
Novel Directions in Network Steganalysis

Jun O Seo

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science, the University of Auckland,

2022.

i

Declaration

To the best of my knowledge and belief, this thesis contains no material previously

published by any other person, except where acknowledged. The work presented in the

thesis is the outcome of my study under the supervision of Dr Sathiamoorthy Manoharan

and Dr Ulrich Speidel. This thesis, in whole or in part, has not previously been submitted

or accepted for award of a degree or diploma in any other institutions.

July 21, 2022

Jun O Seo

ii

iii

Abstract

Network steganography is the art of exploiting network protocols or network flows to

innocuously hide information. Network steganalysis is the study of analysing network

traffic and flows to prevent any illicit use of steganography.

Using statistical metrics to compare malicious and matching benign flows has been

a solid methodological approach in network steganalysis. This approach may not work

in many practical situations, however, because it is difficult to acquire both malicious

and matching benign flows. A fundamental question thus inspires this thesis: What if

we only have the malicious flows on hand? That is, what if we do not have access to

the matching benign flow so there is nothing to compare against? Moreover, while it is

critical to detect the fraction of malicious flows with a steganalysis technique, there is a

lack of measurement on how much damage malicious flows cause. This leads to another

question: Can we estimate how much information a malicious flow contains, thereby

indicating potential damage? This thesis investigates the use of complexity derivates and

a re-embedding technique to answer the two fundamental questions posed above. The

experiments presented here show that it is possible to detect and estimate the amount

of malicious information accurately in a number of different scenarios. However, this

method is semi-automatic and relies on a significant amount of manual work, making it

impractical for large-scale networks that may generate a significant number of network

flows. Therefore, this thesis investigates and proposes a number of approaches to fully

automate the process.

iv

v

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my supervisors

Dr Sathiamoorthy Manoharan and Dr Ulrich Speidel, for their support and guidance

throughout my research. Mere words are not enough to describe the amount of invaluable

advice and constructive criticisms that I received, and I would like to thank them from

the bottom of my heart.

I would like to extend my sincere thanks to fellow PhD students, staff members of the

Department of Computer Science, and the ICT team, especially Yu-Cheng Tu, for sharing

exciting ideas and keeping me company. Special thanks to the Group Services team in

the Department of Computer Science, especially Robyn Young, for all the administrative

help. Thanks also to all my friends who made my life stimulating and enjoyable.

Last but not least, I would like to thank my family and extended family for their

continuous support and encouragements. I must thank my parents, Gwonjong Seo and

Jeongog Yang, for their unconditional love and trust.

Jun O Seo

vi

vii

Contents

1 Introduction 1

1.1 Problem and motivation . 2

1.2 Research objectives . 3

1.3 Thesis overview . 4

2 Background 6

2.1 History . 6

2.2 Stakeholders . 9

2.3 Design principles . 10

2.3.1 Location identification . 10

2.3.2 Steganogram concealment . 12

2.3.3 Validation . 13

2.4 Review and classification of steganography 14

2.4.1 Physical/link layers . 18

2.4.2 TCP/IP layers . 19

2.4.3 Application layers . 20

2.5 Countermeasures and limitations . 23

2.5.1 Standards . 23

2.5.2 Traffic normaliser . 25

2.5.3 Steganalysis . 26

viii

2.5.4 Classification . 28

2.6 Summary . 32

3 T-codes and Complexity Derivates 33

3.1 T-codes . 33

3.1.1 Properties of T-codes . 34

3.2 T-codes derivates . 36

3.2.1 T-decomposition . 36

3.2.2 T-complexity . 38

3.2.3 T-information . 38

3.2.4 T-entropy . 39

3.3 Steganography channel creation use 41

3.3.1 Code design . 42

4 Network Storage-based Steganography 48

4.1 Introduction . 48

4.2 Background and related work . 50

4.3 Steganography models . 52

4.3.1 Embedding modes . 52

4.3.2 Real vs. synthetic data . 53

4.3.3 Embedding schemes . 55

4.4 Steganalysis . 56

4.5 Effects of different embedding schemes on T-entropy 59

4.6 Steganalysis (sequential, 𝑥) . 62

4.7 Steganalysis (equal spacing, 𝑥) . 66

4.8 Steganalysis (random, 𝑥) . 70

4.9 Discussion . 74

4.10 Summary . 75

ix

5 Automatic Detectors for Re-embedding Steganalysis 76

5.1 Background . 77

5.2 Related work . 79

5.3 Simple interpolation . 79

5.4 Moving average . 83

5.5 Regression analysis . 87

5.6 𝑘-fold cross-validation . 92

5.7 Degree 1 residual approach . 94

5.8 Automatic detection of the (equal spacing, equal spacing) tuple 98

5.9 Summary . 101

6 Re-embedding Steganalysis Using Other Statistical Metrics 102

6.1 Welch’s 𝑡-test . 103

6.2 Chi-square test . 108

6.3 Kolmogorov-Smirnov test . 112

6.4 Shannon entropy . 115

6.5 Kullback-Leibler divergence . 118

6.6 Autocorrelation function . 121

6.7 Discussion . 124

6.8 Summary . 129

7 Network Timing-based Steganography 130

7.1 Introduction . 130

7.2 Related work . 131

7.3 Network delays . 133

7.4 Methodology . 135

7.5 Results . 138

7.6 Summary . 144

x

8 Conclusions 146

Appendices 150

A Additional Details for the T-code tree 151

B Additional Graphs for Automatic Detection 153

B.1 Collection of 40% embedded datasets 154

B.2 Degree 1 residual plots of 40% embedded datasets 159

B.3 Degree 1 residual approach with varying embedding levels 164

B.4 Degree 1 residual plots of 20% embedded (equal spacing, equal spacing)

datasets . 170

B.5 Degree 1 residual approach with varying embedding levels on (equal

spacing, equal spacing) datasets . 175

C Additional Graphs for Other Metrics 181

C.1 Welch’s 𝑡-test 𝑝-value graphs . 181

xi

1
Introduction

Steganography is the art of hiding a message in innocuous digital media. Such

secret messages are known as steganograms. Network steganography allows one to hide

steganograms using the computer network as a medium with the hope that adversaries

cannot detect such communication, thus creating a covert channel. It appeals itself as

a potential communication tool but this tool has evidently been used for malicious and

illegal activities [1, 2, 3]. Thus makes network steganalysis, the science of detecting the

presence of hidden secret messages in network flows, important.

Exploring steganalysis techniques has two strong motivations: (a) strengthening the

corresponding steganography technique so that the secrecy it offers is not compromised,

and (b) detecting and preventing illegitimate use of steganography.

This thesis focuses on network steganography. Compared to other forms of digital

steganography, such as media steganography, the hiding medium (cover) offered by

network steganography is generally not persistent, and in fact, short-lived. Ideally, any

1

2 1. Introduction

steganalysis that attempts to uncover network steganography should therefore operate in

a near-real-time.

It should be noted that covert timing channel and covert storage channel are timing-

based steganography and storage-based steganography, respectively. These terms have

been used interchangeably in the literature. Moreover, there appears no clear distinction

between them. This thesis thus used both terms interchangeably.

1.1 Problem and motivation

There are two types of network traffic data one can acquire: (1) synthetic data and (2)

real data measured at endpoints or intermediate nodes. Synthetic data has the advantage

that it can be made to contain features that one would like to study. It may, however,

miss some of the real-life features real traffic might contain if the synthesis process does

not consider these features. On the other hand, while real data overcomes the latter

problem, it may not always contain the features that one is interested in studying within

a reasonable time period.

Comparison-based statistical measures have been a traditional approach in com-

bating malicious network steganography uses. The technique compares benign and

malicious flows based on their statistical values. In general, benign flows set a base-

line and a range of decision boundaries that specify benign flows numerically. Hence,

the comparison-based approach usually results in a binary classification: a flow either

contains a steganogram or it does not. Such binary classification is arguably useful

in assessing steganalysis performance, but we contend that more can be done through

analytics. For instance, quantifying the size of the steganogram may be useful in

hinting at the damage network steganography might have caused, e.g., compromised

user credentials or disclosed confidential information. Furthermore, we view that the

comparison-based statistical measures are generally not scalable and require frequent

1.2. Research objectives 3

maintenance. It is widely understood that two networks will never exhibit the same net-

work behaviour because of the different environments and users. Baselines and decision

boundaries calculated from one network may thus not apply to another network. The

disparity may also happen on the same network [4, 5], requiring a frequent recalculation

of the baselines and the decision boundaries. This leads to a secondary problem of

identifying the frequency of the recalculation.

1.2 Research objectives

Comparison-based steganalysis techniques have practical limitations, such as scalabil-

ity and maintainability. These limitations mostly arise from comparing flows with

steganograms and virgin data (flows without steganograms). Hence, we will explore if

steganalysis can work in the absence of virgin data. We would also like to quantify the

size of the steganogram, thereby indicating the damage specific network steganography

might have caused. On this basis, we formulated the following research questions to

guide our research:

1. Is it possible to separate network flows that contain hidden data from flows that do

not?

(a) Which techniques could one employ for this binary classification?

(b) How could we do steganalysis in the absence of virgin data – i.e., original

flows with no steganograms – when we have access only to flows with

steganograms?

2. Where a network flow contains steganograms, is it possible to identify the size of

the steganograms (e.g. as a percentage of the flow data)?

3. How could one prevent network flows from carrying hidden data?

4 1. Introduction

1.3 Thesis overview

The rest of the thesis is structured as follows:

We discuss the fundamental aspects of steganography in Chapter 2 and review some

of the related work. Chapter 3 then introduces T-codes and their complexity derivates,

as well as their potential uses in both steganography and steganalysis. In Chapter 4 we

develop a storage-based steganography and detect it using a re-embedding steganalysis.

Chapter 5 enhances the re-embedding steganalysis with an automatic detection capabil-

ity. Chapter 6 experimentally evaluates the feasibility of other metrics besides T-entropy

in re-embedding steganalysis. Chapter 7 evaluates the feasibility of a timing-based

steganography over long paths. Chapter 8 summarises this thesis with our contributions

and future research directions.

Listed below are the publications encompassing some of the work in this thesis:

• Jun O Seo, Sathiamoorthy Manoharan, and Aniket Mahanti. Network steganogra-

phy and steganalysis – a concise review. In International Conference on Applied

and Theoretical Computing and Communication Technology, pages 368–371,

Bengaluru, India, July 2016.https://ieeexplore.ieee.org/document/7912025 [6]

• Jun O Seo, Sathiamoorthy Manoharan, and Aniket Mahanti. A discussion and

review of network steganography. In IEEE Intl Conf on Dependable, Auto-

nomic and Secure Computing, pages 384–391, Auckland, New Zealand, August

2016. https://ieeexplore.ieee.org/document/7588874 [7]

• Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Steganalysis of

storage-based covert channels using entropy. In International Telecommunica-

tion Networks and Applications Conference, pages 1–6, Auckland, New Zealand,

November 2019. https://ieeexplore.ieee.org/document/9078009 [8]

• Sathiamoorthy Manoharan, Giovanni Russello, Jun O Seo, Ulrich Speidel, and Asil

https://ieeexplore.ieee.org/document/7912025
https://ieeexplore.ieee.org/document/7588874
https://ieeexplore.ieee.org/document/9078009

1.3. Thesis overview 5

Stanikzai. On synthesizing network traces — case studies in network steganalysis

and packet analysis. In IEEE Conference on Application, Information and Network

Security, pages 47–52, Kota Kinabalu, Malaysia, November 2020. https://

ieeexplore.ieee.org/document/9315093 [9]

• Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Automatic Detection

of Storage-based Covert Channels. In International Conference on Electrical,

Communication, and Computer Engineering, pages 1-7, Kuala Lumpur, Malaysia,

June 2021. https://ieeexplore.ieee.org/document/9514168 [10]

• Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Feasibility Evalua-

tion of Long-Distance Network Timing-based Covert Channels. In International

Conference on Electrical, Communication, and Computer Engineering, pages

1-5, Kuala Lumpur, Malaysia, June 2021. https://ieeexplore.ieee.org/

document/9514145 [11]

https://ieeexplore.ieee.org/document/9315093
https://ieeexplore.ieee.org/document/9315093
https://ieeexplore.ieee.org/document/9514168
https://ieeexplore.ieee.org/document/9514145
https://ieeexplore.ieee.org/document/9514145

2
Background

This chapter provides a broad overview of network steganography. Sections 2.1

discusses a brief history and unique features of network steganography. Section 2.2 then

discusses stakeholders of network steganography and their stance on network steganogra-

phy. Sections 2.3 and 2.4 discuss design principles of network steganography and review

existing network steganography, respectively. Section 2.5 reviews available countermea-

sures against network steganography and their limitations. Section 2.6 summarises this

chapter.

2.1 History

The Histories, penned in 440 BCE, contains the earliest records of perturbing physical

media to hide a secret message (steganogram) [12]. The hiding process perturbs an

innocuous medium (cover), making the perturbed medium (stego) to almost appear

6

2.1. History 7

identical to its original. That is, the perturbed medium appears natural even after it

goes through some form of perturbations. The Histories talks of shaving the head of a

slave to tattoo a secret message onto the bald head then waiting for the hair to regrow

before the slave travels to the message receiver. The hair naturally hides the tattooed

message, rendering the secret message invisible. Once the slave reaches its destination,

the message receiver shaves the slave’s hair, retrieving the message. Most, if not all,

of the existing steganography techniques work in the same principle, and Figure 2.1

illustrates this.

PerturbationCover Perturbation Stego Stego

(a) Message Embedding (b) Message Extraction

Steganogram Steganogram

Figure 2.1: Steganography process. The cover is a container that carries a secret message
(steganograms). Perturbation technique embeds steganograms into the cover to generate
stego. Stego travels to the message receiver, where the receiver reverses the perturbation
steps to extract the steganograms.

Changes in the type of cover are one of the most noticeable shifts in steganography.

In The Histories, humans used physical media as a cover. This trend shifted to digital

media when computer systems emerged, encompassing image, voice, or video files as

a cover [13]. Digital media steganography potentially offers robust and unsuspicious

stego files. The steganograms, however, remain there in the cover file forever, leading to

an eventual recovery of steganograms if a warden figures out the perturbation technique.

Besides, the size of a cover file limits the extent of steganograms, i.e., the hiding capacity

is upper bounded by the file size.

Network steganography naturally mitigates this issue, promoting itself as an attractive

cover. We identify three favourable attributes: suitability, lifespan and flexibility.

8 2. Background

Suitability as a two-way communication channel. Network steganography may be de-

signed at any layers of the Internet protocol suite, known as a Transmission Con-

trol Protocol/Internet Protocol (TCP/IP) stack [14, 15], without exhibiting unusual

network traffic. Voice over IP (VoIP), for example, is a widely used telephony

application that enables voice data to flow bidirectionally for a flexible duration.

Using such a trait, one may create a steganography-based two-way communication

channel without raising much suspicion. HTTP (hyper-text transfer protocol) is

a more widely used request-response protocol, and can be doctored to support

two-way communication (for instance, using HTTP POST).

In media steganography, however, initiating two-way communication requires

both parties involved in the communication to send an extraordinary number of

media files back and forth, creating abnormal network traffic. As a result, media

steganography may only be suitable for one-way communication.

Shorter lifespan of steganograms. Steganograms transferred over a network generally

have a shorter lifespan than media steganography because the cover for network

steganography is the network itself.

The steganograms inside the stego-packets reach the end of their lifespan once the

intrusion detection system (IDS) dismisses the stego-packets from the quarantine

and the receiver retrieves the steganograms.

Not all network steganography exhibit this characteristic, however, especially

when steganograms persist in the network payloads. For example, if VoIP service

provider archives the calls and if the calls contained steganograms, the stego-calls

remain in the archive so long the provider holds onto it.

2.2. Stakeholders 9

Flexible bandwidth. Media steganography bandwidth is upper-bounded by the size of

a cover file. In contrast, the network bandwidth is upper-bounded by the network

protocol and network environment. VoIP calls, for instance, tend to last tens of

minutes or even hours, offering flexible bandwidth1.

2.2 Stakeholders

Defining the stakeholders of steganography can can provide a number of insights –

parties involved, their perspective, motivation for utilisation and detection.

Rezaei et al. categorise the stakeholders into three: government, organisation, and

individuals [17]. The favourable aspect of utilising steganography channels is rather

straightforward for all the stakeholders since it gives them a mean of clandestine com-

munication channels. A few examples include:

• Transferring confidential information between trusted parties.

• Using it as a circumvention tool to prevent Internet censorship.

• Protecting privacy.

From a government’s perspective, clandestine communications directly challenge

their national security, e.g., terrorists may use steganography to scheme attacks [1].

Governments require steganography detection systems in place to know attacks in ad-

vance. Similarly, organisations would not want their competitors to acquire their con-

fidential information unlawfully through industrial espionage. Likewise, individuals do

not want a supposedly trusted application to compromise their sensitive information us-

ing a steganography channel. All the stakeholders would want a detection or prevention

system to limit malicious activities through steganography channels, safeguarding their

valuable assets and resources.

1There can be a constraint, however. If one utilises a G.711 VoIP codec, 50 packets travel every second,
each packet containing 20 ms of voice data [16]. That is, 50 stego-packets is the bandwidth upper limit of
G.711 VoIP codec.

10 2. Background

An entity that monitors, detects or prevents such malicious activities can go by

different names, but this thesis uses the word warden to refer to this. The art of

probing techniques that the wardens use to detect steganography channels is known as

steganalysis. A warden, however, must first understand the attack vector in detail before

developing a steganalysis technique. The following section thus discusses the attacker’s

perspectives and the available tools at disposal in depth.

2.3 Design principles

We define a cyclic model which describes the process of designing a robust steganography

technique. The cyclic model has three processes: Location Identification, Steganogram

Concealment, and Validation, and Figure 2.2 illustrates this.

Location Identification

Steganogram ConcealmentValidation

(Investigation)

(Implementation)(Testing)

Figure 2.2: An attacker first investigates for a potential cover to hide steganograms.
The attacker then selects a perturbation technique and implements their steganographic
channel. The attacker validates the feasibility of their channel on its bandwidth, unde-
tectability and robustness. If the channel does not meet the expectation, the process goes
back into the investigation phase for possible improvement.

2.3.1 Location identification

Identifying an exploitable area is a primary step for designing an original steganography

technique. This process requires one to have a detailed awareness of how an exploit-

ing protocol operates. Otherwise, the resulting product may contain flaws where the

detection can be straightforward.

2.3. Design principles 11

Determining the network locations of a message sender and a receiver can provide

valuable insights in designing a steganography channel. Lucena et al. analysed these

locations [18], and Janicki et al. identified possible warden placements [19]. See Fig-

ure 2.3 which we merged and simplified these features. S denotes the source where a

packet originates from, and D denotes its destination. R1 and R2 represent any number of

intermediary points that could be located in-between. Any number of wardens, denoted

as W1, W2 and W3, may be present to detect malicious activities. SS denotes all possible

locations where one could utilise steganography, and SR denotes all possible locations

where a receiver could be.

W1 W2 W3

DR2R1S

SS

SR

SS SS

SR SR

S = Source, R = Intermediary device, D = Destination, SS = Steganogram Sender, SR =
Steganogram Receiver, W = Warden

Figure 2.3: Possible locations for network steganography and warden placements: A
steganogram sender can be anywhere from the packet source to intermediary devices.
Likewise, a steganogram receiver can be anywhere but has to be at least a hop away
from the steganogram sender. A warden can be anywhere between the hops, monitoring
ingress and egress packets.

12 2. Background

Different W, SS, and SR placements can impact the next process in the cyclic model

because different placements suggest a different degree of requirements. Let us assume

SS and SR are on R1 and R2, respectively. If W1 and W3 monitor the network traffic,

the wardens may notice a difference in the traffic, alerting the possibility of suspicious

activity. A possible workaround an attacker may employ here is to reconstruct the

original cover at the receiver to conceal the presence of the secret communication. As

a side note, the reconstruction phase would be unnecessary if there was no W1, i.e., the

W3 does not have anything to compare against.

2.3.2 Steganogram concealment

There are two generic methods as well a hybrid of these two methods to exploit network

protocols to conceal steganograms [20]. The first method, storage-based channels,

encompass steganography techniques whereby steganograms are embedded directly into

a cover, e.g., header fields of network packets or network payload bytes. On the other

hand, the second method perturbs timing variations in network events to symbolically

embed steganograms, e.g., modulating different interpacket delays. See Figure 2.4 which

exemplifies this. A hybrid of the storage-based and timing-based methos is also possible.

(a) Steganography by alterations in data
(here: embedded message = 010)

(b) Steganography by timing channel: message
symbols map to different interpacket

delays (here: embedded message = 00100)

Header Data 0 0 1 0 0
P1 P2 P3 P4 P5 P60

1

0

P1

P2

P3
time

Figure 2.4: Steganogram concealment methods. In general, embedding requires one
to perturb a specific header field (a) or modulate different interpacket delays (b) in the
network packets. It is usually a norm to directly hide information in storage-based
channels, whereas information bits are symbolically hidden in timing-based channels.

2.3. Design principles 13

Steganogram embedding mechanisms

Tweaking a message, or a plaintext, is possible to enhance a steganography technique,

e.g., compressing, encrypting, or transcoding. Furthermore, a technique typically uses

only a portion of the available cover space, potentially spreading steganograms across

the cover.

Transmission alteration

Fraczek et al. have presented a Deep Hiding Technique (DHT) framework that can poten-

tially be applied to all existing network steganography techniques to enhance its secrecy

further [21]. DHT is divided into two sections: ‘affect steganogram’, and ‘affect carrier’.

As the name may imply, ‘affect steganogram’ covers different approaches to transmit

steganograms from a sender to a receiver, e.g., “scattering” steganograms by using mul-

tiple protocols or recipients, and by “hopping” between different embedding techniques.

Likewise, ‘affect carrier’ describes different methods of utilising carriers, e.g., utilising

more than one layer of the TCP/IP stack, and using more than one embedding techniques.

2.3.3 Validation

Generally, steganography techniques are assessed using three attributes: bandwidth,

undetectability and robustness [20].

The bandwidth attribute describes the number of steganograms that can flow from a

sender to a receiver in a given timeframe, usually expressed as bits per second.

The undetectability attribute describes the capability of a steganography channel

without alerting a warden. This attribute is usually subjectively biased towards the chan-

nel creator’s opinion with their knowledge and belief because there usually is no objective

way of measuring this. Janicki et al., however, demonstrate that objectively measuring

the undetectability of VoIP-based steganography is possible [22]. Other steganography

14 2. Background

techniques also need similar metrics to quantify the robustness objectively.

Lastly, the robustness attribute describes how much error a network steganography

technique can withstand until steganograms cannot be retrieved. An acceptable range

is usually around a 10% error rate. Suitable error correction techniques can be used to

correct errors.

The three attributes, as a whole, assess and validate the feasibility of a proposed

steganography technique. That is, the technique should withstand errors, be unde-

tectable, and offer bandwidth that meets the requirements of its application. Another

way of validating the technique is by carrying out steganalysis. Analysing the proposed

technique from an attacker’s perspective can help determine if the technique can bypass

detection or prevention systems.

If a technique fails the validation process in the cyclic model, it needs to revisit the

identification process to identify if further modifications to the processes can mitigate

the problem.

2.4 Review and classification of steganography

As discussed in the previous section, steganography techniques are either storage-based

or timing-based or a hybrid of the two (see Figure 2.4). Other classifications, such as

one based on the TCP/IP stack (see Figure 2.5), are also possible. Table 2.1 summarises

some of the notable techniques categorized using the TCP/IP stack classification.

2.4. Review and classification of steganography 15

Application

Transport

Network

Link

Physical

VoIP

Video Streaming

Online Games

Other

Network Stack Utilised applications

Figure 2.5: Classification of network steganography based on the TCP/IP network stack.
Application layer can be further segmented into specific applications.

Table 2.1: Selected steganography techniques categorised based on the TCP/IP net-
work stack. This table discusses each technique’s embedding method, unique features,
downsides and possible countermeasures.

Paper Title Year Embedding
Method

Unique feature/s Downside/s Countermeasure/s

Physical/link Layer
PHY
Covert
Channels:
Can you
see the
Idles? [23]

2014 Modulating
interpacket
delays by
manipu-
lating the
number of
idle charac-
ter,
/ I /

Utilising physical
layer where cur-
rent network can-
not monitor its
presence because
of their limitation
on timestamping

Would not
function
correctly
under very
congested
network

Detection is
possible with
network equip-
ment operating
at nanosecond
resolution

TCP/IP Layer
A Novel
High-
Speed
IP-Timing
Covert
Channel:
Design and
Evaluation
[24]

2015 Timing
covert chan-
nel where
multiple
paths convey
steganograms

Overcomes lim-
itations of tim-
ing based covert
channel

No guar-
antee that
steganograms
convey the
intended
message

May be un-
necessary until
the technique
becomes more
stable

16 2. Background

Network
packet pay-
load parity
based
steganog-
raphy
[25]

2013 Timing
covert chan-
nel where
different
positions in
packet pay-
loads convey
steganograms

No secret key in-
volvement

Packet drops
or out-of-
order pack-
ets cause
steganogram
shifting,
and requires
exchange
of agreed
positions

Steganogram
extraction is
possible once
agreed positions
are compromised

Application Layer
VoIP

Using
transcod-
ing for
hidden
communi-
cation in IP
telephony
[26][22]

2014
2015

Storage
covert chan-
nel
Transcoding
VoIP codec
to lower
quality

Transcoding
to increase
bandwidth with
reasonable MOS-
LQO degradation
with acceptable
increase in delay

Only spe-
cific pair of
codecs can
be utilised

Transcoding ste-
ganalysis [19]

An ap-
proach
of covert
commu-
nication
based
on the
adaptive
steganog-
raphy
scheme on
Voice over
IP [27]

2011 Adaptive
embedding
rate based
on block
smoothness

Dynamic band-
width

Silent pack-
ets are not
sent if the
feature is en-
abled

Message extrac-
tion is possible

2.4. Review and classification of steganography 17

A packet
loss con-
cealment
technique
for VoIP
using
steganog-
raphy
[28]

2003
2004
2007

Two-side
PWR with
side infor-
mation

VoIP protocol en-
hancement; PLC

N/A N/A

Multimedia Streaming
Hiding
Data in
Multi-
media
Stream-
ing over
Networks
[29]

2010 Embedding
steganogram
in B frames
of MPEG-2
streaming

Modifies B
frames that have
the most negli-
gible impact on
video playback

HTTP live
streaming
is replacing
RTP based
streaming

Steganogram ex-
traction is possi-
ble

Online game
Games
Without
Frontiers -
Investigat-
ing Video
Games as
a Covert
Channel
[30]

2015 Common
RTS ele-
ments

Development of
framework which
can be easily
adapted to other
games

Symbolic
steganogram
saved inside
the map
replay file

Government en-
forcement of ban-
ning replay sys-
tem

Rook: Us-
ing Video
Games as
a Low-
Bandwidth
Censorship
Resistant
Commu-
nication
Platform
[31]

2015 Modulating
game at-
tributes
based on sta-
tistical data
gathered

Identifying im-
mutable fields
and building a
symbol table

Symbol ta-
ble removes
outliers mak-
ing range
smaller

Detection is pos-
sible just by keep
referring to muta-
ble fields

18 2. Background

Other
Keyboards
and covert
channels
[32]

2006 Physical
device with
passive time
based covert
channel

Exfiltrate key-
board activities
without compro-
mising host or its
software

Have to
place physi-
cal device

Entropy-based
detection [33]

2.4.1 Physical/link layers

Typically, network steganography techniques are designed from layer three of the TCP/IP

stack as it appears infeasible to implement at the lower layers. For example, the link

layer header fields are responsible for the hop-to-hop delivery of frames. That is, any

modification on the link layer header fields is retained for only one routing hop.

