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ABSTRACT: Infertility randomized controlled trials (RCTs) are often too small to detect realistic treatment effects. Large observational
studies have been proposed as a solution. However, this strategy threatens to weaken the evidence base further, because non-random as-
signment to treatments makes it impossible to distinguish effects of treatment from confounding factors. Alternative solutions are required.
Power in an RCT can be increased by adjusting for prespecified, prognostic covariates when performing statistical analysis, and if stratified
randomization or minimization has been used, it is essential to adjust in order to get the correct answer. We present data showing that
this simple, free and frequently necessary strategy for increasing power is seldom employed, even in trials appearing in leading journals.
We use this article to motivate a pedagogical discussion and provide a worked example. While covariate adjustment cannot solve the
problem of underpowered trials outright, there is an imperative to use sound methodology to maximize the information each trial yields.

Key words: RCTs / statistics / infertility / covariate adjustment / research methods

Introduction
The randomized controlled trial (RCT) has come under attack as a
means to evaluate infertility treatments (Macklon et al., 2019). A
particular concern is that, in many trials, failure might be inevitable,
since RCTs in the field are generally too small to reliably detect any-
thing other than large treatment effects (Stocking et al., 2019).
Furthermore, large treatment effects do not appear to be typical
(Stocking et al., 2019). If sample size were the only consideration,
research based on large clinic databases might offer a solution.
Unfortunately, while large sample sizes improve precision, they do
not alleviate bias caused by non-random assignment of patients to
therapies, and so modest treatment effects cannot be reliably distin-
guished from confounding effects (Yusuf et al., 1984; Peto et al.,
1995; Wilkinson et al., 2019). Subtle treatment effects are indeed
difficult to study in RCTs, because of the need for a large sample
size, but they are nigh on impossible to study in observational
designs, regardless of sample size.

Credible alternative solutions are therefore required. While the
most obvious solution is to recruit more participants to each trial,
there are clear practical and financial barriers attached. However,
there are well-established strategies for designing and analysing RCTs
which could reduce this burden. One, essentially free method to in-
crease power of an RCT is to adjust for prognostic variables when
conducting the statistical analysis for the trial. ‘Power’ here, refers to
the probability that a trial will detect a treatment effect if it exists, and
‘adjusting’ for a variable translates to using a statistical method to ac-
count for its effects on the study outcome. Examples of statistical
methods for this purpose include multiple regression, analysis of co-
variance (ANCOVA) and Mantel–Haenszel approaches. It is well-
established that adjusting for covariates in the analysis of an RCT
increases power, and these gains may be considerable when the cova-
riates are strong predictors of outcome (Hernandez et al., 2004,
2006a,b; Kahan et al., 2014). Practically, an RCT analysed with covari-
ate adjustment yields more information about the studied treatment
compared to another trial of the same size without adjustment, and
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the same power can be achieved with a smaller sample size for an ad-
justed compared to an unadjusted analysis. This means that a result
might be statistically significant with covariate adjustment, even if it is
not in an unadjusted analysis (Saquib et al., 2013). In addition, stratified
randomization or minimization are often used in RCTs. When these
approaches are used, the stratification or minimization variables must
be adjusted for. If this adjustment is not performed, P-values and CIs
will be too conservative, potentially causing effective treatments to be
missed (Kahan and Morris, 2012a,b). While covariate adjustment is
strongly recommended, the variables involved must be selected prior
to seeing the data, since data-driven analyses do not yield meaningful
P-values (Committee for Medicinal Products for Human Use, 2015).
The covariates should be included in the statistical analysis plan for the
trial (Gamble et al., 2017).

