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Abstract
Diet has a major influence on the composition and metabolic output of the gut microbiome. Higher-protein diets are often recommended for older con-
sumers; however, the effect of high-protein diets on the gut microbiota and faecal volatile organic compounds (VOC) of elderly participants is unknown.
The purpose of the study was to establish if the faecal microbiota composition and VOC in older men are different after a diet containing the recom-
mended dietary intake (RDA) of protein compared with a diet containing twice the RDA (2RDA). Healthy males (74⋅2 (SD 3⋅6) years; n 28) were rando-
mised to consume the RDA of protein (0⋅8 g protein/kg body weight per d) or 2RDA, for 10 weeks. Dietary protein was provided via whole foods rather
than supplementation or fortification. The diets were matched for dietary fibre from fruit and vegetables. Faecal samples were collected pre- and post-
intervention for microbiota profiling by 16S ribosomal RNA amplicon sequencing and VOC analysis by head space/solid-phase microextraction/GC-
MS. After correcting for multiple comparisons, no significant differences in the abundance of faecal microbiota or VOC associated with protein fermen-
tation were evident between the RDA and 2RDA diets. Therefore, in the present study, a twofold difference in dietary protein intake did not alter gut
microbiota or VOC indicative of altered protein fermentation.
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Life expectancy is increasing and, with it, a steady rise in the
proportion of older adults worldwide(1). Accordingly, it is cru-
cial to understand optimal nutrient intakes, such that wider
evidence-based dietary recommendations can be made for
the elderly. The current RDA of protein for all adults aged
over 19 years according to the WHO(2) and the United
States Department of Agriculture(3) is 0⋅8 g protein/kg body
weight per d. New evidence suggests that the protein require-
ments of the elderly should be reconsidered(4), in part to com-
pensate for age-related losses in muscle mass and function
(sarcopenia)(5). Ageing alters gastrointestinal tract physiology
and function, potentially limiting the digestion of protein(6).
Regardless, greater protein intake leads to greater quantities
of dietary protein entering the distal gut(7), and this has been
linked to the pathogenesis of various chronic disease(8–11).
The gut microbiome is a complex community of micro-

organisms, essential for the maintenance of host health(12).
Microbial fermentation of nutrients in the lower gut produces
a vast range of metabolites that have an impact on the colonic
environment, the epithelium, and can be transported to other
host tissues(13). Both metabolite production and microbiota
composition are highly contingent on nutrient availability(14,15).
Although the gut microbiome can also be resilient against
short-term dietary change(16), numerous studies have demon-
strated some plasticity of the gut microbiome through dietary
interventions(17–19).
Carbohydrates are the most studied dietary components

relating to gut microbiota composition and metabolite produc-
tion. Diets rich in non-digestible carbohydrates such as NSP
and resistant starch increase the abundance of SCFA, particu-
larly butyrate, and abundance of saccharolytic bacteria (for
example, Bifidobacterium and Lactobacillus). SCFA are an import-
ant source of nutrients and protect against cancer and inflam-
mation(20). By contrast, few studies have investigated the
effect of high-protein diets on the gut microbiome. Of the cur-
rent literature, increased dietary protein is only examined along
with simultaneous energy deficits and/or coupled with an
altered relative proportion of fibre intake, thereby introducing
potential significant confounding. In those studies, products
of protein fermentation such as faecal branched-chain fatty
acids (BCFA), amines, phenols and indoles were increased(21).
When produced in high concentrations, metabolites derived
from protein fermentation are implicated in DNA damage,
inflammation, chronic kidney disease, CVD and cancer(21,22).
In addition, high-protein diets reduced SCFA-producing bac-
teria with a concomitant decline in SCFA(17,18,23). It is likely
that the reduction in carbohydrate rather than the increased
protein is the culprit here. Indeed, studies have demonstrated
the moderating effect of non-digestible carbohydrates on the
proteolytic activity of gut microbiota, by increasing SCFA abun-
dance and decreasing proteolytic metabolites such as phenol(24–
27). However, evidence for the effects of fibre-rich high-protein
diets on gut microbiota and metabolite production is scarce.
Numerous studies have investigated the gut microbiome of

elderly populations(28). Profiles of their gut microbiota relative
to younger counterparts are characterised by reduced diversity,
reduction in beneficial species, and a shift in dominant spe-
cies(29). However, given the heterogeneity of the elderly

population due to lifestyle, living situation and co-morbidities
including medication use, a typical microbiota composition is
difficult to define(28). Compared with younger adults, concen-
trations of faecal SCFA tend to be lower in elderly individuals,
and studies in elders treated with antibiotics and centenarians
have demonstrated a decline in saccharolytic gut bacteria such
as Bifidobacterium and increased numbers of facultative proteo-
lytic bacteria(30–32). To date, no randomised controlled trials
have investigated the impact of increased dietary protein intake
on the composition and diversity of the gut microbiome and
metabolite production, in the context of an otherwise healthy
and balanced diet in the community-dwelling elderly.
In light of the mounting recommendations for increasing the

