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There exist problems with a QA model’s ability to generalise to unseen data. Cur-
rent QA models perform well when trained on a dataset individually, but they often
perform worse on other datasets of the same task [105]. In the current QA paradigm,
QA models are almost exclusively Transformers; therefore, we aim to improve the
Transformer’s generalisation capabilities. In an attempt at such, we introduce the
Neuromodulated Transformer (NeMoT): an extension to the Transformer via the en-
twinement of neuromodulation. We hypothesise that the addition of neuromodu-
lation, when coupled with an environment that encourages it (e.g., multi-task and
multi-format learning), will result in better generalisation capabilities. We show that
NeMoT showcases better generalisation capabilities than a baseline model of a sim-
ilar structure and 65 million more parameters; however, further experiments are
needed to reach a definitive conclusion.

In QA, the ability to comprehend text is essential to the generation of the correct
answer. Reading strategies are utilised by humans to help them comprehend text
and improve their reading proficiency; they have been integrated into QA models
in an attempt to achieve the same effects. As a secondary objective in this thesis, we
modify and integrate the answer option interaction reading strategy [109] and high-
lighting reading strategy [86] with NeMoT. Results show that incorporating reading
strategies with NeMoT improves performance on MQA datasets.
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Chapter 1

Introduction

Natural language processing (NLP) is an important field in machine learning, ev-
ermore so with the abundance of text available in digital format and the speed at
which machines can process large amounts of text. NLP entails the processing and
analysis of text with the goal of extracting information to perform specific tasks.
Question answering (QA) is one such task, where given a question a model is tasked
with generating an answer or picking one of the provided answers to the question.
To answer a question correctly a model needs the ability to comprehend, reason, and
utilise internal knowledge about the world (i.e., perform inference). A question can
be formulated in many ways such as:

• Question: a question alone is given as input to the model. The model is ex-
pected to generate an answer to the question with no other context, utilising
only the internal parameters of the model.

• Question + answer options: a question is given with a set of answer options
to the model; only one answer option is usually correct. The model is expected
to choose what it deems the correct answer to the question from the set of
provided answers, utilising only the internal parameters of the model.

• Passage + question: a passage and question are given as input to the model.
The model is expected to generate an answer to the question utilising the pas-
sage and internal parameters of the model.

• Passage + question + answer options: a passage, question, and a set of answer
options are given as input to the model; only one answer option is usually
correct. The model is expected to choose what it deems the correct answer
to the question from the set of provided answers, utilising the passage and
internal parameters of the model.

In this thesis, we fixate on the QA subset of NLP, especially since NLP tasks can
be posed as questions [56]. The ability of current QA models to generalise to other
QA datasets that it has not been trained on is lacking, especially since, given a task
such as reading comprehension, for example, there is a gap in performance between
a training dataset of that task and other datasets — that the model has not seen
during training — of the same task [105]. We denote the task where the model is
expected to generalise to out-of-domain datasets with no further training as general
question answering (GQA), which is the primary focus of this thesis.

We focus on changes to the Transformer architecture [90] specifically, in an at-
tempt to improve its generalisation capabilities in QA. Other techniques to improve
performance in GQA include: multi-task training procedures [49, 87, 105], the text-
to-text framework [41, 42, 68], etc. Two ideas we consider are neuromodulation
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and reading strategies. Neuromodulation refers to a process that involves the reg-
ulation of a population of neurons in a context dependent manner [40]. Reading
strategies refer to the planned and explicit actions that a reader undertakes to help
them decipher text to meaning [61, 71]; they are utilised to improve their reading
comprehension and proficiency1.

1.1 Motivation

Given any potential question that could be posed to a QA model, the ultimate goal
is for the ability to answer any question correctly if it is possible. The consequences
of such a system are that it would currently top the leaderboards of all QA datasets
and would surpass the performance of humans. This entails a model that can gen-
eralise to out-of-domain (i.e., unseen) questions that it has not encountered before.
Therefore, achieving good performance in GQA is a stepping stone towards achiev-
ing such a system. The real-world applications of such an accomplishment include
aiding researchers by automating redundant tasks, an improved question answer-
ing ability of search engines and dialogue systems, medical diagnosis, and possibly
a step towards AGI among others, all of which have the potential to provide a posi-
tive impact to the world.

The current state of GQA in the literature includes: benchmarks to evaluate
performance [41, 42, 93, 94], training procedures that generally involve multi-task
training [49, 87], and a text-to-text framework that is utilised to unify differing QA
formats [41, 42, 68]. The Transformer architecture is the current SOTA in terms of
performance in QA [37, 41, 42, 52, 100, 110, 111]. The foundational architecture
of the Transformer is the vanilla Transformer [90], where its descendants modify it
in ways that may or may not be better for generalisation. In this thesis, we make
modifications to the Transformer architecture intending to improve performance in
QA and GQA. Specifically, for neuromodulation we focus on GQA, while for read-
ing strategies we focus only on performance in QA (i.e., performance on individual
datasets).

Reading strategies refer to the planned and explicit actions undertaken by an in-
dividual to help them decipher text to meaning, or in other words, improve their
reading comprehension and proficiency in reading [61, 71]. Neuromodulation refers
to a biological mechanism that is involved in the continuous tuning of a neuron’s
input and output behaviour conditioned on external stimuli in a context-dependent
manner [5, 54, 91]. We hypothesise that the insertion of reading strategies will al-
low for better reading comprehension and proficiency, allowing the model to per-
form better in QA. Additionally, we hypothesise that neuromodulation will allow
for the modification of the forward propagation through the network in a context-
dependent manner, allowing for more complex rules to be learned, that when cou-
pled with an environment that encourages generalisation, will result in better perfor-
mance in GQA. Therefore, in this thesis, we focus on evaluating neuromodulation’s
potential in GQA as a primary objective and the performance of reading strategies
in QA as a secondary objective.

1Our code can be found at https://github.com/Strong-AI-Lab/Neuromodulated-Transformer

https://github.com/Strong-AI-Lab/Neuromodulated-Transformer
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1.2 Problem description

We are interested in the impact that the entwinement of neuromodulation with the
Transformer architecture has in GQA, and additionally, the impact that the incorpo-
ration of reading strategies with the Transformer architecture has in QA. We explore
the following research questions:

• Does the entwinement of neuromodulation with the Transformer architecture
improve its QA capabilities on individual datasets?

• Does the entwinement of neuromodulation with the Transformer architecture,
when coupled with an environment that encourages it, allow for better gener-
alisation in QA?

• Can the utilisation of reading strategies improve performance in MQA?

1.3 Objectives

Our research focuses on improving the generalisability and performance of QA
models. We are interested in integrating reading strategies and neuromodulation
with the Transformer architecture. The aims of our research are:

• To entwine neuromodulation with the Transformer architecture to improve its
generalisation capabilities.

• To incorporate reading strategies with the Transformer architecture to improve
performance in MQA.

1.4 Contributions

Our main contributions are as follows:

• An extension to the Transformer, the Neuromodulated Transformer (NeMoT):
a simple entwinement of the Transformer architecture and neuromodulation.
To our knowledge, this is the first model to explicitly incorporate neuromodu-
lation with the Transformer architecture and to test its generalisation capabili-
ties. Previous work in neuromodulation is primarily in the continual learning
domain and is applied to the individual connections between neurons or is
incorporated into backpropagation as we have done. We believe that there
is potential for neuromodulation in the non-continual learning domain (i.e.,
where the model is fixed after training) and that the incorporation of it will
potentially allow for better performance and generalisation.

• An extension to two existing reading strategies: answer option interaction
(AOI) [109] and highlighting [86]. They are both incorporated into NeMoT and
their performance on MQA datasets is measured. Previous work on reading
strategies involves incorporating them into ANNs, which generally results in
an improved performance; however, the AOI and highlighting reading strate-
gies, in particular, are not perfect. We extend the two reading strategies in an
attempt to overcome their shortcomings. AOI computes a bilinear representa-
tion between each combination of answer options, which in comparison to a
version where it does not have to sequentially go through each combination,



4 Chapter 1. Introduction

is computationally inefficient. We extend it by simplifying it, only computing
a bilinear representation once for all answer options together. Highlighting is
quite simple and adds one of two vectors to each token in a document embed-
ding: ℓ+ if the token’s POS tag is a noun, verb, adjective, adverb, numerical, or
foreign word; ℓ− otherwise. We extend it by having a unique vector for each of
the following POS tags: noun, verb, adjective, adverb, numerical, and foreign
word.

1.5 Overview of research

FIGURE 1.1: An overview of the entire process of constructing a QA
system.

Figure 1.1 provides an overview of the procedure for constructing a QA model; it is
the procedure we use to construct QA models in this thesis. Our research focuses on
improving the architecture, more specifically, the Transformer architecture [90]. We
experiment with entwining neuromodulation and incorporating reading strategies
with it. Precisely, we are interested in the impact neuromodulation has on generali-
sation capabilities. We lower the scope for reading strategies and are only interested
in analysing its contribution to performance on MQA datasets, training on each indi-
vidually — however, we might expect performance to be better in the GQA domain
as well, even though we do not test for it. In this thesis, all other components in the
procedure are taken from the literature and are largely left unchanged.

1.6 Structure of thesis

This thesis consists of the following chapters:

• Chapter 2: Background.
In this chapter we introduce reading strategies, metacognition, and neuromod-
ulation. We define what they are and detail relevant literature in regards to this
thesis’s topic, QA. We dive deep into the Transformer architecture [90] and give
an overview of some descendants of the architecture (i.e., BERT and GPT). We
define what general question answering is and portray the current literature.
Lastly, we introduce a wide variety of QA datasets and their metrics to evalu-
ate performance; we utilise them in this thesis.
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• Chapter 3: A Simple Entwinement of Neuromodulation and the Transformer.
In this chapter we introduce the Neuromodulated Transformer (NeMoT), an
extension to the Transformer via the entwinement of neuromodulation. Ad-
ditionally, we describe extensions to two reading strategies and incorporate
them into NeMoT. We detail the training procedure and conduct a variety of
experiments in QA to measure the performance of NeMoT versus a baseline,
including if it resulted in an improved generalisation (i.e., better performance
in GQA). Furthermore, we conduct experiments with two reading strategies on
MQA datasets to see if their presence resulted in an improved performance.

• Chapter 4: Conclusion.
We conclude this thesis by stating the achievements of our work, answering
the research questions, discussing the limitations, and we provide potential
avenues for future work.
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Chapter 2

Background

This chapter covers all relevant literature needed for an intuitive understanding of
this thesis. Sections 2.1, 2.2, and 2.3 cover reading strategies, metacognition, and
neuromodulation, respectively. Section 2.4 details the Transformer architecture. Sec-
tion 2.5 highlights the current state of general question answering. Lastly, Section
2.6 displays the datasets utilised in this thesis.

2.1 Reading strategies

2.1.1 Defining reading strategies

With the abundance of information stored physically in books, digitally in ebooks
and on the web, the ability for humans to efficiently extract knowledge from the
abundance of text is crucial in today’s day in age. The process of achieving this is
known as reading comprehension: a process where meaning is constructed through
coordinating processes such as reading, knowledge of words, reading strategies, and
knowledge of the world among others [71]. The reader is to utilise their internal
knowledge of the world and combine it with what is read to construct meaning and
update their internal knowledge of the world.

Metacognitive reading strategies are one such idea that can be taught to help
improve an individual’s reading comprehension capabilities, i.e., their ability to un-
derstand and decipher text to meaning [61, 71]. Several studies indicate that there
is a strong positive relationship between the use of metacognitive reading strategies
by an individual and their reading comprehension capabilities [14, 71, 76, 79, 108].

There exist differences between skilled and novice readers metacognitively:
“skilled readers often engage in deliberate activities that require planful thinking,
flexible strategies, and periodic self-monitoring” [63], while novice readers are blind
to the metacognitive component and all that that entails [61, 63]. One observed ex-
ample of this is that a good reader focuses on the text as a whole, while a novice
reader tends to focus on the meaning of individual words [4, 61, 71]. The metacog-
nitive component of metacognitive reading strategies has been split into a separate
section (see Section 2.2) while the rest of this section focuses on defining reading
strategies solely.

Reading strategies is an expansive term used to characterise the planned and ex-
plicit actions that a reader undertakes to help them decipher text to meaning [61,
71]. They are utilised by an individual to improve their reading comprehension and
proficiency in reading. They are often taught to individuals who lack reading com-
prehension capabilities (e.g. second language learners and children). “Previewing
text before reading”, “guessing the meaning of unknown words” and “summarizing
text information” are some examples of reading strategies [106].
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A reading strategy can be split into three different types: global reading strate-
gies, problem solving reading strategies, and support reading strategies [61, 106]. A
global reading strategy represents intentional, carefully planned techniques that are
directed toward a global analysis of the text, allowing a reader to manage and mon-
itor their reading. Examples include “checking how the text content fits purpose”
and “previewing the text before reading”. A problem solving reading strategy rep-
resents localised, focused techniques that are used to remedy issues that arise in the
understanding of text. Examples include “adjusting the reading rate”, “re-reading
for better understanding”, and “guessing the meaning of unknown words”. A sup-
port reading strategy represents mechanisms that aid the reader’s understanding of
the text. Examples include “using reference materials” and “discussing reading with
others”. See Table 2.1 for a list of all reading strategies and their type.

Type Strategy Type Strategy
Global Setting the purpose for reading Problem Reading slowly and carefully
Global Using prior knowledge Problem Trying to stay focused while reading
Global Previewing text before reading Problem Adjusting reading rate
Global Checking how text content fits purpose Problem Paying close attention to reading
Global Skimming to note text characteristics Problem Pausing and thinking about reading
Global Determining what to read Problem Visualizing information read
Global Using text features (e.g., tables) Problem Re-reading for better understanding
Global Using context clues Problem Guessing the meaning of unknown words
Global Using typographical aids (e.g., italics) Support Taking notes while reading
Global Critically evaluating what is read Support Reading aloud when text becomes hard
Global Resolving conflicting information Support Summarizing text information
Global Predicting or guessing text meaning Support Discussing reading with others
Global Confirming predictions Support Underlining information in text

Support Using reference materials Support Paraphrasing for better understanding
Support Going back and forth in text Support Asking oneself questions

TABLE 2.1: All 30 reading strategies and whether or not they are
a global (Global), problem solving (Problem) or support (Support)

reading strategy [106].

2.1.2 Reading strategies used in machines for QA

Given the utilisation of reading strategies to improve a reader’s comprehension and
proficiency, the same may carry over to QA models. They are seldom used by QA
models but have shown to improve performance when they are utilised. We high-
light the utilisation of reading strategies in QA models in this section.

Dual Co-Matching Network

The Dual Co-Matching Network (DCMN) utilises two reading strategies to help im-
prove the performance of their model in MQA [109]. The two reading strategies are
answer option interaction (AOI) and passage sentence selection (PSS).

AOI allows for each answer option to be compared directly with one another,
where like in humans, it may be used to eliminate incorrect answer options; if the
model is required to make a random guess as it does not know the correct answer,
eliminating some answer options from the fray will result in a better performance
on average because it has a higher chance of picking the correct answer option. They
build bilinear representations between each combination of answer options and use
a gated mechanism to merge them back together.
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Passage sentence selection allows for the selection of the most salient passages
conditioned on the question and a specific answer option. Each passage is scored
via the cosine score or bilinear score; the top k passages with the highest score are
selected.

General reading strategies

Three general reading strategies are utilised in [86], with all producing an improve-
ment in performance: back and forth reading (BF), highlighting (HL), and self-
assessment (SA). BF simply involves training two identical models: the first’s input
consists of the answer option, question, and document in that order; the second’s
input consists of the document, question, and answer option in that order (i.e., it is
reversed). Both models are combined via an ensemble method. HL involves adding
to a document embedding one of two vectors for each token in the document em-
bedding: ℓ+ if the POS at that position is a noun, verb, adjective, adverb, numeral, or
foreign word; ℓ− otherwise. SA refers to training the model on a set of automatically
generated questions and answer options from a reference document.

Incorporating reading strategies into a document-based QA system

A document-based question answering system is created in [46] that relates to the
sequential process of three reading strategies. Given a document and question
the three reading strategies are: the skimming of the document to acquire general
knowledge about it; the reading of the question carefully, utilising the generally ac-
quired knowledge via the skimming of the document; the traversal of the document
again to generate an answer to the previously read question. The architecture of the
system explicitly encodes the previously described procedure into the architecture
in hopes of having the same effects that it does for humans.

In the first step either the title of the document or an extracted summary from a
summary extraction method is utilised. Both the question and summary are encoded
via an RNN, where directly after the two representations are merged, completing the
second step. A hierarchical RNN is then utilised to capture dependencies between
sentences and to generate an answer, completing the third step.

Incorporating reading strategies into abstractive summarization

A three-phased attack is utilised in [101] to incorporate human-like reading strate-
gies into abstractive summarization. The first phase involves the acquisition of a
general understanding of a document via a knowledge-attention network. The sec-
ond phase involves multi-task learning, where the tasks learned help the model ac-
quire skills relevant for the generation of a summary. The third phase is a polishing
process via a generative adversarial network (GAN).

2.2 Metacognition

To define metacognition, it is first essential to define cognition. Cognition refers
to the mental actions and processes involved in knowing and awareness, such as
the ability to comprehend through thought, experiences, and stimuli among others
[64]. The processes involved in cognition are referred to as cognitive processes: they
include comprehension, attention, memory, reasoning and problem solving among
others [96].
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John Flavell introduced metacognition in the early 1970s, building upon the term
metamemory of previous work [4]. Metacognition is defined as knowledge about
cognition and regulation (i.e., control) of cognition, or alternatively, simply thinking
about thinking. It is considered a high-level cognition that can be split into many
sub-components, but of two mainly: knowledge and control [4].

Metacognitive knowledge refers to an individual’s knowledge about how their
cognition operates, including what strategies to use for a given domain [35]. This
includes knowledge of person variables (i.e., what humans are like as cognitive be-
ings), task variables (i.e., how certain information encountered influences and con-
stricts how an individual deals with it), and strategy variables (i.e., cognitive strate-
gies for achieving goals). In the context of strategy use, it includes the knowledge
of what the strategies for a given domain are and when, where, and why different
strategies should be utilised.

Metacognitive control refers to how an individual controls their cognitive pro-
cess, which includes the monitoring of said processes [4]. It entails self-regulation
and executive functioning. Self-regulation refers to “the ability to control one’s own
behaviours and cognitive activities” [4] and executive functioning refers to “the cog-
nitive system that controls and manages other cognitive processes” [4]. In the con-
text of metacognitive reading strategies (see Section 2.1), this entails the knowledge
of reading strategies and the continual monitoring and control of the strategies and
cognitive processes involved.

There exist various approaches to assess someone’s metacognitive ability: verbal
reports, online processing measures, and judgement of learning or predictions of
outcome [4].

Verbal reports are the primary way to collect information about metacognitive
knowledge. Individuals are asked what they know (i.e., their knowledge) and what
they do (i.e., control) when engaging in cognitive tasks. A major concern with this
approach is that what people say may not correspond with what they do.

Online processing measures are for the purpose of measuring the control aspect
of metacognition. An individual is asked to engage in a task, while processing col-
lecting measures (e.g., computer technology that tracks eye movements) are carried
out to collect relevant information. This rectifies the issue with verbal reports as we
know accurately what the person is doing; however, the technological component
may disrupt the naturalness of the task.

Lastly, judgement of learning (JOL) and predictions of performance (POP) refer
to an individual’s accuracy in predicting their learning capabilities and their per-
formance on a provided task, respectively. Additionally, feeling of warmth (FOW)
[35] is a similar technique where during the problem-solving process individuals are
asked to provide how close they are to a solution (e.g., varying levels of hot and cold
if they are close and far away from a solution, respectively). In all cases, the more
accurate they are, the more skilled metacognitively they are said to be.

2.3 Neuromodulation

2.3.1 Neuromodulation in organisms

Neurons are a fundamental building block of the brain and central nervous system.
The main components of a neuron are the potentially thousands of dendrites, the cell
body, and the axon (we utilise [8, 85] as our sources in this paragraph). The dendrites
are involved in receiving signals from other neurons; the cell body manufactures
and recycles proteins; and the axon is involved in the facilitation of the outgoing
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signal to other neurons through a synapse. A synapse is a connection between two
neurons and the gap between the two neurons is referred to as the synaptic cleft.
The communication of neurons through a synapse is done through either chemical
or electrical signals; the process is referred to as neurotransmission. The chemical
signal released into the synaptic cleft is known as a neurotransmitter, it binds to
receptors on target cells (neurons), changing their electrical properties and resulting
in a large variety of post-synaptic effects [17].

Neural plasticity refers to “the ability of neurons to change form and function in
response to alterations in their environment” [38, 81] and is an important aspect of
lifelong learning, through its strong contribution to adaptation and learning in bio-
logical neural networks. Synaptic plasticity refers to changes that occur at synapses,
modifying how neurons communicate with one another [9]. One form of synaptic
plasticity is Hebbian plasticity: it is activated by and further magnifies correlations
in neural activity [107]. An important part of neural plasticity is neuromodulation
[81]: a biological mechanism that is involved in the continuous tuning of a neuron’s
input and output behaviour conditioned on external stimuli in a context dependant
manner [5, 54, 91]; it entails the ability to change the learning rate of individual con-
nections between neurons [26]; and it plays a key role in the facilitation of learning
[22].

Specifically, neuromodulation refers to a subset of neurotransmitters called neu-
romodulators [5, 54, 91]. They are chemical signals with the ability to locally modify
learning rates by either up-regulating or down-regulating them in response to exter-
nal stimuli [1, 11, 26, 36]. They have spatially distributed and temporally extended
effects on recipient neurons, potentially allowing for the regulation of a population
of neurons [24, 39, 40, 55, 75]. Examples of neuromodulators are dopamine, sero-
tonin, noradrenaline, and acetylcholine [24].

2.3.2 Neuromodulation in machine learning

Neuromodulation has been incorporated into ANNs in a variety of ways, mostly
in the continual learning domain. They are utilised to modify the learning rates of
weights in individual circumstances, by varying the strength of the learning signal;
in the biological sense this is the modulation of Hebbian learning, the strengthen-
ing or weakening of connections between neurons [19, 20, 26, 82, 92]. They are of-
ten coupled with an evolutionary algorithm to search for the initial parameters of a
network and their topologies, of which the weights are then updated according to
update rules involving neuromodulation, not backpropagation; in some instances,
the error generated by the model is incorporated into the weight updates, but it gen-
erally is not. More recent work on neuromodulation involves integrating it with the
current dominant learning algorithm, backpropagation [6, 58, 83, 91]. In this section,
we only detail the neuromodulation aspects of each paper.

Incorporating neuromodulation without backpropagation

Modulatory Neurons are introduced into ANNs by [82], where they fulfill the pur-
pose of either boosting or curtailing neural plasticity at target neurons, allowing
learning to occur at specific parts of a network conditioned on various different sce-
narios (i.e., context). Specifically, the contribution of the paper is the introduction of
modulatory neurons that act alongside standard neurons. For all neurons in a network,
each contains a standard activation ai and modulatory activation mi for the ith neuron,
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for example. The output of each neuron is denoted by oi for the ith neuron and is
calculated by oi = tanh (ai/2).

For the ith neuron the standard activation is calculated by

ai = Σj∈Std wj,i · oj,

and that for the modulatory activation by

mi = Σj∈Mod wj,i · oj,

where wj,i is the connection strength between the jth and ith neuron, and Std is the
set of standard neurons and Mod is the set of modulatory neurons.