Although this strategy has minimal costs (important prognostic cova-
riates are typically collected in a trial anyway), reviews of practice have
shown that covariate adjustment remains under-utilized (Austin et al.,
2010; Yu et al., 2010; Saquib et al., 2013). The popularity of covariate
adjustment in infertility RCTs is unclear however. If infertility trialists
are not routinely adjusting for covariates in analysis of RCTs, then this
would represent an easy option to improve statistical power in the
field and strengthen the evidence base for interventions. Crucially, our
interest in covariate adjustment is not driven by statistical aesthetics
but rather by ethical considerations. In particular, there is both an ethi-
cal obligation to study participants to ensure that research is informa-
tive (Altman, 1994), as well as an obligation to prospective patients to
test treatments in a rigorous manner (Wilkinson et al., 2019).

Do infertility trialists use
covariate adjustment?
A review of practice
To examine current practice with respect to covariate adjustment in
infertility RCTs, we conducted a review of infertility trials published in
leading medical and fertility journals between January 2017 and May
2020. Before conducting this review, we published a short protocol,
available at https://osf.io/vk4jg/. A full description of our methods
and results are available in Supplementary Data File S1. We provide
an abridged version here, to motivate our discussion. We searched
the Cochrane Gynaecology and Fertility (CGF) specialized register for
RCTs published in Human Reproduction, Human Reproduction Open,
Fertility and Sterility, Reproductive Biomedicine Online, BMJ, JAMA, NEJM
and The Lancet. We screened studies for eligibility, first using abstracts
and then using full texts.

We recorded information relating to the characteristics of the stud-
ies and the analyses they performed (see Supplementary Data File S1).
All data extraction was performed in duplicate, and discrepancies
were resolved by discussion.

Findings of the review
The dataset we discuss here may be accessed at https://osf.io/vk4jg/
(see file datashare.csv). Figure 1 shows the selection and screening of
studies. The initial search of the CGF specialized register retrieved

1019 trial publications. After abstract screening, we were left with 79
studies for full-text screening. We made a further 14 exclusions at this
stage, leaving 65 studies for analysis.

The sample included 55 superiority trials, 9 non-inferiority trials and
1 equivalence trial. The median (interquartile range (IQR), range) num-
ber of sites in the studies was 2 (1 to 9, 1 to 87) with a mean (SD) of
9.5 (15.8), and for one study the number of sites was unclear. Of the
65 studies, 29 (45%) were single-centre studies. The median (IQR,
range) number of participants was 305 (163 to 600, 49 to 2772), with
a mean (SD) of 509 (558). Most (60, 92%) studies were 2-arm studies,
three were 3-arm, and there were single examples of 4-arm and
6-arm studies. There were 47 (72%) studies which had a binary
primary outcome variable 12 (18%) which had continuous primary
outcomes, including two count outcomes (e.g. number of oocytes)
that were analysed as though they were continuous, and one which
had a count primary outcome variable. Two studies had co-primary
outcomes (binary and continuous for one study, two binary outcomes
for the other) and three trials did not specify a primary outcome vari-
able. There were 32 (49%) studies which had live birth or ongoing
pregnancy as a primary outcome, although two of those using ongoing
pregnancy used a slightly earlier timepoint to define ongoing pregnancy
(9–10 weeks and 10–12 weeks) than we had defined in our protocol
(12 weeks or later). We included these two in the calculations regard-
less. One study was described as a ‘pilot’, but included a test of a
treatment, and was included.

Covariate adjustment
Just 21 (32%) studies adjusted the primary outcome for covariates.
Table I shows which variables were adjusted for. The three studies
that did not specify a primary outcome did not present adjusted analy-
ses for any outcome, and so are counted as not adjusting the primary
outcome here. Of those that adjusted, four studies adjusted for a
single covariate, nine adjusted for two covariates, and eight adjusted

Figure 1. PRISMA flow diagram.
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for three or more. The mean (SD) number of covariates adjusted for
in a study was 1 (1.7) including studies that did not adjust, or 3 (1.8)
excluding those studies. Age (17 studies) and site (7 studies) were
most frequently adjusted for. There were 15 studies which used re-
gression or equivalently, ANCOVA, for covariate adjustment. Six stud-
ies used a Mantel–Haenszel approach.