RDA of protein for elderly(33), and the potential for greater pro-
teolytic gut microbial metabolism in this age group, consider-
ation for the implications of increased protein intake on gut
health is relevant. Therefore we investigated the impact of a con-
trolled 10-week diet containing either the RDA (0⋅8 g/kg body
weight per d) or 2RDA (twice the RDA) of protein in the con-
text of a whole-food diet providing similar quantities per group
of fibre, derived from fruits and vegetables, on the composition
and diversity of the gut microbiota and production of gut
bacteria-derived metabolites. We hypothesised that the 2RDA
diet would lead to an increase in protein-fermenting gut bacteria
and metabolites of protein fermentation.

Methods

Study design

The study was a 10-week randomised parallel-group design.
Allocation (1:1 ratio) was conducted by using a locked spread-
sheet that assigned participants to treatment groups. The study
was not blinded as the investigators were involved in diet prep-
aration, and due to the types of food provided the participants
were aware of which group they were assigned. Ethical
approval was obtained from the Southern Health and
Disability Ethics Committee (New Zealand; 15/STH/236).
The trial was conducted according to the Declaration of
Helsinki. The study was prospectively registered with the
Australian and New Zealand Clinical Trial Registry (www.
anzctr.org.au) as ACTRN no. 12616000310460. Informed
written consent was obtained from all participants before
they were enrolled in the trial. This article reports on secondary
outcomes of the OptiMuM (Optimal nutrition in the elderly:
High protein diets for muscular, metabolic, and microbiome
health) study. The primary outcome for OptiMuM was to
evaluate the ability of a high-protein diet to attenuate loss of
muscle function and size in healthy ageing males. The second-
ary outcomes reported in this paper included assessment of
faecal microbiota composition and diversity, and faecal meta-
bolites (volatile organic compounds; VOC).

Participants

A total of thirty-one participants were recruited and thirty were
enrolled in the study (Table 1). Eligible participants were males
aged 70 years and over, non-smokers, and with a BMI between
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20 and 35 kg/m2. Participants who enrolled were not taking pro-
biotics for at least 1 month or antibiotics for at least 3 months
preceding study commencement. Individuals were excluded
from participation if they had a prior history of cancers, diabetes,
thyroid disease or gastrointestinal disease. Those with restricted
eating habits including vegetarians and those with food allergies
or intolerances were also not included in the study. Participants
were recruited from Auckland, New Zealand and data were col-
lected at the Liggins Institute, University of Auckland, between
March and October 2016. Random assignment of individual
participants into each group was performed using sequences
generated by www.random.org(34).

Study procedures

A detailed description of the study procedures and dietary
control has been published previously(35). Briefly, participants
were randomised to receive either the RDA (0⋅8 g protein/kg
body weight per d) or 2RDA (1⋅6 g protein/kg body weight
per d) for 10 weeks. The quantity of protein in the 2RDA
diet was chosen as it has previously been recommended as
optimal for preserving muscle mass in older adults(35). Both
diets provided approximately 30 % of total energy from fat,
with the remainder made up from carbohydrate. Protein was
provided from a combination of animal and plant sources
including dairy products, eggs, poultry, fish, red meat, legumes,
grains, nuts and seeds. Both diets contained a similar amount
of plant protein whereas the 2RDA diet contained a larger
proportion of animal-sourced protein. The two diets were allo-
cated the New Zealand recommendations for daily fruit and
vegetable intake (at least five serves per d)(36). The energy con-
tent of the diets was calculated to match estimated energy
needs for weight maintenance based on the Harris–Benedict
equation and adjusted for physical activity level(37) assessed
by wrist-worn accelerometers (Fitbit Charge, HR; Fitbit,
Inc.). All meals and snacks were provided by the investigators
for the duration of the study and delivered weekly to the par-
ticipants’ homes. During the intervention, participants

attended the University of Auckland Nutrition and Mobility
Clinic at the Liggins Institute at weeks 4, 6 and 8 for weight
measurement and compliance check. Participants were asked
to make no changes to their exercise routine throughout
their participation in the trial.

Dietary analysis

Individual habitual dietary intake (based on 3-d food diaries)
and diets consumed during the trial were analysed using
Foodworks software (version 8; Xyris Software Pty Ltd).
Compliance was monitored via fortnightly visits and adjusted
according to individual preferences within macronutrient
allowances to assist with compliance.