Lee et al., however, demonstrated that creating network steganography on the phys-

ical layer and preserving steganograms over a long distance is possible. Furthermore,

detecting and disrupting such channel in real life poses some challenges with current

network infrastructures [23]. Their prototype, called Chupja, modulates different inter-

packet delays to convey binary bits. While this may sound like traditional timing-based

network steganography, the technique involves modulating nanosecond delays by al-

tering the numbers of idle characters, / I /, that only exist in the physical layer. The

authors experimentally evaluated the feasibility of their channel by testing it on the

National LambdaRail (NLR), a long-distance research network that was about 19000

km in length. Their result suggests that the nanosecond modulations preserved over

the NLR with nine routing hops that usually had cross traffic of 10%~20% of the total

channel capacity. Chupja exploits the fact that the current network timestamping mostly

records in microsecond intervals, albeit hardware can handle nanosecond resolution. The

constraints were in memory, storage and cost of maintaining the nanosecond resolution.

Chupja is not perfect, however, as it can only achieve an error rate of less than

2.4. Review and classification of steganography 19

10% when tuned to operate at 10% of the total channel capacity of 10 Gbps, and a

large modulation amount of 2048 idle characters. Despite the 10% link utilisation, the

network steganography still resulted in a data rate of 81 kbps.

2.4.2 TCP/IP layers

These layers are popular network steganography covers. Embedding steganograms

in these layers are straightforward because steganograms can be effortlessly retained

over multiple hops. A caveat here is that there were previous attempts to identify all

possible steganography channels in these layers [34, 35]. It now requires an exceptionally

profound hiding mechanisms.

Hovhannisyan et al. examined existing timing-based network steganography and

attempted to address some common problems/limitations those channels share – low

channel capacity, low covertness, and high error rate [24]. The authors proposed a multi-

path embedding scheme to overcome these shortcomings, which essentially spreads out

the steganograms. The authors proposed location or port-based methods to achieve this.

The location-based system operates on having multiple receivers, whereas the port-based

system utilises multiple network ports.

Abdullaziz et al. proposed two timing-based techniques that use User Datagram

Protocol (UDP) payload [25]. The first technique where different lengths of payload

to convey steganograms is easy to detect. Complete extraction of steganograms is

possible by a warden. The second technique is more difficult to detect because a warden

first needs to figure out the positions of the UDP payload bytes that the sender and

receiver agreed to look up, called the agreed positions. The technique, however, has

a few shortcomings: Firstly, packet drops or out-of-order packets cause steganograms

to shift. Secondly, extracting steganograms is possible once the agreed positions are

compromised. Thirdly, the sender and the receiver need to exchange the agreed positions

before the actual communication, the extra overhead. Authors’ proposal of bringing

20 2. Background

compression or encryption to this channel as their future work may not be feasible

unless the communication link is free of packet drops and out-of-order packets.

2.4.3 Application layers

These applications usually account for a considerable amount of Internet traffic around

the world. Web browsing, VoIP and any entertainment-related applications such as video

streaming and online games belong to this category. Koh classified past University of

Auckland network traffic, identifying that the five most popular applications account for

around 95% of the total network bytes [4].

VoIP

Janicki et al. demonstrate that one can measure the undetectability aspect of VoIP

techniques by measuring the voice quality degradation amount [19]. One such metric is

the Mean Opinion Score - Listening Quality objective (MOS-LQO) which objectively

indicates the voice quality. Researchers can use this metric to quantify how much voice

degradation their technique introduces and qualify on the undetectability aspect.

Stateless protocols operate on the principle of the best-effort delivery, i.e., no guaran-

tee that network packets reach their destination. Conversely, stateful protocols validate

data integrity, retrieving the same data again if missing or corrupted. While stateful

protocols are reliable, they add overhead that can be non-trivial if quick data delivery is

more important than data integrity. A stateless protocol, such as UDP, therefore, often

encapsulates time-critical VoIP voice data. Packet Loss Concealment (PLC) in VoIP may

minimise the possible adverse effects of the dropped packets. Unlike other researchers,

Aoki explored the possibility of using network steganography for a good cause, i.e.,

enhance PLC by inserting the pitch variations of preceding packets as steganograms

inside current packets [28]. One can debatably achieve the same outcome by allocating

new network header fields to embed the same information but at the cost of transmitting

2.4. Review and classification of steganography 21

more data. The author eventually expands on their research, further improving the voice

quality [36, 37].

Miao et al. identified that utilising the least significant bit (LSB) embedding scheme

for VoIP degrades the speech quality, leading to increased detection rate [27]. The

authors addressed this problem by factoring in the ‘smoothness’ of sample blocks and

dynamically adjusting the embedding rate. The technique embeds more data to sharp

blocks, i.e., high amplitude samples, than silent intervals with flat blocks. Their result

suggests that their channel achieved a bandwidth of around 7.5 kbps, maintaining MOS-

LQO degradation below 0.5.

Mazurczyk et al. explore the possibility of using transcoding to increase the band-

width of VoIP steganography [26]. Transcoding is the process of converting one encoding

to another, such as converting file format or character encoding. The technique chooses

overt and covert codecs where covert codec disguises itself as overt codec, leaving some

room for free storage of data. They selected G.711 (64 kbps) and G.726 (32 kbps) as

the overt and covert codecs, respectively – 32 kbps of free message storage. Their result

indicates that the MOS-LQO decreased from 4.46 to 3.834 with 0.39 ms of transcoding

delay. The authors emphasised that detection of such channel is possible when the voice

data are encapsulated in Real-time Transport Protocol (RTP) but poses challenges with

Secure Real-time Transport Protocol (SRTP) because of encryption. Janicki et al. extend

this research by examining all possible codec pair combinations, identifying G.711 and

G.711.0 pair has costless conversion, i.e., no degradation of MOS-LQO [22].

Video streaming

Zhao et al. proposed using multimedia streaming over the network as a potential cover,

specifically video streaming [29]. The technique stores steganograms into B frames of

Group of Picture (GOP) and drop them purposefully at the receiver side to indicate the

presence of steganograms. Overall, inspecting the contents of the dropped packets reveal

the presence of steganography usage.

22 2. Background

Online games

Hahn et al. proposed a steganography framework for Real-time Strategy (RTS) games.

Their framework is applicable to all RTS games because the technique utilises common

elements RTS games share: units, building, rally points, and replay logs [30]. Their

prototype, Castle, achieved a bandwidth of around 50~200 Bps. A possible downside

with their framework is that the replay log stores all the data. Getting a hold of a reply

log thus would make extraction of steganograms possible.

Another game-based network steganography technique called Rook utilises First-

person Shooter (FPS) games [31]. Rook is storage-based steganography, where it only

modifies mutable fields to transfer steganograms. Rook first generates symbol tables,

keeping a record of mutable field values. Rook goes through the pruning process during

the symbol table generation to remove outliers in the lower region to make its length

power of two such that it can send information symbols rather than the actual bits. The

pruning process shifts data, potentially making steganalysis possible. Also, building a

symbol table consists of the first one minute of the gameplay, which may not reflect the

gameplay in other durations. A better approach would have been to teach Rook with

other pre-recorded statistical data of other gameplays.

Other

JitterBug is a physical device that is placed in an input device to act as a keylogger to

exfiltrate keystrokes out from trusted system [32]. Unlike other network steganography,

Jitterbug uses passive timing-based channel from existing interactive connection, e.g.

remote desktop/VoIP/SSH/Telnet.

2.5. Countermeasures and limitations 23

2.5 Countermeasures and limitations

The previous section discussed some of the proposed network steganography techniques,

showing the attacker’s perspective. This section discusses resources available as a warden

to combat such techniques.

2.5.1 Standards

United States Department of Defense (DoD) and National Institute of Standard and

Technology (NIST) published a series of computer security guidelines and standards,

widely known as Rainbow Series, where its nickname originated from the colourful

document covers.

DoD Trusted Computer System Evaluation Criteria (TCSEC) or widely known as

Orange Book, published in 1983, contains technical evaluation elements and method-

ologies to assess commercially available trusted computer systems [38]. The document

hierarchically ranks protection requirements into four, called “division”: Division A

– verified protection, Division B – mandatory protection, Division C – discretionary

protection and Division D – minimal protection. Each division may be further classified

into “class”, but they are not discussed further in this thesis.

Covert channels are ranked as division B, which implies that systems certified with B

or above prevent the use of any covert channel. The document presents seven references

on how covert channels were addressed in the past. However, as seen historically,

steganography evolves rapidly, and the documentation does not cover covert channels in

networks.

The next appearance of covert channels in Rainbow Series is from Covert Channel

Analysis of Trusted Systems or widely known as Light Pink Book, published in 1993 [39].

As may be expressed in the title of the book, it is focused on a single topic of covert

channel analysis. The scope of the book, however, mentions:

24 2. Background

• “Not addressed are covert channels that only security administrators or operators

can exploit by using privileged (i.e., trusted) software”.
• “Although we do not explicitly address covert channels in networks ..., the issues

we discuss in this guide are similar to the ones for those channels”.
These points are only relevant to a certain degree now because portable devices can

effortlessly join and leave a network. Portable device owners typically have full control

of their devices, up to administrative privilege.

The last and most recent documentation, ISO/IEC 15408, is by Common Criteria

(CC) [40], an international standard influenced by three different standards where one

of them being TCSEC. CC’s perspective on covert channels in networks is most realistic

than previous standards since it places covert channels at Evaluation Assurance Level

(EAL) 7, the highest level of assurance. Tipton et al. criticise in their book, however,

that covert channels can also be considered as EAL 3 since they are “illicit information

flows” [41]. Most Microsoft Operating systems (OS’s) received EAL 4 rating means

that they prevent any illicit information flows. Most individuals, however, have the

administrator privilege to install applications, making EAL 4 certification questionable.

Given the age of the book, we investigated if modern OS’s received EAL 4 rating. As it

turns out, EAL 4 rating applied only up to Microsoft Windows 7 OS products, and from

Microsoft Windows 8 OS onward, no assurance levels are certified [42].

Overall, all standards mentioned earlier focused on ‘trusted system’ and did not

identify or address covert channels in the network. From the government’s perspective,

this may be sufficient because it is only the administrator of a machine who has the

privilege to utilise covert channels. However, a few questions remain: What if terrorists

utilise network steganography to scheme their next attack? Are there any standards or

guidelines that can detect network steganography? Furthermore, we are living in an era

where a portable device can effortlessly join a network. How can a warden be certain

that a portable device user has not been using network steganography to leak confidential

information?

2.5. Countermeasures and limitations 25

When we compare network steganography against cryptography, governments gen-

erally have more control since the presence and standards of cryptography is transparent.

Thus, different countries have their own laws and regulations associated with exporting,

importing, and key disclosure laws concerning cryptography [43, 44, 45]. Occasions

where a government body intervenes with cryptography do occur, such as the Federal

Bureau of Investigation (FBI) requesting Apple to assist to support the national security

of the United States of America [46].

2.5.2 Traffic normaliser

raphy covers by reverting header fields back to their default values. Steganalysis lit-

erature often discusses traffic normalisation concepts because of their simplicity and

effectiveness in preventing network steganography. Traffic normalisation is a technique

to sanitise potential network steganography covers by reverting header fields back to

their default values, overwriting steganograms. Steganalysis literature often discusses

traffic normalisation concepts because of their simplicity and effectiveness in preventing

network steganography.

Handley et al. scrutinised IPv4 header fields and identified a total of 73 possible traffic

normalisations – 24 for Internet Protocol (IP), 2 for User Datagram Protocol (UDP), 38

for Transmission Control Protocol (TCP), and 9 for Internet Control Message Protocol

(ICMP) [47]. Similarly, Lucena et al. identified possible normalisations of IPv6 header

fields [35]. However, not every normalisation is a simple process of reverting to a default

value, e.g., one must first validate semi-unused header fields conform to the protocol

specifications. Moreover, traffic normalisation, i.e., essentially modifying header fields,

require one to recompute checksums. These contribute to computation time.

Furthermore, prevention neither implies the detection of the secret channel nor the

extraction of the message. While prevention mechanisms may fend off potential attacks,

a warden may be unaware of the attacks or their detail. The timing channel prevention

26 2. Background

technique, Pump, best exemplifies this as it outputs packets at an average ‘trusted rate’ to

limit possible timing differences in the packets [48, 49]. Moreover, there appears to be

no clear guideline on what happens after normalised traffic, leaving many unanswered

questions in terms of analytics: When did the data breach occur? Where did it happen?

What information was compromised? How much information was compromised? What

was the carrier? Who were involved?

Last but not least, prevention only fuels the arms race because prevention raises

the attacker’s alertness. An attacker who realises the blocked communication will

eventually design a more sophisticated technique that is potentially harder to detect. It

may, therefore, be advisable to consider detection instead of or in addition to prevention.

That way, analysing network flows or stego-packets can at least begin answering some

of the questions posed above.

2.5.3 Steganalysis

Network steganalysis is the art of discerning the difference between stego-packets and

non-stego-packets, thereby altering the presence of network steganography usage. De-

veloping a steganalysis technique, however, poses challenges because of diversified

embedding methods and covers (see Chapter 2.3). That is, there is a no-one-size-fits-all

solution to detect all steganography technique.

A warden has to understand the embedding method before performing steganalysis.

Therefore, a general trend in the literature is that a researcher first introduces their novel

steganography technique. Possible steganalysis techniques are considered and discussed

later on.

Researchers generally use binary classification to measure the detection accuracy (or

robustness) of their steganalysis technique. The classification categorises observations

into positive and negative outcomes. The positive outcome consists of correctly identified

true positive (TP) and true negative (TN), whereas the negative outcome consists of

2.5. Countermeasures and limitations 27

falsely identified false positive (FP) and false negative (FN). A steganalysis technique

would ideally have no FP and FN, i.e., incorrectly identifying non-stego-packets as

stego-packets and the other way around. A table that contains all of these measures is

known as a 2×2 confusion matrix [50]. Based on these measures, one can then calculate

other derivates, such as positive predictive value (PPV), true positive rate (TPR), and

true negative rate (TNR).

PPV is defined as follows:

𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃),

where𝑇𝑃 is the observed true positives, and 𝐹𝑃 is the observed false positives. PPV (also

known as precision) measures the accuracy of a steganalysis technique in differentiating

stego-packets from the normal-packets. A higher precision value indicates the better

accuracy in differentiating stego-packets from normal-packets.

TPR is defined as follows:

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁).

TPR (also known as recall) measures the accuracy of a steganalysis technique in iden-

tifying the stego-packets. A higher recall value indicates less chance of incorrectly

categorising stego-packets as normal-packets.

TNR is defined as follows:

𝑇𝑁𝑅 = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁).

TNR (also known as specificity) measures the accuracy of a steganalysis technique in

identifying the non-stego packets. As such, a high specificity technique is less likely to

miscategorise normal packets as stego packets.

28 2. Background

2.5.4 Classification

There have been previous attempts to categorise existing steganalysis techniques [51,

52, 53].

Mazurczyk et al. highlight following eight statistical metrics that apply to steganal-

ysis techniques: Welch’s 𝑡-test, autocorrelation, chi-square test, regularity measure,

Kolmogorov-Smirnov test (KS test), Kullback-Leibler (KL) divergence, entropy, and

Conditional Entropy (CE) [51]. Archibald et al. further categorise a number of these

metrics based on the detection methods [52]:

1. shape tests, e.g., KS test, Welch’s 𝑡-test

2. entropy tests, e.g., first order entropy test, Corrected Conditional Entropy (CCE)

test and KL divergence, and

3. regularity test, e.g., regularity and 𝜖-Similarity.

Goher et al. categorise steganalysis techniques based on the steganogram conceal-

ment method: either storage or timing channels [53]. The authors discussed that most

storage channel techniques are based on signatures, while the timing channel are based

on traffic patterns. This categorisation, however, is broad.

Mazurczyk et al. propose another broad classification based on detection tech-

niques [51]. The detection techniques are categorised as statistical or Machine Learning

(ML), and the major difference between the two categories is the decision boundary that

is used to differentiate ‘normal’ traffic from the stego-traffic. The decision boundary

is automatically identified during the training phase for ML, while it is manually set

in case of statistical approaches. The decision boundary is an important concept to

explore because it can provide erroneous results if incorrectly set. For example, Fiore

et al. experimentally showed that supervised ML will not perform well in a network

that exhibits a different network flow than the training flow [54], thus highlighting the

importance of the choice of decision boundaries.

2.5. Countermeasures and limitations 29

Literature review

Many steganalysis attempts have been made in the past using different techniques [17,

34, 52, 55, 56, 57, 58, 59, 60, 61, 62]. Table 2.2 lists some of the selected techniques,

assessing if the techniques may answer some of the research questions (Q1(a), Q1(b)

and Q2).
The majority of the reviewed techniques require virgin data, i.e., imaginary data

depicting ‘normal’ network traffic. This is especially the case for the techniques that

use statistical metrics, and this is probably caused by how one designs and conducts the

experiments. The following steps outline a typical execution of a statistical test-based

steganalysis:

1. Statistical test on a virgin traffic flow without any steganograms

2. Statistical test on a stego-traffic flow

3. Identification of a baseline and a decision boundary based on steps 1 & 2

4. Generate a large number of stego-traffic flows and assess it using the baseline and

the decision boundary identified in the previous

5. Present detection rate results (usually calculated using 2×2 confusion matrix)

A number of storage channel steganalysis work in the absence of virgin data [19,

63, 34]. Here, one usually knows the expected values – i.e., virgin values. Murdoch

et al. have proved that this also applies to random number-based headers, e.g., Internet

Protocol (IP) Identification (ID), Transmission Control Protocol (TCP) Initial Sequence

Number (ISN), TCP timestamp [34]. The authors have demonstrated that all of these

fields are pseudo-random and the values can be predicted based on the Operating System

(OS) or libraries in use.

None of the reviewed techniques quantifies the size of steganograms. Quantifying

the steganograms is important because it can indicate the damage specific network

steganography could have caused.

Goher et al. look at number of existing covert channel detection methods and state

30 2. Background

Table 2.2: Selected steganalysis techniques. It discusses each technique’s detection
domain, and whether it may answer some of our research questions.

Paper Applies to Q1(a) Q1(b) Q2
Steganalysis of transcoding
steganography [19]

Storage channel
based on VoIP
Transcoding

MOS-LQO
√

X

Network steganalysis: Detec-
tion of steganography in IEEE
802.11 wireless networks [63]

Storage channel
based on wireless
‘Retry’ and ‘More
Data’ headers

—
√

X

Disrupting and Preventing
Late-Packet Covert Com-
munication Using Sequence
Number Tracking [17]

Timing channel
based on late arrival
of RTP

MOS-LQO
√

X

Embedding covert channels
into TCP/IP [34]

Storage channel
specifically on
TCP/IP stack

OS specific
pseudorandom
algorithm

√
X

A comparative analysis of de-
tection metrics for covert tim-
ing channels [52]

Timing channel Welch’s t-test X X

Leveraging Statistical Feature
Points for Generalized Detec-
tion of Covert Timing Chan-
nels [55]

Timing channel autocorrelation X X

Real-Time Detection
of Covert channels in
Highly Virtualized Environ-
ments [64]

Storage (urgent field) Chi-square test X X

IP covert timing channels: de-
sign and detection [57, 58]

Timing channels (in-
cluding embedding
variation and noisy
channel)

regularity & 𝜖-
Similarity

√
X

Performance of selected noisy
covert channels and their
countermeasures in IP net-
works [59]

Timing channel KS test X X

Design and analysis of a
model-based Covert Timing
Channel for Skype traffic [65]

Timing channel KL test X X

Employing Entropy in the
Detection and Monitoring
of Network Covert Chan-
nels [61]

Storage channels
(ICMPv4/v6 Code,
TCP unused, UDP
Length)

entropy X X

An Entropy-Based Approach
to Detecting Covert Timing
Channels [62]

Timing channels conditional en-
tropy

X X

√
= answered, X = not answered

2.5. Countermeasures and limitations 31

that covert storage and covert timing channels can generally be detected with misuse

and network anomalies, respectively [53]. In misuse detection, one would examine if

header fields align with the expected usage pattern. In network anomalies detection, one

would monitor the packet arrivals, and comparison against historical network patterns

are carried out. As for the application based covert channels the authors emphasised

that this can be much more difficult since one needs a fair amount of knowledge of the

protocol. Thus, it is usually based on behavioural analysis, and as an example, the author

stated that half an hour long HTTP connection can be viewed as suspicious. However,

this example is questionable since, for example, HTTP live streaming service is a popular

streaming carrier.

Grabski et al. look at detection of steganography for 802.11 wireless networks that

are based on ‘Retry’ and ‘More data’ fields [63]. However, since their technique is based

on a naïve design, where these fields must be set and there must be a synchronisation

bits to signal the start of a communication, these fields appear to be less favourable to

be utilised as a covert channel.

Rezaei et al. designed an active warden for timing-based covert channels that inten-

tionally use delayed packets that are discarded for late arrival [17]. According to the

authors, their design specifically considers covert channels that utilise popular real-time

protocol (RTP) which is used for video and audio transmission and they have achieved

this by tracking sequence number. Their approach is to discard the packets at the in-

termediate device, e.g. firewall even before it reaches the destination by keeping the

sequence number and see if it is within the receiver’s jitter buffer window. The test

has been carried out on VoIP which uses RTP. The result suggests that it can detect

covert channel at a rate of 98% and disrupt the link while maintaining the quality of the

MOS-LQO stable.

Murdoch et al. have scrutinised specifications of TCP/IP header fields and proved

carrying out storage-based steganography is not feasible even if some of the fields,

32 2. Background

such as IP ID, TCP ISN, and TCP timestamp appear random [34]. The authors have

observed that all of the abovementioned fields are in fact pseudorandom, and values can

be predicted depending on which OS is being used, i.e., different versions of Linux and

OpenBSD have different algorithms to determine the pseudorandom value. The authors

then designed a steganography scheme called ‘Lathra’ which takes into account their

observation. This paper signifies that those who desire to design a covert channel need

to have a profound knowledge of the protocol or medium they are going to be exploiting.

Janicki et al. specifically tackles detection of transcoding steganography [19], and

results suggest that their detection rate ranged from 58 to 100% depending on codec pairs

tested. The detection has been done by building models called Gaussian Mixture Model

(GMM) by feeding it with mel-frequency cepstral coefficients (MFCC) parameters from

different voice data from corpora. Comparison between original speech GMM and

transcoded GMM is then carried out to justify if transcoding steganography can be

detected.

As may be seen from each of the steganalysis techniques, there is no one-size-fits-all

solution.

2.6 Summary

This chapter discussed a wide range of network steganography components by con-

sidering both the attacker’s and the defender’s perspectives. This chapter stressed the

limitations of the countermeasures and the lack of standardisation in network steganog-

raphy. This chapter reviewed the existing steganalysis techniques and their limitations

on relying on virgin data, and inability to quantify steganograms.

The next chapter discusses T-codes and complexity derivates of T-codes, and their

application in steganography and steganalysis.

3
T-codes and Complexity Derivates

This chapter introduces T-codes and complexity derivates of T-codes in Sections 3.1

and Section 3.2, respectively. Section 3.3 discusses applications of T-codes in steganog-

raphy channel creation.

3.1 T-codes

T-codes are prefix-free variable-length codes (VLC) similar to Huffman codes, so no

codeword in a T-code is the prefix of any other codeword in the code. Titchener intro-

duced T-codes in the 1980s. The domain of knowledge about T-codes has progressively

expanded over the years, moving away from compression applications into the area of

information estimation via T-complexity, T-information and T-entropy, which have a

number of practical applications [66, 67, 68, 69].

T-augmentation is a copy-and-append algorithm fundamental to the construction of

33

34 3. T-codes and Complexity Derivates

T-codes. T-augmentation makes 𝑘 copies of an existing prefix-free code𝐶 and constructs

another prefix-free code 𝐶 (𝑘)
(𝑝) by prefixing each codeword in the 𝑖-th copy of 𝐶 with 𝑖

copies of the T-prefix 𝑝 ∈ 𝐶, where 1 ≤ 𝑖 ≤ 𝑘 . 𝐶 (𝑘)
(𝑝) is the union of all the prefixed

copies and the original code 𝐶, with all codewords of the form 𝑝𝑖 removed. The latter is

necessary to preserve the prefix-freeness of 𝐶 (𝑘)
(𝑝) . Note that, for further T-augmentation,

𝑝𝑘+1 is in 𝐶 (𝑘)
(𝑝) , i.e., the prefix at each augmentation, is selected from the available

codewords. 𝑘 is known as the T-expansion parameter or copy factor. A code is a

T-code if and only if it can be constructed from a finite alphabet 𝐴 by zero or more

T-augmentation steps with T-expansion parameters 𝑘 𝑗 and T-prefixes 𝑝 𝑗 , respectively,

for 1 ≤ 𝑗 ≤ 𝑛 for some 𝑛 ∈ N0. The resulting code may be denoted as 𝐴(𝑘1,𝑘2,...,𝑘𝑛)
(𝑝1,𝑝2,...,𝑝𝑛) ,

and 𝑛 is referred to as the code’s T-augmentation level. This gives T-codes a recursive

structure. Note that the system consisting of 𝐴, (𝑝1, 𝑝2, ..., 𝑝𝑛) and (𝑘1, 𝑘2, ..., 𝑘𝑛) is

called the T-prescription of 𝐴(𝑘1,𝑘2,...,𝑘𝑛)
(𝑝1,𝑝2,...,𝑝𝑛) . Also, note that 𝐴 can have any cardinality

𝑚 ≥ 2, resulting in an 𝑚-ary tree.

