Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
THE VERTICAL FLOW CENTRIFUGAL GAS-LIQUID SEPARATOR
AND ITS APPLICATION TO THE REMOVAL OF GASES
FROM GEOTHERMAL WELLS

A Thesis submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy in Mechanical Engineering of the School of Engineering of the University of Auckland, New Zealand.

J F G KANYUA
1985
ABSTRACT

Two vertical flow centrifugal gas-liquid separators were designed, built and tested using steam-water and air-water mixtures as the two-phase fluids. The theoretical analysis of the vertical flow centrifugal gas-liquid separator and the experimental data from the model separators is given in this report.

It has been shown that the performance of the vertical flow centrifugal separator is determined by the inlet mass flow rate, vapour-phase mass fraction and the dimensions of the separator components. The important dimensions influencing the performance of the separator have been shown to be the gastube diameter, the gastube inlet diameter and the design of the vortex generator. Large gastube diameters have been shown to give high separation efficiencies. Sharp vortex generator blade exit angles have been shown to give the best performance especially with slugging inlet flow which occurs at relatively low vapour mass fractions. The distance between the vortex generator and the gastube inlet has been shown to have little effect on the separation efficiency. Improvements in the design of the vortex generator, especially the curvature of the blades and the diameter of the hub have been shown to increase both the mass flow capacity and separation efficiency, and to reduce the overall pressure drop which mainly occurs across the vortex generator. The amount of flashing caused by the vortex generator has been shown to be small. The effects of the various parameters on the separation efficiency are discussed in this report.

The vertical flow centrifugal separator has been shown to be capable of liquid separation efficiencies close to one over a wide range of inlet flow conditions. Vapour separation efficiencies in excess of 90% have been shown to be possible and higher efficiencies may be obtained when the dimensions of the separator are optimised.

The application of the vertical flow centrifugal separator to the removal of gases from geothermal wells has been inves-
tigated. A method of estimating the onset of two-phase flow in a geothermal well and hence the location of a separator has been presented. Methods for calculating the pressure drops between the separator and the wellhead have been presented. Sample calculations illustrating the effect of reservoir properties, fluid chemistry and well casing program on pressure drops have also been presented. A general discussion on vertical two-phase flow is given as a background for these calculations. The theory of vapour-liquid equilibria, and the properties of the main components of geothermal fluids have been included as appendices.

The available literature on other methods of gas removal is reviewed and a preliminary comparison of some of these other methods and the downhole separator is also presented. Recommendations for future work and other uses of the vertical flow centrifugal separator are given at the end of this report.
ACKNOWLEDGEMENTS

The author wishes to express appreciation to the following persons and organisations for their contribution to the project and in the preparation of this thesis:

To my supervisor, Associate Professor Derek Freeston, for his guidance, support, discussion and personal help during a very trying period

To David Grant-Taylor who worked with me during the first phase of the experimental work and who provided valuable discussions on the chemical aspects of the project

To Charlie Claxton, Brian Watson and Robert Earl for their assistance in fabricating and testing the air-water model separator

To the Director of the Chemistry Division (DSIR) and New Zealand Electricity Department for their financial contribution to the project

To the Geothermal Coordinator and the staff of DSIR Wairakei. Special thanks to Gordon McDowell, Kevin Brown, Harry Bijnen, Don McKay, Joan Miles, Sharon Thorne.

The financial assistance provided by the Director-General of Unesco, Geothermal Institute and Department of Mechanical Engineering of the University of Auckland, and the University of Nairobi is gratefully acknowledged.

To Nicola Hopper, Caroline Houghton-Brown and Angela Gibson for their willingness to type this thesis within such a short period.

To the staff and students of the Geothermal Institute.