Sample collection

For the analysis of gut microbiota composition and VOC
abundance, faecal samples were collected pre-intervention
(pre) and after 10 weeks of intervention (post). Participants
were provided with a stool collection kit for home collection.
Each kit contained a collection vessel to capture the sample,
and two collection containers: one containing 2 ml
RNA-stabilising solution (RNAlater; Ambion) for bacterial
nucleic acid extraction, and another for VOC analyses.
Samples were delivered on ice within 2 h of collection via cour-
ier to the laboratory at the Liggins Institute. DNA extraction
was processed within 5 h of arrival at the laboratory. Faecal
samples for the VOC analysis were immediately stored at
−80°C for later processing. Uniform sample collection, hand-
ling and storage procedures were conducted according to
recommendations to minimise bias and differences in detec-
tion of microbiota and VOC(38–40).

Faecal DNA extraction

DNA extraction, bacterial 16S ribosomal RNA (16S rRNA)
gene amplification and sequencing of the 16S rRNA gene

Table 1. Participant characteristics pre-intervention

(Mean values, standard deviations and ranges; numbers of participants)

Parameter

RDA group 2RDA group

Mean SD Range n Mean SD Range n

Number of participants* 15 13

Age (years) 74⋅7 3⋅9 70–81 73⋅7 3⋅3 70–79

Height (cm) 172⋅8 8⋅2 157–187 171⋅7 5⋅5 163–182

Weight (kg) 85⋅7 20⋅5 49⋅3–111⋅8 83⋅0 8⋅3 70⋅5–98⋅1
BMI (kg/m2) 28⋅4 5⋅1 18⋅9–35⋅3 28⋅2 3⋅3 24⋅1–33⋅9
Medication usage

Statin 4 6

ACE inhibitor 4 3

Aspirin 4 2

Ca channel blocker 1 2

PPI 0 2

α-Blocker 1 2

β-Blocker 1 2

Xanthine oxidase inhibitor 1 1

RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein; ACE, angiotensin converting enzyme; PPI, proton pump inhibitors.

* Only the participants who completed the study were included in the analysis (n 28).
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libraries were performed at the Liggins Institute laboratory.
DNA was extracted from faecal samples using the AllPrep
DNA/RNA Mini Kit (Qiagen) according to the modified pro-
cedures reported by Giannoukos et al.(41). The purity of
extracted DNA was determined with a NanoDrop™

ND-1000 spectrophotometer (NanoDrop Technologies).
Extracted DNA was stored (100 μl aliquots; −80°C).

Microbiota composition analysis by 16S ribosomal RNA
amplicon sequencing

DNA concentration was quantified on the Qubit® 2.0 fluor-
ometer (Thermo Fisher Scientific) using the Qubit® dsDNA
High Sensitivity Assay Kit (ThermoFisher Scientific). The
Ion 16™ Metagenomics Kit (Thermo Fisher Scientific) was
used to amplify the 16S rRNA gene. The kit contained two
different sets of primers targeted to seven hypervariable
regions of 16S rRNA: primer set 1 amplified three regions
(V2, V4 and V8) and primer set 2 amplified four regions
(V3, V6–V7 and V9). Amplicons were fragmented, nick
repaired, adaptor ligated, and barcoded for library construction
using the Ion Plus Fragment Library Kit (Thermo Fisher
Scientific). Libraries were purified using Agencourt AMPure
XP magnetic beads (Beckman Coulter). Adaptor-ligated librar-
ies were prepared using the Ion Plus Fragment Library and Ion
Xpress™ barcode adaptors 1–16 (Thermo Fisher Scientific).
Quantification was performed using the Agilent 2100
Bioanalyser with the DNA High Sensitivity Kit (Agilent
Technologies). Equimolar concentrations from eight sample
libraries (26 pmol/μl) were pooled for each sequencing run.
Sequencing was performed on the Ion Torrent Personal
Genome Machine (PGM) using the Ion PGM Hi-Q View
Sequencing 400 Kit and the Ion 318v2 chip (Thermo Fisher
Scientific) at the Liggins Institute laboratory.

Bioinformatic processing of 16S ribosomal RNA sequence
reads

16S amplicon sequences were classified according to the bar-
code and analysed using the Metagenomics 16S w1.1 work-
flow in the Ion Reporter software on the Thermo Fisher
cloud (version 5.2; Thermo Fisher Scientific) with default
parameters(42). After sequencing, the binary alignment map
(BAM) files are analysed by Ion Reporter software. Ion
Reporter software uses Java scripts to filter the reads by primer
and length, before measuring the abundance of each read.
Following this, a two-step Basic Local Alignment Search
Tool (BLAST) alignment of sequencing reads is performed
against both the MicroSEQ (version 2013.1; Thermo Fisher
Scientific) and Greengenes (version 13.5) databases. The com-
pleted analysis reported the results by consensus for three
taxonomic levels (i.e. species, genus and family).