Figure 3.1 illustrates the T-augmentation process leading to the T-code 𝐴(1,2)
(0,1) for a

binary 𝐴. The binary alphabet is the base case of interest in this thesis, as steganograms

are typically embedded in binary format. At T-augmentation level 1, the T-prefix and

T-expansion parameter are 𝑝1 = 0 and 𝑘1 = 1, respectively. This results in 𝐴
(𝑘1)
(𝑝1) =

{00, 01, 1}, where 00, 01, and 1 are the leaf nodes in the corresponding tree. The

internal nodes of the tree are the prefixes of the leaf nodes and are therefore not valid

codewords. The T-code at level 2 is augmented with 𝑝2 = 1 and 𝑘2 = 2, resulting in the

code 𝐴(1,2)
(0,1) = {00, 01, 100, 101, 1100, 1101, 111}.

3.1.1 Properties of T-codes

A code generated with T-augmentations cannot result in a perfect binary tree where all

the leaf nodes are at the same level. This property guarantees that T-codes will always

be variable-length codes (VLC) rather than fixed-length codes (FLC).

3.1. T-codes 35

0 1

00

0 1

01

0

1
00 01

10

100 101
11

110

1100 1101
111

Level 0 Level 1 (p1 = 0, k1 = 1) Level 2 (p2 = 1, k2 = 2)

Figure 3.1: T-augmentation steps of 𝐴(1,2)
(0,1) . T-prefixes and T-expansion parameters

determine the way the T-code is augmented. The red lines in the figure indicate the
T-augmentations. At level 1, one copy (𝑘1 = 1) of the previous level code (the alphabet
𝐴 = {0, 1}) is attached to a leaf node, the T-prefix 𝑝1 = 0, resulting in the T-code 𝐴(1)

(0) .
At level 2, two copies (𝑘2 = 2) of this level 1 T-code 𝐴(1)

(0) are attached to the original
code via the chosen T-prefix of 𝑝2 = 1, resulting in 𝐴(1,2)

(0,1) . The shaded internal nodes
represent the prefixes of the leaf nodes and do not represent valid codewords.

36 3. T-codes and Complexity Derivates

Bit insertion and bit deletion are conditions when a received bit stream appears to

contain more or fewer bits, respectively, than the transmitter actually sent. As self-

synchronising codes, T-codes are typically capable of synchronising within a few code-

words after a bit insertion or bit deletion [70]. The proof that T-codes are statistically

synchronisable is a simple proof by induction: Each codeword at T-augmentation level

𝑗 is a combination of 1 or more codewords at level 𝑗 − 1, and any codeword boundary

at level 𝑗 that follows a codeword other than 𝑝 𝑗+1 is also a codeword boundary at level

𝑗 + 1. Consider a state machine where each T-augmentation level 𝑗 corresponds to a

state to which synchronisation has been established. Then, only an input of 𝑝 𝑗+1 causes

a return to state (level) 𝑗 , all other inputs cause a transition to state 𝑗 + 1. Following

the principles of Markov chain state machines, a T-code decoder starting in state 0

and receiving anything but an infinite sequence of some 𝑝 𝑗+1 must therefore eventually

progress to state 𝑛, which represents full synchronisation [71].

3.2 T-codes derivates

3.2.1 T-decomposition

T-decomposition reconstructs a T-Code set information from one of the longest code-

words in the set. T-decomposition is discussed in further detail here because T-code

derivates cannot be explained without it.

A T-code may have more than one T-prescription that leads to its construction, e.g.,

𝐴
(1,2)
(1,11) = 𝐴

(5)
(1) , and it is possible to derive all possible T-prescriptions of a T-code from

any of the T-prescriptions [72]. As may be seen from Figure 3.1, every T-augmentation

introduces new longest codewords, i.e., codewords of lengths 2 and 4 at T-augmentation

levels 1 and 2, respectively, in this case. Also, note that the new longest codewords

are always the previous longest codewords prefixed with 𝑝𝑘 for the 𝑝 and 𝑘 used in

3.2. T-codes derivates 37

the most recent T-augmentation. This implies the longest codewords in any T-code are

unique to that code and only differ in the last symbol, due to the fact that the finite

alphabet 𝐴 is the T-code at level 0. Thus, the longest codewords are always of the form

𝑝
𝑘𝑛
𝑛 𝑝

𝑘𝑛−1
𝑛−1 . . . 𝑝

𝑘1
1 𝑎 where 𝑎 ∈ 𝐴, i.e., they contain the entire T-prescription information.

The T-prefix portion of the longest codewords is known as the T-handle, and it is always

possible to derive one of the T-prescriptions via the T-decomposition algorithm [72].

For example, the longest codewords in Figure 3.1 are {1100, 1101}, with the last

symbols in the codewords being the respective symbols from the alphabet 𝐴. We can

thus denote the general form of the longest codewords as 𝑥𝛼 = 110𝛼 with 𝛼 ∈ 𝐴. The

codeword boundaries are imposed by parsing of 𝑥 into the available codewords at the

current T-augmentation level and are specific to that level and marked by a subscript

indicating the current level. At T-augmentation level 0, the only available codewords

are the alphabet characters, i.e., {0, 1}, resulting in 𝑥𝛼 = 0101000𝛼0. In this parsing, the

T-decomposition algorithm looks for the penultimate codeword that appears, which is 0

in our case, and how often it appears (not counting the last codeword in the parsing of

𝑥𝛼). Here, the 0 appears only once in this position. Thus, we may identify 𝑝1 = 0 and

𝑘1 = 1. Once we T-augment level 0 with these parameters, our set of codewords becomes

𝐴
(1)
(0) = {00, 01, 1}. Using the new code, we identify the codeword boundaries again, i.e.,

our codeword boundaries now become 𝑥𝛼 = 111110𝛼1. Looking for the penultimate

codeword again, we now find 1, however it appears in two consecutive instances here.

This yields 𝑝2 = 1 and 𝑘2 = 2, resulting in 𝐴(1,2)
(0,1) = {00, 01, 100, 101, 1100, 1101, 111}

as the level 2 T-code. The T-decomposition process ends here because the algorithm has

reached the leftmost position in the string, which now parses as a single codeword from

𝐴
(1,2)
(0,1) T-prescription.

38 3. T-codes and Complexity Derivates

3.2.2 T-complexity

Complexity determines the computational resources required in the construction of an

object. Lempel-Ziv complexity measures the number of ‘steps’ required in parsing the

string [73], for example. T-complexity aligns with this idea in that it counts the number

of T-augmentation steps required to construct the T-code that contains a given string

𝑥𝑎 as the longest codeword, but it also weights each step with the binary logarithm of

its T-expansion parameter [74], which makes T-complexity invariant under change to a

different T-prescription for the same code. The T-complexity, 𝐶𝑇 (𝑥𝑎) is thus defined as:

𝐶𝑇 (𝑥𝑎) =
𝑛∑︁
𝑖=1

log2(𝑘𝑖 + 1), (3.1)

where 𝑘𝑖 are the T-expansion parameters obtained from the T-decomposition of 𝑥𝑎.

For example, the T-complexity of 𝐴(1,2,3)
(0,1,00) is log2(1+ 1) + log2(2+ 1) + log2(3+ 1) =

log2(24) = 4.58. Note that the number 24 also represent the number of internal nodes in

the corresponding tree, i.e., 𝐶𝑇 (𝑥𝑎) represents the number of bits required to uniquely

address all internal nodes.

3.2.3 T-information

Titchener’s empirical study on T-complexity revealed that both Lempel-Ziv and T-

complexity yield similar-looking graphs when complexity is plotted against the output

of an information source [75]. The graphs also indicated that the number of ‘steps’

was comparatively higher for Lempel-Ziv – a possible indication to use T-codes in com-

pression applications as the vocabulary is comparatively compact, an idea later pursued

successfully by Hamano and Yamamoto [76]. Titchener’s study further observed that

both the average T-complexity of random strings and that of codewords constructed

using the shortest available T-prefixes only closely follow the characteristic shape of the

3.2. T-codes derivates 39

logarithmic integral function [77], leading to the proposition that the inverse logarith-

mic integral of the T-complexity could be used to estimate total information content.

Titchener thus defined T-information, denoted 𝐼𝑇 (𝑥𝑎), as:

𝐼𝑇 (𝑥𝑎) = li−1(𝐶𝑇 (𝑥𝑎)), (3.2)

where li−1 is the inverse logarithmic integral.

Empirical tests on T-information suggest that it is suitable as an information content

estimator as strings produced by stationary information sources exhibit a quasi-linear

increase in observed T-information with length [75].

3.2.4 T-entropy

T-entropy derives itself from T-information as an information rate by considering the

string length. The (instantaneous) T-entropy rate, 𝐻𝑇 , is defined as:

𝐻𝑇 (𝑥, 𝐿) = Δ𝐼𝑇 (𝑥, 𝐿)/Δ𝐿, (3.3)

where Δ𝐼𝑇 (𝑥) is the T-information added to a string 𝑥 by the last Δ𝐿 symbols in the

string. The average T-entropy 𝐻𝑇 is the non-differential version of the formula above,

i.e., 𝐻𝑇 (𝑥) = 𝐼𝑇 (𝑥)/|𝑥 |.

Chapter 2 discussed some of the existing statistical network metrics used in ste-

ganalysis. These measures are usually reliant on the presence of virgin data. T-code

derivates appeal in this regard because the T-decomposition process finds correlations in

a bit stream without the need for virgin data. A previous application of T-code derivates

in computer network environments by Speidel et al. used T-entropy to detect network

events, specifically DDoS (Distributed Denial of Service) types of attacks [78] showed

promising results. The authors conclude that T-entropy is suitable network event detec-

40 3. T-codes and Complexity Derivates

tion. The paper assesses Shannon’s entropy as a less suitable measure to detect network

events because it lacks sensitivity for correlation, i.e., it does not evaluate whether the

next symbol is dependent on previous symbol(s). This is crucial because the behaviour

of computer networks is not random. For instance, destination IP addresses of inbound

packets at a border router are closely correlated as they are from a fixed subset.

3.3. Steganography channel creation use 41

3.3 Steganography channel creation use

T-code-encoded steganograms have the following benefits:

• Compression

All codewords in fixed-length codes (FLC) have the same bit length, e.g., fixed

8-bit codewords in extended ASCII. In variable-length codes, such as T-codes,

however, one may associate more frequent English alphabet characters with shorter

codewords. While some of the codewords in T-codes may be longer than those of

fixed-length codes, fewer bits are required for the whole steganogram.

• Bit slips (rate distortion)

Bit slips result from a difference in clock frequency between transmitter and

receiver and describe the situation where one or more bits are deleted or inserted

during the steganogram reception. Facing such an issue in FLC leads to loss

of synchronisation. T-code self-synchronisation can mitigate this problem to a

certain degree.

• Bit flips

In a FLC, a bit flip causes an erroneous codeword but does not lead to loss of

synchronisation as in bit slips. In VLCs, bit flips often cause loss of synchronisa-

tion as they make the decoder go down a different (and possibly longer or shorter)

branch of the decoding tree than the intended one. T-codes suffer from this as

well, but self-synchronisation helps them recover.

While bit slips and bit flips are uncommon in storage-based steganography, we ob-

serve these effects in timing-based steganography (see Chapter 7). Compression of

steganograms is a desirable feature for both storage and timing-based steganography.

42 3. T-codes and Complexity Derivates

3.3.1 Code design

A T-prescription determines a tree structure of a T-code set. The choice of T-prescription

allows a T-code to be adapted to a source for compression purposes. As discussed in

Section 3.1, one can choose any positive 𝑘𝑖 and any of the codewords available at each

T-augmentation level as 𝑝𝑖, providing considerable flexibility in constructing a T-code

set.

Our T-code must meet two criteria: sufficient space and compression. Having

sufficient space allows one to express all the required symbols, making communication

possible. On the other hand, compression is a desirable feature that steganographers

would consider utilising. Steganography can typically only use a small fraction of the

medium in which it is embedded, and compressed steganographic messages make better

use of the medium than uncompressed ones. Based on the two criteria, it appears that

a Huffman code can be used instead of a T-code. We reiterate that the T-codes are

self-synchronising codes that, by nature, excel in a lossy timing-based steganography.

Arguably, some Huffman codes are self-synchronising codes. The construction of

Huffman codes, however, is based on the source probabilities that does not guarantee the

code will have the self-synchronisation property.

Cardinality of a T-code

The cardinality of a code describes the number of codewords in the code. The cardinality

of a T-code is thus the number of codewords generated from its T-prescription, and is

given by:

#𝐴(𝑘1,𝑘2,...,𝑘𝑛)
(𝑝1,𝑝2,...,𝑝𝑛) = 1 + (#𝐴 − 1)

𝑛∏
𝑖=1

(𝑘𝑖 + 1), (3.4)

3.3. Steganography channel creation use 43

where #𝐴 is the number of alphabet symbols, and 𝑘𝑖 is the T-expansion parameter at

level 𝑖. Since our steganograms are in binary format, the formula can be simplified to:

#{0, 1}(𝑘1,𝑘2,...,𝑘𝑛)(𝑝1,𝑝2,...,𝑝𝑛) = 1 +
𝑛∏
𝑖=1

(𝑘𝑖 + 1). (3.5)

As the formula indicates, only the T-expansion parameters 𝑘𝑖 determine the number

of symbols in a T-code set, which gives a simple criterion to assess whether a T-code

contains sufficient codewords.

For example, if one requires a T-code set with 33 = 32 + 1 symbols, then all

the possible factorisations of 32 are: (32), (2, 16), (2, 2, 8), (2, 2, 2, 4), and (2,

2, 2, 2, 2). As each factor corresponds to a 𝑘𝑖 + 1 for some 𝑖, the corresponding

combinations of 𝑘𝑖 are (31), (1, 15), (1, 1, 7), (1, 1, 1, 3), (1, 1, 1, 1, 1) and permutations

thereof. The cardinality formula thus solves the problem of sufficient space exactly,

but neither do any of these combinations guarantee optimal compression, nor can we

determine compression efficiency unless we know which T-prefix one should choose at

each augmentation level.

Compression performance

Optimal compression for a given source requires a search that may result in a code with

more codewords than needed. A VLC offers better compression than another code when

difference between the sum of the probability-weighted lengths of its codewords and the

Shannon entropy of the source is smaller than for the other code. One can achieve this

by adjusting the tree’s growth in width and depth through an appropriate choice of 𝑝𝑖
and 𝑘𝑖. Figure 3.2 illustrates this with a requirement of seven symbols with the following

symbol probabilities: 0.25, 0.125, 0.125, 0.125, 0.125, 0.125 and 0.125. This source has

a Shannon entropy of 0.25∗2+0.125∗3+0.125∗3+0.125∗3+0.125∗3+0.125∗3+0.125∗3 =

2.75. The left and right T-prescriptions result in seven and nine codewords, respectively.

44 3. T-codes and Complexity Derivates

Two codewords are unused in the right T-code, but it offers better compressibility.

In terms of the average weighted codeword length, the left and right T-codes yield

0.25 ∗ 1 + 0.125 ∗ 2 + 0.125 ∗ 3 + 0.125 ∗ 4 + 0.125 ∗ 5 + 0.125 ∗ 6 + 0.125 ∗ 6 = 3.5 and

0.25 ∗ 2 + 0.125 ∗ 2 + 0.125 ∗ 3 + 0.125 ∗ 3 + 0.125 ∗ 4 + 0.125 ∗ 4 + 0.125 ∗ 4 = 3 bits,

respectively. The right T-code is thus better suited for the source since its redundancy is

lower than that of the left, i.e., 3.5 − 2.75 = 0.75 < 3 − 2.75 = 0.25.

0 1

10 11

110
111

1110
1111

11110
11111

111110 111111

0 1

00 01
010 011

10
11

111110

1100
1101

1110
1111

1101111010

Figure 3.2: Comparing compressibility of 𝐴(1,2)
(1,11) (left) and 𝐴(1,1,1)

(1,0,11) (right). The source
has a Shannon entropy of 2.75 assuming seven source symbol probabilities of 0.25, 0.125,
0.125, 0.125, 0.125, 0.125 and 0.125. The average weighted codeword lengths of the left
and right T-codes are 0.25∗1+0.125∗2+0.125∗3+0.125∗4+0.125∗5+0.125∗6+0.125∗6 =

3.5 and 0.25 ∗ 2 + 0.125 ∗ 2 + 0.125 ∗ 3 + 0.125 ∗ 3 + 0.125 ∗ 4 + 0.125 ∗ 4 + 0.125 ∗ 4 = 3,
respectively. The right T-code comes closer to the source entropy, offering better
compressibility despite having two unused codewords.

Practical code design

Coding efficiency is not the main concern of this thesis, however. So, for simplicity, we

restrict ourselves to 𝑘𝑖 = 1, minimal-length 𝑝𝑖 and thus minimal T-augmentation. Our T-

code needs to support 65 symbols, i.e., the 26 English alphabet characters in lowercase,

3.3. Steganography channel creation use 45

uppercase and 13 punctuation characters. Using the cardinality formula (Equation 3.5),

our choice of T-expansion parameters is as follows: 𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1, 𝑘4 =

1, 𝑘5 = 1, 𝑘6 = 1. Always choosing one of the shortest possible 𝑝𝑖 to promote the

tree’s growth in width then leads to a code such as the one given by the T-prescription

𝐴
(1,1,1,1,1,1)
(1,0,11,00,10,011) . Figure 3.3 illustrates our encoder in the binary tree structure.

Figure 3.3: T-code encoder 𝐴(1,1,1,1,1,1)
(1,0,11,00,10,011) . Constructed with the smallest possible 𝑘𝑖

and 𝑝𝑖 values to promote the tree’s growth in width. This T-code set accommodates 65
symbols; 26 English alphabet characters in lowercase and uppercase, and 13 punctuation
characters.

Enhancing T-codes

Cyclic equivalence (CE) consists of rotating a string of codeword 𝑁 over alphabets

𝐴. A codeword is a periodic cyclic equivalence (PCE) class of a code when the

codeword has 𝑁 unique rotated strings. Otherwise, it is a non-periodic cyclic equivalence

(NPCE). Removing PCE codewords from a T-code set, i.e., minimising consecutive T-

prefixes improve the synchronisation delay a T-code decoder spends to recover from

the unsynchronised state. Removing PCE codewords turns a T-code into a bounded

synchronisation delay (BSD) code [79, 80]. Two finite strings are cyclically equivalent

(CE) if they can be transformed into each other by removing a prefix from one of the

46 3. T-codes and Complexity Derivates

strings and attaching it as a suffix to the remainder (cyclic shift). Each finite string and its

cyclic equivalents form a cyclic equivalence class. Cyclic equivalence classes of strings

of length 𝑁 with 𝑁 distinct elements are called non-periodic cyclic equivalence (NPCE)

classes, those with < 𝑁 elements are known as periodic cyclic equivalence classes

(NPCE) their codewords are said to be periodic. In T-codes, periodic codewords consist

of two or more copies of the same T-prefix. Removing periodic codewords from a T-code

limits the number of consecutive T-prefixes a T-code decoder may encounter, therefore

bounding and improving the code’s synchronisation delay. Removing PCE codewords

thus turns a T-code into a bounded synchronisation delay (BSD) code [79, 80].

Examples of PCE and NPCE, where 𝑁 = 3:

• 000 - PCE, results in 000 under all cyclic shifts

• 001 - NPCE, {001, 010, 100}

• 011 - NPCE, {011, 110, 101}

• 111 - PCE, results in 111 under all cyclic shifts

Removing the four PCE codewords {0000, 1010, 1111, 011011} turns our initial T-

code set into a BSD code at the expense of losing the ability to encode four punctuation

characters. Figure 3.4 illustrates our final T-code tree.

Figure 3.4: T-code 𝐴(1,1,1,1,1,1)
(1,0,11,00,10,011) turned into a bounded synchronisation delay code

by removing the four periodic codewords (indicated with red branches).

3.3. Steganography channel creation use 47

Decoder model

A T-code decoder can work in a linear fashion, starting from the root of the coding tree,

progressively increasing the number of bits to scan to find a matching codeword (leaf

node). If no match is found even after it reaches the longest possible codeword, a bit

deletion/insertion or a bit flip has occurred. The scan now returns to the root, and the

same procedure repeats until the scan reaches the end of the input string.

This chapter briefly introduced T-codes and their derivates and finer details of our T-

code set encoder and decoder. In the next chapter, we delve deeper into our storage-based

steganography and steganalysis with T-entropy.

4
Network Storage-based Steganography

In this chapter, we describe our network storage-based steganography model and

analyse it using a re-embedding steganalysis technique. Section 4.1 introduces our net-

work storage-based steganography and re-embedding steganalysis. Section 4.2 discusses

the background and a number of related works. Section 4.3 discusses our steganography

design in detail and justifies our design decisions. Section 4.4 discusses our steganalysis

in detail. Sections 4.5 – 4.8 discusses the results of re-embedding steganalysis. Sec-

tion 4.9 discusses the implication of the results. Section 4.10 summarises the chapter.

4.1 Introduction

As discussed in Chapter 2, one can use different header fields in the network stack to

embed secret data. This chapter focuses on TCP/IP header fields, i.e., Network Layer

of the TCP/IP stack. TCP/IP network header fields are popular as a cover in network

48

4.1. Introduction 49

storage-based steganography because steganograms can effortlessly be retained over

multiple hops. As a rule of thumb, unused network headers are avoided as a cover. For

instance, three reserved bits in the TCP layer need to remain untouched as zero. The

reserved bits are intentional placeholders for possible future use. These bits are released

from the reserved state only when it is needed, e.g., network specification change [81].

Thus, manipulating any of the reserved bits not only raises an immediate alarm to a

warden but also enables the recovery of the most, if not all, of the secret data. In this

regard, used header fields may appear as appealing steganography covers, but they pose

compliance challenges. Such that, a manipulation introduced by a technique has to

comply with the underlying network protocols to meet expected behaviours. Murdoch et

al. empirically demonstrate an eventual discovery of a steganography channel with the

compliance failure [34].

Semi-unused header fields are only utilised when certain conditions are met. The

semi-unused header fields may thus be considered as compelling covers since the detec-

tion has to consider both scenarios of them being used and unused. Such characteristic

may provide flexibility in steganography because both of the scenarios are viable options.

In this chapter, we investigate the viability of semi-unused header fields, specifically IP

flags field as a steganography cover and possible detections associated with it. We

experimentally demonstrate that the creation and detection of IP flags steganography

are possible. Re-embedding steganalysis on network storage-based steganography show

promising results. The technique is not only able to detect the presence, but also quantify

the size of the secret data. Only the techniques that use IP flags are experimented here

but this does not imply the re-embedding steganalysis cannot be used on other header

fields.

50 4. Network Storage-based Steganography

4.2 Background and related work

Fragmentation is a process of splitting a large chunk of network data into smaller chunks,

called fragments so they can traverse a network and reach the final destination [15]. IP

fragmentation is necessary because a maximum transmission unit (MTU), which defines

the maximum packet size a receiving host accepts, can vary between the receiving hosts.

Thus, when a packet size exceeds the MTU allowed on any of the receiving hosts that

exist en route to the final destination, the packet has to be fragmented. The fragments

are reassembled back to a packet once all the relevant fragments arrive at the receiving

host. Internet Protocol (IP) flags, IP identification and fragment offset header fields aid

the reassembly of the fragments.

Kent et al. discuss the disadvantages of the fragmentation [82]. They emphasise

fragmentation process contributes to network overheads. A fragment, just like any

other network packet, has to traverse a network to reach its destination. To enable

such functionality, every fragment is encapsulated with the network headers – thereby

increases transmission delay. Furthermore, these headers are required to be processed by

the intermediary devices en route to the destination – thereby increases processing delay.

In the worst case where a fragment does not reach a receiving host, then the whole packet

is required to be re-fragmented and retransmitted. Fragmentation was initially designed

to help heterogeneous networks to interoperate. However, as discussed previously, the

consensus view on the fragmentation is not favourable. Thus, Path MTU Discovery

(PMTUD) has been introduced as a workaround to prevent fragmentation [83]. PMTUD

discovers a minimum MTU size from receiving hosts on a path by sending datagrams

and listening for specific ICMP messages.

A routing path, however, can change during the packet traversal. Also, PMTUD

can be blocked by a network administrator because the administrator may have a mis-

conception that all ICMP packet are “harmful”. Luckie et al. empirically test 50,000

4.2. Background and related work 51

popular websites to measure PMTUD failure rates, and their experiments revealed that

around 67% of the failed webservers also dropped ping requests [84]. A more recent

paper from Göhring et al. revealed that the failure rate of PMTUD has declined from

2008 to 2016 [85]. The authors, however, ask a fundamental question of whether the

benefit offered by PMTUD outweighs the possibility of exposing oneself to degradation

of service attacks.

Although the adoption rate of PMTUD is increasing, fragmentation is not an obsolete

phenomenon that is no longer observable. Fragmentation may be observed in Session

Initiation Protocol (SIP), Domain Name System Security Extensions (DNSSEC), and

tunnelling protocols [86, 87, 88, 89].

A number of papers looked at using fragmentation property to embed secret data [90,

91]. This can involve using ID field, offset field, reordering, and etc. Mazurczyk et al.

propose a number of steganography models that are based on fragmentation [90]. One of

their proposed models consists of conveying secret data by the number of the fragmented

packets: the even and the odd number of fragments convey 0 and 1, respectively.

Three bits of IP flags field are “evil” bit, don’t fragment (DF), and more fragment

(MF) in the order of most significant bit (MSB) to lease significant bit (LSB). RFC 791

mandates the proper use of these flags [15]. In summary, three protocol-compliant bit

combinations are as follows:

• 000 – the packet is not a fragment, and it can be fragmented.

• 010 – either the packet is not a fragment and it cannot be fragmented or the packet

is the last fragment. Non-zero fragment offset field indicates the usage of the latter.

• 001 – the current and the following packets are fragments.

It should be noted that 010 is also used in PMTUD to signal PMTUD support.

Ahsan et al. propose to manipulate DF bit [92]. Their model generates 000 and 010

IP flags values to convey 0 and 1, respectively. Conflicting information can, however,

be observed when their usages are reviewed. Bit combination 000 indicates potential

52 4. Network Storage-based Steganography

for fragmentation, whereas 010 indicates the opposite. While 000 and 010 are protocol-

compliant IP flags values, they may not coexist. To validate our hypothesis, a residential

network has been monitored with a network monitoring software, Wireshark [93]. The

results reveal that 000 and 010 flags values are present in the monitored capture file.