Two of the studies that adjusted selected the adjustment variables
in a post hoc fashion, which should be avoided. Three more studies de-
cided not to adjust on the basis of post hoc analyses. In one study, it
was unclear whether or not the adjustment variables had been prespe-
cified. The post hoc strategies employed were to adjust for variables
that were unbalanced at baseline (two studies), to adjust for any varia-
bles that changed the estimate of treatment effect by 10% or more, to
exclude variables if they were not significant in a multivariable model,

or to refrain from adjusting ‘because randomization resulted in un-
evenly distributed recruitment between study centres’. None of these
are appropriate strategies for selecting variables to use for adjustment.
Further, one study inappropriately adjusted for a post-randomization
variable.

Of 61 studies that presented an analysis of live birth or ongoing
pregnancy, 18 (30%) presented an adjusted analysis of live birth or on-
going pregnancy.

Six studies presented multivariable models to examine predictors of
outcome. This is not the same as adjusting the treatment effect esti-
mate. We mention it here only to draw attention to this distinction,
since multivariable prediction is frequently confused with multivariable
analysis for the purpose of estimating the causal effect of an
intervention.

............................................................................................................................................................................................................................

Table I Variables used for stratification/minimization or adjustment in analysis of the primary outcome, and adjustment in
analysis of live birth or ongoing pregnancy, in 65 infertility RCTs.

Variable Stratification or
minimization

Adjustment in analysis
of primary outcome

Adjustment in analysis
of live birth or ongoing pregnancy

Age 14 17 16

BMI 4 3 2

Cause of infertility 0 2 2

Chlamydia 0 1 0

Country 2 3 3

Day of transfer 0 1 1

Days on waiting list 0 1 1

Donor age 0 1 1

Duration of infertility 1 2 2

Embryo quality 0 1 1

Endometriosis 1 0 0

Fresh or frozen transfer planned 1 1 1

Fresh or vitrified oocytes 0 1 1

Indication of IUI 1 0 0

Insemination method 0 1 1

Mild vs moderate male factor subfertility 0 1 1

Method of fertilization 2 2 1

Number of oocytes 0 1 1

Operator 0 1 0

Ovarian reserve 3 2 2

Parity 2 1 1

PCOS 2 1 1

Planned treatment 2 2 2

Primary infertility 0 2 2

Previous miscarriages 2 2 2

Previous treatment 2 0 0

Site 20 7 5

Smoking 2 3 0

Thyrotropin 1 1 1

Tubal factor 1 1 1

Waist circumference 1 0 0

Number of trials using each variable.
PCOS, polycystic ovary syndrome; RCT, randomized controlled trial.
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.Stratification and minimization
There were 32 (49%) studies which used either stratified randomiza-
tion or minimization (the latter being used in four studies) for treat-
ment allocation, with this being unclear for one study. One study
made it clear that they had created a separate randomization list for
each centre, but had used simple randomization for each. This is
equivalent to no stratification, and therefore it is not included in the
32. Of those that stratified or minimized, 17 (53%) used one variable
for this purpose, 11 (34%) used two variables, and four studies used
more than two variables (13%). The mean (SD) number of variables
used to stratify or minimize was 1 (1.6) when including studies that did
not use any, and 2 (1.8) when excluding these. Table I shows which
variables were used for stratification or minimization. Site was most
commonly used (20 studies), followed by age (14 studies).

However, only 17 (53%) of the 32 studies which stratified or mini-
mized actually included adjustment for all of the stratification (minimi-
zation) variables in the analysis of the primary outcome, meaning that
almost half (47%) had an inappropriate statistical analysis. Six studies
adjusted the primary analysis for all of the stratification variables and
also for additional prognostic variables, representing best practice, al-
though one of these selected the variables for adjustment in a post hoc
fashion, which is not recommended.

