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Abstract

In this thesis we study theoretically the dynamics of the free cytosolic Ca?t concentra-
tion. We construct a mathematical model of the Ca?* dynamics in pancreatic acinar
cells. Although this model refers to a particular cell type, it also allows us to study
some aspects of Ca?* signalling in general. We begin by analysing the dependence
of the Ca®* oscillations on the plasma membrane transport. Further we study the

propagation of intercellular Ca?* waves in a pancreatic acinus.

It has been observed experimentally that, in many cell types, calcium fluxes across
the plasma membrane affect inositol trisphosphate IP3-induced calcium oscillations.
Since IP3-induced calcium oscillations involve the cycling of calcium to and from the
endoplasmic reticulum, it is not well understood how they can be so strongly affected
by membrane fluxes. We use a mathematical model to answer this question; a model
that relies on the introduction of a slow variable, the Ca?* load of the cell. Our
model predictions are confirmed by experimental results. Since similar behaviour is
observed in two other models of IP3-induced Ca?* oscillations, it is possible that this

bifurcation structure is a generic feature of Ca®" oscillation models.

The effect of intercellular coupling on the oscillatory dynamics is investigated the-
oretically. It is demonstrated that junctional calcium diffusion can account for the
co-ordination and synchronisation of cytosolic calcium oscillations in a coupled triplet
of cells under the assumption of constant IP3 concentration in each individual cell.
Furthermore a two dimensional version of that model, where Ca?t and IP; are as-
sumed to diffuse within as well as between the cells, has been studied numerically.

Compared to the results from the analysis of the ODE model, the results from the

X1



xii Abstract

analysis of the PDE model (in two spatial dimensions) reveal some interesting spatial
effects of the diffusion, and of the geometry of the cells on the collective oscillatory
behaviour of the system. Based on this combined approach, a suggestion about the

specific role of both Ca?* and IP; in the intercellular Ca®* signalling has been made.
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Preface

The work presented in this thesis illustrates on one hand how mathematics can be
used to answer physiological questions, and on the other hand it is an example of
how physiological questions may pose very interesting mathematical problems. It is
an interdisciplinary study which requires solid mathematical knowledge as well as
a very good understanding of the physiological processes underlying the problems
under investigation. Although coming from pure mathematics background I have
always been interested in learning more about its applications. The opportunity to
work with Prof. James Sneyd was an excellent chance to do this, and I really enjoyed
it!

This thesis consists of 4 chapters:

Chapter 1 gives a general introduction to the physiology of the pancreatic acinar
cells and the calcium signalling. It also contains a brief overview of previous

modelling work done in this field.

Chapter 2 explains the modelling details. Mathematical analyses of the model de-

scribed in this chapter have been published in [113, 115].

Chapter 3 addresses a particular physiological question about the role of the plasma
membrane transport for the calcium oscillations which are based on fluxes across

the endoplasmic reticulum. This work has appeared in [114, 129].

Chapter 4 contains a mathematical study of calecium oscillations and waves in a
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xvi Preface
triplet of pancreatic acinar cells. The results from this study have been submit-

ted for publication to the Biophysical Journal.

All the work presented in this thesis has been done in close collaboration with Dr.

David Yule and his colleagues from the University of Rochester Medical Center, USA.