Volatile organic compound analysis

To determine VOC abundance, triplicates of approximately
200 (range 163–282) mg of frozen faecal material were sub-
sampled from faecal samples that were not exposed to

RNAlater, and weighed into tared 20 ml head space vials
(Sigma Aldrich). Untargeted extraction of VOC was per-
formed using head space/solid-phase microextraction/
GC-MS (HS/SPME/GCMS). Vials were incubated (37°C;
25 min), and volatiles were extracted (37°C; 15 min). The
SPME fibres used were divinylbenzene–carboxen–polydi-
methysiloxane (DVB/CAR/PDMS) 50/30 μm (Supelco),
selected for their ability to sample a wide range of VOC.
The SPME fibres were pre-conditioned in accordance with
the manufacturer’s instructions. GCMS analysis was per-
formed using an Agilent GC 7890A with a 5975C inert mass-
selective detector (MSD) (Agilent Technologies). The carrier
gas was instrument-grade He (99⋅99 %; BOC). The fibre was
desorbed in the GC injector in splitless mode, using a butyl
rubber septum and a low-volume SPME-specific glass liner
(0⋅75 mm internal diameter (ID)) at 250°C for 1 min. A
general-purpose column was chosen for compound separ-
ation: an Rtx-5Sil MS 30 m, 0⋅25 mm ID, with a 0⋅25 μm sta-
tionary phase (95 % dimethylpolysiloxane, 5 % diphenyl;
Shimadzu). Column flow was set (1 ml/min), with a column
head pressure (7⋅2 psi (pound per square inch)), to provide
an average linear velocity of 36 cm/s. The SPME fibre
remained in the injector for 5 min to condition for the next
run. Purge flow (50 ml/min) commenced 1 min after injection.
The GC oven was initially set at 35°C for 5 min, increasing to
100°C at 5°C/min, further to 200°C at 15°C/min, and finally
to 300°C at 30°C/min, before being held for 3 min, with a
total run time of 31 min. The detector source was maintained
at 230°C and the quadrupole at 150°C. The detector was run
in positive-ion, electron-impact ionisation mode, at 70 eV.
Data were acquired at 1789 atomic mass units (amu)/s in
scan mode, with a mass range of 24 to 300 amu, and zero
threshold.

Volatile organic compound data processing

Deconvolution and identification of compounds were per-
formed using the Automated Mass Spectral Deconvolution
and Identification System (AMDIS, version 2.71)(43). The
AMDIS limitation on mass spectral library size was circum-
vented by developing a smaller subset library from the
National Institute of Standards and Technology (NIST)
main mass spectral library(44). The subset library was con-
structed using Agilent MSD Productivity ChemStation (ver-
sion F.01.01.2317) setting integration parameters to be
sensitive to low-abundance compounds, and search-match
parameters to be expansive. The top five identities for each
peak, for all peaks, and for all samples were combined to con-
struct a subset library of 17 901 mass spectra, which were then
used with AMDIS. The settings for AMDIS were optimised to
maximise annotation of all features, including unknowns,
reducing the false-negative rate to <5 %. Mass spectral match-
ing was used to assign identities. Matches <60 % are consid-
ered unknown and were excluded from analysis.
Matches between 80 and 100 % match to a reference

standard can be considered putatively identified, those with
a 60–79 % mass spectral match can be considered tentatively
identified, and those with <60 % mass spectral match can be
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considered unknown(45). Data were filtered to exclude com-
pounds that were identified at a low frequency (<9 identifica-
tions/156 samples) in the dataset. For peak integration an
R-script based on XCMS (MassOmics, version 2.5)(46) was
used, with the retention time bins defined by AMDIS. The
data produced represent a set of probable identifications
for each feature, which were then filtered, based on fre-
quency, retention time reproducibility, and library match fac-
tor to assign the most probable identification. Co-eluting
peaks were resolved and data were checked against negative
controls (empty vials) to identify and remove background
contaminants.

Statistical analysis

The sample size (fifteen participants per group) was calculated
based on the power required for the primary outcome for the
original study, which was to detect a between-group difference
of 800 g whole-body lean mass change in skeletal muscle mass
and strength(35). Previous studies investigating the effect of
high-protein diets on the gut microbiome demonstrated sig-
nificant changes in gut microbiota taxa and faecal metabolites
in similar samples sizes (n 14(47), and n 17(17)).
Changes in dietary intake were assessed by two-way

repeated-measures ANOVA with time (pre- compared with
post-intervention) as a repeated factor and diet (RDA com-
pared with 2RDA) as a between-subject factor. ANOVA
was performed using SPSS version 25.0 (SPSS Inc.).
For microbiota analysis, comparisons of α-diversity were

made by Kruskal−Wallis tests using the Shannon and
Simpson indices to determine within-sample richness and
evenness. To determine whether the level of variability
within groups was not greater than between groups, homo-
geneity of group dispersions (PERMDISP) was performed.
β-Diversity was assessed by permutational multivariate
ANOVA (PERMANOVA). Principal coordinate analysis
(PCoA) was applied to illustrate the variation present
between groups. Statistics and data visualisation for micro-
biota analysis were carried out with the use of
MicrobiomeAnalyst(48).
For the VOC analysis, triplicate samples were averaged by

