRESS*SPECIES 3417.15673629 9 3.22 0.0007 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 1059.686 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 4.2623 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478 Means with the same letter are not significantly different. ESS

Tukey Grouping	Mean	N	SUPPRE
A	8.062	390	2
A	7.758	530	1

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 1059.686 Critical Value of Studentized Range= 4.485 Minimum Significant Difference= 15.223

Means with the same letter are not significantly different. Tukey Grouping Mean Ν SPECIES 31.522 92 А tara А в 17.478 92 kahi А В С 10.174 92 puri В В С С 8.043 92 nika в В С В С 4.859 92 kohe В C C C 2.859 В 92 rewa В С В 2.837 92 kara С С 0.641 92 tawa С 0.391 С 92 pige С С 0.065 92 supl ----- PAIR=2 PEST=consno -----

Whitford and Robertson's -number of consumed fruits

	near Models				
	el Informati				
Class		Values			
SUPPRESS	2	1 2			
SITE	2	robi whit		_	
SPECIES	10	kahi kara kohe r	nika pige puri n	rewa supl tara	tawa
PEST	1	consno			
PAIR	1	2			
Number of	observation	s in by group = 1	060		
NOTE: Due to miss	ing values,	only 920 observat	ions can be use	ed in this anal	ysis.
General Li	near Models	Procedure			
Dependent Variabl	e: RESULT =r	number of consumed	l fruits		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	19	10093.62335391	531.24333442	3.75	0.0001
Error	900	127378.06892598	141.53118770		
Corrected Total	919	137471.69227989			
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.073423	752.7219	11.89668810	1.58048913	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	106.39426937	106.39426937	0.75	0.3862
SPECIES	9	7390.25611141	821.13956793	5.80	0.0001
SUPPRESS*SPECIES	9	2596.97297313	288.55255257	2.04	0.0325
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	106.39426937	106.39426937	0.75	0.3862
SPECIES	9	8372.15971226	930.23996803	6.57	0.0001
SUPPRESS*SPECIES	9	2596.97297313	288.55255257	2.04	0.0325

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 141.5312 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 1.5577 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478 Means with the same letter are not significantly different. Tukey Grouping Ν SUPPRESS Mean 1.9769 390 Α 2 А 1.2888 530 1 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 141.5312 Critical Value of Studentized Range= 4.485 Minimum Significant Difference= 5.5634 Means with the same letter are not significantly different. SPECIES Tukey Grouping Mean N Α 9.751 92 kahi В 2.337 92 kohe 1.663 92 В nika В 1.370 92 puri 0.239 92 В tara в 0.239 92 tawa 0.109 92 В pige В 0.076 92 kara в 0.022 92 supl В 0.000 92 rewa ----- PAIR=2 PEST=inspre ------

Whitford and Robertson's -number of insect predated fruits

SUPPRESS

SUPPRESS*SPECIES 9

SPECIES

1

9

(fruits could be mature or immature)

1.54848236

13.83141008

2.89421201

0.85

7.63

1.60

0.3555

0.0001

0.1114

General Linear Models Procedure Class Level Information Class Levels Values 2 1 2 SUPPRESS SITE 2 robi whit SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 inspre PAIR 1 2 Number of observations in by group = 1060 NOTE: Due to missing values, only 920 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT =number of insect predated fruits (mature or immature) DF Sum of Mean Square F Value Source Pr > F Squares 19 161.00508614 8.47395190 0.0001 Model 4.68 900 Error 1630.49056604 1.81165618 Corrected Total 919 1791.49565217 RESULT Mean R-Square C.V. Root MSE 0.089872 543.1138 1.34597778 0.24782609 DF Source Type I SS Mean Square F Value Pr > FSUPPRESS 1.54848236 1.54848236 0.85 0.3555 1 SPECIES 9 133.40869565 14.82318841 8.18 0.0001 SUPPRESS*SPECIES 9 26.04790812 2.89421201 1.60 0.1114 Source DF Type III SS Mean Square F Value Pr > F

1.54848236

124.48269073

26.04790812

p.17

	General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 1.811656 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 0.1762 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478						
	Means wit	h the same	letter	are no	t significa	ntly different	t.
Tukey	Grouping	Mean	N		SUPPRESS	-	
A		0.28302	530	C	1		
A		0.20000	390	C	2		
General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 1.811656 Critical Value of Studentized Range= 4.485 Minimum Significant Difference= 0.6294 Means with the same letter are not significantly different.							rate, but
Tukey	Grouping	Mean	Ν	SPECIE	S		
	A	1.1739	92	rewa			
	A						
B	A	0.7609	92	nika			
В	a	0 0500					
B	C C	0.2500	92	tara			
B B	C	0.2065	92	kahi			
Б	C	0.2005	92	Kalli			
	C	0.0326	92	kara			
	C						
	С	0.0217	92	tawa			
	С						
	С	0.0217	92	kohe			
	С						
	C	0.0109	92	puri			
	C						
	С	0.0000	92	pige			
	C C	0.0000	92	supl			
	C	0.0000	12	BUDI			
			P	PAIR=2 P	EST=posspr		

Whitford and Robertson's -number of possum predated fruits

General Line	ear Models	Procedure	
Class Level	Informatic	n	
Class	Levels	Values	
SUPPRESS	2	1 2	
SITE	2	robi whit	
SPECIES	10	kahi kara kohe nika pige puri rewa supl tara tawa	£
PEST	1	posspr	
PAIR	1	2	
Number of o	gervations	z = 1060	

Number of observations in by group = 1060 NOTE: Due to missing values, only 920 observations can be used in this analysis.

General	Linear	Models	Procedure	
General	Linear	Models	Procedure	

Dependent Variabl	e: RESULT =	number of possum	predated fruits	5	
Source	DF	DF Sum of		F Value	Pr > F
		Squares			
Model	19	77.38855304	4.07308174	4.77	0.0001
Error	900	767.89840348	0.85322045		
Corrected Total	919	845.28695652			
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.091553	685.3253	0.92369933	0.13478261	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	9.18806925	9.18806925	10.77	0.0011
SPECIES	9	38.85217391	4.31690821	5.06	0.0001
SUPPRESS*SPECIES	9	29.34830988	3.26092332	3.82	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	9.18806925	9.18806925	10.77	0.0011
SPECIES	9	48.18309249	5.35367694	6.27	0.0001
SUPPRESS*SPECIES	9	29.34830988	3.26092332	3.82	0.0001

Dependent Variable: RESULT =number of possum predated fruits

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 0.85322 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 0.1209 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SUPPRESS Α 0.25128 390 2 В 0.04906 530 1 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 900 MSE= 0.85322 Alpha= 0.05 Critical Value of Studentized Range= 4.485 Minimum Significant Difference= 0.432 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SPECIES А 0.6739 92 tara 0.2935 92 В А rewa В 0.2283 92 puri 0.0761 92 В kara В 0.0761 92 kohe В 0.0000 92 nika В 0.0000 92 pige 0.0000 в 92 supl В 0.0000 92 kahi В 0.0000 92 tawa ----- PAIR=2 PEST=rodtpr -----

Whitford and Robertson's -number of fruits predated by rodents

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE 2 robi whit kahi kara kohe nika pige puri rewa supl tara tawa rodtpr SPECIES 10 1 PEST PAIR 1 2 Number of observations in by group = 1060NOTE: Due to missing values, only 920 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT =number of fruits predated by rodents Sum of Pr > FSource DF Mean Square F Value Squares

Model Error Corrected Total	19 900 919	281.34664395 628.14900822 909.49565217	14.80771810 0.69794334	21.22	0.0001
	R-Square 0.309344	C.V. 337.1033	Root MSE 0.83543003	RESULT Mean 0.24782609	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	23.94538609	23.94538609	34.31	0.0001
SPECIES	9	170.01739130	18.89082126	27.07	0.0001
SUPPRESS*SPECIES	9	87.38386656	9.70931851	13.91	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	23.94538609	23.94538609	34.31	0.0001
SPECIES	9	203.68821438	22.63202382	32.43	0.0001
SUPPRESS*SPECIES	9	87.38386656	9.70931851	13.91	0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 0.697943 Critical Value of Studentized Range= 2.776 Minimum Significant Difference= 0.1094 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 449.3478 Means with the same letter are not significantly different. Tukey Grouping SUPPRESS Mean Ν 0.43590 390 2 А В 0.10943 530 1 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 900 MSE= 0.697943 Critical Value of Studentized Range= 4.485 Minimum Significant Difference= 0.3907 Means with the same letter are not significantly different. Tukey Mean Ν SPECIES Grouping 1.5000 А 92 nika В 0.3370 92 kahi 0.2174 92 в tara В 0.1848 92 rewa 0.1087 92 В kara В 0.0652 92 tawa В 0.0217 92 kohe 0.0217 В 92 puri 0.0109 в 92 pige в 0.0109 92 supl ----- PAIR=2 PEST=unknpr ------

Whitford and Robertson's -number of fruits predated by unknown agents

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE robi whit 2 SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 unknpr PAIR 1 2 Number of observations in by group = 1060

NOTE: Due to missing values, only 920 observations can be used in this analysis.

General Linear Models Procedure							
Dependent Variable: RESULT = number of fruits predated by unknown agents							
Source	DF	Sum of	Mean Square	F Value	Pr > F		
		res					
Model	19	202.54480343	10.66025281	1.15	0.2903		
Error	900	8309.08563135	9.23231737				
Corrected Total	919	8511.63043478					
	R-Square	C.V.	Root MSE	RESULT Mean			
	0.023796	2150.304	3.03847287	0.14130435			
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
SUPPRESS	1	15.96521949	15.96521949	1.73	0.1888		
SPECIES	9	76.86956522	8.54106280	0.93	0.5022		
SUPPRESS*SPECIES	9	109.71001872	12.19000208	1.32	0.2218		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
SUPPRESS	1	15.96521949	15.96521949	1.73	0.1888		
SPECIES	9	104.94914916	11.66101657	1.26	0.2531		
SUPPRESS*SPECIES	9	109.71001872	12.19000208	1.32	0.2218		

	NOTE: This generally 1 Alpha= 0.0	udentized I test contr has a high 5 df= 90 alue of Stu gnificant I ell sizes a	Range (HSE cols the t er type II 00 MSE= 9.3 udentized Difference are not eq) Test for variable: RESULT ype I experimentwise error rate, but error rate than REGWQ. 232317 Range= 2.776 = 0.3978 gual.
	Means with	the same 3	letter are	not significantly different.
Tukey (Grouping	Mean	N	SUPPRESS
A		0.2949	390	2
A		0.0283	530	1
	NOTE: This generally 1 Alpha= 0.0 Critical Va Minimum Sig	test cont has a high 5 df= 90 alue of Stu gnificant 1	rols the t er type II 00 MSE= 9.3 udentized Difference	Range= 4.485
Tukey (Grouping	Mean	N	SPECIES
A		1.0000	92	kahi
A		0.1522	92	tara
A		0.0652		kara
A		0.0543		nika
A			92	puri
A		0.0326		rewa
A			92 92	kohe
A A		0.0109 0.0109	92 92	supl
A A		0.0109	92 92	pige tawa
				=3 PEST=mattot

Remiger's and Val's -number of mature fruits

(including predated and consumed fruits)

General Linear Models Procedure Class Level Information Class Levels Values 2 1 2 SUPPRESS SITE 2 remi vals SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST mattot 1 PAIR 1 3 Number of observations in by group = 1060NOTE: Due to missing values, only 700 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT =number of mature fruits (including predated and consumed fruits) Source DF Sum of Squares Mean Square F Value Pr > F Model 19 71515.72853048 3763.98571213 7.62 0.0001 335938.95004095 494.02786771 680 Error reated Tatal 699 107154 CR0501 4

Corrected Total	699 R-Square 0.175518	407454.67857143 C.V. 357.2610	Root MSE 22.22673768	RESULT Mean 6.22142857	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	5439.56268281	5439.56268281	11.01	0.0010
SPECIES	9	49234.43571429	5470.49285714	11.07	0.0001
SUPPRESS*SPECIES	9	16841.73013338	1871.30334815	3.79	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	5439.56268281	5439.56268281	11.01	0.0010
SPECIES	9	46286.33584767	5142.92620530	10.41	0.0001
SUPPRESS*SPECIES	9	16841.73013338	1871.30334815	3.79	0.0001

Tukey A B	Tukey's S NOTE: Thi generally Alpha= 0. Critical Minimum S WARNING: Harmonic	s test con has a hig 05 df= Value of S ignificant Cell sizes Mean of ce h the same Mean 8.854	A Range (H atrols the gher type 680 MSE= 4 Studentize Differen are not ell sizes=	<pre>SD) Test for variable: RESULT type I experimentwise error rate, but II error rate than REGWQ. 494.0279 d Range= 2.777 ce= 3.3044 equal. 348.8571 re not significantly different. SUPPRESS 1</pre>
		inear Mode tudentized		ure SD) Test for variable: RESULT
	NOTE: Thi	s test con	trols the	type I experimentwise error rate, but
		-		II error rate than REGWQ.
	-	05 df=		
				d Range= 4.489
		5		ce= 11.926 re not significantly different.
Tukev	Grouping		N N	SPECIES
1		25.314	70	nika
	А	15.686	70	kahi
В	A	13.843	70	puri
В		2.300		tara
В	C	2.029	70	kara
	С	1.100	70	kohe
	C	0.857		pige
	C	0.671		supl
	C C	0.357 0.057	70	rewa
	C	0.057	70	tawa
			PAI	IR=3 PEST=immtot

Remiger's and Val's -number of immature fruits

(including predated immature fruits)

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 2 SITE remi vals 10 kahi kara kohe nika pige puri rewa supl tara tawa SPECIES PEST 1 immtot PAIR 1 3

Number of observations in by group = 1060 NOTE: Due to missing values, only 700 observations can be used in this analysis.

General Linear Models Procedure

Dependent Variabl	e: RESULT =	immature fruits (including predat	ed fruits)	
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	19	72416.50166725	3811.39482459	16.61	0.0001
Error	680	156006.17690418	229.42084839		
Corrected Total	699	228422.67857143			
	R-Square	C.V.	Root MSE	RESULT Mean	
	0.317029	295.7504	15.14664479	5.12142857	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	2698.49142974	2698.49142974	11.76	0.0006
SPECIES	9	57399.55000000	6377.7277778	27.80	0.0001
SUPPRESS*SPECIES	9	12318.46023751	1368.71780417	5.97	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	2698.49142974	2698.49142974	11.76	0.0006
SPECIES	9	54423.63738037	6047.07082004	26.36	0.0001
SUPPRESS*SPECIES	9	12318.46023751	1368.71780417	5.97	0.0001

	Tukey's St NOTE: This generally Alpha= 0.(Critical \ Minimum Si WARNING: (Harmonic N Means with	udentized s test con has a hig 5 df= Value of S Ignificant Cell sizes Mean of ce h the same Mean	atrols the gher type 680 MSE= 2 Studentize Differen are not ell sizes= e letter a	<pre>D) Test for variable: RESULT cype I experimentwise error rate, I error rate than REGWQ. 9.4208 Range= 2.777 e= 2.2518 gual.</pre>	but
B			330	_	
	Tukey's St NOTE: This generally Alpha= 0.(Critical X Minimum Si	udentized s test con has a hig)5 df= Value of S Ignificant	trols the her type 680 MSE= 2 tudentize Differen	 D) Test for variable: RESULT Cype I experimentwise error rate, I error rate than REGWQ. 9.4208 Range= 4.489 	but
Tukey Gr	ouping	Mean	N	SPECIES	
A		28.686	70	tara	
В		15.757		nika	
C		2.271		kahi	
C C		1.614 1.329		kara	
C		1.243		puri rewa	
C		1.243 0.214		pige	
C				tawa	
C		0.057	70 70	kohe	
C		0.000	70	supl	
				=3 PEST=predno	

Remiger's and Val's -number of predated fruits

(mature, immature and any type of predation)

General Linear Models Procedure Class Level Information Levels Values Class 2 Valu 2 1 2 2 remi SUPPRESS SITE remi vals SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 predno PAIR 1 3

Number of observations in by group = 1060 NOTE: Due to missing values, only 716 observations can be used in this analysis.

General Linear Models Procedure Dependent Variable. PEGULT

Dependent Variabl	e: RESULT				
Source Model Error	DF 19 696	Sum of Squares 8525.02716315 15081.56920557	Mean Square 448.68564017 21.66892127	F Value 20.71	Pr > F 0.0001
Corrected Total	715 R-Square 0.361129	23606.59636872 C.V. 230.0188	Root MSE 4.65498886	RESULT Mean 2.02374302	
Source SUPPRESS SPECIES SUPPRESS*SPECIES	DF 1 9 9	Type I SS 133.02191433 6324.04497259 2067.96027622	Mean Square 133.02191433 702.67166362 229.77336402	F Value 6.14 32.43 10.60	Pr > F 0.0135 0.0001 0.0001
Source SUPPRESS SPECIES SUPPRESS*SPECIES	DF 1 9 9	Type III SS 166.30097284 5939.09854046 2067.96027622	Mean Square 166.30097284 659.89983783 229.77336402	F Value 7.67 30.45 10.60	Pr > F 0.0057 0.0001 0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 696 MSE= 21.66892 Critical Value of Studentized Range= 2.777 Minimum Significant Difference= 0.6852 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 355.8101 Means with the same letter are not significantly different. Tukey Grouping Ν SUPPRESS Mean 2.4223 386 Α 1 в 1.5576 330 2 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95 df= 696 MSE= 21.66892 Critical Value of Studentized Range= 4.489 Comparisons significant at the 0.05 level are indicated by '***'. SPECIES Simultaneous Difference Simultaneous Comparison Lower Confidence Between Means Upper Confidence Limit Limit * * * nika - tara 1.7740 4.2714 6.7689 * * * nika - puri 4.6026 7.1000 9.5974 nika - kara * * * 5.6168 8.1143 10.6117 nika - rewa 6.1026 8.6000 11.0974 * * * nika - kahi * * * 6.9168 11.9117 9.4143 nika - kohe * * * 6.9168 9.4143 11.9117 nika – pige nika – tawa 7.0883 9.5857 12.0832 * * * * * * 7.1168 9.6143 12.1117 nika - supl 11.9980 * * * 7.2412 9.6196 tara - nika * * * -1.7740-6.7689 -4.2714*** tara - puri 0.3311 2.8286 5.3260 tara – kara * * * 1.3454 3.8429 6.3403 * * * tara - rewa 1.8311 4.3286 6.8260 tara - kahi * * * 2.6454 5.1429 7.6403 7.6403 * * * tara - kohe 2.6454 5.1429 tara - pige 2.8168 5.3143 7.8117 * * * * * * tara – tawa 2.8454 5.3429 7.8403 tara - supl 2.9697 5.3482 7.7266 * * * puri – nika * * * -9.5974 -7.1000 -4.6026 puri - tara -5.3260 -2.8286 -0.3311 * * * puri - kara -1.4832 1.0143 3.5117 puri - rewa -0.9974 1.5000 3.9974 puri - kahi -0.1832 4.8117 2.3143 2.3143 puri - kohe -0.1832 4.8117 puri - pige -0.0117 2.4857 4.9832 puri - tawa +++ 0.0168 2.5143 5.0117 puri - supl * * * 4.8980 0.1412 2.5196 kara - nika * * * -10.6117 -8.1143 -5.6168 * * * kara - tara -6.3403 -3.8429 -1.3454 kara - puri -3.5117 -1.0143 1.4832 kara - rewa -2.01170.4857 2,9832 kara - kahi -1.1974 1.3000 3.7974 kara - kohe -1.1974 1.3000 3.7974 kara - pige -1.0260 1.4714 3.9689 kara - tawa -0.9974 1.5000 3.9974 kara - supl -0.8731 1.5053 3.8838 -8.6000 rewa - nika -11.0974 -6.1026 * * * rewa - tara -6.8260 -4.3286 -1.8311 * * * rewa - puri -3.9974 -1.5000 0.9974 rewa - kara -2.9832-0.4857 2.0117 rewa - kahi -1.6832 0.8143 3.3117 rewa - kohe -1.6832 0.8143 3.3117 rewa - pige -1.5117 0.9857 3.4832 rewa - tawa -1.4832 1.0143 3.5117 rewa - supl -1.3588 1.0196 3.3980 kahi - nika -11.9117 -9.4143 -6.9168 * * * kahi - tara -7.6403 -5.1429 -2.6454 * * * kahi - puri kahi - kara -4.8117 -2.3143 0.1832 -3.7974 -1.3000 1,1974 kahi - rewa -3.3117 -0.8143 1.6832 kahi - kohe -2.4974 0.0000 2.4974 kahi - pige -2.3260 0.1714 2.6689 kahi - tawa -2.2974 0.2000 2.6974 kahi - supl -2.1731 0.2053 2.5838 kohe - nika -11.9117 -9.4143 * * * -6.9168