Furthermore, both the values can appear in a single network flow but from each side

only. For instance, if a host decides 000 flags value for a flow, then the decision appears

to remain throughout the flow. Thus, alternating between the two flags values may raise

an immediate alarm to a warden. As discussed in section 2.5.2, traffic normalisation may

prevent this technique. It should, however, be emphasised again that prevention neither

implies the detection of the secret channel nor the extraction of the message. Thus,

steganalysis is as important as prevention. Furthermore, the IP flags field is a semi-

unused header field, so one has to consider both cases of it being used and unused. The

next section describes our IP flags steganography models and the steganalysis associated

with it.

4.3 Steganography models

4.3.1 Embedding modes

We use the three IP flags bits as follows:

• Compliant mode – utilising 000 or 010, and 001.

• Non-compliant mode – utilising all the possible three bits combinations, including

the protocol-non-compliant bit combinations.

The compliant mode only use the valid IP flags values identified in the previous

section. The non-compliant mode shows an example of utilising maximum allowed

channel capacity. That is, it uses three bits of hiding space ranging from 000 to 111,

albeit most bit combinations are non-compliant. This mode can be detected or prevented

effortlessly. The purpose of this mode is to observe the impact it has on steganalysis.

4.3. Steganography models 53

4.3.2 Real vs. synthetic data

Network steganography experiments can generally be executed with the following two

network data options: real and synthetic data. An experiment using real data is typically

carried out as follows: 1) Generate a network flow of interest 2) Intercept and manipulate

the flow according to a steganography model 3) The manipulated flow is released to a

network link 4) Monitor and analyse incoming network flows at the destination. Using

real data has an advantage of showing a network steganography’s potential in real life

scenario. It can indicate the feasibility of a developed network steganography because

it managed to bypass wardens and reached the destination. A low-level permissions on

OS is usually required to intercept and manipulate packets in real time, so the procedure

can be problematic [26]. Also, because one has to intercept and manipulate a flow, it

adds computation time; increased latency at the destination. Mazurczyk et al. use real

data in their experiment, and measured average latency of their network storage-based

steganography, TranSteg [26]. Their result suggests average latency changed from 0.85

ms to 1.24 ms – 0.39 ms increase. This is around 46% increase which may be regarded

as a significant change in network steganalysis domain.

Furthermore, acquiring real data may not be ideal in many cases. Following are

some of the reasons one may consider synthetic data [9]:

1. data associated with harsh environments

2. data from remote locations that are hard to access

3. data relating to rare or infrequent events

4. data that might be private, confidential, or sensitive

5. data that is impractical to obtain in large volumes

6. data that is impractical to gather over a long time period

Synthetic data is much more flexible because one only synthesises the features of

interest. A major issue, however, with the data synthesis is that one cannot synthesise

54 4. Network Storage-based Steganography

something that one has not experienced. That is, one does not know if a synthesised

packet conforms to the underlying network protocol, implying: Can the synthesised

packets travel over a network like real data?

Our experiments use synthetic data to save the overhead in sending steganograms

across a network. In timing-based steganography, timing manipulations have to with-

stand the possible network jitter in real life. In storage-based steganography, however,

storage manipulations have to remain unchanged at the final destination.

To this end, we executed a validation experiment by manipulating IP flags. The

eight packets from the non-compliant mode, which encompasses all the possible bit

combinations, were sent from New Zealand to an Ohio Amazon Web Services (AWS)

server. The packets were synthetically crafted and manipulated using WireEdit [94].

The crafted packets were then stored in a Packet Capture (PCAP) file. PCAP files are

used in a number of network analysis applications [93, 95, 96, 97]. PCAP files have

a simple structure as illustrated in Figure 4.1. A trace file starts with a global header

containing common information such as a magic number, version, and capture time

zone. The file then contains a series of packet dumps, each preceded by a packet record

header describing each of the packets. The PCAP file containing the crafted packets

are sent to the Ohio AWS server using Packet Player [98]. The packet monitoring

software, Wireshark, at the server-side revealed that the packet manipulations remained

unchanged.

Our experiment has been simulated under the assumption that the unchanging prop-

erty holds for any number of subsequent packets. WireEdit is a useful tool in manip-

ulating header fields with ease, thanks to its graphical interface. It may, however, not

be suitable when a large number of packet manipulations are required. An XML-based

specification can come in handy but can be tedious when every detail needs to be speci-

fied from the ground up [9]. To simplify the experiment, a pre-captured PCAP file has

been manipulated with the help of a wrapper library. The PCAP file wrapper enables

4.3. Steganography models 55

PCAP header
PCAP record header

Packet data
PCAP record header

Packet data
. . .

PCAP record header
Packet data

Figure 4.1: The format of a PCAP file. PCAP header contains a magic number and
other necessary information to read the PCAP file. PCAP record header contains the
timestamps and length of data bytes. Packet data contains the captured data.

one to parse a PCAP file and manipulate the contents inside, such as the header fields.

The pre-captured PCAP file has the following properties:

• Every packet’s IP flags field is set as 010 by default, i.e., Don’t fragment (DF) set.

• 2100 packets, in which, two IP addresses communicate in an alternating order.

If we assume a unidirectional communication, 1050 packets would be manipulated

at 100% embedding level. Under compliant and non-compliant modes, one can hide

secret data up to 1050 bits and 3150 bits, respectively. It should, however, be noted that

one may not fully utilise all the capacity. This may be due to secret data being small

or purposefully underutilising the full capacity. A purposeful underutilisation may be

viewed as a security feature from an attacker’s perspective because it may make the

detection more difficult.

4.3.3 Embedding schemes

There are different ways how one can embed secret data. Three embedding schemes are

considered and they are sequential, equal spacing and random embeddings. A sequential

embedding approach manipulates consecutive cover packets. An equal spacing embed-

ding spreads out a message by using every 𝑛𝑡ℎ packet. In other words, equal spacing

embedding uses a stride of 𝑛 while sequential embedding uses a stride of 1. Random

56 4. Network Storage-based Steganography

P1 P3 P4 P5 P6 P8P7 P9 P10P2

P1 P3 P4 P5 P6 P8P7 P9 P10P2

P1 P3 P4 P5 P6 P8P7 P9 P10P2

(a) Sequential Embedding

(b) Equal Spacing Embedding

(c) Random Embedding

Figure 4.2: Embedding 50% of a flow (containing 10 packets) using three different
embedding schemes: a) Sequential, b) Equal spacing and c) Random. Packets used for
embedding are marked in red.

embedding uses a pseudorandom number generator to find packets to hide messages

randomly. Since the packets are streamed in order, typically the message is shuffled

randomly and the message bits are embedded in the packets using a random stride. The

receiver will need to know the pseudorandom number generator in order to decode the

message. Figure 4.2 illustrates each of the embedding schemes at a 50% embedding

level.

4.4 Steganalysis
Re-embedding steganalysis is a novel technique introduced in the context of media

steganography [69]. The technique has proven its merit in media steganalysis, but its

use in analysing network steganography had not been previously studied. This thesis

therefore experiments with re-embedding steganalysis due to its ability to not only detect

an attack, but also hint at the amount of secret data.

Re-embedding steganalysis is based on two observations. The first of these obser-

vations is: The T-entropy of a digital medium with hidden information is usually larger

than that of the digital medium without any hidden information. The problem, however,

is that one does not get to observe the same network trace with and without hidden

4.4. Steganalysis 57

information.

Re-embedding steganalysis overcomes this problem with another observation: If

there is information hidden in a digital medium and we hide further information in

the same file, the original hidden data may be overwritten by the new. This means that

hiding a similar amount of information in a file that already contained hidden information

should not change the file’s T-entropy by much.

Based on these observations, we can detect the presence and the amount of hidden

information in a digital file. We hypothesise that network trace files will exhibit the same

behaviour. The search for the presence of hidden information works as follows:

1. Hide 𝛿 random content in the trace, where 𝛿 ranges from 0 to 100% (of the hiding

capacity).

2. For each of the cases above, calculate the T-entropy.

3. The 𝛿 value at which the T-entropy starts to increase is the estimate of the amount

of hidden information (as a percentage of the hiding capacity).

Figure 4.3 shows this process for a sample trace file where hidden information

occupies the first 20% of hiding capacity at the start of the file.

Figure 4.3 shows that the T-entropy does not increase as information is embedded

in the trace – until the hidden information exceeds 20%. Beyond these 20%, the graph

shows an almost linear increase in T-entropy. The turning point in the graph (at the

20% mark in this particular case) represents the amount of hidden information (as a

percentage of the hiding capacity).

To find the effectiveness of re-embedding steganalysis, we conduct a series of exper-

iments.

Firstly, we synthesise a number of network trace files with varying amount of hidden

information embedded using different hiding techniques. The information is hidden by

58 4. Network Storage-based Steganography

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

20%

Figure 4.3: T-entropy vs. embedding level (i.e., new content embedded). Once the
embedding level exceeds the amount of hidden information in the trace (20% in this
case), the T-entropy value rises.

manipulating the IP flags field in the network packets. We call this first step source-

embedding, since this is the embedding we strive to uncover.

For each of the generated traces, we follow the re-embedding steganalysis process as

described earlier. This re-embedding process will vary the amount of hidden information

step-by-step in the hope of finding the turning point in the T-entropy as shown in our

sample plot of Figure 4.3. We would not know the hiding technique – sequential, equal

spacing, or random – the source-embedding used, so we will have to try all possible

hiding techniques in our re-embedding process.

The auto-generated “Lorem Ipsum” texts are used as the secret data to simplify the

experiment and introduce randomness to the secret data. This randomness ensures that

every secret data – for source as well as re-emdedding – is different.

Algorithm 1 shows the pseudocode of the experimental process. i and j parameters

4.5. Effects of different embedding schemes on T-entropy 59

define the percentages of the source and the trial embeddings, respectively. Algorithm 1

has been repeated with the different embedding schemes as defined in the previous

subsection, 4.3.3. A tuple structure, (𝑆, 𝑇) has been used to describe the possible

combinations of the source and trial embeddings – 𝑆 is the source embedding and 𝑇

is the re-embedding. Both 𝑆 and 𝑇 can be any of these embedding schemes described

earlier: sequential, random or equal spacing. Thus, all possible combinations are:

• (sequential, sequential)
• (sequential, equal spacing)
• (sequential, random)
• (equal spacing, sequential)
• (equal spacing, equal spacing)
• (equal spacing, random)
• (random, sequential)
• (random, equal spacing)
• (random, random)

4.5 Effects of different embedding schemes on T-entropy

We first experiment with the effects different embedding schemes have on T-entropy

before assessing the capability of re-embedding steganalysis. To this end, following

modifications are done to the Algorithm 1: Trial embedding loop is suppressed, Source

embedding loop calculates the T-entropy, and i increments by 1 instead of 20. It is

evident from the Figure 4.4, embedding scheme plays a large role because noticeable

differences can be observed between the graphs. The sequential embedding scheme

produced a straight-line graph where the T-entropy value and embedding level shows

more or less a linear relationship. This indicates the T-entropy may be a reliable metric

to detect a steganography that uses a sequential embedding scheme as the T-entropy

responds relatively accurately to the amount of the secret data. The random embedding

scheme resulted in a curved T-entropy graph. Moreover, this scheme usually produced

60 4. Network Storage-based Steganography

the highest T-entropy value out of all the schemes at different embedding levels. The

uncertainty associated with the random embedding scheme would have attributed to

such phenomenon. The equal spacing embedding scheme exhibits an overall increasing

T-entropy with significant local fluctuations of unclear origin. Lastly, all the embedding

schemes converged nearly at the same T-entropy value at 100% embedding level. This

is an expected outcome as the same amount of data is embedded for each scheme.

Algorithm 1: Experimental methodology; shaded area indicates re-embedding

steganalysis
Input : PCAP packets, Lorem Ipsum messages 𝑀, 𝑀2

Output

:

T-entropy values

for 𝑖 = 0 to 100 do Source embedding loop

Embed 𝑖% packets with the required initial portion of 𝑀 ;

for 𝑗 = 0 to 100 do Re-embedding loop

Re-embed 𝑗% packets with the required initial portion of 𝑀2 ;

Calculate T-entropy ;

end

Clear embedded packets ;

Increment 𝑖 by 20 ;

end

Two rather similar-looking graphs can be seen between the two embedding modes,

but with the following two differences: First, the T-entropy values of compliant mode

graphs are approximately a third of that of non-compliant mode. Second, the compliant

mode graphs generally fluctuate more than the non-compliant mode equivalents. A

correlation property of T-decomposition holds the answer to these observations. Since

all three flags are used in T-entropy calculation, one can therefore expect to see strong

correlation in the non-compliant mode. The compliant mode only exhibits a weak

correlation because only one out of the three flags are used as a cover. The compliant

4.5. Effects of different embedding schemes on T-entropy 61

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Sequential
Equal spacing

Random

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Sequential
Equal spacing

Random

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.4: The relationship between T-entropy and various embedding schemes. Both
(a) non-compliant mode and (b) compliant mode generated similar-looking graphs,
except T-entropy values on non-compliant mode were always higher than the compliant
mode. The graphs indicate the embedding scheme has a significant impact on the T-
entropy.

62 4. Network Storage-based Steganography

mode graphs, however, illustrate its accuracy is not significantly affected by the two

irrelevant bits (noise) because the compliant mode graphs portray a story similar to the

non-compliant mode graphs. The following steganalysis experiments will provide us an

insight if the same can be said with the re-embedding steganalysis use case.

4.6 Steganalysis (sequential, 𝑥)

Figure 4.5 shows the result of the (sequential, sequential) tuple, and it shows a clear

pattern: The T-entropy values remain almost constant until the trial embedding level

exceeds the source embedding level. Once it exceeds the source embedding level, the

T-entropy value starts to rise. This aligns with the findings in [69]. Figures 4.6 and 4.7

illustrate the results of (sequential, equal spacing) and (sequential, random) tuples,

respectively. The figures, unfortunately, do not expose anything except the slopes of the

lines due to the different initial embedding levels.

4.6. Steganalysis (sequential, 𝑥) 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.5: (sequential, sequential) The effect of trial embedding a source embedded
PCAP file. Both the source and trial embeddings used sequential embedding techniques.
The T-entropy values start to rise once it exceeds its source embedding level.

64 4. Network Storage-based Steganography

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.6: (sequential, equal spacing) The effect of trial embedding a source embedded
PCAP file. The source and trial embeddings used sequential and equal spacing embed-
ding techniques, respectively. It appears this graph carries no significance except the
high T-entropy values at the beginning.

4.6. Steganalysis (sequential, 𝑥) 65

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.7: (sequential, random) The effect of trial embedding source embedded PCAP
file. The source and trial embeddings used sequential and random embedding techniques,
respectively. It appears this graph carries no significance except the high T-entropy values
at the beginning.

66 4. Network Storage-based Steganography

4.7 Steganalysis (equal spacing, 𝑥)

Figures 4.8 and 4.10 show the results of (equal spacing, sequential) and (equal spac-

ing, random) tuples, respectively. Non-matching embedding schemes, i.e., tuples with

different source and trial embeddings, result in no significant outcome as also has been

exhibited in the sequential tuples. Figure 4.9 shows the result of the (equal spacing, equal

spacing) tuple, and strong fluctuations in the graphs can be observed. The T-entropy

dips can be observed when the trial embedding reaches the same embedding level as

the source embedding, as well as at power of 2 of that level. For example, if 10%

of the embedding capacity were used during the source embedding, dips will occur at

embedding levels of 10%, 20%, 40% and 80%. The reason behind this is that at these

dips, the trial embedding modifies exactly the same positions as the source embedding.

Thus, all the existing data is simply replaced with the new data.

4.7. Steganalysis (equal spacing, 𝑥) 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.8: (equal, sequential) The effect of trial embedding source embedded PCAP
file. The source and trial embeddings used equal spacing and sequential embedding
techniques, respectively. The graphs generally do not follow the trend of sequential
embedding, thus it can indicate a presence of data.

68 4. Network Storage-based Steganography

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.9: (equal, equal) The effect of trial embedding source embedded PCAP file.
Both the source and trial embeddings used equal spacing embedding techniques.

4.7. Steganalysis (equal spacing, 𝑥) 69

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.10: (equal, random) The effect of trial embedding source embedded PCAP file.
The source and trial embeddings used equal spacing and random embedding techniques,
respectively.

70 4. Network Storage-based Steganography

4.8 Steganalysis (random, 𝑥)

Figures 4.11, 4.12 and 4.13 show the results of (random, sequential), (random, equal

spacing) and (random, random) tuples, respectively. The figures, unfortunately, do not

expose anything extraordinary except the different slopes of the lines.

The (random, random) tuple which has a matching source and trial embedding

schemes not exposing any trend is uncommon, as opposed to what has been observed in

Steganalysis (sequential, 𝑥) and (equal spacing, 𝑥). This phenomenon may be explained

with the lack of correlation in the random embedding. For the (sequential, sequential)

tuple, one overwrites existing secret data with another Lorem Ipsum message. This has

near no effect on T-entropy until the overwritten data size is greater than the source

embedding. For the (equal spacing, equal spacing) tuple, one overwrites exact same

packets when the source and trial embedding data capacity match. The (random, random)

tuple, however, does not guarantee to manipulate the same packet positions as the source

embedding.

Figure 4.14 illustrates the linear regression lines of the (random, random) tuple under

the compliant mode. As may be seen from the figure, the higher the source embedding

the flatter the graph becomes. A linear equation is defined as 𝑦 = 𝑚𝑥 + 𝑏, where 𝑥

and 𝑦 are the coordinates, 𝑚 is the coefficient and 𝑏 is the y-intercept. The coefficient

𝑚 determines the gradient of the curve, and 𝑚 of the various embedding levels is as

follows: 0.0063 (0% embedding), 0.0038 (20% embedding), 0.0021 (40% embedding),

0.0010 (60% embedding), 0.0003 (80% embedding), -0.00001 (100% embedding). The

coefficient and y-intercept values follow a decreasing and increasing trends, respectively.

It thus confirms a detection model based on the linear regression may be usable. It should,

however, be noted that this is beyond the research interest of this thesis as discussed in

Chapter 1.1. We reiterate that the comparison-based statistical measures are bound to

face scalability and maintainability issues in the long run. Let us assume one observes

4.8. Steganalysis (random, 𝑥) 71

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.11: (random, sequential) The effect of trial embedding source embedded PCAP
file. The source and trial embeddings used random and sequential embedding techniques,
respectively.

72 4. Network Storage-based Steganography

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.12: (random, equal) The effect of trial embedding source embedded PCAP file.
The source and trial embeddings used random and equal spacing embedding techniques,
respectively.

4.8. Steganalysis (random, 𝑥) 73

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(a) Non-compliant mode where all of the bits of the Flags field are modified.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

(b) Compliant mode where only the DF bit of the Flags field is modified.

Figure 4.13: (random, random) The effect of trial embedding source embedded PCAP
file. Both the source and trial embeddings used random embedding techniques.

74 4. Network Storage-based Steganography

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

Figure 4.14: Linear regressions of Figure 4.13 (random, random) graphs. More source
embedding generally lowers the coefficient (i.e., gradient) and increases the y-intercept.

a flag fields gradient of 0.0038 in their network flow and decides a decision boundary

of 0.0005. Then any flow with the gradient between 0.0033 and 0.0043 is set as a

benign flow. If the network condition changes and the number of the IP fragmentation

is reduced, then one can expect false positive alarms. Likewise, a false negative alarm

can be expected when an attacker utilises the channel capacity which happens to match

with a predetermined gradient.

4.9 Discussion

The re-embedding steganalysis is able to detect and estimate the amount of secret data

in the network storage channel. While we looked only at one semi-unused header field

of IP flags, re-embedding steganalysis can undoubtedly be used for other semi-unused

or unused header fields, and yield a similar result. T-entropy takes correlation into

4.10. Summary 75

account. Hence, as soon as the header fields that are supposedly unused or semi-unused

are filled with correlated data, re-embedding steganalysis will excel at detecting it. It

has been seen that T-entropy can withstand noise from uncorrelated data. We have noted

that both the compliant and non-compliant modes of re-embedding steganalysis produce

similar-looking graphs, thanks to T-entropy’s ability to withstand noise.

Patterns from (sequential, sequential) and (equal spacing, equal spacing) tuples are

useful in detecting the storage-based network steganography. In most of the other tuples,

the slope of a line might be used in detecting network steganography. For instance,

the gradient can be estimated via linear regression, and one might use this value to

determine if certain flow should be viewed as legitimate or not.

4.10 Summary
In this chapter, we investigated experimentally the effectiveness of T-entropy in detect-

ing storage-based network steganography. In addition, we tested the following three

embedding schemes: sequential, equal spacing and random embeddings.

Our results show that the re-embedding steganalysis technique is not only effective

for the detection but also for estimating the size of secret data. The same applies to the

equal spacing embedding where the T-entropy dip can be used as an indicator. However,

no observable pattern could be seen in case of random embedding. It should, however,

be noted that the gradients of the graphs can be used for the detection but that is a

comparison-based approach, which contradicts with what this thesis is trying to achieve.

While promising results can be seen from the re-embedding steganalysis graphs,

manual human auditing is necessary. That is, a human has to manually identify a point

in a graph that starts to increase or a dip is. The re-embedding steganalysis technique

may, therefore, be unsuitable for network use case because the amount of network traffic

that needs to be audited would be well beyond the speed one can manually audit. In the

next chapter, we discuss the journey of building an automatic detector to address such

limitation.

5
Automatic Detectors for Re-embedding

Steganalysis

In the previous chapter, re-embedding steganalysis has shown its effectiveness in

detecting both the presence and the amount of hidden information in storage-based

steganography. The technique only draws a graph which later has to be manually

inspected by a human on whether a flow is malicious or not. This approach is not

practical, however.

This chapter thus discusses a journey of granting “intelligence” to the re-embedding

steganalysis system. The system, therefore, is capable of forming similar judgements

to the human. To this end, the system has to identify a major trend change in a graph,

and consequently, this chapter experimentally evaluates a number of trend detection and

smoothing techniques.

76

5.1. Background 77

The rest of the chapter is organised as follows: Section 5.1 recapitulates the findings

in the previous chapter, and defines specifications of the detector system. Section 5.2

presents selected related work in detection and smoothing techniques. Sections 5.3 – 5.7

share the journey of building the detector system for the (sequential, sequential) tuple.

Section 5.8 uses the insight gained from the previous sections to build the detector system

for the (equal spacing, equal spacing) tuple. The final section summarises the chapter.

5.1 Background
Re-embedding steganalysis re-embeds a suspicious cover with secret data at various

capacity levels, and thereby attempts to arrive at the level of the source embedding.

The previous chapter introduced the merits of re-embedding steganalysis with how its

output, a graph, can be assessed by a human for potential steganographic channel usage.

This approach of finding the amount of hidden information is impractical in a real world

scenario, however, as networks can be busy with a number of network flows too large

for human analysis.

As discovered in the previous chapter, (sequential, sequential) and (equal spacing,

equal spacing) tuples showed noticeable trends. Figure 5.1 illustrates this. In the

(sequential, sequential) tuple graph, the T-entropy does not increase as information is

embedded in the trace – until the hidden information exceeds 20%. We refer to this

section where the gradient of the graph stays quasi-constant at around 0 as the horizontal

section. Beyond 20%, the graph shows an almost linear increase in T-entropy. We

therefore refer to this section as the increasing section. The major turning point in

the graph (at the 20% mark in this particular case) represents the amount of hidden

information (as a percentage of the hiding capacity). This is also where the gradient

transitions, so we refer to this point as a trend transition point. In the (equal spacing,

equal spacing) tuple graph, the T-entropy value fluctuates during its trial embeddings.

The T-entropy value dips when the trial embedding reaches the same embedding level

as the source embedding, as well as at powers of 2 of that level.

78 5. Automatic Detectors for Re-embedding Steganalysis

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

(sequential, sequential)
(equal spacing, equal spacing)

Figure 5.1: T-entropy vs. embedding level (i.e., new content embedded). Once the trial
embedding exceeds the source embedding value of 20%, the T-entropy value rises in the
(sequential, sequential) tuple. On the other hand, one of the dips indicates the source
embedding level in the (equal spacing, equal spacing) tuple.

5.2. Related work 79

5.2 Related work

The change in trends described above can effortlessly be detected with human eyes, and

we seek to develop an automatic detector that can achieve the same.

Identifying or predicting a turning point has a number of uses. In a volatile financial

market, predicting correct turning points makes a significant difference. Li et al. demon-

strate turning points of “chaotic characteristic in financial time series” can be identified

using machine learning techniques [99]. Identifying trends in past rainfall data to fore-

cast rainfall allows a country to efficiently manage water resources [100, 101]. This is a

critically essential task to perform to survive through climate change.

Calculating a turning point can be simple. In differential calculus, if one knows

a function of a curve, 𝑓 (𝑥), one can calculate its first derivative, 𝑓 ′(𝑥) [102], which

identifies the gradient of a curve at the specific data point. A significant change in the

gradient marks the turning point.

Denoising a dataset may be a necessary step before further analysis can be under-

taken. Kay et al. demonstrate how their model, GLMdenoise, improves cross-validation

accuracy [103]. This leads to a better signal-to-noise ratio reading. Abdelhamed et al.

discuss denoising techniques and demonstrate that when a Convolutional Neural Net-

works (CNN)-based method is trained with high quality datasets, it performs better than

the alternatives [104].

5.3 Simple interpolation

This section discusses if simple interpolation can detect different embedding levels of

(sequential, sequential) tuple graphs in Figure 5.2 by detecting the trend transition point.

We first explored the possibility of using interpolation to detect the trend transition.

Given a set of finite data points, one can use interpolation to generate a curve and an

80 5. Automatic Detectors for Re-embedding Steganalysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

0%
20%
40%
60%
80%

100%

Figure 5.2: The effect of trial re-embedding a source-embedded packet capture file. The
T-entropy values start to rise once the re-embedding exceeds the original embedding
level in the source. Each curve represents an aggregation of 100 datasets.

5.3. Simple interpolation 81

underlying mathematical function 𝑓 (𝑥) that describes the curve. The mathematical

function can interpolate any point in the curve that was otherwise unavailable from

the dataset. This is possible because the interpolation creates a continuous curve by

connecting a set of data points. Typically, linear, polynomial, or spline functions are

used for interpolation. With a mathematical function, one can also find a first derivative

𝑓 ′(𝑥) to obtain the gradient of a curve at a specific data point. In the ideal case, the

gradient is expected to remain zero during the horizontal section, and then stay positive

from the trend transition point onwards.

Figure 5.3 shows one of the 100 datasets from Figure 5.2, highlighting the fluctuations

in the dataset. In statistics and signal processing, the term noise is often used to describe

an additive component in the signal or error in the data whose instantaneous value cannot

be described deterministically but whose statistical distribution or other properties may

be known. The interpolation approach would not work because noise causes frequent

short-range gradient changes and obscures the expected global trend transition behaviour.