The modulatory activation has no contribution to the output of the neuron, but
only to the update of wj,i. It is updated according to

∆wj,i = tanh (mi/2) · δj,i,

where δj,i is the plasticity term and tanh (mi/2) references the modulation value.
The modulation value is a real number in the range of -1 and 1 that modulates the
plasticity term: if it is zero then no learning occurs, if it is negative then it inverts the
plasticity term, and the further the value is away from zero, the higher the rate of
learning.

The plasticity term is defined as

δj,i = η · (Aojoi + Boj + Coi + D),

where η is the learning rate, oj is the output of the jth neuron (which is input to the ith
neuron), oi is the output of ith neuron, and the following four tunable parameters:
the correlation term A, the input (pre-synaptic) term B, the output (post-synaptic)
term C, and the constant term D.

The plasticity term is simplified in [26], where δj,i only consists of a Hebbian
learning term oj · oi and the learning rate η. When oj and oi are correlated the Hebbian
learning term is large; the less correlated they are, the smaller the term is.

Furthermore, [92] modifies the original architecture further by introducing point
sources, which replaces the modulatory neurons; they call the resulting mechanism
diffusion-based neuromodulation. Point sources are added to ANNs at specific lo-
cations with their role being to introduce diffusing learning signals to the network
associated with the task being learned.

Diffusion-based neuromodulation involves the weight update rule

∆wj,i = η · mi · oj · oi,

where η, mi, oj, and oi are the learning rate, modulatory factor, output for neuron
j, and output for neuron i, respectively. The modulatory factor of neuron i for a
specific problem formulation provided in their paper is

mi = σ(osg(dis) + owg(diw)),

where os and ow refer to the output of the two point sources (each representing sum-
mer and winter, respectively, in the paper’s toy problem), g is a Gaussian function,
σ is a sigmoid function, and dis and diw is the distance of a neuron from the sum-
mer and winter points, respectively. If neuron i is within a distance of 1.5 from a
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point source, then the contribution to the modulatory factor increases according to
g; otherwise, the contribution is 0. For a full description, we refer readers to [92].

ModNet is an architecture that is inspired by the mushroom body of insects [19,
20] and is quite similar in some aspects to [82], which introduces modulatory neu-
rons. ModNet consists of an input layer, a hidden layer, an output layer, and a
modulatory layer. The output layer consists of standard activations and modulatory
activations.

The standard activations are defined as

ai = σ(Σj∈Hidwj,ixj),

where wj,i is the weight from the jth neuron in the hidden layer to the ith neuron in
the output layer, xj is the activation value of the jth neuron in the hidden layer, Hid
is a set consisting of all the hidden layer’s neurons, and σ is the sigmoid function.

The modulatory activations are defined as

Mi = Σj∈Modw†
i,jx

†
j ,

where w†
i,j is the modulatory weight from the ith neuron in the output layer to the

jth neuron in the modulatory layer, x†
j is the input to the jth modulatory neuron and

corresponds to the error computed at the jth output layer’s neuron, and Mod is a set
consisting of all the modulatory layer’s neurons.

The weights between the hidden and output layer are updated according to

∆wj,i = σ(Mi/nj,i) · δj,i,

where nj,i is a scaling parameter that is tuned while training, δj,i is the plasticity
term, j corresponds to the jth neuron in the hidden layer, and i corresponds to the
ith neuron in the output layer.

The plasticity term is defined as

δj,i = ηj,i · (Axjxi + B(xi − xj) + C),

where ηj,i is an adaptive learning parameter that is updated while training, xj is
the output of the jth neuron (which is input to the ith neuron), xi is the output of
ith neuron, and the following three tunable parameters: the correlation term A, the
difference term B, and the constant term C.

The adaptive learning parameter is defined as

ηj,i = ηin
ei

xi
,

where ηin is the initial learning rate, ei is the error at the ith output neuron, and xi is
the activation value of the ith output neuron.

The modulatory layer’s weights are updated according to

∆w†
j,i = η†

j,i(scale),

where η†
j,i is an adaptive learning parameter that differs to ηj,i only in that ei and xi

switch positions and scale is a tunable magnitude parameter.
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FIGURE 2.1: A general overview of ANML’s architecture [6].

Incorporating neuromodulation with backpropagation

While the previous neuromodulation papers have focused on modifying the learn-
ing rates of parameters within a network, other approaches focus on integrating
it with backpropagation. A Neuromodulated Meta-Learning algorithm (ANML)
utilises an architecture that consists of a prediction network and a neuromodula-
tory network [6] (see Figure 2.1 for an overview of the architecture). Both networks
utilise the same input and can be structured as the user pleases. The general theme
of the architecture is that the neuromodulatory network produces a matrix that,
via element-wise multiplication, gates the prediction network at a user-designated
point or points, introducing context-dependent gating and selective plasticity; it is
inspired by neuromodulatory processes in the brain. Through gating, the neuro-
modulatory network has control of not only the forward propagation of the predic-
tion network but the backpropagation of the error through it as well (i.e., selective
plasticity). The architecture can be meta-learned like is done in [6], or it could be
trained in the traditional sense in a non-continual learning domain.

Another paper that entwines neuromodulation with backpropagation is [58].
They introduce Backpropamine, which allows neuromodulated plasticity to be dif-
ferentiable and trained with the backpropagation of the error signal produced by
a network. The introduced approach builds upon differentiable Hebbian plasticity.
Hebbian plasticity allows for the plasticity of each connection between neurons to
be optimised via backpropagation. Each connection consists of two components: a
fixed component that is a typical weight update and a plastic component that grows
and decays conditioned on recent activity. The output of the ith neuron at time t is

oi(t) = σ{Σj∈Inp(wj,i + αj,i Hebbj,i(t))oj(t − 1)},

where σ is a non-linear function, wj,i is the weight between the jth and ith neuron,
oj(t) is the output of the jth neuron at time t, αj,i is the plastic coefficient optimised by
the network via gradient descent, Inp is the set of neurons that are input to neuron
i, and Hebbj,i(t) is the Hebbian trace, the plastic component of the connection.

The Hebbian trace is defined as

Hebbj,i(t + 1) = Clip(Hebbj,i(t) + ηoj(t − 1)oi(t)),

where Clip is a function that constrains the input to values in [-1,1] and η is the
intra-life learning rate (i.e., the learning rate of the plastic connection). The intra-
life learning rate determines how quickly new information is incorporated into the
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Hebbian trace.
A simple implementation of neuromodulation with the Hebbian trace is

Hebbj,i(t + 1) = Clip(Hebbj,i(t) + M(t)oj(t − 1)oi(t)),

where the only difference is that η is replaced with M(t), a single scalar output of
the network that is either used as-is or is further modified by a meta-learned vector
of weights (one for each connection between neurons).

Additionally, a more complex neuromodulation rule is introduced and is in-
spired by the “short-term retroactive effects of neuromodulatory dopamine on Heb-
bian plasticity in animal brains” [58]. The Hebbian trace is modified with the addi-
tion of an eligibility trace Ej,i(t) for the connection between the jth and ith neurons.
The eligibility trace keeps an account of which neurons (synapses) have contributed
recently.

The updated Hebbian trace is defined as

Hebbj,i(t + 1) = Clip(Hebbj,i(t) + M(t)Ej,i(t)),

where the eligibility trace is formulated as

Ej,i(t + 1) = (1 − η)Ej,i(t) + ηoj(t − 1)oi(t),

where η is a trainable decay factor and Ej,i is an exponential moving average of the
product between the ith neuron’s output at time t and the jth neuron’s output at the
previous time step t − 1. A dopamine signal M(t) modulates the eligibility trace.

NMN is architecture introduced in [91] that consists of a neuromodulatory net-
work and a main network. The main network is a typical ANN of potentially any
structure that differs only in that all activation functions are replaced with a neuro-
modulatory version, generated by the neuromodulatory network. The modulatory
network takes as input some context c and generates a single neuromodulatory sig-
nal z ∈ Rk that is used for all activations in the main network (k is a free parameter);
it modifies the slope and bias of the main network through its activations. The neu-
romodulatory activations are represented by

σ(zT(xws + wb)),

where ws ∈ Rk and wb ∈ Rk are two vectors of the activation function that are
trainable, representing the scale factor which modifies the slope and the offset of the
activation function, respectively; σ is a non-linear activation function that maps a
real number to another real number; x ∈ R.

Additionally, while not explicitly labelled as neuromodulation in their paper — it
does fit the criteria for neuromodulation — a Text Saliency Model is utilised and pro-
duces attention scores, which are utilised by a separate network’s (the Task Model’s)
attention layer [83]. The attention scores produced by the Text Saliency Model can
be thought of as providing additional context to the Task Model, dynamically con-
trolling the attention layer and its produced output. The high-level description of
the architecture is not too dissimilar to ANML’s architecture [6], both consist of two
models that share the same input, with one influencing the forward propagation of
another by proving additional context, although the Text Saliency Model is explicitly
trained to perform a specific task, while ANML’s architecture is not.
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2.4 Transformers

The Transformer [90] is an architecture constructed to overcome the bottleneck intro-
duced by the sequential nature of recurrent sequence-to-sequence architectures that
utilise an attention mechanism such as RNNsearch [3]. The Transformer eschews
recurrence, allowing for more parallelisation to occur and introduces a foundational
architecture that has been built upon in the QA domain [10, 23, 50, 65, 66]. This
section gives a detailed description of the vanilla Transformer [90] and an overview
of two descendant of it: Bidirectional Encoder Representations from Transformers
(BERT) [23] and Generative Pre-trained Transformer (GPT) [10, 65, 66].

2.4.1 Attention

In machine learning models an attention mechanism is defined as a process that se-
lectively attends to either the input or certain activations throughout the forward
propagation of an ANN. It is inspired by attention in humans, where we selectively
attend to a subset of the external stimuli available to us [31]. By attending we mean
turning on or off certain activations or parts of the input so that the model can focus
on a subset of them. The goal with such a mechanism is that if the model learns to
attend effectively, then the model as a whole will be more efficient as it only focuses
on what is relevant.

We will cover two attention mechanisms utilised in the NLP domain, but first, we
will provide further definitions of attention mechanisms. The first is self-attention:
an attention mechanism in which each position of the input sequence attends to all
other positions in the same sequence [13]; the alternative to self-attention is attend-
ing to a different sequence altogether. The second is soft-attention: an attention
mechanism in which a probability distribution is induced across all attending to to-
kens, i.e., a soft alignment over the sequence [99]. This differs from hard-attention
whereby instead of softly aligning over the input, each item that is attended to is
either fully included or excluded, no in-between [99]. All attention mechanisms that
we cover fit into the category of self-attention and soft-attention.

The first attention mechanism which we will cover is additive attention, which
was designed to fit into the encoder-decoder framework of sequence-to-sequence
models [3]. Given a set of vectors {h1, h2, ..., hN} of an encoder — each of dimension
d — that we would like to attend over, we compress it into a single vector ci, the
context vector of the ith decoder position; the vectors are alternatively referred to as
annotations. It is defined as

ci = ΣN
j=1αi,jhj,

where hj is the jth annotation of the encoder and αi represents a probability distri-
bution with αi,j representing the probability assigned to the jth annotation. Each
annotation is weighted by αi,j by multiplying each element in the annotation by αi,j;
all weighted annotations are added together via element-wise addition.

The probability value of the jth annotation for a fixed decoder position i is

αi,j =
expei,j

ΣN
k=1expei,k

,

where ei,j ∈ R is the associated energy between the ith decoder position and jth
annotation; exp represents Euler’s number. Put simply, this is the softmax function
applied to all associated energies; in this instance, it returns the probability for the
jth annotation.
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The associated energies are calculated via

ei,j = a(si−1, hj),

where si−1 ∈ Rd is the previous decoder position’s vector (i.e., internal state),
hj ∈ Rd is the jth annotation of the encoder, and a is a function that computes the
alignment score.

One way to calculate the alignment score is

a(si−1, hj) = vT
a tanh (Wasi−1 + Uahj),

where Wa ∈ Rd×d, Ua ∈ Rd×d, si−1 ∈ Rd×1, hj ∈ Rd×1, and va ∈ Rd×1. For ease
of explanation the encoder and decoder’s hidden states have been converted from
vectors into matrices of dimension d × 1. Dot-product multiplication is performed
between Wa and the decoder’s previous hidden state si−1, and between Ua and the
jth annotation hj. Element-wise addition is performed between the two resulting
matrices, with the tanh activation function being applied directly after; the resulting
matrix is of dimension d × 1 and is denoted by Z. Dot-product multiplication is
performed between the transpose of va and Z, producing a single real number which
is taken as the alignment score. The name “additive attention” comes from the fact
that addition is the operation used to combine decoder’s previous hidden state and
the jth annotation.

The second attention mechanism is dot-product attention, which is similar to addi-
tive attention, but replaces the addition operation with a dot-product operation [90].
Dot-product attention consists of a query, key, and value; in the context of informa-
tion retrieval, the role of the query is to be matched against keys and their associated
values. Given a query matrix Q, key matrix K, and value matrix V, it is defined as

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V,

where Q ∈ RNq×dq , K ∈ RNk×dk , and Vk ∈ RNv×dv are the input matrices, represent-
ing the query, key, and value, respectively; Nq, Nk, and Nv represent the sequence
length for the query, key, and value, respectively; dq, dk, and dv represent the dimen-
sion of the query, key, and value, respectively. The query and the transposed key
matrices are multiplied together via dot-product multiplication, then scaled by the
square root of the dimension of the key matrix

√
dk, resulting in a new matrix of di-

mension Nq × Nk. The softmax activation function is applied to the resulting matrix,
inducing a probability distribution across rows; i.e., the sequence represented by the
query attends to that of the key. This is referred to as the attention matrix, which is
then multiplied with the value matrix via dot-product multiplication, generating a
new matrix of dimension Nq × dv, concluding dot-product attention. Note that dq
and dk, and Nk and Nv must be equal.

In both additive and dot-product attention the attention matrix c is calculated,
where the sequence corresponding with the rows attends to the sequence corre-
sponding with the columns. For additive attention to generate the context matrix
c it needs to process the decoder’s input ndec times, and the encoder’s input nenc
times: ndec × nenc in total. While similar to dot-product attention, the difference is
that dot-product attention processes everything at once, not sequentially, allowing
efficient matrix multiplication to cover the whole process. For additive attention this
occurs sequentially along the decoder axis, meaning that the efficient matrix multi-
plication code is split up ndec times.
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To be definitively clear, it is not additive attention alone that causes the issue per
se, it is the fact that it is processed sequentially. We could replace the alignment score
function a with the following equation

a(si−1, hj) = f (si−1)g(hj)
T,

which integrates the query, key, and value terminology in the alignment score cal-
culation and utilises the dot-product operation. The same issues still hold, i.e., the
sequential nature in which it is entwined.

2.4.2 Vanilla Transformer

The Transformer is an architecture that was introduced to eliminate the reliance on
recurrent architectures, by instead relying entirely on attention [90]. This is achieved
by the newly introduced dot-product attention, which differs from additive attention
in the scaling parameter and how the alignment score is computed. The main ad-
vantage of this new attention mechanism is the increased efficiency by allowing the
attention matrix to be calculated — across the whole sequence — in a single matrix
multiplication, meaning that efficient matrix multiplication code can be utilised.

Figure 2.2 showcases the Transformer architecture; it consists of an encoder and
decoder. The encoder produces an encoded representation of the input sequence
and the decoder utilises the encoded representation and generates an answer to a
task sequentially. During training, teacher forcing at each position is utilised by
the decoder, allowing the entire target answer to be processed at once, significantly
speeding up training over its recurrent counterparts; however, note that during eval-
uation the answer will need to be processed sequentially, eliminating the advantage
of dot-product attention in the decoder. Both the encoder and decoder have multi-
ple layers, of which each contains multiple blocks. Each block consists of a residual
connection, layer normalization layer, and either a point-wise feed-forward module
or a multi-head attention module.

Given that the model eschews recurrence, the word embedded input to the
model has no positional information about a token’s relation to other tokens in the
input sequence. Therefore, positional information about the input sequence needs to
be added to the input. Fixed absolute position embeddings are utilised to fill this void.
They are fixed in the sense that they are not learned but constant and absolute in the
sense that it adds positional information to a token about its position in the sequence
as a whole, not relative to other tokens. It is defined as

PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel ),
(2.1)

where pos is a position in the input sequence, i is the dimension index, and dmodel
is the dimension of the Transformer and the word embeddings. Each dimension
i alternates between a sine and cosine function for even and odd dimension in-
dices, respectively, with the wavelengths forming a geometric progression from 2π
to 10000 × 2π. The resulting matrix from the embedding will be of the same di-
mension as the input sequence embeddings: N × dmodel , where N is the length of
the input sequence. Alternatively, a learned position embedding matrix of the same
dimensions can be used in place of the fixed absolute position embedding.
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FIGURE 2.2: The Transformer architecture introduced in [90]. The
encoder consists of M layers and the decoder consists of N layers.

Each block of both the encoder and decoder consists of a layer normalization
layer and residual connection. Layer normalization fulfils the purpose of normaliz-
ing neurons passed as input, reducing the training time, especially for larger neural
networks [2]. This is because the changing outputs in one layer often cause highly
correlated changes to the input of the next layer. Normalizing via fixing the mean
and variance of the input curtails the issues introduced by the correlated changes,
helping reduce training time. It is defined as

LayerNorm(X) = θ
X − µ

σ
δ, (2.2)

where µ is the mean, σ is the standard deviation, and θ and δ are the gain and bias
parameters, respectively. The bias and gain parameters are of the same dimension
as the input matrix X. The mean is defined as

µ =
1
H

ΣH
i=1ai (2.3)
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and the standard deviation is defined as

σ =

√
1
H

ΣH
i=1(ai − µ)2, (2.4)

where in both instances H is the number of hidden units and ai represents the
summed inputs to the ith neuron.

A residual connection fulfils the purpose of helping reduce the issue of vanishing
gradients, allowing for faster training times, larger networks to be trained and better
performance [32]. It is defined as

y = F(x, {Wi}) + x, (2.5)

where F(x, {Wi}) is the residual mapping to be learned, x is the input matrix, and
Wi is the weights applied to the input matrix. The output y is defined to be the
element-wise addition between the input matrix x and the residual mapping.

FIGURE 2.3: Scaled dot-product attention is shown on the left and
multi-head attention is shown on the right.

Note that for the rest of this section dmodel , d f f , dq, dk, dv, Nq, Nk and Nv refer to the
dimension of the Transformer, dimension of the point-wise feed-forward network,
dimension of the query matrix, dimension of the key matrix, dimension of the value
matrix, length of the query’s associated sequence, length of the keys’ associated se-
quence, and length of the value’s associated sequence, respectively. In general terms,
the sequence length is denoted by N; the sequence length for the encoder and de-
coder is denoted by Nenc and Ndec, respectively. In practice dq, dk, and dv are all equal
to dmodel in the Transformer. Additionally, when we reference dot-product attention,
we are referring to scaled dot-product attention as shown in Figure 2.3.

A block also consists of either a multi-head attention module or a point-wise
feed-forward module. The multi-head attention module takes as input a query, key,
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and value matrix. It is defined as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i ),

(2.6)

where the input matrices are Q ∈ RNq×dq , K ∈ RNk×dk , and V ∈ RNv×dv , repre-
senting the query, key, and value, respectively. The query, key, and value matri-
ces are linearly projected via dot-product multiplication with WQ

i ∈ Rdmodel×dmodel ,
WK

i ∈ Rdmodel×dmodel , and WV
i ∈ Rdmodel×dmodel , respectively, resulting in a new matri-

ces of the same dimensions. The linearly projected matrices are split into h evenly
sized subsets, each of dimension Nq × (dq/h), Nk × (dk/h), and Nv × (dv/h) for the
linearly projected query, key, and value, respectively. The ith subsets (represented
by QWQ

i , KWK
i , and VWV

i ) are input to a dot-product attention module, where the
output is a new matrix of dimension Nq × (dv/h); denote this by headi. Note that
h must be a factor of dq, dk, and dv. To conclude multi-head attention, all heads
are concatenated together to form a new matrix of dimension RNq×dv , which is then
multiplied with WO ∈ Rdv×dmodel via dot-product multiplication, resulting in a new
matrix of dimension RNq×dmodel , concluding multi-head attention.

The dot-product attention module’s focal point is an attention matrix that in-
duces a probability distribution across rows (i.e., each row sums to one) with each
column representing a token to attend to. It is defined as

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (2.7)

where the input matrices are Q ∈ RNq×dq , K ∈ RNk×dk , and V ∈ RNv×dv , representing
the query, key, and value, respectively. The query matrix is multiplied with the
transposed key matrix via dot-product multiplication to produce a new matrix of
dimension Nq × Nk, which is then scaled by the square root of the scaling parameter√

dk. The softmax activation function is applied across rows to the scaled matrix to
produce an attention matrix A ∈ RNq×Nk . The attention matrix induces a probability
distribution across rows, i.e., the sequence represented by the query attends to that
of the key. Dot-product multiplication is performed between the attention matrix
and the value matrix V, producing a new matrix of dimension Nq × dv, concluding
dot-product attention. Note that dq, dk, and dv are always equal in the Transformer;
Nk and Nv must always be equal; for self-attention, Nq and Nk must be equal. In
practice, some of the tokens in the attention matrix are masked meaning that they
cannot be attended to by some tokens (see Figure 2.4 for an overview of masking).

The point-wise feed-forward network module consists of two fully connected
layers, one directly after the other in a typical neural network. It is defined as

a1 = max(0, XW1)

a2 = a1W2

FFN(X) = a2,
(2.8)

where the input is a matrix X ∈ RN×dmodel , and W1 ∈ Rdmodel×d f f and W2 ∈ Rd f f ×dmodel

represent the weight matrices of the first and second fully connected layers, re-
spectively. The matrix X is multiplied with W1 by dot-product multiplication and
has the ReLU activation function applied directly after, constructing a new matrix
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FIGURE 2.4: Types of masking in the attention matrix: purple indi-
cates that attending to that location is allowed, while orange indi-
cates that it is not allowed (i.e., they are masked). The tokens on the
y-axis attend to positions on the x-axis; all attention matrices shown
are performing self-attention. In uni-directional models all future to-
kens are masked; it is displayed in the “Mask Future Tokens” ma-
trix. Bi-directional models utilise full attention, where no positions

are masked; it is depicted in the “Full Attention” matrix.

a1 ∈ RN×d f f . Dot-product multiplication is performed between a1 and W2, produc-
ing a new matrix a2 ∈ RN×dmodel , concluding the point-wise feed-forward network.

In the Transformer there exists two types of blocks, the point-wise feed-forward
network block and multi-head attention block. The point-wise feed-forward network
block is defined as

x1 = FFN(X)

x2 = LayerNorm(x1 + X)

pw f f nblock(X) = x2,
(2.9)

where the input matrix X ∈ RN×dmodel is input to the point-wise feed forward module
FNN (2.8), producing a new matrix x1 of the same dimension. Layer normalization
[2] is applied to the element-wise addition of x1 and X (i.e., a residual connection
[32]), resulting in a new matrix matrix x2 ∈ RN×dmodel , which is taken as the output
of the block.

The multi-head attention block is defined as

x1 = MultiHead(Q, K, V)

x2 = LayerNorm(x1 + Q)

mhablock(Q, K, V) = x2,
(2.10)

where the input matrices are Q ∈ RNq×dmodel , K ∈ RNk×dmodel , and V ∈ RNv×dmodel ,
representing the query, key, and value matrices, respectively. All three are passed as
input to the multi-head attention module (2.6), which produces a new matrix x1 ∈
RNq×dmodel . Similar to that of the point-wise feed-forward block, a layer normalization
layer [2] is utilised with the input being the element-wise addition between x1 and
Q (i.e., a residual connection [32]), producing a new matrix x2 ∈ RNq×dmodel that is
taken as the output of the block.