the median and raw data were normalised by the auto scaling
method (mean-centred and divided by the standard devi-
ation of each variable). Estimation of main or interaction
effects was calculated using ANOVA simultaneous compo-
nent analysis (ASCA). Univariate analyses of post-
intervention results were made by the Wilcoxon–Mann–
Whitney test. Principal components analysis (PCA) was
applied to illustrate variation between groups post-
intervention. Statistics for VOC analysis were performed
using MetaboAnalyst v4.0(49). Multivariate Association with
Linear Models (MaAsLin) was used to identify significant
associations between microbiota taxa and VOC abun-
dance(50). MaAsLin is a type of multivariate statistical ana-
lysis to find associations between clinical metadata and
microbial composition or functional data. Where appropri-
ate, P values were corrected for multiple testing using false
discovery rate according to the Benjamini–Hochberg

correction. Significance was set at P ≤ 0⋅05. Mean values
and standard deviations are shown in the tables and text.

Results

A total of thirty-one participants were recruited to the study
(RDA, n 15, 2RDA, n 16; Fig. 1). One subject dropped out
before commencement of the study (2RDA, n 1) and one
was excluded due to non-compliance (2RDA, n 1). One par-
ticipant was excluded from the final analysis due to antibiotic
use (2RDA, n 1). The remaining twenty-eight participants were
included in this analysis (RDA, n 15; 2RDA, n 13). Participant
characteristics are reported in Table 1.

Dietary intake

A detailed account of dietary intake is shown in Table 2.
Overall, participants were highly compliant with both diets
(compliance for protein intake was 98⋅9 % in the RDA
group and 97⋅5 % in the 2RDA group). Compliance was
documented in fortnightly food records and according to
urinary N excretion assessed pre- and post-intervention
(RDA: from 1⋅3 (SD 0⋅2) to 0⋅9 (SD 0⋅2) g/kg body weight
per d, P = 0⋅001; 2RDA: from 1⋅3 (SD 0⋅2) to 1⋅5 (SD 0⋅1)
g/kg body weight per d, P = 0⋅001). Average protein intake
was altered by the intervention (time × diet interaction P <
0⋅001); it reduced in the RDA group (from 104⋅8 (SD 30)
to 80⋅1 (SD 23) g/d, P = 0⋅004) and increased in the 2RDA
group (from 95⋅6 (SD 20) to 136⋅2 (SD 18) g/d; P < 0⋅001).
Dietary fibre increased (time effect, P < 0⋅001) for RDA
(from 34 (SD 9⋅9) to 47 (SD 8⋅4) g/d; P < 0⋅001), and for
2RDA (from 28⋅9 (SD 8⋅1) to 50⋅3 (SD 5⋅3) g/d; P < 0⋅001)
but was not different between the diets (P = 0⋅410).

Microbial taxa composition

An average of 398 372 filtered 16S rRNA sequence reads were
obtained per sample. Library size was rarefied to a minimum
read depth of 189 549. When corrected for multiple testing,
there were no differences in relative abundance observed at
the phylum, family, genus or species level between groups
(genus level post-intervention illustrated in Fig. 2). The most
abundant genera in both groups pre- and post-intervention
were Bacteroides, Faecalibacterium, Roseburia, Eubacterium,
Clostridium and Ruminococcus (Fig. 3).

Microbial diversity

α-Diversity was assessed using the Simpson and Shannon indi-
ces (Fig. 4). There was no change over time in α-diversity for
the RDA (Shannon, P = 0⋅632; Simpson, P= 0⋅935) or the
2RDA groups (Shannon, P = 0⋅250; Simpson, P = 0⋅945).
There was also no significant difference in α-diversity between
groups pre-intervention (Shannon, P = 0⋅650; Simpson, P =
0⋅339) or post-intervention (Shannon, P= 0⋅548; Simpson,
P= 0⋅525). Between groups, there was no difference in
β-diversity (P = 0⋅154; Fig. 5), and the graph demonstrates
that individuals (pre- and post-samples) clustered more
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strongly together than the diet groups. PERMDISP revealed
no variability within groups (P= 0⋅284).

Faecal volatile organic compound abundance

Untargeted faecal metabolite analysis identified 261 VOC. These
were collectively derived from a combination of ingested com-
pounds (for example, from food or drink, inhaled, absorbed) or
endogenous compounds (for example, from the microbial fer-
mentation process). A representative list of VOC accompanied
by a univariate analysis of post-intervention results is shown in
Supplementary Table S1. After adjustment for multiple testing,
there were no significant differences in any of the compounds
related to bacterial fermentation of dietary components between
groups post-intervention. Clustering of VOC for each group post-
intervention was plotted by principal components analysis (PCA)
(Fig. 6) which showed no differential clustering between groups.