11	1	1	I I	
SPECIES	Simultaneous	Difference	Simultaneous	
Comparison	Lower Confidence	Between Means	Upper Confidence	
-	Limit		Limit	
kohe – tara	-7.6403	-5.1429	-2.6454	* * *
kohe - puri	-4.8117	-2.3143	0.1832	
kohe – kara	-3.7974	-1.3000	1.1974	
kohe – rewa	-3.3117	-0.8143	1.6832	
kohe - kahi	-2.4974	0.0000	2.4974	
kohe – pige	-2.3260	0.1714	2.6689	
kohe – tawa	-2.2974	0.2000	2.6974	
kohe – supl	-2.1731	0.2053	2.5838	
pige – nika	-12.0832	-9.5857	-7.0883	* * *
pige – tara	-7.8117	-5.3143	-2.8168	* * *
pige - puri	-4.9832	-2.4857	0.0117	
pige - kara	-3.9689	-1.4714	1.0260	
pige – rewa	-3.4832	-0.9857	1.5117	
pige - kahi	-2.6689	-0.1714	2.3260	
pige - kohe	-2.6689	-0.1714	2.3260	
pige – tawa	-2.4689	0.0286	2.5260	
pige - supl	-2.3446	0.0339	2.4123	
tawa - nika	-12.1117	-9.6143	-7.1168	* * *
tawa - tara	-7.8403	-5.3429	-2.8454	* * *
tawa - puri	-5.0117	-2.5143	-0.0168	* * *
tawa - kara	-3.9974	-1.5000	0.9974	
tawa - rewa	-3.5117	-1.0143	1.4832	
tawa - kahi	-2.6974	-0.2000	2.2974	
tawa - kohe	-2.6974	-0.2000	2.2974	
tawa - pige	-2.5260	-0.0286	2.4689	
tawa - supl	-2.3731	0.0053	2.3838	
supl – nika	-11.9980	-9.6196	-7.2412	* * *
supl - tara	-7.7266	-5.3482	-2.9697	* * *
supl - puri	-4.8980	-2.5196	-0.1412	* * *
supl - kara	-3.8838	-1.5053	0.8731	
supl – rewa	-3.3980	-1.0196	1.3588	
supl - kahi	-2.5838	-0.2053	2.1731	
supl - kohe	-2.5838	-0.2053	2.1731	
supl - pige	-2.4123	-0.0339	2.3446	
supl - tawa	-2.3838	-0.0053	2.3731	

----- PAIR=3 PEST=unpred -----

Remiger's and Val's -number of unpredated fruits

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 2 remi vals SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 unpred PAIR 1 3 Number of observations in by group = 1060 NOTE: Due to missing values, only 700 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT =number of unpredated fruits Source DF Sum of Squares F Value Pr > F Mean Square 183803.97472797 Model 19 9673.89340674 0.0001 14.08 680 467347.73955774 687.27608758 Error Corrected Total 699 651151.71428571 R-Square C.V. Root MSE RESULT Mean 0.282275 231.1230 26.21595101 11.34285714 Source DF Type I SS Mean Square F Value Pr > FSUPPRESS 1 15800.58979759 15800.58979759 22.99 0.0001 SPECIES 9 135222.65714286 15024.73968254 21.86 0.0001 SUPPRESS*SPECIES 3642.30308750 9 32780.72778753 5.30 0.0001 Source DF Type III SS Mean Square F Value Pr > F SUPPRESS 1 15800.58979759 15800.58979759 22.99 0.0001 SPECIES 9 128217.40778753 14246.37864306 20.73 0.0001 SUPPRESS*SPECIES 9 32780.72778753 3642.30308750 5.30 0.0001

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 680 MSE= 687.2761 Critical Value of Studentized Range= 2.777 Minimum Significant Difference= 3.8974 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 348.8571 Means with the same letter are not significantly different. Tukey Grouping Ν SUPPRESS Mean 370 15.830 Α 1 В 6.312 330 2 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 680 MSE= 687.2761 Critical Value of Studentized Range= 4.489 Minimum Significant Difference= 14.066 Means with the same letter are not significantly different. SPECIES Tukey Grouping Mean Ν 41.071 Α 70 nika В А 30.986 70 tara 17.957 70 В С kahi D С 15.171 70 puri 70 D Е 3.643 kara D Е 1.600 70 rewa Е 1.143 70 D kohe Е 1.071 70 pige Е 0.671 70 supl Е 0.114 70 tawa ----- PAIR=3 PEST=consno ------Remiger's and Val's -number of consumed fruits General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE remi vals 2 SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 consno 3 PAIR 1 Number of observations in by group = 1060 NOTE: Due to missing values, only 700 observations can be used in this analysis. General Linear Models Procedure Dependent Variable: RESULT = number of consumed fruits Source DF Sum of Squares F Value Pr > FMean Square Model 19 1662.72692536 0.0001 31591.81158184 4.60 680 245805.01556102 361.47796406 Error Corrected Total 699 277396.82714286 C.V. Root MSE RESULT Mean R-Square 19.01257384 0.113887 545.6663 3.48428571 DF Type I SS F Value Pr > F Source Mean Square SUPPRESS 2533.86260559 2533.86260559 7.01 0.0083 1 SPECIES 9 21301.81285714 2366.86809524 6.55 0.0001 SUPPRESS*SPECIES 9 7756.13611911 861.79290212 2.38 0.0117

Source

SUPPRESS

SUPPRESS*SPECIES 9

SPECIES

DF

1

9

Type III SS

2533.86260559

19942.02183339

7756.13611911

Mean Square

2533.86260559

2215.78020371

861.79290212

F Value

7.01

6.13

2.38

Pr > F

0.0083

0.0001

0.0117

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 680 MSE= 361.478 Critical Value of Studentized Range= 2.777 Minimum Significant Difference= 2.8265 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 348.8571 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS							
A	5.281	370	1				
В	1.470		2				
General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 680 MSE= 361.478 Critical Value of Studentized Range= 4.489 Minimum Significant Difference= 10.201 Means with the same letter are not significantly different. Tukey Grouping Mean N SPECIES A 15.771 70 nika							
В	A 12.600	70	kahi				
В	C 4.114	70 70	puri				
	C 0.671	70	kohe				
	C 0.629		tara				
	C 0.586	70	pige				
	C 0.243	70	kara				
	C 0.200	70	supl				
	C 0.029	70	tawa				
	C 0.000	70	rewa				
		PAIR=3	PEST=inspre				

Remiger's and Val's -number of insect predated fruits

(fruits could be mature or immature)

General Linear Models Procedure											
Class Level In:	formatio	n									
Class	Levels	Value	es								
SUPPRESS	2	1 2									
SITE	2	remi	vals								
SPECIES	10	kahi	kara	kohe	nika	pige	puri	rewa	supl	tara	tawa
PEST	1	inspi	re								
PAIR	1	3									

Number of observations in by group = 1060 NOTE: Due to missing values, only 700 observations can be used in this analysis.

General Linear Models Procedure

Dependent Variable: RESULT =number of insect predated fruits (including mature and immature fruits)

LIUIUS/					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	19 680 699	55.59751492 480.51105651 536.10857143	2.92618500 0.70663391	4.14	0.0001
	R-Square 0.103706	C.V. 498.6700	Root MSE 0.84061520	RESULT Mean 0.16857143	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	2.68187200	2.68187200	3.80	0.0518
SPECIES	9	42.76571429	4.75174603	6.72	0.0001
SUPPRESS*SPECIES	9	10.14992863	1.12776985	1.60	0.1125
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	1	2.68187200	2.68187200	3.80	0.0518
SPECIES	9	41.08707149	4.56523017	6.46	0.0001
SUPPRESS*SPECIES	9	10.14992863	1.12776985	1.60	0.1125

_ _

Tu NG Al Cu Mi WA Ha	key's St DTE: This pha= 0.0 ritical V nimum Si ARNING: C armonic M eans with	test cont has a high 5 df= 6 alue of St gnificant ell sizes lean of ce. the same Mean 0.22703	Range (H trols the her type 1 580 MSE= 0 tudentized Differend are not 0 11 sizes=	SD) Test for variable: RESULT type I experimentwise error rate, but II error rate than REGWQ. 0.706634 d Range= 2.777 ce= 0.125 equal. 348.8571 re not significantly different. SUPPRESS 1
		near Model		
Τι	ıkey's St	udentized	Range (H	SD) Test for variable: RESULT
				type I experimentwise error rate, but
9	-	5		II error rate than REGWQ.
	-	5 df= 6		
				d Range= 4.489
		gnificant		
				re not significantly different.
Tukey Gro			N	SPECIES
		0.7429		nika
В		0.5286		rewa
В		0.2286		tara
В		0.0857		kahi
		0.0571		kara
			70	pige
	C	0.0143		kohe
	C	0.0000		puri
	C	0.0000		supl
	Ċ	0.0000	70	tawa
			T 4 C	IR=3 PEST=posspr
			PAI	IV-2 - FDI-DOPPHI

Remiger's and Val's -number of possum predated fruits

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 remi vals SITE 2 kahi kara kohe nika pige puri rewa supl tara tawa SPECIES 10 PEST 1 posspr PAIR 1 3 Number of observations in by group = 1060

NOTE: Due to missing values, only 700 observations can be used in this analysis.

General Linear Models Procedure									
Dependent Variabl	Dependent Variable: RESULT =number of possum predated fruits								
Source	DF	Sum of	Mean Square	F Value	Pr > F				
		Squares							
Model	19	1546.30803674	81.38463351	9.12	0.0001				
Error	680	6064.97624898	8.91908272						
Corrected Total	699	7611.28428571							
	R-Square	C.V.	Root MSE	RESULT Mean					
	0.203160	418.9456	2.98648334	0.71285714					
Source	DF	Type I SS	Mean Square	F Value	Pr > F				
SUPPRESS	1	0.79247572	0.79247572	0.09	0.7657				
SPECIES	9	1078.18428571	119.79825397	13.43	0.0001				
SUPPRESS*SPECIES	9	467.33127530	51.92569726	5.82	0.0001				
Source	DF	Type III SS	Mean Square	F Value	Pr > F				
SUPPRESS	1	0.79247572	0.79247572	0.09	0.7657				
SPECIES	9	1060.16556102	117.79617345	13.21	0.0001				
SUPPRESS*SPECIES	9	467.33127530	51.92569726	5.82	0.0001				

Tukey (A A	Tukey's St NOTE: This generally Alpha= 0.0 Critical V Minimum Si WARNING: C Harmonic M	test cont has a high 5 df= 6 falue of St gnificant tell sizes lean of cel the same Mean 0.7485	Range (HSE rols the t er type II 80 MSE= 8. udentized Difference are not eq l sizes= 3 letter are N	<pre>)) Test for variable: RESULT gype I experimentwise error rate, but 2 error rate than REGWQ. 919083 Range= 2.777 e= 0.444 gual. 48.8571 e not significantly different. SUPPRESS 2</pre>
		near Model		-
	-		5 .)) Test for variable: RESULT
				ype I experimentwise error rate, but
	<u> </u>	9		error rate than REGWQ.
	-	5 df= 6		
				Range= 4.489
		gnificant		
m 1				e not significantly different.
-	Grouping	Mean 3.8000		SPECIES
A				tara
A		2.4000		puri kara
B B		0.4429 0.2286		rewa
в В		0.1857		rewa nika
В		0.0286		kohe
B		0.0143		kahi
В		0.0143		supl
В		0.0143		tawa
В		0.0000		pige
			-	1.5-
			PAIR	=3 PEST=rodtpr

Remiger's and Val's -number of fruits predated by rodents

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 remi vals SITE 2 SPECIES 10 kahi kara kohe nika pige puri rewa supl tara tawa PEST 1 rodtpr PAIR 1 3 Number of observations in by group = 1060

NOTE: Due to missing values, only 700 observations can be used in this analysis.

General Linear Models Procedure								
Dependent Variable: RESULT -number of fruits predated by rodents								
Source	DF	Sum of	Mean Square	F Value	Pr > F			
		Squares						
Model	19	5272.62073710	277.50635458	68.30	0.0001			
Error	680	2762.89926290	4.06308715					
Corrected Total	699	8035.52000000						
	R-Square	C.V.	Root MSE	RESULT Mean				
	0.656164	219.0989	2.01571009	0.92000000				
Source	DF	Type I SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	161.03875512	161.03875512	39.63	0.0001			
SPECIES	9	3837.92000000	426.43555556	104.95	0.0001			
SUPPRESS*SPECIES	9	1273.66198198	141.51799800	34.83	0.0001			
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	161.03875512	161.03875512	39.63	0.0001			
SPECIES	9	3578.07341055	397.56371228	97.85	0.0001			
SUPPRESS*SPECIES	9	1273.66198198	141.51799800	34.83	0.0001			

NOTE: This test of generally has a h Alpha= 0.05 df Critical Value of Minimum Significa WARNING: Cell siz Harmonic Mean of Means with the sa Tukey Grouping Mean A 1.373	ed Range (HSD ontrols the t igher type II = 680 MSE= 4. Studentized nt Difference es are not eq cell sizes= 3 me letter are N	<pre>)) Test for variable: RESULT gype I experimentwise error rate, but cerror rate than REGWQ. 063087 Range= 2.777 e= 0.2997 pual. 48.8571 e not significantly different. SUPPRESS 1</pre>
General Linear Mc		-
-	- ·)) Test for variable: RESULT
		ype I experimentwise error rate, but
5 1		error rate than REGWQ.
Alpha= 0.05 df		
Critical Value of		5
Minimum Significa		
		e not significantly different.
Tukey Grouping Mean	N	SPECIES
A 7.928		nika
в 0.571		tara
в 0.200		kara
	7 70	kohe
B 0.128		kahi
B 0.085		puri
B 0.057		rewa
	6 70	pige
	3 70	supl
в 0.000	0 70	tawa
	PAIR:	=3 PEST=unknpr

Remiger's and Val's -number of fruits predated by unknown agents

General Linear Models ProcedureClass Level InformationClassLevels ValuesSUPPRESS21 2SITE2remi valsSPECIES10kahi kara kohe nika pige puri rewa supl tara tawaPEST1unknprPAIR13Number of observations in by group = 1060

NOTE: Due to missing values, only 700 observations can be used in this analysis.

General Linear Models Procedure								
Dependent Variable: RESULT =number of fruits predated by unknown agents								
Source	DF	Sum of	Mean Square	F Value	Pr > F			
		Squares						
Model	19	90.44328887	4.76017310	1.08	0.3644			
Error	680	2990.55528256	4.39787542					
Corrected Total	699	3080.99857143						
	R-Square	C.V.	Root MSE	RESULT Mean				
	0.029355	1482.806	2.09711121	0.14142857				
Source	DF	Type I SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	3.39324792	3.39324792	0.77	0.3800			
SPECIES	9	42.18428571	4.68714286	1.07	0.3861			
SUPPRESS*SPECIES	9	44.86575524	4.98508392	1.13	0.3363			
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
SUPPRESS	1	3.39324792	3.39324792	0.77	0.3800			
SPECIES	9	46.59146952	5.17682995	1.18	0.3066			
SUPPRESS*SPECIES	9	44.86575524	4.98508392	1.13	0.3363			

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 680 MSE= 4.397875 Alpha= 0.05 Critical Value of Studentized Range= 2.777 Minimum Significant Difference= 0.3118 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 348.8571 Means with the same letter are not significantly different. SUPPRESS Tukey Grouping Mean Ν 0.2152 330 2 А А 0.0757 370 1 General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: RESULT NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 680 MSE= 4.397875 Critical Value of Studentized Range= 4.489 Minimum Significant Difference= 1.1252 Means with the same letter are not significantly different. Tukey Grouping SPECIES Mean Ν 0.8286 70 kara Α Α 0.2714 70 tara 0.1857 А 70 nika А 0.0857 70 kohe 0.0143 70 А kahi 0.0143 70 А puri Α 0.0143 70 tawa 0.0000 70 А rewa 70 А 0.0000 pige 0.0000 70 Α supl

Appendix 7.5 SAS output for non-pest species droppings.

SAS syntax as per Appendix 7.2

----- SPECIES=insect -----

Insect (excluding weta) droppings analysis - Site nested within suppression

General Linear Models Procedure Class Level Information Levels Values Class SUPPRESS212SITE6loch remi robi vals wend whitSPECIES1insect Number of observations in by group = 198 General Linear Models Procedure Type I Estimable Functions for: SUPPRESS Effect Coefficients 0 INTERCEPT
 INTERCEPT
 0

 SUPPRESS
 1
 L2

 2
 -L2

 SITE(SUPPRESS)
 remi 1
 0.3333*L2

 whit 1
 0.3333*L2
 1 2 loch 2 -0.3333*L2 robi 2 -0.3333*L2 vals 2 -0.3333*L2 vals 2 -0.3333*L2 General Linear Models Procedure Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients 0 INTERCEPT 0 SUPPRESS 1 0 L4 L5 _T 2 SITE(SUPPRESS) remi 1 wend 1 whit 1 -L4-L5 L7 loch 2 robi 2 L8 vals 2 -L7-L8 Dependent Variable: DROPPINGS INSECT (excluding weta droppings)
 Source
 DF
 Sum OL Squares

 Model
 5
 719.58081061
 143.91616212
 3.29
 0.0071

 Error
 192
 8398.46433939
 43.74200177
 0
 0
 0.071

 Corrected Total
 197
 9118.04515000
 F-Square
 DROPP Mean
 16.82833333
 0.0078918
 39.30142
 6.61377364
 DROPP Mean
 16.82833333

 Source
 DF
 Type I SS
 Mean Square
 F Value
 Pr > F

 SUPPRESS
 1
 107.67131364
 107.67131364
 2.46
 0.1183

 SITE(SUPPRESS)
 4
 611.90949697
 152.97737424
 3.50
 0.0088
 Source DF Sum of Mean Square F Value Pr > F General Linear Models Procedure Type I Expected Mean Square Source Var(Error) + 99 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Dependent Variable: DROPPINGS INSECT (excluding weta droppings) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF MS F Value Pr > F DF Type I MS 107.67131364 192 43.742001768 2.4615 1 0.1183

Source: SITE(Error: MS(Err	,						
	Denominator	Denominator					
	DF	Type I MS	DF	MS	F Value	Pr > F	
	4	152.97737424	192	43.742001768	3.4973	0.0088	
Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 192 MSE= 43.742 Critical Value of Studentized Range= 2.789 Minimum Significant Difference= 1.8541							
Means	with the same le	tter are not s	ignific	cantly different	t.		
Tukey Groupin	g Mean	N SUP	PRESS				
A	17.5658						
A	16.0909	99 2					

Insect (excluding weta) droppings analysis - Differences between sites

General	l Linear	Models Procedure
Class I	Level In	formation
Class	Levels	Values
SUPPRESS	2	1 2
SITE	б	loch remi robi vals wend whit
SPECIES	1	insect
WEEKNO	26	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26		
Numbor	of obco	$r_{12} = 100$

Number of observations in by group = 198

Appendix 7.4

General Linear Models Procedure Dependent Variable: DROPPINGS INSECT (excluding weta droppings) Mean Square F Value Source DF Sum of Pr > F Squares 8348.54515000 53.86158161 Model 155 2.94 0.0001 Error 42 769.50000000 18.32142857 Corrected 197 9118.04515000 Total R-Square C.V. Root MSE DROPP Mean 0.915607 25.43540 4.28035379 16.82833333 Source DF Type I SS Mean Square F Value Pr > F 719.58081061 143.91616212 0.0001 SITE 5 7.86 0.0001 25 5605.99506667 224.23980267 WEEKNO 12.24 125 SITE*WEEKNO 2022.96927273 16.18375418 0.88 0.7044 Source DF Type III SS Mean Square F Value Pr > F SITE 5 644.42044815 128.88408963 7.03 0.0001 5605.99506667 WEEKNO 25 224.23980267 12.24 0.0001 SITE*WEEKNO 125 2022.96927273 16.18375418 0.88 0.7044

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 42 MSE= 18.32143 Critical Value of Studentized Range= 4.222 Minimum Significant Difference= 3.1457