2.4. Transformers 23

Let the following be a sample QA task where “Who is the greatest Laker of all
time?” is the encoder’s input and “Kobe Bryant” is the decoder’s input. Table 2.2
illustrates a sample vocabulary V for both the encoder and decoder’s input.

TABLE 2.2: Sample vocabulary that maps words to ids.

Vocabulary ID
<unk> 0
who 1

is 2
the 3

greatest 4
laker 5

of 6
all 7

kobe 8
time 9

? 10
. . . . . .

bryant 24

Firstly, we need to process the input and convert it to a Transformer readable
format. This is achieved through tokenization, where the input is processed and
mapped to a unique id. The processed input could look like Xenc-processed = {who,
is, the, greatest, laker, of, all, time, ?} and Xdec-processed = {kobe, bryant} depending
on the processing strategy. Let f : V → {0 ≤ Z ≤ |V|} be the mapping from the
vocabulary V to |V|+ 1 integers, where |V| is the size of the vocabulary. Note that
the reason for an additional integer is to represent tokens not in the vocabulary: un-
known tokens. Applying f to the processed inputs results in the following matrices:
Xenc-tokenized = {1, 2, 3, 4, 5, 6, 7, 9, 10} and Xdec-tokenized = {8, 24} for the encoder and
decoder’s input, respectively.

The input needs to be converted to a vector so it can be processed by the Trans-
former. Let g : {0 ≤ Z ≤ |V|} → dmodel be the mapping from of an integer to
a vector of dimension dmodel . After applying Xenc-tokenized and Xdec-tokenized to g for
every token in the sequence we end up with the matrices Xenc ∈ RNenc×dmodel and
Xdec ∈ RNdec×dmodel , where Nenc and Ndec represent the length of the input sequence
for both the encoder and decoder, respectively. Both the encoder and decoder’s in-
put will have a positional encodings applied to them as defined previously. Let
Xenc-pos and Xdec-pos be the resulting matrices after positional encoding is applied to
the encoder and decoder’s input, respectively.

The encoder of the Transformer consists of Lenc layers stacked on top of one an-
other, with the ith layer being defined as

x1 = mhablock(X, X, X)

x2 = pw f f nblock(x1)

Encoderi
layer(X) = x2,

(2.11)

where the input matrix X ∈ RNenc×dmodel plays the role of the query, key, and value in
the multi-head attention block (2.10), i.e., self-attention is performed. A new matrix
x1 ∈ RNenc×dmodel is constructed. The point-wise feed-forward network block (2.9)
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takes as input x1 and generates a new matrix x2 ∈ RNenc×dmodel , which is taken as the
output of the ith encoder layer.

The encoder as a whole is defined as

O1
enc = Encoder1

layer(X0)

Oi
enc = Encoderi

layer(O
i−1
enc ) ∀ {1 < i ≤ Lenc}

Trans f ormerencoder(X0) = OLenc
enc ,

(2.12)

where the input matrix X0 ∈ RNenc×dmodel is the input to the first layer of the encoder
(2.11). A new matrix O1

enc ∈ RNenc×dmodel is produced and is input to the next en-
coder layer. This process repeats until the Lth

enc encoder layer generates a new matrix
OLenc

enc ∈ RNenc×dmodel , which is taken as the output of the encoder.
The decoder of the Transformer consists of Ldec layers stacked on top of one an-

other. The ith layer is defined as

x1 = mhablock(X, X, X)

x2 = mhablock(x1, OLenc
enc , OLenc

enc )

x3 = pw f f nblock(x2)

Decoderi
layer(X, OLenc

enc ) = x3,

(2.13)

where the input matrices are X ∈ RNdec×dmodel and OLenc
enc ∈ RNenc×dmodel , representing

the decoder’s input and the encoded representation of the encoder’s input, respec-
tively. The matrix X is utilized as the query, key, and value of the first multi-head
attention block (2.10), i.e., self-attention is performed. A new matrix x1 ∈ RNdec×dmodel

is constructed. A second multi-head attention block (2.10) utilizes the matrix x1 as
the query, and the encoded representation OLenc

enc as the key and value, outputting a
new matrix x2 ∈ RNdec×dmodel . Lastly, a point-wise feed-forward network block (2.9)
takes the matrix x2 as input and assembles a new matrix x3 ∈ RNdec×dmodel , which is
the output of the ith decoder layer.

The decoder as a whole is defined as

O1
dec = Decoder1

layer(X0, OLenc
enc )

Oi
dec = Decoderi

layer(O
i−1
dec , OLenc

enc ) ∀ {1 < i ≤ Ldec}

Trans f ormerdecoder(X0, OLenc
enc ) = OLdec

dec ,

(2.14)

where the input matrices are X0 ∈ RNdec×dmodel and OLenc
enc ∈ RNenc×dmodel , representing

the input sequence of the decoder and the encoded representation of the encoder’s
input, respectively. They both are input to the first decoder layer (2.13), which pro-
duces a new matrix O1

dec ∈ RNdec×dmodel . For all subsequent decoder layers the input
is the output of the previous decoder layer Oi−1

dec ∈ RNdec×dmodel and the same encoded
representation OLenc

enc . This process repeats until the Lth
dec decoder layer generates a

new matrix OLdec
dec ∈ RNdec×dmodel , which is taken as the output of the decoder.
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The Transformer as a whole consists of an encoder and decoder as described
previously. It is defined as

OLenc
enc = Trans f ormerencoder(Xencoder)

OLdec
dec = Trans f ormerdecoder(Xdecoder, OLenc

enc )

Ologits = OLdec
dec Woutput

Oprob = so f tmax(Ologits)

Trans f ormer(Xencoder, Xdecoder) = Oprob,

(2.15)

where the input matrices are Xencoder ∈ RNenc×dmodel and Xdecoder ∈ RNdec×dmodel , repre-
senting the encoder and decoder’s input, respectively. Utilising our previously con-
structed example the encoder and decoder’s input would be Xenc-pos and Xdec-pos,
respectively. The encoder and decoder is traversed as described in (2.12) and (2.14),
respectively; producing new matrices OLenc

enc ∈ RNenc×dmodel and OLdec
dec ∈ RNdec×dmodel , re-

spectively. The output matrix of the decoder OLdec
dec ∈ RNdec×dmodel is dot-product mul-

tiplied with Woutput ∈ Rdmodel×|Vd|, producing a new matrix Ologits ∈ RNdec×|Vd|. It is
then passed through a softmax activation function, inducing a probability distribu-
tion over the target vocabulary for each position in the target sequence; it produces
a new matrix Oprob ∈ RNdec×|Vd|, where Vd is the vocabulary of the decoder and |Vd|
is the size of the vocabulary. For each position in the target sequence, the maximum
probability and the token that it represents is chosen as the prediction, concluding
the Transformer.

2.4.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a bi-directional
masked language model [23]. BERT is practically identical to the encoder in the
vanilla Transformer [90] with minor differences: the GELU activation function [34]
replaces the ReLU activation function and the input embedding process is modified
to include segment embeddings.

The input to BERT is a sequence of text with a classification token [CLS] ap-
pended to the beginning of the sequence and a separator token [SEP] that splits the
input into segments.

Example. [CLS] Shaquille O’Neal is the most dominant basketball player ever [SEP] He
has broken the backboard many times [SEP]

The input sequence is converted to a machine readable format by converting all
tokens into their associated WordPiece embeddings [98] via a tokenizer that pro-
cesses the input. As with the vanilla Transformer, positional information is missing,
hence, absolute position embeddings are utilised; with the addition of segments via
the [SEP] token, each segment has a unique embedding vector associated with it,
which is added to every token’s embedding vector in the associated segment.

The output of BERT is no different to that in the vanilla Transformer’s encoder
except for an additional fully connected layer being inserted after the last encoder
layer. BERT can perform various tasks: classification via the [CLS] token, tasks that
require predictions at each position in the input (e.g., parts of speech tagging), and
text generation via the last token in the sequence.

BERT is pre-trained on a masked language modelling and next sentence predic-
tion task. Masked language modelling refers to a task where tokens in a segment of
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text are masked out, with the goal being to predict the original tokens in the masked
positions given the context, i.e., the surrounding tokens. Of the tokens in the se-
quence, 15% are randomly selected to be masked. Of the masked positions, 80% of
the time they are replaced with the [MASK] token, 10% of the time with a random
token, and 10% of the time they are unchanged. Next sentence prediction refers to a
task where two segments of text, separated by the [SEP] token, are predicted by the
[CLS] token position: true if the second segment follows the first and false otherwise.

The pre-trained BERT model can be used as a starting point to fine-tune further
on specific tasks, utilising the features learned about language as a starting point
and building upon them. At the time of the paper’s publication, it achieved SOTA
performance in many NLP tasks by fine-tuning on said task [23].

2.4.4 GPT

The Generative Pre-trained Transformer (GPT) family of architectures [10, 65, 66]
involves training a decoder only Transformer on a large chunk of text in an auto-
regressive language modelling task. Unlike BERT, GPT models cannot see future
tokens in the attention component (i.e., it is uni-directional), simulating the situation
the model would encounter in evaluation mode, i.e., the generation of the tokens
one by one. Here, we will focus on the GPT architecture present in GPT-2 [66].

Compared to the original Transformer decoder [90], there are some modifications
to the architecture: the omission of the second multi-head attention block in all layers
(that would otherwise take as input the encoded representation if it existed); in the
point-wise feed-forward network, the ReLU activation function is replaced with the
GELU activation function [34]; in each block, the layer normalization layer is moved
to the beginning.

The input to GPT is a sequence of text with additional special tokens that perform
specific tasks. The following example showcases such special tokens: <s> and </s>,
representing the start and end tokens, respectively.

Example. <s> Shaquille O’Neal has broken the backboard many times </s>

The input sequence is converted to a machine readable format via a Byte Pair
Encoding (BPE) [78]. In practice, it is wrapped up in a tokenizer that processes the
text in its entirety, converting the sequence into its associated embedding matrix via
BPE. Positional information is lacking in the embedding matrix, therefore, absolute
position embeddings are utilised, as in the vanilla Transformer.

The output of GPT is identical to that of the Transformer decoder, including its
utilisation of a fully connected layer with a softmax activation function to generate
a prediction at every position in the sequence. With the utilisation of additional
special tokens in the input, different fine-tuning tasks can be performed including
many different types of QA datasets: MQA, span selection, answer generation, etc.

GPT is pre-trained on an auto-regressive language modelling task, where it gen-
erates a token one by one conditioned on the previously generated tokens acting as
context. The probability of generating a sequence y = (y1, y2, . . . , yN) is given by

P(y) = ΠN
i P(yi|y1, y2, . . . , yi−1),

where the total probability P(y) is the product of the probabilities of each token in
the sequence being generated given the context of all preceding tokens.

A pre-trained GPT model can be further fine-tuned on specific tasks such as QA,
utilising the features learned about language as a starting point and building upon
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them. Additionally, pre-training on a large amount of data and by a model with
a large number of parameters, like GPT-3, allows for good performance on down-
stream tasks without any additional training in a zero-shot, one-shot, and few-shot
setting [10]. A few-shot setting is when a few (more than one) examples of said
downstream tasks — including the expected answer and its corresponding format
— are provided with the current input; a one-shot setting only includes one example;
a zero-shot setting includes no examples.

2.5 General question answering

Question answering (QA) involves the ability to perform inference and construct
an answer to a question correctly if possible. It is an important sub-field in NLP
since NLP tasks can be posed as questions [56]. Generalisation is an important,
but often overlooked aspect in QA, with there existing a considerable gap in the
current models between performance on a dataset and the task of the dataset [105],
indicating that they do not generalise well within the same task, let alone QA in
general. General question answering can be defined in many ways in the current
literature: the performance of a single QA model with no further training on other
datasets not seen during training and to any potential question that could be posed
to it within reason [27, 41, 42]; in conjunction with the continual learning domain,
the speed and efficiency it can adapt to new QA datasets or types of questions in
general [105]. In this thesis, we focus on the former.

In this section, we will outline a variety of components of GQA in the literature:
(1) relevant benchmarks that test generalisation; (2) the role multi-task learning, or
the training procedure more generally, has on generalisation; (3) potential impacts
the Transformer architecture has on generalisation; and (4) the input format, or more
specifically, the text-to-text framework.

Benchmarks exist that test a single model’s ability to perform on a wide variety
of datasets [93, 94] and test their ability to generalise to out-of-domain datasets (i.e.,
datasets not seen during training) [27]. The GLUE [93] and SuperGLUE [94] bench-
mark both test a model’s performance on a wide variety of natural language under-
standing tasks, with SuperGLUE consisting of more difficult language modelling
tasks. The benchmark was originally constructed to promote models that acquire
knowledge across tasks, i.e., general knowledge. The MRQA 2019 Shared Task [27]
focuses on testing a model’s ability to generalise to out-of-domain datasets, differ-
ing from the GLUE datasets where all datasets training sets are seen during training.
Additionally, [41, 42] utilise their own benchmark with out-of-domain datasets.

One of the main contributing factors to the lack of generalisation in QA models
is the training procedure [49, 87, 105], which determines what knowledge the model
can extract. A multi-task learning objective like that in [49] implicitly encodes a
regularisation effect where the model is unable to overfit to a single dataset. This
notion is supported in [87], where they determine that a model overfits to individ-
ual datasets, while training on multiple datasets in a multi-task setting improves
performance; additionally, they determine that more training data is beneficial to
generalisation.

In [105], they test generalisation in terms of a model’s ability to learn new tasks
quickly (i.e., continual learning), with the fewer training instances the better, prefer-
ably zero. This definition brings in other aspects to the formula, such as the catas-
trophic forgetting issue that plagues the continual learning domain, meta-learning,
and potential training curriculums. In their experiments, they find that a model
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overfits to individual datasets and performs poorly on other datasets of the same
task; it highlights the difference between learning in a dataset and a task. In the con-
tinual learning domain, they find that catastrophic forgetting runs rampant, forget-
ting previously acquired knowledge; however, they show that randomly sampling
examples from a task (across multiple datasets) and training on them help allevi-
ate the catastrophic forgetting phenomena, further supporting the notion that the
training procedure is a major contributor to generalisation.

The architecture of the Transformer can have an impact on the generalisation ca-
pabilities of the model. For example, keeping a memory of past activations, like that
in Transformer-XL [18] and the Compressive Transformer [67], allows for the model
to generalise to longer sequence lengths. Given that out-of-domain datasets may
require a context length greater than that encountered in training for good perfor-
mance, the ability to generalise to longer sequence lengths is essential.

The text-to-text framework utilised in UnifiedQA [41, 42] and introduced in [68]
converts QA datasets of different formats into a single unified format. Naturally,
a model trained on one format will perform worse on a different format, hence,
the text-to-text framework remedies the issue by converting all formats to a single
unified format. UnifiedQA, combined with multi-format learning on QA datasets,
shows the potential of unifying all formats, achieving SOTA results on a variety of
datasets and good performance on out-of-domain datasets, not seen during training.

2.6 Datasets

In this thesis, we utilise language modelling datasets to pre-train a model, allowing
it to acquire linguistic knowledge about language. We utilise multiple-choice, ex-
tractive, abstractive, and yes/no type QA datasets to test a model’s proficiency in
QA and GQA via the fine-tuning of the pre-trained model.

2.6.1 Language modelling

The metric used to measure a language model’s performance is perplexity (PPL)
[80]. Perplexity is a measurement of how well a model predicts a sample of text;
the lower the perplexity score the better the model is. Perplexity is calculated by
emean(loss), where e is Euler’s number and mean(loss) is the average cross entropy
loss over a corpus.

The Colossal Clean Crawled Corpus (C4) is an English corpus consisting of fil-
tered text scraped from the web via Common Crawl [68]. The resulting data is
around (750 GB); Hugging Face hosts a compressed variant of 305 GB that we use
for pre-training in this thesis1.

LAnguage Modelling Broadened to Account for Discourse Aspects (LAM-
BADA) is a dataset that tests a language model’s understanding of broader context
in natural text from novels [62]. The task is to predict the last word in the provided
sequence of text. The training set consists of 2,662 novels and 203 million words;
training is a typical language modelling task. The validation and test sets consist
of 4,869 and 5,153 passages, respectively, each coming from disjoint novels distinct
from those in the training set. The average number of tokens in each is 75.4 and 75
for the validation and test sets, respectively.

1https://huggingface.co/datasets/c4

https://huggingface.co/datasets/c4


2.6. Datasets 29

The metrics used to obtain results is the exact-match accuracy of predicting the
final world correctly; alternatively, the whole passage could be utilised in its entirety
and have the perplexity score reported. We do the latter in this thesis.

WikiText is a language modelling dataset made up of Wikipedia articles. There
exist two versions of the dataset: WikiText-2 and Wikitext-103, which correspond to
the 2 million and 103 million word versions, respectively [57]. Both datasets share
the same validation and test sets with the only difference being the vocabulary. Per-
plexity is the default metric used to measure a model’s language model capabilities
on WikiText.

The Penn Treebank (PTB) is an American English corpus of over 4.5 million
words [53]. It has been pre-processed by [60], shrinking the corpus to a training
set of 930,000 words, a validation set of 74,000 words, and a test set of 82,000 words.
We utilise the pre-processed version and utilise perplexity as our metric to evaluate
performance.

2.6.2 Multiple-choice

The metric to measure performance on MQA datasets is the number of correctly
predicted questions divided by the total number of questions. More precisely, the
exact-match accuracy of the correct label being generated.

ReAding Comprehension Dataset from Examinations (RACE) is a high quality,
large reading comprehension dataset taken from English examinations for middle
school (ages 12-15) and high school (ages 15-18) Chinese students [45]. The dataset
consists of 27,933 passages and 97,687 questions, each with four answer options. The
dataset is split into two subsets: RACE-m and RACE-h, representing the middle and
high school subsets, respectively.

For the RACE-m subset, the training set consists of 6,409 passages and 25,421
questions; the validation set consists of 368 passages and 1,436 questions; the test set
consists of 362 passages and 1,436 questions. For the RACE-h subset, the training set
consists of 18,728 passages and 62,445 questions; the validation set consists of 1,021
passages and 3,451 questions; the test set consists of 1,045 passages and 3,498 ques-
tions. The complete RACE dataset is the RACE-m and RACE-h subsets combined.

The AI2 Reasoning Challenge (ARC) is a multiple-choice QA dataset made up
of 7,787 natural science questions from grades 3–9 [16]. The dataset is split into two
subsets: the challenge subset and the easy subset, each consisting of 2,590 and 5,197
questions, respectively. For each question, there exist four answer options, with only
one being correct.

The challenge subset consists of 1,119 training questions, 299 validation ques-
tions, and 1,172 test questions. The easy subset consists of 2,251 training questions,
570 validation questions, and 2,376 test questions. In total there are 3,370 training
questions, 869 validation questions, and 3,548 test questions.

The dataset provides a science text corpus of 14 million science sentences related
to the task. Information retrieval of sentences from the corpus, or alternative means,
is expected for good performance in this task; however, it is not required. We do not
utilise any information retrieval in this thesis.

Open Book Question Answering (OBQA) is a multiple-choice QA dataset con-
sisting of a corpus of 1,326 elementary level science facts and 5,957 multiple choice
questions, each consisting of four answer options, about the corpus [59]; it is mod-
elled after open book exams. The questions are split into 4,957, 500, and 500 train-
ing, validation, and test questions, respectively. Alternatively, this dataset can be
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converted to a closed book setting where no corpus is utilised; what we do in this
thesis.

MCTest is a multiple-choice QA dataset consisting of an array of short fiction
stories for children and questions about said stories; all stories have four questions
associated with them, each with four answer options [72]. The dataset is split into
MC160 and MC500, where the former refers to 160 stories and 640 questions, and
the latter refers to 500 stories and 2000 questions. Both sets are randomly split into
training, validation, and test sets; MC160’s stories are split into 70, 30, and 60 stories,
respectively, while MC500’s stories are split into 300, 50, and 150 stories, respectively.
In this thesis, we utilise both together as a single dataset and report the results on
such.

CommonsenseQA (CQA) is a multiple-choice QA dataset centred around com-
monsense, constructed to test a model’s ability to answer questions that require
background knowledge about the world internal to the model [88]. The dataset
consists of five multiple-choice answers, the first three being target concepts from
ConceptNet [84], the fourth being a distractor from ConceptNet, and the last being
an author created distractor. In total the dataset consists of 12,247 questions and is
randomly split into an 80/10/10 training, validation, and test split.

WinoGrande (WG) is a commonsense multiple-choice QA dataset consisting of
pronoun resolution problems, where each question has two possible answers asso-
ciated with it and is formulated as a fill in the blank task [73]. The dataset consists
of different sized training files (we utilise the training file with 40,398 questions, the
extra-large version) and each example has a twin, where a trigger word is changed
to flip the answer. The validation set has 1,267 questions, while the test set has 1,767
questions; each question in both sets may not have a twin.

Physical Interaction: Question Answering (PIQA) is a multiple-choice QA
dataset that tests a model’s ability to answer physical commonsense questions, even
though they do not experience the physical world [7]. The task consists of a question
(goal) and two solutions; the model is tasked to predict the correct solution to the
goal. In total there are 16,112 training, 1,838 validation, and 3,084 test questions.

Social IQa (SIQA) is a multiple-choice QA dataset that tests a model’s common-
sense reasoning capabilities about social situations, testing their emotional and so-
cial intelligence in everyday scenarios [74]. The task consists of a question and three
possible answer options. The dataset consists of 33,410 training, 1,954 validation,
and 2,224 test questions.

2.6.3 Extractive

The metric used to evaluate extractive (span extraction) datasets is to calculate the
F1-score [97] of the extracted span compared to the correct span. The Fβ-score, more
generally, is a measure of a model’s accuracy on a task utilising both precision and
recall. The Fβ-score is formally defined as

Fβ = (1 + β)
precision × recall

(β2 + precision) + recall
.

In this thesis, we utilise the macro average F1-score, where the score is computed
independently for each class.

Stanford Question Answering Dataset (SQuAD) is a reading comprehension
dataset focused on the extraction of spans of text from a passage according to a ques-
tion about said passage [69, 70]. Version one and two of the dataset differ in only that
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the second includes an additional 53,755 unanswerable questions produced adver-
sarially; we detail statistics for the second version only. The training set consists
of 130,319 questions of which 43,498 are negative (unanswerable); 11,873 questions
where 5,945 are negative in the validation set; 8,862 questions of which 4,332 are
negative in the test set.

Reasoning Over Paragraph Effects in Situations (ROPES) is a reading compre-
hension dataset that requires the application of knowledge gained from a passage to
new situations; an answer span is extracted from the passage to answer the question
[48]. The dataset consists of 10,924 training, 1,688 validation, and 1,710 test instances.

Quoref is a co-reference resolution dataset focused on the extraction of spans of
text from English paragraphs, extracted from Wikipedia [21]. Each example con-
sists of a passage and a question about the passage, where a span is extracted from
the passage to answer the question. The dataset consists of 19,299 training, 2,418
validation, and 2,537 test instances.

2.6.4 Abstractive

The metric used to evaluate abstractive datasets is Recall-Oriented Understudy for
Gisting Evaluation (ROUGE): measures for automatically comparing the quality of
a summary by comparison to an optimal summary, which is often human generated
[47]. Specifically, the ROUGE-L metric, where L represents the longest common
subsequence, is what is utilised as the metric for abstractive datasets in this thesis;
we refer the reader to equations 2, 3, and 4 in [47] for an in-depth description. In
abstractive datasets, the answer is not necessarily an extracted span, but a generated
answer by the model that can include tokens outside the input’s vocabulary.

NarrativeQA is a dataset created to encourage deeper comprehension of lan-
guage by creating questions that are to be answered after reading through a book
or movie script in their entirety; alternatively, a version where shorter human-
generated summaries replace the books and scripts exists [44]. The dataset consists
of 32,747 training, 3,461 validation, and 10,557 test instances. In this thesis, we utilise
the version of the dataset with shorter summaries.