According to the ANOVA simultaneous component ana-
lysis (ASCA), permutation test statistics showed that there
were no significant effect for time (P= 0⋅497), diet (P =
0⋅440) or interaction (time × diet) P = 0⋅756). There were six
compounds of microbial metabolism well modelled by the
main effect of time (Table 3 and Fig. 7). Indole increased in
the RDA group from pre- to post-, and relative to the
2RDA group. In both groups, 3-methylbutanal decreased,
while the fatty acid esters butyrate, 2-methyl-, hexyl ester;
butyrate, 2-methyl-, propyl ester; and butyrate, 2-methyl-,
butyl ester all increased in both groups.

Correlations

MaAsLin analysis between 16S and VOC data revealed no sig-
nificant correlations between microbial taxa (at family, genus
or species level) and VOC abundance.

Fig. 1. CONSORT (Consolidated Standards of Reporting Trials) diagram. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein.
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Table 2. Estimated composition of baseline (pre) and experimental diets (post) for the RDA and 2RDA groups

(Mean values and standard deviations)

Nutrient intake

RDA 2RDA Effect (P)§

Pre Post Pre Post

Mean SD Mean SD Mean SD Mean SD Time Diet Time × diet

Energy intake 0⋅705 0⋅06 0⋅003*
kJ/d 13 104 4418 11 276‡ 2502 9305† 2707 11 627‡ 715

kcal/d 3132 1056 2695‡ 598 2224† 647 2779‡ 171

Protein intake

Total (g/d) 101 30 74‡ 15 88 25 136†‡ 10 0⋅041* 0⋅001* <0⋅001*
Relative (g/kg per d) 1⋅2 0⋅4 0⋅9‡ 0⋅1 1⋅1 0⋅3 1⋅7†‡ 0⋅1 0⋅056 <0⋅001* <0⋅001*
Animal sourced (g/d) 58 20 35‡ 11 53 23 97†‡ 6 0⋅016 <0⋅001* <0⋅001*
Plant sourced (g/d) 43 16 48 9 35 9 47 4 0⋅002* 0⋅177 0⋅185
Estimated by N balance (g/kg per d) 1⋅3 0⋅2 0⋅9‡ 0⋅2 1⋅3 0⋅2 1⋅5†‡ 0⋅1 0⋅098 <0⋅001* <0⋅001*
Energy from protein (%) 13⋅7 4⋅4 11⋅2‡ 1⋅5 16⋅5 4⋅4 19⋅7†‡ 1⋅6 0⋅644 <0⋅001* 0⋅001*

Carbohydrate intake

Total (g/d) 288 107 368 94 264 102 340 30 0⋅001* 0⋅309 0⋅946
Relative (g/kg/d) 3⋅5 1⋅2 4⋅4 1⋅0 3⋅3 1⋅5 4⋅2 0⋅6 0⋅001* 0⋅493 0⋅915
Energy from carbohydrate (%) 37⋅7 9⋅8 54⋅4‡ 2⋅5 47⋅2† 10⋅5 49⋅0† 2⋅2 <0⋅001* 0⋅217 0⋅001*
Fibre intake (g/d) 34 14 57‡ 9 33 15 50‡ 5 <0⋅001* 0⋅236 0⋅306
Fruit and vegetables (serves/d) 5⋅4 3⋅0 8⋅6‡ 2⋅1 4⋅5 2⋅1 8⋅5‡ 1⋅6 <0⋅001 0⋅41 0⋅535

Fat intake

Total (g/d) 161 86 91‡ 19 75† 31 84 6 0⋅015* 0⋅002* 0⋅002*
Energy from fat (%) 44⋅6 11⋅0 30⋅4‡ 1⋅9 30⋅4† 7⋅3 27⋅2† 1⋅3 <0⋅001* <0⋅001* 0⋅006*
Saturated fat (g/d) 57 27 33‡ 8 29† 13 28† 4 0⋅005* <0⋅001* 0⋅011*
Cholesterol (mg) 387 142 299 83 351 113 527 73 0⋅106 0⋅003 <0⋅001
Alcohol (g/d) 8⋅8 15⋅7 – 9⋅6 8⋅6 – – 0⋅236 –

RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein.

* Significant main effect or interaction (P < 0⋅05).
† Different between diets at indicated time point. P values were controlled using the Sidak post hoc procedure.

‡ Different from pre-intervention within the same group (P < 0⋅05).
§ Main effects and interactions were calculated by two-way repeated-measures ANOVA. Modified from Mitchell et al.(35), used with permission.

Fig. 2. Microbiota composition. Relative abundance at the genus level post-intervention in the RDA and 2RDA groups. RDA, diet containing the RDA of protein;

2RDA, diet containing twice the RDA of protein.
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Discussion

The diet is an important modulator of the gut microbiome and
its metabolites(51), with potential important implications for

health in an ageing population(30). Here, we collected and ana-
lysed faecal samples for microbial DNA and VOC of bacterial
fermentation origin, with the aim of characterising the impact

Fig. 3. Genera boxplots: the most abundant genera in the RDA and 2RDA groups. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of

protein. For the box plots: middle line is the median, boxes represent 25th and 75th percentiles, whiskers are within 1⋅5 interquartile ranges of the lower and upper

percentiles, and dots represent outliers.