Of 35 multicentre studies, 20 stratified (or minimized) by site, and
7 of the 20 (35%) adjusted for site. Of the 15 that did not stratify
(or minimize) by site, none adjusted for site.

These data suggest that covariate adjustment is underutilized in the
field.

How to adjust for covariates in
RCTs—guidance for trialists
Here, we review some key points relating to good (and poor) practice
when adjusting for covariates in analysis of RCTs; the references we
provide cover each point in more detail. We illustrate these points
with a short, hypothetical example using an artificial dataset available in
Supplementary Data File S1.

Which variables should I adjust for?
Trialists should adjust for covariates that are prognostic (predictive of
outcome). For example, age is often considered to be predictive of
IVF success and may be a prognostic factor in many trials. The greater
the portion of variance in outcome that is explained by the covariates,
the greater the benefit, in terms of power gained, will be (Hernandez
et al., 2006a,b). It is important to note that a variable might be statisti-
cally associated with the outcome, but nonetheless have limited prog-
nostic utility in a study, as the proportion of variance explained by the
variable might be low. For example, this can occur when a continuous
covariate has low variance, or when a binary covariate has low preva-
lence (Steyerberg, 2019). Consequently, the same variable might have
greater prognostic value in a study with less restrictive inclusion criteria
(e.g. a wider age range) than in another study in more homogenous
participants.

However, like all other aspects of the statistical analysis of a trial, it
is crucial that the variables to be adjusted for are prespecified (Senn,
1989; Hauck et al., 1998). This means that they should not be selected

on the basis of the study data, as was observed in several studies in
the present review. Effective covariate selection therefore requires
prior knowledge about which variables are prognostic of the outcome
in the trial population. The list of variables used for adjustment in
Table I might prove useful as a source of inspiration, as might other
RCTs in similar populations to the trialists’ own. Trialists could also
look at the variables included in clinical prediction models in subfertile
populations for suggestions (Ratna et al., 2020). Alternatively, this dis-
cussion highlights the importance of research designed to identify prog-
nostic variables, and methodological principles for conducting this type
of investigation have been described (Riley et al., 2013).

As we have described elsewhere in the article, any variables used
for stratification or minimization must be adjusted for (Kahan and
Morris, 2012a,b). The variables used for stratification should them-
selves be prognostic. Where multiple variables have been used for
stratification, it is not usually necessary to include the interaction be-
tween the variables in the analysis; adjusting for their main effects will
suffice unless there is a strong interaction between the variables and
there are similar numbers of participants in each stratum (Kahan and
Morris, 2013). Finally, we note two kinds of variable that should not
be adjusted for. The first type includes any variable that is measured
post-randomization; because post-randomization variables might be af-
fected by study treatment, adjusting for them may distort the effect of
treatment on outcome. Accordingly, only pre-randomization (baseline)
variables should be adjusted for. The second type includes variables
that are not prognostic. Adjusting for these variables might have slight
detrimental effects to power (Kahan et al., 2014).

One final potential benefit of covariate adjustment, which we have
not discussed so far, relates to missing outcome data. Adjusting for
covariates that are predictive of outcome can improve the plausibility
of assumptions necessary for valid analysis in the presence of missing
outcome data (White et al., 2011).

Should I always adjust?
We endorse the position that trialists should adjust for prespecified,
prognostic covariates in their analysis whenever possible. In some
cases, however, it might not be possible to adjust for all of the covari-
ates which we would like to adjust for, and in some cases, it might not
be possible to adjust for any at all. Adjustment may be prohibited
when the overall sample size is small, or, for binary or time-to-event
outcomes, when the number of events is small. Moreover, when ad-
justment is undertaken in the analysis of a binary or time to event out-
come and sample size is small, the chance of incorrectly concluding
that there is a treatment effect when none exists is inflated (Kahan
and Morris, 2013; Kahan et al., 2014). One scenario that arises in mul-
ticentre fertility trials with a binary outcome is that in which there are
few or zero outcome events per centre (Kahan and Harhay, 2015).
When this is anticipated, it has been recommended to use a random
intercept approach to adjust for centre, but to prespecify a backup
analysis in case the computation of the primary method fails (Kim
et al., 2020). Indeed, prespecification of a backup plan would appear
to be prudent whenever there is doubt that the intended primary
analysis could fail to produce an answer. Five of the trials that did not
adjust for covariates in our dataset had sample sizes below 100.