	Means w	ith	the same 1	etter are	not signi	ficantly different.
Tukey	Grouping		Mean	N	SITE	
	A		20.091	33	wend	
В	A		18.091	33	whit	
В	A	С	17.394	33	vals	
В		С	15.576	33	robi	
В		С	15.303	33	loch	

C 14.515 33 remi

----- SPECIES=pigeon -----

Pigeon droppings analysis - Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE 6 loch remi robi vals wend whit SPECIES 1 pigeon Number of observations in by group = 198 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.3333*L2 wend 1 0.3333*L2 0.3333*L2 whit 1 loch 2 -0.3333*L2 robi 2 -0.3333*L2 vals 2 -0.3333*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients 0 INTERCEPT SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4wend 1 L5 whit 1 -L4-L5 loch 2 L7robi 2 г8 vals 2 -L7-L8 Dependent Variable: DROPPINGS PIGEON Source DF Sum of F Value Pr > F Mean Square Squares 5 Model 457.57575758 91.51515152 38.64 0.0001 192 454.78787879 2.36868687 Error Corrected 197 912.36363636 Total R-Square C.V. Root MSE DROPP Mean 0.501528 80.61711 1.53905389 1.90909091 Type I SS F Value Pr > F Source DF Mean Square 98.98989899 98.98989899 0.0001 SUPPRESS 41.79 1 SITE(SUPPRESS) 4 358.58585859 89.64646465 37.85 0.0001 Source Type I Expected Mean Square Var(Error) + 99 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: DROPPINGS PIGEON Source: SUPPRESS Error: MS(Error) Denominator Denominator DF DF Type I MS MS F Value Pr > F1 98.98989899 192 2.3686868687 41.7910 0.0001 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF DF MS F Value Type I MS Pr > F4 89.646464646 192 2.3686868687 37.8465 0.0001

Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.0	5 df= 1	192 MSE=	2.368	687	7	
Critical V	alue of St	udenti	ed Rai	nge	= 2.789	
Minimum Significant Difference= 0.4315						
Means with	the same	letter	are no	ot	significantly	different.
Grouping	Mean	N	S	UPP	RESS	
	2.6162	99	1			
	1.2020	99	2			
	Critical Va Minimum Sig	Critical Value of St Minimum Significant Means with the same Grouping Mean 2.6162	Critical Value of Studentiz Minimum Significant Differe Means with the same letter Grouping Mean N 2.6162 99	Critical Value of Studentized Ram Minimum Significant Difference Means with the same letter are no Grouping Mean N S 2.6162 99 1	Critical Value of Studentized Range Minimum Significant Difference= 0.4 Means with the same letter are not Grouping Mean N SUPP 2.6162 99 1	Means with the same letter are not significantly Grouping Mean N SUPPRESS 2.6162 99 1

Pigeon droppings analysis - Differences between sites

	al Linear Mode Level Informa				
Class	Levels Valu				
SUPPRESS	2 1 2				
SITE	6 loch	n remi robi vals	wend whit		
SPECIES	1 pige	eon			
WEEKNO 26 Numbe:		7 8 9 10 11 12 lons in by group	13 14 15 16 17 9 = 198	18 19 20 21	22 23 24 25 26
	al Linear Mode iable: DROPPI				
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares	-		
Model	155	759.86363636	4.90234604	1.35	0.1284
Error	42	152.50000000	3.63095238		
Corrected Total	197	912.36363636			
	R-Square	C.V.	Root MSE	DROPP Mean	
	0.832852	99.81221	1.90550581	1.90909091	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SITE	5	457.57575758	91.51515152	25.20	0.0001
WEEKNO	25	51.44696970	2.05787879	0.57	0.9334
SITE*WEEKNO	125	250.84090909	2.00672727	0.55	0.9936
Source	DF	Type III SS	Mean Square 83.99296296	F Value	Pr > F
SITE	5	419.96481481	83.99296296	23.13	0.0001
WEEKNO	25	51.44696970 250.84090909	2.05787879	0.57	0.9334
SITE*WEEKNO	125	250.84090909	2.00672727	0.55	0.9936
Tukey NOTE: genera Alpha Critic Minimu Means	This test cor ally has a hig = 0.05 df= cal Value of S um Significant	A Range (HSD) Te htrols the type gher type II err 42 MSE= 3.6309 Studentized Rang Difference= 1. e letter are not	e= 4.222 4004 significantly	e error rate, GWQ. different.	but
Tukey		Mean	N	SITE	
Grouping					
A		5.0909	33	wend	
	В	1.9697	33	remi	
C	В	1.9394	33	loch	
C	B	1.1212	33	vals	
C	В	0.7879	33	whit	
C		0.5455	33	robi	
		SPECII	Pg-weta		
		SPECI	ob-weta		

Weta droppings analysis - Site nested within suppress

Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 6 loch remi robi vals wend whit SPECIES 1 weta Number of observations in by group = 198 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 SITE(SUPPRESS) remi 1 0.3333*L2 wend 1 0.3333*L2 whit 1 0.3333*L2

loch	2	-0.3333*L2
robi	2	-0.3333*L2
vals	2	-0.3333*L2

Type I 1 Effect	Estimable F	unctions for: S Coefficients	ITE(SUPF	PRESS)				
INTERCEPT	0							
SUPPRESS	1	0						
SUPPRESS	2	0						
	=	-						
SITE(SUPPRESS)	remi 1	L4						
	wend 1	L5						
	whit 1	-L4-L5						
	loch 2	L7						
	robi 2	L8						
	vals 2	-L7-L8						
Dependent Varia	ble: DROPPI	NGS WETA						
Source	DF	Sum of	Mean So	quare	F Valu	e	Pr >	F
		Squares		-				
Model	5	1375.01515152	275.003	303030	18.91		0.00	01
Error	192	2791.57575758			10.71		0.00	01
Corrected	197	4166.59090909	11.339	13707				
Total	197	4100.59090909						
IULAI	R-Square	C V	Root MS	- T.	DROPP	Moon		
	-							
	0.330010	54.82837	3.81300	5400	6.9545	4545		
Source	DF	Type I SS	Moon S	quare	F Valu	0	Pr >	
				-	f valu 34.47	.e		
SUPPRESS	1	501.13636364	501.136				0.00	
SITE(SUPPRESS)	4	873.87878788	218.469	969697	15.03		0.00	101
Source Type I I SUPPRESS	Var(Error) + 99 Var(SUPPI		Q(SITE(S	SUPPRESS	;))		
SITE(SUPPRESS)	Var(Error) + Q(SITE(SUPP)	RESS))					
Tests o: Dependent Varia Source: SUPPRES Error: MS(Error	ble: DROPPI S	s for Mixed Mod NGS WETA	el Analy	rsis of V	Variance	2		
	, Denominato:	r Denominator						
	DF	Type I MS	DF	MS		F Val	1.1.0	Pr > F
					455051			
	1	501.13636364	192	14.539	457071	34.40	5/3	0.0001
Source: SITE(SU Error: MS(Error								
	Denominato	r Denominator						
	DF	Type I MS	DF	MS		F Va	lue	Pr > F
	4	218 46969697	192	14 539	457071	15 03	260	0 0001
	4	218.46969697	192	14.539	457071	15.02	260	0.0001
NOTE: T general Alpha= Critica	Studentize nis test co ly has a hi 0.05 df= l Value of	218.46969697 d Range (HSD) T ntrols the type gher type II er 192 MSE= 14.539 Studentized Ran t Difference= 1	est for I exper ror rate 946 ge= 2.78	variable cimentwis than RI	e: DROPE se error	þ		
NOTE: T] general Alpha= (Critica Minimum	Studentize nis test co ly has a hi 0.05 df= l Value of Significan	d Range (HSD) T ntrols the type gher type II er 192 MSE= 14.539 Studentized Ran t Difference= 1	est for I exper ror rate 046 ge= 2.78 .069	variable rimentwis 2 than RJ 39	e: DROPE se error EGWQ.	r rate		
NOTE: T general Alpha= (Critica Minimum Means w	Studentize his test co ly has a hi 0.05 df= l Value of Significan ith the sam	d Range (HSD) T ntrols the type gher type II er 192 MSE= 14.535 Studentized Ran t Difference= 1 e letter are no	est for I exper ror rate 946 ge= 2.78 .069 t signif	variable rimentwis 2 than RJ 39	e: DROPE se error EGWQ.	r rate		
NOTE: T general Alpha= Critica Minimum Means w Tukey Grouping	Studentize nis test co ly has a hi 0.05 df= l Value of Significan ith the sam Mean	d Range (HSD) T ntrols the type gher type II er 192 MSE= 14.539 Studentized Ran t Difference= 1 e letter are no N SU	est for I exper ror rate 046 ge= 2.78 .069	variable rimentwis 2 than RJ 39	e: DROPE se error EGWQ.	r rate		
NOTE: T general Alpha= (Critica Minimum Means w	Studentize his test co ly has a hi 0.05 df= l Value of Significan ith the sam	d Range (HSD) T ntrols the type gher type II er 192 MSE= 14.535 Studentized Ran t Difference= 1 e letter are no	est for I exper ror rate 946 ge= 2.78 .069 t signif	variable rimentwis 2 than RJ 39	e: DROPE se error EGWQ.	r rate		

Weta droppings analysis - Differences between sites

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE 6 loch remi robi vals wend whit SPECIES 1 weta WEEKNO 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Number of observations in by group = 198

General Linear Models Procedure

Dependent Var	iable: DRO	PPINGS WETA			
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares			
Model	155	3786.59090909	24.42961877	2.70	0.0002
Error	42	380.00000000	9.04761905		
Corrected	197	4166.59090909			
Total					
	R-Square	C.V.	Root MSE	DROPP Mean	
	0.908798	43.25122	3.00792604	6.95454545	
2				1	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SITE	5	1375.01515152	275.00303030	30.40	0.0001
WEEKNO	25	1362.42424242	54.49696970	6.02	0.0001
SITE*WEEKNO	125	1049.15151515	8.39321212	0.93	0.6332
_					
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SITE	5	1206.39259259	241.27851852	26.67	0.0001
WEEKNO	25	1362.42424242	54.49696970	6.02	0.0001
SITE*WEEKNO	125	1049.15151515	8.39321212	0.93	0.6332

General Linear Models Procedure Tukey's Studentized Range (HSD) Test for variable: DROPP NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 42 MSE= 9.047619 Critical Value of Studentized Range= 4.222 Minimum Significant Difference= 2.2106 Means with the same letter are not significantly different. SITE Tukey Grouping Mean Ν А 11.3333 33 wend 9.5152 33 whit А В 6.7576 33 vals С 5.2727 33 В robi С 4.7879 33 В remi С 4.0606 33 loch

Appendix 7.6 SAS output for total number of birds noted per species and per visit to each site.

proc sort data = work.multbird; by species site; run;

proc glm data = work.multbird; class control site species ; model TOTBIRD = suppress site(suppress) /E1; random suppress / test; by species; means suppress / tukey; run;

Where

TOTBIRD Species Suppress	 the total number of birds, for a particular species, noted during a visit to a site the species of bird noted 1 when the site had pest suppression and 2 when it didn't the name of the site Since the independent variable 'suppress' was defined as random (see below) it was necessary to specify whether the test should be more
Suppress	1 when the site had pest suppression and 2 when it didn't the name of the site Since the independent variable 'suppress' was defined as random (see below) it was necessary to specify whether the test should be more
	the name of the site Since the independent variable 'suppress' was defined as random (see below) it was necessary to specify whether the test should be more
	Since the independent variable 'suppress' was defined as random (see below) it was necessary to specify whether the test should be more
Site	below) it was necessary to specify whether the test should be more
E1	conservative with regards to Type I or Type II statistical error. E1 specifies that the model produces the Type I sum of squares (SAS Institute Inc. 1990b) and thus the null hypothesis is more likely to be retained unless there are indeed significant differences between the tested variables. (Type I error <i>rejects</i> the null hypothesis when it is true, while a Type II error <i>accepts</i> the null hypothesis when it is false (Rowntree 1991)).
si	s set as a random variable since it is theoretically possible to choose different ites with the same, or similar, levels of pest suppression. The level of uppression was not necessarily determined by the site, applied in a redetermined way or fixed to a specific value.
Site, where used,	was nested in suppress(ion) since the site was chosen within different levels of est suppression.

----- SPECIES=kereru -----

Number of kereru seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 6 Loch remi robi vals wend whit SPECIES 1 kereru Number of observations in by group = 183 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0

SUPPRESS	1	L2
	2	-L2
SITE(SUPPRESS)	remi 1	0.3438*L2
	wend 1	0.3646*L2
	whit 1	0.2917*L2
	Loch 2	-0.3678*L2
	robi 2	-0.3333*L2
	vals 2	-0.2989*L2

Type I Estimable Functions for: SITE(SUPPRESS) Coefficients Effect INTERCEPT 0 SUPPRESS 0 1 2 0 SITE(SUPPRESS) remi 1 L4wend 1 ь5 whit 1 -L4-L5 Loch 2 т.7 robi 2 г8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (kereru) Source DF Sum of Mean Square F Value Pr > F Squares 1890.38338150 Model 5 378.07667630 19.95 0.0001 Error 177 3354.84066221 18.95390205 Corrected 182 5245.22404372 Total R-Square C.V. Root MSE TOTBIRD Mean 0.360401 68.21149 4.35360793 6.38251366 Source DF Type I SS Mean Square F Value Pr > FSUPPRESS 1 887.67950349 887.67950349 46.83 0.0001 1002.70387802 250.67596950 SITE(SUPPRESS) 13.23 0.0001 4 Type I Expected Mean Square Source Var(Error) + 91.279 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (kereru) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS F Value DF DF MS Pr > F887.67950349 177 18.953902046 46.8336 0.0001 1 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 0.0001 250.6759695 177 18.953902046 13.2256 4 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 177 MSE= 18.9539 Critical Value of Studentized Range= 2.791 Minimum Significant Difference= 1.2718 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 91.27869 Means with the same letter are not significantly different. SUPPRESS Tukey Grouping Mean Ν 8.4792 96 Α 1 В 4.0690 87 2

------ SPECIES=tui ------

Number of tui seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE Loch remi robi vals wend whit 6 SPECIES tui 1 Number of observations in by group = 176 Type I Estimable Functions for: SUPPRESS Effect Coefficients 0 INTERCEPT SUPPRESS 1 L2 2 -L2 0.3548*L2 SITE(SUPPRESS) remi 1 wend 1 0.3763*L2 whit 1 0.2688*L2 Loch 2 -0.3976*L2 robi 2 -0.2651*L2 vals 2 -0.3373*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (tui) Sum of Squares Mean Square 16430.23245671 3286.04649134 Source DF F Value Pr > F Model 5 16430.23245671 18.01 0.0001 Error 170 31015.08004329 182.44164731 175 47445.31250000 Corrected Total R-Square C.V. Root MSE TOTBIRD Mean 0.346298 100.5179 13.50709618 13.43750000 F Value Pr > FSource DF Type I SS Mean Square SUPPRESS 5000.61163201 5000.61163201 27.41 0.0001 1 SITE(SUPPRESS) 11429.62082470 2857.40520617 15.66 0.0001 4 Type I Expected Mean Square Source Var(Error) + 87.716 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F182.44164731 27.4094 1 5000.611632 170 0.0001 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 4 2857.4052062 170 182.44164731 15.6620 0.0001 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD

NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 170 MSE= 182.4416

Critical	Value of S	tudenti	zed Range= 2.792		
Minimum Significant Difference= 4.0261					
WARNING	WARNING: Cell sizes are not equal.				
Harmonio	Mean of ce	ll size:	s= 87.71591		
Means w	th the same	letter	are not significantly different.		
Tukey Grouping	Mean	N	SUPPRESS		
A	18.473	93	1		
В	7.795	83	2		

----- SPECIES=rosella -----

Number of rosella seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE б Loch remi robi vals wend whit SPECIES 1 rosella Number of observations in by group = 142 Type I Estimable Functions for: SUPPRESS Coefficients Effect INTERCEPT 0 SUPPRESS 1 T.2 2 -T.2 SITE(SUPPRESS) remi 1 0.2078*L2 0.4026*L2 wend 1 whit 1 0.3896*L2 Loch 2 -0.3538*L2 robi 2 -0.4615*L2 vals 2 -0.1846*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 0 1 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 L7 Loch 2 robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (Rosella) F Value Source DF Sum of Mean Square Pr > F Squares 5 75.35177293 Model 376.75886463 5.13 0.0002 Error 136 1995.83268467 14.67524033 2372.59154930 Corrected 141 Total R-Square C.V. Root MSE TOTBIRD Mean 0.158796 74.31387 3.83082763 5.15492958 F Value Pr > F Source DF Type I SS Mean Square SUPPRESS 177.38315769 177.38315769 12.09 0.0007 1 SITE(SUPPRESS) 199.37570694 49.84392674 3.40 0.0111 4 Type I Expected Mean Square Source Var(Error) + 70.493 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (Rosella) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F14.675240328 12.0872 1 177.38315769 136 0.0007 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F4 49.843926736 136 14.675240328 3.3965 0.0111 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD

NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 136 MSE= 14.67524

Critical Value of S	tudentize	d Range= 2.797
Minimum Significant	Differen	ce= 1.276
WARNING: Cell sizes	are not	equal.
Harmonic Mean of ce	ll sizes=	70.49296
Means with the same	letter a	re not significantly different.
Tukey Grouping Mean	N S	SUPPRESS
A 6.1818	77 1	L
в 3.9385	65 2	2
	SI	PECIES=silvereye

Number of silvereyes seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 6 Loch remi robi vals wend whit SITE SPECIES 1 silvereye Number of observations in by group = 165 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 L2 SUPPRESS 1 2 -L2 SITE(SUPPRESS) remi 1 0.2651*L2 wend 1 0.4217*L2 0.3133*L2 whit 1 -0.3293*L2 Loch 2 robi 2 -0.3415*L2 vals 2 -0.3293*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 0 1 2 0 SITE(SUPPRESS) remi 1 L4 г2 wend 1 whit 1 -T.4-T.5 Loch 2 L7 robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (sileveyes) Source DF Sum of Squares Mean Square F Value Pr > F 677.58244829 0.0001 Model 3387.91224146 15.05 5 Error 159 7156.89987975 45.01194893 Corrected 164 10544.81212121 Total TOTBIRD Mean R-Square C.V. Root MSE 0.321287 64.21117 6.70909449 10.44848485 DF Mean Square F Value Pr > FSource Type I SS SUPPRESS 1 698.78464546 698.78464546 15.52 0.0001 SITE(SUPPRESS) 4 2689.12759601 672.28189900 14.94 0.0001 Source Type I Expected Mean Square Var(Error) + 82.497 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (silvereyes) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS F Value Pr > F DF MS 45.011948929 15.5244 698.78464546 159 0.0001 1

Source: SITE(SUPPRESS)

Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 159 45.011948929 14.9356 0.0001 4 672,281899 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 159 MSE= 45.01195 Critical Value of Studentized Range= 2.793 Minimum Significant Difference= 2.0631 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 82.49697 Means with the same letter are not significantly different. SUPPRESS Tukey Grouping Mean Ν 12.494 83 1 Α 8.378 в 82 2 ------ SPECIES=blackbird -----

Number of blackbirds seen per visit- Site nested within suppression

General Linear Models Procedure Class Level Information Levels Values Class SUPPRESS 2 1 2 Loch remi robi vals wend whit SITE 6 SPECIES 1 blackbird Number of observations in by group = 111 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.2361*L2 wend 1 0.4583*L2 whit 1 0.3056*L2 Loch 2 -0.2564*L2 robi 2 -0.4615*L2 vals 2 -0.2821*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 0 SUPPRESS 1 2 0 SITE(SUPPRESS) remi 1 Ъ4 wend 1 ь5 whit 1 -T.4-T.5 Loch 2 L7 robi 2 г8 vals 2 -1.7-1.8 Dependent Variable: TOTBIRD (blackbirds) Source DF Sum of Mean Square F Value Pr > F Squares Model 5 284.30233014 56.86046603 12.62 0.0001 105 473.12109329 Error 4.50591517 757.42342342 Corrected 110 Total Root MSE TOTBIRD Mean R-Square C.V. 0.375355 65.08875 2.12271411 3.26126126 Source DF Type I SS Mean Square F Value Pr > F 70.36038924 70.36038924 0.0001 SUPPRESS 1 15.62 SITE(SUPPRESS) 4 213.94194090 53.48548523 11.87 0.0001 Type I Expected Mean Square Source SUPPRESS Var(Error) + 50.595 Var(SUPPRESS) + Q(SITE(SUPPRESS)) Var(Error) + Q(SITE(SUPPRESS)) SITE(SUPPRESS)

Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (blackbirds) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF F Value Pr > FMS 70.360389235 105 4.5059151742 15.6151 0.0001 1 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator Type I MS DF F Value DF MS Pr > F 53.485485226 105 4.5059151742 11.8701 4 0.0001 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 105 MSE= 4.505915 Critical Value of Studentized Range= 2.804 Minimum Significant Difference= 0.8368 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 50.59459 Means with the same letter are not significantly different. Ν SUPPRESS Tukey Grouping Mean 72 3.8472 А 1 2.1795 39 2 в ----- SPECIES=thrush -----

Number of thrushes seen per visit- Site nested within suppression

Class Level Information Levels Values Class 2 1 2 4 remi robi wend whit SUPPRESS SITE 4 1 thrush SPECIES Number of observations in by group = 28 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.1111*L2 0.6667*L2 wend 1 whit 1 0.2222*L2 robi 2 -L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients 0 INTERCEPT SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 т.4 wend 1 г2 whit 1 -L4-L5 robi 2 0 Dependent Variable: TOTBIRD (thrushes) F Value Source DF Sum of Mean Square Pr > F Squares Model 3 4.40079365 1.46693122 0.73 0.5446 Error 24 48.27777778 2.01157407 Corrected 27 52.67857143 Total R-Square C.V. Root MSE TOTBIRD Mean 1.41829971 0.083540 67.30914 2.10714286 Source DF Type I SS Mean Square F Value Pr > F SUPPRESS 1 0.01190476 0.01190476 0.01 0.9393

2.1944444 1.09 SITE(SUPPRESS) 2 4.38888889 0.3520 Source Type I Expected Mean Square SUPPRESS Var(Error) + 1.9286 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (thrushes) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS MS F Value Pr > F 2.0115740741 0.005918 0.9393 1 0.0119047619 24 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF DF Type I MS F Value Pr > F MS 2.0115740741 1.0909 2 2.194444444 24 0.3520 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 24 MSE= 2.011574 Critical Value of Studentized Range= 2.919 Minimum Significant Difference= 2.9809 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 1.928571 Means with the same letter are not significantly different. SUPPRESS

Tukey Group	ing Mean	N	SUPPRES
A	2.111	27	1
A	2.000	1	2

----- SPECIES=myna -----

Number of myna seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 1 2 2 Loch remi robi vals wend whit SITE б SPECIES 1 myna Number of observations in by group = 131 Type I Estimable Functions for: SUPPRESS Effect Coefficients 0 INTERCEPT SUPPRESS 1 L2 2 -L2 0.35*L2 SITE(SUPPRESS) remi 1 wend 1 0.2875*L2 whit 1 0.3625*L2 Loch 2 -0.1765*L2 robi 2 -0.549*L2 vals 2 -0.2745*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7 robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (myna) Source DF Sum of Mean Square F Value Pr > F Squares Model 5 1110.92395605 222.18479121 3.86 0.0027 125 7187.82413555 57.50259308 Error Corrected 130 8298.74809160 Total R-Square Root MSE TOTBIRD Mean C.V. 0.133866 137.9693 7.58304643 5.49618321 Type I SS F Value Pr > F Source DF Mean Square 383.61353278 SUPPRESS 383.61353278 0.0109 6.67 1 SITE(SUPPRESS) 4 727.31042327 181.82760582 3.16 0.0163 Source Type I Expected Mean Square Var(Error) + 62.29 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (myna) Source: SUPPRESS Error: MS(Error) Denominator Denominator Pr > F DF Type I MS DF MS F Value 383.61353278 57.502593084 6.6712 0.0109 1 125 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 181.82760582 125 57.502593084 4 3.1621 0.0163

Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.05 df= 125 MSE= 57.50259 Critical Value of Studentized Range= 2.799 Minimum Significant Difference= 2.6892 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 62.29008 Means with the same letter are not significantly different. Tukey Grouping Ν SUPPRESS Mean 6.863 80 Α 1 в 3.353 51 2 ------ SPECIES=fantail -----

Number of fantails seen per visit- Site nested within suppression

Class Level Information Class Levels Values 1 2 SUPPRESS 2 SITE б Loch remi robi vals wend whit SPECIES fantail 1 Number of observations in by group = 196 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.32*L2 wend 1 0.35*L2 whit 1 0.33*L2 Loch 2 -0.3437*L2 robi 2 -0.3437*L2 vals 2 -0.3125*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 T.5 -L4-L5 whit 1 Loch 2 т.7 robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (fantails) DF F Value Pr > F Source Sum of Mean Square Squares 5 2599.64446506 519.92889301 2440.74329004 12.84601732 0.0001 Model 40.47 Error 190 Corrected 195 5040.38775510 Total R-Square C.V. Root MSE TOTBIRD Mean 56.74396 3.58413411 0.515763 6.31632653 DF Mean Square F Value Pr > F Source Type I SS 222.38942177 SUPPRESS 1 222.38942177 17.31 0.0001 2377.25504329 594.31376082 SITE(SUPPRESS) 4 46.26 0.0001 Source Type I Expected Mean Square Var(Error) + 97.959 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (fantails) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS F Value DF DF MS Pr > F12.846017316 17.3119 222.38942177 190 0.0001 1

Source: SITE(SUPPRESS)

Error: MS(Error)

Error:	MS(Error)					
			Denominator	Denominator		
	DF	Type I MS	DF	MS	F Value	Pr > F
	4	594.31376082	190	12.846017316	46.2644	0.0001
	NOTE: Thi generally Alpha= 0. Critical Minimum S WARNING: Harmonic	s test controls has a higher t 05 df= 190 M Value of Studer ignificant Diff Cell sizes are Mean of cell s	s the type I e type II error SE= 12.84602 htized Range= ference= 1.010 not equal. izes= 97.95918)2	error rate, Q.	but
mula era				5 1	llerent.	
-	Grouping			JPPRESS		
A		7.3600				
В		5.2292	96 2			

------ SPECIES=harrier -----

Number of harriers seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE Loch remi robi vals wend whit б SPECIES harrier 1 Number of observations in by group = 85Type I Estimable Functions for: SUPPRESS Effect Coefficients 0 INTERCEPT SUPPRESS 1 L2 2 -L2 0.359*L2 SITE(SUPPRESS) remi 1 wend 1 0.1795*L2 whit 1 0.4615*L2 Loch 2 -0.4565*L2 -0.1957*L2 robi 2 vals 2 -0.3478*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (Harriers) Source DF Sum of Mean Square F Value Pr > F Squares Model 5 15.17801120 3.03560224 1.95 0.0951 79 122.86904762 1.55530440 Error Corrected 84 138.04705882 Total R-Square Root MSE TOTBIRD Mean C.V. 0.109948 65.84166 1.24711844 1.89411765 Type I SS F Value Pr > F Source DF Mean Square 4.61617811 0.0888 SUPPRESS 4.61617811 2.97 1 SITE(SUPPRESS) 4 10.56183309 2.64045827 1.70 0.1588 Source Type I Expected Mean Square Var(Error) + 42.212 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (Harriers) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS Pr > F DF DF MS F Value 4.61617811 1.5553044002 2.9680 0.0888 1 79 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 2.6404582736 1.5553044002 1.6977 4 79 0.1588

Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.0	5 df=	79 MSE=	1.555304
Critical V	alue of S	tudentiz	zed Range= 2.815
Minimum Si	gnificant	Differe	ence= 0.5403
WARNING: C	ell sizes	are not	equal.
Harmonic M	ean of ce	ll sizes	s= 42.21176
Means with	the same	letter	are not significantly different.
Tukey Grouping	Mean	N	SUPPRESS
A	2.1087	46	2
A	1.6410	39	1
			SPECIES=pukeko

Number of pukeko seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 5 Loch robi vals wend whit SITE SPECIES 1 pukeko Number of observations in by group = 20 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) 0.6667*L2 wend 1 0.3333*L2 whit 1 -0.25*L2 Loch 2 robi 2 -0.625*L2 vals 2 -0.125*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) wend 1 L4 whit 1 -T.4 Loch 2 Lб robi 2 т.7 vals 2 -L6-L7 Dependent Variable: TOTBIRD (pukeko) Source DF Sum of Mean Square F Value Pr > F Squares Model 4 2.92500000 0.73125000 0.74 0.5808 14.87500000 15 0.99166667 Error Corrected 19 17.80000000 Total TOTBIRD Mean R-Square C.V. Root MSE 0.164326 52.41182 0.99582462 1.90000000 Source Type I SS Mean Square F Value Pr > F DF SUPPRESS 1.00833333 1.00833333 1.02 0.3293 1 SITE(SUPPRESS) 3 1.91666667 0.63888889 0.64 0.5985 Source Type I Expected Mean Square SUPPRESSVar(Error) + 9.6Var(SUPPRESS) + Q(SITE(SUPPRESS))SITE(SUPPRESS)Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (pukeko) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS F Value Pr > FDF DF MS 1.0083333333 15 0.9916666667 1.0168 0.3293 1 Source: SITE(SUPPRESS)

Error: MS(Error)

Denominator Denominator DF DF F Value Pr > F Type I MS MS 3 0.6388888889 15 0.9916666667 0.6443 0.5985 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than $\ensuremath{\mathtt{REGWQ}}$. Alpha= 0.05 df= 15 MSE= 0.991667 Critical Value of Studentized Range= 3.014 Minimum Significant Difference= 0.9688 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 9.6 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS 2.0833 12 1.6250 8 А 1 А 2 ----- SPECIES=kingfish -----

Number of kingfishers seen per visit- Site nested within suppression

	Class SUPPRESS SITE SPECIES	5 2 6 1	els Values 1 2	bbi vals wend w	hit	
	TT TT TT	ratimable Fi	unctions for: SU	הטשבפט		
Effect	турет п	SCIMADIE FU	Coefficients			
INTERCE	יסיי	0	COELLICIENCS			
SUPPRES		1	L2			
DOLLKER		2	-L2			
਼ਰਾਜਾਓ (ਫਾ	JPPRESS)	remi 1	0.2381*L2			
DIID(DC	JIIREDD,	wend 1	0.4127*L2			
		whit 1	0.3492*L2			
		Loch 2	-0.3704*L2			
		robi 2	-0.3704*L2			
		vals 2	-0.2593*L2			
		Valb 2	-0.2393 112			
	Type I F	Stimable Fu	unctions for: SI	TE (SUPPRESS)		
Effect	I/PC I I	Joermabre re	Coefficients			
INTERCE	יסיי	0	COCITICICICS			
SUPPRES		1	0			
DOLLKER		2	0			
਼ਰਾਜਾਓ (ਫਾ	JPPRESS)	remi 1	5 L4			
DIIE(DC	JEERLOO)	wend 1	L5			
		whit 1	-L4-L5			
		Loch 2	-14-15 L7			
		robi 2	L8			
		vals 2	-L7-L8			
		Vals 2	-11/-10			
Depende	nt Varia	hla. TOTRIR	D (kingfishers)			
Source	ant varia	DIE: IOIBIR DF	Sum of	Moon Sauaro	F Value	Pr > F
Source		DF		Mean Square	r value	PI > F
Model		5	Squares 39.71182151	7.94236430	1.43	0.2195
Error		111	617.05740926	5.55907576	1.43	0.2195
Correct	- od	116	656.76923077	5.55907570		
Total	Leu	110	050.70925077			
IULAI		D. Comore	C.V.	Root MSE	TOTBIRD Mean	
		R-Square 0.060465	C.V. 75.99421	2.35776923	3.10256410	
		0.060465	/5.99421	2.35770923	3.10250410	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRES	10	1	4.57875458	4.57875458	0.82	0.3661
		4	35.13306693		1.58	0.1846
STIE(SC	JPPRESS)	7	22.12200052	0.10320013	1.00	0.1040
Source			oated Mean Come	r 0		
SUPPRES	20		ected Mean Squa + 58.154 Var(S			
	JPPRESS)		+ 96.154 Val(5 + Q(SITE(SUPPR		IE(SUPPRESS))	
STIE(SC	FERESS)	var(ErrOr)	· V(STIE(SOPPR	// COH		

Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (kingfishers) Source: SUPPRESS Error: MS(Error) Denominator Denominator MS 5.5590757591 0.8237 F Value Pr > F 0.8237 0.3661 DF Type I MS DF 4.5787545788 111 1 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator Type I MS DF F Value Pr > F 8.7832667333 111 4 0.1846 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 111 MSE= 5.559076 Critical Value of Studentized Range= 2.802 Minimum Significant Difference= 0.8664 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 58.15385 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS 1 А 3.2857 63 2.8889 54 2 А ----- SPECIES=warbler -----

Number of warblers seen per visit- Site nested within suppression

Class Level Information Levels Values Class 1 2
 Loch remi robi vals wend whit SUPPRESS SITE 6 1 warbler SPECIES Number of observations in by group = 185 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.3368*L2 0.3579*L2 wend 1 whit 1 0.3053*L2 Loch 2 -0.3667*L2 robi 2 -0.3*L2 vals 2 -0.3333*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients 0 INTERCEPT SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7 robi 2 L8 -L7-L8 vals 2 Dependent Variable: TOTBIRD (warblers) DF Sum of Source Mean Square F Value Pr > F Squares 5 447.51273031 89.50254606 10.21 0.0001 Model 179 1568.50889131 8.76261950 Error Corrected 184 2016.02162162 Total R-Square C.V. Root MSE TOTBIRD Mean

0.221978 62.51505 2.96017221 4.73513514 Source DF Type I SS Mean Square F Value Pr > F SUPPRESS 10.31869765 10.31869765 1.18 0.2793 1 109.29850817 12.47 SITE(SUPPRESS) 4 0.0001 437.19403266 Type I Expected Mean Square Source SUPPRESS Var(Error) + 92.432 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (warblers) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Pr > F DF Type I MS MS F Value 1 10.318697645 179 8.7626195045 1.1776 0.2793 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator F Value DF Type I MS DF MS Pr > F109.29850817 179 8.7626195045 12.4733 0.0001 4 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 179 MSE= 8.76262 Critical Value of Studentized Range= 2.791 Minimum Significant Difference= 0.8592 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 92.43243 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS A 4.9778 90 2 4.5053 95 1 А ------ SPECIES=finches ------

Number of finches seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE б Loch remi robi vals wend whit SPECIES 1 finches Number of observations in by group = 96 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.2931*L2 wend 1 0.4483*L2 whit 1 0.2586*L2 -0.3947*L2 Loch 2 robi 2 -0.3158*L2 vals 2 -0.2895*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7 robi 2 L8 -L7-L8 vals 2

Dependent Variable: TOTBIRD (finches) Source DF Sum of Mean Square F Value Pr > F Squares 76.17367681 5 1.70 Model 15.23473536 0.1418 90 804.78465652 Error 8.94205174 Corrected 95 880.95833333 Total TOTBIRD Mean Root MSE R-Square C.V. 2.99032636 0.086467 92.60366 3.22916667 F Value Source DF Type I SS Mean Square Pr > F 33.44109195 33.44109195 0.0563 SUPPRESS 1 3.74 SITE(SUPPRESS) 4 42.73258486 10.68314621 1.19 0.3186 Source Type I Expected Mean Square SUPPRESS Var(Error) + 45.917 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (finches) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS DF F Value DF MS Pr > F8.9420517391 3.7398 1 33.441091954 90 0.0563 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 10.683146215 90 8.9420517391 1.1947 0.3186 4 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 90 MSE= 8.942052 Critical Value of Studentized Range= 2.810 Minimum Significant Difference= 1.2399 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 45.91667 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS 58 3.7069 Α 1 А 2.5000 38 2 ------ SPECIES=magpie -----

Number of magpies seen per visit- Site nested within suppression

Class Level Information Class Levels Values 1 2 SUPPRESS 2 б Loch remi robi vals wend whit SITE SPECIES 1 magpie Number of observations in by group = 76 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 SITE(SUPPRESS) remi 1 0.6897*L2 wend 1 0.2759*L2 whit 1 0.0345*L2 Loch 2 -0.2553*L2 robi 2 -0.234*L2 vals 2 -0.5106*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients

INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) remi 1 Ъ4 wend 1 L5 whit 1 -L4-L5 Loch 2 L7robi 2 L8 -L7-L8 vals 2 Dependent Variable: TOTBIRD (magpies) Mean Square F Value Source DF Sum of Pr > FSquares 5 377.84226475 7.75 0.0001 Model 75.56845295 70 682.82878788 Error 9.75469697 Corrected 75 1060.67105263 Total R-Square C.V. Root MSE TOTBIRD Mean 0.356229 87.58933 3.12325103 3.56578947 Source DF Type I SS Mean Square F Value Pr > F 66.01367919 66.01367919 6.77 0.0113 SUPPRESS 1 311.82858556 77.95714639 7.99 0.0001 SITE(SUPPRESS) 4 Source Type I Expected Mean Square SUPPRESS Var(Error) + 35.868 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (magpies) Source: SUPPRESS Error: MS(Error) Denominator Denominator Type I MS DF F Value Pr > F DF MS 66.013679191 70 9.7546969697 6.7674 0.0113 1 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator MS DF Type I MS DF F Value Pr > F 4 77.957146391 70 9.7546969697 7.9918 0.0001 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 70 MSE= 9.754697 Critical Value of Studentized Range= 2.821 Minimum Significant Difference= 1.471 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 35.86842 Means with the same letter are not significantly different. N SUPPRESS Tukey Grouping Mean 4.2979 47 А 2 2.3793 29 1 В ----- SPECIES=pheasant -----

Number of pheasants seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 1 2 2 SITE б Loch remi robi vals wend whit pheasant SPECIES 1 Number of observations in by group = 54 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2

SITE(SUPPRESS) remi 1 0.1111*L2 0.7037*L2 wend 1 whit 1 0.1852*L2 Loch 2 -0.4815*L2 robi 2 -0.3333*L2 -0.1852*L2 vals 2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT 0 SUPPRESS 1 0 2 0 SITE(SUPPRESS) L4 remi 1 wend 1 L5 whit 1 -L4-L5 Loch 2 L7robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (pheasants) Source DF Sum of Mean Square F Value Pr > FSquares 5 5.44471435 Model 1.08894287 1.38 0.2487 Error 48 37.88861898 0.78934623 Corrected 43.33333333 53 Total R-Square C.V. Root MSE TOTBIRD Mean 0.125647 57.11475 0.88845159 1.55555556 F Value Source DF Type I SS Mean Square Pr > F SUPPRESS 0.29629630 0.29629630 0.38 0.5430 1 SITE(SUPPRESS) 4 5.14841805 1.28710451 1.63 0.1819 Type I Expected Mean Square Source Var(Error) + 27 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SUPPRESS SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (pheasants) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 0.7893462288 0.3754 0.5430 0.2962962963 48 1 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF DF Type I MS MS F Value Pr > F4 1.2871045134 48 0.7893462288 1.6306 0.1819 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 48 MSE= 0.789346 Critical Value of Studentized Range= 2.844 Minimum Significant Difference= 0.4862 Means with the same letter are not significantly different. Mean Tukey Grouping SUPPRESS N 1.6296 27 1 А Α 1.4815 27 2 ----- SPECIES=skylark -----

Number of skylarks seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2

SITE 5 Loch remi robi wend whit SPECIES skylark 1 Number of observations in by group = 14 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 T.2 2 -L2 SITE(SUPPRESS) remi 1 0.5714*L2 wend 1 0.2857*L2 whit 1 0.1429*L2 Loch 2 -0.7143*L2 robi 2 -0.2857*L2 Type I Estimable Functions for: SITE(SUPPRESS) Effect Coefficients INTERCEPT Ω SUPPRESS 0 1 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 T.5 whit 1 -L4-L5 Loch 2 ц7 robi 2 -L7 Dependent Variable: TOTBIRD (skylarks) F Value Source DF Sum of Mean Square Pr > F Squares Model 4 2.62857143 0.65714286 0.87 0.5180 6.80000000 0.75555556 Error 9 Corrected 13 9.42857143 Total Root MSE TOTBIRD Mean R-Square C.V. 0.278788 60.84589 0.86922699 1.42857143 Source DF Type I SS Mean Square F Value Pr > F 1.14285714 0.2499 SUPPRESS 1.14285714 1.51 1 SITE(SUPPRESS) 3 1.48571429 0.49523810 0.66 0.5995 Source Type I Expected Mean Square SUPPRESS Var(Error) + 7 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (skylarks) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F1.1428571429 0.755555556 1.5126 0.2499 1 9 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 0.4952380952 9 0.7555555556 0.6555 0.5995 3 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 9 MSE= 0.755556 Critical Value of Studentized Range= 3.199 Minimum Significant Difference= 1.051 Means with the same letter are not significantly different. Mean Ν SUPPRESS Tukey Grouping 1.7143 7 A 1 7 А 1.1429 2