Discrete Reasoning Over the content of Paragraphs (DROP) is an adversarially
created English reading comprehension dataset; it requires a model to resolve refer-
ences in a question and the performing of discrete operations like sorting, addition,
and subtraction [25]. The dataset consists of 5,565 training passages, each with an
average of 13.91 questions; 582 validation passages, each with an average of 16.38
questions; 588 test passages, each with an average of 16.36 questions.

2.6.5 Yes/no

Yes/no datasets require the generation of a boolean (i.e., either true/yes or false/no)
answer to a question. We utilise the generation of one token to be taken as the
model’s answer with the metric being the accuracy in terms of the number of cor-
rectly predicted samples versus the total number of samples; alternatively known
as exact-match accuracy. Other models utilise the generation of a sequence [42] and
calculate the F1-score; we utilise the exact-match accuracy in this thesis.

BoolQ is a dataset of naturally occurring and unexpectedly challenging boolean
questions that require non-factoid information and entailment like inference to solve
[15]. The dataset consists of 16,000 questions in total: 9,400 for the training, 3,200 for
the validation, and 3,200 for the test sets.
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2.6.6 Contrast sets

The creation of contrast sets allow for a more in-depth examination of the abilities a
dataset is intended to examine, reducing the systematic gaps of the dataset by dis-
allowing good performance by simple decision rules [28]. Contrast sets are created
by the manual perturbation of the test instances of datasets around pivot instances
in impactful ways that change the correct label. Note, however, that they are dif-
ferent to adversarial examples — which themselves change the input such that the
model’s prediction changes, but not the correct label — in that they intend to ex-
amine if a model’s decision boundary is true to the real decision boundary locally
around pivot instances by changing the correct label. In this thesis, we utilise con-
trast sets for BoolQ, DROP, Quoref, and ROPES, each denoted BoolQ-CS, DROP-CS,
Quoref-CS, and ROPES-CS, respectively; we refer the reader to [28] for the method-
ology of the construction of such contrast sets.
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Chapter 3

A Simple Entwinement of
Neuromodulation and the
Transformer

This chapter introduces a simple version of the Neuromodulated Transformer
(NeMoT), which entwines neuromodulation with the Transformer architecture. Sec-
tion 3.1 provides an introduction to this chapter. Section 3.2 delivers preliminary
information needed to understand this chapter (for more detail see Chapter 2). Sec-
tion 3.3 provides an overview of NeMoT and the multi-format training setup. Sec-
tion 3.4 introduces a simplistic implementation of NeMoT and formally defines it.
Section 3.5 details all experiments conducted on NeMoT and is split into five further
subsections. Namely, Sections 3.5.1, 3.5.2, 3.5.3, 3.5.4 and 3.5.5, which represent the
pre-training of NeMoT, the fine-tuning of NeMoT on individual datasets, the fine-
tuning of NeMoT in a GQA setting, the fine-tuning of the generally trained NeMoT
on individual datasets, and the fine-tuning of NeMoT with reading strategies on in-
dividual datasets, respectively. Section 3.6 provides a discussion of the results and
concludes the chapter.

3.1 Introduction

We describe a model to be generally capable of QA if it can at the very least, achieve
near-human performance on not just a single QA dataset, but on any possible ques-
tion that could be posed to it from potentially any dataset or real-world application.
Such a single model is expected to perform well on not only the datasets trained on,
but other possibly quite distinct datasets where the skills learned and knowledge
acquired during training — such as the ability to perform inference and various
reasoning capabilities — should generalise. We emphasise that we focus on the sit-
uation where the model is fixed after training, not where it continually learns. We
coin the term general question answering (GQA) for the previously described domain:
performance on a wide variety of distinct, possibly strikingly different QA datasets
in a closed environment; QA in the real-world domain, where the questions encoun-
tered come from a distribution different to that encountered during training; and all
that is in-between the closed environment and the real-world. GQA in machines has
many benefits to society: aiding researchers by automating redundant tasks, an im-
proved question answering ability of search engines and dialogue systems, medical
diagnosis, and possibly a step towards AGI.

The current paradigm in QA consists of the utilisation of a pre-trained language
model via the fine-tuning of the pre-trained language model on either individual
tasks or a set of tasks [10, 23, 33, 50, 65, 68, 103]. It has been largely successful,
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dominating the QA and GQA leaderboards [37, 41, 42, 52, 100, 110, 111]; however,
performance in multiple and strikingly distinct datasets has been limited by many
factors. For example, the issue of the different formats used in QA datasets and the
resulting echo chamber [42]; the increasing number of parameters [10, 68] and data
[87] needed to achieve better performance in GQA; simple heuristics learned involv-
ing entity types, question-context overlap, and learned latent patterns in datasets are
robust to corrupt examples (e.g., a shuffled context and incomplete input) but not to
authentic variations [77]. Success in improving generalisation has come mainly by
increasing the size of QA models [10, 68], training on more data [87], an improved
training regime [42, 87], and improvements to the Transformer architecture [18, 67,
111].

We explore neuromodulation in this chapter: a biological mechanism that is in-
volved in the continuous tuning of a neuron’s input and output behaviour condi-
tioned on external stimuli in a context-dependent manner [5, 54, 91]. Given the
impact that neuromodulation has on organisms, such as the ability to locally modify
learning in response to external stimuli, neuromodulation is integrated with ANNs
in the hope of achieving the same effects in the continual learning domain. Exam-
ples of such include [26, 82, 92] who locally modify the learning rates of individual
connections between neurons and [6] who integrates neuromodulation with back-
propagation via a gating mechanism.

We hypothesise that neuromodulation will improve performance in the GQA do-
main because it will allow for the regulation of a population of neurons (activations)
[40] conditioned on the context in the form of the provided input to the model it-
self and additional auxiliary tokens. The input to the model is typically a question
with a provided passage, for example. The auxiliary tokens are manually inserted
tokens that represent a certain type of question or process. The questions and pas-
sages in GQA will likely come from different topics and tasks, which will require
different reasoning skills and internal knowledge. The ability to regulate a popula-
tion of neurons conditioned on the context (i.e., question, passage, and the auxiliary
tokens) will allow for more complex rules to be learned, that when coupled with
an environment that encourages generalisation (e.g., multi-format training), will im-
prove performance in GQA; it allows for the modification of the output of the model
conditioned on the context.

Specifically, we experiment with neuromodulation induced gating in the Trans-
former architecture via a neuromodulatory mechanism. The neuromodulatory
mechanism takes context as input and produces a gating matrix of values between
zero and one; through element-wise multiplication, the matrix gates activations at a
specific point in another set of Transformer layers. If the value of the gating matrix is
one, then the resulting activation is unchanged; as it approaches zero an activation’s
value is pushed towards zero. Neuromodulation has seen success in the continual
learning domain; we aim to see if the success holds in a non-continual learning do-
main and results in an improved generalisation in QA. We utilise the results in this
chapter as a bellwether to see if it should be explored further in not only GQA but
more broadly in NLP.

Hence, in this chapter, we extend the Transformer via the entwinement of neuro-
modulation by introducing the Neuromodulated Transformer (NeMoT). We utilise
the text-to-text framework outlined in [42, 68] with NeMoT, as it allows for testing
on out-of-domain data of any format; a goal of GQA and this thesis. Additionally,
we experiment with integrating two reading strategies with NeMoT: answer option
interaction (AOI) [109] and highlighting [86].
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3.2 Preliminaries

3.2.1 Transformer

The Transformer is an encoder-decoder architecture that relies entirely on attention,
eschewing recurrence entirely [90]. The input sequence to the model is converted
into a matrix of word embeddings and has positional information in the form of ab-
solute position embeddings added. The structure of the Transformer consists of an
encoder and decoder, each consisting of multiple layers. Each layer consists of mul-
tiple blocks, which themselves consist of a residual connection, layer normalization
layer, and a module. The role of the encoder is to produce an encoded representation
of the input sequence, while that of the decoder is to generate an answer to the task.

In general, a block is traversed in the following order: the module first, residual
connection second [32], and layer normalization last [2]. There exist two types of
blocks, each differing only in its module. The first block consists of a multi-head
attention module, which takes as input a query, key, and value matrix; all are linearly
projected and split into h heads. Each head has dot-product attention performed
over it, which calculates an attention matrix between the sequence that the query
represents and that for the key; if the sequence is the same for both, then it is referred
to as self-attention. The second block consists of a point-wise feed-forward network
module, which consists of two fully connected layers in a typical neural network;
the first layer typically consists of more hidden units than the second.

Each layer in the encoder consists of two blocks, the first containing a multi-
head attention module and the second containing a point-wise feed-forward net-
work module. The multi-head attention module performs self-attention, where the
attention mechanism consists of a sequence attending to itself. The output of the
encoder is referred to as the encoded representation.

Each layer in the decoder consists of three blocks, the first two containing multi-
head attention modules and the third containing a point-wise feed-forward network
module. The first multi-head attention module performs self-attention like that in
the encoder; the second performs not self-attention, but the attending from the de-
coder’s input sequence to that of the encoded representation. After the last layer of
the decoder is traversed, its output is passed through a fully connected layer, which
generates a prediction over the output vocabulary at each position.

The previously discussed procedure encompasses the Transformer and how it is
traversed. For a deeper dive into the Transformer see Section 2.4 in Chapter 2.

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a bi-directional
masked language model [23]. BERT is practically identical to the encoder in the
vanilla Transformer [90] with minor differences: the GELU activation function [34]
replaces the ReLU activation function and the input embedding process is modified
to include segment embeddings.

The input to BERT is a sequence of text with a classification token [CLS] ap-
pended to the beginning of the sequence and a separator token [SEP] that splits the
input into segments.

Example. [CLS] Shaquille O’Neal is the most dominant basketball player ever [SEP] He
has broken the backboard many times [SEP]
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The input sequence is converted to a machine readable format by converting all
tokens into their associated WordPiece embeddings [98] via a tokenizer that pro-
cesses the input. As with the vanilla Transformer, positional information is missing,
hence, absolute position embeddings are utilised; with the addition of segments via
the [SEP] token, each segment has a unique embedding vector associated with it,
which is added to every token’s embedding vector in the associated segment.

The output of BERT is no different to that in the vanilla Transformer’s encoder
except for an additional fully connected layer being inserted after the last encoder
layer. BERT can perform different tasks: classification via the [CLS] token, tasks that
require predictions at each position in the input (e.g., parts of speech tagging), and
text generation via the last token in the sequence.

BERT is pre-trained on a masked language modelling and next sentence predic-
tion task. Masked language modelling refers to a task where tokens in a segment of
text are masked out, with the goal being to predict the original tokens in the masked
positions given the context, i.e., the surrounding tokens. Of the tokens in the se-
quence, 15% are randomly selected to be masked. Of the masked positions, 80% of
the time they are replaced with the [MASK] token, 10% of the time with a random
token, and 10% of the time they are unchanged. Next sentence prediction refers to a
task where two segments of text, separated by the [SEP] token, are predicted by the
[CLS] token position: true if the second segment follows the first and false otherwise.

The pre-trained BERT model can be used as a starting point to fine-tune further
on specific tasks, utilising the features learned about language as a starting point
and building upon them. At the time of the paper’s publication, it achieved SOTA
performance on many NLP tasks by fine-tuning on said task [23].

GPT

The Generative Pre-trained Transformer (GPT) family of architectures [10, 65, 66]
involves training a decoder only Transformer on a large chunk of text in an auto-
regressive language modelling task. Unlike BERT, GPT models cannot see future
tokens in the attention component (i.e., it is uni-directional), simulating the situation
the model would encounter in evaluation mode, i.e., the generation of the tokens
one by one. Here, we will focus on the GPT architecture present in GPT-2 [66].

Compared to the original Transformer decoder [90], there are some modifications
to the architecture: the omission of the second multi-head attention block in all layers
(that would otherwise take as input the encoded representation if it existed); in the
point-wise feed-forward network, the ReLU activation function is replaced with the
GELU activation function [34]; in each block, the layer normalization layer is moved
to the beginning.

The input and output of GPT are similar to that of the decoder in the vanilla
Transformer. We add that additional special tokens such as the start token <s> and
end token </s>, which represent the start and end of a sequence respectively, are
incorporated into the vocabulary.

GPT is pre-trained on an auto-regressive language modelling task, where it gen-
erates a token one by one conditioned on the previously generated tokens acting as
context. The probability of generating a sequence y = (y1, y2, . . . , yN) is given by

P(y) = ΠN
i P(yi|y1, y2, . . . , yi−1),

where the total probability P(y) is the product of the probabilities of each token in
the sequence being generated given the context of all preceding tokens.
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3.2.2 Neuromodulation

The communication of neurons through a synapse is achieved through a process
known as neurotransmission. It involves the release of a chemical or electrical signal
(i.e., a neurotransmitter). A neurotransmitter is a chemical signal released into the
synaptic cleft, it binds to receptors on target cells (neurons), changing their electrical
properties and resulting in a large variety of post-synaptic effects [17].

Neuromodulation is closely related to neurotransmission; it consists of neuro-
modulators, a type of neurotransmitter. Neuromodulation refers to a biological
mechanism that is involved in the continuous tuning of a neuron’s input and out-
put behaviour conditioned on external stimuli in a context-dependent manner [5,
54, 91]; it entails the ability to change the learning rate of individual connections
between neurons [26]; and it plays a key role in the facilitation of learning [22]. Neu-
romodulators are chemical signals with the ability to locally modify learning rates
by either up-regulating or down-regulating them in response to external stimuli [1,
11, 26, 36]. They have spatially distributed and temporally extended effects on re-
cipient neurons, potentially allowing for the regulation of a population of neurons
[24, 40, 39, 55, 75].

Given the impact that neuromodulation has on organisms, such as the ability
to locally modify learning in response to external stimuli, neuromodulation is inte-
grated with ANNs in the hope of achieving the same effects. One such technique
to integrate neuromodulation with ANNs is Gating. Gating, in the context of neu-
romodulation in ANNs, refers to the element-wise multiplication between a gating
matrix and target matrix [6], where the gating matrix is produced by a network that
is passed external context as input. If an activation in the target matrix is multiplied
by one, then it is left unchanged; as the value it is multiplied with approaches zero,
the target matrix’s activation also approaches zero.

3.2.3 Metacognitive reading strategies

Reading strategies is an expansive term used to characterise the planned and ex-
plicit actions that a reader undertakes to help them decipher text to meaning [61,
71]. They are utilized by an individual to improve their reading comprehension and
proficiency in reading and are often taught to individuals who lack reading compre-
hension capabilities (e.g. second language learners and children). “Previewing text
before reading”, “guessing the meaning of unknown words” and “summarizing text
information” are some examples of reading strategies [106].

Metacognition is defined as knowledge about cognition and regulation (i.e., con-
trol) of cognition, or alternatively, simply thinking about thinking. It is considered a
high-level cognition that can be split into many sub-components, but of two mainly:
knowledge and control [4]. The metacognitive component of reading strategies in-
volves an individual’s knowledge of reading strategies and their ability to control
their usage of reading strategies.

3.2.4 Overview of datasets

In this chapter, we utilise language modelling datasets to pre-train the model, allow-
ing it to acquire linguistic knowledge about language. We utilise multiple-choice,
extractive, abstractive, and yes/no type QA datasets to test a model’s proficiency in
QA and GQA via the fine-tuning of the pre-trained model.

Language modelling datasets are utilised to test a model’s linguistic knowl-
edge about language; the metric we use is perplexity [80]. The language modelling
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datasets we utilise are C4 [68], LAMBADA [62], WikiText-2 and WikiText-103 [57],
and PTB [53, 60].

MQA datasets require a model to select one of the provided answer options to
the question; the metric we use is exact-match accuracy for the predicted label. The
MQA datasets we utilise are RACE [45], ARC [16], OBQA [59], MCTest [72], CQA
[88], WG [73], PIQA [7], and SIQA [74].

Extractive datasets involve a model extracting a span of text from a provided
passage; the metric we use is the macro average F1-score. The extractive datasets we
utilise are SQuADv2 [69], ROPES [48], and Quoref [21].

Abstractive datasets are similar to extractive datasets, except for that a model is
expected to generate an answer that is not a span of text and consists of tokens out-
side of the input’s vocabulary; the metric we use is ROUGE-L [47]. The abstractive
datasets we utilise are NarrativeQA [44] and DROP [25].

Yes/no datasets require the generation of a boolean (i.e., either true/yes or
false/no) answer to a question; the metric we utilise is exact-match accuracy to a
generated boolean token. We utilise only one yes/no dataset, BoolQ [15].

Additionally, we utilise the contrast set [28] versions of some datasets in our
experiments. They are denoted by Quoref-CS, ROPES-CS, DROP-CS, and BoolQ-CS
for Quoref, ROPES, DROP, and BoolQ, respectively.

3.3 Overview

In this section we detail the text-to-text framework and multi-format training proce-
dure we utilise for GQA and provide an overview of NeMoT.

3.3.1 Text-to-text framework and multi-format training

A roadblock in achieving good performance in GQA is the different formats of QA
datasets. By format, we mean the structure of the input (e.g, if the passage comes
before the question or not) and how an output is generated (e.g., token generation
versus class prediction via a classification token). One way to overcome such is
the text-to-text framework utilised by UnifiedQA [42] and introduced in [68]. The
framework involves a model taking text as input and generating new text in a com-
mon format as output; UnifiedQA extends this framework to QA, where each QA
format is converted into a single unified format.

The following example showcases the unified format we utilise, which each QA
format is converted into.

Example 3.3.1. <p> . . . Kobe Bryant is the greatest Laker of all time. . . <q> Who is the
greatest Laker of all time? (1) Magic Johnson (2) Kobe Bryant (3) Shaquille O’Neil (4)
Jerry West (5) Kareem Abdul-Jabbar <sep> (2) </s>

If a passage is included with the question, then it is included first in the sequence
with <p> preluding it. Next is the question preluded by <q>. If the question is
multiple-choice then each answer option follows the question, with each answer
option being preluded by (1), (2), . . . , (m) for each of the m answer options, respec-
tively. After all answer options are listed the separator token <sep> is employed to
distinguish between the question and the generated answer. After the separator to-
ken, the answer is either generated during evaluation mode token by token until the
end token </s> is reached, or is listed in its entirety during training mode.

Additionally, we utilise the multi-format training procedure utilised in Uni-
fiedQA because of the increased generalisation it showed and its integration with
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the text-to-text framework [42]. Let there exist k different formats F1, F2, . . . , Fk in the
multi-format training procedure. Each format Fi consists of di datasets, each denoted
by Di

d1
, Di

d2
, . . . , Di

di
. Each dataset Di

j consists of a training set Ti
j and evaluation set

Ei
j. A specific subset of the datasets have no training set, i.e., the training set is

empty and the evaluation set is non-empty. Denote such datasets with a non-empty
training set as seed datasets and those with an empty training set as non-seed datasets.
The purpose of non-seed datasets is to test the generalisation capabilities of the model
on out-of-domain datasets, while seed datasets are utilised for training. We follow
[42] and utilise the same seed datasets: RACE, SQuADv2, NarrativeQA, BoolQ, ARC,
OBQA, and MCTest.

Multi-format training involves the training of all seed datasets together in a train-
ing pool T̃ where each dataset is evenly represented. The training set pool is con-
structed via

T̃ =
k⋃

i=1

di⋃
j=1

{uni f iedi(q)|q ∈ Ti
j},

where q ∈ Ti
j is a question — which may include the passage, answer options, and

answer to the question — and uni f iedi(q) is the conversion of a question q of the ith
format into the unified format as previously described. Each question q is included
proportional to 1/|Ti

j |, where |Ti
j | is the size of the training set for the ith format

and jth dataset of that format. Therefore, each batch on average will have the same
number of training instances from each of the seed datasets.

3.3.2 Overview of NeMoT

The input to NeMoT is a sequence of text such as that in Example 3.3.1, with three
auxiliary tokens appended to the beginning of the sequence (we emphasis that no
auxiliary tokens are shown in the example and that they are appended before <p>).
An auxiliary token fulfils the purpose of adding additional context to the input for
the neuromodulatory mechanism to be introduced. In NeMoT there are three posi-
tions reserved for auxiliary tokens.

The first position of the three auxiliary token positions is reserved for <cls>; its
role is primarily for the encoder mode but can easily be extended if needed. It is
utilized similarly to how it is in BERT, as a classification token [23].

The second position is reserved for the following auxiliary tokens: <enc> and
<dec>, which correspond to the encoder and decoder mode, respectively. The de-
coder mode differs from the encoder mode only in that it masks future tokens at a
given position (i.e., it is uni-directional, not bi-directional). The aim of the neuro-
modulatory mechanism in relation to the second position’s auxiliary token is to gate
the forward traversal of another network differently depending on if the model is
uni-directional or bi-directional.

The third position involves the following auxiliary tokens: <lm>, <mqa>, and
<gqa>; representing language modelling, multiple-choice question answering, and
generate question answer — the auto-regressive generation of a sequence of text to
answer the question — respectively. The neuromodulatory mechanism will gate the
forward traversal of another network differently depending on the auxiliary token
in the third position (alternatively known as the task position).
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NeMoT consists of three components, the vanilla set, neuromodulatory set, and output
set. The input sequence as described previously is converted to a machine read-
able format via a tokenizer that processes the input and converts it into its associ-
ated word embedding. The input is represented by a matrix of dimension RN×dmodel ,
where N is the sequence length including the auxiliary tokens, and dmodel is the di-
mension of NeMoT and the word embeddings; the resulting matrix has a positional
encoding applied to it (e.g., fixed absolute position embedding).

The vanilla set is a typical Transformer that takes as input the word embeddings
excluding the auxiliary tokens. Its objective is to process the input without the auxil-
iary tokens similarly to how a Transformer usually operates. The output is a matrix
of the same dimension as the input.

The neuromodulatory set is a typical Transformer that takes as input the output
of the vanilla set with the word embeddings of the auxiliary tokens appended to the
beginning of the sequence. Its objective is to produce a matrix of values between
zero and one to gate the output of the vanilla set before it is passed as input to the
output set. By gating the vanilla set’s output, it results in the modification of the
forward traversal in a context dependent manner.

The output set takes the gated matrix produced by the vanilla set and neuro-
modulatory set as input. It consists of many parallel Transformer blocks, each cor-
responding to a specific auxiliary token in the task position; for example, if <lm>
is the task auxiliary token then the Transformer block that corresponds to language
modelling is chosen and traversed. The output of this set is a matrix of the same
dimension as the input, which is input to a fully connected layer with a softmax
activation function, producing a prediction at each sequence position. For further
details on NeMoT, see Section 3.4.

3.4 A simple Neuromodulated Transformer

3.4.1 Introducing NeMoT

NeMoT, as depicted in Figure 3.1, is an extension to the Transformer via the entwine-
ment of neuromodulaion; it is inspired by the gating mechanism in [6]. This version
of NeMoT emphasises simplicity, with the objective being to measure the capabilities
of a neuromodulatory mechanism in the Transformer. The capabilities are measured
by performance in individual QA datasets and in a general QA setting (see Sections
3.5.2 and 3.5.3, respectively).

An emphasis of the design of this architecture is flexibility. For example, it should
be able to act in a bi-directional manner like BERT [23] if the user chooses, while eas-
ily having the capabilities to be uni-directional like GPT-2 [66]. The neuromodula-
tory mechanism and the associated auxiliary tokens are designed with this in mind
— one can easily add additional auxiliary tokens and modes if desired.

NeMoT consists of three sets of layers: the vanilla set, neuromodulatory set, and
the output set. The vanilla set is depicted in Figure 3.1 as the set of Y layers. It
receives as input a matrix representing the word embeddings of the input sequence,
excluding the auxiliary token positions; denote the length of the sequence excluding
the auxiliary tokens as Nvs. Positional encodings are added to the input sequence
excluding the auxiliary tokens as sketched in the figure.