Another potential concern is that trialists may prespecify a variable
to adjust for, but that variable may be missing for some participants.
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This might lead to participants being excluded from the analysis, with a
detrimental effect on power (Kahan et al., 2014). This can be easily
overcome with mean imputation of the missing values however
(White and Thompson, 2005).

How does adjustment affect the
interpretation of the results?
Trials provide evidence about the treatment effect. However, the
term ‘treatment effect’ is ambiguous. Two possible interpretations of
‘treatment effect’ are the average effect of treatment in the population,
and the effect of the treatment in patients with given covariate values.
The first of these corresponds to a comparison between a randomly
selected participant from the treatment arm of the study to a ran-
domly selected participant in the comparator arm (Kahan et al., 2014).
The second corresponds to a comparison between a participant in the
treatment arm to a participant in the control arm with the same co-
variate values (Kahan et al., 2014). For continuous outcomes, these
quantities coincide. Adjusting for covariates in the continuous outcome
case does not impact the meaning of the result, but the precision of
the estimate (represented by the width of the CI, which is narrower
with greater precision) will increase. However, when we assess the
effect on a binary or time-to-event outcome using an odds ratio or
hazard ratio, provided that the null does not hold, the population-
averaged and covariate-specific treatment effects differ (Gail et al.,
1984). The manner in which covariate adjustment is performed will
then determine which of these quantities is estimated. When adjust-
ment is performed using logistic or Cox regression, the result corre-
sponds to a covariate-specific effect, based on a comparison of treated
and control patients with matching values of the included covariates.
Of course, an RCT will not provide two groups of participants with
identical combinations of covariate values, and so this comparison is
based on extrapolation. This adjusted estimate will be less precise
than the unadjusted estimate but also larger, resulting in increased
power (Robinson and Jewell, 1991). However, it is also possible to ob-
tain the population-averaged estimate from these adjusted regression
models, by using an approach known as regression standardization
(Moore and van der Laan, 2009; Sjölander, 2016; Steingrimsson et al.,
2017). We illustrate regression standardization in the Supplementary
Data File S1. An alternative approach to estimating the population-
averaged effect is to use inverse probability of treatment weighting
(Williamson et al., 2014).

There has been much debate around the question of whether
population-averaged or covariate-specific treatment effects are of
greater relevance and interest (e.g. Hauck et al., 1998; Lindsey and
Lambert, 1998; Senn et al., 2004; Steingrimsson et al., 2017). We are
not sure that a general recommendation is possible, but suggest that
trialists should select an analysis that corresponds to their quantity of
interest. This implies that more thought should be given to the quan-
tity of interest in the study than perhaps is typical.

Conclusion
At a time when there is growing recognition that many RCTs in fertil-
ity are uninformative, we present data suggesting that trialists are rou-
tinely leaving money on the table. By prespecifying and adjusting for

prognostic covariates in the analysis of trials, power can be increased,
but only a third of the trials in our review took advantage of this fact.
Prognostic characteristics are usually collected in a trial anyway, but
are then put to limited use.