----- SPECIES=swallow -----

Number of swallows seen per visit- Site nested within suppression

Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE б Loch remi robi vals wend whit SPECIES 1 swallow Number of observations in by group = 37 Type I Estimable Functions for: SUPPRESS Effect Coefficients INTERCEPT 0 SUPPRESS 1 L2 2 -L2 0.1034*L2 SITE(SUPPRESS) remi 1 wend 1 0.7241*L2 0.1724*L2 whit 1 Loch 2 -0.5*L2 robi 2 -0.125*L2 vals 2 -0.375*L2 Type I Estimable Functions for: SITE(SUPPRESS) Coefficients Effect INTERCEPT 0 SUPPRESS 0 1 2 0 SITE(SUPPRESS) remi 1 L4 wend 1 ь5 whit 1 -T.4-T.5 Loch 2 L7 robi 2 L8 vals 2 -L7-L8 Dependent Variable: TOTBIRD (swallows) Source DF Sum of Mean Square F Value Pr > F Squares Model 5 54.98893179 10.99778636 0.92 0.4834 Error 31 372.03809524 12.00122888 Corrected 36 427.02702703 Total R-Square C.V. Root MSE TOTBIRD Mean 0.128772 90.26642 3.46427898 3.83783784 Source DF Type I SS Mean Square F Value Pr > FSUPPRESS 18.26840634 18.26840634 0.2266 1 1.52 SITE(SUPPRESS) 36.72052545 9.18013136 0.76 0.5562 4 Source Type I Expected Mean Square SUPPRESS Var(Error) + 12.541 Var(SUPPRESS) + Q(SITE(SUPPRESS)) SITE(SUPPRESS) Var(Error) + Q(SITE(SUPPRESS)) Tests of Hypotheses for Mixed Model Analysis of Variance Dependent Variable: TOTBIRD (swallows) Source: SUPPRESS Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F 1 18.268406337 31 12.001228879 1.5222 0.2266 Source: SITE(SUPPRESS) Error: MS(Error) Denominator Denominator DF Type I MS DF MS F Value Pr > F4 9.1801313629 31 12.001228879 0.7649 0.5562 Tukey's Studentized Range (HSD) Test for variable: TOTBIRD NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.05

df= 31 MSE= 12.00123 Critical Value of Studentized Range= 2.884

Minimum Si	gnificant	Differe	ence= 2.8216
WARNING: C	ell sizes	are not	t equal.
Harmonic M	ean of ce	ll size:	s= 12.54054
Means with	the same	letter	are not significantly different.
Tukey Grouping	Mean	N	SUPPRESS
A	4.207	29	1
A	2.500	8	2

proc sort data=work.occbird;

Appendix 7.7 SAS output for flock size per species and per site.

```
by species site;
run;
quit;
proc glm data=WORK.OCCBIRD;
  class SUPPRESS SITE NUMBER;
 model OCCASION = SUPPRESS SITE NUMBER ;
 by SPECIES;
 means control site number /tukey;
run;
quit;
Where
                       number of occasions that flock sizes of a particular size were noted at each
Occasion
                        site
Species
                       the species of bird noted
                       1when the site had pest suppression and 2 when it didn't
Suppress
Site
                       the name of the site
Number
                       the number of birds in the flock
  ------ SPECIES=kereru ------
Flock size of kereru per site
        General Linear Models Procedure
        Class Level Information
                 Levels Values
        Class

        SUPPRESS
        2
        1 2

        SITE
        6
        loch remi robi vals wend whit

        NUMBER
        21
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25

        Number of observations in by group = 126
Dependent Variable: OCCASION
            DF Sum of Squares Mean Square
25 35622.65079365 1424.90603175
                                                           F Value
                                                                          Pr > F
Source
                           35622.65079365 1424.90603175 28.07
Model
                                                                           0.0001
Error
                100
                           5076.55555556
                                            50.76555556
Corrected
               125
                         40699.20634921
Total
                                           Root MSE OCCASION
               R-Square C.V.
                                                           Mean
                0.875266 126.4436
                                           7.12499513
                                                            5.63492063
                         Type I SS Mean Square F Value
280.50793651 280.50793651 5.53
518.60317460 129.65079365 2.55
               DF
                                                           F Value
                                                                           Pr > F
Source
               1
SUPPRESS
                                                                           0.0207
SITE
                                                                           0.0435
                4
               20
                          34823.53968254 1741.17698413 34.30
NUMBER
                                                                            0.0001
                      Type III SS
0.00000000
               DF
                                           Mean Square F Value
                                                                            Pr > F
Source
SUPPRESS
               0
                           518.60317460
                                           129.65079365
                                                            2.55
                                                                            0.0435
SITE
                4
                          34823.53968254 1741.17698413 34.30
NUMBER
                20
                                                                            0.0001
       Tukey's Studentized Range (HSD) Test for variable: OCCASION
       NOTE: This test controls the type I experimentwise error rate, but
        generally has a higher type II error rate than REGWQ.
        Alpha= 0.05 df= 100 MSE= 50.76556
        Critical Value of Studentized Range= 2.806
        Minimum Significant Difference= 2.5186
       Means with the same letter are not significantly different.
Tukey Grouping Mean N SUPPRESS
                   7.127
                            63
А
                                    1
в
                   4.143
                            63
                                    2
```

С

С

0.000

0.000

б

б

20

25

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 100 MSE= 50.76556 Alpha= 0.05 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 6.3892 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE А 10.143 21 wend 7.143 В A 21 remi В А 6.000 21 loch В А 4.095 21 whit В А 4.000 21 vals В 2.429 21 robi Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 50.76556 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 15.088 Means with the same letter are not significantly different. NUMBER Tukey Grouping Mean N 75.500 А б 1 В 25.667 б 2 С 9.667 б 3 С 3.667 6 4 С 5 1.500 6 С 1.500 б б С 0.500 б 8 С 0.167 6 10 C C 0.167 6 12 7 0.000 6 С 0.000 б 9 С 0.000 6 11 С 0.000 б 13 С 0.000 б 14 С 0.000 б 15 С 0.000 б 16 С 0.000 6 17 0.000 С 6 18 С 0.000 б 19

			SPEC	CIES=tui		
Floalra	ize of thi	monsite				
FIOCK S	ize of tui	_				
		Linear Mo evel Infor	dels Procedure mation			
	Class	Le	vels Values			
	SUPPRES		1 2			
	SITE NUMBER Number (6 21 of observa		cobi vals wend w 5 7 8 9 10 11 12 p = 126		17 18 19 20 25
Depende	ent Varia	ble: OCCAS	SION			
Source		DF	-	Mean Square		Pr > F
Model Error		25	51307.03174603 12563.79365079		16.33	0.0001
Correct	ed	100 125	63870.82539683	125.03/93051		
Fotal		100	000,010200,000			
		R-Square	C.V.	Root MSE	OCCASION	
		0 002004	125 5207	11 00000007	Mean	
		0.803294	135.5387	11.20883297	8.26984127	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRES	SS	1		384.12698413	3.06	0.0834
SITE		4		654.93650794		0.0007
NUMBER		20	48303.15873016	2415.15793651	19.22	0.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRES	SS	0	0.0000000	•	•	•
		4	2619.74603175		5.21	0.0007
				654.93650794		
-		20		2415.15793651		0.0001
SITE NUMBER	Tukey's	20 Studentiz	48303.15873016 ed Range (HSD) T	2415.15793651 est for variable	19.22 e: OCCASION	0.0001
	Tukey's NOTE: Tì	20 Studentiz his test c	48303.15873016 ed Range (HSD) T ontrols the type	2415.15793651 est for variable I experimentwis	19.22 e: OCCASION se error rate	0.0001
	Tukey's NOTE: T general	20 Studentiz his test c ly has a h	48303.15873016 ed Range (HSD) T ontrols the type igher type II er	2415.15793651 est for variable I experimentwis ror rate than RN	19.22 e: OCCASION se error rate	0.0001
-	Tukey's NOTE: T general Alpha= (20 Studentiz his test c ly has a h 0.05 df	48303.15873016 ed Range (HSD) T ontrols the type	2415.15793651 est for variable I experimentwis ror rate than RM 379	19.22 e: OCCASION se error rate	0.0001
	Tukey's NOTE: T general Alpha= (Critical	20 Studentiz his test c ly has a h 0.05 df l Value of	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63	2415.15793651 est for variable I experimentwis ror rate than RM 379 ge= 2.806	19.22 e: OCCASION se error rate	0.0001
-	Tukey's NOTE: T general Alpha= (Critica Minimum	20 Studentiz his test c ly has a h 0.05 df l Value of Significa	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3	2415.15793651 est for variable I experimentwis ror rate than RM 379 ge= 2.806 .9622	19.22 e: OCCASION se error rate EGWQ.	0.0001
NUMBER	Tukey's NOTE: Th general: Alpha= (Critical Minimum Means w:	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no	2415.15793651 est for variable I experimentwis ror rate than RH 379 ge= 2.806 .9622 t significantly	19.22 e: OCCASION se error rate EGWQ.	0.0001
NUMBER	Tukey's NOTE: T general Alpha= (Critica Minimum	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE	2415.15793651 est for variable I experimentwis ror rate than RH 379 ge= 2.806 .9622 t significantly	19.22 e: OCCASION se error rate EGWQ.	0.0001
NUMBER	Tukey's NOTE: Th general: Alpha= (Critical Minimum Means w:	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1	2415.15793651 est for variable I experimentwis ror rate than RH 379 ge= 2.806 .9622 t significantly	19.22 e: OCCASION se error rate EGWQ.	0.0001
NUMBER Tukey G A	Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 10.016 6.524	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS	19.22 e: OCCASION se error rate EGWQ. different.	0.0001
TUMBER	Tukey's NOTE: Th general: Alpha= (Critica Minimum Means w: Grouping Tukey's	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION	0.0001 , but
TUMBER	Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping Tukey's NOTE: Th	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2	2415.15793651 est for variable I experimentwis ror rate than RH 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate	0.0001 , but
TUMBER	Tukey's NOTE: T general Alpha= (Critica Minimum Means w Grouping Tukey's NOTE: T general Alpha= (20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63	2415.15793651 est for variable I experimentwis ror rate than RJ 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RJ 379	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate	0.0001 , but
TUMBER	Tukey's NOTE: Th general Alpha= (Critica Minimum Means w: Grouping Tukey's NOTE: Th general Alpha= (Critica	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran	2415.15793651 est for variable I experimentwis ror rate than RJ 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RJ 379 ge= 4.109	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate	0.0001 , but
TUMBER	Tukey's NOTE: Th general Alpha= (Critica Minimum Means w: Grouping Tukey's NOTE: Th general Alpha= (Critica	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63	2415.15793651 est for variable I experimentwis ror rate than RJ 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RJ 379 ge= 4.109	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate	0.0001 , but
TUMBER	Tukey's NOTE: Th general Alpha= (Critica Minimum Means w: Grouping Tukey's NOTE: Th general Alpha= (Critica Minimum	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but
TUMBER Tukey G A	Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sar Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sar Mean	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 1 me letter are no N SITE	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but
Tukey G	Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping A	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 16.667	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 1 me letter are no N SITE 21 wend	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but
Tukey G A Cukey G	Tukey's NOTE: TI general: Alpha= (Critica: Minimum Means w: Grouping Tukey's NOTE: TI general: Alpha= (Critica: Minimum Means w: Grouping A A	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 16.667 10.381	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 1 me letter are no N SITE 21 wend 21 remi	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but
Tukey G A A Tukey G 3 3	Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping Tukey's NOTE: Th general: Alpha= (Critica: Minimum Means w: Grouping A	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sau Mean 16.667	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 1 me letter are no N SITE 21 wend	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but
Tukey G A A	Tukey's NOTE: TI generall Alpha= (Critical Minimum Means w: Grouping Tukey's NOTE: TI generall Alpha= (Critical Minimum Means w: Grouping A A A	20 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 10.016 6.524 Studentiz his test c ly has a h 0.05 df l Value of Significa ith the sa Mean 16.667 10.381 10.095	48303.15873016 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 3 me letter are no N SUPPRE 63 1 63 2 ed Range (HSD) T ontrols the type igher type II er = 100 MSE= 125.63 Studentized Ran nt Difference= 1 me letter are no N SITE 21 wend 21 remi 21 loch	2415.15793651 est for variable I experimentwis ror rate than RI 379 ge= 2.806 .9622 t significantly SS est for variable I experimentwis ror rate than RI 379 ge= 4.109 0.051	19.22 e: OCCASION se error rate EGWQ. different. e: OCCASION se error rate EGWQ.	0.0001 , but

	NOTE: Th general Alpha= (Critica)	nis test con	trols th her type 100 MSE= tudentiz	ne type e II er: 125.63 zed Rang	ror rate than 79 ge= 5.187	ise error rate,	but
	Means w	ith the same	letter	are not	t significantl	v different.	
Tukey Gr		Mean	N	NUMBER		y difference.	
A	ouping	84.333	6	1			
п	В			2			
a	B			3			
C	Б			4			
C							
C				5			
C		2.833		6			
C				7			
C				8			
C				10			
C		0.500		9			
C				11			
C				14			
C		0.333		13			
C		0.333	6	25			
С		0.167	б	12			
C		0.167	6	16			
С		0.167		19			
С		0.167	6	18 20			
C		0.167	6	20			
C		0.000	6	15			
C		0.000	6	17			
	General Class Le Class SUPPRESS SITE NUMBER		tion ls Valu 1 2 loch 1 2	es remi r 3 4 5 6		whit 2 13 14 15 16 17	7 18 19 20 25
Depender Source			ON Sum of Squares		Mean Square	F Value	Pr > F
Model			-	74603	216.02126984	19.42	0.0001
Error			112.269		11.12269841	-2.10	5.000T
Correcte	ed		512.801		11.12209011		
		-	.v. 18.3715		Root MSE 3.33507098	OCCASION Mean 2.81746032	
Source		DF I	ype I S	2	Mean Square	F Value	Pr > F
SUPPRESS	2		3.53174		33.53174603	3.01	0.0856
	0		76.6984		44.17460317	3.97	
SITE NUMBER			190.301		259.51507937	23.33	0.0049 0.0001
Source			ype III		Mean Square	F Value	D.0001 Pr > F
SUPPRESS	3		.0000000			- vurue	· ·
SITE	-		76.6984		44.17460317	3.97	0.0049
NUMBER			190.301		259.51507937	23.33	0.0001
	NOTE: Th	Studentized nis test con	Range (trols th	(HSD) Te	est for variab	le: OCCASION ise error rate,	

NOTE: This test controls the type I experimentwise error rate, b generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 11.1227 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 1.1789

Means with the same letterare not significantly different.Tukey GroupingMeanNSUPPRESSA3.3333631A2.3016632

SUPPRESS

SITE

NUMBER

0

4

20

539.93650794

6110.15873016

134.98412698

305.50793651

7.98

18.07

0.0001

0.0001

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but

generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 11.1227 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 2.9906 Means with the same letter are not significantly different. Ν Tukey Grouping Mean SITE А 4.429 21 wend В 4.095 21 whit Α 3.714 в 21 robi Α в Α 1.905 21 loch В 1.476 21 remi А в 1.286 21 vals Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 11.1227 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 7.0626 Means with the same letter are not significantly different. NUMBER Tukey Grouping Mean N А 22.000 б 1 А 20.500 б 2 10.333 3 В 6 С В 4.000 6 4 С 2.167 5 6 С 0.167 б 8 С 0.000 б 7 С 0.000 6 б C 0.000 6 9 С 0.000 б 10 С 0.000 б 11 С 0.000 б 12 С 0.000 13 6 С 0.000 6 14 С 0.000 б 15 С 0.000 6 16 С 0.000 17 б С 0.000 18 б С 0.000 б 19 С 0.000 б 20 С 0.000 25 б ----- SPECIES=silvereye ------ - - - - - - -Flock size of silvereyes per site General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 loch remi robi vals wend whit SITE б 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 NUMBER Number of observations in by group = 126 Dependent Variable: OCCASION Sum of F Value Source DF Mean Square Pr > FSquares 6703.46031746 268.13841270 0.0001 Model 25 15.86 100 1690.69841270 16.90698413 Error Corrected 125 8394.15873016 Total R-Square C.V. Root MSE OCCASION Mean 0.798586 98.49584 4.17460317 4.11181032 Source DF Type I SS Mean Square F Value Pr > FSUPPRESS 1 53.36507937 53.36507937 3.16 0.0787 SITE 4 539.93650794 134.98412698 7.98 0.0001 NUMBER 20 6110.15873016 305.50793651 18.07 0.0001 Source DF Type III SS Mean Square F Value Pr > F 0.00000000

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 100 MSE= 16.90698 Alpha= 0.05 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 1.4535 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SUPPRESS А 4.8254 63 1 А 3.5238 63 2 Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 16.90698 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 3.6872 Means with the same letter are not significantly different. Tukey Grouping SITE Mean Ν Α 8.857 21 wend В 3.905 21 vals В 3.667 21 loch в 3,476 21 whit В 3.000 21 robi В 2.143 21 remi Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 16.90698 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 8.7074 Means with the same letter are not significantly different. Tukey Grouping Mean NUMBER 23.833 3 А 17.667 В А 1 В А С 15.167 2 В С 13.667 4 5 С 7.833 D 3.500 б D D 3.500 8 D 0.833 9 D 0.667 7 D 0.500 10 D 0.333 18 D 0.167 11 D 0.000 13 D 0.000 12 D 0.000 15 D 0.000 16 D 0.000 17 0.000 D 14 0.000 D 19 D 0.000 20 D 0.000 25

----- SPECIES=blackbird -----

Flock size of blackbirds per site

				robi vals wend 6 7 8 9 10 11 1		7 18 19 20 25		
Depende		Linear able: OCO				;)		
Source		DF		m of uares		Mean Square	F Value	Pr > F
Model		25	43	23.222	22222	172.92888889	8.02	0.0001
Error		100		55.603		21.55603175		
Correct	ted	125	64	78.825	39683			
Total		R-Squar	e C	v		Root MSE	OCCASION Mean	
		0.66728		2.1546		4.64284737	1.84126984	
		0100720	5 25	2.1010		1101201/07	1.01120901	
Source		DF	Ту	pe I S	S	Mean Square	F Value	Pr > F
SUPPRES	SS	1	99	.55555	556	99.55555556	4.62	0.0340
SITE		4		1.1746		47.79365079	2.22	0.0725
NUMBER		20	40	32.492	06349	201.62460317	9.35	0.0001
Source		DF	T T 7	pe III	00	Mean Square	F Value	Pr > F
SUPPRES		0	-	0000000		Mean Square	r varue	FI > F
SITE		4		1.1746		47.79365079	2.22	0.0725
NUMBER		20	40	32.492	06349	201.62460317	9.35	0.0001
Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 21.55603 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 1.6412 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS A 2.7302 63 1 B 0.9524 63 2 Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 21.55603 Critical Value of Studentized Range 4.109 Minimum Significant Difference= 4.1634								
Tukey (Means w Grouping A		1	letter N 21	are no SITE wend	ot significantly	y different.	
В	A	2.000		21	whit			
В	А	1.383	1 :	21	robi			
В	A	1.09		21	remi			
В		0.85		21	vals			
В		0.619)	21	loch			