Moreover, the noise does not exhibit a noticeable pattern across different datasets (see

Appendix B.1. This may prove to be a potential hurdle in building the automatic detector.

However, the trend persists, i.e., the curve appears to increase once the re-embedding

level exceeds the source embedding level. Smoothing the dataset appears to be the logical

step to take to reduce the noise. Two different smoothing techniques, Moving Average

(MA) and Regression Analysis (RA), are therefore investigated and experimentally

evaluated.

82 5. Automatic Detectors for Re-embedding Steganalysis

0 10 20 30 40 50 60 70 80 90 100
Embedding level (%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T-
en

tro
py

Raw data (40% embedding)

Figure 5.3: A single one of the 100 datasets with 40% embedding from Figure 5.2.
Fluctuations are more pronounced, but the trend transition around the 40% mark is still
evident.

5.4. Moving average 83

5.4 Moving average

Moving Average (MA) is a smoothing algorithm to remove noise from a dataset. MA

can either be weighted or unweighted; each with its own applications. Exponential

Moving Average (EMA) is an example of a weighted MA algorithm where recent data

points outweigh past data points. Stock markets are one of the applications of EMA

where recent stock prices may be regarded as more relevant. On the other hand, Simple

Moving Average (SMA) is unweighted and treats every data point equally. SMA is the

obvious choice for T-entropy smoothing as there is no justification for weighting in this

case. The right-edged SMA is defined as:

𝑆𝑀𝐴𝑟𝑝 =
𝑥𝑝 + 𝑥𝑝−1 + . . . + 𝑥𝑝−(𝑛−1)

𝑛
(5.1)

where 𝑥𝑝 is the value of 𝑝-th element in the dataset and 𝑛 is the window size.

Figure 5.4 shows the effect of various SMA window sizes on Figure 5.3. It shows

that larger window sizes result in smoother curves. The noise in the dataset appears to

be masked for 𝑛 ≥ 10, albeit at the cost of a lower average as the SMA window includes

lower values to the left of 𝑥𝑝. A centred SMA window can mitigate such problems:

𝑆𝑀𝐴𝑐𝑝 =

𝑥
𝑝− (𝑛−1)

2
+ . . . + 𝑥𝑝−1 + 𝑥𝑝 + 𝑥𝑝+1 + . . . + 𝑥𝑝+ (𝑛−1)

2

𝑛
, (5.2)

Figure 5.5 compares the smoothing effects of right-edged and centred SMA. The

figure shows that the centred SMA appears to result in a curve that better represents

the dataset. While the centred SMA with 𝑛 = 10 appears to result in a satisfactory

smoothing result for Figure 5.3, this may not be the case for other datasets.

Figure 5.6 illustrates this for a single dataset with 70% embedding level smoothed

with 𝑛 = 10 and 20. The figure shows that the noise around the horizontal section is

marginally better suppressed when 𝑛 is increased to 20 from 10. However, this is not

84 5. Automatic Detectors for Re-embedding Steganalysis

0 10 20 30 40 50 60 70 80 90 100
Embedding level (%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T-
en

tro
py

Raw data (40% embedding)
SMA, n=3
SMA, n=5
SMA, n=10
SMA, n=20

Figure 5.4: The effect of trial embedding a source embedded PCAP file with SMA
smoothing of the data points. The window size 𝑛 defines the degree of smoothing.
Values of 𝑛 below 10 appear to retain some of the noise.

5.4. Moving average 85

0 10 20 30 40 50 60 70 80 90 100
Embedding level (%)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T-
en

tro
py

Raw data (40% embedding)
SMA, right edge, n=10
SMA, centre, n=10

Figure 5.5: A centred SMA window mitigates the low average problem of right-edged
SMA in Figure 5.4.

86 5. Automatic Detectors for Re-embedding Steganalysis

0 10 20 30 40 50 60 70 80 90 100
Embedding level (%)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

T-
en

tro
py

Raw data (70% embedding)
SMA, centre, n=10
SMA, centre, n=20

Figure 5.6: The effect of trial embedding a source embedded PCAP file. Both the source
and trial re-embedding used sequential embedding techniques. The figure illustrates the
impact that window size has on the curve. The window size of 20 appears to result in a
marginally better curve than 10. horizontal section noise, however, is still preserved in
both cases.

5.5. Regression analysis 87

satisfactory because the horizontal section noise is still present. A fundamental question

one may ask is whether there exists a way to quantify which 𝑛 best represents a dataset.

There is no definitive answer to this, and the datasets are at a risk of facing either under-

smoothing or over-smoothing. Under-smoothing occurs when small values of 𝑛 preserve

too much detail, whereas excessive 𝑛 may cause over-smoothing and a loss of the trend.

5.5 Regression analysis

SMA’s difficulty in determining a useful value for 𝑛motivates a search for an alternative.

Regression analysis (RA) shares some similarities with interpolation: It generates a

curve and an underlying mathematical function. In RA, a curve, however, may not pass

through data points because it generates a fitted polynomial curve, which represents an

approximated model of the dataset. This may result in a certain degree of smoothing.

Figure 5.7 illustrates RA on Figure 5.3. The degree specifies the polynomial degree a

dataset is fitted to. Selecting the correct degree avoids underfitting or overfitting, which

occur as a result of excessive or insufficient generalisation of a model, respectively.

Degree 1 is a straight line and demonstrates the effect of underfitting. The degree 1

subfigure shows that the trend transition is lost completely. The effect of overfitting may

be observed in the degree 20 subfigure. While the trend transition is present here, the fit

retains some of the noise around the increasing section. The degree 10 subfigure comes

close to the best fit where the curve represents the dataset adequately. In summary, the

following two points can be stated: Firstly, degree 1 RA must be avoided as it always

destroys the trend transition. Secondly, it is not guaranteed that degree 10 will generate

the best-fit curves for other datasets. Figure 5.8 illustrates this for a single dataset at 70%

embedding level, where degree 10 retains the horizontal section noise while degree 3

masks it.

88 5. Automatic Detectors for Re-embedding Steganalysis

Figure 5.7: Regression analysis on Figure 5.3 with varying degrees. Degrees 1 and 20
show the effect of underfitting and overfitting, respectively. A good fit is indicated by a
low mean squared error (MSE). Degree 10 has the smallest MSE, adequately suppressing
noise in the horizontal section.

5.5. Regression analysis 89

Figure 5.8: Degree 3 and degree 10 polynomial regressions on a single dataset with 70%
embedding level: The degree 10 polynomial retains the noise in the horizontal section,
while the degree 3 polynomial removes it.

Figure 5.9: Residual plots of Figure 5.3 on (a) degree 1 and (b) degree 10 polynomials.
The residual for the degree 1 polynomial exhibits declines and inclines because the linear
polynomial cannot capture any trend in the dataset. On the other hand, residuals are
scattered around the degree 10 polynomial, indicating a good fit.

90 5. Automatic Detectors for Re-embedding Steganalysis

Regression validation analyses a fitted model by assessing goodness of fit, which

defines how well the model corresponds to the data points. The null and alternative

hypotheses of goodness of fit are defined as:

𝐻0 : 𝑀 fits 𝐷

𝐻1 : 𝑀 does not fit 𝐷,
(5.3)

where 𝑀 is the fitted model and 𝐷 is the dataset. However, for our purposes, 𝐻0 needs

to be altered because we require the fitted model to fit the dataset just enough to suppress

the noise without losing the trend transition. Thus, our 𝐻0 is defined as: 𝑀 generalises

𝐷 sufficiently without losing the trend transition. The model’s goodness of fit can be

assessed in different ways, but the common approach in regression validation uses the

residual.

The residual is the difference between the data point and the corresponding fitted

model value. Thus, the residual is defined as: 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖, where 𝑦𝑖 is the 𝑖𝑡ℎ data point

in the dataset and 𝑦𝑖 is the corresponding fitted model value. Figure 5.9 shows degree 1

and degree 10 polynomial residual plots of Figure 5.3. A model is considered a perfect

fit if all residuals are 0. A perfect fit, however, may not be ideal because it signals the

possibility of overfitting.

A sparse residual plot without any trend is ideal as a trend in the residual plot suggests

the failure of the model. The degree 1 subfigure exhibits decline and incline trends,

whereas the degree 10 subfigure shows no noticeable trend. The residual plot approach

for finding the best-fit polynomial has a couple of drawbacks, however: Firstly, manually

selecting the best random-looking plot among the different degrees of polynomial plots

can be time-consuming; secondly, determining the trend of a plot is a subjective process.

For instance, one might argue that the residual fans out in the degree 10 subfigure.

Alternatively, error metrics may be used to evaluate the goodness of fit. There are

a number of different error metrics available – mean squared error (MSE), R-squared

5.5. Regression analysis 91

Ta
bl

e
5.

1:
Ex

pe
rim

en
tin

g
w

ith
a

ra
ng

e
of

er
ro

rm
et

ric
sw

ith
va

ry
in

g
po

ly
no

m
ia

ld
eg

re
es

fro
m

1
to

15
on

Fi
gu

re
5.

3.
D

eg
re

e
10

pr
ov

id
es

th
e

lo
gi

ca
lb

es
t-fi

ta
si

nd
ic

at
ed

by
th

e
bl

ue
fo

nt
.

D
eg

re
e

𝑅
2

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Ex
pl

ai
ne

d
Va

ria
nc

e
Sc

or
e

M
ea

n
Sq

ua
re

d
Lo

ga
rit

hm
ic

Er
ro

r

M
ax

Er
ro

r

M
ed

ia
n

A
bs

ol
ut

e
Er

ro
r

M
ea

n
Sq

ua
re

d
Er

ro
r

Cr
os

s-
Va

lid
at

io
n

10
-fo

ld
s

1
0
.8
96
4

0
.1
02
1

0
.8
96
4

0
.0
03
5

0
.2
69
5

0
.0
96
1

0
.0
14
0

0
.0
23
9

2
0
.9
79
5

0
.0
41
9

0
.9
79
5

0
.0
00
5

0
.1
38
0

0
.0
37
3

0
.0
02
8

0
.0
07
2

3
0
.9
91
6

0
.0
26
9

0
.9
91
6

0
.0
00
2

0
.1
01
4

0
.0
22
2

0
.0
01
1

0
.0
03
5

4
0
.9
93
8

0
.0
21
4

0
.9
93
8

0
.0
00
2

0
.0
89
4

0
.0
15
6

0
.0
00
8

0
.0
01
2

5
0
.9
94
0

0
.0
20
9

0
.9
94
0

0
.0
00
2

0
.0
85
0

0
.0
13
9

0
.0
00
8

0
.0
01
4

6
0
.9
94
0

0
.0
21
0

0
.9
94
0

0
.0
00
1

0
.0
84
4

0
.0
14
5

0
.0
00
8

0
.0
02
6

7
0
.9
94
0

0
.0
20
9

0
.9
94
0

0
.0
00
1

0
.0
84
0

0
.0
14
8

0
.0
00
8

0
.0
35
9

8
0
.9
94
3

0
.0
20
7

0
.9
94
3

0
.0
00
1

0
.0
85
4

0
.0
13
4

0
.0
00
8

0
.0
03
4

9
0
.9
94
5

0
.0
19
5

0
.9
94
5

0
.0
00
1

0
.0
80
6

0
.0
13
0

0
.0
00
7

0
.0
02
7

10
0
.9
94
6

0
.0
19
5

0
.9
94
6

0
.0
00
1

0
.0
79
1

0
.0
11
9

0
.0
00
7

0
.0
25
7

11
0
.9
94
1

0
.0
21
0

0
.9
94
1

0
.0
00
2

0
.0
81
0

0
.0
15
9

0
.0
00
8

0
.2
20
6

12
0
.9
93
9

0
.0
21
5

0
.9
93
9

0
.0
00
2

0
.0
81
4

0
.0
17
0

0
.0
00
8

0
.4
40
5

13
0
.9
94
0

0
.0
21
3

0
.9
94
0

0
.0
00
2

0
.0
78
6

0
.0
16
0

0
.0
00
8

0
.4
54
5

14
0
.9
94
0

0
.0
21
3

0
.9
94
0

0
.0
00
2

0
.0
75
5

0
.0
15
9

0
.0
00
8

0
.1
15
9

15
0
.9
93
6

0
.0
22
0

0
.9
93
6

0
.0
00
2

0
.0
80
9

0
.0
18
7

0
.0
00
9

0
.3
08
0

92 5. Automatic Detectors for Re-embedding Steganalysis

(𝑅2), and mean absolute error (MAE), to name a few. The error metrics generally use

residuals in their calculation. For example, the MSE equation shown below illustrates

its use of residuals:

𝑀𝑆𝐸 =
1

𝑛

𝑛−1∑︁
𝑛=0

(𝑒𝑖)2, (5.4)

where 𝑛 is the number of the data points in the dataset. Table 5.1 shows the result of

experimenting with a range of different error metrics on Figure 5.3. As may be seen from

the table, a polynomial degree of 10 appears to provide best fit for the figure because

it usually resulted in a better fit than any other degrees for most of the metrics. In the

following section, however, we show that this approach results in overfitting in our use

case.

5.6 𝑘-fold cross-validation

Using the same procedure as for Table 5.1 on the 70% embedding level dataset from

Figure 5.8 indicates that degree 10 is still the best fit. Degree 3, however, is the better fit

because it suppresses noise in the horizontal section. While the degree 10 polynomial

model may best describe our dataset with the smallest errors, we require a lower degree,

as our null hypothesis demands that 𝑀 must fit 𝐷 without losing the trend transition.

Cross-validation (CV) allows us to meet this criterion.

CV is mainly used in machine learning where prediction performance is one of the

major concerns. If a model overfits a training dataset, a poor prediction performance

may be observed towards the out-of-sample (unseen data). There are different CV types

one may use, but we specifically use 𝑘-fold CV. 𝑘-fold CV involves following five steps:

1. Partition a dataset into 𝑘 subsets with equal cardinality.

2. Select a subset as a test set, and assign the remaining 𝑘 −1 subsets as training sets.

3. Calculate an evaluation score using the previously identified testing and training

sets.

5.6. 𝑘-fold cross-validation 93

4. Repeat 2. and 3. until all 𝑘 subsets have been evaluated as a test set.

5. Average the 𝑘 evaluation scores.

The value 𝑘 = 10 has been selected as it is widely considered a good starting point.

Furthermore, it is logical to partition our datasets into 10-folds because the embedding

levels progressively increment by 10%.

With the help of CV, we are able to select the best polynomial degree that fits our

dataset. However, one cannot expect to obtain a completely straight line in the horizontal

section because of the polynomial regression. In order to detect the trend transition under

such conditions, we use a threshold approach. We define the threshold as the maximum

stationary value before the automatic detector flags more than one embedding level as

a trend transition point. The threshold could be set at a 5% increment above an initial

T-entropy value. However, this is not a reliable approach because the initial T-entropy

value is affected by the initial embedding level. For instance, the T-entropy values for

the 40% and 70% embedding level datasets range from 0.84 to 1.93 bits/byte (~230%

increase) and 1.39 to 2.01 bits/byte (~145% increase), respectively. It thus seems more

appropriate to use the overall percentage change in the calculation. The threshold is thus

defined as:

𝑇 =

(
𝑑𝑙

𝑑 𝑓
0.01𝛼 + 1

)
𝑑 𝑓 , (5.5)

where 𝛼 is the threshold percentage, and 𝑑 𝑓 and 𝑑𝑙 are the first and last data points in

the fitted curve, respectively.

Furthermore, the detector also needs to identify the 100% embedding level where the

trend transition is not observable. The overall percentage change method, as seen from

Equation 5.5, may once again be used to address this problem. That is, if the overall

percentage change from start to end is less than 5%, we assume 100% embedding.

Figure 5.10 shows a performance analysis of the automatic detector using the afore-

mentioned settings with𝛼 = 5%. Testing involved 100 datasets for each of the embedding

capacities. As Figure 5.10 shows, the median values usually exceed the initial embed-

94 5. Automatic Detectors for Re-embedding Steganalysis

ding level. This is caused by the 5% threshold. It might appear as though subtracting the

threshold value from the results might yield better results, but it is not a generic solution.

A compact box indicates a more accurate detector than a tall box. Overall, the box plot

range varies between the initial embedding levels, but the range is usually within 20%.

Without the whiskers, this would bring down the range to ≈ 10%, but this only considers

50% of the datasets.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 5.10: Performance analysis of an automatic detector based on polynomial regres-
sion with the 𝛼 = 5% threshold from Equation 5.5. Each box consists of 100 datasets
for which the optimal degrees have been dynamically selected using 10-fold CV. The
detector usually overestimates the embedding level because of the threshold.

5.7 Degree 1 residual approach

In RA section, Figure 5.9 (a), we criticised degree 1 in the goodness of fit test. A degree

1 polynomial is regarded as a linear regression, so it is of no surprise that our datasets

will not fit well. A degree 1 residual plot, however, is special in its own right. As

5.7. Degree 1 residual approach 95

Figure 5.9 (a) shows, connecting the dotted points results in a V-shaped curve, whose

minimum marks the trend transition point, here shown for an initial embedding level of

40%. Appendix B.2 evidently illustrates that the V-shaped curve is not coincidental, and

it can be observed from any of the 40% dataset. Figure 5.11 explains this phenomenon

for the noise-free case where the stationary and increasing sections are both straight and

the minimum residual occurs at the trend transition point at 40%.

minimum residual

Figure 5.11: An ideal, noise-free dataset showing a 40% embedding level with straight
linear and increasing sections. The green line shows the linear regression of the dataset.
If one calculates residuals for all the data points, the trend transition point is the minimum
residual.

We tested every dataset under the assumption that this property holds for all of the

datasets. Figure 5.12 illustrates the results in box plots. The figure shows that selecting

minimum residual values appears to supply relatively accurate trend transition points

for most of the embedding capacities. This technique only fails for nearly unutilised or

almost fully utilised channels. In the figure, these are the embedding levels 0%, 10%,

90% and 100%. That is, the V-shaped curves are not present in these embedding levels

96 5. Automatic Detectors for Re-embedding Steganalysis

(see Appendix B.3). The median values in the box plots almost align with the initial

embedding levels. Moreover, the ranges of the box plots are comparatively shorter than

those of the regression method in Figure 5.10.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 5.12: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots, yielding promising results for
all but very small and very large embedding levels.

A fallback tactic can be used to mitigate the poor performance in estimating very

low and very high embedding levels. The ranges of residual plots for the 0%, 10%, 90%

and 100%embedding levels are shorter than other embedding levels (see Appendix B.3).

When a short-range plot is detected, the detection method can be switched to the 𝑘-fold

CV. This fallback tactic may be regarded as the combination of 𝑘-fold CV and degree

1 residual approaches because four-elevenths of the embedding levels rely on the 𝑘-fold

CV detection. Figure 5.13 illustrates this. This approach produces more promising

results, but at the cost of increased computation time.

5.7. Degree 1 residual approach 97

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 5.13: A hybrid technique that combines 𝑘-fold CV and degree 1 residual ap-
proaches. The technique produces more reliable results than the residual approach
because the bottom and top 20% are remedied.

98 5. Automatic Detectors for Re-embedding Steganalysis

5.8 Automatic detection of the (equal spacing, equal

spacing) tuple

0 20 40 60 80 100
Embedding level (%)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

T-
en

tro
py

Degree 1

Raw data (20% embedding)
Linear regression

Figure 5.14: Linear regression on a 20% embedded (equal spacing, equal spacing)
dataset. Drawing a residual plot may reveal that the minimum residual marks the
deepest dip.

As discussed in Section 5.1, one of the dips in (equal spacing, equal spacing)

tuple graph indicates the source embedding capacity. One can, however, misjudge an

embedding capacity because there are multiple dips. For example, the noticeable dips of

the 20% source embedding are at 10%, 20%, and 40% embedding levels. Upon closer

inspection on the datasets, the deepest dip, i.e., a point that plummets and soars up the

most, indicates the correct source embedding capacity.

5.8. Automatic detection of the (equal spacing, equal spacing) tuple 99

We employ the same residual plot technique we had used for the (sequential, sequen-

tial) tuple. We hypothesise that the linear regression line will be drawn around the main

curvature, therefore, the minimum residual will be the deepest dip. Figure 5.14 illustrates

this on a 20% embedded dataset where the linear regression line is drawn around the

main curvature. Figure 5.15 shows residual plot of Figure 5.14. Appendix B.4 shares

more 20% datasets, illustrating this is not a coincidental behaviour.

0 20 40 60 80 100
Embedding level (%)

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1

Figure 5.15: Degree 1 residual plot of Figure 5.14. This plot would be regarded as
a bad fit because the data points show a pattern. For our purposes, at least, this plot
shows a promising preliminary result because the minimum residual marks the source
embedding level.

Figure 5.16 shows the results of using the degree 1 minimum residual approach.

Satisfactory results may be seen from the figure beside 0%, 80%, 90% and 100%. In the

case of 0% embedding, most of the minimum residual value comes out as 100%, whereas

100 5. Automatic Detectors for Re-embedding Steganalysis

it is complete opposite for 100% embedding (see Appendix B.4). A temporary fix of

interpreting the 100% and 0% detected level as its opposite value can be considered here,

but it is not a permanent fix. The results for 80% and 90% embeddings are unacceptable

since the box plot ranges are too broad. On the other hand, the dips are accurately

detected in all other embedding levels. The degree 1 residual plot technique also works

here because of the same reason as described for the (sequential, sequential) tuple. Once

a linear regression line is drawn, the deepest dip point is the minimum residual.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 5.16: Performance analysis of an automatic detector that is based on residual
plots. Minimum residual values from first degree polynomial residual plots are gathered
in this approach. Promising result can be seen from all the embedding capacities except
0%, 80%, 90% and 100%.

5.9. Summary 101

5.9 Summary

This chapter discusses the journey of building an automatic detector capable of detecting

a trend transition in a curve. In order to increase the detection accuracy, a number of

dataset smoothing techniques were considered. We experimentally demonstrated that

the traditional approach of using SMA is unsuitable here because it still retains noise.

Furthermore, correct identification of a smoothing parameter proved problematic. Re-

gression analysis was considered as an alternative, along with potential error metrics,

which could be used to identify the polynomial degree. Our polynomial degree selector

of choice is 10-fold CV, which meets all criteria. We then applied a threshold to the

fitted curve to automatically detect the trend transition point. The detector’s capacity

estimation was generally off by ≈ 5% due to the threshold. In terms of the detection

accuracy, the range varied by 20%, which could be considered too broad. Linear regres-

sion was considered as an alternative as most of our datasets generate V-shaped residual

plots under linear regression. This approach works for both (sequential, sequential) and

(equal spacing, equal spacing) tuples, except for very low or very high embedding levels.

The next chapter experimentally evaluates the possibility of utilising other statistical

metrics besides T-entropy in re-embedding steganalysis.

6
Re-embedding Steganalysis Using

Other Statistical Metrics

Re-embedding steganalysis with T-entropy showed promising results in Chapter 4.

The current chapter investigates the use of other statistical metrics besides T-entropy in

re-embedding steganalysis. To this end, we experimentally evaluate only the matching

source and trial embedding tuples and compliant mode datasets. This experimental setup

showed the most promise for T-entropy and was robust against the noise therefore well

suited for direct comparison between T-entropy and other metrics.

Steganalysis literature uses virgin and stego network packets as the two samples

to utilise other statistical metrics [105]. We reiterate however that virgin data can be

difficult to obtain, as already discussed in Section 2.5. Instead, we used the source and

re-embedded network packets as our two samples. That is, we do not assume virgin data

and use the source as it is.

102

6.1. Welch’s 𝑡-test 103

The rest of the chapter is organised as follows: Sections 6.1–6.6 experimentally

evaluate other metrics that appear in steganalysis literature. Section 6.7 summarises the

findings. The final section summarises the chapter.

6.1 Welch’s 𝑡-test

Welch’s 𝑡-test statistically evaluates if two samples share a common mean in relation to

the variation in the samples, and is defined as follows:

𝑡 =
𝑋1 − 𝑋2√︂
𝑠21
𝑁1

+ 𝑠22
𝑁2

, (6.1)

where 𝑋𝑛, 𝑠2𝑛 and 𝑁𝑛 are the mean, variance and size of 𝑛, respectively. A positive 𝑡

value indicates that the mean of the first sample is greater than that of the second sample.

Whereas, a negative 𝑡 value indicates the opposite.

In our re-embedding steganalysis, our null and alternative hypotheses are defined as:

𝐻0 : 𝑋1 = 𝑋2 ⇒ 𝐸1 = 𝐸2

𝐻1 : 𝑋1 ≠ 𝑋2 ⇒ 𝐸1 ≠ 𝐸2,

(6.2)

where 𝑋𝑛 and 𝐸𝑛 are the mean and embedding level of n, respectively.

Our null hypothesis is that when our two samples share a common mean, their

embedding levels also match. We predict that the 𝑡-value of the Welch’s 𝑡-test remain

stationary until the re-embedding level is greater than that of the source.

Figures 6.1–6.3 show the results of using the 𝑡-value of the Welch’s 𝑡-test in re-

embedding steganalysis. The curves in the figures resemble those of the T-entropy,

i.e., the trend transition and the deepest dip features are evident. There are however

some noticeable differences: Firstly, 𝑡-values start at 0 for all the graphs because our

104 6. Re-embedding Steganalysis Using Other Statistical Metrics

two samples are identical at 0% re-embedding level. Secondly, the graphs appear to be

vertically inverted compared to those of the T-entropy, indicating that the mean of the

second sample (re-embedded source) grows larger than that of the first sample (source

embedding) as the embedding level increased. Swapping the two samples produces a

graph similar to that of the T-entropy, but this carries no significance.

-25

-20

-15

-10

-5

 0

 5

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
t-

va
lu

e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.1: The effect of sequentially re-embedding a sequentially embedded source.
The graphs in the figure resemble those of the T-entropy, except they are inverted.

One may, however, question that if the observation did not occur by a random

chance, and this is where 𝑝-value comes helpful. The 𝑝-value refers to a predetermined

probability distribution of the statistical test and provides the probability of the observed

event. It is used as a piece of evidence to either reject or accept the null hypothesis. A

high 𝑝-value favours the null hypothesis that the two samples share a common mean.

Conversely, a low 𝑝-value favours the alternative hypothesis that the two samples do not

share a common mean. A threshold value, or a significance level, of 5% is commonly

used and is usually in decimal representation, e.g., 0.05.

Appendix C.1 illustrates the result of using the 𝑝-value. As may be seen from the

6.1. Welch’s 𝑡-test 105

-25

-20

-15

-10

-5

 0

 5

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
t-

va
lu

e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.2: The effect of evenly re-embedding an evenly embedded source. The graphs
in the figure resemble those of the T-entropy, except they are inverted.

