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Networks of neurons are typically studied in the field of Criticality. However, the study of
astrocyte networks in the brain has been recently lauded to be of equal importance to that
of the neural networks. To date criticality assessments have only been performed on
networks astrocytes from healthy rats, and astrocytes from cultured dissociated
resections of intractable epilepsy. This work, for the first time, presents studies of the
critical dynamics and shape collapse of calcium waves observed in cultures of healthy
human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we
demonstrate that avalanches of spontaneous calcium waves display strong critical
dynamics, including power-laws in both the size and duration distributions. In addition,
the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of
the temporal profiles. These findings are significant as they suggest that cultured networks
of healthy human hNT astrocytes self-organize to a critical point, implying that healthy
astrocytic networks operate at a critical point to process and transmit information.
Furthermore, this work can serve as a point of reference to which other astrocyte
criticality studies can be compared.
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INTRODUCTION

Astrocytes are glial cells found in the central nervous system and were initially thought to be
primarily a passive cell responsible for the physical and chemical support of neurons (Allen and
Barres, 2009). However, contemporary work, has highlighted that astrocytes are far from being
perfunctory, rather they can respond to a host of stimuli, including neurotransmitters, frommultiple
sources such as neurons (Cornell-Bell and Fink, 1990; Scemes and Giaume, 2006). While neurons
respond to stimuli through action potentials, astrocytes are electrically inert. Instead, astrocytes
display calcium (Ca2+) based excitability (Cornell-Bell and Fink, 1990). Whereby, stimuli are
transduced into elevations in internal Ca2+ concentrations, commonly known as Ca2+ waves
(Zorec et al., 2012). Bidirectional communication between astrocytes and neurons is made
possible by the astrocytes ability to release neurotransmitters such as ATP and glutamate (Allen
and Barres, 2005; Volterra and Meldolesi, 2005; Scemes and Giaume, 2006). Astrocytes have also
been observed to strategically localise in close proximity to neuronal synapses, giving rise to the
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discovery of the tripartite synapse (Perea et al., 2009). Through
the release of active substances and their physical placement in
the brain, astrocytes are thus thought to play a role in potentiation
of neuronal synapses (Allen and Barres, 2005). In addition to
neuronal and astrocytic bidirectional signalling astrocytes form
independent networks with the ability for long distance
communication. This communication occurs through gap
junction mediated diffusion of molecules such as inositol-3-
phosphate, or extracellular release and diffusion of
neurotransmitters (Verkhratsky and Kettenmann, 1996;
Giaume and Naus, 2013). These two pathways of
communication have the ability to elicit Ca2+ waves in the
receiving astrocyte, leading to regenerative Ca2+ waves
spreading over large distances in the network. Thus, astrocytic
networks can be viewed as a network of dynamic elements where
signalling and information propagation occurs.

Criticality is a property exhibited in dynamic networks. Large
systems of interacting dynamic elements often do not display
events predicted by the analysis of each individual element. Thus,
criticality is used to link single element events to network wide
events, by proposing that it is the same identical generative
mechanisms that cause events at all scales (Bak and Chen,
1991). Events are thus scale free, a property that results in a
power-law distribution of event sizes (Bak et al., 1987). Various
dynamical systems have been analysed using this method,
including but not limited to the sizes and frequencies of
earthquakes (Leet et al., 1950) and forest fires (Drossel and
Schwabl, 1992), magnetic particle spins within magnetic
materials, in both empirical experiments and simulations
(Sethna et al., 2001), swarm sizes in groups of insects
(Attanasi et al., 2014), stock market fluctuations (Bouchaud,
2000), and failures in power grids (Carreras et al., 2000).
Systems such as magnetic particles require a parameter to be
tuned so that the system undergoes a phase transition from a
subcritical or supercritical regime to a critical state. However,
other models, such as the ‘sandpile’ model, were developed to
omit a tuning parameter and instead “self-organise” to a critical
point (Bak et al., 1987). Self-organising models led to the
hypothesis that the brain, which does not have a tuneable
parameter, is a network of neurons that are organised to a
critical state. This led to criticality research expanding to
neural networks in vitro using microelectrodes on cultured
neurons (Beggs and Plenz, 2003; Friedman et al., 2012), and
later the human brain, using functional MRI (Kitzbichler et al.,
2009), non-invasive (Thatcher et al., 2009) as well as invasive
electroencephalogram (EEG) (Meisel et al., 2012). Critical
dynamics were also identified in macaque monkeys using
chronically implanted microelectrode arrays (Petermann et al.,
2009). Later studies have looked at larger regions of the brain
using genetically encoded indicators in mice cortex (Scott et al.,
2014) and more recently in the whole brains of zebra fish
(Ponce-Alvarez et al., 2018). Non-invasive human studies
using MEG have also identified aspects of critical systems in
the human brain at rest and during tasks, suggesting these
types of dynamics arise through the network structures not
through exogenous activity (Matias et al., 2013; Shriki et al.,
2013).

Networks of neurons are typically studied in the field of
Criticality. However, the study of astrocyte networks in the
brain has been recently lauded to be of equal importance to
that of the neural networks (Giaume et al., 2010). The most
extensive study of criticality in networks of astrocytes was
performed by Jung et al in 1998 and 2001 (Jung et al., 1998,
2001). In this work astrocyte cultures, from healthy rats, and
neurological resections of intractable epilepsy in human patients,
were analysed (Jung et al., 2001). Imaging was performed by
loading the astrocyte cultures with a calcium, Ca2+, sensitive dye,
and then recording images. Using these images clusters of Ca2+

waves were identified, and the size of these clusters measured. It
was found that the distributions of these sizes followed a power-
law (Jung et al., 1998, 2001). Contemporary work has examined
Ca2+ waves inside single astrocyte cells using a similar method
and found that sizes of single cell clusters of Ca2+ waves also
follow a power-law distribution (Wu et al., 2014).

