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Most of the therapeutic agents are designed to exert their 
pharmacological actions by modulating intracellular com-
ponents of the target cells. However, many of these agents 
particularly macromolecules such as proteins and nucleus 
acids (DNA, RNA, and CRISPR/Cas9 systems) are unable 
to enter cells via passive diffusion. In other cases, small drug 
molecules may only reach the target cells at a suboptimal 
level due to their wide and nonspecific tissue distribution. In 
this context, nanotechnologies have gained major momen-
tum as the most investigated approach to overcome the cel-
lular barriers where a large payload can be delivered into the 
cells via various endocytic pathways. Endocytosis is a com-
mon phenomenon by which extracellular nanoparticles (and 
macromolecules) gain cell entry through membrane invagi-
nations, leading to the formation of endosomes. However, a 
major bottleneck associated with this nanoparticle-mediated 
intracellular delivery approach is the sequestration of these 
particles in endosomes and later converged upon lysosomes 
where the payload may be degraded (1). In addition, the 
internalized nanoparticles trapped in the early endosome 
can be expelled (exocytosis) to the outside of the plasma 
membrane through the recycling route (2). As a result, only 
a small proportion of the drug molecules are released into 
the cytoplasm, and subsequently available to their action 
target at subcellular organelles: nucleus, mitochondria, and 
ribosomes. Therefore, cytoplasmic release through ‘endo-
some escape’ by regulating intracellular trafficking of the 
nanoparticles has been considered a key determinant of the 
efficacy of a therapeutic cargo (3, 4).

Recent advances in nanotechnology and nanoscience have 
enabled innovations in drug delivery. For example, numer-
ous pH-sensitive or redox-sensitive nanocarriers by exploit-
ing the intracellular microenvironments as endogenous 

stimuli (1, 5) have demonstrated their great potential to 
achieve cytoplasmic delivery with potentized pharmaco-
logical effects. This Special Issue themed on “Cytoplasmic 
delivery of bioactives” is dedicated to recognizing the recent 
progress in this field, bringing together researchers in drug 
delivery, bioengineering, and beyond to discuss advances 
and share their exciting findings alongside new insights into 
the topics.

Highlights of the Special Issue

The Special Issue is composed of six reviews and six origi-
nal research articles from several research groups. Some 
of the delivery strategies and applications are highlighted 
below.

Review Articles

Wu and Li analyzed the lipid nanoparticle (LNP)-mediated 
cytoplasmic delivery strategies and elaborated the state-of-
the-art nanotechnology that effectively breaks the cellular 
barriers and delivers COVID-19 messenger RNA (mRNA) 
vaccines to the target, ribosomes (6). Xu (7) offered a com-
pelling analysis of the strategies to achieve cytoplasmic 
delivery of bioactives using inorganic nanoparticles. In their 
paper, various proposed mechanisms by which nanostruc-
tures undergo endosome escape were elaborated, including 
the salt osmotic effect and gas blast effect that explicitly 
belong to inorganic nanoparticles. Butt et al. (8) thoroughly 
reviewed the current understanding of the endosomal escape 
mechanisms of nanocarriers and offered their expert opin-
ions on the design of polymeric micelles to achieve cyto-
plasmic delivery. Su and Zhang et al. (9) contributed a com-
prehensive update on the strategies to enhance cytoplasmic 
delivery of various types of bioactive molecules to immune 
cells and the cellular organelles. This included dendritic 
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cells, macrophages, neutrophils, and T cells. Remarkably, 
immune cells have become attractive delivery platforms by 
taking advantage of their instinctive nature in surveillance 
of and fighting infection, inflammation, and cancer. On the 
other hand, intracellular infection with different pathogens 
(bacteria, virus and parasite) has posed a health risk world-
wide, necessitating intracellular delivery of antimicrobials 
into the host/infected cells such as macrophages. Yeo and 
collaborators (10) conducted a timely meta-analysis of intra-
cellular delivery strategies to target the pathogens in host 
cells. The review shed light on the trend over the past dec-
ades in intracellular delivery approaches using a wide range 
of micro-and nanostructures (liposomes, micelles, nanogels, 
polymeric nanoparticles, and dendrimers) to eradicate intra-
cellular pathogens. Conversely, Pandey et al. (11) surveyed 
the recent advances in using bacteria-based systems for 
tumor-targeted drug delivery, including probiotic bacterial 
bodies (alive or ghost), and bacteria-derived ‘minicells’. 
These drug delivery vectors possess some unique advan-
tages, for example, their natural immune-stimulating abili-
ties and inherent tropism for the hypoxic tumoral cores.