3.4. A simple Neuromodulated Transformer 41

FIGURE 3.1: The Neuromodulated Transformer (NeMoT). The input
to the model is an input sequence and auxiliary tokens. Both are con-
verted into their associated word embeddings and absolute position
embeddings are applied to only the input sequence, not the auxiliary
tokens. The model consists of a vanilla set (the set of Y layers), neu-
romodulatory set (the set of M layers), and output set (the set of A
parallel Transformer blocks, each consisting of Z layers). The vanilla
set has its own fully connected layer to generate a prediction for aux-

iliary tasks, such as generating an auxiliary loss.
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Specifically, we utilise fixed absolute position embeddings, defined as follows:

PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel ),
(3.1)

where pos is a position in the input sequence, i is the dimension index, and dmodel
is the dimension of the Transformer and the word embeddings. Each dimension
i alternates between a sine and cosine function for even and odd dimension in-
dices, respectively, with the wavelengths forming a geometric progression from 2π
to 10000 × 2π.

The neuromodulatory set is the set of M layers. It takes the output matrix of
the vanilla set, which is of dimension Nvs × dmodel , and concatenates the auxiliary
token word embeddings to the beginning of the matrix, constructing a new matrix
of dimension Naux × dmodel ; the length of the sequence including the auxiliary tokens
is denoted by Naux. The output matrix of the neuromodulatory set has the sigmoid
function applied to it and is used to gate — via values between zero and one, scaling
the value of activations — the output matrix of the vanilla set; the auxiliary token
positions are excluded to match the shape of the matrices.

The output set is the set consisting of A parallel Transformer blocks, each con-
sisting of Z layers. It takes as input the gated matrix produced by the vanilla set and
neuromodulatory set and traverses through one of the A parallel blocks depend-
ing on the auxiliary token in the task position. Its output matrix is passed through
a fully connected layer with a softmax activation function, inducing a probability
distribution at each position in the sequence along the target vocabulary.

Each layer of NeMoT is made up of two blocks, where each block consists of a
residual connection [32], layer normalization layer [2], and a module. The module is
either a point-wise feed-forward network module or a multi-head attention module.

The multi-head attention module is defined as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i ),

(3.2)

where the input matrices are Q ∈ RNq×dq , K ∈ RNk×dk , and V ∈ RNv×dv , representing
the query, key, and value, respectively; the dimension of the query, key, and value
is dq, dk, and dv, respectively; the sequence length of the query, key, and value is
Nq, Nk, and Nv, respectively. The query, key, and value matrices are linearly pro-
jected via dot-product multiplication with WQ

i ∈ Rdmodel×dmodel , WK
i ∈ Rdmodel×dmodel ,

and WV
i ∈ Rdmodel×dmodel , respectively, resulting in new matrices of the same dimen-

sions; dmodel is the dimension of NeMoT and dq, dk, and dv are always equal to dmodel .
The linearly projected matrices are split into h evenly sized subsets, each of dimen-
sion Nq × (dq/h), Nk × (dk/h), and Nv × (dv/h) for the linearly projected query, key,
and value, respectively. The ith subsets (represented by QWQ

i , KWK
i , and VWV

i ) are
input to a dot-product attention module, where the output is a new matrix of dimen-
sion Nq × (dv/h); denote this by headi. Note that h must be a factor of dq, dk, and
dv. To conclude multi-head attention, all heads are concatenated together to form
a new matrix of dimension RNq×dv , which is then multiplied with WO ∈ Rdv×dmodel

via dot-product multiplication, resulting in a new matrix of dimension RNq×dmodel ,
concluding multi-head attention.

The dot-product attention module’s focal point is an attention matrix that in-
duces a probability distribution across rows (i.e., each row sums to one) with each
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column representing a token to attend to. It is defined as

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (3.3)

where the input matrices are Q ∈ RNq×dq , K ∈ RNk×dk , and V ∈ RNv×dv , representing
the query, key, and value, respectively. The query matrix is multiplied with the
transposed key matrix via dot-product multiplication to produce a new matrix of
dimension Nq × Nk, which is then scaled by the square root of the scaling parameter√

dk. The softmax activation function is applied across rows to the scaled matrix to
produce an attention matrix A ∈ RNq×Nk . The attention matrix induces a probability
distribution across rows, i.e., the sequence represented by the query attends to that
of the key. Dot-product multiplication is performed between the attention matrix
and the value matrix V, producing a new matrix of dimension Nq × dv, concluding
dot-product attention. Note that dq, dk, and dv are always equal; Nk and Nv must
always be equal; for self-attention, Nq and Nk must be equal. In practice, some of the
tokens in the attention matrix are masked meaning that they cannot be attended to
by other tokens (see Figure 3.2 for an overview of masking).

FIGURE 3.2: Types of masking in the attention matrix: purple indi-
cates that attending to that location is allowed, while orange indi-
cates that it is not allowed (i.e., they are masked); “aux” references
auxiliary tokens, while “tok” refers to all other tokens. The tokens
on the y-axis attend to positions on the x-axis; all attention matrices
shown are performing self-attention. In uni-directional models all fu-
ture tokens are masked; it is displayed in the “Mask Future Tokens”
matrix. Bi-directional models utilise full attention, where no positions
are masked; it is depicted in the “Full Attention” matrix. A combina-
tion of the two, which is utilised by NeMoT, is presented in the “Mask
Future Tokens + Auxiliary Token Full Attention” matrix, where the
auxiliary token positions have full attention to other auxiliary tokens,

but otherwise future tokens are masked.

The point-wise feed-forward network module consists of two fully connected
layers, one directly after the other in a typical neural network. It is defined as

a1 = GELU(XW1)

a2 = a1W2

FFNgelu(X) = a2,
(3.4)
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where the input is a matrix X ∈ RN×dmodel , and W1 ∈ Rdmodel×d f f and W2 ∈ Rd f f ×dmodel

represent the weight matrices of the first and second fully connected layers respec-
tively; N, dmodel , and d f f represent the sequence length, dimension of NeMoT, and
dimension of the point-wise feed-forward network, respectively. The matrix X is
multiplied with W1 by dot-product multiplication and has the Gaussian Error Lin-
ear Unit (GELU) [34] applied directly after, constructing a new matrix a1 ∈ RN×d f f .
Dot-product multiplication is performed between a1 and W2, producing a new ma-
trix a2 ∈ RN×dmodel , concluding the point-wise feed-forward network.

The block structure differs in NeMoT’s vanilla and neuromodulatory set to that
of the vanilla Transformer — unlike the output set — more closely aligning with
that of GPT-2 [66]. The point-wise feed-forward network block for the vanilla and
neuromodulatory set is

x1 = LayerNorm(X)

x2 = FFNgelu(x1)

x3 = (X + x2)

pw f f nblock-nmt(X) = x3,

(3.5)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input, and
dmodel is the dimension of NeMoT. The input is first passed through a layer normal-
ization layer, producing a new matrix x1 ∈ RN×dmodel . The point-wise feed-forward
network module (3.4) takes as input x1 and constructs a new matrix x2 ∈ RN×dmodel .
A residual connection is utilised via the element-wise addition of X and x2 together,
producing a new matrix x3 ∈ RN×dmodel ; it is utilised as the output of the block.

The point-wise feed-forward network block for the output set is

x1 = FFNgelu(X)

x2 = LayerNorm(X + x1)

pw f f nblock-oset(X) = x2,

(3.6)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input, and
dmodel is the dimension of NeMoT. The input is first passed through the point-wise
feed-forward network module (3.4), generating a new matrix x1 ∈ RN×dmodel . Layer
normalization is applied to the element-wise addition of x1 and X (i.e., a residual
connection), resulting in a new matrix matrix x2 ∈ RN×dmodel , which is taken as the
output of the block.

The multi-head attention block for the vanilla and neuromodulatory set is

x1 = LayerNorm(X)

x2 = MultiHead(x1, x1, x1)

x3 = X + x2

mhablock-nmt(X) = x3,

(3.7)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input, and
dmodel is the dimension of NeMoT. NeMoT’s architecture only utilises self-attention,
meaning that only a single matrix X is needed as input. The input matrix is passed
through a layer normalisation layer, constructing a new matrix x1 ∈ RN×dmodel .
The multi-head attention module (3.2) performs self-attention by utilising x1 as the
query, key, and value, cultivating a new matrix x2 ∈ RN×dmodel . A residual connec-
tion is performed by the element-wise addition of X and x2, producing a new matrix



3.4. A simple Neuromodulated Transformer 45

x3 ∈ RN×dmodel ; it is utilised as the output of the block.
The multi-head attention block for the output set is

x1 = MultiHead(X, X, X)

x2 = LayerNorm(X + x1)

mhablock-oset(X) = x2,
(3.8)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input,
and dmodel is the dimension of NeMoT. The input is first passed through the multi-
head attention module (3.2) as the query, key, and value, generating a new matrix
x1 ∈ RN×dmodel . Layer normalization is applied to the element-wise addition of X
and x1 (i.e., a residual connection), resulting in a new matrix matrix x2 ∈ RN×dmodel ,
which is taken as the output of the block.

There exists two types of layers in NeMoT: the first consists of blocks that have
the layer normalisation layer at the beginning of the block (see equations in (3.7) and
(3.5)) and the second consists of blocks where the layer normalization layer is after
the residual connection, at the end of the block (see equations in (3.8) and (3.6)).

A layer in the vanilla and neuromodulatory set consists of two blocks, where all
blocks are the version where layer normalization has been moved to the beginning.
It is defined as

x1 = mhablock-nmt(X)

x2 = pw f f nblock-nmt(x1)

NeMoTi
layer-nmt(X) = x2,

(3.9)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input, dmodel
is the dimension of NeMoT, and i represents the ith layer. The input matrix X is
used as input to the multi-head attention block (3.7), returning a new matrix x1 ∈
RN×dmodel . The point-wise feed-forward block (3.5) takes as input x1 and produces a
new matrix x2 ∈ RN×dmodel ; it is taken as the output of the layer.

A layer in the output set consists of two blocks, where all blocks are the version
where layer normalization is directly after the residual connection. It is defined as

x1 = mhablock-oset(X)

x2 = pw f f nblock-oset(x1)

NeMoTi
layer-oset(X) = x2,

(3.10)

where the input matrix is X ∈ RN×dmodel , N is the sequence length of the input, dmodel
is the dimension of NeMoT, and i represents the ith layer. The input matrix X is
used as input to the multi-head attention block (3.8), returning a new matrix x1 ∈
RN×dmodel . The point-wise feed-forward block (3.6) takes as input x1 and produces a
new matrix x2 ∈ RN×dmodel ; it is taken as the output of the layer.

The vanilla set, and all Y layers are defined as

O1
vset = NeMoT1

layer-nmt(X0)

Oi
vset = NeMoTi

layer-nmt(O
i−1
vset) ∀ {1 < i ≤ Y}

NeMoTvanilla-set(X0) = OY
vset,

(3.11)

where the input matrix is X0 ∈ RNvs×dmodel , Nvs is the length of the input se-
quence excluding the auxiliary tokens, and dmodel is the dimension of NeMoT. The
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first vanilla set layer NeMoT1
layer-nmt takes as input X0 and produces a new matrix

O1
vset ∈ RNvs×dmodel . For all subsequent layers, the input to the ith layer is the output

of the previous layer Oi−1
vset; a new matrix Oi

vset ∈ RNvs×dmodel is generated. When the
Yth layer’s output matrix OY

vset is generated it is taken as the output of the vanilla
set.

The neuromodulatory set and all M layers are defined as

O1
nmset = NeMoT1

layer-nmt([Xaux; OY
vset])

Oi
nmset = NeMoTi

layer-nmt(O
i−1
nmset) ∀ {1 < i ≤ M}

NeMoTnm-set(Xaux, OY
vset) = sigmoid(OM

nmset),

(3.12)

where the input matrices are OY
vset ∈ RNvs×dmodel and Xaux ∈ Rℓaux×dmodel , represent-

ing the output of the vanilla set and the word embeddings of all ℓaux ∈ R auxiliary
tokens, respectively; dmodel is the dimension of NeMoT, Nvs is the length of the in-
put sequence excluding the auxiliary tokens, and Naux is the length of the input
sequence including the auxiliary tokens. The first layer of the neuromodularity set
NeMoT1

layer-nmt takes as input the concatenation of both input matrices ([Xaux; OY
vset])

along the sequence dimension and produces a new matrix O1
nmset ∈ RNaux×dmodel ,

where Naux is the length of the sequence including the auxiliary tokens. For all sub-
sequent layers, the input to the ith layer is the output of the previous layer Oi−1

nmset; a
new matrix Oi

nmset ∈ RNaux×dmodel is generated. When the Mth layer’s output matrix
OM

nmset is generated it is taken as the output of the neuromodulatory set after hav-
ing the sigmoid function applied to it, converting all values in the matrix to a value
between zero and one.

The output set consists of A parallel Transformer blocks, of which one is chosen
and traversed depending on the task auxiliary token. Here, we will detail the output
set for one of the A parallel Transformer blocks, but keep in mind that any of the A
parallel blocks can be chosen. The output set and all Z layers are defined as

O1
oset = NeMoT1

layer-oset(Xgate)

Oi
oset = NeMoTi

layer-oset(O
i−1
oset) ∀ {1 < i ≤ Z}

NeMoToutput-set(Xgate) = OZ
oset,

(3.13)

where the input is the gated matrix Xgate ∈ RNvs×dmodel , Nvs is the sequence length
excluding the auxiliary tokens, and dmodel is the dimension of NeMoT. The first
layer NeMoT1

layer-oset takes as input Xgate and manufactures a new matrix O1
oset ∈

RNvs×dmodel . For all subsequent layers, the input to the ith layer is the output of the
previous layer Oi−1

oset; a new matrix Oi
oset ∈ RNvs×dmodel is generated. When the Zth

layer’s output matrix OZ
oset is generated it is taken as the output of the output set.

NeMoT consists of the three previously defined sets and an additional fully con-
nected layer with a softmax activation function applied across the target vocabulary
(i.e., for each position in a sequence a probability distribution is induced over the
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target vocabulary). It is defined as

OY
vset = NeMoTvanilla-set(Xinp)

OM
nmset = NeMoTnm-set(Xaux, OY

vset)

Xgate = OM
nmset[ℓaux + 1 :, :]× OY

vset

OZ
oset = NeMoToutput-set(Xgate)

Ologits = OZ
oset · Woutput

Oprob = So f tmax(Ologits)

NeMoT(Xaux, Xinp) = Oprob,

(3.14)

where the input matrices are Xaux ∈ Rℓaux×dmodel and Xinp ∈ RNvs×dmodel , representing
the auxiliary tokens and input sequence, respectively; ℓaux is the number of auxiliary
tokens, Nvs is the length of the input sequence excluding the auxiliary tokens, and
Naux is the length of the input sequnce including the auxiliary tokens. The vanilla
set (3.11) takes as input Xinp and generates a new matrix OY

vset ∈ RNvs×dmodel . Both
Xaux and OY

vset are utilised as input to the neuromodulatory set (3.12); a new matrix
OM

nmset ∈ RNaux×dmodel is constructed by the set.
Gating is performed between the output matrices of the neuromodulatory set

and the vanilla set via an element-wise multiplication; the former’s matrix is indexed
([ℓaux + 1 :, :]) to exclude the auxiliary token positions to match the sequence length
dimension of the vanilla set’s output matrix. Note that for [ℓaux + 1 :, :], the indexing
starts at 1, not 0 and that the lower argument of the range is inclusive, while the
upper is exclusive. A new matrix Xgate ∈ RNvs×dmodel is generated by gating.

The output set takes as input the gated matrix Xgate; a new matrix OZ
oset ∈

RNvs×dmodel is produced by one of the set’s A parallel blocks, conditioned on the aux-
iliary token in the task position. The output matrix of the output set is passed as in-
put to a fully connected layer with the softmax activation function (i.e., dot-product
multiplication between OZ

oset ∈ RNvs×dmodel and Woutput ∈ Rdmodel×|Vtar | is performed
and the softmax function is applied to the resulting matrix) assembling a new ma-
trix Oprob ∈ RNvs×|Vtar |, where Vtar is the target vocabulary and |Vtar| represents the
size of the target vocabulary. A probability distribution is induced across the target
vocabulary at each position in the sequence, with the maximum value’s associated
token being chosen as the prediction.

3.4.2 Design choices

When designing the neuromodulatory mechanism, we made the design choice that
the vanilla set’s output matrix is to be input to the neuromodulatory set. Therefore,
now when the neuromodulatory mechanism generates the gating matrix to gate the
vanilla set’s output matrix, it is not doing so independent of it. The consequence of
such is that during training the vanilla set’s parameters are being optimised for two
paths: the generation of the gating matrix and the output of NeMoT through the
output set.

We recognise that the gradient flowing back through the vanilla set from the
neuromodulatory set may harm what information the vanilla set’s output matrix
encodes in terms of its contribution to the output set and thus the output of NeMoT.
Therefore, in an attempt to mitigate the concerns, in our experiments we couple an
auxiliary loss with the vanilla set’s output matrix after it is passed through a fully
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connected layer with a softmax activation function to generate a prediction for the
current task (see the “Vanilla set auxiliary task” pathway in Figure 3.1).

The auxiliary tokens are only utilised as input to the neuromodulatory set be-
cause their purpose is to act as context and modify the gating matrix accordingly.
Additionally, they fulfil a second objective of choosing which Transformer block in
the output set to traverse via the task auxiliary token.

Given that we are utilising multi-format training, we introduce modularity into
the output set via the traversal of one of the parallel Transformer blocks. The pur-
pose of the introduced modularity is to reduce interference between different types
of datasets (e.g., multiple-choice versus extractive) in the last layers before a predic-
tion is generated.

3.4.3 Reading strategies in NeMoT

We experiment with two reading strategies in NeMoT: the first is answer option
interaction (AOI), first introduced in [109] whose implementation we modify; the
second is highlighting, which we extend [86]’s implementation. An analogy as to
why AOI might be useful in multiple-choice question answering is that if you know
that a subset of answers is not correct, you are either left with the correct answer
or fewer answer options to take a random guess; you can increase your accuracy
in a set of MQA questions by just eliminating impossible answers, even if you do
not know the correct answer. For highlighting in machines, it aims to simulate the
situations when humans highlight important parts of a text, drawing attention to
them.

A problem with the initial implementation of AOI in [109] is that it needs to be
computed many times between each pair of answer options. We simplify the method
so it only needs to be computed once. We formulate AOI in NeMoT as

H1 = W1Xans

H2 = W2Xans

G = So f tmax(H1W3HT
2 )

Hint = ReLU(GH2)

g = sigmoid([Hint; H1]W4)

Xaoint = (g × H1) + ((1 − g)× Hint)

AOI(Xans) = Xaoint,

(3.15)

where W1, W2, W3 ∈ Rdmodel×dmodel , W4 ∈ R2dmodel×dmodel , Xans ∈ RNans×dmodel is the in-
put matrix containing only the answer option positions, Nans is the input sequence
length (of the answer options), and dmodel is the dimension of NeMoT. The input ma-
trix Xans is linearly projected via W1 and W2, producing two new matrices H1 and H2,
each of dimension Nans × dmodel . A bilinear interaction matrix G ∈ RNans×Nans is con-
structed by calculating the dot-product between H1 and W3, whose resulting matrix
then has the dot-product calculated between it and the transpose of H2; the Soft-
max activation is applied along the row dimension (i.e., each row sums to one). The
interaction representation Hint ∈ RNans×dmodel is produced by the dot-product multi-
plication between G and H2 after being passed through a ReLU activation function.
A reset gate g ∈ RNans×dmodel is manufactured via applying the sigmoid function to
the dot-product between the concatenation of Hint and H1 (resulting in a new ma-
trix of dimension Nans × 2dmodel), and W4; the reset gate balances the influence of the
interaction matrix and the first linearly projected matrix. Information between both
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H1 and Hint is merged via the utilisation of the gating matrix, producing a new ma-
trix Xaoint ∈ RNans×dmodel ; it is taken as the output of the AOI module. Lastly, we note
that all bias terms have been omitted for W1, W2, W3, and W4; dropout is applied to
Xaoint.

We extend the highlighting reading strategy in [86]: it consists of vectors ℓ+ and
ℓ− (of dimension dmodel), which are added to a document embedding. If a position’s
token corresponds to a POS tag that associates with a noun, verb, adjective, adverb,
numeral, or foreign word then ℓ+ is added at that position, otherwise, ℓ− is added.
Our extension involves extending the number of vectors from two to eight, where
nouns, verbs, adjectives, adverbs, numerals, foreign words, and the other category
each have their own vector; additionally, the eighth vector is reserved for special to-
kens. They apply the vectors to the document (i.e., passage) component of the input,
while we apply it to the entire input, including the question and answer options.

Both reading strategies can be applied at any point in the network, with right
after the embedding layer being the most logical. However, due to ease of imple-
mentation in our code we apply them to the output of the vanilla set; we note that
performance is likely going to be better if we apply them right after the embeddings
so the vanilla set can utilise the effects of the strategies. We are still expecting an
improvement in performance with the strategies when applied to the output of the
vanilla set. We utilise two variants of reading strategies in NeMoT: the first is AOI,
which applies AOI to the vanilla set’s output, producing a new matrix of the same
dimension to take its place; the second is highlighting, where the highlighting vec-
tors are added to the vanilla set’s output.

3.5 Experiments

The objective of the experiments section is to determine if neuromodulation can be
beneficial not only in fine-tuning on individual datasets, but in a GQA setting, and
whether or not neuromodulation should be explored further; additionally, we ex-
periment with two reading strategies. To test such we pre-train a uni-directional
NeMoT in Section 3.5.1 in an auto-regressive language modelling task. We deter-
mine its capabilities in QA on individual datasets by comparing it to a baseline of
relatively similar size and structure, but without neuromodulation, in Section 3.5.2.
We utilise the same baseline model as a comparison to NeMoT in a GQA scenario in
Section 3.5.3, i.e., we generally train NeMoT and the baseline model. In Section 3.5.4
we test if the generally trained NeMoT is a better starting point for fine-tuning on
individual datasets than the pre-trained version. Lastly, we integrate reading strate-
gies with the generally trained NeMoT and test their contribution to performance
on MQA datasets in Section 3.5.5.

3.5.1 Pre-training

Pre-training is a fundamental component of the current paradigm, with the knowl-
edge acquired during pre-training being transferred to other tasks via fine-tuning.
Specifically, in this section, we detail the hyper-parameters and pre-training proce-
dure of NeMoT. We evaluate the performance of the pre-trained NeMoT versus a
baseline in language modelling.

We code NeMoT in the Python programming language, utilising the Tensorflow
and Keras libraries. It follows the description in Section 3.4 with two small additions:
a layer normalization layer directly after the output set and dropout layers in each
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block before the residual connection. All layer normalization layers are initialised
with epsilon set to 1e-5, while during training the dropout layers have a dropout
rate of 0.1. All fully connected (dense) layers have an L2 kernel regularizer with the
regularizer factor set to 0.01. All parameters in NeMoT are initialised via the Xavier
uniform initializer [29].

The model itself consists of 12 vanilla set layers, 12 neuromodulatory set layers,
and 6 parallel Transformer blocks in the output set — of which only one is utilised
during pre-training, the one associated with the language modelling auxiliary token
<lm> — each consisting of 3 layers. The dimension of NeMoT and the word em-
beddings is 768, the dimension of the point-wise feed-forward network is 3072, and
each multi-head attention module consists of 12 heads.