A potential reason for the lack of criticality studies in networks
of astrocytes is that neurons are electrical cells, and thus their
electrical activity is measured via electrodes which record action
potentials. Experiments with neurons enjoy the luxury of high
sampling rates and can be performed over long term experiments
providing vast quantities of multi-channel data that is ideal for
criticality analyses. Astrocytes, however, are non-electrical cells
whose main communication pathway instead is via Ca2+ waves
that carry information between cells, and so recordings must be
made through live cell imaging of Ca2+ using fluorescent imaging
modalities.While electrode recordings are conducive to long term
experiments, live cell imaging is not, due to dye photo-bleaching
and is metabolized out of the cell a process which takes around
1 h, thus limiting the imaging period. Photo-toxicity is another
limiting factor which results in damage to cells after extensive
exposure to light during the imaging process (Laissue et al., 2017).

Our group is involved in understanding the calcium
communication in networks of human hNT astrocytes (Raos
et al., 2013, 2017; Jordan et al., 2016; Li et al., 2019). Astrocytes
were commonly thought of as perfunctory cells, however, recent
evidence has demonstrated that they possess far more
functionality and complexity than was commonly thought.
Thus, our motivation, is to examine if networks of human
astrocytes using criticality to further demonstrate the complex
functionality of such cells in networks. To achieve this we
examine the criticality of astrocytes differentiated from the
human embryonal carcinoma derived NTERA2/D1 (hNT) cell
line (Pleasure et al., 1992). hNT derived astrocytes are a robust
and reliable model that have been shown to be a valid alternative
to primary human astrocytes (Haile et al., 2014), as well as
showing potential in transplant therapy post-stroke (Hara
et al., 2008), and displaying a functional neuron astrocyte
lactate shuttle system (Tarczyluk et al., 2013).

MATERIALS AND METHODS

In this section the methods used to assess criticality are explained.
Firstly Ca2+ imaging was performed, the images were then
converted to time series, then avalanches were found in the
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time-series, and finally shape collapse was assessed in the
avalanches.

Cell Culture, Cell Labelling and Imaging
hNT astrocytes were grown according to previously described
protocols (Pleasure et al., 1992; Unsworth et al., 2011). Initially
Human hNT precursor cells were cultured in a petri dish in
DMEM:F-12 (Gibco, Cat# 11330032) supplemented with 10%
fetal bovine serum (FBS) and 10 µm retinoic acid. The cells were
replated with fresh media every 2–3 days for 14 days. They were
then transferred to T-75 flasks and the media changed every
2–3 days for 10 days. At this point cells with neural morphology
were harvested via select trypsinization. The remaining cells
were replated into a T-75 flask and cultured with DMEM:F-12
supplemented with 5% FBS, and the mitotic inhibitors uridine
(Urd), 5-fluoro-2′-deoxyuridine (FUdR) and β-D-
arabinofuranoside (AraC) for 5 weeks Urd at a concentration
of 10 μM was applied to the precursor cells from day 31 until
astrocytes were harvested on day 61. FUdR was applied from
day 31 until day 55, initially at a concentration of 10 μM
between days 31 and 41 and then at 5 μM from day 41 until
day 55. AraC was applied at a concentration of 1 μM between
days 31 and 41. On day 61, hNT astrocytes were harvested with
0.05% trypsin. All cell incubation was performed at 37°C and
5% CO2.

In order to image the astrocytes they were seeded onto
35 mm Petri dishes. This was done by first adhering a small
hollow cylindrical PDMS structure, area of approximately
50 mm2 into the middle of the Petri dish to reduce the
seeding area. 200 µL of cell suspension was then added to
the PDMS structure. The cell suspension was produced by
centrifuging astrocytes in a falcon tube at 300 × g, removing
the supernatant, and adding 1 ml DMEM:F-12 to the Falcon
tube. Cell density in this suspension was then calculated by cell
counting, the density was the diluted to the required density for
seeding. The seeding density was 20,000 cells per PDMS
structure, the same as the astrocyte density upon astrocyte
harvest. These were then incubated overnight to allow the
cells to adhere. The following day the PDMS structures were
carefully removed and the petri dishes filled with 2.5 ml of
media, and then incubated overnight and imaged the next day.

To enable live cell imaging of Ca2+, astrocytes were
incubated with 1 µm Fluo-4 AM (Invitrogen, Cat#F14201)
dye for 30 min in the cell culture incubator. The astrocytes
were then rinsed with FluoroBrite (Gibco, Cat#A1896701)
supplemented with 5% FBS twice. 6 ml of the supplemented
FluoroBrite media was then added to Petri dishes which were
then placed in the incubator for 15 min to allow the astrocytes
to settle.

Petri dishes were then transferred to the microscope incubator
and imaged using an Olympus BX53 upright microscope at 10×
magnification. Recordings were made for 40 min with 4 × 4 pixel
binning. In order to reduce photo bleaching an image was
captured every 2 s, each image had an exposure time of
0.640 s. For the remaining 1.36 s the illumination shutter was
closed. The resulting image stack was 480 × 640 pixels with 1201
images.