	NOTE: Th: generally Alpha= 0	is test co y has a h .05 df=	ontrols igher ty = 100 MSI	the type pe II ei E= 21.55	Cest for varial I experiments Fror rate than 603 nge= 5.187	wise error ra	
	Minimum 8	Significar	nt Diffe	erence= 9	9.832		
					ot significant	ly different.	
Tukey Gı A	rouping	Mean 26.000	N 6	NUMBE 1	R		
B		7.333	6	2			
B		3.500	6	3			
В		1.000	б	4			
В		0.333	б	5			
В		0.333	6	6			
B		0.167	6	9			
B B		0.000 0.000	6 6	8 7			
B		0.000	6	10			
B		0.000	6	11			
В		0.000	б	12			
В		0.000	б	13			
В		0.000	6	14			
B		0.000	6	15			
B B		0.000 0.000	6 6	16 17			
B			6	18			
B		0.000	6	19			
В		0.000	6	20			
В		0.000	б	25			
	Class Lev Class SUPPRESS SITE NUMBER		vels Va 1 1 100	2 ch remi	robi wend whit 6 7 8 9 10 11		.6 17 18 19 20 25
	Number of	f observat	ions in	ı by grou	ıp = 126		
-		le: OCCAS				_	
Source	I	OF	Sum of		Mean Square	F Value	Pr > F
Model		24	Squares	s 984127	8.26124339	2.05	0.0070
Error		24 101			4.02035204	2.05	0.00/0
Correcte Total		125	604.325		1.02033201		
		R-Square 0.328085	C.V. 587.535	55	Root MSE 2.00508155	OCCASION M6 0.34126984	ean
Source		OF	Туре І	SS	Mean Square	F Value	Pr > F
SUPPRESS		L	10.8650		10.86507937	2.70	0.1033
SITE		3	22.5793		7.52645503	1.87	0.1391
NUMBER		20	164.825		8.24126984	2.05	0.0107
Source		OF	Type II		Mean Square	F Value	Pr > F
SUPPRESS) 3	0.00000		7 52645502	• 1 87	• 0 1301
SITE NUMBER		3 20	164.825		7.52645503 8.24126984	1.87 2.05	0.1391 0.0107
	Tukey's S NOTE: Th:	Studentize is test co y has a hi	ed Range ontrols	e (HSD) 7 the type rpe II en	Test for varial I experiments rror rate than	ble: OCCASION wise error ra	

Means with the same letter are not significantly different.Tukey GroupingMeanNSUPPRESSA0.6349631A0.0476632

В

в

p.9

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95 df= 101 MSE= 4.020352 Critical Value of Studentized Range= 3.928

Comparisons significant at the 0.05 level are indicated by '***'. Simultaneous Simultaneous Difference Lower Upper SITE Confidence Between Confidence Comparison Limit Means Limit -0.5283 2.9092 wend - whit 1.1905 wend - remi -0.3854 1.3333 3.0521 wend - robi -0.0837 1.4048 2.8933 wend - loch -0.2426 1.4762 3.1950 -1.1905 whit - wend -2.9092 0.5283 whit - remi -1.5759 0.1429 1.8616 whit - robi -1.2742 0.2143 1.7028 whit - loch -1.4331 0.2857 2.0045 -3.0521 remi - wend -1.3333 0.3854 remi - whit -1.8616 -0.1429 1.5759 remi - robi -1.4171 0.0714 1.5599 remi - loch 1.8616 -1.5759 0.1429 robi - wend -2.8933 -1.4048 0.0837 -1.7028 -0.2143 robi - whit 1.2742 robi - remi -1.5599 -0.0714 1.4171 robi - loch -1.4171 0.0714 1.5599 loch - wend -3.1950 -1.4762 0.2426 loch - whit -2.0045 -0.2857 1.4331 loch - remi 1.5759 -1.8616 -0.1429loch - robi -1.5599 -0.0714 1.4171

> Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 101 MSE= 4.020352 Critical Value of Studentized Range= 5.186 Minimum Significant Difference= 4.245

Means with the same letter are not significantly different. Tukey Grouping Mean N NUMBER 5.333 б 1 Α 1.000 В 6 2 В 0.667 6 3 В 0.167 б 4 В 0.000 б 5 0.000 В б 6 B 0.000 6 7 В 0.000 6 8 В 0.000 б 9 0.000 б В 10 В 0.000 б 11 В 0.000 б 12 В 0.000 б 13 В 0.000 б 14 В 0.000 6 15 0.000 B б 16 В 0.000 б 17 0.000 в б 18 В 0.000 б 19 0.000 20

6

6

25

0.000

			—			
			SPEC	CIES=mvna		
				1 1		
Flock siz	ze of m	yna per site				
(General	Linear Mo	dels Procedure			
		evel Infor				
	Class		vels Values			
	SUPPRES SITE	S 2 6	12 logh momi	robi vals wend	whit	
-	NUMBER	21			.2 13 14 15 16 1	7 18 19 20 25
	-		tions in by gro		2 13 11 13 10 1	, 10 19 20 23
Donondon	+ Nomia	able: OCCAS		-		
Source	it varia	DF	SION Sum of	Mean Square	F Value	Pr > F
Dource		21	Squares	near byaare	i varac	11 / 1
Model		25	6012.00793651	240.48031746	18.70	0.0001
Error		100	1285.65079365	12.85650794		
Correcte	ed	125	7297.65873016			
Total						
		R-Square	C.V. 134.0609	Root MSE 3.58559729	OCCASION Mean	
		0.823827	134.0609	3.58559729	2.67460317	
Source		DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	3	1	108.64285714	108.64285714	8.45	0.0045
SITE		4	133.87301587	33.46825397	2.60	0.0404
NUMBER		20	5769.49206349	288.47460317	22.44	0.0001
Source		DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	3	0	0.00000000	•		
SITE		4	133.87301587	33.46825397	2.60	0.0404
NUMBER		20	5769.49206349	288.47460317	22.44	0.0001
	NOTE: T general Alpha= Critica Minimum	his test c ly has a h 0.05 df l Value of Significa	igher type II e = 100 MSE= 12.85 Studentized Ra nt Difference=	e I experimentw rror rate than 3 6551 nge= 2.806 1.2675	ise error rate, REGWQ.	but
Tukey Gr		ith the sa Mean	me letter are n N SUP	ot significantly PRESS	y different.	
A	Juping	3.6032				
В		1.7460				
	NOTE: T general Alpha= Critica	his test c ly has a h 0.05 df l Value of	ed Range (HSD) ontrols the typ igher type II e = 100 MSE= 12.85 Studentized Ra nt Difference=	e I experimentw rror rate than 1 6651 nge= 4.109	ise error rate,	but
I	Means w	ith the sa	me letter are n	ot significantl	y different.	
Tukey Gr		Mean	N SIT		-	
	A	4.333	21 whi			
_	A	4.286	21 rem			
B	A	3.238	21 rob			
B B	A A	2.190 1.143	21 wen 21 val			
B	11	0.857	21 Vai 21 loc			
			100			

	Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 12.85651 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 7.5931							
	Meang with	the same	letter	are not significantly different.				
Tukev (Frouping	Mean	N	NUMBER				
A	brouping	29.333	6	1				
В		14.333	-	2				
C		5.833		3				
C		2.333		4				
C		2.333		5				
C		0.833	6	8				
С		0.333	б	б				
С		0.333	б	20				
С		0.167	6	15				
С		0.167	б	9				
С		0.167	б	25				
С		0.000	б	10				
С		0.000	б	11				
C		0.000	б	14				
C		0.000	б	7				
C		0.000	б	16				
C		0.000	б	17				
С		0.000	б	18				
С		0.000	б	19				
С		0.000		12				
С		0.000	б	13				
				SPECIES=harrier				

Flock size of harriers per site

General Linear Models Procedure						
Class Level In:	formatic	n				
Class	Levels	Values				
SUPPRESS	2	1 2				
SITE	б	loch remi robi vals wend whit				
NUMBER	21	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25				
Number of obse	rvations	s in by group = 126				

Depende	ent Variabl	e: OCCASION			
Source	DF	Sum of	Mean Square	F Value	Pr > F
		Squares			
Model	25	1538.38888889	61.53555556	17.86	0.0001
Error	100	344.60317460	3.44603175		
Corrected	125	1882.99206349			
Total					
	R-Square	C.V.	Root MSE	OCCASION Mean	
	0.816992	184.1732	1.85634904	1.00793651	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	3.50000000	3.5000000	1.02	0.3160
SITE	4	28.73015873	7.18253968	2.08	0.0884
NUMBER	20	1506.15873016	75.30793651	21.85	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	0	0.0000000	•	•	•
SITE	4	28.73015873	7.18253968	2.08	0.0884
NUMBER	20	1506.15873016	75.30793651	21.85	0.0001

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 3.446032 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 0.6562 Means with the same letter are not significantly different.

Tukey Grouping	Mean	N	SUPPRESS
A	1.1746	63	2
A	0.8413	63	1

-			Test for variab pe I experimentw		hut
		-	error rate than 1		DUL
Alpha=	-	= 100 MSE= 3.4			
		Studentized R	9		
Minimum	Significa	nt Difference=	1.6646		
Means w	ith the sa	me letter are	not significantl	y different.	
Tukey Grouping			TE		
A	1.9048		och		
A A	1.1905 1.1429		nit		
A					
A		21 re 21 ro			
A	0.3810	21 we	end		
NOTE: T general Alpha= Critica	his test c ly has a h 0.05 df l Value of	ontrols the ty	ange= 5.187	ise error rate,	but
Means w	ith the sa	me letter are	not significantly	y different.	
Tukey Grouping			JMBER		
A B	15.500 5.667				
C	0.000				
C	0.000				
C	0.000				
C C	0.000 0.000				
C	0.000				
C	0.000				
C C	0.000 0.000				
C	0.000				
C	0.000	6 13	3		
C	0.000	6 14			
C C	0.000 0.000	6 15 6 16			
C	0.000	6 17			
С	0.000				
C	0.000				
C C	0.000 0.000	6 20 6 25			
		SPE	CIES=pukeko		
Class L Class SUPPRES SITE NUMBER	Linear Mo evel Infor Levels Va S 2 6 lo 21 l	dels Procedure mation lues 1 2 ch remi robi v	als wend whit 9 10 11 12 13 14	15 16 17 18 19	20 25
Number	or observa	cromp in by gr	0up = 120		
Dependent Varia Source	able: OCCAS DF	SION Sum of Squares	Mean Square	F Value	Pr > F
Model	25	29.69841270	1.18793651	5.29	0.0001
Error	100	22.46031746	0.22460317		
Corrected	125	52.15873016			
Total	R-Square 0.569385	C.V. 271.4287	Root MSE 0.47392317	OCCASION Mean 0.17460317	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	0.03174603	0.03174603	0.14	0.7077
SITE	4	2.50793651	0.62698413	2.79	0.0303
NUMBER	20	27.15873016	1.35793651	6.05	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	0	0.0000000	•	•	•
SITE NUMBER	4 20	2.50793651 27.15873016	0.62698413 1.35793651	2.79 6.05	0.0303 0.0001
NONDER	20	21.130/3010	TC0C61CC.T	0.05	0.0001

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 100 MSE= 0.224603 Alpha= 0.05 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 0.1675 Means with the same letter are not significantly different. Tukey Grouping Mean N SUPPRESS А 0.19048 63 1 А 0.15873 2 63 Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 0.224603 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 0.425 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE А 0.3810 21 wend А 0.3333 21 robi 0.1905 А 21 whit 0.0952 21 А loch А 0.0476 21 vals 0.0000 21 remi А Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 0.224603 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 1.0036 Means with the same letter are not significantly different. Tukey Grouping Ν NUMBER Mean 2.0000 6 А 1 В 0.8333 б 2 В 0.6667 6 3 В 0.1667 б 4 0.0000 6 5 В 0.0000 б 6 В В 0.0000 б 7 В 0.0000 б 8 В 0.0000 б 9 10 В 0.0000 6 В 0.0000 б 11 В 0.0000 б 12 В 0.0000 б 13 0.0000 б В 14 В 0.0000 6 15 в 0.0000 6 16 В 0.0000 б 17

0.0000

0.0000

0.0000

0.0000

б

б

б

б

18

19

20

25

В

в

В

В

	SPECIES=kingfish	
Flock size of kingfishers per site		

	0 1						
General Linear Models Procedure							
Class Level Information							
Class	Levels Values						
SUPPRES	SS 2	1 2					
SITE	б	loch remi	robi vals wend	whit			
NUMBER	21	12345	6 7 8 9 10 11 1	2 13 14 15 16 17	7 18 19 20 25		
Number	of observa	tions in by gro	up = 126				
		1 9	-				
Dependent Vari	able: OCCA	SION					
Source	DF	Sum of	Mean Square	F Value	Pr > F		
		Squares	_				
Model	25	6220.50793651	248.82031746	95.17	0.0001		
Error	100	261.46031746	2.61460317				
Corrected	125	6481.96825397					
Total							
	R-Square	C.V.	Root MSE	OCCASION Mean			
	0.959663	76.02189	1.61697346	2.12698413			
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
SUPPRESS	1	4.57142857	4.57142857	1.75	0.1891		
SITE	4	31.96825397	7.99206349	3.06	0.0202		
NUMBER	20	6183.96825397	309.19841270	118.26	0.0001		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
SUPPRESS	0	0.0000000	•	•	•		
SITE	4	31.96825397	7.99206349	3.06	0.0202		
NUMBER	20	6183.96825397	309.19841270	118.26	0.0001		

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.614603 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 0.5716

Means withthe sameletterare not significantly different.Tukey GroupingMeanNSUPPRESSA2.3175631A1.9365632

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.614603 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 1.45

Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE 3.1429 21 wend А 2.3810 21 В А loch 2.1905 21 В А whit В А 1.8571 21 robi 1.6190 21 remi В В 1.5714 21 vals

NOTE: 3 general Alpha= Critica	This test co lly has a hi 0.05 df= al Value of	ntrols the type	nge= 5.187	se error rate, l	out
Means of Tukey Grouping A B C C C C C C C C C C C C C C C C C C		N NUMBE 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20	ot significantly R	different.	
			ES=warbler		
Class I Class SUPPRES SITE NUMBER	L Linear Mod Level Inform Lev SS 2 6 21	els Procedure ation rels Values 1 2 loch remi	robi vals wend w 6 7 8 9 10 11 12 1p = 126		18 19 20 25
Dependent Vari Source Model Error Corrected Total	DF 25 100	Sum of Squares	Mean Square 1811.14126984 49.30460317 Root MSE 7.02172366		Pr > F 0.0001
Source SUPPRESS SITE NUMBER	DF 1 4 20	Type I SS 0.38888889 459.65079365 44818.49206349	Mean Square 0.388888889 114.91269841 2240.92460317	F Value 0.01 2.33 45.45	Pr > F 0.9294 0.0611 0.0001
Source SUPPRESS SITE NUMBER	DF 0 4 20	Type III SS 0.00000000 459.65079365 44818.49206349	Mean Square 114.91269841 2240.92460317	F Value 2.33 45.45	Pr > F 0.0611 0.0001

С

0.000

б

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. df= 100 MSE= 49.3046 Alpha= 0.05 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 2.4821 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SUPPRESS А 5.492 63 2 А 5.381 63 1 Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 49.3046 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 6.2966 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE А 8.000 21 wend А 6.857 21 vals А 6.667 21 loch 5.048 21 Α remi А 3.095 21 whit 2.952 21 robi Α Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 49.3046 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 14.87 Means with the same letter are not significantly different. Tukey Grouping Mean NUMBER Ν 87.000 6 1 А В 22.500 б 2 С 3.833 б 3 С 0.667 б 4 С 0.167 6 5 С 0.000 6 6 С 0.000 б 7 С 0.000 б 8 С 0.000 б 9 С 10 0.000 б С 0.000 6 11 С 0.000 б 12 С 0.000 б 13 С 0.000 6 14 С 0.000 6 15 С 0.000 б 16 С 0.000 б 17 С 0.000 18 б С 0.000 19 б С 0.000 б 20

25

------ SPECIES=fantail -----

Flock size of fantails per site

General Linear Models Procedure				
Class Level Info	Class Level Information			
Class Le	evels Values			
SUPPRESS 2	1 2			
SITE 6	loch remi robi vals wend whit			
NUMBER 21	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25			
Number of observations in by group = 126				

Dependent Vari	able: OCCA	SION (fantails)			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	25	45985.64285714	1839.42571429	35.07	0.0001
Error	100	5245.28571429	52.45285714		
Corrected	125	51230.92857143			
Total					
	R-Square	C.V.	Root MSE	OCCASION	
				Mean	
	0.897615	114.7858	7.24243448	6.30952381	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SUPPRESS	1	68.64285714	68.64285714	1.31	0.2554
SITE	4	889.90476190	222.47619048	4.24	0.0033
NUMBER	20	45027.09523810	2251.35476190	42.92	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SUPPRESS	0	0.0000000			
SITE	4	889.90476190	222.47619048	4.24	0.0033
NUMBER	20	45027.09523810	2251.35476190	42.92	0.0001

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 52.45286 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 2.5601

	Means	with	the	same	letter	are	not	significantly	different.
Tukey	Groupin	g	Mear	ı	N	SUP	PRES	S	
A			7.04	18	63	1			
A			5.57	/1	63	2			

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 52.45286 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 6.4945

Means with the same letter are not significantly different. SITE Tukey Grouping Mean Ν 12.095 21 wend А В А 6.857 21 loch 5.762 21 vals В А В 4.905 21 remi 4.143 21 В whit В 4.095 21 robi

	-		-	(HSD) Test for variable: OCCASION		
	NOTE: This test controls the type I experimentwise error rate, but					
		9		e II error rate than REGWQ.		
	Alpha= 0.0					
				zed Range= 5.187		
	Minimum Si	gnificant	Differe	ence= 15.337		
	Means with	the same	letter	are not significantly different.		
Tukey (Grouping	Mean	Ν	NUMBER		
A		84.667	6	1		
В		32.667	б	2		
С		9.667	б	3		
С		3.167	б	4		
С		1.000	б	5		
С		0.500	б	6		
С		0.333	6	9		
С		0.333	б	8		
С		0.167	6	7		
С		0.000	б	10		
С		0.000	б	11		
С		0.000	б	12		
C		0.000	б	13		
С		0.000	6	14		
C		0.000	6	15		
С		0.000	6	16		
С		0.000	6	17		
C		0.000	6	18		
C		0.000	6	19		
C		0.000	6	20		
C		0.000	6	25		
				- SPECIES=finches		

Flock size of finches per site

General Line	General Linear Models Procedure				
Class Level	Class Level Information				
Class	Levels	Values			
SUPPRESS	2	1 2			
SITE	б	loch remi robi vals wend whit			
NUMBER	21	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25			
Number of ob	oservations	s in by group = 126			

Dependent Variable: OCCASION						
Source	DF	Sum of	Mean Square	F Value	Pr > F	
		Squares				
Model	25	1855.52380952	74.22095238	35.65	0.0001	
Error	100	208.19047619	2.08190476			
Corrected	125	2063.71428571				
Total						
	R-Square	C.V.	Root MSE	OCCASION Mean		
	0.899119	104.4845	1.44288072	1.38095238		
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
SUPPRESS	1	15.36507937	15.36507937	7.38	0.0078	
SITE	4	19.11111111	4.7777778	2.29	0.0645	
NUMBER	20	1821.04761905	91.05238095	43.74	0.0001	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
SUPPRESS	0	0.0000000			•	
SITE	4	19.11111111	4.7777778	2.29	0.0645	
NUMBER	20	1821.04761905	91.05238095	43.74	0.0001	

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.081905 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 0.51

Means with the same letter are not significantly different.Tukey GroupingMeanNSUPPRESSA1.7302631B1.0317632

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.081905 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 1.2939 Means with the same letter are not significantly different. Tukey Grouping Mean N SITE А 2.4762 21 wend в А 1.4762 21 remi в А 1,2381 21 whit. B 1.1429 21 robi В 1.0952 21 loch В 0.8571 21 vals Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.081905 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 3.0555 Means with the same letter are not significantly different. NUMBER Tukey Mean Ν Grouping 17.0000 А б 1 в 5.5000 б 3 4.8333 б в 2 С 0.8333 б 4 С б 5 0.3333 С 0.3333 б б С 0.1667 б 9 С 0.0000 б 8 С 0.0000 б 7 С 0.0000 6 10 С 0.0000 б 11 С 0.0000 б 12 С 0.0000 б 13 С 0.0000 б 14 С 0.0000 б 15 С 0.0000 б 16 С 0.0000 б 17 С 0.0000 б 18 С 0.0000 б 19 С 0.0000 б 20 С 0.0000 б 25 ----- SPECIES=magpie -----_____ Flock size of magpies per site General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 loch remi robi vals wend whit SITE б 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 NUMBER Number of observations in by group = 147Dependent Variable: OCCASION Sum of F Value Pr > FSource DF Mean Square Squares 25 1519.71428571 60.78857143 4.27 0.0001 Model Error 121 1722.95238095 14.23927588 Corrected 3242.66666667 146 Total R-Square C.V. Root MSE OCCASION Mean 0.468662 344.5366 1.09523810 3.77349651 Source DF Type I SS Mean Square F Value Pr > FSUPPRESS 1 61.36111111 61.36111111 4.31 0.0400 204.25793651 SITE 4 51.06448413 3.59 0.0084 NUMBER 20 1254.09523810 62.70476190 4.40 0.0001 Source DF Type III SS Mean Square F Value Pr > F 0.00000000 SUPPRESS 0 3.59 204.25793651 51.06448413 0.0084 SITE 4 NUMBER 20 1254.09523810 62.70476190 4.40 0.0001