Fixed absolute position embeddings (3.1) are utilised and added to an input se-
quence’s word embedding matrix; each input sequence is padded to a length of 768,
or of length 771 including the three auxiliary tokens. The GPT-2 tokenizer, which is a
Byte Pair Encoding (BPE) [78] from the Hugging Face library, is utilised; it consists of
a vocabulary of 50257 token1. The auxiliary tokens and any additional special tokens
(such as “(1)” and “<sep>”, for example) are added to the vocabulary, resulting in a
new vocabulary size of 50313. As we are traversing English only and have no intent
on exploring any other language in this thesis, the input and target vocabularies are
the same and both utilise the same tokenizer.

The dataset utilised for pre-training is the Colossal Clean Crawled Corpus (C4)
[68]. It consists of a vast amount of clean English text scraped from the web (750
GB), more than we can realistically train on given our computational resources2. It
is a high-quality dataset that, in the Hugging Face extracted version, is conveniently
split into many sub-files, each of approximately 820 MB; we randomly sample with-
out replacement from the training files during training until the desired number of
iterations (1 million) has been achieved.

The three auxiliary tokens utilised during pre-training are fixed. In order, they
are <cls>, <dec>, and <lm>, representing the classification token, decoder mode to-
ken (future tokens are masked), and auto-regressive language modelling token, re-
spectively.

Given the large amount of computational resources needed to train moderately
large language models, our limited computational resources to do so and our desire
for such, we choose the pre-training procedure in accordance. One thing to con-
sider is the pre-training task: masked language modelling [23, 50] or auto-regressive
language modelling [10, 65, 66]. Masked language modelling entails 15% of a se-
quence’s tokens being masked and thus predictable; auto-regressive language mod-
elling entails all positions being predictable and the restriction of a token from seeing
future tokens. We choose auto-regressive language modelling with a uni-directional
NeMoT because we hypothesis that 100% of positions being predictable versus the
15% of masked language modelling with a bi-directional NeMoT will train faster
and on less data (subject to debate on whether or not auto-regressive language mod-
elling might be harder to learn because a position cannot see future positions un-
like the masked positions in masked language modelling; potentially resulting in
a longer training time for auto-regressive language modelling). In utilising a uni-
directional model we hurt performance on downstream QA tasks as future tokens
will be masked unnecessary; however, there exist other similar models such as GPT
to act as a comparison, more specifically GPT-2 Medium [66] in our experiments.

1https://huggingface.co/docs/transformers/model_doc/gpt2
2We extract a compressed version through Hugging Face: https://huggingface.co/datasets/c4

https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/datasets/c4
https://huggingface.co/datasets/c4
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Additionally, we decide to utilise an already pre-trained GPT-2 Small model [66]
as the vanilla set as it was observed to speed up pre-training. GPT-2 is structurally
similar to our originally intended vanilla set and in essence, it is what our vanilla set
would end up like had it been pre-trained similarly to that of GPT-2 small. GPT-2
Small is pre-trained with a sequence length of 1024, therefore, when acting as the
vanilla set its input sequence length is shrunk to 768 to match that of NeMoT.

We decide to pre-train for 1 million iterations on randomly sampled training
sub-files of C4. A batch size of 32 is utilised, split evenly across four Quadro RTX
8000 GPUs; training commenced for approximately three weeks. Categorical cross
entropy, cosine decay [51] with an initial learning rate of 1e-4 and 1,000,000 decay
steps, and the ADAM optimizer [43] with default parameters is employed.

In total, approximately 58 GB of data was utilised during pre-training, notably
more than that used to pre-train the GPT-2 models3. Figure 2 in [65] shows that
the fewer layers that are transferred from pre-training to downstream QA tasks the
worse the performance is, suggesting that the quality of the pre-trained model may
have an impact on performance on downstream QA tasks (i.e., performance after
fine-tuning). Hence, more pre-training time would likely be beneficial and is some-
thing we should keep in mind when discussing the experiments.

Datasets
Models LAMBADA Wikitext-2 Wikitext-103 PTB

(PPL) (PPL) (PPL) (PPL)
GPT-2 Small 35.13 29.41 37.50 65.85

GPT-2 Medium 15.60 22.76 26.37 47.33
NeMoT200♣ 71.33 36.91 33.32 36.24
NeMoT183♣ 71.25 36.96 33.36 36.25
NeMoT173♣ 71.77 36.94 33.40 36.35
NeMoT155♣ 71.85 37.26 33.66 36.53
NeMoT130♣ 73.48 38.01 34.56 38.05
NeMoT111♣ 75.86 38.72 35.37 37.72
NeMoT200♠ 71.33 30.81 27.77 31.89

TABLE 3.1: Zero-shot language modelling on four language mod-
elling datasets’ test sets. For all models, no further training is per-
formed outside of pre-training. The reported metric is perplexity
(PPL) for all datasets. GPT-2 Small and GPT-2 Medium’s results are
taken from [66]. NeMoT models with a ♠ and ♣ represent sliding
windows of size 32 and 768, respectively; the GPT-2 models utilise a
sliding window of 1024. NeMoTx refers to the xth checkpoint, where

each checkpoint is saved after 5000 iterations.

Here, we compare the performance of the pre-trained NeMoT in a zero-shot lan-
guage modelling setting (i.e., no further training) to GPT-2 Small and GPT-2 Medium
[66]; the results are portrayed in Table 3.1. We report results on four datasets’ test
sets: LAMBADA [62], WikiText-2 [57], WikiText-103 [57], and PTB [53, 60]. The GPT-
2 models have had tokenization artefacts such as shuffled sentences, contractions,
the unknown token, and disconnected punctuation removed when reporting their

3Note that this does not include the 40 GB used to pre-train the acting vanilla set, GPT-2 Small.
Additionally, it is important to note that the training quality of GPT-2 Small is limited by the relatively
small number of parameters in comparison to say GPT-2 Medium, thus, the pre-training data, while
identical, is not equivalent between the two models.
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results, claiming an increase in perplexity of 2.5 to 5; in their training data, they re-
move Wikipedia articles, introducing some bias into the results. We remove some
small tokenization artefacts such as heading patterns, the new line character, and
the unknown token in WikiText; the new line character only in PTB; the removal of
the new line character, and ‘ and ’ in LAMBADA. We note briefly that GPT-2 Small
and GPT-2 Medium have a larger sequence length than NeMoT (1024 versus 768,
respectively), giving it a larger context; they utilise a sliding window of size 1024.

Transformer based models split the input into segments when their sequence
length is greater than the sequence length of the model. A disadvantage of such is
that in the second segment onwards the earlier tokens have their context cut, degrad-
ing performance. A sliding window is a technique that only calculates the perplexity
for the last w tokens in a segment. The window is shifted to the right by w in each
segment, allowing tokens in the window to have more context available in compar-
ison to if they happened to be at the beginning of a segment. The smaller the sliding
window w, the more context that is available to generate a score, resulting in better
performance. Note, however, that more computational resources will be needed to
generate a score as more segments will need to be processed; a trade-off is required
between performance and processing time.

On LAMBADA, NeMoT reports a perplexity of 71.33 on both the 32 and 768 slid-
ing window sizes; much worse than GPT-2 Small and GPT-2 Medium, reporting a
perplexity of 35.13 and 15.60, respectively. The length of the examples in LAMBADA
is relatively small, approximately 75 words, therefore, the difference in sequence
length plays no role in the difference in perplexity.

On WikiText-2, NeMoT achieves a perplexity of 36.91 and 30.81 for sliding win-
dows of size 768 and 32, respectively. GPT-2 Small and GPT-2 Medium obtain a per-
plexity of 29.41 and 22.76, respectively, each having a sliding window of size 1024.
This dataset’s examples are longer than that in LAMBADA and are converted into
many segments. Because NeMoT with a sliding window of size 32 performs worse
than GPT-2 Small with a sliding window of 1024, it suggests that NeMoT performs
relatively poorly.

On WikiText-103, NeMoT achieves a perplexity of 33.32 and 27.77 for sliding
windows of size 768 and 32, respectively. GPT-2 Small and GPT-2 Medium obtain
a perplexity of 37.50 and 26.37, respectively, each having a sliding window of size
1024. NeMoT performs better than GPT-2 Small for both sliding window sizes, with
a better perplexity with a sliding window of size 768 versus 1024 for that of GPT-2
Small (i.e., with less context than GPT-2 Small); NeMoT still performs worse than
GPT-2 Medium, even with a sliding window of size 32.

On PTB, NeMoT obtains a perplexity of 36.24 and 31.89 for sliding windows of
size 768 and 32, respectively. GPT-2 Small and GPT-2 Medium achieve a perplexity
of 65.85 and 47.33, respectively, each having a sliding window of size 1024. Contrary
to the other datasets, NeMoT performs much better than GPT-2 Small and GPT-2
Medium. With a sliding window size of size 768, it has a smaller context than that of
GPT-2 Small and GPT-2 Medium but performs much better with a perplexity 11.09
lower than that of GPT-2 Medium.

Overall, GPT-2 Medium is the best language model in a zero-shot setting, only
being outperformed in one instance by NeMoT on PTB. GPT-2 Small performs better
than NeMoT on LAMBADA and WikiText-2; NeMoT performs better on WikiText-
103 and PTB. Given that WikiText-2 and WikiText-3’s test sets are nearly identi-
cal, with the only difference being WikiText-2 has a smaller vocabulary and thus
more unknown tokens, which we remove, it suggests that NeMoT is more sensitive
to missing context. This may be because GPT-2 Small’s pre-training data has had
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Wikipedia articles removed while NeMoT’s pre-training data has not; NeMoT may
be more perplexed about missing context because of it.

We report results for various checkpoints of NeMoT to show that it is still im-
proving, even at checkpoint 200 (i.e., at 1 million iterations). NeMoTx refers to the
xth checkpoint’s results; we only report results for older checkpoints with a sliding
window of size 768. In most instances later checkpoints — with the exceptions of
checkpoint 130 on PTB, checkpoint 183 on WikiText-2, and checkpoint 200 on LAM-
BADA — perform better than previous checkpoints, suggesting that NeMoT can still
be improved with more training data, supporting the notion that NeMoT has not yet
converged and that more training iterations will be beneficial; however, note that the
same may be true for the GPT-2 models.

3.5.2 Fine-tuning on individual datasets

While the main objective of NeMoT is to improve performance in GQA, for that
to be achieved a model needs to perform well on individual QA datasets. Hence,
in this section we test the model’s ability to perform QA on individual datasets,
i.e., only utilising a dataset’s provided training data for fine-tuning. We measure the
performance of NeMoT against a baseline model of similar size and structure (GPT-2
Medium [66]), evaluating the contribution to performance by the neuromodulatory
mechanism.

We utilise the following four datasets in this section to compare NeMoT to a base-
line model: RACE [45], SQuADv2 [69], NarrativeQA [44], and BoolQ [15]. Each rep-
resents one of the four QA categories: multiple-choice, extraction, abstraction, and
yes/no, respectively. We formulate the datasets as described in Section 3.3: RACE
(multiple-choice) is trained to generate only one token, the correct label; all the oth-
ers (extraction, abstraction, and yes/no) are trained to generate a sequence of tokens
until the end token is produced. Additionally, four other datasets are utilised for
a deeper dive into MQA for NeMoT only: CommonsenseQA (CQA) [88], Physical
Interaction QA (PIQA) [7], MCTest [72], and WG [73].

Model Parameters Layers Dimension FFN dimension Heads Pre-training data
NeMoT 261M 27 768 3072 12 58 GB∗

GPT-2 Medium 345M 24 1024 4096 16 40 GB

TABLE 3.2: A comparison of NeMoT and GPT-2 Medium: param-
eters, layers, dimension, ffn dimension, heads, and pre-training data
represent the number of parameters, the number of layers, the dimen-
sion of the model, the dimension of the point-wise feed-forward net-
work, the number of heads in multi-head attention, and the amount
of data trained on during pre-training in gigabytes (GB), respectively.
“M” represents millions. ∗Not including the 40 GB of data that GPT-2

Small, the acting vanilla set was pre-trained on.

There exists some differences between NeMoT and the baseline model, GPT-2
Medium; Table 3.2 displays the differences. NeMoT consists of approximately 84
million fewer parameters and was pre-trained on approximately 18 GB more data
than GPT-2 Medium, excluding the data used to pre-train the vanilla set, GPT-2
Small (40 GB). Note that the data used to train GPT-2 Small is the same as that for
GPT-2 Medium, but the information learned by the two models is not equivalent
with GPT-2 Medium achieving much better performance in the zero-shot setting on
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other language modelling tasks [66]. Additionally, we utilise the GPT-2 Medium pre-
trained model from Hugging Face, which excludes the final fully connected layer;
we initialise randomly a fully connected layer of the same dimensions to replace it.
Both models are provided with inputs of 768 tokens.

While GPT-2 Medium is not a perfect model to use as a baseline because it con-
sists of a higher dimension and 84 million more parameters, it still serves as a good
comparison to NeMoT and the contribution of the neuromodulatory mechanism:
if NeMoT’s performance is equal to or better than the baseline’s, then the neuro-
modulatory mechanism is considered a net plus; if NeMoT’s performance is lagging
behind the baseline’s a moderate amount, then we can conclude that the difference
may come down to the additional parameters of the baseline; if NeMoT’s perfor-
mance is significantly worse, then we can chalk it up to NeMoT being an utter fail-
ure. Again, we need to keep in mind that the vanilla set has been trained on an ad-
ditional 40 GB of data, the final fully connected layer of GPT-2 Medium is randomly
initialised, and that GPT-2 Medium achieves better perplexity scores than NeMoT
in the zero-shot language modelling setting (see Section 3.5.1) when discussing the
results and coming to conclusions.

Model Dataset Batch size Starting loss Warm-up loss Warm-up steps Decay loss Decay steps Lm aux loss Vset aux loss
NeMoT RACE 32 1e-5 N/A N/A N/A N/A True True
NeMoT SQuADv2 32 5e-5 1e-4 2000 1e-5 120,000 True True
NeMoT BoolQ 16 5e-5 1e-4 250 1e-5 18,000 True True
NeMoT NarrativeQA 32 5e-5 1e-4 2000 1e-5 120,000 True True

GPT-2 Medium RACE 32 1e-5 N/A N/A N/A N/A True N/A
GPT-2 Medium SQuADv2 16 5e-5 1e-4 2000 1e-5 160,000 True N/A
GPT-2 Medium BoolQ 16 5e-5 1e-4 250 1e-5 12,000 True N/A
GPT-2 Medium NarrativeQA 16 5e-5 1e-4 2000 1e-5 170,000 True N/A

NeMoT CQA 16 1e-5 N/A N/A N/A N/A True True
NeMoT PIQA 16 1e-5 N/A N/A N/A N/A True True
NeMoT MCTest 16 1e-5 N/A N/A N/A N/A True True
NeMoT WG 16 1e-5 N/A N/A N/A N/A True True

TABLE 3.3: Hyperparameters of the conducted experiments in this
section. Warm-up loss refers to the loss value the starting loss in-
creases to linearly over “warm-up steps” steps; if it is not utilised then
N/A is displayed. The decay loss is the loss value decayed to from the
starting loss if no linear warmup, otherwise from the warm-up loss,
over “decay steps” steps via cosine decay [51]; if it is not utilised then
N/A is displayed. Lm aux loss and vset aux loss refer to two types
of auxiliary losses (language modelling auxiliary loss and vanilla set
auxiliary loss, respectively): True, False, and N/A refer to the auxil-
iary loss being used, not used, and it is not applicable, respectively.

The pre-trained NeMoT as described in Section 3.5.1 is utilised as the starting
point for fine-tuning on individual datasets. For each dataset, the model is evalu-
ated on the provided validation set and the test set if labels are provided for local
evaluation (i.e, not needing a submission to a public leaderboard). Table 3.3 dis-
plays the experimental setup for each model and dataset. A rule of thumb is that if
cosine decay [51] and a linear warmup is used: the starting loss is 5e-5 and is lin-
early warmed up over 2000 steps to 1e-4, then decayed via cosine decay to a loss of
1e-5 over 120,000 steps; otherwise a fixed learning rate of 1e-5 is used because of ob-
served training instability with a linear warm-up and cosine decay on that dataset.
We utilise Quadro RTX 8000 GPUs, each with the capacity to hold 8 examples in a
batch, therefore, the number of GPUs is the batch size divided by 8 in our experi-
ments.

Denote the generated predictions of NeMoT and GPT-2 Medium by Opred, and
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that for the vanilla set auxiliary task by Ovset (see Figure 3.1). In this section, we
optimise the following objective

L = L1(Opred) + 0.2L2(Opred) + 0.5L3(Ovset), (3.16)

where L1(Opred) is the generated loss (e.g., cross entropy) for the current task for
the output Opred; L2(Opred) is the generated loss for a language modelling objective
(i.e., next token prediction) for the output Opred, which is scaled by a factor of 1:5;
L3(Ovset) is the generated loss (e.g., cross entropy) for the current task for the vanilla
set’s output Ovset, which is scaled by a factor of 1:2. GPT-2 Medium does not utilise
L3 in its objective function. Denote L2 as the language modelling auxiliary loss and
L3 as the vanilla set auxiliary loss.

Datasets
SQuADv2 RACE-val RACE-test BoolQ NarrativeQA

Models (F1-score) (Accuracy) (Accuracy) (Accuracy) (ROUGE-L)
Val Test Total M H Total M H Val Test Val Test

GPT-2 Medium♣ 0.6608 (ep7) N/A 63.49 (ep5) 65.95 62.47 62.26 65.04 61.12 76.85 (ep2) N/A 0.2498 (ep3) 0.2408
NeMoT♣ 0.5999 (ep2) N/A 53.90 (ep4) 56.75 52.71 51.93 54.74 50.77 72.17 (ep2) N/A 0.3809 (ep2) 0.3750

GPT-2 Medium♠ 0.6985 (ep20) N/A 67.22 (ep12) 69.85 66.13 64.19 66.64 63.18 78.72 (ep17) N/A 0.2498 (ep3) 0.2408
NeMoT♠ 0.6729 (ep16) N/A 60.02 (ep26) 64.48 58.16 57.94 60.86 56.75 77.13 (ep28) N/A 0.4147 (ep1) 0.4119

SOTA N/A 0.9298 N/A N/A N/A 90.7 N/A N/A N/A 92.4 N/A 0.674

TABLE 3.4: Comparison of the performance of NeMoT versus GPT-
2 Medium on four QA datasets, one of each type: multiple-choice,
extraction, abstraction, and yes/no. The epoch where the results are
taken from is represented by (ep#), where # is a number representing
the epoch. Cells where we report no results are depicted by N/A; all
results are rounded to four significant figures; we only report results
on the test sets if the labels are provided for local evaluation. The
epoch with the lowest validation set loss is represented by ♣, while
the epoch with the highest metric on the validation set is represented
by ♠; the metrics are F1-score, exact-match accuracy (Accuracy), and
ROUGE-L score. The SOTA results (as of March 10th, 2022, excluding
ensembles) are reported in [110], [37], [111], and [41] for the test sets

of SQuADv2, RACE, BoolQ, and NarrativeQA, respectively.

The results for the experiments conducted comparing NeMoT and GPT-2
Medium are displayed in Table 3.4. We train for at minimum 20 epochs and for
some datasets longer, but no more than 30 epochs at maximum. We observe a phe-
nomenon where the validation set’s loss converges but the metrics of the dataset
(e.g., exact-match accuracy, F1-score, and ROUGE-L score) are still improving. Rows
with ♣ and ♠ represent the results where the lowest validation set loss and highest
validation metric score are observed, respectively; the epoch that the results were
obtained from is shown as (ep8) for the eighth epoch, for example.

In both models, the epoch where the lowest validation loss was obtained is
either the same or lower for NeMoT in comparison to GPT-2 Medium: epoch 2
versus epoch 7, epoch 4 versus epoch 5, epoch 2 versus epoch 2, epoch 2 versus
epoch 3, where the former refers to NeMoT’s epoch and the latter refers to GPT-
2 Medium’s epoch. In all datasets excluding NarrativeQA, GPT-2 Medium when
choosing the epoch with the lowest validation loss achieves much better perfor-
mance than that of NeMoT with an absolute difference of 6.09%, 9.59%, 10.33%, and
4.86% for SQuADv2’s validation set, RACE’s validation set, RACE’s test set, and
BoolQ’s validation set, respectively. Quite strikingly, on NarrativeQA the opposite
occurs: NeMoT achieves a ROUGE-L score of 0.3809 and 0.3750 on the validation
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and test sets, respectively, while GPT-2 Medium only manages a score of 0.2498 and
0.2408 on the validation and test sets, respectively; an absolute difference of 13.11%
and 13.42%, respectively. This phenomena is displayed in Figure 3.3 and discussed
in more detail later in this section.

We observe that further training, which in the traditional machine learning sense
would be considered overfitting, resulted in the training loss decreasing, validation
loss increasing, and surprisingly the metric of the dataset was still improving for
both models. We observe which model was better on which datasets are unchanged,
however, NeMoT looks to close the gap in performance where it was behind and
extend it where it was ahead.

There is not a clear trend if one model achieves the best metric score at a lower
or higher epoch than the other. On SQuADv2 and NarrativeQA’s validation sets,
NeMoT achieves the best metric score at epochs 16 and 1, respectively; lower than
epochs 20 and 3 for GPT-2 Medium, respectively. On the RACE and BoolQ validation
sets the opposite occurs, i.e, GPT-2 Medium achieves the best metric score at epochs
12 and 17, respectively; lower than epochs 26 and 28 for NeMoT, respectively. We
note, however, that the difference may come down to NeMoT being trained for more
epochs (GPT-2 Medium is capped at 20 epochs in our experiments due to its larger
size); as a result, we cannot extract any meaningful conclusions.

On the SQuADv2 validation set, RACE validation set, RACE test set, and BoolQ
validation set we observe GPT-2 Medium still obtaining a better performance with
an absolute difference of 2.56%, 7.2%, 6.25%, and 1.59%, respectively. On Narra-
tiveQA, NeMoT achieves a ROUGE-L score of 0.4147 and 0.4119 on the validation
and test sets, respectively, while GPT-2 Medium achieves a score of 0.2498 and 0.2408
on the validation and test sets, respectively; an absolute difference of 16.49% and
17.11%, respectively.

While both NeMoT and GPT-2 Medium improve from overfitting, we observe
that NeMoT benefits more than GPT-2 Medium by 3.53%, 2.39%, 4.08%, 3.27%,
3.38%, and 3.69% (we subtract the gains of overfitting with NeMoT with that of
GPT-2 Medium) for the SQuADv2 validation set, RACE validation set, RACE test
set, BoolQ validation set, NarrativeQA validation set, and NarrativeQA test set, re-
spectively. We note that on RACE and BoolQ, NeMoT is trained for more epochs
than GPT-2 Medium and may be the cause of the gains on these datasets; however,
because the gains are universal over all datasets it might suggest that it is a non-
issue.

If we restrict NeMoT on both RACE and BoolQ to only 20 epochs, the best results
on RACE’s validation set is achieved at epoch 17 with an accuracy of 59.26%, while
that for the BoolQ validation set occurs at epoch 18 with an accuracy of 76.94%.
Repeating the previous paragraph’s calculations for the validation sets of RACE and
BoolQ, we achieve a gain by overfitting versus GPT-2 Medium of 1.63% and 3.08%,
respectively. Not as much of a gain as before (2.39% and 3.27%, respectively), but still
a gain nonetheless, supporting the notion that NeMoT benefits more from overfitting
than GPT-2 Medium.