Image and Signal Preprocessing
Astrocytes were identified using a maximum intensity z
projection of each image stack, this produces an image where
each pixel contains the maximum value over all images in the
stack for each pixel location. From this image astrocytes were
manually labelled as a region of interest (ROI). The coordinates of
each ROI determined, and the mean pixel intensity for each ROI
in all images in the stack was calculated, giving a time-series that
has 1201 columns and the number of rows equal to the number of
ROIs. This time-series recorded information on changes in Ca2+

within the imaged astrocytes.
The ROI coordinates and time-series were processed and

analysed using the Matlab© computing environment. The
time-series were filtered, normalized and baseline corrected
using the method of (Jia et al., 2011). In order to perform
avalanche analysis, the time-series was first made binary. This
was performed by estimating the noise in each ROI time series
and thresholding the signal at a value of 3σnoise, where σnoise is the
standard deviation on the estimated noise (Romano et al., 2017).

Avalanche Analysis
Avalanche analysis was performed using a similar method to the
spatiotemporal cube method which was first used by (Jung et al.,
1998) in astrocyte networks. This method works by stacking
frames and when an astrocyte is active, namely binary high in its
time-series, its ROI in the corresponding frame reflects this. The
result is similar to the captured image stack but the fluorescent
information has now been made binary. ROIs used in the
spatiotemporal cube were also dilated so that neighbouring
astrocytes overlapped. Dilation was performed using a circular
structuring element with a radius equal to the average distance to
the nearest six neighbouring cells, this is similar to recent
methods which produced a square around each cell with side
length equal to the average distance to the nearest six cells (Gosak
et al., 2017).

Within the spatiotemporal cube, there could exist overlapping
active cells, both spatially and temporally. It was these
overlapping cells that were then joined together to form a
volume within the spatiotemporal cube, this volume was
defined as an avalanche (Jung et al., 1998; Gosak et al., 2017).
The temporal size of the avalanche was defined as the number of
active cells that spatially overlapped at each time point. An
avalanche was defined to end when there were no active cells
that could be joined to the volume in the subsequent temporal
frame. If there were two or more avalanches which were separate
but then collided these were combined into a single avalanche, as
has been done in avalanche analysis of astrocytes (Jung et al.,
2001) and beta cells (Gosak et al., 2017). Avalanche size was then
defined as the sum of the temporal size (i.e. the number of cell
active in an avalanche at each distinct time point within that
avalanche) over the duration of the avalanche. The duration was
defined as the time between the initiation and end of an
avalanche.

Power-Law Fitting
Both the size and duration distributions were fit using a
‘maximum likelihood estimation’ (MLE) based method. MLE
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gives better fits to power-law distributed data than least squares
fits and is widely used in this type of analysis (Goldstein et al.,
2004; Bauke, 2007; Clauset et al., 2009; Klaus et al., 2011).

The generic power-law probability density function (PDF) was
given by Eq. 1.

p(x) � Cx−α (1)
Where, C was a normalization constant so that
P(x) � ∫∞

−∞p(x) � 1. As size and duration can never be
negative x> 0. Additionally, the pdf diverged as x → 0 so
there existed a lower bound, x≥ xmin, to this model. There can
also be an upper bound x≤xmax. This upper bound could be
either the experiment duration, or the size of the network being
studied. Knowing these bounds allowed for the determination of
C, which was given by Eq. 2.

C � α − 1
x1−α
min − x1−α

max

(2)

The estimation of xmin follows a similar method to (Clauset et al.,
2009; Deluca and Corral, 2013) where the distribution data was
truncated for different values of xmin. Each truncated data set was
then fit with the power-law distributionmodel using theMLE and
the Kuiper’s statistic was calculated.

Next, goodness-of-fit was assessed using amethod put forward
by Lilliefors for exponential and normal distributions (Lilliefors,
1967, 1969) which was later adapted to the power-law
distribution by Goldstein et al (Goldstein et al., 2004), and has
been widely used (Clauset et al., 2009; Deluca and Corral, 2013;
Alstott et al., 2014). This involved first fitting the power-law
model and calculating the Kuiper’s statistic for that fit. Using the
parameter estimated from the power-law model a large number
of synthetic power-law distributions were generated. These
synthetic distributions were then fit and the Kuiper’s statistic
for each distribution was calculated. The fraction of synthetic fits
with a Kuiper’s statistic greater than the Kuiper’s statistic from
the empirical data produces a p-value which was a measure of
how good the power-law fit was. The critical p-value used in this
analysis was pc = 0.1, a fit with a p-value less that pc was deemed
to fail the goodness-of-fit test. The power law was fitted across all
the data greater than xmin and all the scaling regions for the
following reasons. The number of datapoints that exist in the
lower scaling region (low duration and size) was found to be
sufficient to provide a good approximation to the power-law.
Whereas the number of datapoints in the higher scaling region
(high duration and size) was fewer making for a poorer
approximation of the data to a power-law. Thus, by
maximising the data used and fitting across the whole
distribution would help to minimise any error in the system.

Finally, from the power-law fits that passed the goodness-of-fit
test the smallest xmin was selected. A similar method, was then
used to find xmax, however xmax was found to have less impact on
the MLE estimation of α, and so xmax was set to the largest
observed value in the distribution. Simulated data was generated
using the transformation method (Press et al., 2007).

An estimate in the uncertainty in the lower bound of the
scaling region can be calculated. This was performed through

bootstrapping by drawing a uniform random sample of n points
from the original data, fitting this using the previously described
methods, and finally estimating xmin and calculating the standard
deviation in the estimate of xmin across a number of
bootstrapping repetitions (in this work 1000 repetitions was
used) (Clauset et al., 2009).