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 121 MSE= 14.23928 Critical Value of Studentized Range= 2.800 Minimum Significant Difference= 1.2451 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 72 Means with the same letter are not significantly different. SUPPRESS Mean N Tukey Grouping 1.8413 63 2 Α B 0.5357 84 1 Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95 df= 121 MSE= 14.23928 Critical Value of Studentized Range= 4.095 Comparisons significant at the 0.05 level are indicated by '***'. Simultaneous Simultaneous Difference Lower Upper SITE Confidence Between Confidence Comparison Limit Means Limit -0.8962 vals - remi 2.4762 5.8486 vals - loch * * * 0.0562 3.4286 6.8009 * * * vals - robi 0.1038 3.4762 6.8486 vals - wend 0.3895 3.7619 7.1343 * * * vals - whit 4.0952 * * * 1.1747 7.0158 -5.8486 -2.4762 0.8962 remi - vals remi - loch -2.4200 0.9524 4.3247 remi - robi -2.3724 1.0000 4.3724 remi - wend -2.0867 1.2857 4.6581 remi - whit -1.3015 1.6190 4.5396 loch - vals -6.8009 -3.4286 -0.0562 * * * loch - remi -4.3247 -0.9524 2.4200 loch - robi 0.0476 3.4200 -3.3247 loch - wend -3.0390 0.3333 3.7057 loch - whit -2.2539 0.6667 3.5872 * * * robi - vals -6.8486 -3.4762 -0.1038 -1.0000 robi - remi -4.3724 2.3724 robi - loch -3.4200 -0.0476 3.3247 robi - wend 3.6581 -3.0867 0.2857 robi - whit -2.3015 0.6190 3.5396 * * * -0.3895 wend - vals -7.1343 -3.7619 wend - remi -4.6581 -1.2857 2.0867 wend - loch -3.7057 -0.3333 3.0390 wend - robi wend - whit -0.2857 3.0867 -3.6581 -2.5872 0.3333 3.2539 * * * whit - vals -7.0158 -4.0952 -1.1747 whit - remi -4.5396 -1.6190 1.3015 whit - loch -3.5872 2.2539 -0.6667 whit - robi -3.5396 -0.6190 2.3015 whit - wend -3.2539 -0.3333 2.5872

	Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 121 MSE= 14.23928 Critical Value of Studentized Range= 5.163 Minimum Significant Difference= 7.3635						
	Means wit	h the same	letter	are not significantly different.			
Tukey		Mean	Ν	NUMBER			
-		11.856	б	1			
В	A	7.429					
В	C	2.856	6	3			
В	C	0.571	6	4			
В	С	0.286	б	5			
	C	0.000	б	6			
	C	0.000	б	7			
	C	0.000	б	8			
	C	0.000	б	9			
	C	0.000	б	10			
	C	0.000	б	11			
	C	0.000	б	12			
	C	0.000	6				
	C	0.000	6	14			
	C	0.000	6	15			
	C	0.000	6	16			
	С	0.000	6	17			
		0.000	6	18			
		0.000	6				
		0.000	6 6	20			
	C	0.000	•	25			
				SPECIES=pheasant			

Flock size of pheasants per site

General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 loch remi robi vals wend whit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 SITE 6 NUMBER 21 Number of observations in by group = 147

Dependent Variable: OCCASION							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model Error Corrected Total	25 121 146	726.23469388 318.22789116 1044.46258503	29.04938776 2.62998257	11.05	0.0001		
	R-Square 0.695319	C.V. 297.9914	Root MSE 1.62172210	OCCASION Mean 0.54421769			
Source SUPPRESS SITE NUMBER	DF 1 4 20	Type I SS 0.20464853 23.28174603 702.74829932	Mean Square 0.20464853 5.82043651 35.13741497	F Value 0.08 2.21 13.36	Pr > F 0.7808 0.0715 0.0001		
Source SUPPRESS SITE NUMBER	DF 0 4 20	Type III SS 0.00000000 23.28174603 702.74829932	Mean Square 5.82043651 35.13741497	F Value 2.21 13.36	Pr > F 0.0715 0.0001		

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 121 MSE= 2.629983 Critical Value of Studentized Range= 2.800 Minimum Significant Difference= 0.5351 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 72 Means with the same letter are not significantly different.

Tukey Grouping	Mean	Ν	SUPPRESS
A	0.5873	63	2
A	0.5119	84	1

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate. Alpha= 0.05 Confidence= 0.95 df= 121 MSE= 2.629983 Critical Value of Studentized Range= 4.095

Compariso	ns significant Simultaneous	at the 0.05 l	evel are indicated by '***'. Simultaneous
	Lower	Difference	Upper
SITE	Confidence		Confidence
Comparison	Limit	Means	Limit
-			
wend - loch	-0.8779	0.5714	2.0208
wend - robi	-0.6398	0.8095	2.2589
wend - vals	-0.4493	1.0000	2.4493
wend - whit	-0.1361	1.1190	2.3742
wend - remi	-0.2112	1.2381	2.6874
lesh would	2 0 2 0 0	0 5714	0 0770
loch – wend loch – robi	-2.0208 -1.2112	-0.5714 0.2381	0.8779 1.6874
loch - vals	-1.0208	0.4286	1.8779
loch - whit	-0.7075	0.5476	1.8028
loch - remi	-0.7827	0.6667	2.1160
	-0.7027	0.0007	2.1100
robi - wend	-2.2589	-0.8095	0.6398
robi – loch	-1.6874	-0.2381	1.2112
robi - vals	-1.2589	0.1905	1.6398
robi - whit	-0.9456	0.3095	1.5647
robi – remi	-1.0208	0.4286	1.8779
, ,	0 4400	1 0000	0.4400
vals - wend vals - loch	-2.4493	-1.0000	0.4493
vals - loch vals - robi	-1.8779	-0.4286	1.0208
vals - robi vals - whit	-1.6398 -1.1361	-0.1905 0.1190	1.2589 1.3742
vals - wiit vals - remi	-1.2112	0.2381	1.6874
Vals - remi	-1.2112	0.2301	1.00/4
whit - wend	-2.3742	-1.1190	0.1361
whit - loch	-1.8028	-0.5476	0.7075
whit - robi	-1.5647	-0.3095	0.9456
whit - vals	-1.3742	-0.1190	1.1361
whit - remi	-1.1361	0.1190	1.3742
	0 6074		
remi - wend	-2.6874	-1.2381	0.2112
remi - loch	-2.1160	-0.6667	0.7827
remi - robi	-1.8779	-0.4286	1.0208
remi - vals	-1.6874	-0.2381	1.2112
remi - whit	-1.3742	-0.1190	1.1361

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 121 MSE= 2.629983 Critical Value of Studentized Range= 5.163 Minimum Significant Difference= 3.1646

	Means with	the same	letter	are not significantly different.
Tukey	Grouping	Mean	Ν	NUMBER
A		10.2857	7	1
В		0.8571	7	2
В		0.2857	7	3
В		0.0000	7	4
В		0.0000	7	5
В		0.0000	7	б
В		0.0000	7	7
В		0.0000	7	8
В		0.0000	7	9
В		0.0000	7	10
В		0.0000	7	11
В		0.0000	7	12
В		0.0000	7	13
В		0.0000	7	14
В		0.0000	7	15
В		0.0000	7	16
В		0.0000	7	17
В		0.0000	7	18
В		0.0000	7	19
В		0.0000	7	20
В		0.0000	7	25

			SF	ECIES=sky	lark		
Flock size	e of skylar	rks per si	ite				
	-	-	els Procedu	re			
	lass Leve						
CI	lass	Lev	els Values				
	JPPRESS	2					
	ITE IMBER	5 21		emi robi w		0 10 14 15 16	17 18 19 20 25
			ions in by			2 13 14 15 10	1/ 10 19 20 25
Dependent	Variable	e: OCCASI	ION				
Source	DF		Sum of	Mean	Square	F Value	Pr > F
			Squares				
Model	24		33.77142857		14286	5.01	0.0001
Error	80		22.47619048		95238		
Corrected Total	104	4	56.24761905				
IOLAI	R-9	Square	C.V.	Root	MSE	OCCASION Mea	n
		-	327.3835		04941	0.16190476	
Source	DF		Type I SS		Square	F Value	Pr > F
SUPPRESS	1		0.05714286		14286	0.20	0.6532
SITE	3		0.66666667		22222	0.79	0.5025
NUMBER	20		33.04761905	1.652	38095	5.88	0.0001
Source	DF		Type III SS	Mean	Square	F Value	Pr > F
SUPPRESS	0		0.0000000	•		•	•
SITE	3		0.66666667		22222	0.79	0.5025
NUMBER	20		33.04761905	1.652	38095	5.88	0.0001
Τι	ukev's Sti	udentize	d Range (HS	D) Test fo	or variab	le: OCCASION	
						ise error rate	e, but
ge	enerally 1	has a hi	gher type I	I error ra	ate than	REGWQ.	
	-		80 MSE= 0.				
			Studentized	-	814		
		-	t Differenc				
			s are not e	-			
Ha	armonic M	ean of c	ell sizes=	50.4			
Me	ans with	the sam	e letter ar	e not sign	ificantl	y different.	
Tukey Gro		Mean		SUPPRESS			
A		0.1905	42	2			
A		0.1429	63	1			
_	1		1			1	
						le: OCCASION	h. h.
			gher type I			ise error rate	e, bul
-	lpha= 0.0		80 MSE = 0.		ate than	KEGWQ.	
	-		Studentized		947		
			t Difference	-			
			_				
					nificantl	y different.	
Tukey Gro	uping	Mean		SITE			
A		0.2857		loch			
A A		0.2381		remi robi			
A A		0.0952 0.0952		robi wend			
A A		0.0952		whit			
		5.0552					

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 80 MSE= 0.280952 Critical Value of Studentized Range= 5.222 Minimum Significant Difference= 1.2379								
Means w Tukey Grouping A B B B B B B B B B B B B B B B B B B	Aith the sam Mean 2.6000 0.6000 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	me letter are no N NUM 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 13 5 14 5 15 5 16 5 17 5 18 5 19	ot significantly	different.				
B B	0.0000 0.0000							
Flock size of swallows per site General Linear Models Procedure Class Level Information Class Levels Values SUPPRESS 2 1 2 SITE 6 loch remi robi vals wend whit NUMBER 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 Number of observations in by group = 126								
Dependent Varia Source Model Error Corrected Total	able: OCCAS DF 25 100 125 R-Square 0.432579	SION Sum of Squares 179.65079365 235.65079365 415.30158730 C.V. 333.4855	Mean Square 7.18603175 2.35650794 Root MSE 1.53509216	F Value 3.05 OCCASION Mean 0.46031746	Pr > F 0.0001			
Source SUPPRESS SITE NUMBER	DF 1 4 20	Type I SS 11.46031746 38.22222222 129.96825397	Mean Square 11.46031746 9.5555555 6.49841270	F Value 4.86 4.05 2.76	Pr > F 0.0297 0.0043 0.0005			
Source SUPPRESS SITE NUMBER	DF 0 4 20	Type III SS 0.00000000 38.22222222 129.96825397	Mean Square 9.55555556 6.49841270	F Value 4.05 2.76	Pr > F 0.0043 0.0005			

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.356508 Critical Value of Studentized Range= 2.806 Minimum Significant Difference= 0.5426

Means with the same letterare not significantly different.Tukey GroupingMeanNSUPPRESSA0.7619631B0.1587632

Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.356508 Critical Value of Studentized Range= 4.109 Minimum Significant Difference= 1.3766 Means with the same letter are not significantly different. Tukey Grouping Mean Ν SITE А 1.8571 21 wend В 0.2381 21 whit В 0.2381 21 loch В 0.1905 21 vals В 0.1905 21 remi в 0.0476 21 robi Tukey's Studentized Range (HSD) Test for variable: OCCASION NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ. Alpha= 0.05 df= 100 MSE= 2.356508 Critical Value of Studentized Range= 5.187 Minimum Significant Difference= 3.2508 Means with the same letter are not significantly different. NUMBER Tukey Grouping Mean N Α 3.8333 б 2 В А 2.8333 б 1 В 1.5000 б 3 А В 1.0000 6 4 Α 8 B 0.3333 6 В 0.1667 б 12 В 0.0000 б 5 В 0.0000 б 7 0.0000 9 В б 0.0000 В б б В 0.0000 б 11 В 0.0000 б 10 0.0000 в 6 13 В 0.0000 б 14 В 0.0000 б 15 В 0.0000 б 16 В 0.0000 б 17 в 0.0000 18 6 В 0.0000 б 19 В 0.0000 б 20 В 0.0000 б 25

Appendix 8.1: Some key references used in the construction of the food web

- Allen, R. B., Lee, W. G. and Rance, B. D. (1994). "Regeneration in indigenous forest after eradication of Norway rats, Breaksea Island, New-Zealand." New Zealand Journal of Botany 32(4): 429-439.
- Atkinson, R. (1993). "Killing the kereru." Forest and Bird 267: 18-23.
- Berry, C. (1999). Potential interactions of hedgehogs with North Island kiwi at Boundary Stream Mainland Island. Wellington, Department of Conservation: 1-22.
- Brockie, R. (1992). A living New Zealand forest. Auckland, David Bateman.
- Campbell, D. J. (1990). "Changes in the structure and composition of a New Zealand lowland forest induced by brushtail possums." Pacific Science 44: 277-296.
- Clout, M. N. (1988). "Kereru hunting." Forest and Bird 19(3): 9.
- Craddock, P. (1997). The effect of rodent control on invertebrate communities in coastal forest near Auckland. Zoology Department. Auckland, University of Auckland: 132 + appendices.
- Efford, M. (2000). Possum density, population structure, and dynamics. The brushtail possum Biology, impact and management of an introduced marsupial. Montague, T. L. Lincoln, Manaaki Whenua Press: 47-61.
- Fitzgerald, A. E. (1984). Diet overlap between kokako and the common brushtail possum in central North Island, New Zealand. Possums and Gliders. Smith, A. P. and Hume, I. D. Chipping Norton, N.S.W., Surrey Beatty & Sons and Australian Mammal Society: 569-573.
- Halkett, J. C. (1985). "Present status of the Kokako and implications for forest management." New Zealand Journal of Forestry 30(2): 199 -208.
- Hendra, R. (1999). Seasonal abundance patterns and dietary preferences of hedgehogs at Trounson Kauri Park. Wellington, Department of Conservation: 1-12.
- Hutcheson, J., Walsh, P. and Given, D. (1999). Potential value of indicator species for conservation and management of New Zealand terrestrial communities. Wellington, Department of Conservation.
- Innes, J., Calder, B. and Williams, D. (1991a). "Native meets exotic kokako and pine forest." What's New in Forest Research(209).
- Innes, J. G., Williams, D. S. and Shorten, R. M. (1991b). North Island kokako struggling to breed, Forest Research Institute.
- Leathwick, J. R., Hay, J. R. and Fitzgerald, A. E. (1983). "The influence of browsing by introduced mammals on the decline of North Island kokako." NZ journal of ecology 6: 55-70.
- Nugent, G., Sweetapple, P., Coleman, J. and Suisted, P. (2000). Possum feeding patterns: dietary tactics of a reluctant folivore. The brushtail possum Biology, impact and management of an introduced marsupial. Montague, T. L. Lincoln, Manaaki Whenua Press: 10-19.
- Park, G. N. (2000). New Zealand as ecosystems: the ecosystem concept as a tool for environmental management and conservation. Wellington, New Zealand, Department of Conservation.
- Payton, I. J., Pekelharing, C. J. and Frampton, C. M. (1997). Foliar Browse Index: A method fof monitoring possum damage to forest and rare or endangered plant species, Landcare Research.
- Payton, I. J., Pekelharing, C. J. and Frampton, C. M. (1999). Foliar Browse Index: A method for monitoring possum (*Trichosurus vulpecula*) damage to plant species and forest communities. Lincoln, Manaaki Whenua - Landcare Research: 62.
- Powlesland, R. G. (1987). "The foods, foraging behaviour and habitat use of North Island Kokako in Puketi State Forest, Northland." New Zealand Journal of Ecology 10: 117-128.
- Rogers, G. M. and Leathwick, J. R. (1997). "Factors predisposing forests to canopy collapse in the Southern Ruahine Range, New Zealand." Biological Conservation 80: 325-338.
- Thomas, M. D., Hickling, G. J., Coleman, J. D. and Pracy, L. T. (1993). "Long-term trends in possum numbers at Pararaki: evidence of an irruptive fluctuation." New Zealand Journal of Ecology 17(1): 29-34.
- Towns, D. R., Simberloff, D. and Atkinson, I. A. E. (1997). "Restoration of New Zealand islands: redressing the effects of introduced species." Pacific Conservation Biology 3: 99-124.

Appendix 7.1 Exercise in assessing community importance values and assigning keystone status.

This section describes an attempt to generate community-importance values in a more qualitative manner by assigning arbitrary constant values to links between functional groups. These community values were then used to in combination with biomass estimates to gauge whether a species or functional group was a keystone species or not.

Calculating Community Importance values.

It was assumed that the impact of removing a species or functional group on directly connected groups (i.e. linked directly by an arrow) could either be large or indirect/partial. For instance, kereru was the only species capable of dispersing large seeds intact and therefore the removal of kereru would have a large effect on this process. Several other birds can disperse smaller fruits thus the removal of kereru would only partially affect small seed dispersal. The decision to assign a large or indirect/partial effect was based on the literature, the structure of the food-web, and common sense.

A second assumption was that any subsequent linkages would not, initially, be affected to the same degree as those first functional groups. Lack of seed deposition would greatly, and almost immediately, affect seedling recruitment, but the effects on sapling recruitment would not be seen for a while since there still was a cohort of previous seedling to grow into saplings. A similar logic was applied to all other links presented in the food-web. It was arbitrarily decided that subsequent linkages had only half the value of the initial, or prior, linkage.

The importance values were generated as follows. A value of 1 was assigned to each processes, or functional group, that would be directly or greatly affected by the removal of a species (or functional group) and a value of ½ when processes or functional groups are indirectly or partially affected. Subsequent links are assigned half the value of the previous link, unless some other shorter route has already assigned a greater value to that functional group. If the change results in a decrease in biodiversity or biomass the assigned value is negative. If the removal of a species (or functional group) results, or could potentially result, in an increase in biomass or biodiversity the assigned value is positive. The removal of a functional group can result in positive values in one part of the food-web, and negative values in another part. The values assigned to each link are summed to give the community importance value for that species or functional group.

For instance, the removal of kereru would significantly disrupt the dispersal of large-fruits (-1), partially disrupt the dispersal of small-fruited species (-½), both of which would affect seed deposition(-½), seedling recruitment (-¼), sapling recruitment (-1/8), and recruitment of trees and shrubs (-1/16) in to the canopy. Soil and leaf litter processes would be affected by the loss of seed deposition (-½) and functional groups relying on soil processes (invertebrates) would subsequently be affected (-¼). Functional groups relying on seedlings (possum, rodents, goats/deer/pigs) would be affect by reduction in seedling recruitment (-1/8 each) and those that include invertebrates as a major component of their diets (cats/mustelieds, hedghogs, reptiles) would notice the loss of that resource (-1/8 each). The eventual reduction in seed producing species could affect fruit consuming-birds (-1/32 each) which in turn are preyed on by predatory birds (-1/64). Thus the community-importance score for kereru becomes minus 3.77, because overall the removal of kereru would impact negatively on forest ecosystem processes.

The same process was used for all other functional groups. The logic for each functional group are presented in below and in (excel spreadsheet ???) and Figure 7.4.

The removal of possums would directly improve the condition of trees and shrubs (+1), the amount of large and small fruits available (+2), the number of seedlings, saplings, invertebrates, and birds (+6). Possums also indirectly affect rodent populations (+ $\frac{1}{2}$) and through the vegetation process would subsequently affect all species reliant on the maintenance of the forest ecosystem (9 x $\frac{1}{4}$). Total score +11.75.

Removal of rodents would directly increase the amount of small fruits available (+1), the number of seedlings, invertebrates, reptiles and birds (+6). Rodents also partially affect the number of viable large seed and leaflitter processes (2 x + $\frac{1}{2}$) and through the vegetation process would subsequently affect invertebrates, hedgehogs, goats (etc), trees and shrubs (forest composition) and the bird functional groups (7 x $\frac{1}{4}$). Total score +9.75.