The personal friendship of Malcolm and Macie Cox, Bill and Norah Regan, Nick Coad, Ian Mayhew, Ed Pak, Ashin Absar, Oscar Huysse and Grant Caldwell.
And to my mother, my brother Henry and my sister Grace for their understanding and patience.
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>NOTATION</td>
<td>viii</td>
</tr>
</tbody>
</table>

Chapter 1: INTRODUCTION

Chapter 2: THEORETICAL ANALYSIS OF THE VERTICAL FLOW CENTRIFUGAL SEPARATOR (VFCS)

2.1 Introduction
2.2 Description of the VFCS
2.3 Homogeneous Inlet Flow
2.3.1 Separation zone annulus mass balance
2.3.2 Separation zone annulus momentum balance
2.3.3 Flow in the core of the separation zone
2.3.4 Flow in the concentric flow zone
2.4 Separation at High Vapour Mass Fractions
2.5 Theoretical Separation Efficiencies
2.6 Theoretical Design of VFCS

Chapter 3: EFFECT OF CO₂ ON THE LENGTH OF SINGLE-PHASE COLUMN

3.1 General
3.2 Definition of Bubble Point
3.3 Chemical Aspects of CO₂ Release
3.4 Location of Bubble Point
3.5 Effect of NaCl Concentration
3.6 Effect of CO₂
3.7 Effect of Productivity Index
3.8 Effect of Reservoir Temperature
3.9 Effect of Diameter
<table>
<thead>
<tr>
<th>CONTENTS (Cont)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4: FLOW ABOVE THE DHS</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Vertical Two-phase Flow</td>
<td>61</td>
</tr>
<tr>
<td>4.3 Flow Pattern Maps</td>
<td>64</td>
</tr>
<tr>
<td>4.4 Pressure Drop Equations</td>
<td>66</td>
</tr>
<tr>
<td>4.5 Pressure Drop Correlations</td>
<td>70</td>
</tr>
<tr>
<td>4.6 Bilicki et al Prediction Method</td>
<td>71</td>
</tr>
<tr>
<td>4.7 Limitations of Bilicki et al Method</td>
<td>77</td>
</tr>
<tr>
<td>4.8 Flow in the Annular Conduit</td>
<td>78</td>
</tr>
<tr>
<td>4.9 Effect of Diameter on Well Performance</td>
<td>80</td>
</tr>
<tr>
<td>4.10 Flow in the Gastube</td>
<td>83</td>
</tr>
<tr>
<td>4.11 Sample Calculated Pressure Drops</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 5: OTHER METHODS OF DEGASSING GEOTHERMAL FLUIDS</td>
<td></td>
</tr>
<tr>
<td>5.1 General</td>
<td>101</td>
</tr>
<tr>
<td>5.2 Bottom Outlet Cyclone (BOC) Separator</td>
<td>101</td>
</tr>
<tr>
<td>5.3 Separation of Non-condensable Gases by Primary Flashing</td>
<td>102</td>
</tr>
<tr>
<td>5.4 Two-fluid System</td>
<td>103</td>
</tr>
<tr>
<td>5.5 Rotary Separator Turbine</td>
<td>104</td>
</tr>
<tr>
<td>5.6 Upstream Reboilers</td>
<td>105</td>
</tr>
<tr>
<td>5.7 Downhole Pumps</td>
<td>107</td>
</tr>
<tr>
<td>5.8 Gas Exhausters</td>
<td>111</td>
</tr>
<tr>
<td>5.9 Removal of Hydrogen Sulphide from Geofluids</td>
<td>112</td>
</tr>
<tr>
<td>5.10 Hydrogen Peroxide Process</td>
<td>116</td>
</tr>
<tr>
<td>5.11 EIC Process</td>
<td>116</td>
</tr>
<tr>
<td>5.12 Other H₂S Abatement Processes</td>
<td>117</td>
</tr>
<tr>
<td>5.13 Comparison of DHS and Other Gas Removal Processes</td>
<td>118</td>
</tr>
<tr>
<td>Chapter 6: EFFECT OF CO₂ ON POWER PRODUCTION</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>6.2 Single-flash Non-condensing Plant</td>
<td>125</td>
</tr>
<tr>
<td>6.3 Single-flash Condensing Plant</td>
<td>126</td>
</tr>
</tbody>
</table>
CONTENTS (Cont) PAGE