Model Comparison
Along with the power-law model there were other heavy tailed
distributions that could be used to fit the avalanche data.
Alternate models assessed were the lognormal, gamma,
exponent, and generalized pareto distributions. Each of the
distributions were fit to the data then compared to the power-
lawmodel and the model with the most evidence in its favour was
selected as the model, Akaike information criterion (AIC) was
used for this selection process (Akaike, 1973). A finite sample size
corrected variant of AIC was used, called AICc. This formulation
adjusts for the ratio of sample size to the number of model
parameter (Burnham and Anderson, 2002). The equations for
AIC and AICc are given in Eqs 3, 4 respectively. Where, L(θ̂) is
the maximum likelihood estimation of a particular model, K is
the number parameters in the model, and n is the sample size
used to fit the model.

AIC � −2 log(L(θ̂)) + 2K (3)
AICc � −2 log(L(θ̂)) + 2K + 2K(K + 1)

n −K − 1
(4)

From the calculation of a set of AICc values the AICc differences
can be calculated as given by Eq. 5.

Δi � AICci − AICcmin (5)
Here, Δi was a measure of the empirical support for model i, and
AICcmin was the smallest AICc value from the set of candidate
models. From the Δi values Akaike weights, wi, could be
calculated as given by Eq. 6.

wi �
exp(−1

2Δi)
∑R

r�1 exp(−1
2Δr) (6)

These weights could be viewed as the weight of evidence in
favour of a model being the actual model given one of the models
in a set of models must be the best model (Burnham and
Anderson, 2002; Wagenmakers and Farrell, 2004). There are
limitations of this type of model comparison. The first was
that it measures which model in a set of models was the most
likely to produce the data, and so all models which may produce
the data must be in that set, additionally models must be fit to the
same data set.

Shape Collapse
In order to assess shape collapse in avalanche temporal profiles the
average shape for each duration, S(T), was calculated. Each average
temporal profile was then normalized using the maximum value of
the temporal profiles and the standard deviation of each individual
profile. From these normalized profiles the variance was the variable
that was minimized by Eq. 7.
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Minf(a), where f(a) � var(〈SN〉( tT)T
−(b−1)) (7)

Where, SN( t
T) was the average normalized temporal profile of

avalanches of duration T, normalized to duration 1, and b is the
shape collapse exponent. This method produced similar results to
the method which uses the span of the average temporal profiles
to the normalize (Marshall et al., 2016). In order for a temporal
profile to be considered in the shape collapse it needed have T> 3,
as well as there being at least three realizations of the duration.
Previously, temporal profiles with fewer than 20 realizations were

removed, however, due to the type of data recorded from
astrocytes this was not possible and so a lower threshold was
used (Marshall et al., 2016).

Additionally, the distribution of ∫T

0
S(T)dT was calculated

resulting in the average size given a duration distribution,
which according to criticality theory should obey a power-
law ∫T

0
S(T)dT ~ T

1
σ]z. As this was not a probability

distribution but a scaling relationship the MLE method
cannot be used and instead a least squares fit was used to
estimate the exponent.

FIGURE 1 | Plots of a typical time-series recording. (A) shows a raster plot of a typical network over the full recording period. (B) is a time-series of a typical cells
showing Ca2+ waves, there are regular transients of different shapes and frequencies displayed. (C) is an image sequence showing a typical avalanche, the avalanche is
initiated in a single cell with the Ca2+ wave spreading and activating further afield cells. The avalanche ends when the initial cells become inactive and the wave no longer
spreads. This same avalanche is displayed as a heatmap in (D), where cell index relates to cells sorted by distance from the initial point of the avalanche, and as a 3D
plot in (E).
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RESULTS

The avalanche data recorded resulted in two data distributions,
duration and size, for each of the six analysed networks. In order
to analyse if astrocyte networks exhibited criticality they were first
fit with multiple competing models to see if the evidence
suggested a power-law model was the most likely model. Next
the critical exponents from the power-law models were
calculated. Finally, another aspect of criticality, shape collapse
was assessed in the temporal profiles of the avalanches.

Viability of Networks
To assess the viability of the imaged networks the number of cells
and the number of active cells which showed a Ca2+ transient
were counted. On average there was 254 ± 42 cells per network, of
these cells the majority displayed Ca2+ transients, with the
maximum number of inactive cells in one network being 7, an
inactive cell was defined as a cell which did not display any Ca2+

waves. Shown in Figure 1 is a raster plot of a network, Figure 1A,
as well as a time series of showing regular Ca2+ waves from
multiple cells, Figure 1B. Figure 1C displays an avalanche as an
image sequence, as well as a heatmap, Figure 1D. This same
avalanche is displayed in Figure 1E as a 3D plot. This same
avalanche is displayed in Figure 1E as a 3D plot. A typical
avalanche starts when one or more cells become active, this
produces a Ca2+ wave, which is then transmitted to the
nearest neighbours of the initiating cell. Further afield cells are
then also activated with the avalanche front propagating away
from the initiating cell. The avalanche ends when the initiating
cell, and then its neighbours, become deactivated and the
propagating front dies out.

Distribution of Best Fit
For all six data sets, both duration and size, a scaling range was
identified within which the evidence was in favour of the data
being drawn from a power-law distribution, given that one of the
considered models was the AICC best model. The lower bound on
the duration data scaling range across all data sets was found to be
21.4 ± 6.6 s, for the size data this was 10.3 ± 6.8 cells. Below this
lower bound the model with the most AICC evidence was the
lognormal for both duration and size distributions and all data
sets. At and above the lower bound of the power-law range the
AICC evidence for a power-law was high, as most data sets had
w1 ≫w2 (where w1 corresponded to the model with the largest
Akaike weight). Network 6 duration distribution was found to
have w1 = 0.613 (corresponding to the power-law), and w2 =
0.387. While the difference in Akaike weights was closer than
other networks, the power-lawmodel was found to be 0.613/0.387
≈ 1.6 times more likely in terms of its AICC discrepancy than the
second most likely model, a lognormal model in this example
(Wagenmakers and Farrell, 2004). Additionally, increasing the
minimum duration by 2 s above this lower bound resulted in the
evidence for a power-law becoming much higher with w1 ≈ 1.