Original Research Articles

Nanoscale delivery systems enter cells via divers endocytic 
pathways, depending on particle size, shape, materials, sur-
face charge, and modification. The use of a specific ligand 
for functional coating can dramatically increase the cellular 
uptake by targeted cells. Fucoidan, a polysaccharidic ligand 
for adhesion molecule P-selectin with additional anticancer 
properties, has gained attention for surface coating of nano-
particles for cancer drug delivery. In this collection, Vauthier’s 
team (12) studied the endocytic pathways of fucoidan-nano-
particles by macrophage (J774A) with aid of five endocytic 
inhibitors (chlorpromazine, genistein, cytochalasin D, methyl-
ß-cyclodextrin, and nocodazole). The research revealed the 
significant impact of the polymer density and architectures at 
the surface of nanoparticles (‘mushroom’ vs ‘brush’) and their 
interplay with the particle size and surface charge on the endo-
cytic pathways before reaching the cytosol. Bremmell and co-
workers (13) investigated two cationic polymers, a branched 
polyethyleneimine (bPEI) and a fourth-generation polyami-
doamine (PAMAM) dendrimer for their intracellular delivery 
efficiencies of small interference RNA (siRNA). The PAMAM 
dendrimer and PAMAM/siRNA complexes had a higher cell 
uptake transfection efficiency, and cytotoxicity compared 
with bPEI and bPEI/siRNA complexes, correlated with their 
interactions with an immobilized lipid membrane model. The 
two systems demonstrated different cytoplasmic distribution 
patterns. In the research work by Ma (14), dual-drug loaded 
pH-sensitive micelles were developed for effectively removing 
methicillin-resistant Staphylococcus aureus (MRSA) bacte-
rial biofilm and meanwhile promoting wound healing. The 

small size (30 nm) biocompatible micelle system was able to 
penetrate biofilm and rapidly release the encapsulated antimi-
crobial (rifampicin) in response to the acidic microenviron-
ment killing the bacteria. Meanwhile cytoplasmic delivery of 
Quercetin to epithelial cells via multiple endocytic pathways 
accelerated cell proliferation, which is crucial for wound heal-
ing. Wu and co-workers (15) reported calcium acetate enabled 
remote loading of a weakly acidic dinitrobenzamide mustard 
prodrug into pH-sensitive liposomes (PSL) (drug loading 30% 
or drug to lipid ratio almost 1:2; w/w). The cytotoxicity to 
a breast cancer cell line of PSL was 21- and 141-fold more 
potent than non-pH-sensitive liposomes and the free drug, 
respectively. For cytoplasmic delivery, the nanocarrier must 
carry an adequate payload to achieve the therapeutic effect. 
This study also demonstrated that increase the drug content 
in liposomes dramatically increased the drug cytotoxicity. In 
mice, a single treatment with PSL-SN25860 almost ablated 
all clonogenic tumor cells as observed in an ex vivo assay. 
Live cell imaging revealed the calcium ions inside PSL, but 
not in non-pH-sensitive liposomes, induced endo-lysosome 
rupture, presumably through the proton sponge effect, hence 
augmented cytosolic delivery. Lyophilization is a commonly 
used approach to enhance the shelf-life of protein drugs, 
representing a important step for their clinical application. 
Guanidinium-functionalized cationic poly(oxanorbornene)
imide (PONI-Guan) developed by Rotello’s team is an effec-
tive vector for the direct cytosolic delivery of proteins (16). 
They investigated the lyophilized protein-PONI-Guan self-
assembled nanocomposites and demonstrated direct cytosolic 
delivery of model proteins in several cell lines. The effective 
cytoplasmic delivery of the polymer-protein complex was 
also verified using an antitumor model protein in an in vitro 
cytotoxicity study. Finally, Zhang (17) drew their expertise in 
developing a novel fluorescent probe for specific imaging of 
the cytoplasmic organelle, lipid droplet (LD) in diverse cells. 
The specific LD-imaging nature was validated using the com-
mercialized LD probe and other probes for organelles (nucleus, 
lysosome, mitochondria, and peroxisome) by imaging colo-
calization analysis. Interestingly, upon light irradiation the LD 
probe generated a lethal dose of reactive oxygen species in the 
cells, suggesting its potential in LD-targeted photodynamic 
therapy. Lipid droplets are considered as intracellular storage 
for lipids and are recently recognized as vital hubs of cellu-
lar metabolism via interactions with other organelles such as 
mitochondria (18).