Chapter 7: EXPERIMENTAL WORK ON MODEL VFCS 138

7.1 General 138
7.2 Vortex Generators 138
7.3 Gastube Dimensions 140
7.4 Steam-water Model VFCS Tests 140
 7.4.1 Description of test rig 140
 7.4.2 Procedure 143
7.5 Air-water Model VFCS Tests 145
 7.5.1 Description of test facility 145
 7.5.2 Procedure 147
 7.5.3 Air and water metering and accuracy 148

Chapter 8: EXPERIMENTAL RESULTS 167

8.1 Steam-water Experimental Results 167
 8.1.1 Radial pressure profiles 167
 8.1.2 Vapour core pressure 168
 8.1.3 Overall axial pressure drop 168
 8.1.4 General comments on pressure drops 169
 8.1.5 Flashing in the VFCS rig 169
 8.1.6 Steam-water model VFCS efficiencies 170
8.2 Air-water Model VFCS Tests 175
 8.2.1 Effect of water mass flow rate 176
 8.2.2 Effect of vortex generator design 177
 8.2.3 Effect of location of vortex generator 177
 8.2.4 Effect of gastube dimensions 178
 8.2.5 Effect of vortex stabilizer 180

Chapter 9: CONCLUSIONS AND RECOMMENDATIONS 212

9.1 Conclusions 212
9.2 Recommendations 213
9.3 Other Uses for the VFCS 214

Appendix 1: VAPOUR-LIQUID EQUILIBRIA 216

1. Introduction 216
2. Fugacity and Henry's Law 216
3. Fugacity Coefficients and Standard States 220
4. Activity Coefficients 221
CONTENTS (Cont)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Vapour-Liquid Equilibria</td>
<td>221</td>
</tr>
<tr>
<td>6. Distribution Coefficients</td>
<td>224</td>
</tr>
<tr>
<td>7. Vapour-Liquid Gas Partitioning</td>
<td>227</td>
</tr>
<tr>
<td>Appendix 2: PROPERTIES OF CARBON DIOXIDE</td>
<td></td>
</tr>
<tr>
<td>1. General</td>
<td>233</td>
</tr>
<tr>
<td>2. (p-v-T) Correlations</td>
<td>233</td>
</tr>
<tr>
<td>3. Fugacity Coefficients</td>
<td>241</td>
</tr>
<tr>
<td>4. Enthalpy and Specific Heat</td>
<td>242</td>
</tr>
<tr>
<td>5. Entropy</td>
<td>245</td>
</tr>
<tr>
<td>6. Enthalpy of Solution</td>
<td>246</td>
</tr>
<tr>
<td>7. Henry's Law Constants</td>
<td>247</td>
</tr>
<tr>
<td>8. Distribution Coefficient A</td>
<td>248</td>
</tr>
<tr>
<td>Appendix 3: THERMODYNAMIC PROPERTIES OF SODIUM CHLORIDE SOLUTIONS</td>
<td></td>
</tr>
<tr>
<td>1. General</td>
<td>250</td>
</tr>
<tr>
<td>2. Viscosity</td>
<td>253</td>
</tr>
<tr>
<td>3. Vapour Pressure</td>
<td>255</td>
</tr>
<tr>
<td>4. Density</td>
<td>256</td>
</tr>
<tr>
<td>5. Enthalpy and Specific heat</td>
<td>260</td>
</tr>
<tr>
<td>6. Entropy</td>
<td>262</td>
</tr>
<tr>
<td>7. Properties of Pure water</td>
<td>263</td>
</tr>
<tr>
<td>7.1 Maeder et al (1981) correlations</td>
<td>263</td>
</tr>
<tr>
<td>7.2 Michaelides (1981) correlations</td>
<td>265</td>
</tr>
<tr>
<td>7.3 Other correlations</td>
<td>266</td>
</tr>
<tr>
<td>8. Summary of Correlations Used</td>
<td>267</td>
</tr>
<tr>
<td>Appendix 4: FLOW METERING FOR STEAM-WATER EXPERIMENTS</td>
<td>269</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>276</td>
</tr>
</tbody>
</table>
NOTATION

A Area
A Gas distribution coefficient defined in Appendix 1
A' Gas distribution coefficient defined in Appendix 1
A Constants in Appendix 1, 2 and 3
a Activity of a solution
a Dimension defined in Figure 4.6
a Constant in Equation 3a Appendix 2