Although, at this lower bound, the best considered model was
the power-law the fit of the model was not satisfactory according
to the goodness-of-fit test so a smaller scaling region needed to be
considered. Within this smaller scaling region there are multiple

fits and one needed to be chosen according to a set of criteria. The
chosen criteria was to select the model that was fit to the smallest
xmin (largest number of data points), given that p>pc (pc = 0.1).
Other criteria could be used, such as the smallest Kuiper’s
statistic, or a combination of Kuiper’s statistic and the number
of data points. These were explored and were found not to affect
the results in a significant manner. It was found that of both the
duration and size distributions across the six networks, all
duration and size distributions produced p values larger than
pc. The models which passed the goodness-of-fit test were
analysed and the lower bound for the duration data was
39.3 ± 8.4 s, and 24.5 ± 8.2 cells for the size data. The average
number of avalanches that were fitted in the duration data was
186 ± 43, and 271 ± 30 for the size data. The final duration and
size distributions that were fit are shown in Figures 2A,B
respectively. These appear as linear lines in a log-log plot,
which is expected from a power-law. Two distinct scaling
regions might exist in the data, as can be observed in
Figure 3. However, the number of datapoints that exist in the
lower scaling region (low duration and size) is sufficient for a
good approximation to be made to the power-law. Whereas the
number of datapoints in the higher scaling region (high duration
and size) is fewer making for a poorer approximation of the data
to a power-law.

Figure 2, shows that most networks display one large
avalanche that corresponds to that networks longest avalanche.
Hence, for the largest avalanche, with a size of around 70,000 and
duration of 1560 s, on average only 45 cells must be active at each
time point, far below the average network size. This was observed
by (Jung et al., 2001) in their intracellular calcium wave model of
astrocytes: “There is one dominating huge cluster that forms the
backbone of the temporal evolution of the array. Such a mother
cluster is typical for systems above propagation threshold and
small to moderate noise.” (Jung et al., 2001).

Power-Law Exponents
Table 1 shows the scaling exponents of the best fit power-law
model. Averaging across all networks it was found that for the
duration distributions α = 2.80 ± 0.19 where P(T) ~ T−α, and for
the size distributions τ = 2.06 ± 0.07, where P(S) ~ S−τ . Figure 2,
shows the mean power-law fit to both the duration and size
distribution data sets.

The other exponent of interest from the duration and size data
is the exponent from the average size of a given duration data,
S(T) ~ T

1
σ]z. Across all networks the average value was found to be

1
σ]z = 1.75 ± 0.09. Additionally, the scaling relation α−1

τ−1 � 1
σ]z

should be obeyed when a system is critical. Thus, an
additional value could be defined as q � σ]z(α−1)

(τ−1) , which if the
scaling relations were correct would be equal to unity (Ponce-
Alvarez et al., 2018). Across all networks the mean value of q =
1.03 ± 0.11, and networks 1 and 2 were found to have values of q
the most different from unity. Figure 3 is a plot of the exponents
from all six networks. Mean exponent values for both the size (τ)
and duration (α) distributions, as well as the size given duration
exponent (1σvz) are closely approximate to those of a simulated
3D Isiing model subjected to an external driving force (Perković
et al., 1995). Thus, the universality class of an astrocyte network is
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approximated by the 3D Isiing model of Perkovic et al (Perković
et al., 1995). In the table N.A. means the value is not applicable to
model and * means that the value was not available in (Perković
et al., 1995) but is the theoretical value.

The Deviation from the Criticality Co-efficient (DCC) of (Ma
et al., 2019) is defined as:

DCC �
∣∣∣∣∣∣∣
α − 1
τ − 1

− 1
σ]z

∣∣∣∣∣∣∣ (8)

It was observed that the mean DCC was below the threshold =
0.2 of Ma et al, with only one network existing above this
threshold. DCC values for all networks are presented in Table 1.

Shape Collapse of Avalanches
Another aspect of critical systems is that the temporal profile of
avalanches will, under the correct renormalization, collapse down
to a single universal scaling function. This is shown
mathematically as S(t, T) � Tb−1S(t/T), where S(t/T) is the

FIGURE 2 |Duration and size distributions in all networks. (A) shows the duration distributions, the dashed line is a perfect power-law with exponent 2.8. (B) shows
the size distributions, the dashed line is a perfect power-law with exponent 2.06. (C,D) are semilog (log y, linear x) plots of the initial parts of both distributions. Network 1
(o), network 2 (x), network 3 (+), network 4 (□), network 5 (▽), and network 6 (◇).

FIGURE 3 | Plots for each individual exponent across all six hNT astrocyte networks. (A) Duration distribution exponents (α). (B) Size distribution exponent (τ). (C)
Shape collapse exponent (B). (D) The Scaling relation (q � σνz(α−1)

(τ−1) ). (Error bars represent the standard deviation in the estimate).
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universal scaling function (Sethna et al., 2001). Additionally, this
scaling exponent is related to the exponent of the average size of a
given duration distribution, b � 1

σ]z, and so a system at criticality
should obey this relationship (Sethna et al., 2001; Friedman et al.,
2012).