The reason for the divergence of the trend of GPT-2 Medium performing better
than NeMoT on NarrativeQA may be due to the fact that, because of the BPE to-
kenizer splitting whole words into smaller bytes, the tokenized sequence length is
often larger than the maximum sequence length of 768, meaning that parts of the
passage are cut off, degrading the quality of the dataset. In the other datasets, be-
cause of their high quality, overfitting to them is beneficial to the model as it might
learn heuristics that while overfit to the training data are useful in terms of gener-
alising to unseen data. With NarrativeQA, as the model quality is degraded by the
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shortening of some passages, overfitting does not allow for the learning of useful
heuristics that help performance on unseen data, but instead, as in the traditional
machine learning sense, degrades performance on unseen data; this is one hypothe-
sised reason for the observed phenomena. Additionally, it is surprising that GPT-2
Medium performs poorly in this scenario; the experiments need to be repeated to
determine that it is not due to chance, and then we can dive deeper to determine
why this occurs.

When comparing our trained models to the SOTA models there is a large reduc-
tion in performance, which is expected because the baseline model and NeMoT are
both uni-directional (i.e., they mask future tokens in the attention mechanism), while
the SOTA models are bi-directional (i.e., they do not mask any tokens in the attention
mechanism), additionally, they consist of many more parameters. The SOTA models
should be treated as no more than an indication of what the SOTA performance is
on the datasets.

In conclusion, we determine that NeMoT performs worse than GPT-2 Medium
in general, with NarrativeQA being an exception that needs to be looked into fur-
ther. However, when overfitting and choosing the epoch with the best metric score
on the validation set, the performance is relatively small. Given our model con-
sists of approximately 84 million fewer parameters, we extract a positive signal from
NeMoT and the neuromodulatory mechanism, where if we matched the number of
parameters we might expect similar or slightly better performance. Additionally,
our implementation of the neuromodulatory mechanism is quite primitive and the
optimal hyperparameters have not yet been determined. It is not unreasonable to
think that this may have a moderate impact on performance. However, we do re-
strain from stating that our conclusions are definite — as we would like to repeat
the experiments multiple times to generate confidence intervals — but instead, an
initial positive signal that needs to be explored further.

The apparent benefits of overfitting

The training set losses, validation set losses, and validation set metric results are
shown in Figure 3.3 for both NeMoT and GPT-2 Medium when fine-tuning on
RACE, SQuADv2, BoolQ, and NarrativeQA. For NeMoT, plots (A), (B), and (C) rep-
resent the training loss, validation loss, and validation metrics, respectively. We ob-
serve the trend via plot (B) that the validation losses converge quite quickly (epochs
2, 4, 2, and 2 for SQuADv2, RACE, BoolQ, and NarrativeQA, respectively) and start
to, in the traditional machine learning sense, overfit; in normal circumstances, the
training would halt. However, plot (C) illustrates that on SQuADv2, RACE, and
BoolQ’s validation sets that further training in what would otherwise be called over-
fitting, is still improving the metrics of their respected datasets.

For SQuADv2 we observe that at 20 epochs the model’s F1-score is either still
improving slightly with further training, or has converged. We observe that RACE
is still improving in the later epochs, with the best accuracy observed at epoch 26;
epochs 27 and 28 are marginally lower and may suggest a convergence. BoolQ
reaches a maximum accuracy at epoch 28, possibly having converged.

NarrativeQA is the only dataset where NeMoT acts as we would expect, i.e.,
when the validation loss converges and starts to increase the ROUGE-L score de-
grades with it. The lowest validation loss occurs at epoch 2, while the best ROUGE-
L score occurs at epoch 1. The validation metric generally degrades at each passing
epoch, contradictory to the other datasets. The reason for such is likely because some
inputs to the model have a sequence length — after tokenization, into the smallest,
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(C) NeMoT validation metrics
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FIGURE 3.3: Plots portraying the observed overfitting phenomena
where the training set loss decreases, the validation set loss increases,

and the validation set metric improves.
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characters — much larger than 768, the maximum supported sequence length. Thus,
to make the input fit into the model we remove tokens from the beginning of the pas-
sage of the input to match the desired sequence length, degrading the quality of the
dataset.

Plot (D), (E), and (F) represent the baseline model’s training loss, validation loss,
and validation metrics, respectively. We observe similar phenomena in the baseline
model to that of NeMoT: the same conclusions for NarrativeQA hold. We observe
that at epoch 20, performance on SQuADv2 is either still improved slightly with
further training, or to have converged; RACE is observed to have converged at epoch
12, with no improvement at later epochs; BoolQ looks to have converged at epoch
17 with no improvement at later epochs. Plot (E) showcases the longer convergence
time of GPT-2 Medium: epochs 7, 5, 2, and 3 for SQuADv2, RACE, BoolQ, and
NarrativeQA, respectively.

One theory as to why we observed the divergence between the validation loss
and validation metric is the quality and possibly size of the datasets, where overfit-
ting allows better heuristics to be learned by the model, hence, better performance
on unseen datasets, contrary to prior belief. Supporting evidence for such a claim is
the degraded version of NarrativeQA, where the beginning of the passage is cut to
match the maximum sequence length; some samples may cut out the part essential
to the generation of the answer. Overfitting to lower quality datasets, like Narra-
tiveQA in our experiments, does not allow useful information to be extracted with
further training, like that observed with RACE, SQuADv2, and BoolQ.

Additional experiments for future sections

In Sections 3.5.4 and 3.5.5 we conduct experiments on four MQA datasets: Common-
senseQA (CQA), Physical Interaction QA (PIQA), MCTest, and WinoGrande (WG).
Here, we provide a baseline NeMoT model to act as a comparison to in future sec-
tions; the experimental setup is shown in Table 3.3 and the experiment results are
illustrated in Table 3.5.

The overfitting phenomena is observed in Table 3.4, with each dataset benefiting
from further training after the validation loss converges and starts to increase. In
CQA, we observe the lowest validation loss occurring at epoch 8 and the highest
validation accuracy occurring at epoch 15. Epoch 8’s validation accuracy is 29.65%,
while epoch 15’s validation accuracy is 33.74%, a difference of 4.09%. In PIQA, we
observe the lowest validation loss occurring at epoch 6 and the highest validation
accuracy occurring at epoch 20. Epoch 6’s validation accuracy is 53.48%, only 3.48%
better than random, while epoch 20’s validation accuracy is 59.63%, a difference of
6.15%. In MCTest, we observe the biggest difference between the lowest validation
loss’s accuracy and the global best validation’s accuracy. The lowest validation loss
occurs at epoch 6 and the highest validation accuracy occurs at epoch 19. Epoch
6’s validation accuracy is 29.69%, while epoch 19’s validation accuracy is 43.75%, a
difference of 14.06%. For the test set, epochs 6 and 19 result in an accuracy of 25.71%
and 44.05%, respectively; a difference of 18.34%. In WG, we observe the lowest
validation loss occurring at epoch 2 and the highest validation accuracy occurring at
epoch 14. Epoch 2’s validation accuracy is 51.07%, 1.07% better than random, while
epoch 14’s validation accuracy is 59.98%, a difference of 8.91%.

The overfitting phenomena observed in Table 3.4, where performance increases
with overfitting, carries over and is observed for all datasets. All reported results are
better than randomly selecting a label, but are nowhere near the SOTA performance
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Datasets
CQA PIQA MCTest WG

Models (Accuracy) (Accuracy) (Accuracy) (Accuracy)
Val Test Val Test Val Test Val Test

NeMoT♣ 29.65 (ep8) N/A 53.48 (ep6) N/A 29.69 (ep6) 25.71 51.07 (ep2) N/A
NeMoT♠ 33.74 (ep15) N/A 59.63 (ep20) N/A 43.75 (ep19) 44.05 59.98 (ep14) N/A
Random 0.2 0.2 0.5 0.5 0.25 0.25 0.5 0.5

SOTA N/A 80.7 N/A 90.13 95.6 71.0† N/A 88.29

TABLE 3.5: Performance of NeMoT on four multiple-choice QA
datasets. The epoch where the results are taken from is represented
by (ep#), where # is a number representing the epoch. Cells where
we report no results are depicted by N/A; all results are rounded to
four significant figures; we only report results on the test sets if the
labels are provided for local evaluation. The random row is the per-
formance we would expect if we randomly selected an answer. The
epoch with the lowest validation set loss is represented by ♣, while
the epoch with the highest metric on the validation set is represented
by ♠; every dataset’s metric is exact-match accuracy (Accuracy). The
SOTA results (as of March 10th, 2022, excluding ensembles) are re-
ported in [100], [52], and [52] for the test sets of CQA, PIQA, and WG,
respectively. †We note that for MCTest the SOTA results for the test
set is 71% [89], while the best on the validation set is much higher at
95.6% [41], but they do not report test results. It is not far fetched to
expect the model with 95.6% accuracy on the validation set to per-
form similarly on the test set, thus, we consider it the SOTA model.

as expected because of the smaller number of parameters and the fact that the model
is uni-directional, while the SOTA models are bi-directional.

3.5.3 General fine-tuning

We are mainly interested in if NeMoT results in an improved generalisation, i.e., an
improved performance in the GQA setting; we test such in this section. We use the
training procedure outlined in Section 3.3, including the seed datasets: RACE [45],
SQuADv2 [69], NarrativeQA [44], BoolQ [15], ARC [16], OBQA [59], and MCTest
[72]. ARC and OBQA do not utilise any information retrieval, hence, the model
needs to have relevant information stored internally in its parameters. We test a
model’s generalisation capabilities in a zero-shot setting on non-seed datasets (i.e.,
datasets whose training set has not been trained on): Quoref [21], ROPES [48], DROP
[25], CQA [88], WG [73], PIQA [7], SIQA [74], Quoref-CS [21, 28], ROPES-CS [28, 48],
DROP-CS [25, 28], and BoolQ-CS [15, 28].

We train two models: NeMoTgeneral and GPT-2 Mediumgeneral on the seed
datasets, representing the generally trained version of NeMoT and GPT-2 Medium,
respectively; both models are uni-directional. In both instances a batch size of 2 is
utilised with one Quadro RTX 8000 GPU; the loss function is categorical cross en-
tropy; the learning rate linearly warms up from 5e-5 to 1e-4 over 2000 steps, then
decays from 1e-4 to 1e-5 over 400,000 steps via cosine decay [51]; the ADAM opti-
mizer [43] with default parameters is utilised.

Denote the generated predictions of NeMoTgeneral and GPT-2 Mediumgeneral by
Opred, and that for the vanilla set auxiliary task by Ovset (see Figure 3.1). In this
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section, we optimise the following objective

L = L1(Opred) + 0.2L2(Opred) + 0.5L3(Ovset), (3.17)

where L1(Opred) is the generated loss (e.g., cross entropy) for the current task for
the output Opred; L2(Opred) is the generated loss for a language modelling objective
(i.e., next token prediction) for the output Opred, which is scaled by a factor of 1:5;
L3(Ovset) is the generated loss (e.g., cross entropy) for the current task for the vanilla
set’s output Ovset, which is scaled by a factor of 1:2. GPT-2 Mediumgeneral does not
utilise L3 in its objective function. Denote L2 as the language modelling auxiliary
loss and L3 as the vanilla set auxiliary loss.

In NeMoTgeneral, gradient flow during back-propagation is not restricted at any
point. Two auxiliary losses are used: the language modelling auxiliary loss and
the vanilla set auxiliary loss. In GPT-2-Mediumgeneral, only a language modelling
auxiliary loss is utilised, i.e., L2. In both cases the experimental results are reported
for the model trained for 400,000 iterations.

Model Parameters Layers Dimension FFN dimension Heads Pre-training data
NeMoT 280M 30† 768 3072 12 20GB∗

GPT-2 Medium 345M 24 1024 4096 16 40GB

TABLE 3.6: A comparison of NeMoT and GPT-2 Medium: param-
eters, layers, dimension, ffn dimension, heads, and pre-training data
represent the number of parameters, the number of layers, the dimen-
sion of the model, the dimension of the point-wise feed-forward net-
work, the number of heads in multi-head attention, and the amount
of data trained on during pre-training in gigabytes (GB), respectively.
“M” represents millions. ∗Not including the 40 GB of data that GPT-2
Small, the acting vanilla set was pre-trained on. †Includes two out-
put set blocks, each of 3 layers, that will be run in parallel, hence, in
practice, there are 27 layers in one traversal through the model, but
the last three can change depending on what block in the output set

is traversed.

NeMoTgeneral is initialised to the pre-trained model produced in Section 3.5.1.
In the general version of the model, we utilise two parallel Transformer blocks in
the output set named mqa and gqa, representing multiple-choice question answering
and generate question answer — the auto-regressive generation of a sequence of
text to answer the question — respectively. They are both initialised to the weights
of the lm Transformer block in the output set. If the auxiliary task token is <mqa>
then we traverse the mqa Transformer block; if it is <gqa> then we traverse the gqa
Transformer block. The GPT-2-Mediumgeneral pre-trained model from Hugging Face
is utilised, which excludes the last fully connected layer; we initialise randomly a
fully connected layer of the same dimensions to replace it.

For a comparison of the two models see Table 3.6. Notable differences between
the two models are the approximately 65 million more parameters, higher dimen-
sion, higher point-wise feed-forward network dimension, and more heads for GPT-
2 Medium. Compared to the models in Section 3.5.2 we see that NeMoT closes the
gap in terms of the number of parameters and explicitly encodes modularity into
the output set, allowing multiple-choice QA tasks to traverse a different set of layers
than other QA tasks.
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Datasets
SQuADv2 RACE-val RACE-test ARC-val

Models (F1-score) (Accuracy) (Accuracy) (Accuracy)
Val Test Total M H Total M H Total Hard Easy

GPT-2 Mediumgeneral 0.5405 N/A 52.57 55.64 51.29 51.07 55.92 49.09 36.59 33.78 38.07
NeMoTgeneral 0.5272 N/A 48.43 51.74 47.06 48.43 50.97 45.54 35.90 33.78 37.02

UnifiedQABase 0.781 N/A N/A N/A N/A 70.3 N/A N/A N/A N/A N/A
UnifiedQA11B 0.898 N/A N/A N/A N/A 88.6 N/A N/A N/A N/A N/A

SOTA N/A 0.9298 N/A N/A N/A 90.7 N/A N/A N/A N/A N/A
Datasets

ARC-test OBQA MCTest BoolQ NarrativeQA
Models (Accuracy) (Accuracy) (Accuracy) (Accuracy) (ROUGE-L)

Total Hard Easy Val Test Val Test Val Test Val Test
GPT-2 Mediumgeneral 37.88 33.62 39.98 47.60 45.60 57.19 57.50 74.40 N/A 0.2608 0.2611

NeMoTgeneral 38.53 32.59 41.46 48.40 49.80 51.25 56.19 74.95 N/A 0.2839 0.2791
UnifiedQABase N/A 45.7 58.5 N/A 59.4 86.9 N/A N/A 82.5 N/A 0.604
UnifiedQA11B N/A 77.8 87.2 N/A 86.4 95.6 N/A N/A 90.3 N/A 0.674

SOTA 86.52 N/A N/A N/A 87.4 95.6 71.0† N/A 92.4 N/A 0.674

TABLE 3.7: In-domain results on the seed datasets; comparison of
NeMoT and GPT-2 Medium. Cells where we report no results are
depicted by N/A; all results are rounded to four significant figures;
we only report results on the test sets if the labels are provided for
local evaluation. The metrics are F1-score, exact-match accuracy (Ac-
curacy), and ROUGE-L score. UnifiedQA’s results are obtained from
[41], where the best result from either version one or two is reported
for each dataset. The SOTA results (as of March 10th, 2022, exclud-
ing ensembles) are reported in [110], [37], [111], [95], [111], and [41]
for the test sets of SQuADv2, RACE, ARC, OBQA, BoolQ, and Narra-
tiveQA, respectively. †We note that for MCTest the SOTA results for
the test set is 71% [89], while the best on the validation set is much
higher at 95.6% [41], but they do not report test results. It is not far
fetched to expect the model with 95.6% accuracy on the validation
set to perform similarly on the test set, thus, we consider it the SOTA

model.

We report results for both models after 400,000 iterations of training in Tables
3.7 and 3.8, representing the in-domain results and the out-of-domain results, re-
spectively. In-domain results are obtained on the seed dataset’s evaluation sets and
test sets if the labels are provided for local evaluation. Out-of-domain results are
obtained on the non-seed datasets’ evaluation sets. The out-of-domain datasets are
often quite different — such as DROP, which includes arithmetic operations — to
the seed datasets and provide a good indicator of generally acquired knowledge.

When training exclusively on a dataset we previously concluded that GPT-2
Medium performs better than NeMoT, with only NarrativeQA bucking the trend.
On the in-domain datasets, GPT-2 Medium performs better on the SQuADv2 vali-
dation set, RACE validation and test sets, ARC validation set, and MCTest validation
and test sets; NeMoT performs better on the ARC test set, OBQA validation and test
sets, BoolQ validation set, and NarrativeQA validation and test sets. Overall, both
models seem to be mostly on par with one another, a positive sign for NeMoT which
was generally worse than GPT-2 Medium when fine-tuning on individual datasets,
which was likely largely due to the reduced number of parameters of NeMoT in
comparison.

In comparison to fine-tuning on individual datasets, the general versions
of NeMoT and GPT-2 Medium both perform worse on all four datasets. On
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SQuADv2’s validation set, the general versions perform 0.158 and 0.1457 worse for
GPT-2 Medium and NeMoT, respectively. On RACE’s validation set, the general
versions perform 14.64% and 11.59% worse for GPT-2 Medium and NeMoT, respec-
tively. On RACE’s test set, the general versions perform 13.12% and 9.51% worse
for GPT-2 Medium and NeMoT, respectively. On BoolQ’s validation set, the general
versions perform 4.32% and 2.18% worse for GPT-2 Medium and NeMoT, respec-
tively. On NarrativeQA’s validation set, the general versions perform 0.011 better
and 0.1308 worse for GPT-2 Medium and NeMoT, respectively. Lastly, on Narra-
tiveQA’s test set, the general versions perform 0.0203 better and 0.1328 worse for
GPT-2 Medium and NeMoT, respectively.

Reasons for such may include the sharing of a model’s parameters with multi-
ple datasets, however, we have reason to expect this may help the model in some
instances [42]. Additionally, more than 400,000 iterations may be needed to achieve
better performance, especially since in Section 3.5.2 we found overfitting to be ben-
eficial.

UnifiedQA is a model that was trained similarly to ours in terms of the general
training procedure, with the main difference being that the model is an encoder-
decoder Transformer, allowing for the processing of the input in a bi-directional
manner, giving it a natural advantage over NeMoT and GPT-2 Medium. It serves
as a good comparison to see the difference in performance when each token position
is allowed to attend to all other token positions. On the in-domain datasets, NeMoT
and the baseline always perform worse than UnifiedQABase — which consists of
only 220 million parameters, less than NeMoT and GPT-2 Medium — and often by
a decent margin. We should not look too much into the difference but should note
the degradation of performance in uni-directional models.

Therefore, for the in-domain datasets, we see the performance of both models is
quite similar, with NeMoT performing better in some instances and GPT-2 Medium
in others. Performance is worse for the generally trained models in comparison to
training on a dataset individually for RACE, SQuADv2, and BoolQ for both models;
better on NarrativeQA for the baseline and worse for NeMoT.

The out-of-domain datasets, as displayed in Table 3.8, generally showcase a poor
performance for both NeMoT and GPT-2 Medium. For the extractive datasets, we
see NeMoT perform slightly better on Quoref, Quoref-CS, and ROPES-CS by a mar-
gin of 0.0023, 0.0046, and 0.011, respectively; GPT-2 Medium performs better only on
ROPES by a margin of 0.0559, however, it performs worse on the contrast set version
of the dataset. For the abstraction datasets, they perform similarly with identical per-
formance on DROP, but slightly better for GPT-2 Medium on the contrast set version
of the dataset by a small margin of 0.001. For the yes/no dataset BoolQ-CS, GPT-2
Medium performs better than NeMoT by a margin of 2.73%. For multiple-choice
datasets, NeMoT performs better on WG, PIQA, and SIQA by a margin of 19.58%,
21.33%, and 3.33% respectively; it is important to note that these results are worse
than random: 0.5, 0.5, and 0.3 for WG, PIQA, and SIQA, respectively. GPT-2 Medium
performs better than NeMoT on CQA by a margin of 1.48%. We note that CQA con-
sists of five answer options, while during training the model was only trained to
generate an answer for at most four answer options (i.e., it has never seen the first
answer option’s label); we note that this will harm performance. Additionally, note
that on the datasets with only two answer options we could just flip the results to
achieve a much higher performance; however, some incorrect samples are because
the model does not output an answer option to begin with, so it is not so simple. We
do question if the model has actually learned anything about these datasets, or if it
is entirely due to chance.
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Datasets
Quoref Quoref-CS ROPES ROPES-CS DROP DROP-CS

Models (F1-score) (F1-score) (F1-score) (F1-score) (ROUGE-L) (ROUGE-L)
Val Test Test Val Test Test Val Test Test

GPT-2 Mediumgeneral 0.1200 N/A 0.1708 0.0940 N/A 0.0635 0.0183 N/A 0.0153
NeMoTgeneral 0.1223 N/A 0.1754 0.0381 N/A 0.0745 0.0183 N/A 0.0143

UnifiedQAv1Base 40.0 38.5 33.9 22.8 19.7 23.7
UnifiedQAv111B 63.5 55.3 67.0 45.5 32.5 40.1

SOTA N/A 0.8670 0.554 N/A 0.8025 0.455 N/A 0.9010∗ 0.542

Datasets
BoolQ-CS CQA WG PIQA SIQA

Models (Accuracy) (Accuracy) (Accuracy) (Accuracy) (Accuracy)
Test Val Test Val Test Val Test Val Test

GPT-2 Mediumgeneral 58.42 21.87 N/A 17.36 N/A 10.39 N/A 24.92 N/A
NeMoTgeneral 55.69 20.39 N/A 36.94 N/A 31.72 N/A 28.25 N/A

UnifiedQAv1Base 61.9 45.0 N/A N/A N/A
UnifiedQAv111B 80.4 76.2 N/A N/A N/A

SOTA 80.4 N/A 83.3 N/A 88.29 N/A 90.13 N/A 83.15

TABLE 3.8: Out-of-domain results on the non-seed datasets; compar-
ison of NeMoT and GPT-2 Medium. Cells where we report no results
are depicted by N/A; all results are rounded to four significant fig-
ures; we only report results on the test sets if the labels are provided
for local evaluation. The metrics are F1-score, exact-match accuracy
(Accuracy), and ROUGE-L score. The SOTA results (as of March 10th,
2022, excluding ensembles) are reported in [104], [42], [42], [42], [12,
102], [42], [42], [100] [52], [52], and [52] for the test sets of Quoref,
Quoref-CS, ROPES, ROPES-CS, DROP, DROP-CS, BoolQ-CS, CQA,
WG, PIQA, and SIQA, respectively. UnifiedQA’s results are taken
from the first version of the model [42]; the paper does not state if
the results came from the validation set or the test set, therefore, the
results cover both the validation and test cells, portraying the ambi-

guity. ∗Note that the F1-score is reported here.

As with the in-domain datasets, UnifiedQAv1Base performs much better by a
margin of around 20% on most datasets, with BoolQ-CS being a notable excep-
tion with a difference of only 3.48% to the baseline. UnifiedQAv1Base serves as a
good comparison to see the impact that NeMoT and GPT-2 Medium both being uni-
directional has on performance. However, we note the reduction in performance
may not be only because the model is uni-directional and may be due to other fac-
tors; we refrain from saying that being uni-directional is the definitive cause, but it
is a likely cause.

In conclusion, the out-of-domain datasets show that NeMoT performs better
than GPT-2 Medium in all but four instances: ROPES, DROP-CS, BoolQ-CS, and
CQA. The biggest differences in NeMoT’s favour occur in WG and PIQA (19.58%
and 21.33% respectively); the biggest for GPT-2 Medium occur in BoolQ-CS and
ROPES (2.73% and 0.0559 respectively). We note that further experiments are needed
to confirm the results and that they are not due to chance (i.e., construct confidence
intervals).