B Constants in Appendices 2 and 3
B Variable defined in Equation 2.2
b Constant

C Constants in text
C_{GV} Ratio of mass of gas to mass of steam in a mixture
C'_{GV} Ratio of moles of gas to moles of steam in a mixture
C_{GL} Ratio of mass of gas to mass of brine in a solution
C'_{GL} Ratio of moles of gas to moles of brine in a solution
C_{GT} Ratio of total mass of gas to total brine in system
C_{SL} Ratio of NaCl to water in liquid-phase
C_{ST} Ratio of NaCl to water (substance)
C_{P} Specific heat at constant pressure
C_{V} Specific heat at constant volume

D Constants in Appendix 3
D Diameter (general)
D Gas distribution coefficient defined in Appendix 1
D_{bm} Diameter of gastube inlet
D_{C} Diameter of vapour core
D_{gt} Diameter of gastube
\(D_i \) Inside diameter of tube
\(D_o \) Outside diameter of tube
\(d_b \) Diameter of vapour bubble

E Constants in Appendix 3

F Constants in Appendix 3
\(F_c \) Centrifugal force
\(F_{cg} \) Ratio \(F_c/F_g \): g-value
\(F_g \) Gravity force
\(F_P \) Pressure force
\(F_v \) Viscous friction force
\(f \) fugacity
\(f \) Friction factor
\(f(\cdot) \) Function of \(z \) or \(r \)

G Gibbs function

G Mass flux
\(g \) Acceleration of gravity

H Total enthalpy
\(h \) Specific enthalpy
\(\Delta h^S \) Enthalpy of solution of a gas
\(\Delta h_s \) Enthalpy of mixing of \(\text{NaCl-H}_2\text{O} \) solution
\(h \) Pressure drop across orifice plate

i polynomial index

J Productivity index
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Constant</td>
</tr>
<tr>
<td>K_h</td>
<td>Henry's law constant</td>
</tr>
<tr>
<td>K_r</td>
<td>Sink or source strength</td>
</tr>
<tr>
<td>K_s</td>
<td>Slip ratio: ratio of gas to liquid velocities</td>
</tr>
<tr>
<td>K_t</td>
<td>Free vortex strength</td>
</tr>
<tr>
<td>K_{ts}, K_{sb}</td>
<td>Solid body rotation vortex strength</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>L_s</td>
<td>Length defined in Figure 4.6</td>
</tr>
<tr>
<td>l</td>
<td>length</td>
</tr>
<tr>
<td>l_s</td>
<td>length defined in Figure 4.6</td>
</tr>
<tr>
<td>M</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>M</td>
<td>Constant in Equation 18 Appendix 3</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>m</td>
<td>molality of solution</td>
</tr>
<tr>
<td>m'</td>
<td>molarity of solution</td>
</tr>
<tr>
<td>N</td>
<td>Number of moles</td>
</tr>
<tr>
<td>n</td>
<td>Constant in Chapter 2</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>Q</td>
<td>Total heat transfer rate</td>
</tr>
<tr>
<td>q, q'</td>
<td>Heat transfer rate per unit mass flow rate</td>
</tr>
<tr>
<td>R_0</td>
<td>Universal gas constant</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>R</td>
<td>Holdup, void fraction</td>
</tr>
</tbody>
</table>
\textbf{R} ~ Radius
\textbf{r} ~ radius
\textbf{r}^* ~ Change-over point from free vortex to solid body rotation
\textbf{r} ~ relative volatility

\textbf{S} ~ Entropy
\textbf{S} ~ Tube perimeter
\textbf{S} ~ Parameter defined in Equation 4.16
\textbf{s} ~ Entropy