Fig. 4. α-Diversity. (a) Shannon’s diversity; (b) Simpson’s diversity. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein. For the

box plots: middle line is the median, boxes represent 25th and 75th percentiles, whiskers are within 1⋅5 interquartile ranges of the lower and upper percentiles, and

dots represent outliers.
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of a high-protein diet on healthy older males. The present data
indicate that contrary to the hypothesis, a diet containing twice
the current RDA of protein, in conjunction with high fibre
intake, did not modify the gut microbiota composition nor
microbiota-derived VOC production after 10 weeks.

Overall, there was no statistically significant difference in the
composition and diversity of the faecal microbiota between
groups post-intervention. Ours was the first study to test the
effects of a high-protein diet using whole foods as a protein
source rather than supplements, while simultaneously

Fig. 5. β-Diversity. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein.

Fig. 6. Principal component (PC) analysis of volatile organic compounds. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein.
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increasing fibre intake. The present result is in accord with two
short-term dietary studies which investigated a high-protein
diet with no change in fibre intake(52,53). Beaumont et al.(52)

detected no difference in gut microbiota composition of parti-
cipants consuming for 3 weeks a daily casein or soya supple-
ment (total protein 34 and 31 % of energy and total fibre
intake 14⋅4 and 17⋅9 g/d, respectively), compared with a con-
trol group (total protein 14 % of energy and total fibre 17 g/d)
in a randomised parallel design(52). Similarly, Windey et al.(53)

observed no effect between a control diet (total protein 15
% of energy intake and total fibre 16⋅3 g/d) and a high-protein
diet (total protein 27 % of energy intake and total fibre 15⋅4 g/
d) during 2 weeks in a randomised cross-over design(53). In
contrast, where protein intake has increased, concurrent with
a reduction in dietary fibre, significant increases in

Bacteroides(54), and reductions in butyrate-producing bacteria
including Roseburia, Eubacteria and Bifidobacterium, have been
reported(17,18,23). It is a reasonable interpretation that these
observed differences were chiefly driven by alterations in the
total malabsorbed carbohydrate, including dietary fibre, rather
than the protein intake per se. These data support dietary fibre
as a preferred fermentative substrate for microbiota(55), even in
the presence of substantial alterations in total protein intake
and therefore potential increased protein malabsorption.
The VOC detected by HS/SPME/GCMS were not differ-

ent in the 2RDA group relative to the RDA group. Protein fer-
mentation by gut microbiota can result in a variety of
compounds depending on the amino acids available. In the
RDA group we observed a decrease in indole abundance
over time, with no change in the 2RDA group. Indole is pro-
duced by a variety of microbiota species particularly from the
Bacteroides genera(56) by the fermentation of tryptophan(57), an
amino acid abundant in dairy products, red meat, eggs, fish
and poultry. Overproduction of indole can lead to increased
production of indoxyl sulphate, a uraemic toxin associated
with chronic kidney disease(58). Indole production is likely to
have decreased in the RDA group due to the decreased quan-
tity of tryptophan-rich foods in their diet. Indole did not
increase in the 2RDA group possibly due to the preferential
fermentation of fibre by gut microbiota, as indole production
in particular is inhibited in the presence of fermentable carbo-
hydrate(59). The BCFA 2-methylbutyrate, 3-methylbutyrate and

Table 3. Important features identified by ANOVA simultaneous

component analysis (ASCA) related to microbial fermentation*

VOC Leverage SPE

Indole 0⋅018 0

3-Methylbutanal 0⋅018 8⋅63 × 10−32

Butyrate, 2-methyl-, hexyl ester 0⋅014 8⋅63 × 10−32

2-Butanol 0⋅013 8⋅63 × 10−32

Butyrate, 2-methyl-, propyl ester 0⋅012 0

Butyrate, 2-methyl-, butyl ester 0⋅011 1⋅08 × 10−31

VOC, volatile organic compound; SPE, squared prediction error.

* Table includes the compounds well modelled by the main effect of time.