Cytoplasmic Delivery and Beyond

Cytoplasmic delivery is a comprehensive topic, involving 
a full understanding of interactions of the nanostructures 
with the cells including 1) endocytosis, 2) intracellular traf-
ficking, and 3) exocytosis. To date we have gained great 
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understanding of the factors that promote endocytosis of 
nanomedicine or macromolecules (19–21). By this Special 
Issue collection, despite just being the tip of the iceberg, 
we aim to gain insights into the design of biomaterials and 
nanostructures, their intracellular trafficking mechanisms as 
well as some commonly used research methodologies.

It is worth noting that cell-penetrating peptides and some 
nanostructures such as reversed micelles are international-
ized via non-endocytic uptake pathways via pore-forming 
or fusion with the cell membrane, directly transporting their 
cargos into the cytoplasm (22). In addition to the delivery 
approaches discussed in this Special Issue, dequalinium-
based liposome-like vesicles (DQAsomes) are a special 
type of nanostructures that specifically deliver bioacitve 
molecules to mitochondria (23).

Transcytosis (polarized exocytosis) has been recently 
recognized as a new paradigm for nanoparticles transported 
through the endothelial layer in the tumor blood vessel to 
the tumors (versus through the inter-endothelial gaps via the 
Enhanced Permeability and Retention effect) (24). On the 
other hand, as mentioned early, exocytosis of nanoparticles 
by the targeted cells can be a major roadblock for gene ther-
apy where cytoplasmic delivery is desirable (2). It has been 
reported that internalized mRNA-loaded lipid nanoparticles 
were re-packaged into extracellular vesicles (exosomes) 
and secreted from the recipient cells (25). Recent research 
found that the pH-sensitivity of liposomes increased cyto-
plasmic delivery and suppressed the degree of exocytosis 
of liposomes, as well as the transcytosis through an in vitro 
brain vascular endothelial monolayer model (26). Therefore, 
this Special Issue may also help open up new discussion 
avenues around these important topics.

Another important note is that while cytoplasmic deliv-
ery is considerable for many types of biological agents with 
action target in cytosol or organelles, the choice of a delivery 
strategy depends on the purpose and mode of action. For 
example, ‘endosome entrapment’ may be a preferential path-
way for some therapeutic agents, e.g. antibody-drug conju-
gate and some prodrugs that are designed to be activated by 
the lysosomal hydrolytic enzymes (27). Lysosome-targeting 
via the endocytosis pathway provides a unique opportunity 
for the effective treatment of lysosome-related diseases espe-
cially lysosomal storage disorders, and neurodegenerative 
conditions (28).

Final Remarks

Recent advancements in biotechnology have yielded an 
increasing number of therapeutic candidates including mac-
romolecules, bringing new hopes to patients with more effec-
tive treatment options. A particular example is the recent 
success of mRNA vaccines which helped to save numerous 

lives from COVID-19. This ground-breaking development 
has opened a new chapter to tackle many unmet medical 
needs using nucleic acid drugs, and protein replacement 
therapies that necessitates the use of cytoplasmic delivery.

We expect that this Special Issue will enhance our under-
standing of the factors that govern the intracellular traffick-
ing of nanomedicine and macromolecules. In addition, the 
research may shed some light on how to consolidate antican-
cer nanomedicines following the initial hype thus increas-
ing their clinical translation. There are many physical and 
biological barriers required to be circumvented to reach the 
target cells, necessitating multidisciplinary collaborative 
effect to keep improving drug delivery science and tech-
nologies. Let us be encouraged by the vision and optimisms 
of Professor Kinam Park, a giant in drug delivery research 
– ‘the future is bright’ (29).

Finally, I would like to take this opportunity to personally 
thank all authors, peer reviewers, and the journal’s editors 
for their invaluable participation.
Zimei Wu
Guest editor of Special Issue Cytoplasmic Delivery of 
Bioactives
School of Pharmacy, The University of Auckland, New 
Zealand
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