\textbf{T} ~ Temperature
\textbf{T}_c ~ Critical temperature
\textbf{t} ~ Time

\textbf{U} ~ Velocity
\textbf{U}_c ~ Velocity of the vapour core
\textbf{U}_{rc} ~ U_c \text{ at core-annulus interface } (r = r_c)
\textbf{U}_{La} ~ Velocity of liquid film in annular flow
\textbf{U}_l ~ Velocity of liquid-phase
\textbf{U}_G ~ Velocity of vapour-phase
\textbf{U}_{GS} ~ Superficial velocity of vapour-phase
\textbf{U}_{LS} ~ Superficial velocity of liquid-phase
\textbf{U}_t ~ Tangential velocity component
\textbf{U}_r ~ Radial velocity component
\textbf{U}_z ~ Axial velocity component
\textbf{U}_h ~ Overall heat transfer coefficient
\textbf{u} ~ Internal energy

\textbf{V} ~ volume, volume flow rate
\textbf{v} ~ Specific volume
Shaft work
Work output
Work output per unit mass

Mass fraction
Mole fraction
Modified pressure defined in Chapter 4

Dryness
Mass or mole fraction of i in vapour-phase
Fraction of total gas released from solution

Axial distance or elevation
Compressibility factor
Separation zone boundary defined in Chapter 2
Bubble point location relative to wellbottom
Wellbottom elevation
Greek Alphabet

\[\alpha \] Phase flow area
\[\alpha \] Thermal diffusivity
\[\sigma \] Variable defined in Appendix 2
\[\beta \] Bunsen gas distribution coefficient
\[\beta \] Distribution of variable B per unit mass in Chapter 2
\[\delta \] Annular film thickness
\[\varepsilon \] Tube wall roughness
\[\varepsilon_c \] Condenser performance factor defined in Chapter 6
\[\gamma \] Activity coefficient
\[\gamma \] Constant in Appendix 2
\[\gamma \] Ratio of specific heats as constant pressure and volume
\[\lambda \] Friction factor
\[\lambda \] Ostwald gas distribution coefficient
\[\mu \] Dynamic or absolute viscosity
\[\nu \] Kinematic viscosity
\[\rho \] Density of fluid
\[\sigma \] Surface tension force
\[\tau \] Viscous shear stress
\[\eta \] Efficiency
\[\psi \] Effective diameter coefficient defined in Chapter 4
\[\omega \] Absolute humidity
\[\theta \] Angle or angular coordinate
\[\phi \] Angle
\[\phi \] Apparent specific volume of NaCl in solution in Appendix 3
\[\phi \] Fugacity coefficient
Subscripts

A, a Acceleration term
a Annulus, annular flow regime
a Air

b Brine property
b Bubble, bubble flow regime
bm Gastube inlet
bp Bubble point
bh Well bottom
bl Outer edge of boundary layer
c Core fluid
c Critical point
c Centrifugal
cg Ratio of centrifugal to gravity

f Froth flow regime
f Fluid
f Saturated liquid water
fg Saturation change in property for pure water

G Gravity term
G Vapour-phase
GV Gas in vapour-phase
GL Gas in liquid-phase
GT Total gas in system
GS Superficial gas
g Gravity term
g Saturated steam
gt Gastube

h Homogeneous
h Hub
h Hydraulic

i 1, 2, 3,
i Inside
i Initial value
i Component in a mixture or solution

L Liquid-phase
LS Liquid superficial
LT Total liquid-phase
La Annular liquid film

ns Non-slip (homogeneous)
o Outside
o Initial value
p Pressure

r Radial component
r Reference point or fluid
r Reservoir property
r Formation rocks
r Relative property

S Salt
SL Salt in liquid-phase
ST Total salt in system
S Slug/plug flow
sb Solid body rotation

T Total
TP Two-phase
t Tube

V Vapour-phase
VT Total vapour-phase
v Viscous term

W Water (substance)
WV Gaseous water (steam)
WL Liquid water
WT Total water (substance)
wh Wellhead
wb Wellbottom
z Axial direction
Abbreviations

DHS Downhole separator
Fr Froude number
Ku Kutateladze number
Re Reynolds number
VFCS Vertical flow centrifugal separator
We Weber number

ln Natural logarithm
log Logarithm to base 10

HLC Homogeneous-liquid-continuous
HVC Homogeneous-vapour-continuous

eff Effective

NCG Noncondensable gas(es)