Fig. 7. Volatile organic compound boxplots. RDA, diet containing the RDA of protein; 2RDA, diet containing twice the RDA of protein. For the box plots: middle line is

the median, boxes represent 25th and 75th percentiles, whiskers are within 1⋅5 interquartile ranges of the lower and upper percentiles, and dots represent outliers.
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isobutyrate are exclusively derived from microbial fermenta-
tion of the branched-chain amino acids (isoleucine, leucine
and valine)(60). For this reason BCFA abundance is often
used as a biomarker for protein fermentation in the gut(53),
and increased BCFA abundance has been observed after
high protein intake(17,52). However, we did not observe an ele-
vated abundance of BCFA in the 2RDA group relative to the
RDA group, although some intermediary products of
branched-chain amino acid catabolism were changed in both
groups. 3-Methylbutanal (an oxygenated aldehyde) decreased
in both groups over time. 3-Methylbutanal is an intermediate
product of leucine degradation from Bacteroides taxa in the pro-
duction of the BCFA 3-methylbutyrate(61). In contrast, the car-
boxylic ester derivatives of the BCFA 2-methylbutyrate tended
to increase in both groups over time. However, these esters are
also common flavouring additives in foods(62) and therefore it
is uncertain if their abundance is reflective of microbial fer-
mentative activity or dietary intake.
The main SCFA (butyrate, acetate and propionate), indica-

tive measures of dietary fibre intake, were not altered despite
the increased fibre intake in both study arms. As there are
no other studies that have increased protein and fibre intake
concurrently, comparison with previous research is challen-
ging. Previous high-protein diet studies have demonstrated
that SCFA, particularly butyrate, tend to decrease after a high-
protein diet(17,18,63), but these diets were accompanied by low
fibre intake. Even a high-protein diet, without alteration in
dietary fibre, decreased faecal butyrate concentrations(52).
The present findings are interesting, as it is well documented
that increasing dietary fibre results in increased butyrate pro-
duction in particular(64), although a previous study with rats
demonstrated that there is no linear correlation between
fibre intake and SCFA production(65). Regardless, due to the
main site of production – the proximal colon – detection in
faecal samples may not be wholly indicative of SCFA abun-
dance. Additionally, SCFA are readily utilised by enterocytes
or taken up via systemic circulation. The detection of increased
SCFA in faecal samples is typically due to excessive produc-
tion(66); however, it is conceivable that metabolism of SCFA
in the elderly is altered, possibly due to changes in
SCFA-producing bacteria and decreased microbial diversity(29).
As we did not include a younger cohort in this study by way of
comparison, it is unclear if that is the case.
There was a high degree of inter-individual variation of gut

microbiota composition, which persisted through the dietary
intervention for both groups and was the predominant source
of variation in the data. The degree of inter-individual vari-
ation could have been controlled by at least two approaches.
First, using a cross-over study design reduces the variation
at baseline as each participant serves as their own control.
Although, as noted, a previous study employing a cross-over
design presented similar findings to ours(52). Second, subtle
changes may have gone undetected in the small sample size.
Indeed, a retrospective power calculation indicated that in
order to detect at least a 30 % effect, a total of ninety partici-
pants was required (forty-five per group). Elderly people are a
heterogeneous population with large variability in physiological
health, medication usage and lifestyle. This work investigated a

small healthy cohort, which may not account for variations in
gut microbial composition and metabolism in elderly accom-
panying co-morbidities or sex differences, or the frail and
institutionalised.
Impaired capacity for nutrient absorption in the gastrointes-

tinal tract may occur in the elderly; however, the literature is
conflicting on whether digestion and absorption of protein
are affected in healthy older adults(67). As reported previously
from this study, whole-body lean mass in the 2RDA group
increased relative to the RDA group(35), suggesting in part
that greater absorption accompanies increased intake.
Indeed, the primary protein sources that were increased in
the 2RDA diet were dairy and animal proteins which are highly
digestible(68). Regardless, there will be malabsorption of pro-
tein and this will be approximately proportional to the amount
of protein consumed(69,70). Therefore, it can be reasonably
expected that the metabolites from protein fermentation
should be higher in the 2RDA group relative to the RDA
group, and present in the faeces. In this study we did not
detect evidence for this in the faeces using the HS/SPME/
GCMS method, therefore future studies may warrant closer
examination of the bacterial N utilisation and/or correspond-
ing measurement of absorbed bacterial metabolites and
co-metabolites in the urine and/or plasma(71). Indeed, as
reported in a separate paper, we also observed increased con-
centrations of circulatory trimethylamine N-oxide (TMAO) in
the 2RDA group(72). TMAO is a co-metabolite, generated in
the liver after gut microbial metabolism of choline and
L-carnitine, nutrients that tend to be highest in protein-rich
foods.

Conclusion

The present results suggest that consuming a diet with twice
the RDA of protein for 10 weeks does not result in significant
differences in proteolytic microbiota or metabolites of protein
fermentation relative to the RDA of protein while achieving
the recommended daily intake for fruits and vegetables.
There was considerable inter-individual variation in both
microbiota composition and VOC, which persisted through
the intervention. Moreover, the artificial way by how every
meal was provided is not indicative of real-world situations,
although provision of protein and fibre through whole foods
remains a unique strength. This study was not powered to
detect subtle changes, therefore investigation of the interaction
of protein intake on the gut microbiota is required within a lar-
ger cohort, and inclusive of the variations in dietary quality evi-
dent in a free-living elderly population. Such studies will be
necessary to comprehensively appraise how dietary protein
has an impact on microbial composition and function in the
elderly.
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