-25

-20

-15

-10

-5

 0

 5

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
t-

va
lu

e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.3: The effect of randomly re-embedding a randomly embedded source. The
graphs in the figure resemble those of the T-entropy, except they are inverted (cf. Fig-
ure 4.13). The graphs show no significant trend.

106 6. Re-embedding Steganalysis Using Other Statistical Metrics

figures, the 𝑝-values start at the peak value of 1 because the two samples are identical.

The 𝑝-values fluctuate in all the embedding levels, and the highest peak in a graph does

not necessarily indicate the source embedding level. However, the 𝑝-values generally

stay above the 5% mark confidence level. The 𝑝-value results are therefore excluded

from this point onward, and we focus on the test statistic values only.

Overall, the notable differences mentioned earlier about the re-embedding steganaly-

sis figures do not prevent us from using the automatic detector developed in the previous

chapter. Figures 6.4 and 6.5 show the automatic detection results on a hundred sequen-

tial and equal spacing embedding datasets, respectively. One caveat here is that the

maximum residuals are gathered instead of the minimum residuals since the graphs are

inverted.

As may be seen from Figure 6.4, the automatic detection accurately detects all the

embedding capacities except 80%, 90%, and 100%. Furthermore, the ranges of the

box plots on the other embedding capacities are shorter than those of the T-entropy

(cf. Figure 5.12), implying that Welch’s 𝑡-test may be better suited for re-embedding

steganalysis in terms of its robustness.

As may be seen from Figure 6.5, the automatic detection accurately detects all the

embedding capacities except 90% and 100%. Again, Welch’s 𝑡-test performed better

than T-entropy because it also detected the 80% embedding capacity which T-entropy

was not able to.

6.1. Welch’s 𝑡-test 107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.4: Performance analysis of an automatic detector that gathers minimum residual
values from degree 1 polynomial residual plots of the sequentially re-embedded source.
Promising results from all the embedding capacities except 80%, 90%, and 100%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.5: Performance analysis of an automatic detector that gathers minimum residual
values from degree 1 polynomial residual plots of the evenly re-embedded source.
Promising results from all the embedding capacities except 90% and 100%.

108 6. Re-embedding Steganalysis Using Other Statistical Metrics

6.2 Chi-square test

Chi-square test statistically evaluates the independence between two samples. Unlike

Welch’s t-test, the chi-square test does not factor in the sample sizes and sample means

in its calculation (cf. Equation 6.1). The chi-square test is defined as follows:

𝜒2 =
∑︁ (𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
, (6.3)

where 𝑂𝑖 is the observed value and 𝐸𝑖 is the expected value at data point 𝑖.

Figures 6.6–6.8 illustrate the results of using the chi-square test in re-embedding

steganalysis. Overall, we observe similar characteristics here as the T-entropy. There

are however a couple of noticeable differences: Firstly, the graphs appear to reflected

over the y-axis. Secondly, the curves in the graphs flatten as the source embedding level

increases. The trend transition characteristic almost disappears from the 40% embedding

level for the sequential embedding scheme in Figure 6.6. For equal spacing scheme, the

deepest dip appears to disappear from the 60% mark in Figure 6.7.

Figures 6.9 and 6.10 show the results of using the automatic detection on a hundred

sequential and equal spacing embedding datasets, respectively. Figure 6.9 illustrates that

chi-square test fails to detect most embedding levels, indicating that chi-square test is not

compatible with re-embedding steganalysis. The flattening characteristic in Figure 6.6

must have contributed to this phenomenon. Figure 6.10 shows a similar outcome where

it detected only half of the embedding levels due to the flattening characteristic.

6.2. Chi-square test 109

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

Ch
i-S

qu
ar

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.6: The effect of sequentially re-embedding a sequentially embedded source.
The curves in the graphs resemble those for T-entropy, except that they are reflected
over the y-axis. Furthermore, the graphs flatten as the source embedding level increases,
losing the trend transition that is vital in re-embedding steganalysis.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

Ch
i-S

qu
ar

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.7: The effect of evenly re-embedding an evenly embedded source. The curves
in the graphs resemble those for T-entropy. The graphs also flatten with the increasing
source embedding, again indiciating that the chi-square test may not be compatible with
re-embedding steganalysis.

110 6. Re-embedding Steganalysis Using Other Statistical Metrics

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

Ch
i-S

qu
ar

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.8: The effect of randomly re-embedding a randomly embedded source. The
graphs show no significant trend between the source and the re-embedded part.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.9: Performance analysis of an automatic detector that gathers minimum residual
values from degree 1 polynomial residual plots of sequentially re-embedded source.
Overall, chi-square is not a suitable metric to be used in re-embedding steganalysis
because it detects only 0%, 30% and 40% embedding capacities. As illustrated in
Figure 6.6, the curves flatten too quickly, losing the trend.

6.2. Chi-square test 111

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.10: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of evenly re-embedded source.
Overall, chi-square is not compatible with re-embedding steganalysis because it detects
only 20%, 30%, 40%, 50% and 60% embedding capacities. As illustrated in Figure 6.7,
the flattening characteristic destroys the necessary detection feature.

112 6. Re-embedding Steganalysis Using Other Statistical Metrics

6.3 Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (K-S) test measures the absolute supremum dis-

tance between the two samples’ cumulative distribution functions (CDF). Low K-S test

value means the two samples are likely from the same distribution, and vice versa. The

two-sample K-S test is defined as follows:

𝐾 - 𝑆 = 𝑠𝑢𝑝
𝑥

|𝐹1(𝑥) − 𝐹2(𝑥) |, (6.4)

where 𝑠𝑢𝑝𝑥 is supremum of the distances.

Figures 6.11–6.13 show the results, and the similar characteristics as that of the

Welch’s 𝑡-test are evident here: Firstly, the detection characteristics are present. Sec-

ondly, the initial K-S test values are 0.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

K-
S

te
st

 v
al

ue

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.11: The effect of sequentially re-embedding a sequentially embedded source.
The curves in the graphs resemble that of the T-entropy, except the initial test value of 0.

Figures 6.14 and 6.15 show the results of using the automatic detection on a hundred

sequential and equal spacing embedding datasets, respectively. Figure 6.14 illustrates

6.3. Kolmogorov-Smirnov test 113

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

K-
S

te
st

 v
al

ue

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.12: The effect of evenly re-embedding an evenly embedded source. The curves
in the graphs resemble that of the T-entropy, except the initial test value of 0.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

K-
S

te
st

 v
al

ue

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.13: The effect of randomly re-embedding a randomly embedded source. The
graphs show no significant trend, indicating automatic detection would not work.

114 6. Re-embedding Steganalysis Using Other Statistical Metrics

that K-S detects all embedding levels except very low and very high embedding lev-

els. Figure 6.15 shows similar behaviour. These results conclusively suggest high

compatibility of K-S test in re-embedding steganalysis.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.14: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of sequentially re-embedded
source. Promising results can be seen from all the embedding levels except very small
and very large embedding levels.

6.4. Shannon entropy 115

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.15: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of evenly re-embedded source.
Promising results can be seen from all the embedding levels except very small and very
large embedding levels.

6.4 Shannon entropy

Shannon entropy measures uncertainty by factoring the probability of symbol appear-

ance [106]. A low entropy means highly patterned data, and vice versa. Shannon entropy

is defined as follows:

𝐻 (𝑋) = −
∑︁
𝑥

𝑝(𝑥) log2 𝑝(𝑥), (6.5)

where 𝑝(𝑥) is the probability of symbol appearance.

Figures 6.16–6.18 show the results, and the graphs look similar to those of the

T-entropy.

Figures 6.19 and 6.20 show the results of using the automatic detection on a hundred

sequential and equal spacing embedding datasets, respectively. As may be seen from

the figures, the detection accuracy is very accurate. The technique only fails at detecting

116 6. Re-embedding Steganalysis Using Other Statistical Metrics

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

En
tr

op
y

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.16: The effect of sequentially re-embedding a sequentially embedded source.
The curves in the graphs resemble that of the T-entropy.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

En
tr

op
y

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.17: The effect of evenly re-embedding an evenly embedded source. The curves
in the graphs resemble that of the T-entropy.

6.4. Shannon entropy 117

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

En
tr

op
y

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.18: The effect of randomly re-embedding a randomly embedded source. The
graphs show no significant trend.

very high embedding levels.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.19: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of sequentially re-embedded
source. Promising results can be seen from all the embedding capacities except 90%
and 100%.

118 6. Re-embedding Steganalysis Using Other Statistical Metrics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.20: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of evenly re-embedded source.
Promising results can be seen from all the embedding capacities except 90% and 100%.

6.5 Kullback-Leibler divergence
Kullbakc-Leibler divergence (KL), also known as relative entropy, measures the diver-

gence of two probability distributions 𝑃 and 𝑄, where the expectation is based on the

𝑃. The greater the value, the greater the divergence exists between the distributions, and

vice versa. KL is defined as follows:

𝐷𝐾𝐿 (𝑃∥𝑄) =
∑︁
𝑥∈𝑋

𝑃(𝑥) log2
(
𝑃(𝑥)
𝑄(𝑥)

)
. (6.6)

Figures 6.21–6.23 show the results, and similar behaviour as K-S test has been

observed here, i.e., the detection characteristics are present and the initial KL values are

0.

Figures 6.24–6.25 show poor performances in detecting both the sequential and equal

spacing. In sequential and equal spacing embeddings, only two and four embedding

levels are detected, respectively.

6.5. Kullback-Leibler divergence 119

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60 70 80 90 100

KL
 D

iv
er

ge
nc

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.21: The effect of sequentially re-embedding a sequentially embedded source.
The curves in the graphs resemble that of the K-S test.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60 70 80 90 100

KL
 D

iv
er

ge
nc

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.22: The effect of evenly re-embedding an evenly embedded source. The curves
in the graphs resemble that of the K-S test.

120 6. Re-embedding Steganalysis Using Other Statistical Metrics

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 10 20 30 40 50 60 70 80 90 100

KL
 D

iv
er

ge
nc

e
va

lu
e

Embedding level (%)

20%
40%
60%
80%

100%

Figure 6.23: The effect of randomly re-embedding a randomly embedded source. The
curves in the graphs resemble that of the K-S.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.24: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of sequentially re-embedded
source. Overall, K-L divergence is not a suitable metric to be used in re-embedding
steganalysis because it detects only 50% to 80% embedding capacities.

6.6. Autocorrelation function 121

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n
le

ve
l (

%
)

Embedding level (%)

Figure 6.25: Performance analysis of an automatic detector that gathers minimum
residual values from degree 1 polynomial residual plots of evenly re-embedded source.
Overall, K-L divergence is not a suitable metric to be used in re-embedding steganalysis
because it detects only 40%, 50%, 60% and 80% embedding capacities.

6.6 Autocorrelation function

Autocorrelation function (ACF) calculates data’s correlation to itself by referring to its

own delayed copy. ACF is defined as follows:

𝑟𝑘 =

∑𝑇
𝑡=𝑘+1(𝑟𝑡 − 𝑟) (𝑟𝑡−𝑘 − 𝑟)∑𝑇

𝑡=1(𝑟𝑡 − 𝑟)2
, (6.7)

where 𝑘 is the delay, and 𝑟 is the mean of the dataset.

The delay is known as lag, and the function outputs a value that ranges from -1 (perfect

negative correlation) to 1 (perfect positive correlation). Inventory stock management

uses ACF, where stock control into the foreseeable future may be a crucial task. For

example, winter coats are a seasonal item when the demands and sales volume may peak

around the winter period. Calculating monthly ACF on the sales volume of winter coats

122 6. Re-embedding Steganalysis Using Other Statistical Metrics

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15 20 25

Au
to

co
rr

el
at

io
n

va
lu

e

Lag

20% 40% 60% 80% 100%

Figure 6.26: The effect of sequentially re-embedding a sequentially embedded source.
The correlation becomes weaker (i.e., decrease in autocorrelation value) as the source
embedding increases.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15 20 25

Au
to

co
rr

el
at

io
n

va
lu

e

Lag

20% 40% 60% 80% 100%

Figure 6.27: The effect of evenly re-embedding an evenly embedded source. Peaks
can be observed from time lag multiples of 5, indicating autocorrelation can potentially
detect steganography technique that spreads secret data which leaves a fixed number of
gaps in-between.

6.6. Autocorrelation function 123

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 5 10 15 20 25

Au
to

co
rr

el
at

io
n

va
lu

e

Lag

20% 40% 60% 80% 100%

Figure 6.28: The effect of randomly re-embedding a randomly embedded source. No
noticeable pattern can be seen from the graphs besides the vigorous fluctuations. Com-
pared to Figures 6.26 and 6.27, the autocorrelation values are smaller. The values around
0 neither indicate the strong correlation nor the weak correlation in the dataset.

may reveal that a strong correlation exists with the lag of 6; every six months.

ACF shares a similarity with re-embedding steganalysis in that it does not rely on

virgin data but only the source data. The metric, however, is not compatible with the

re-embedding steganalysis because one cannot be fixated to a single lag value.

Figures 6.26, 6.27 and 6.28 illustrate the ACF on sequential, equal spacing and

random embedding schemes, respectively. The time lag of 0, which yields the result of

1, has been omitted from the graphs to maintain the focus on the area of interest.

The sequential embedding figure shows an unfavourable steganalysis result. The

figure shows correlation decreases as the source embedding increases. This is caused by

a strong initial correlation. When nothing is embedded initially, i.e., all flags’ fields are

set as 000, ACF calculates a strong correlation between the flags. Once the embedding

capacity fills up with secret data, the correlation weakens and worsens the more secret

data are embedded. As may be seen from the figure, correlation generally drops after the

124 6. Re-embedding Steganalysis Using Other Statistical Metrics

lag value of 1. The 20% source embedding fluctuates more vigorously when compared

against other source embeddings, but this may not reveal anything significant when it is

inspected on its own.

Curves soar and plummet in the equal spacing embedding at lag multiples of 5.

Such a phenomenon may be explained by how equal spacing leaves gaps between its

embedding. The number of gaps decreases as the embedding level increases, and the

figure depicts this with the shorter peaks. The peaks and plummets may be helpful to

determine the presence of equal spacing embedding but it may not help quantify the

amount of the steganograms.

The curves in the random embedding figure fluctuate vigorously without showing

any trend. The graphs span much narrower than the other two tuples, indicating weak

correlation in the flags.

6.7 Discussion

This section summarises and compares the performance of the evaluated metrics in their

robustness and time complexity. The robustness defines the accuracy of the automatic

detector with an accompanied metric, whereas the time complexity describes the runtime

of an algorithm (or an accompanied metric) using the Big O notation [107].

A constructive analysis of an algorithm is not possible without first considering a

cost model. The cost model defines which of the operations in the algorithms are so

essential that they contribute to a considerable portion of the overall computation time.

For instance, partitioning, merging, selecting, and inserting are the core operations in

sorting algorithms. A minor operation, such as assigning a partitioned array to two

subarrays, is often not considered from the cost model.

The input size of 𝑁 determines which cost model fits the purpose. In a real-life

scenario of re-embedding steganalysis, one can expect the input (steganograms) to be a

6.7. Discussion 125

finite length, using finite memory cells. A uniform cost model, therefore, is more suited

rather than the logarithmic cost model.

Since the quantity we are dealing here is finite, elementary arithmetic operations

(bit addition, subtraction, multiplication and division) on discrete values of integers that

are encoded in certain number of bits are regarded as constant, O(1), in the uniform

cost model [108]. For example, Yang et al. evaluated that the T-entropy calculation of a

non-finite input computationally takes O(𝑁 log 𝑁) [109] in logarithmic cost model but

Rebenich demonstrate it is in the order of 𝑁 in the uniform cost model [108].

The re-embedding steganalysis re-embeds the source 101 times, i.e., (0% to 100%

re-embedding levels), and such operation may be regarded as linear. We however assign

it as 𝑀 because it is the core operation in re-embedding steganalysis that repeats the

statistical metrics.

126 6. Re-embedding Steganalysis Using Other Statistical Metrics

Table 6.1: Performance evaluation of various metrics in re-embedding steganalysis.
Chi-square, Kullback-Leibler Divergence, and autocorrelation function fall behind in
terms of robustness. Most metrics have the time complexity of O(𝑁).

Metric Robustness
(Sequential)

Robustness
(Equal spacing)

Time
Complexity

T-entropy Cannot detect very low and very high embedding levels O(𝑀𝑁)
Welch’s 𝑡-test Cannot detect very high embedding levels O(𝑀𝑁)
Chi-square test Cannot detect 8 out of

the 11 embedding lev-
els

Cannot detect half of
the embedding levels

O(𝑀𝑁)

Kolmogorov-
Smirnov test

Cannot detect very low and very high embedding levels O(𝑀𝑁)

Shannon entropy Cannot detect very high embedding levels O(𝑀𝑁)
Kullback-Leibler
Divergence

Cannot detect 9 out of
the 11 embedding lev-
els

Cannot detect 7 out of
the 11 embedding lev-
els

O(𝑀𝑁)

Autocorrelation
Function

Cannot detect May detect the pres-
ence but it cannot
quantify the embed-
ding level

O(𝑀𝑁2)

Table 6.1 summarises the robustness and the time complexities of the evaluated

metrics. Overall, three out of the seven evaluated metrics are not compatible with re-

embedding steganalysis: Chi-square test, KL Divergence, and Autocorrelation function

(ACF). These metrics were either inaccurate in estimating the size of the steganograms

or could not detect the presence at all. In terms of the time complexity, all the evaluated

metrics computes in the order of 𝑀𝑁 , except the ACF computes in the order of 𝑀𝑁2.

Re-embedding steganalysis using T-entropy and K-S share a similar result: they

cannot detect very low or very high embedding levels. Being unable to detect very low

and very high embedding levels accurately may be a critical flaw. Using gradients can

fix such a flaw, though this approach encourages parameterisation. Welch’s 𝑡-test and

Shannon entropy performed the best where they are only incapable of detecting highly

embedded sources. The default flags values of 000 contributed to this phenomenon. As

6.7. Discussion 127

already discussed in Section 4.3, two of the three bits are noise in the compliant mode

that can hinder the accuracy of the re-embedding steganalysis. In T-entropy, two noise

bits are part of the secret data, affecting the accuracy of the detection. These noise

bits, however, have no impact on the Shannon entropy and Welch’s 𝑡-test performances

because the probability and sample mean are not affected by the two 0s.

0 20 40 60 80 100
Embedding level (%)

20

15

10

5

0

W
el

ch
's

t-t
es

t t
-v

al
ue

MSE = 6.19e-01

Raw data (20% embedding)
Ground truth

Figure 6.29: Calculating mean squared error (MSE) of raw data and ground truth data
allows us to quantify noise. The noise level of Welch’s 𝑡-test 20% embedding level is
0.619.

Overall, T-entropy appears to produce graphs with least noise out of all the metrics

experimented with. We can measure noise by calculating mean squared error (MSE) of

the metrics, i.e., how much the raw data deviate from the ground truth values. This is

possible since an ideal case graph should remain horizontally constant until it reaches

the embedding level, where it starts to increase linearly. Figure 6.29 illustrates this for

128 6. Re-embedding Steganalysis Using Other Statistical Metrics

Welch’s 𝑡-test 20% embedding level, showing a noise level of 0.619.

This approach, however, does not work across different metrics because they are

in different scales, e.g., the noise level of K-S test embedded with 20% is 0.0002,

though, fluctuations on K-S test and Welch’s 𝑡-test appear to be almost similar (cf.

Figure 6.1). Normalising our datasets, therefore, is a necessary step before noise levels

can be compared directly.

Table 6.2: Noise evaluation of various metrics in re-embedding steganalysis. T-entropy
and Kolmogorov-Smirnov test are the least and most noisy metrics, respectively. Noise
generally increases as the embedding level increase.

Metric 20%
Embedding

40%
Embedding

60%
Embedding

80%
Embedding

T-entropy 4.97×10−4 9.83×10−4 7.41×10−4 6.84×10−4

Welch’s 𝑡-test 1.54×10−3 2.89×10−3 7.58×10−3 1.94×10−2

Kolmogorov-
Smirnov test

2.74×10−3 3.95×10−3 1.06×10−2 2.23×10−2

Shannon entropy 1.27×10−3 2.25×10−3 7.86×10−3 2.06×10−2

Table 6.2 shows the normalised noise levels of different metrics with varying em-

bedding levels. The table only lists metrics that were compatible with re-embedding

steganalysis. T-entropy performed the best, generating noise levels around the thou-

sandths. On the other hand, other metrics hover around in the ranges of the tenths and

hundredths. In general, noise level increases as the embedding level increases. T-entropy

is the only exception here since its noise levels are already substantially low to begin

with.

Welch’s 𝑡-test and Shannon’s entropy metrics have almost matching noise values for

all the embedding levels. Moreover, the box plots of the two metrics almost resemble

each other (see Figures 6.4 and 6.19). On the other hand, the noisier K-S test metric

resulted in a box plot with wider ranges (see Figure 6.14). These observations may

suggest that noise imapcts the performance of the automatic detector. On the contrary,

T-entropy with the least noise did not perform the best. Again, default flags values of

6.8. Summary 129

000 may have contributed to this phenomenon, suggesting that future research should

focus on a wider variety of experiments.

6.8 Summary

In this chapter, we experimentally demonstrated that re-embedding steganalysis tech-

nique can be utilised with other statistical metrics besides T-entropy. Four of the seven

metrics were compatible with the re-embedding steganalysis. Promising results have

been observed from the sequential and equal spacing embedding schemes, but none

of the metrics were able to reveal any interesting detection features for the random

embedding scheme.

In the next chapter, we shift our attention away from storage-based steganography

and discuss timing-based steganography.

7
Network Timing-based Steganography

This chapter focuses on IPD-based timing-based steganography and its feasibility to

be used in communication with nine different locations around the globe. Sections 7.1

and 7.2 discuss the scope of our timing channel and its related work, respectively,

followed by a discussion of network delays and their impact on timing channel creation

in Section 7.3. Section 7.4 then describes our model and experiments, whose results are

presented in Section 7.5. The final section then summarises the chapter.

7.1 Introduction

Network timing characteristics can be used to hide information, an approach known as a

covert timing channel (CTC). There are a wide range of CTC techniques available, but this

chapter focuses on the technique that modulates the interpacket delay (IPD) [32, 57, 110].

130

7.2. Related work 131

This chapter first discusses a number of inherent network effects that may prevent or

impair the use of CTCs. We then experimentally demonstrate the feasibility of an IPD-

based CTC over long paths, followed by a discussion of the aforementioned factors and

how they impact on CTC design and feasibility of IPD-based CTCs over long paths. To

our knowledge, long distance CTCs between various locations across the world have not

yet been experimentally studied in the literature. For our study, we created CTC channels

between New Zealand and nine Amazon Web Service (AWS) instances around the globe.

The channels were used to communicate a message at hourly intervals over a week’s

duration. We designed and studied three encoding methods: 1 bit per packet (BPP),

2 BPP, and 3 BPP using two, four, and eight nominal interpacket delays, respectively.

The experiment results suggest that one can expect there to be around a 10% error rate

regardless of the encoding scheme, and stress the need for error correcting codes in the

CTCs.

7.2 Related work

Keyboard JitterBug is a physical interception device that spies on a protected network

from within the network. It smuggles its captured data out of the protected network

by modulating the timing of legitimate traffic exiting the network, thereby creating a

CTC from within the protected network to a receiver outside the network. The encoding

method in [32] uses a modulo operation on the IPDs and a window size. The window

size is manually adjusted to suit the network environment, i.e., based on the amount of

jitter already present in the network and on the maximum tolerable delay. Example:

Assume that we wish to convey the bits 11001 with a 30 ms window size. JitterBug

would then add delays to IPDs that when we reduce new IPDs modulo the window size

results in 15, 15, 0, 0, and 15 ms delay, respectively. E.g., if the actual keystroke IPDs

are 153 ms, 324 ms, 623 ms, 594 ms, and 891 ms, then the added delay would result in

132 7. Network Timing-based Steganography

IPDs of 165 ms (=5 x 30 ms + 15 ms), 345 ms (=11 x 30 ms + 15 ms), 630 ms (=21 x

30 ms + 0 ms), 600 ms (=20 x 30 ms + 0 ms) and 885 ms (=29 x 30 ms + 15 ms). The

receiver, which only knows the windows size, decodes the message by performing the

modulo operations. The window size plays vital role here because it accounts for the

possible jitter there may be. For instance, the receiver may receive IPDs ±5 ms from

the intended IPD. Doing the modulo operation on IPD that conveys 1 will result in the

values that would be within 10 to 20 ms. In the case of 0, the values would be within

the ranges of 0 to 5 ms and 25 to 29 ms.

Cabuk et al. developed an on-off CTC [57]. A sender and a receiver agree on a time

interval and a network protocol that is used. The sender remains silent or transmits a

packet during the time interval to convey a bit 0 or 1, respectively. The time interval acts

as a clock so a smaller time interval provides higher bit rate.

Gianvecchio et al. developed a model-based CTC [110] that first monitors a specific

network traffic, gathering its IPDs. Using a fitter, the gathered IPDs are fitted to six

probability distributions. The fit with the smallest root mean squared error (RMSE)

gets selected as a model. Using the model, covert communication occurs mimicking

the selected distribution. This approach is effective because IPD dsitribution of a covert

communication would not deviate much from the “normal” traffic.

Ker et al. claim that most existing media steganography and steganalysis experiments

are run in laboratory conditions under a number of assumptions and that any stressing

of the steganography channel that is done is far from what one would expect in the real

world [111]. One can argue that the investigation of covert timing channels might suffer

from similar issues. In CTCs, critical information such as the network environment

setup is often left out by authors [57, 112]. This not only prevents one from assessing

the scope of the experiment but it also makes replication difficult.

7.3. Network delays 133

7.3 Network delays

The round-trip time (RTT) is an important metric in CTC design as it measures the time

until the message sender receives a reply from the recipient. In other words, it is the

sum of the two network latencies, from sender to recipient and from recipient to sender.

In general, the latency is calculated by factoring in network delays, i.e., processing,

queueing, transmission and propagation delays. We review each of these delays below

and discuss how they may influence the CTC design.

Processing delay

Processing delay is defined as the time intermediary devices such as switches and routers

spend on processing a packet. The intermediary devices are mainly responsible for the

next route identification by processing network headers, but other processing, such as

integrity checks on packets or security features may also be included. Ramaswamy

et al. demonstrate that there is a significant increase in overall network delay when an

intermediary device has to execute a complex task [113]. As an example, the authors

compare processing delays required in simple forwarding against encryption. They also

claim that more complex processing is becoming a trend as there are increasing security

demands in edge and access routers. One can, however, argue that routers also evolve

to meet such demands. A fundamental question a CTC designer should ask is if there

exists an accurate way of measuring exactly how many intermediary devices packets

need to traverse to reach their destination and what the processing times in each of these

heterogeneous intermediary devices are. A technique that may use two or more different

network protocols to communicate may suffer from processing delay, e.g., a network

protocol may happen to require a more strict security policy than the other protocols that

are concurrently in use. Processing may not always result in the same delay, but it could

be viewed as a fixed delay to a certain extent.