Removal of cats and mustelids would directly increase the number of invertebrates, rodents, reptiles and birds (+6), no indirect effects, but subsequent lack of seed deposition by birds and reptiles could change forest composition (5 x $\frac{1}{4}$). Total score 7.25.

Removal of invertebrates would reduce the soil processes (-1) which would subsequently affect seedling, sapling and forest canopy processes ($3 \times -\frac{1}{4}$). Removal of invertebrates would reduce the amount of food available to reptiles, hedgehogs, and

rodents (-3), and partially affect birds cats and possums (4 x $-\frac{1}{2}$). Removal of invertebrates could see an improvement in browse of trees and shrubs and less predation of large and small fruits (3 x $\frac{1}{4}$). Total score -6.00

Removal of hedgehogs would improve soil processes and number of invertebrates (+2) and might partially affect ground nesting birds and low stature vegetation (2 x $+\frac{1}{2}$). Subsequent effects would be more invertebrates available for reptiles, birds, rodents, cats and possums (6 x $+\frac{1}{2}$). Total score 4.5.

Goat deer and pigs, directly impact on seedlings, saplings, shrubs and trees (+3), this has subsequent effects all other species that rely directly on a forest canopy $(8 \times \frac{1}{4})$. Total score 5.

Removal of bird seed predators would partially result in greater numbers of unpredated large fruit $(+\frac{1}{2})$ and could have effects on invertebrate numbers and large seed deposition $(2 \text{ x} + \frac{1}{4})$ However there could also be a loss in small seed deposition and an increase in destructive invertebrates but probably not significantly so. Total score 1

Removal of small seed eaters would result in a partial loss of small seed deposition $(-\frac{1}{2})$ and could affect invertebrate numbers $(+\frac{1}{4})$, Total score -0.25.

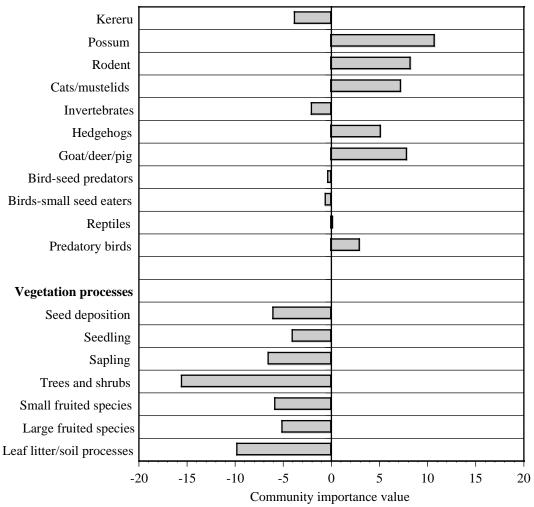
Reptiles – would affect the number of invertebrates (+1) partially affect small fruit deposition $(-\frac{1}{2})$, and through the invertebrates the soil processes, but not sure whether positive or negative. Total score +0.25

Not sure that the removal of predatory birds would affect any of the processes greatly - total score =0

The removal of any of the forest vegetation processes (other than large and small fruits) would have

The removal of seed deposition would have a direct effect on seedling recruitment (-1) which would in turn affect goats (etc) hedgehogs, invertebrates, rodents, possum (5 x $-\frac{1}{2}$), and affect recruitment of saplings, trees and shrubs and soil processes (3 x $-\frac{1}{2}$) and all species that rely on the forest ecosystem (11 x $-\frac{1}{4}$). Total score -7.75.

The removal of seedlings would have a direct effect on sapling recruitment and affect goats (etc) hedgehogs, invertebrates, rodents, possum (-6). Lack of seedling would subsequently affect recruitment of trees and shrubs $(1 \text{ x} - \frac{1}{2})$ and all species that rely on the forest ecosystem $(11 \text{ x} - \frac{1}{4})$. Total score -9.25.


The removal of saplings would have a direct effect on goats, invertebrates and possums and the recruitment of trees and shrubs (-4) which would in turn affect all species that rely on the forest ecosystem ($12 \times -\frac{1}{2}$) and all other vegetation processes ($5 \times -\frac{1}{4}$). Total score -11.25

The removal of trees and shrubs would affect all species and processes directly -17

The removal of small fruits would directly impact birds, reptiles, rodents and seed deposition (-5) and partially affect possums, kereru, invertebrates, leaflitter processes and seedling recruitment (5 x $-\frac{1}{2}$). Lack of regeneration of small-fruited species would eventually cause loss of saplings and cause drastic changes in tree and shrub abundance (2 x $-\frac{1}{4}$). Total score -8.5 (small fruited species are mostly subcanopy but there are a few significant canopy trees, especially the podocarp species)

The removal of large fruits would directly impact kereru, possums, seed deposition (-3) and partially affect rodents, bird seed predators, invertebrates, leaflitter processes and seedling recruitment (5 x $-\frac{1}{2}$). Lack of regeneration of large-fruited species would eventually cause loss of saplings and cause drastic changes in tree and shrub abundance (2 x $-\frac{1}{4}$)

Figure A7.1: Hypothetical community-importance value calculated by considering the effect of removing a particular functional group from the food-web (Figure 7.1)

Positive values indicate that the biodiversity and/or biomass in the ecosystem improves when that functional group is removed, negative values indicate deterioration in the ecosystem processes.

The greatest hypothetical importance value occurred when trees and shrubs were removed, since nearly all other species would be directly and greatly impacted by the loss of all vegetative cover. Leaf litter and soil processes were the next most important functional group in the food-web. There is little difference in the community-importance values for the remaining vegetative processes.

Two native functional groups contribute in a largely positive way to maintaining the biodiversity and/or biomass of this hypothetical forest ecosystem since their removal resulted in negative community-importance values. Kereru makes the greatest positive contribution to the forest ecosystem food-web since it contributes positively to maintaining the forest canopy by seed dispersal, but does not significantly reduce the resources available to other species.

The invertebrate functional group makes the next most important contribution and it could be that the importance of this group has been under-emphasised in the analysis, since this group is composed of many different species fulfilling many different roles. However, these varied roles can contribute both in negative and positive ways to ecosystem functioning. For instance, insects can be significant agents of defoliation with subsequent reduced fruit and seedling output (A. Dijkgraaf pers. obs. of karaka) and yet the action of worms is vital to maintaining and enhancing soil processes. Thus on balance the relative contribution of invertebrates to the system is positive, but tempered by the negative contribution of some of its species.

Introduced mammalian species tend to make a negative contribution to this system, and the forest ecosystem processes would benefit from their removal. The relative importance values of these species tends to be greater than most vegetative processes, perhaps indicating or reflecting that forest processes are undermined in the presence of these groups. The forest benefits the most from the removal of possums, followed by rodents, the goat functional group and cats/mustelids. Towns

et al. [, 1997 #2456] also indicated that all of these introduced mammals are keystone species, as indicated by the results of their introduction or removal from a system.

Figure A7.1 illustrates the relative importance of each functional group in the hypothetical food web, but this analysis did not achieve the highly skewed distribution, with only a few species having large values, as postulated by Mills *et al.* [, 1993 #2432]. This probably reflects the effect of the introduced mammalian species on the functioning of the forest ecosystem and possibly indicates that many of these systems have not yet reach an equilibrium (potentially at a considerably lower level of biodiversity) with the introduced mammals.

It seems likely that the inclusion of introduced mammals in the analysis obscures the importance of some of the native species. However, omitting the introduced mammals from the analysis of present day forest ecosystems is non-sensical. It seems probable that the importance of the mammals will be lessened as the vulnerable components in the system are eliminated or reduced. If this analysis had been restricted to, for instance, the forests of the southern Ruahine Range which have undergone a remarkable degree of canopy collapse through a combination of possum and deer browse [Rogers, 1997 #661], then the importance and impact of possums and deer would be greatly reduced, compared to this more general analysis, since most vulnerable species are reduced or absent altogether. Similarly, if this analysis was restricted to forests of the lower South Island, where miro (Prumnopytis ferruginea) is the only large fruited species, the importance of kereru would be lessened.

If the direction of the overall contribution is considered then kereru and invertebrates would be keystone groups contributing positively to the forest ecosystem, but selecting amongst the detractors for forest processes remains problematical.

Perhaps another way of gauging which species, or functional groups, are keystone species is to determine which of them affected or changed more than half the community. The maximum community-importance value was 15.5 for the removal of trees and shrubs. Perhaps any species achieving an importance value greater than 50% of the maximum value could be considered to be a keystone species. In that case possums (69%), leaf litter and soil process (63%), rodents (53%) and goat/ deer/ pig (51%) are keystone species.

Biomass of species or functional groups.

It is possible to estimate the 'typical' abundance (as biomass per hectare) for most species and functional groups in a 'typical' New Zealand forest from the literature. The values presented in Table A7.1 are estimates compiled from different sources and include a whole range of different forest types, thus they should be treated with caution. It is hoped that the values are accurate to within an order of magnitude of the real values, should these be available for a northern New Zealand lowland hardwood-podocarp forest.

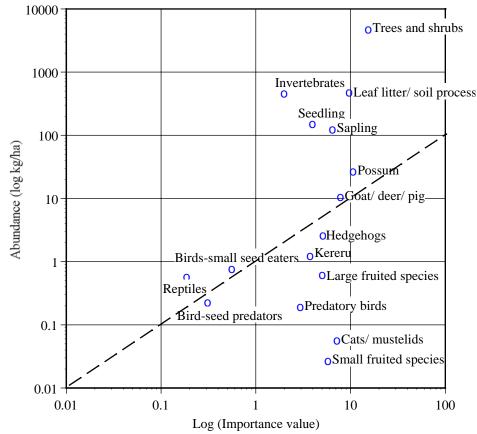
		-		groups leatured in Figure 7.1.
Species/ functional group	Averagen	Average	Biomass	Source(s)
	umber/ha	Weight	(kg)/ ha of	
Varian	2	(kg) 0.65	forest 1.3	(Clout, 1990)
Kereru Possum	7	2.54	27.94	[This study \Cowan, 1998 #2275]
Rodent	/	2.34	0.671	
Norway rats	0.75	0.215	0.162	[This study \Moors, 1998 #2277;Bettesworth, 1972
Norway fats	0.75	0.215	0.102	#2284]
Ship rats	3.26	0.140	0.456	[This study \Innes, 1998 #2278].
Mice	2.5	0.021	0.053	[references in \Murphy, 1998 #2279], pers comm. C. Gillies & N. Marsh
Cats/ mustelids (total)			0.059	
Cats	0.0175	3.11	0.054	[Gillies, 1998 #2450; Fitzgerald, 1990 #2469]
Stoats	0.0175	0.270	0.005	Assume comparable homerange = comparable density from data in [Gillies, 1998 #2450]
Invertebrates			478	[Brockie, 1992 #2370]
Hedgehogs	4	0.684	2.736	[Brockie, 1990 #2468; Berry, 1999 #2435]
Goat/ deer/ pig (total)			11.066	
Goat	0.11	35.5	3.905	[Stronge, 2000 #2467]
Red deer	0.06	58.3	3.498	[Challies, 1990 #2471; Nugent, Unpublished manuscript #2444]
Pig	0.037	99	3.663	[McIlroy, 1990 #2470] density estimate for northern forest 1/10 of McIlroy density
Bird-seed predators (total)			0.238	
Kaka	0.04	0.450	0.018	Abundance this study, body weight (refs Mick to insert)
Rosella	2	0.110	0.220	Abundance this study, body weight (refs Mick to insert)
Birds-small seed eaters (total)			0.8062	
Tui	2	0.100	0.2	Abundance this study, body weight (refs Mick to insert)
Blackbird	1.5	0.090	0.135	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Thrush	1	0.070	0.14	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert))
Myhna	2	0.125	0.25	Abundance this study, body weight (refs Mick to insert)
Silvereye	3	0.013g	0.039	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Finch (green & chaffinch)	2	0.025	0.010	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Fantail	2	0.008	0.016	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Warbler	2.5	0.0065	0.0162	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Predatory birds			0.2	
Morepork	11	0.170	0.170	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Harrier	0.04	0.750	0.03	Abundance this study [Brockie, 1992 #2370], body weight (refs Mick to insert)
Reptiles			0.6	[Brockie, 1992 #2370]
Seedling			158.4	[Estimated from \Nugent, Unpublished manuscript #2444]
Sapling			129.6	[Estimated from \Nugent, Unpublished manuscript #2444]
Trees and shrubs			5000	[Nugent, Unpublished manuscript #2444]
Small fruited species			0.649	This study
Large fruited species			0.028	This study
Leaf litter/ soil process			500	Assumed to be at least as abundant as invertebrates

 Table A7.1: Biomass estimates for species and functional groups featured in Figure 7.1.

Abundance data for birds was generated from observations for forest patches around Auckland (mainly Whitford Bush, Wenderholm Regional Park and Remiger's Bush) and was checked for realism by comparison with the data obtained in the Orongorongo Valley and elsewhere [Brockie, 1992 #2370]. Brockie [, 1992 #2370] indicates that bird numbers tended to be higher (nearly double) in northern tawa forests, compared to the Orongorongo study. The Auckland forests are rich in

tawa and a number of other fruiting species not found in the Orongorongo Valley, thus generally double the Orongorongo Valley value was used for the relevant bird species. This, and the fact that the three forest patches used around Auckland all had possum control, has probably caused the abundance of some bird species to be overestimated somewhat. However, the number of birds per hectare are likely to be correct to within less than an order of magnitude.

Amount of large and small fruits produced per hectare are based on seedfall collection data from Wenderholm, that spanned 85 weeks and utilised thirty 0.528m² traps. The data were averaged over all 85 sampling period and multiplied up to generate seedfall per hectare. The seedfall traps contained fresh, old and bird processed fruits, and are probably a reasonable, but possibly a slight underestimation, of the amount of fruit produced per hectare at a site with possum control.


Calculating Keystone values

This section uses the importance values and biomass estimates calculated above to generate a keystone species plot. There are theoretical and practical problems with the keystone species concept (refer to Chapter 7) yet it can still be of interest to compare the relative importance of a species against the total biomass.

The importance values presented above (Figure A7.1) were either negative or positive depending on whether removal of the organism/functional group resulted in loss or gain of biodiversity respectively. However, it is not possible to calculate the log of negative values, thus for this exercise the absolute importance values were used.

Figure A7.2: Biomass of species/functional groups plotted against relative community importance

Community importance was estimated by predicting the effects of removing an organism or functional group from the food-web depicted in Figure 7.1. Biomass (kg/ha) was estimated from published literature and other observations. Both are presented on a log scale.

The dashed diagonal line equates to Log(Importance value) = Abundance(log k/ha)

The distribution of New Zealand species/functional groups on the abundance versus importance graph (Figure A7.2) does not resemble the distribution proposed by Hurlbert [, 1997 #2481] Figure 7.4. There are a number of aspects that could have contributed to this;

- 1. The data include both functional groups and individual species. Such mixed data probably changes the emphasises for some species. Ideally the community importance values and biomass for all species, rather than functional groups, should be used. However, community importance data for all species within an ecosystem are not yet available.
- 2. Furthermore, many species share the same community value (e.g. smaller birds) because they belong to one functional group (e.g. birds-small seed eaters) thus they tend to cluster in the same area of the graph. Adding the biomass of individual species up within a functional group did not seem logical.
- 3. The community importance values did not have the predicted skewed distribution, therefore any subsequent distributions will not have the predicted distribution.
- 4. The community values are based on arbitrary constants and do not measure the *actual* general functional importance of the species and functional groups.
- 5. The predicted distributions generated by Mills *et al.* [, 1993 #2432] and Hurlbert [, 1997 #2481] are themselves plausible *hypothetical* distributions.
- 6. Hurlbert [, 1997 #2481] and Wooton [, 1997 #2482, cited in Hurlbert] illustrated that the scale and arithmetic transformation of the data affected the skewness of the data and hence keystoneness of species. Hurlbert recommended using a log transformation on both axis, but perhaps the data presented above require a different transformation.

It was also not possible to set the two arbitrary limits (the diagonal upper boundary and the vertical threshold boundary refer to Figure 7.4) that would encompass those species that are keystone species. There are no quantitative data available to set these limits and an arbitrary line could include many species or none at all. Not one species, not even stoats, immediately present themselves as definite keystone species candidates.

Appendix 8.2: - Other research questions

- a) Tawa could be a genetically diverse species, possibly even to the point of tawaroa indeed being a separate species, or perhaps sub-species. The nutritional analysis between fruits from nominally tawa and nominally tawaroa trees revealed no difference in nutritional characteristics, though the sampling was probably not rigorous enough because of difficulties in distinguishing tawaroa from tawa trees. The apparent preference for 'tawa' fruit during the second fruiting peak, late summer, could be explained if tawaroa has a nutritionally superior composition and a characteristic later fruiting than tawa
- b) Karaka fruits often appear too large to be swallowed by kereru and this probably reduces their attractiveness to and utilisation by kereru. The question then remains why are the fruits so large. The fruits are among the smallest in the family so size could be an evolutionary remnant and the size of the fruit is constrained by the evolutionary predetermined aspects such as the size of the embryo.

Some have suggested that karaka was in fact introduced to New Zealand by the early Maori settlers some 1000 years ago. Karaka pollen is difficult to locate in paleological records because the tree does not produce copious quantities, but the potentially earliest record was from a strata less than 700 years old. If karaka was recently introduced then it can not have co-evolved with kereru and there is no reason to assume that the fruit characteristics or timing of fruiting has adapted to any significant extend to current conditions or to attract kereru as a disperser.

However, other researchers dispute that karara was introduced by Maori. None of the other Cornynocarpus species can be mistaken for karaka, and no other Pacific location for karaka is currently known. This puts karaka firmly back on the New Zealand archipelago as an early inhabitant. It seems unlikely that these fruits were specifically targeting another native frugivore in New Zealand. None of the other known frugivores discussed in chapter 1 would have been capable of swallowing the fruit whole and disseminating it unharmed. Karaka seeds have a seedcoat of similar texture and hardness as peanut shells, and would not have withstood the grinding of moa gizzards or predation of parrot beaks. It is possible that a hitherto unknown, and now extinct, frugivore was the main vector for karaka dispersal, but this remains speculation only.

It has been suggested that the legend of Maori bringing karaka to New Zealand actually translates into the early settlers moving the seed around within New Zealand. Thus perhaps the fruit size is a consequence of the selection and cultivation of the larger fruited specimen by Maori.

Or perhaps the size of the karaka fruit is a question of resource allocation or pollination efficiency. It was noted in chapter 5 that a dry early summer resulted in large crops of smaller than usual fruits. Pollination is often adversely affected by wet weather, espcially for insect pollinated species. A dry spring could have increased the pollen loading per tree and resulted in greater fruit set. Since more fruits set less resources were available per fruit resulting in smaller fruits.

c) Does bird behaviour change when predators such as possums and rodents are removed?

- d) What climatic or environmental conditions favour or predict heavy flower or fruit crops for large fruited species. What causes tawa, kahikatea, kohekohe, taraire to mast, what causes karaka to have large crops of small fruits
- e) What part of the fruit production cycle of small fruited podocarps (e.g kahikatea) is affected by possum or rodent foraging? Why does possum rodent and suppression result in kahikatea fruit crops several orders of magnitude larger that at sites without possum suppression.
- f) What is the nutritional value of rewarewa seeds?
- g) Do rat numbers increase if only possums are suppressed? In what way are possums competing or preying on rats?
- h) Do synchrony and overlap values for tawa improve during masting years?
- i) Is there a predictable relationship between the number of trees fruiting and the quantity of fruit produced within a forest?
- j) How much fruit, or nutrition, is required by kereru to complete a successful breeding cycle? Aspects to investigate include the condition of the bird prior to breeding and what fruiting species maintained that condition. Do kereru really source calcium and nitrogen rich fruit at the beginning of the breeding cycle, even when sufficient other foods are available?
- k) Is fruit available year round at more southerly latitudes and how does this affect kereru breeding success?
- 1) As the number of fruiting species are reduced, the further south one goes, do the remaining fruiting species have longer fruit phenologies to 'close the gaps' left by the other species?
- m) Can rodent (mainly rat) population fluctuations in forest be correlated to fluctuations in fruit availability? Are fluctuations in invertebrate population a more accurate predictor of rodent populations? Are fruit availability and fluctuations in invertebrate numbers correlated or linked? These linkages do seem to occur in beech forests, but does it hold true for hardwood podocarp forest?