The shape collapse of all networks is shown in Figure 4. All
networks show a similar universal shape, close to that of a
parabola. Shape collapse can also fail, which means there was
no exponent within the examined range that collapsed the
avalanches, this did not occur in any of the examined
networks. Shape collapse reduced normalised variance in all
networks excluding network 3, which produced a shape
collapse exponent of 1.13, but showed almost no change in
normalised variance, Figure 5A. Currently there is no widely
used metric for assessing the quality of shape collapse. One metric
suggested is the normalized mean squared error (NMSE) of
height-normalized individual profiles to the combined
normalized average of all collapsed profiles as defined in
(Miller et al., 2019). All of the collapsed profiles were below
the threshold of NMSE = 1 given in Miller et al. Shown in
Figure 5B is the agreement between the size given duration and
shape collapse exponents, in an ideal system these are equal.

DISCUSSION

This research has shown that cultures of human hNT astrocytes
do exhibit aspects of criticality. In order to assess if these cells
displayed criticality they were grown into networks and the Ca2+

waves they displayed were recorded. Avalanche analysis was then
applied in a similar way to the methods used to assess criticality in
recordings of neurons.

Many recent studies have found power-law scaling of
avalanche size and duration distributions, one aspect of
criticality, in biological recordings. However, questions have
been raised as to whether the data purported to being power-
law does indeed have statistical support necessary to make this
claim, or if another heavy tailed distribution, e.g. lognormal, fit
the data better (Clauset et al., 2009; Stumpf and Porter, 2012). All
networks assessed here showed scaling regions that were,
according to AIC, most likely generated by a power-law process.

It should be noted that this study is not involved with the
measurement of the criticality of neurons but rather astrocytes
where the recording modalities are also different. In the only two

criticality articles on astrocytes, exponential cut-offs were not
reported (Jung et al., 1998; Wu et al., 2014). Similarly, in this
human astrocyte work exponential cut-offs were not observed.
This could imply three things either the imaging modality that
can only be used to observe the Ca2+ communication in astrocytes
does not permit cut-offs to be observed or in fact astrocyte
behaviour does not exhibit cut-off in general. In addition,
exponential cut-offs have been reported to become less
pronounced in spatial-temporal measures of neurons that were
acquired using imaging (Tagliazucchi et al., 2012; Ponce-Alvarez
et al., 2018). This work is also spatial-temporal and thus could
also be affected in such a manner. Thus, we hypothesise that the
resulting nature of all three of these factors (using astrocytes
rather than neurons, imaging under calcium fluorescence rather
than long-term electrical recordings and spatial-temporal
measurements rather than temporal measurements) would
present a lower likelihood to observe an exponential cut-off.

Previous criticality analysis performed on astrocytes used a
different definition of an avalanche, where instead of cells used in
the formation of avalanches the pixels of the image were as
demonstrated in criticality studies of astrocytes (Jung et al., 1998).
This has the effect of combining both intracellular and
intercellular Ca2+ waves into one data set. Using this
definition, resulted in a larger number of avalanches being
recorded as individual cells can create avalanches, whereas, in
this analysis more than one cell was required. Under the
definitions using pixels a shorter recording time (50 s) could
be used while still producing sufficient data for the analysis. More
recent studies of criticality in systems requiring Ca2+ imaging,
such as beta cells, and cardiac myocytes employ the avalanche
definition used in this work (Nivala et al., 2012; Gosak et al.,
2017). Additionally, in the previous work on astrocyte network
criticality only a size distribution with an exponent of 2.2 ± 0.2
was reported (Jung et al., 1998), compared to 2.06 ± 0.07 for the
size distribution, and 2.80 ± 0.19 for the duration distribution
calculated in this work. Other size exponents calculated for
biological systems were 2.01 for whole brain recordings of
zebra fish (using Ca2+ imaging), 1.92 for beta cells, and 1.5 for
a neurons both in dissociated brain slices and neuronal cultures
from a variety of species (Beggs and Plenz, 2003; Mazzoni et al.,
2007; Pasquale et al., 2008; Klaus et al., 2011; Friedman et al.,
2012; Hahn et al., 2017; Ponce-Alvarez et al., 2018). This variation
could be explained by the differing definitions of an avalanche
depending on the data acquisition method. Neuronal data are

TABLE 1 | Table of exponents calculated from analysed networks.

ID α Tmin Tmax Nα τ Smin Smax Nτ
1
σνz q b DCC NMSE

1 2.51 ± 0.12 40 ± 12 s 1052 s 223 2.07 ± 0.07 29 ± 10 13363 248 1.66 1.18 1.39 0.25 0.43
2 2.64 ± 0.13 42 ± 16 s 650 s 215 2.10 ± 0.07 27 ± 8 13144 265 1.69 1.13 1.69 0.19 0.52
3 3.01 ± 0.18 54 ± 6 s 1216 s 151 2.17 ± 0.07 36 ± 14 26757 329 1.85 1.08 1.13 0.14 0.26
4 2.78 ± 0.12 34 ± 8 s 1658 s 237 2.00 ± 0.06 24 ± 14 40365 269 1.66 0.93 1.52 0.12 0.37
5 2.92 ± 0.17 36 ± 9 s 1560 s 139 2.04 ± 0.07 18 ± 7 71297 245 1.77 0.96 1.91 0.08 0.23
6 2.95 ± 0.16 30 ± 7 s 1622 s 152 1.98 ± 0.06 13 ± 6 62584 270 1.84 0.93 1.64 0.14 0.32
mean 2.80 39.3 s 1293 s 186 2.06 24.5 37918 271 1.75 1.03 1.54 0.16 0.36
σmean 0.19 8.4 s 397 s 43 0.07 8.2 24778 30 0.09 0.11 0.27 0.06 0.11
3D Ising (Perković et al., 1995) 2.81 ± 0.11 N.A. N.A. N.A. 2.03 ± 0.03 N.A. N.A. N.A. 1.75 1 1.75* N.A. N.A.
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generally recorded from via electrodes and so an avalanche is a
series of subsequent activations of electrodes. Models which
capture critical dynamics have also been used to calculate the

expected exponent value for certain universality classes. The most
common example of these is the mean field size exponent of 1.5
which has been derived analytically (Sethna et al., 1993).