134 7. Network Timing-based Steganography

Queueing delay

Queueing delay is defined as the time intermediary devices hold onto a packet before it

is processed and directed to the next device. An intermediary device, however, can only

accommodate a certain number of packets at a given time due to limits in its buffer size.

If an intermediary device is congested as a result of prolonged burst transmissions, all

subsequent packets are discarded or redirected to another intermediary device until buffer

space becomes available again. Large router buffer sizes may appear to solve the problem

described above, but cause bufferbloat instead [114, 115]. Furthermore, there exist

different queueing mechanisms and Quality of Service (QoS) implementations [116].

All of these factors contribute as uncertainty in the IPD calculation. Queueing delay is

thus an uncontrollable variable delay.

Transmission delay

Transmission delay is defined as the time it takes to push an entire packet onto the

medium. Its calculation is based on the maximum data link rate of a medium; but the

perceived throughput may be lower where media contention is allowed for, e.g., on WiFi

links. It is generally a variable delay because packets may have different sizes and the

medium may be busy for a variable amount of time. If every packet is of the same size,

then transmission delay may be regarded as fixed.

Propagation delay

The propagation delay is the time difference between the time that the start of a packet

leaves the source and the time it reaches the next hop. If the distance a packet has to

travel and the speed at which it travels are both fixed, propagation delay may be regarded

as a fixed delay.

7.4. Methodology 135

Of the delays above, queueing delay is the most problematic because it depends on

uncontrollable variables. Transmission delay may be problematic if a sending host has

an overwhelming amount of active sessions, causing packets to be queued on the host.

Propagation delays only become problematic if the path is not stable, which can be in

issue in wireless applications.

7.4 Methodology

This experiment modulated the IPDs of ICMP ping packets to convey a message. The

message originated from New Zealand and was sent to nine different AWS instances

across the globe, located in Sydney, Tokyo, Ohio, Oregon, Frankfurt, Ireland, São

Paulo, Seoul, and London. These locations were selected to provide an insight into

the effect of topological network distance on CTC. The message was encoded with a

self-synchronising T-code to enable recovery from bit errors (see Section 3.1.1). The

message size was 2994 bits and was sent to the aforementioned locations once per hour

for a week.

As discussed in Section 7.2, there are a number of ways to modulate the IPD of

packets. For this experiment, we determined the required IPD modulation amount from

the network jitter. Absolute delay variations in the packets were used to calculate the

network jitter [117]. In this experiment, the network jitter and the average latency were

calculated every time before the actual message was sent. This was done by sending ten

ICMP echo request packets from New Zealand to the respective AWS instance. Both

the New Zealand host and the AWS instance each calculated the observed jitter and the

average latency. The New Zealand host sent its measured jitter as a payload byte in the

last ICMP request packet. The AWS instance compared its own jitter value against the

one sent by the New Zealand host and chose the larger as the synchronised jitter value.

The AWS instance then communicated this information to the New Zealand host as a

136 7. Network Timing-based Steganography

payload byte in the ICMP response packet, thus giving the New Zealand host and the

AWS instance a common IPD modulation value. After this synchronisation, the New

Zealand host sent the actual message of 2994 bits to the AWS instance by modulating

the IPDs.

decision boundary (d)

d - jitter constant
 (signals 0)

decision boundary

jitter boundaries

Encoding Decoding

time time

d + jitter constant
 (signals 1)

Figure 7.1: The encoder diagram (left) illustrates how a message sender can modulate
IPDs to express the binary bits 0 and 1. The decoder diagram (right) illustrates a
functional channel if the delays introduced by the sender are detectable by a receiver.
The delay introduced by a sender should be large enough to take into account network
jitter, i.e., the jitter boundaries for 0 and 1 should not overlap.

The three encoding methods used in this experiment are 1 bit, 2 bits, and 3 bits

per packet (BPP). In the 1 BPP case, there is one decision boundary and two possible

deviations for IPD modulation. Figure 7.1 illustrates this. The two IPD modulations

are spaced out to account for the network jitter. Our preliminary experiment revealed

that spacing the two IPD modulations by a factor of four of the observed jitter yielded

a positive outcome. This creates a jitter boundary for each IPD modulations, i.e., a

range a receiver uses to decode the different IPD modulations. Jitter boundary has to

span from both sides of a modulated value because a packet can arrive earlier or later.

Let us assume an average latency of packets and network jitter to be 200 ms and 2 ms,

respectively. To convey message bits 0 and 1, the sending host modulates IPDs at 196

ms and 204 ms, respectively. A message receiver would decode IPDs between 192 ms

to 200 ms as 0 and IPDs between 201 ms to 208 ms as 1.

7.4. Methodology 137

In case of 2 BPP and 3 BPP, one needs four (00 to 11) and eight jitter boundaries

(000 to 111), respectively. This in turn means that there exist three and seven decision

boundaries for 2 BPP and 3 BPP, respectively. Figure 7.2 illustrates 2 BPP. Overall, the

New Zealand host sends less packets if more bits are encoded per packet.

decision boundary

time

decision boundary

jitter boundaries jitter boundaries

decision boundary

signals 00 signals 01 signals 10 signals 11

Figure 7.2: The figure shows 2 bits per packet (BPP) encoding method which consists
of four jitter boundaries and three decision boundaries. Encoding more BPP has an
advantage of transferring fewer packets to convey a message.

Table 7.1: Each experiment was run once an hour. Experiments were scheduled with
different time offsets during each hour to minimise possible link and process interference
between different experiments. For example, the Sydney 1 bit per packet experiment
was executed hourly, at 1 minute past the hour. Each experiment was designed to be
repeated for a week, i.e. have a total number of 168 repetitions.

Location 1 bit per
packet

2 bits
per
packet

3 bits
per
packet

Sydney 01 min 21 min 41 min
São
Paulo

02 min 22 min 42 min

Tokyo 03 min 23 min 43 min
Ireland 04 min 24 min 44 min
Oregon 05 min 25 min 45 min
Frankfurt 06 min 26 min 46 min
London 07 min 27 min 47 min
Ohio 08 min 28 min 48 min
Seoul 09 min 29 min 49 min

Overall, twenty-seven experiments were executed every hour to test nine AWS in-

stances each with the three different encoding methods. To minimise possible network

138 7. Network Timing-based Steganography

Table 7.2: Average ping latency from our host in New Zealand to the nine AWS locations
around the globe. Sydney, which is closest to New Zealand, had the lowest latency of
37 ms. São Paulo had the highest latency of 331 ms. Such locations were employed in
an attempt to gain insight into the impact latency has on CTC.

AWS location Latency(ms)
Sydney 37
Tokyo 151
Ohio 210
Oregon 168
Frankfurt 279
Ireland 300
São Paulo 331
Seoul 177
London 276

link congestion and processing delay, the experiments were staggered using the time

epoch as shown in Table 7.1. All experiments were executed with the help of crontab

and shell scripts. The table has been constructed by reflecting on the ping latencies

between the New Zealand host and the nine locations. Table 7.2 shows the preliminary

ping results. As may be seen from the table, the location which shows the highest latency

is São Paulo with 331 ms. This means, one would spend 991 seconds or 16.5 minutes if

one wanted to send 2994 bits of message to São Paulo using the 1 BPP encoding scheme.

7.5 Results

Figure 7.3 shows the average Bit Error Rate (BER) of the timing channel tested on the

nine AWS instances. Decreasing trends were observed across all the AWS instances

except Sydney, Ohio and London instances. Channel duration combined with IPD gap

length may explain this phenomenon. The jitter value is calculated once at the start of

a communication. Thus, if the channel lasts for a longer duration, jitter and average

latency values would change, thereby making our CTC unstable. As mentioned in the

7.5. Results 139

Figure 7.3: The average Bit Error Rate (BER) of the timing channel on the nine locations
across the globe. Three different encoding methods were tested for each location; 1
Bits Per Packet (BPP), 2 BPP and 3 BPP. Overall, BER decreases with BPP, with the
exceptions of Sydney, Ohio and London.

140 7. Network Timing-based Steganography

methodology section, fewer packets are sent when more bits are encoded per packet.

This may explain why BER of 1 BPP is higher than 3 BPP. Lastly, ICMP packets are

low priority packets that could be dropped in the event of network congestion. This may

have contributed to increase in overall BER values. Sydney draws a counter-intuitive

curve because rising BERs have been observed with higher BPP encodings. This is

caused by IPD modulation amount strain into negative territory. According to Table 7.2

and Figure 7.5, the average latency and the median jitters of Sydney were 37 ms and

1.4 ms, respectively. There were instances where the jitter would go up to 4 ms. If the

3 BPP encoding method was used under this scenario, the IPD modulations are -19 ms

and -3 ms to convey “000” and “001”, respectively. A negative latency number will be

treated as no delay so a packet will immediately be sent out one after the other. This in

turn means that the error is introduced by the sender, not the network. Overall, none of

the locations has a BER above 10%. The erroneous bits may be corrected with an error

correcting code.

Figure 7.4 shows a bitwise difference of the nine locations in boxplots. This figure

may be viewed as an expansion of the Figure 7.3. Figure 7.3 shows the average BERs,

expressed in percentages, whereas Figure 7.4 shows the actual erroneous bits and their

distribution. The median values are positioned toward the lower quartile. Two exceptions

to this rule are the Sydney 3 BPP and the Seoul 3 BPP series. In the case of the Seoul

3 BPP, one could assume that the pipe was exceptionally stable and noise-free at the

experiment time. The range of the Seoul 3 BPP boxplot seems to further support this

conjecture since the range is much shorter than for other locations.

Figure 7.5 shows the jitter measurements of the nine locations in boxplots. The jitter

measurements span for different for location, but it is generally within 3 ms to 4 ms. The

box, which indicates the interquartile range (IQR), does not show significant difference

between the AWS instances. The IQR of the boxplots generally have the size of 1 ms and

tend to be placed toward the lower part of their range. Furthermore, the median values

7.5. Results 141

Fi
gu

re
7.

4:
Bi

te
rr

or
s

fo
rt

he
ni

ne
lo

ca
tio

ns
.

Th
e

bo
xe

s
ar

e
ge

ne
ra

lly
pl

ac
ed

on
th

e
lo

w
er

pa
rt

of
th

e
ra

ng
e,

an
d

so
is

th
e

m
ed

ia
n

of
ea

ch
re

sp
ec

tiv
e

bo
x.

Th
e

ex
ce

pt
io

ns
ar

e
th

e
Sy

dn
ey

3
BP

P
an

d
Se

ou
l3

BP
P

se
rie

s,
w

he
re

th
e

m
ed

ia
n

is
pl

ac
ed

in
th

e
up

pe
rm

id
dl

e
pa

rt
of

its
se

rie
sb

ox
,r

es
pe

ct
iv

el
y.

142 7. Network Timing-based Steganography

Figure 7.5: Jitters of the nine locations in boxplots. Ranges generally span from 3 ms
to 4 ms, and the boxes are placed toward the lower half. There appear no significant
differences in the median jitter values.

7.5. Results 143

of boxplots appear to be around 1 ms. Similar box sizes, box placements, and median

values all may be used to indicate the stability of the network links. Notwithstanding

the fact that these locations are spread around the globe. In terms of our timing channel

experiment, one could say there was no significant difference in jitter values.

Figure 7.6: Bit deletions for the nine locations. This figure shows the distribution of
the bits that did not reach the destination. Latency does not contribute to packet drops
because Sydney and São Paulo had lowest and highest latency, respectively. However,
both also had the least amount of dropped packets out of all the locations.

Figure 7.6 shows the bit deletion distributions of the nine AWS instances. Bit

insertion is when an AWS instance receives more packets, i.e., more than 2994 message

bits. These were also identified and they have been incorporated as data. However, bit

insertions were rare, and they do not appear in the figure. Bit deletions are packet drops

because it shows the actual number of bits an AWS instance has received from the 2994

message bits. One may assume a packet to be more susceptible to packet drops if it is

exposed to a network longer. However, it appears latency does not contribute to dropped

packets. As may be seen from the figure, both Sydney and São Paulo almost had no

144 7. Network Timing-based Steganography

bit deletions even though their ping latencies are lowest and highest among the AWS

instances, respectively.

7.6 Summary

This chapter discusses the feasibility of using IPD-based CTC over long paths. Messages

from New Zealand were sent to nine locations around the globe for a week at an hourly

interval. Our results indicate that bit-perfect communication over long distances may not

be possible with elementary CTC because of network jitter and packet loss. Bit deletions,

which may be the result of buffer overflows, were observed for all the locations. The

BER generally decreased when more bits were encoded per packet. Channel lifespan

may have contributed to this because the channels require fewer packets when more

bits are encoded per packet, decreasing the effects of jitter and packet loss. A jitter

value determined at the beginning of the channel may also change during the channel’s

lifespan. Future work may investigate ways to adapt to changing jitter. Overall, the BER

in our experiments remained below the 10% mark. Error correcting codes may be used

to cope with erroneous and deleted bits. Future work should therefore focus on error

correcting codes, and how they could be used to reduce bit errors in the long distance

CTCs.

7.6. Summary 145

8
Conclusions

The first research question posed in this thesis was if it is possible to separate network

flows that contain hidden data from flows that do not and, if so, which techniques one

could employ for this binary classification. Additionally, this thesis also questioned

whether the separation was even necessary in the first place. Chapter 2 investigated

existing steganalysis techniques to conclude that using statistical measures to compare

benign and malicious flows is a common practice. This thesis, however, contends that

these approaches may not be suitable for network environments. Networks are het-

erogeneous and so are the users. A steganalysis technique that worked in a specific

network is not guaranteed to work in the future or in other networks. Therefore, ex-

isting comparison-based approaches may not be scalable because frequent maintenance

becomes inevitable. This problem stems from characterising benign traffic based on

personal judgement and comparison with malicious traffic.

Chapter 4 demonstrated that network steganalysis does not need to rely on benign

146

147

traffic and that detection can be done without it. So the separation was not necessary.

Furthermore, the approach proposed there can not only detect the presence of malicious

flows but also estimate their size. This answers our second research question, whether it

is possible to quantify the size of the malicious flows. Using a re-embedding steganalysis

technique with a T-entropy measure sensitive to correlated data obtained positive results.

With malicious traffic, the technique produces a graph with irregular patterns, i.e., a trend

transition or a dip around the point when the re-embedding capacity matches the amount

of secret data. Our results indicate that this observation was consistent throughout

different embedding levels.

This is not to suggest that this approach is perfect, however. The technique works for

equally spaced out and sequentially embedded data, but fails to detect randomly embed-

ded data. This thesis suggests a gradient method that could circumvent the problem, but

this introduces another layer of parameterisation which again requires frequent mainte-

nance. Furthermore, since re-embedding steganalysis requires re-embedding at a range

of different embedding levels, it is computationally more expensive than comparison-

based approaches. This needs to be assessed in future work.

Another critical shortcoming identified during the experiments is that re-embedding

steganalysis has limited practicability, especially in the network use case. The speed

at which one can manually audit graphs falls well below the speed at which network

traffic accrues. In order to address this problem, Chapter 5 developed a system that

automatically detects unique characteristics in graphs, indicating the potential presence

of malicious flows as well as their size. This system works both for equally spaced

and sequentially embedded data, except for very low and very high embedding levels.

Again, using gradients may address this problem, but their performance assessment

and requirement for frequent maintenance remain as open problems. Chapter 6 further

considered whether other metrics besides T-entropy could be used in re-embedding

steganalysis. The chapter experimentally evaluated a number of such statistical metrics

148 8. Conclusions

used in the comparison-based steganalysis literature. The results show that T-entropy,

Welch’s t-test, Kolmogorov-Smirnov test and Shannon entropy are compatible with the

system proposed in Chapter 5. This represents a substantial improvement over the

existing techniques as it also provides information on the amount of secret data.

However, it can also be argued that a different storage-based steganography scheme

could have yielded contradicting results because correlated traffic may have contributed

to he aforementioned positive results. This remains an open problem, requiring one to re-

assess the compatibility with other steganography schemes. Experimentally evaluating

our system in different storage-based steganography schemes will validate which metric

performs the best with re-embedding steganalysis.

This thesis then turned its attention to timing-based steganography and assessed

its feasibility. The results in Chapter 7 indicate that T-code embedded secret message

communication over timing channels is feasible. Based on the conjecture that the network

environment might play a significant role, we tested this communication channel to

different sites around the globe. This goes beyond some of the literature, where details

of the network environment were not considered. The results showed that channel error

rates remained below the 10% mark, generally decreasing with shorter communication

time. Our channel design contributed to this phenomenon because our timing channel

uses jitter measured right before the communication to account for possible random

delay variations ("‘timing noise"’) on the link. This suggests that a regular exchange of

jitter may result in a more error-free link. Arguably, more diverse communication links

could have provided more compelling insights, i.e., mixed combinations of locations

rather than a New Zealand host only to other locations around the globe.

Last but not least, this thesis also investigated network steganography prevention

techniques as part of the last research question. Normalising traffic is one of the most

effective ways of preventing steganography channels, but this thesis argues that preven-

tion only fuels the arms race and many questions can go unanswered. An adversary

149

who notices a blocked steganography channel will resort to creating a more sophis-

ticated channel that is harder to block. Furthermore, normalising traffic may remove

an opportunity to gather valuable information, such as parties involved, compromised

information content and amount. A detection system at least permits further analysis of

a suspected channel.

In conclusion, the main contributions of this thesis were:

1. Employed T-entropy in re-embedding steganalysis within network environments

with positive results. The re-embedding steganalysis technique not only works in

the absence of benign traffic but also quantitatively indicates suspicious data.

2. Designed automatic detectors for re-embedding steganalysis, making the detection

of storage-based channels more practical. Offloading the manual auditing step to

the automatic detectors saves time and human resources.

3. Investigated re-embedding steganalysis using several different statistical metrics

and studied their compatibility with the automatic detector. Not all statistical

metrics were as suitable as T-entropy because many metrics do not account for

correlation.

4. Introduced T-codes in timing-based steganography, showcasing them as a potential

clandestine communication tool.

Future work should look at ways to detect the randomly embedded data, improve the

automatic detectors and the timing channel.

Appendices

150

A
Additional Details for the T-code tree

This section includes full details of the T-code set, 𝑆1,1,1,1,1,11,0,11,00,10,011, that we used

to encode our steganograms. Green lines indicate newly generated branches with T-

augmentation, whereas red lines show the removed codewords to turn our T-code into

a BSD code. In summary, T-expansion parameters were always 1 to minimise tree’s

growth in height. T-prefixes were the smallest possible value at each iteration.

• Level 1, smallest prefixes: {0, 1}, selected 1

• Level 2, smallest prefix: {0}, selected 0

• Level 3, smallest prefixes: {00, 10, 11}, selected 11

• Level 4, smallest prefixes: {00, 10}, selected 00

• Level 5, smallest prefix: {10}, selected 10

• Level 6, smallest prefixes: {010, 011}, selected 011

• BSD, removed PCE: {0000, 1010, 1111, 011011}

151

152 A. Additional Details for the T-code tree

Level 1
(p1 = 1, k1 = 1)

Level 2
(p2 = 0, k2 = 1)Level 0

Level 3
(p3 = 11, k3 = 1)

Level 4
(p4 = 00, k5 = 1)

Level 5
(p5 = 10, k5 = 1)

Level 6
(p6 = 011, k6 = 1)

BSD code

B
Additional Graphs for Automatic

Detection

Most of the experimental results in Chapter 5 were based on one dataset, albeit

100 datasets were experimentally evaluated. This decision was made to enhance the

readability and to preserve space. This appendix, therefore, presents additional graphs,

showing wide variations in the graphs corresponding to the selected datasets. The

variations in the graphs emphasise the difficulty of constructing an automatic detector.

153

154 B. Additional Graphs for Automatic Detection

B.1 Collection of 40% embedded datasets

This section presents eight 40% embedded datasets to illustrate nonuniformities in the

datasets. The figures reveal that the fluctuations (noise) are present in all the graphs but

they do not share a common noise frequency or amount. The trend transition around the

40% mark is still evident from all the graphs.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

B.1. Collection of 40% embedded datasets 155

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

156 B. Additional Graphs for Automatic Detection

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

B.1. Collection of 40% embedded datasets 157

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

158 B. Additional Graphs for Automatic Detection

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70 80 90 100

T-
en

tr
op

y

Embedding level (%)

Raw data (40% embedding)

B.2. Degree 1 residual plots of 40% embedded datasets 159

B.2 Degree 1 residual plots of 40% embedded datasets

This section presents eight degree 1 residual approach results on 40% embedded datasets.

The V-shaped curve is evident from all the datasets. As may be seen from each of the

figures, the minimum residual value approximately marks the source embedding level.

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

160 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

B.2. Degree 1 residual plots of 40% embedded datasets 161

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

162 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

B.2. Degree 1 residual plots of 40% embedded datasets 163

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

164 B. Additional Graphs for Automatic Detection

B.3 Degree 1 residual approach with varying embedding

levels

This section shows graphs with a degree 1 residual approach where embedding levels

vary from 0 to 100. The V-shaped curves are not evident in low and high embedding

levels. The V-shaped curve becomes more evident as the embedding level increases

until it starts to disperse from the 80% embedding level.

0 20 40 60 80 100
Embedding level (%)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Re
sid

ua
l

Degree 1 (0% Embeddling Level)

B.3. Degree 1 residual approach with varying embedding levels 165

0 20 40 60 80 100
Embedding level (%)

0.05

0.00

0.05

0.10

Re
sid

ua
l

Degree 1 (10% Embeddling Level)

0 20 40 60 80 100
Embedding level (%)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Re
sid

ua
l

Degree 1 (20% Embeddling Level)

166 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (30% Embeddling Level)

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (40% Embeddling Level)

B.3. Degree 1 residual approach with varying embedding levels 167

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (50% Embeddling Level)

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1 (60% Embeddling Level)

168 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (70% Embeddling Level)

0 20 40 60 80 100
Embedding level (%)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Re
sid

ua
l

Degree 1 (80% Embeddling Level)

B.3. Degree 1 residual approach with varying embedding levels 169

0 20 40 60 80 100
Embedding level (%)

0.05

0.00

0.05

0.10

0.15

Re
sid

ua
l

Degree 1 (90% Embeddling Level)

0 20 40 60 80 100
Embedding level (%)

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
sid

ua
l

Degree 1 (100% Embeddling Level)

170 B. Additional Graphs for Automatic Detection

B.4 Degree 1 residual plots of 20% embedded (equal

spacing, equal spacing) datasets

This section presents eight 20% embedded (equal spacing, equal spacing) datasets to

illustrate the minimum residual marks the source embedding level.

0 20 40 60 80 100
Embedding level (%)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

B.4. Degree 1 residual plots of 20% embedded (equal spacing, equal spacing)
datasets 171

0 20 40 60 80 100
Embedding level (%)

0.6

0.4

0.2

0.0

0.2

0.4

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

172 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.6

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1

B.4. Degree 1 residual plots of 20% embedded (equal spacing, equal spacing)
datasets 173

0 20 40 60 80 100
Embedding level (%)

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1

0 20 40 60 80 100
Embedding level (%)

0.6

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1

174 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1

B.5. Degree 1 residual approach with varying embedding levels on (equal spacing, equal
spacing) datasets 175

B.5 Degree 1 residual approach with varying embedding

levels on (equal spacing, equal spacing) datasets

This section shows graphs with a degree 1 residual approach where embedding levels

vary from 0 to 100. In many instances, minimum residual correctly indicates the source

embedding level.

0 20 40 60 80 100
Embedding level (%)

0.3

0.2

0.1

0.0

0.1

Re
sid

ua
l

Degree 1 (0% Embedding Level)

176 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (10% Embedding Level)

0 20 40 60 80 100
Embedding level (%)

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1 (20% Embedding Level)

B.5. Degree 1 residual approach with varying embedding levels on (equal spacing, equal
spacing) datasets 177

0 20 40 60 80 100
Embedding level (%)

0.4

0.2

0.0

0.2

Re
sid

ua
l

Degree 1 (30% Embedding Level)

0 20 40 60 80 100
Embedding level (%)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (40% Embedding Level)

178 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Re

sid
ua

l
Degree 1 (50% Embedding Level)

0 20 40 60 80 100
Embedding level (%)

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Degree 1 (60% Embedding Level)

B.5. Degree 1 residual approach with varying embedding levels on (equal spacing, equal
spacing) datasets 179

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

Re
sid

ua
l

Degree 1 (70% Embedding Level)

0 20 40 60 80 100
Embedding level (%)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Re
sid

ua
l

Degree 1 (80% Embedding Level)

180 B. Additional Graphs for Automatic Detection

0 20 40 60 80 100
Embedding level (%)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Re
sid

ua
l

Degree 1 (90% Embedding Level)

0 20 40 60 80 100
Embedding level (%)

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l

Degree 1 (100% Embedding Level)

C
Additional Graphs for Other Metrics

C.1 Welch’s 𝑡-test 𝑝-value graphs

This section shows Welch’s 𝑡-test 𝑝-value graphs where the embedding levels vary from

0 to 100. As may be seen from the graphs, the 𝑝-value spikes when the source embedding

level matches with the re-embedding level. Every graph contains a number of peaks,

however, and there is not enough information to suggest which peak marks the correct

source embedding level.

181

182 Additional Graphs for Other Metrics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

20% Embedding Level

Sequential
Equal spacing

183

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

40% Embedding Level

Sequential
Equal spacing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

60% Embedding Level

Sequential
Equal spacing

184 Additional Graphs for Other Metrics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

80% Embedding Level

Sequential
Equal spacing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

100% Embedding Level

Sequential
Equal spacing

185

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

W
el

ch
's

 t
-t

es
t
p
-v

al
ue

Embedding level (%)

Random Embedding

20%
40%
60%
80%

100%

Bibliography

[1] Kevin Maney. Bin Laden’s messages could be hiding in plain

sight. https://usatoday30.usatoday.com/tech/columnist/2001/12/

19/maney.htm, Dec 2001. Accessed: 2022-07-21.

[2] ESET Research. Readers of popular websites targeted by stealthy

stegano exploit kit hiding in pixels of malicious ads. https:

//www.welivesecurity.com/2016/12/06/readers-popular-websites-

targeted-stealthy-stegano-exploit-kit-hiding-pixels-

malicious-ads/, Dec 2016. Accessed: 2022-07-21.