Given the undisputable advantages, why is not covariate adjustment
widely used? We speculate that two major reasons are lack of aware-
ness of the benefits and scepticism based on misunderstandings about
the purpose of adjustment. Indeed, writing on covariate adjustment in
1979, Simon noted a ‘suspicion of an analysis used to adjust for a lack
of comparability’ and that the ‘term adjustment itself often elicits scep-
ticism’ (Simon, 1979). We have certainly encountered similar concerns
in our own experience, and have faced queries about whether covari-
ate adjustment somehow corrupts the randomized allocation to treat-
ments. The key misunderstanding, captured in the observations from
Simon, is that covariate adjustment is intended to make up for ‘lack of
comparability’. Indeed, one symptom of this misunderstanding can be
found in the ritual of assessing baseline characteristics for balance in
trials. However, RCTs do not require that baseline characteristics are
balanced for valid statistical inference. Instead, they require that any
imbalance is due to chance. This is what randomization achieves. The
purpose of covariate adjustment is therefore not so much to correct
the randomization as it is to explain some of the variation in the study
outcome. The consequence is an increase in power for adjusted analy-
ses. To consolidate this point, there is benefit to adjusting for a prog-
nostic covariate, even if it is well balanced.

The benefits of covariate adjustment in RCTs carry over to meta-
analyses of RCTs. If RCTs of the same treatment report estimates of
the treatment effect adjusted for the same covariates, then the ad-
justed estimates can be pooled. Unless there is coordination between
trialists, this probably won’t occur very frequently. However, if individ-
ual participant data from the trials is available, it is possible to reana-
lyse the data with adjustment for any prognostic covariates that were
measured in all studies. In fact, this is one of the main benefits of indi-
vidual participant data meta-analysis compared to the usual approach
based on pooling published results (Riley et al., 2010).

We would stress however that covariate adjustment, while benefi-
cial, is unlikely to represent a panacea for the problem of undersized
clinical trials. Substantial gains have been observed when good predic-
tors of outcome are available (Hernandez et al., 2004, 2006a,b). But if
the variables available have lesser predictive value, then the benefit will
be reduced. The actual benefits associated with covariate adjustment
in infertility trials remains to be investigated. This is likely to require
reanalysis of existing clinical trial datasets. These could be used to con-
duct simulation studies to evaluate the benefit in scenarios reflecting
typical infertility RCTs. We therefore encourage the practice of making
trial datasets available for methodological research, and urge research-
ers to differentiate this from secondary analyses for the purpose of
testing clinical hypotheses. Initiatives to identify predictors of outcome
following treatment for infertility should also be encouraged, using suit-
able methodology (Riley et al., 2013).

A number of statistical errors were identified in the review. Briefly,
these include using the data to select which variables to adjust for
(Committee for Medicinal Products for Human Use, 2015), adjusting
for post-randomization variables (Committee for Medicinal Products
for Human Use, 2015), failing to adjust for stratification or minimiza-
tion variables (Kahan and Morris, 2012a,b) and using simple randomi-
zation rather than blocking within strata (counter-intuitively, this is no
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different to using simple randomization (Moher et al., 2010)). The first
three of these may lead to erroneous inferences, while the fourth rep-
resents an apparent failure to implement the intended study design. By
highlighting these errors here, we hope to reduce their incidence in fu-
ture trials. It is possible that errors went undetected in some trials due
to suboptimal reporting, and we did not seek out trial protocols.

There is now recognition that fertility treatments are not usually ad-
equately evaluated. They are often introduced without an RCT to test
whether they improve or worsen outcomes. And when RCTs are
conducted, they usually do not yield clear answers. Big data has been
touted as a solution, but the risk is that the answers they provide ap-
pear to be clear but are actually wrong. In addition, they require that
treatments are used on thousands of patients before we know
whether we are helping or harming. Clearly, we need to find ways to
realize larger trials. We also need methods to robustly evaluate inter-
ventions with as few participants as possible. Here, we have described
a simple, essentially free method of analysis that is expected to in-
crease the amount of information produced by each trial, and have
shown that it is not typically utilized in our field. At a minimum,
thoughtful prespecification and adjustment for prognostic covariates
might reduce the incidence of ambiguous RCT results, where we are
left uncertain as to whether the treatment might have an effect (van
Hoogenhuijze et al., 2021). It is time for trialists to stop leaving money
on the table, lest patients be the ones to lose out.
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