FIGURE 4 | Shape collapse of all networks analysed. The top row of images corresponds to network 1, with the subsequent rows corresponding to subsequent
networks. All networks show a universal shape similar to a parabola, although the shape has a slight left skew. Network 3, third row, shows the poorest shape collapse.
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Mean field theory also predicts a duration distribution
exponent of 2, which is found also in electrode recordings of
neurons (Beggs and Plenz, 2003; Friedman et al., 2012; Ponce-
Alvarez et al., 2018). However, simply calculating distribution
exponents of similar value is thought to not be enough evidence to
claim a system is at a critical point (Beggs and Timme, 2012;
Hesse and Gross, 2014). This is because all systems of the same
universality class should have the same exponents as well as the
same universal function, which in the mean field theory is a
perfectly inverted parabola (Sethna et al., 2006). In the case of
human hNT astrocyte avalanches, the universal function is not a
parabola as it rises to the maximum faster than it decreases, and
so mean field theory may not be the universality class that best
describes the type of criticality found in these cells. Astrocytes
being of a different universality class to neurons is not unexpected
as they rely on different communication pathways. Notably
astrocytes display communication intracellularly, via gap
junctions, and extracellularly through ATP neurotransmitter
release. Implications of this are that one astrocyte may release
neurotransmitter that activated neighbouring as well as distant
cells. Extracellular stimulation may also elicit a different cellular
response than intracellular stimulation, whereas neurons will
always undergo an action potential when stimulated.

When a critical system is subject to an external driving force
that is time dependent, the predicted values of the critical
exponents change. In the case of a zero temperature random
field Ising model this moves the size distribution exponent from
1.60 to 2.03 in a 3D model (Perković et al., 1999). In these
experiments, the astrocytes imaged were embedded in a larger
network of astrocytes which could not be imaged. Cells in this
larger network could be thought of as an external driving force
which may alter in time as they undergo Ca2+ waves. The size
distribution exponent found in networks of hNT astrocytes is
2.06 which is in agreement with the zero temperature random
field Ising model. In criticality research, the Ising model is
typically used as a comparison rather than a definitive solution
as it provides striking similarities between brain dynamics and the
dynamics emerging from the Ising model at a critical temperature
(Fraiman et al., 2009).

Shape collapse in the temporal profiles of avalanches is
stronger evidence of a systems criticality than power-law
exponents, as power-laws can be found in non-critical data
(Stumpf and Porter, 2012). This has not been shown in
networks of astrocytes previously. The ability to describe
avalanche evolution across all size and duration scales using a
universal function is a key component of critical networks
(Sethna et al., 2001, 2006). While power-law exponents are
regularly calculated for biological data finding shape collapse is
less common. Universal functions found through shape collapse
have been found in multiple types neuronal data. Cultured
cortical slices of rat which were recorded from using electrode
array where found to display shape collapse in avalanches in two
out of ten cultures (Friedman et al., 2012). Shape collapse was also
found in live imaging of zebra fish, using Ca2+, neuronal data
(Ponce-Alvarez et al., 2018). More recent work using implanted
microelectrodes in macaque monkeys found avalanches with
signature parabolic profiles that could be collapsed to a single
shape, and that filtration of certain neuron oscillations eliminated
the signature relationships found in critical systems (Miller et al.,
2019). Suggesting that neuron oscillations are embedded within
avalanches found in networks of neurons (Gireesh and Dietmar,
2008; Lombardi et al., 2014). Additionally shape collapse is found
in a wide variety of simulated models and non-biological
experiments (Sethna et al., 2006).

Another aspect of criticality is the agreement of the exponents
in the exponent relations, represented by the value of q, and
closeness of b and 1

σ]z. All networks have values of q that are close
to unity. However the agreement between b and 1

σ]z varies across
networks.

The only criticality analysis that has been performed on
cultures of human astrocytes, and that is most comparable to
this work is the work by (Jung et al., 1998). Jung et al used
astrocytes cultured from human epileptic foci, whereas this work
has employed the hNT astrocyte which was not epileptic.
Additionally, (Jung et al., 1998) recorded the cultured cells for
50 s, using images of 10,000 pixels. This work extended on these
recordings and used image sequences of 40 min, with images of
over 300,000 pixels. Another area where this work builds on (Jung

FIGURE 5 | (A) Plot showing the variance of the avalanche temporal profiles before (•), and after collapse (o). Single arrow shows how the behaviour before
collapse does actually tend to lower values after collapse which is to be expected in a critical system (Sethna et al., 2001). Network 3, shows a very small decrease in
variance after collapse, although its starting variance is low compared to the other networks. (B) Plot showing distance between the shape collapse exponent (B) (□) and
size given duration exponent ( 1

σνz) (△). Double arrows highlight the closeness in proximity that exists in these real-world astrocyte networks which is expected in an
ideal critical system to be equal. Network 2, shows very close agreement between the two exponents.
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et al., 1998) is in the fitting a validation of the power-law fit.
Robust methods for analysing this type of distribution were not
used until much later, and as such are missing from the work of
(Jung et al., 1998).