[3] Check Point researchers. Hacked in translation – from subtitles to com-

plete takeover. https://blog.checkpoint.com/2017/05/23/hacked-in-

translation/, May 2017. Accessed: 2022-07-21.

[4] Shaun Koh. Traffic classification: Observing Internet traffic changes at Auckland.

Master’s thesis, The University of Auckland, 2016.

[5] Jie Li, Andreas Aurelius, Viktor Nordell, Manxing Du, Åke Arvidsson, and Maria

Kihl. A five year perspective of traffic pattern evolution in a residential broadband

access network. In Future Network & Mobile Summit, pages 1–9, Berlin, Germany,

July 2012.

[6] Jun O Seo, Sathiamoorthy Manoharan, and Aniket Mahanti. Network steganogra-

phy and steganalysis – a concise review. In International Conference on Applied

and Theoretical Computing and Communication Technology, pages 368–371,

Bengaluru, India, July 2016.

186

https://usatoday30.usatoday.com/tech/columnist/2001/12/19/maney.htm
https://usatoday30.usatoday.com/tech/columnist/2001/12/19/maney.htm
https://www.welivesecurity.com/2016/12/06/readers-popular-websites-targeted-stealthy
https://www.welivesecurity.com/2016/12/06/readers-popular-websites-targeted-stealthy
https://www.welivesecurity.com/2016/12/06/readers-popular-websites-targeted-stealthy
 -stegano-exploit-kit-hiding-pixels-malicious-ads/
 -stegano-exploit-kit-hiding-pixels-malicious-ads/
https://blog.checkpoint.com/2017/05/23/hacked-in-translation/
https://blog.checkpoint.com/2017/05/23/hacked-in-translation/

187

[7] Jun O Seo, Sathiamoorthy Manoharan, and Aniket Mahanti. A discussion and

review of network steganography. In IEEE Intl Conf on Dependable, Autonomic

and Secure Computing, pages 384–391, Auckland, New Zealand, August 2016.

[8] Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Steganalysis of

storage-based covert channels using entropy. In International Telecommunica-

tion Networks and Applications Conference, pages 1–6, Auckland, New Zealand,

November 2019.

[9] Sathiamoorthy Manoharan, Giovanni Russello, Jun O Seo, Ulrich Speidel, and

Asil Stanikzai. On synthesizing network traces – case studies in network steganal-

ysis and packet analysis. In IEEE Conference on Application, Information and

Network Security, pages 47–52, Kota Kinabalu, Malaysia, November 2020.

[10] Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Automatic detection of

storage-based covert channels. In International Conference on Electrical, Com-

munication, and Computer Engineering, pages 1–7, Kuala Lumpur, Malaysia,

June 2021.

[11] Jun O Seo, Sathiamoorthy Manoharan, and Ulrich Speidel. Feasibility evaluation

of long-distance network timing-based covert channels. In International Con-

ference on Electrical, Communication, and Computer Engineering, pages 1–5,

Kuala Lumpur, Malaysia, June 2021.

[12] Fabien Petitcolas, Ross Anderson, and Markus G. Kuhn. Information hiding – a

survey. Proceedings of the IEEE, 87(7):1062–1078, Jul 1999.

[13] Elżbieta Zielińska, Wojciech Mazurczyk, and Krzysztof Szczypiorski. Trends in

steganography. Communications of the ACM, 57(3):86–95, March 2014.

[14] Jon Postel. Transmission control protocol. RFC 793, RFC Editor, September

1981. http://www.rfc-editor.org/rfc/rfc793.txt.

http://www.rfc-editor.org/rfc/rfc793.txt

188 Bibliography

[15] Jon Postel. Internet Protocol. RFC 791, RFC Editor, September 1981. http:

//www.rfc-editor.org/rfc/rfc791.txt.

[16] Michael Ramalho, Paul Jones, Noboru Harada, Muthu Perumal, and Lei Miao.

RTP payload format for G.711.0. RFC 7655, RFC Editor, November 2015.

http://www.rfc-editor.org/rfc/rfc7655.txt.

[17] Fahimeh Rezaei, Michael Hempel, Dongming Peng, and Hamid Sharif. Dis-

rupting and preventing late-packet covert communication using sequence number

tracking. In IEEE Military Communications Conference, pages 599–604, San

Diego, CA, USA, November 2013.

[18] Norka B. Lucena, James Pease, Payman Yadollahpour, and Steve J. Chapin.

Syntax and semantics-preserving application-layer protocol steganography. In

Jessica Fridrich, editor, Information Hiding, pages 164–179, Berlin, Heidelberg,

June 2005.

[19] Artur Janicki, Wojciech Mazurczyk, and Krzysztof Szczypiorski. Steganalysis

of transcoding steganography. Annals of Telecommunications, 69(7):449–460,

2013.

[20] Wojciech Mazurczyk. VoIP steganography and its detection—a survey. ACM

Computing Surveys, 46(2), December 2013.

[21] Wojciech Fraczek, Wojciech Mazurczyk, and Krzysztof Szczypiorski. How hid-

den can be even more hidden? In International Conference on Multimedia In-

formation Networking and Security, pages 581–585, Shanghai, China, November

2011.

[22] Artur Janicki, Wojciech Mazurczyk, and Krzysztof Szczypiorski. Influence of

speech codecs selection on transcoding steganography. Telecommunication Sys-

tems, 59(3):305–315, July 2015.

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc7655.txt

189

[23] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. PHY covert channels: Can

you see the idles? In USENIX Symposium on Networked Systems Design and

Implementation, pages 173–185, Seattle, WA, USA, April 2014.

[24] Hermine Hovhannisyan, Kejie Lu, and Jianping Wang. A novel high-speed IP-

timing covert channel: Design and evaluation. In IEEE International Conference

on Communications, pages 7198–7203, London, UK, June 2015.

[25] Osamah Ibrahiem Abdullaziz, Vik Tor Goh, Huo-Chong Ling, and KokSheik

Wong. Network packet payload parity based steganography. In IEEE Conference

on Sustainable Utilization and Development in Engineering and Technology,

pages 56–59, Selangor, Malaysia, May 2013.

[26] Wojciech Mazurczyk, Paweł Szaga, and Krzysztof Szczypiorski. Using transcod-

ing for hidden communication in IP telephony. Multimedia Tools and Applications,

70(3):2139–2165, June 2014.

[27] Rui Miao and Yongfeng Huang. An approach of covert communication based

on the adaptive steganography scheme on Voice over IP. In IEEE International

Conference on Communications, pages 1–5, Kyoto, Japan, June 2011.

[28] Naofumi Aoki. A packet loss concealment technique for VoIP using steganogra-

phy. In Proceedings of International Symposium on Intelligent Signal Processing

and Communication Systems, pages 470–473, Awaji Island, Japan, December

2003.

[29] Hong Zhao, Yun Q. Shi, and Nirwan Ansari. Hiding data in multimedia stream-

ing over networks. In Annual Communication Networks and Services Research

Conference, pages 50–55, Montreal, QC, Canada, May 2010.

[30] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and Rob Johnson. Games without

frontiers: Investigating video games as a covert channel. In IEEE European Sym-

190 Bibliography

posium on Security and Privacy, pages 63–77, Saarbruecken, Germany, March

2016.

[31] Paul Vines and Tadayoshi Kohno. Rook: Using video games as a low-bandwidth

censorship resistant communication platform. In Proceedings of the ACM Work-

shop on Privacy in the Electronic Society, pages 75–84, New York, NY, USA,

2015.

[32] Gaurav Shah and Andres Molina. Keyboards and covert channels. In USENIX

Security Symposium, Vancouver, B.C. Canada, July 2006.

[33] Steven Gianvecchio and Haining Wang. Detecting covert timing channels: An

entropy-based approach. In Proceedings of the ACM Conference on Computer

and Communications Security, pages 307–316, New York, NY, USA, 2007.

[34] Steven J. Murdoch and Stephen Lewis. Embedding covert channels into TCP/IP.

In Proceedings of the International Conference on Information Hiding, pages

247–261, Berlin, Heidelberg, 2005.

[35] Norka B. Lucena, Grzegorz Lewandowski, and Steve J. Chapin. Covert chan-

nels in IPv6. In George Danezis and David Martin, editors, Privacy Enhancing

Technologies, pages 147–166, Berlin, Heidelberg, 2006.

[36] Naofumi Aoki. VoIP packet loss concealment based on two-side pitch wave-

form replication technique using steganography. In IEEE Region 10 Conference,

volume C, pages 52–55 Vol. 3, Chiang Mai, Thailand, November 2004.

[37] Naofumi Aoki. Potential of value-added speech communications by using

steganography. In Conference on Intelligent Information Hiding and Multime-

dia Signal Processing, volume 2, pages 251–254, Kaohsiung, Taiwan, November

2007.

191

[38] National Computer Security Center. Department of Defense Trusted Computer

System Evaluation Criteria, DoD 5200.28-STD edition, December 1985.

[39] National Computer Security Center. Covert Channel Analysis of Trusted Systems,

NCSC-TG-030 edition, November 1993.

[40] Common Criteria. Information technology – Security techniques – Evaluation

criteria for IT security. ISO ISO/IEC 15408, International Organization for

Standardization, 2012.

[41] Harold F. Tipton and Micki Krause. Information Security Management Handbook,

Volume 2. CRC Press, 2008.

[42] Common Criteria. Certified products. https://

www.commoncriteriaportal.org/products, 2021. Accessed: 2022-07-21.

[43] Wassenaar Members. Wassenaar Arrangement. http://www.wassenaar.org.

Accessed: 2022-07-21.

[44] Electronic Privacy Information Center. Privacy and Human Rights Report 2006:

An International Survey of Privacy Laws and Developments. Electronic Privacy

Information Center, 2007.

[45] Tom Pullar-Strecker. Customs downplays password plan. http:

//www.stuff.co.nz/technology/digital-living/67449940/customs-

downplays-password-plan. Accessed: 2022-07-21.

[46] Lev Grossman. Inside Apple CEO Tim Cook’s fight with the FBI. TIME, March

2016.

[47] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection:

Evasion, traffic normalizationand end-to-end protocol semantics. In Proceedings

https://www.commoncriteriaportal.org/products
https://www.commoncriteriaportal.org/products
http://www.wassenaar.org
http://www.stuff.co.nz/technology/digital-living/67449940/customs-downplays-password-plan
http://www.stuff.co.nz/technology/digital-living/67449940/customs-downplays-password-plan
http://www.stuff.co.nz/technology/digital-living/67449940/customs-downplays-password-plan

192 Bibliography

of the Conference on USENIX Security Symposium - Volume 10, Berkeley, CA,

August 2001.

[48] Myong H. Kang, Ira S. Moskowitz, and Daniel C. Lee. A network version of the

pump. In Proceedings IEEE Symposium on Security and Privacy.

[49] Myong H. Kang, Ira S. Moskowitz, Bruce E. Montrose, and James J. Parsonese.

A case study of two NRL pump prototypes. In Proceedings Annual Computer

Security Applications Conference, pages 32–43, San Diego, CA, USA, December

1996.

[50] Karl Pearson. On the theory of contingency and its relation to association and

normal correlation. Dulau and Company, 1904.

[51] Wojciech Mazurczyk, Steffen Wendzel, Sebastian Zander, Amir Houmansadr,

and Krzysztof Szczypiorski. Network Steganography Countermeasures, pages

207–242. 2016.

[52] Rennie Archibald and Dipak Ghosal. A comparative analysis of detection metrics

for covert timing channels. Computers & Security, 45:284–292, 2014.

[53] S. Zerafshan Goher, Barkha Javed, and Nazar Abbas Saqib. Covert channel

detection: A survey based analysis. In High Capacity Optical Networks and

Emerging/Enabling Technologies, pages 057–065, Istanbul, Turkey, December

2012.

[54] Ugo Fiore, Francesco Palmieri, Aniello Castiglione, and Alfredo De Santis. Net-

work anomaly detection with the restricted Boltzmann Machine. Neurocomput.,

122:13–23, December 2013.

[55] Pradhumna Lal Shrestha, Michael Hempel, Fahimeh Rezaei, and Hamid Sharif.

Leveraging statistical feature points for generalized detection of covert timing

193

channels. In IEEE Military Communications Conference, pages 7–11, Baltimore,

MD, USA, 2014.

[56] Cai Zhiyong, Shen Ying, and Shen Changxiang. Detection of insertional covert

channels using chi-square test. In International Conference on Multimedia In-

formation Networking and Security, volume 1, pages 432–435, Wuhan, China,

November 2009.

[57] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert timing channels:

Design and detection. In Proceedings of the ACM Conference on Computer and

Communications Security, pages 178–187, Washington DC, USA, 2004.

[58] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert channel detection.

ACM Trans. Inf. Syst. Secur., 12(4):22:1–22:29, April 2009.

[59] Sebastian Zander. Performance of Selected Noisy Covert Channels and Their

Countermeasures in IP Networks. PhD thesis, Swinburne University of Technol-

ogy, May 2010.

[60] Shankar Sadasivam, Pierre Moulin, and Sean Meyn. A universal divergence-rate

estimator for steganalysis in timing channels. In IEEE International Workshop

on Information Forensics and Security, pages 1–6, Seattle, WA, USA, December

2010.

[61] Chaim Sanders, Jacob Valletta, Bo Yuan, Daryl Johnson, and Peter Lutz. Em-

ploying entropy in the detection and monitoring of network covert channels. In

Proceedings of the International Conference on Security and Management, Las

Vegas, NV, USA, July 2012.

[62] Steven Gianvecchio and Haining Wang. An entropy-based approach to detecting

covert timing channels. IEEE Transactions on Dependable and Secure Computing,

8(6):785–797, 2011.

194 Bibliography

[63] Szymon Grabski and Krzysztof Szczypiorski. Network steganalysis: Detection of

steganography in IEEE 802.11 wireless networks. In Ultra Modern Telecommu-

nications and Control Systems and Workshops, International Congress on, pages

13–19, Sept 2013.

[64] Anyi Liu, Jim Chen, and Li Yang. Real-time detection of covert channels in highly

virtualized environments. Critical Infrastructure Protection V, pages 151–164,

2011.

[65] Rennie Archibald and Dipak Ghosal. Design and analysis of a model-based covert

timing channel for Skype traffic. In IEEE Conference on Communications and

Network Security, pages 236–244, Florence, Italy, September 2015.

[66] Alvis C. M. Fong, G. R. Higgie, and Bernard Fong. Multimedia applications

of self-synchronizing T-codes. In Proceedings International Conference on In-

formation Technology: Coding and Computing, pages 519–523, Las Vegas, NV,

USA, April 2001.

[67] Kenji Hamano and Hirosuke Yamamoto. Data compression based on a dictionary

method using recursive construction of T-codes. In 2010 Data Compression

Conference, pages 531–531, Snowbird, UT, USA, March 2010.

[68] Ulrich Speidel, T. Aaron Gulliver, and Thokozani Shongwe. Multicarrier error

correction using T-codes. In Proceedings of IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, pages 877–880, Victoria,

BC, Canada, August 2011.

[69] Sathiamoorthy Manoharan, Aquib Master, and Ulrich Speidel. Complexity-based

steganalysis. In International Symposium on Information Theory and its Appli-

cations, pages 40–44, Victoria, BC, Canada, October 2014.

195

[70] Mark R. Titchener. Character-error bound for the T-code synchronisation process.

IEE Proceedings E - Computers and Digital Techniques, 134(3):155–158, May

1987.

[71] Ulrich Günther. Robust source coding with generalised T-codes. PhD thesis,

University of Auckland, 1998.

[72] Radu Nicolescu. Uniqueness theorems for T-codes. Tamaki report series ; no. 9.

University of Auckland, Tamaki Campus, Auckland, N.Z., September 1995.

[73] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE

Transactions on Information Theory, 22(1):75–81, 1976.

[74] Mark R. Titchener. Deterministic computation of complexity, information and

entropy. In Proceedings. IEEE International Symposium on Information Theory,

pages 326–, Cambridge, MA, USA, August 1998.

[75] Mark R. Titchener. A measure of information. In Proceedings Data Compression

Conference, pages 353–362, Snowbird, UT, USA, March 2000.

[76] Kenji Hamano and Hirosuke Yamamoto. Data compression based on a dictio-

nary method using recursive construction of T-Codes. In Data Compression

Conference, pages 531–531, Snowbird, UT, USA, March 2010.

[77] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions

with formulas, graphs, and mathematical tables, volume 55. US Government

Printing Office, 1948.

[78] Ulrich Speidel, Raimund Eimann, and Nevil Brownlee. Detecting network events

via T-entropy. In International Conference on Information, Communications

Signal Processing, pages 1–5, Singapore, December 2007.

196 Bibliography

[79] T. Aaron Gulliver, Isaiah Makwakwa, and Ulrich Speidel. On the generation of

aperiodic and periodic necklaces via T-augmentation. Fundamenta Informaticae,

83:91–107, 01 2008.

[80] Solomon W. Golomb and Basil Gordon. Codes with bounded synchronization

delay. Information and Control, 8(4):355–372, 1965.

[81] Stig Venaas and Alvaro Retana. PIM message type space extension and reserved

bits. RFC 8736, RFC Editor, February 2020. http://www.rfc-editor.org/

rfc/rfc8736.txt.

[82] Christopher A. Kent and Jeffrey C. Mogul. Fragmentation considered harmful.

SIGCOMM Computer Communication Review, 25(1):75–87, January 1995.

[83] Jeffrey Mogul and Steve Deering. Path MTU discovery. RFC 1191, RFC Editor,

November 1990. http://www.rfc-editor.org/rfc/rfc1191.txt.

[84] Matthew Luckie and Ben Stasiewicz. Measuring Path MTU Discovery behaviour.

In Proceedings of the ACM SIGCOMM Conference on Internet Measurement,

pages 102–108, Melbourne, Australia, November 2010.

[85] Matthias Göhring, Haya Shulman, and Michael Waidner. Path MTU Discovery

considered harmful. In IEEE International Conference on Distributed Computing

Systems, pages 866–874, Vienna, Austria, July 2018.

[86] Stephen Deering and Robert Hinden. Simple Internet Protocol (SIP) specification.

RFC 8507, RFC Editor, December 2018. http://www.rfc-editor.org/rfc/

rfc8507.txt.

[87] Gĳs Van Den Broek, Roland Van Rĳswĳk-Deĳ, Anna Sperotto, and Aiko Pras.

DNSSEC meets real world: dealing with unreachability caused by fragmentation.

IEEE Communications Magazine, 52(4):154–160, 2014.

http://www.rfc-editor.org/rfc/rfc8736.txt
http://www.rfc-editor.org/rfc/rfc8736.txt
http://www.rfc-editor.org/rfc/rfc1191.txt
http://www.rfc-editor.org/rfc/rfc8507.txt
http://www.rfc-editor.org/rfc/rfc8507.txt

197

[88] Catherine Wu and Eric Vyncke. Resolve IPv4 fragmentation, MTU, MSS, and

PMTUD issues with GRE and IPsec. Technical report, Cisco, Jan 2019.

[89] Pekka Savola. MTU and fragmentation issues with in-the-network tunneling.

RFC 4459, RFC Editor, April 2006. http://www.rfc-editor.org/rfc/

rfc4459.txt.

[90] Wojciech Mazurczyk and Krzysztof Szczypiorski. Evaluation of steganographic

methods for oversized IP packets. Telecommunication Systems, 49:207–217, 02

2012.

[91] Deepa Kundur and Kamran Ahsan. Practical Internet steganography: data hiding

in IP. Proc. Texas wksp. security of information systems, 2003.

[92] Kamran Ahsan and Deepa Kundur. Practical data hiding in TCP/IP. In Multimedia

and Security Workshop – ACM Multimedia, Juan-les-Pins, France, December

2002.

[93] Wireshark. Wireshark. https://www.wireshark.org. Accessed: 2022-07-21.

[94] Omnipacket. WireEdit. https://www.omnipacket.com/wireedit. Accessed:

2022-07-21.

[95] Open Information Security Foundation. Suricata. https://suricata-ids.org.

Accessed: 2022-07-21.

[96] TCPDUIMP. TCPDUMP. http://www.tcpdump.org. Accessed: 2022-07-21.

[97] Gianluca Costa and Andrea de Franceschi. Xplico. https://www.xplico.org.

Accessed: 2022-07-21.

[98] Colasoft. Packet Player. https://www.colasoft.com/packet_player. Ac-

cessed: 2022-07-21.

http://www.rfc-editor.org/rfc/rfc4459.txt
http://www.rfc-editor.org/rfc/rfc4459.txt
https://www.wireshark.org
https://www.omnipacket.com/wireedit
https://suricata-ids.org
http://www.tcpdump.org
https://www.xplico.org
https://www.colasoft.com/packet_player

198 Bibliography

[99] Xiuquan Li and Zhidong Deng. A machine learning approach to predict turning

points for chaotic financial time series. In IEEE International Conference on

Tools with Artificial Intelligence, volume 2, pages 331–335, Patras, Greece, 2007.

[100] Bushra Praveen, Swapan Talukdar, Shahfahad, Susanta Mahato, Jayanta Mondal,

Pritee Sharma, Abu Reza Md. Towfiqul Islam, and Atiqur Rahman. Analyzing

trend and forecasting of rainfall changes in India using non-parametrical and

machine learning approaches. Scientific reports, 10(1):1–21, 2020.

[101] Ansoumana Bodian, Lamine Diop, Geremy Panthou, Honoré Dacosta, Abdoulaye

Deme, Alain Dezetter, Pape Malick Ndiaye, Ibrahima Diouf, and Théo Vischel.

Recent trend in Hydroclimatic conditions in the Senegal river basin. Water,

12(2):436, 2020.

[102] Peter J. Hilton. Differential Calculus. Routledge, 1958.

[103] Kendrick N. Kay, Ariel Rokem, Jonathan Winawer, Robert F. Dougherty, and

Brian A. Wandell. GLMdenoise: a fast, automated technique for denoising task-

based fMRI data. Frontiers in neuroscience, 7:247, 2013.

[104] Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. A high-quality

denoising dataset for smartphone cameras. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1692–1700, Salt Lake City, UT, USA, 2018.

[105] Artur M. Brodzki and Jędrzej Bieniasz. Yet another network steganography

technique based on TCP retransmissions. In International Conference on Frontiers

of Signal Processing, pages 35–39, Marseille, France, 2019.

[106] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communi-

cation. University of Illinois Press, 1998.

199

[107] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News,

8(2):18–24, April 1976.

[108] Niko Rebenich. Fast low memory T-Transform string complexity in linear time

and space with applications to android app store security. 2012.

[109] Jia Yang and Ulrich Speidel. A T-decomposition algorithm with O(n log n) time

and space complexity. In Proceedings. International Symposium on Information

Theory, pages 23–27, Adelaide, SA, Australia, September 2005.

[110] Steven Gianvecchio, Haining Wang, Duminda Wĳesekera, and Sushil Jajodia.

Model-based covert timing channels: Automated modeling and evasion. In

Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors, Recent Advances

in Intrusion Detection, pages 211–230, Berlin, Heidelberg, 2008.

[111] Andrew D. Ker, Patrick Bas, Rainer Böhme, Rémi Cogranne, Scott Craver, Tomáš

Filler, Jessica Fridrich, and Tomáš Pevný. Moving steganography and steganalysis

from the laboratory into the real world. In Information Hiding and Multimedia

Security, pages 45–58, New York, NY, USA, 2013.

[112] Amir Houmansadr and Nikita Borisov. Coco: Coding-based covert timing chan-

nels for network flows. In Information Hiding, pages 314–328, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[113] Ramaswamy Ramaswamy, Ning Weng, and Tilman Wolf. Characterizing network

processing delay. In IEEE Global Telecommunications Conference, volume 3,

pages 1629–1634 Vol.3, Dallas, TX, USA, November 2004.

[114] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers.

In Proceedings of the Conference on Applications, Technologies, Architecture-

sand Protocols for Computer Communications, pages 281–292, Portland, Oregon,

USA, 2004.

200 Bibliography

[115] Jim Gettys. Bufferbloat: Dark buffers in the Internet. IEEE Internet Computing,

15(3):96–96, 2011.

[116] Artem Proskochylo, Mikhail Zriakhov, and Artem Akulynichev. The effects of

queueing algorithms on QoS for real-time traffic in process of load balancing. In

International Scientific-Practical Conference Problems of Infocommunications.

Science and Technology, pages 575–580, Kharkiv, Ukraine, October 2018.

[117] Carlo Demichelis and Philip Chimento. IP packet delay variation metric for IP

performance metrics (IPPM). RFC 3393, RFC Editor, November 2002. http:

//www.rfc-editor.org/rfc/rfc3393.txt.

http://www.rfc-editor.org/rfc/rfc3393.txt
http://www.rfc-editor.org/rfc/rfc3393.txt

	Introduction
	Problem and motivation
	Research objectives
	Thesis overview

	Background
	History
	Stakeholders
	Design principles
	Location identification
	Steganogram concealment
	Validation

	Review and classification of steganography
	Physical/link layers
	TCP/IP layers
	Application layers

	Countermeasures and limitations
	Standards
	Traffic normaliser
	Steganalysis
	Classification

	Summary

	T-codes and Complexity Derivates
	T-codes
	Properties of T-codes

	T-codes derivates
	T-decomposition
	T-complexity
	T-information
	T-entropy

	Steganography channel creation use
	Code design

	Network Storage-based Steganography
	Introduction
	Background and related work
	Steganography models
	Embedding modes
	Real vs. synthetic data
	Embedding schemes

	Steganalysis
	Effects of different embedding schemes on T-entropy
	Steganalysis (sequential, x)
	Steganalysis (equal spacing, x)
	Steganalysis (random, x)
	Discussion
	Summary

	Automatic Detectors for Re-embedding Steganalysis
	Background
	Related work
	Simple interpolation
	Moving average
	Regression analysis
	k-fold cross-validation
	Degree 1 residual approach
	Automatic detection of the (equal spacing, equal spacing) tuple
	Summary

	Re-embedding Steganalysis Using Other Statistical Metrics
	Welch's t-test
	Chi-square test
	Kolmogorov-Smirnov test
	Shannon entropy
	Kullback-Leibler divergence
	Autocorrelation function
	Discussion
	Summary

	Network Timing-based Steganography
	Introduction
	Related work
	Network delays
	Methodology
	Results
	Summary

	Conclusions
	Appendices
	Additional Details for the T-code tree
	Additional Graphs for Automatic Detection
	Collection of 40% embedded datasets
	Degree 1 residual plots of 40% embedded datasets
	Degree 1 residual approach with varying embedding levels
	Degree 1 residual plots of 20% embedded (equal spacing, equal spacing) datasets
	Degree 1 residual approach with varying embedding levels on (equal spacing, equal spacing) datasets

	Additional Graphs for Other Metrics
	Welch's t-test p-value graphs