Demonstrating that networks of human hNT astrocytes can
display aspects of criticality is important as critical systems
provide certain benefits, especially for system that process
information (Muñoz, 2018). These include the dynamical
range of the system’s ability to respond to a stimuli, as a
supercritical system will respond to all stimuli by undergoing
a response spanning all elements in the network, and a subcritical
system can not produce a large response. Information
transmission over the network is also enhanced, as well as
long range correlations allowing coordination across the entire
network (Shew and Plenz, 2013). Networks of neurons in vitro, in
cortex slices, and in vivo demonstrated these benefits whereby the
networks ability to respond to a range of stimuli and its ability to
store and transmit information where reduced as the network was
tuned, through application of drugs, further away from the
critical point (Shew et al., 2009, 2011). Many of these benefits
are thought to be broken down in certain diseases with epileptic
networks being a model that has been studied (Hobbs et al., 2010;
Meisel et al., 2012).

A wide variety of evoked and non-evoked astrocytic calcium
waves have been observed in vitro, in situ, and in vivo
experimental work. Non-evoked Ca2+ waves have been
observed in vitro, in vivo, and in situ for astrocytes. In
vitro, cultured primary mouse astrocytes have be observed
to exhibit distinct oscillatory Ca2+ waves with durations ~30 s
(Lee et al., 2014) waves of approximately the same duration
have also been previously observed in human hNT astrocytes
(Hill et al., 2012). In vivo, imaging of cortical astrocytes in rats
were found to display oscillatory Ca2+ waves with slow rise
times separated by plateaus of durations ~19 s (Nimmerjahn
et al., 2004), other rat in vivo studies identified similar Ca2+

waves, which were termed as spikes, with an average duration
of 25 s (Hirase et al., 2004). Similar Ca2+ waves were also
observed in rat hippocampal astrocytes (Kuga et al., 2011). In
situ, Ca2+ waves of astrocytes from rat ventrobasal thalamus
slices have been reported with a half-maximal duration of 15 s
(corresponding to durations ~30–40 s), (Parri et al., 2001).
Evoked Ca2+ waves of astrocytes in vitro, in vivo, and in situ
have also been studied with distinct forms of Ca2+ waves
occurring in response to different stimuli (Khakh and
McCarthy, 2015). In vitro, ATP, glutamate and mechanical
stimulation of primary rat astrocytes have been observed to
evoke oscillatory Ca2+ waves with durations ~ 7–12 s which
were found to increase over in time after stimulus to between
30 and 45 s (Cornell-Bell and Fink, 1990; Charles et al., 1991;
Guthrie et al., 1999). These same stimuli were found to elicit
similar responses in human brain slices with ATP and
glutamate evoked Ca2+ waves being between 20–30 s in
duration (Oberheim et al., 2009). In vivo, localised Ca2+

waves with durations in the range of 9–36 s were reported
in mouse cortical astrocytes after evoking whisker stimulation
(Wang et al., 2006). Startling as well as adrenergic agonist
application has also been show to evoke wider spread Ca2+

signalling with durations in the range of 10–20 s depending on
the stimulus (Ding et al., 2013). It should be noted that whilst
these studies have only been concerned with the mechanisms
of calcium wave signal generation/propagation the Ca2+ wave
duration is similar to the range that we observe here in human
hNT astrocytes. This is interesting in itself as these studies
span in vitro, in vivo, in situ, for evoked, non-evoked and
intracellular and extracellular Ca2+ waves. Unfortunately,
these studies have not been concerned with criticality and
have thus not measured avalanche behaviour in order to
estimate critical exponents. However, whilst only three
criticality studies, including this one, have been performed
in astrocytes (Jung et al., 1998; Wu et al., 2014) they span from
rodents to this first study in humans. Thus, it is certainly
plausible to hypothesis that avalanches most likely exist in
complicated animal networks, but it is not possible to draw
conclusions presently about criticality in these studies without
the necessary measurements being made first. Thus, criticality
studies could be used to help explain this apparent diversity
within the models in the future.

It should be noted, that the astrocyte networks in this study
were not tuned to criticality through the manipulation of a
parameter, meaning that these networks are likely self-
organized critical networks (Bak et al., 1988). Self-organization
of astrocytes is possible as the cells are grown and allowed to
network during the time between cell seeding and imaging (48 h).
Self-organization is also thought to be the mechanism by which
networks of neurons reach a critical state, thus, self-organization
may play an important role in how the brain processes
information in both the neuronal and astrocyte networks.

CONCLUSION

In this work we recorded avalanches of Ca2+ waves in cultures of
hNT astrocytes. These avalanches displayed aspects of critical
dynamics, including power-law scaling in the duration and size
distributions of avalanches, with exponents of 2.80 and 2.06
respectively. Shape collapse was shown in the temporal profiles
of avalanches, with an exponent of 1.54. Other than a brief
examination of the duration distribution in networks of
astrocytes and the distributions in single cells, this is the first
work that demonstrates characteristics of critical systems in
human hNT astrocyte networks. Acknowledging that
astrocytes are non-electrical cells and hence their activity must
be studied using fluorescent imaging which leads to limitations in
the duration of the experiment to 40 min. Our results show that
astrocyte networks display characteristics of critical systems
which is noteworthy, implying that astrocytes play a role in
information processing alongside the well-established neural
networks of the brain.
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