Overall, the performance of NeMoT and GPT-2 Medium is quite similar on
the in-domain datasets, with some datasets favouring NeMoT and others GPT-
2 Medium; the out-of-domain datasets tend to favour NeMoT, suggesting an im-
proved generalisation. Given the circumstances — including the simple implemen-
tation of the neuromodulatory mechanism and the smaller number of parameters it
has in comparison to GPT-2 Medium — we extract a positive signal from NeMoT
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and the neuromodulatory mechanism in regards to a potential improvement in gen-
eralisation capabilities. However, the conclusions drawn in this section are not con-
clusive and further experiments are needed to definitively conclude such, including
the contribution of the manually introduced modularity in the output set via the
parallel blocks of Transformers.

3.5.4 Fine-tuning the generally trained model on individual datasets

UnifiedQA, a generally trained model on multiple QA datasets and formats, when
fine-tuning on individual datasets, resulted in a better performance than fine-tuning
on a vanilla language model [42]. In this section, we test if the same holds with
NeMoT on MQA datasets. Specifically, does utilising NeMoTgeneral as a starting
point for fine-tuning on individual datasets result in a better performance than start-
ing with the pre-trained NeMoT (NeMoTpre-trained)?

We utilise four MQA datasets: CQA [88], PIQA [7], MCTest [72], and WG [73].
The experiments are set up identically to the results obtained in Table 3.5, with the
only difference being that NeMoTgeneral is the starting model preluding fine-tuning;
NeMoTpre-trained represents the results obtained in the Table 3.5. This section’s results
are illustrated in Table 3.9.

Datasets
CQA PIQA MCTest WG

Models (Accuracy) (Accuracy) (Accuracy) (Accuracy)
Val Test Val Test Val Test Val Test

NeMoTpre-trained♣ 29.65 (ep8) N/A 53.48 (ep6) N/A 29.69 (ep6) 25.71 51.07 (ep2) N/A
NeMoTgeneral♣ 25.88 (ep6) N/A 52.83 (ep2) N/A 51.25 (ep1) 56.07 (ep1) 52.57 (ep2) N/A

NeMoTpre-trained♠ 33.74 (ep15) N/A 59.63 (ep20) N/A 43.75 (ep19) 44.05 59.98 (ep14) N/A
NeMoTgeneral♠ 31.29 (ep17) N/A 55.50 (ep14) N/A 51.25 (ep1/ep2) 56.07 (ep2) 57.22 (ep18) N/A

SOTA N/A 83.3 N/A 90.13 95.0 71.0† N/A 88.29

TABLE 3.9: Comparing the performance of the generally trained
NeMoT and pre-trained NeMoT, fine-tuned on four multiple-choice
QA datasets. The epoch where the results are taken from is rep-
resented by (ep#), where # is a number representing the epoch.
Cells where we report no results are depicted by N/A; all results are
rounded to four significant figures; we only report results on the test
sets if the labels are provided for local evaluation. The epochs with
the lowest validation set loss are represented by ♣, while the epochs
with the highest metric on the validation set are represented by ♠;
every dataset’s metric is exact-match accuracy (Accuracy). The SOTA
results (as of March 10th, 2022, excluding ensembles) are reported in
[100], [52], and [52] for the test sets of CQA, PIQA, and WG, respec-
tively. †We note that for MCTest the SOTA results for the test set is
71% [89], while the best on the validation set is much higher at 95.6%
[41], but they do not report test results. It is not far fetched to expect
the model with 95.6% accuracy on the validation set to perform simi-

larly on the test set, thus, we consider it the SOTA model.

Surprisingly, contrary to the results obtained in [42], we observe that for the
most part NeMoTpre-trained performs better as a starting point than NeMoTgeneral.
NeMoTpre-trained performs better on CQA and PIQA for both the lowest validation
loss’s epoch and the highest validation metric’s epoch; for WG, it performs better
only on the highest validation metric’s epoch.

NeMoTgeneral performs better as a starting point on WG for the lowest valida-
tion loss’s epoch; on MCTest for both the lowest validation loss’s epoch and the
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highest validation metric’s epoch. Between both models, the largest difference in
performance is observed in MCTest in NeMoTgeneral’s favour. The difference may be
explained by the fact that MCTest was included in the seed datasets in NeMoTgeneral
and was previously trained on, while the other datasets were not.

Overall, fine-tuning NeMoTpre-trained outperforms that of the generally trained
model on all datasets except MCTest when “overfitting”. The anomaly of MCTest
might be explained by the fact that MCTest was included in the seed datasets and
trained on in NeMoTgeneral; all other datasets were not included in the seed datasets.
This may be an artefact of utilising uni-directional models versus bi-directional mod-
els, or that more parameters are needed to see the benefits observed in [42], but fur-
ther experiments are needed to test such claims.

3.5.5 Reading strategies

Reading strategies are correlated with an improved reading proficiency and reading
comprehension in humans [61, 71]; they have been shown to improve performance
in QA [86, 109]. We test the contribution of two reading strategies introduced into
NeMoT on four MQA datasets: CommonsenseQA (CQA) [88], Physical Interaction
QA (PIQA) [7], MCTest [72], and WG [73]. The two reading strategies are answer-
option interaction (AOI) and highlighting. The experiments are set up identically
to the results obtained in Table 3.5 in Section 3.5.2, with the only different being the
models we train: NeMoTgeneral, NeMoTaoint, and NeMoThigh, representing the gen-
erally trained NeMoT, the generally trained NeMoT with the AOI reading strategy,
and the generally trained NeMoT with the highlighting reading strategy, respec-
tively. NeMoTaoint and NeMoThigh are both initialised to NeMoTgeneral’s parameters
and the newly introduced parameters by the reading strategies are randomly ini-
tialised via the Xavier uniform initializer [29]. For a description of both reading
strategies see Section 3.4.3.

Datasets
CQA PIQA MCTest WG

Models (Accuracy) (Accuracy) (Accuracy) (Accuracy)
Val Test Val Test Val Test Val Test

NeMoTgeneral 31.29 N/A 55.50 N/A 51.25 56.07 57.22 N/A
NeMoTaoint 31.94 N/A 57.83 N/A 51.56 54.40 57.77 N/A
NeMoThigh 31.29 N/A 57.67 N/A 53.13 54.29 58.48 N/A

TABLE 3.10: Performance of two reading strategies integrated with
NeMoT on four multiple-choice QA datasets. The epoch where the
results are taken from is represented by (ep#), where # is a number
representing the epoch. Cells where we report no results are depicted
by N/A; all results are rounded to four significant figures; we only
report results on the test sets if the labels are provided for local evalu-
ation. NeMoTgeneral is the baseline model and every datasets’ metric

is exact-match accuracy (Accuracy).

We observe that NeMoTaoint outperforms NeMoTgeneral by 0.65% on CQA’s val-
idation set, 2.33% on PIQA’s validation set, 0.31% on MCTest’s validation set, and
0.55% on WG’s validation set. However, it performs worse on MCTest’s test set by a
margin of 1.67%.
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We observe similar trends with NeMoThigh, with minor exceptions. It performs
better than NeMoTgeneral by 2.17% on PIQA’s validation set, 1.88% on MCTest’s val-
idation set, and 1.26% on WG’s validation set; performance is identical on CQA’s
validation set. However, it performs worse on MCTest’s test set by a margin of
1.78%.

When comparing the two reading strategies to one another we find that
NeMoTaoint performs better on CQA’s validation set by 0.65%, PIQA’s validation
set by 0.16%, and MCTest’s test set by 0.11%. NeMoThigh performs better on MCTest
and WG’s validation sets by 1.57% and 0.71%, respectively.

In conclusion, we see that both reading strategies improve performance in gen-
eral versus NeMoTgeneral with the exception of MCTest’s test set. When comparing
the reading strategies to one another we find that they perform better on different
datasets; given the limited scope of these experiments, we cannot determine if one
is better than the other. To definitively claim that the reading strategies are an im-
provement over NeMoTgeneral we would like to run the experiments from scratch
multiple times to generate confidence intervals and expand the experiments to in-
clude more MQA datasets. We note that if we applied the reading strategies directly
after the embedding layer we would expect further improvements.

3.6 Discussion

We have tested the capabilities of NeMoT on a variety of tasks: zero-shot language
modelling via a pre-trained language model; fine-tuning the pre-trained language
model on datasets individually; fine-tuning in a GQA setting, where we test its abil-
ity to generalise to unseen datasets; and testing the capabilities of two simple reading
strategies on MQA datasets.

The observed overfitting phenomena, where the validation loss increases but the
validation metric improves, is described in [30] as a calibration issue of the true cor-
rectness likelihood. i.e., the model is overconfident in predictions that it gets incor-
rect, or underconfident in predictions that it gets correct; it is a problem in domains
where a model accurately displaying its confidence in an answer is essential, such as
medical diagnosis, for example. They label it as a common phenomenon with mod-
ern neural networks [30]. Using this logic, in our case our model is either becoming
more confident in incorrect predictions, a possible reason for the divergence in the
validation’s loss and metric, or is becoming less confident in correct predictions, but
not enough to choose the incorrect answer, all while it is predicting more examples
correct.

NeMoT and GPT-2 Medium, which are both uni-directional Transformers,
have the same calibration issues, possibly suggesting that it is problem with uni-
directional models. Experiments to see if the same occurs in bi-directional Trans-
formers (i.e., BERT) will determine if it is a common phenomenon in Transform-
ers, or potentially just a problem with uni-directional Transformers. Alternatively, it
could be a phenomenon with the text-to-text framework utilised by both models.

Our pre-trained language model, while still improving when we stopped train-
ing on C4, is worse than GPT-2 Medium in zero-shot language modelling (see Table
3.1). Our model consists of fewer parameters than GPT-2 Medium but has been
trained on more data, especially when we include the data used to pre-train the
vanilla set (i.e., the 40 GB GPT-2 Small was previously trained on). The difference
in performance might be because of the different pre-training datasets utilised as
NeMoT performs better on PTB, but not on the other three datasets, than GPT-2
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Medium; also, the fact that we traversed only a small subset of C4’s data may or
may not play a role. We can only postulate the impact more training on C4 would
have for NeMoT, but the same goes for the GPT-2 models.

NeMoT lags slightly in performance when training on individual datasets in
comparison to GPT-2 Medium, which is expected because of the 84 million more
parameters that GPT-2 Medium has. We postulated that the neuromodulatory mech-
anism in NeMoT would be better suited for GQA because it would allow for more
complex rules to be learned, that when coupled with an environment that encour-
ages generalisation (i.e., multi-task learning), would result in a better performance in
GQA. Our experiments in GQA support such a notion, but more experiments need
to be conducted to make a definitive conclusion.

We observed that both reading strategies performed better than the baseline and
that we could not conclude that one was better than the other in general. While
both did improve performance, it may not be for the intended reasons. The result-
ing improvement by AOI may be due to the fact that it simply allows all answer
options positions to see one another, which would otherwise not be the case because
future tokens are masked (i.e., because the model is uni-directional). Seeing the
same increase in performance in a model where future tokens are not masked (i.e.,
in a bi-directional model) would remedy the concern. Additionally, for both reading
strategies, we have no proof that the improved performance is because of the read-
ing strategies themselves and not because of the additional parameters introduced
by them. Before concluding that the improved performance is due to the reading
strategies themselves, we need to account for the previously mentioned concerns.
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Chapter 4

Conclusion

In this thesis, we set out to improve the generalisation capabilities of QA models,
or more specifically the Transformer. We focus on extending the Transformer via
the entwinement of neuromodulation. We hypothesise that the addition of neuro-
modulation, when coupled with an environment that encourages it (e.g., multi-task
and multi-format learning), will result in better generalisation capabilities. We intro-
duce the Neuromodulated Transformer (NeMoT), a new Transformer architecture.
We test NeMoT’s QA capabilities in QA on individual datasets and in a GQA set-
ting, where it is required to generalise to out-of-domain datasets that it has not en-
countered before. Additionally, as a secondary objective in this thesis, we integrate
and extend reading strategies with NeMoT and measure their performance on MQA
datasets.

In this chapter, we feature the achievements of our thesis, highlight all limitations
and caveats with the concluded results, and list possible pathways for further study.

4.1 Achievements

The following bullet points highlight what was achieved in this thesis:

• We introduced the Neuromodulated Transformer (NeMoT), a simple entwine-
ment of neuromodulation with the Transformer architecture.

• We showcase that there is potential for neuromodulation in the Transformer ar-
chitecture in GQA, especially given the observed improvement versus a base-
line in GQA on out-of-domain datasets.

• We modify two simple reading strategy implementations (AOI and highlight-
ing) and observe an improved performance in MQA in comparison to if they
were not included.

4.2 Research questions

The following bullet points state our research questions and answer them:

• Does the entwinement of neuromodulation with the Transformer architecture,
when coupled with an environment that encourages it, allow for better gen-
eralisation in QA? Our experiments suggest that neuromodulation, when en-
twined with the Transformer architecture, results in better generalisation, but
the results are not conclusive. Further experimentation is needed to more con-
fidently determine such.
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• Can the utilisation of reading strategies improve performance in MQA? Yes,
our implementations of reading strategies (i.e., answer option interaction and
highlighting) result in an improved performance over a baseline model with
no reading strategies.

• Does the entwinement of neuromodulation with the Transformer architecture
improve its QA capabilities on individual datasets? We extract no meaningful
conclusions about QA on individual datasets, largely due to the fact that the
baseline model consists of 84 million more parameters.

4.3 Limitations

The limited computational resources available meant that we could not repeat ex-
periments multiple times to generate confidence intervals, leaving some ambiguity
with the results. Additionally, we would have liked to pre-train our model on C4 for
quite a bit longer, improving the features learned about language, which may result
in an improved performance during fine-tuning.

While the baseline model GPT-2 Medium is similar in structure to ours, it has
a larger model dimension, between 65 and 84 million more parameters depending
on what version of NeMoT is used, and is pre-trained on different data. Although
it is treated as a sort of upper bound in the experiments, it still leaves ambiguity
as to what percent neuromodulation contributes to the performance. Therefore, we
need a better baseline model, preferably one of similar structure, size and training
data, where we can pry out the contribution of the neuromodulatory component and
distinguish it from the manually inserted modularity.

In GQA, the out-of-domain dataset’s results were quite low with the MQA
dataset’s results worse than random in all but CQA. Given that the results are poor,
especially on the MQA datasets where we know it is worse than random, we have
concerns over the reliability of the results. Repeating the experiments multiple times
to generate confidence intervals, as previously mentioned, will remedy some of the
concerns.

Performance, when compared to the base UnifiedQA model, is very poor, with
the difference likely due to the masking of future tokens in all multi-head atten-
tion layers. The potential performance of NeMoT has not been brought to light by
the decision to make the model uni-directional; pre-training in a masked language
modelling objective bi-directionally will overcome this limitation.

We made modifications to two existing reading strategies and found that per-
formance was better with them than without; however, we did not test if the mod-
ifications to the reading strategies were better than the original implementations.
Therefore, further experiments are needed to determine if the modifications made
are a net positive. We have reason to believe that the highlighting reading strategy
is better than the original in terms of performance, however, for AOI we expect the
improvement to be not in performance but in speed.

4.4 Future work

4.4.1 Experiments

In our experiments we compared NeMoT and the neuromodulatory mechanism’s
QA and generalisation capabilities to a baseline model of similar structure, but no
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neuromodulation; the baseline model consists of between 65 and 84 million more pa-
rameters depending on the experiment. We extract positive signals from the experi-
ments that NeMoT achieved a better generalisation, but for a stronger conclusion in
regards to the contribution of neuromodulation, further experiments will need to be
investigated. Additionally, in our reading strategy experiments, we do not compare
our modified implementations to the original. Executing the following will help
remedy the previously mentioned concerns:

• The repeating of experiments to generate confidence intervals so more defini-
tive conclusions can be made.

• Pre-training the model with a masked language modelling objective bi-
directionally.

• A more diverse set of datasets throughout, including the in-domain and out-
of-domain datasets in GQA.

• A better baseline model of similar size that can isolate the effects of neuro-
modulation, especially from that of the manually introduced modularity in
the output set.

• The repeating of the reading strategy experiments with the original implemen-
tations of the reading strategies.

• More MQA datasets to test the performance of the two reading strategies.

4.4.2 Neuromodulation

We extended the Transformer via the entwinement of neuromodulation, resulting
in a new Transformer architecture: the Neuromodulated Transformer (NeMoT).
NeMoT is quite simple in that the gating mechanism only gates the forward traversal
of the network at a single point and that it is applied to the output of the vanilla set,
not the attention mechanism, for example; it is crude in that the hyperparameters
are unrefined. Therefore, potential avenues for future work include:

• Better optimisation of the hyperparameters. For example, experimenting with
the number of layers needed for the neuromodulatory set, output set, and
vanilla set. We may find that the neuromodulatory set does not need many
layers and we can save parameters here. Additionally, given the output set
takes as input the gated input of the vanilla set — where neuromodulation
occurs and allows for the regulation of a population of neurons — increasing
the number of layers of each Transformer block in the output set may further
enlarge the impact of the neuromodulatory mechanism, allowing it to regulate
more neurons/activations.

• Applying neuromodulated gating to the attention calculation or other loca-
tions in the network; make these locations in the network dependent on the
context provided to the neuromodulatory set.

• Instead of applying neuromodulated gating to a single location, apply it to
multiple locations in the network; a modification to the neuromodulatory set
is likely in order to facilitate such.
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• A merger of the neuromodulation literature in lifelong learning, where it is
applied to the learning rates of connections between neurons, with the Trans-
former architecture. I.e., the Transformer can continuously learn and adapt to
new questions via the modification of learning rates of connections via neuro-
modulation (this involves an expansion of our definition of GQA).

4.4.3 Reading strategies

In this thesis, we experimented with the utilisation of two reading strategies and
evaluate their performance on MQA datasets. Future work includes incorporating
more reading strategies such as summarization and paraphrasing among others. A
potential summarisation reading strategy in NeMoT involves producing a summary
of a passage, potentially conditioned on an associated question, where the produced
summary allows the model to more easily extract the answer to a question; the qual-
ity of the summary is important for good performance. A potential paraphrasing
reading strategy in NeMoT involves the paraphrasing of a question, converting it to
a format that portrays the same information, but is easier for the model to under-
stand based on its understanding of text obtained from pre-training; the quality of
the paraphrased question is essential for good performance.

Additionally, we only report results for models consisting of only one reading
strategy. Integrating multiple reading strategies in a single model, if implemented
correctly, will result in better performance as shown in [86, 109]. The best way
to achieve the incorporation of multiple reading strategies into a single model is
through metacognition, i.e., where the model can choose when and which subset of
reading strategies to apply at any given time.
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[76] H Şenay Şen. “The Relationship between the Use of Metacognitive Strategies
and Reading Comprehension”. In: Procedia - Social and Behavioral Sciences 1.1
(Jan. 2009), pp. 2301–2305.

[77] Priyanka Sen and Amir Saffari. “What do Models Learn from Question An-
swering Datasets?” In: (Apr. 2020). arXiv: 2004.03490 [cs.CL].

[78] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Trans-
lation of Rare Words with Subword Units”. In: (Aug. 2015). arXiv: 1508 .
07909 [cs.CL].

[79] R Sheorey and K Mokhtari. “Differences in the metacognitive awareness of
reading strategies among native and non-native readers”. In: System 29.4
(Dec. 2001), pp. 431–449.

[80] Mohammad Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism”. In: (Sept. 2019). arXiv: 1909.
08053 [cs.CL].

[81] Andrea Soltoggio, Kenneth O Stanley, and Sebastian Risi. “Born to learn:
The inspiration, progress, and future of evolved plastic artificial neural net-
works”. en. In: Neural Networks 108 (Dec. 2018), pp. 48–67.

[82] Andrea Soltoggio et al. “Evolutionary advantages of neuromodulated plas-
ticity in dynamic, reward-based scenarios”. In: Proceedings of the 11th interna-
tional conference on artificial life (Alife XI). 2008, pp. 569–576.

[83] Ekta Sood et al. “Improving Natural Language Processing Tasks with Human
Gaze-Guided Neural Attention”. In: (Oct. 2020). arXiv: 2010.07891 [cs.CL].

[84] Robyn Speer, Joshua Chin, and Catherine Havasi. “ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge”. en. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence. Feb. 2017.

[85] Robert Stufflebeam. Neurons, Synapses, Action Potentials, and Neurotransmis-
sion. 2022. URL: https://web.archive.org/web/20220121043640/https:
//mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.html.

[86] Kai Sun et al. “Improving Machine Reading Comprehension with General
Reading Strategies”. In: (Oct. 2018). arXiv: 1810.13441 [cs.CL].

[87] Alon Talmor and Jonathan Berant. “MultiQA: An Empirical Investigation
of Generalization and Transfer in Reading Comprehension”. In: (May 2019).
arXiv: 1905.13453 [cs.CL].

[88] Alon Talmor et al. “CommonsenseQA: A Question Answering Challenge
Targeting Commonsense Knowledge”. In: (Nov. 2018). arXiv: 1811 . 00937
[cs.CL].

https://arxiv.org/abs/2004.03490
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2010.07891
https://web.archive.org/web/20220121043640/https://mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.html
https://web.archive.org/web/20220121043640/https://mind.ilstu.edu/curriculum/neurons_intro/neurons_intro.html
https://arxiv.org/abs/1810.13441
https://arxiv.org/abs/1905.13453
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937


78 Bibliography

[89] Adam Trischler et al. “A Parallel-Hierarchical Model for Machine Compre-
hension on Sparse Data”. In: (Mar. 2016). arXiv: 1603.08884 [cs.CL].

[90] Ashish Vaswani et al. “Attention Is All You Need”. In: (June 2017). arXiv:
1706.03762 [cs.CL].

[91] Nicolas Vecoven et al. “Introducing neuromodulation in deep neural net-
works to learn adaptive behaviours”. en. In: PLoS One 15.1 (Jan. 2020),
e0227922.

[92] Roby Velez and Jeff Clune. “Diffusion-based neuromodulation can eliminate
catastrophic forgetting in simple neural networks”. en. In: PLoS One 12.11
(Nov. 2017), e0187736.

[93] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform
for Natural Language Understanding”. In: (Apr. 2018). arXiv: 1804.07461
[cs.CL].

[94] Alex Wang et al. “SuperGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems”. In: (May 2019). arXiv: 1905 . 00537
[cs.CL].

[95] Kuan Wang et al. “GNN is a Counter? Revisiting GNN for Question Answer-
ing”. In: (Oct. 2021). arXiv: 2110.03192 [cs.AI].

[96] Psychology Wiki. Cognitive Processes. 2021. URL: https://web.archive.org/
web/20220317194759/https://psychology.fandom.com/wiki/Cognitive_
processes.

[97] Thomas Wood. F-score. 2022. URL: https : / / web . archive . org / web /
20220320021023/https://deepai.org/machine-learning-glossary-and-
terms/f-score.

[98] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation”. In: (Sept. 2016). arXiv:
1609.08144 [cs.CL].

[99] Kelvin Xu et al. “Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of
Machine Learning Research. Lille, France: PMLR, 2015, pp. 2048–2057.

[100] Yichong Xu et al. “Fusing Context Into Knowledge Graph for Commonsense
Question Answering”. In: (Dec. 2020). arXiv: 2012.04808 [cs.CL].

[101] Min Yang et al. “Exploring Human-Like Reading Strategy for Abstractive
Text Summarization”. en. In: AAAI 33.01 (July 2019), pp. 7362–7369.

[102] Peng-Jian Yang et al. NT5?! Training T5 to Perform Numerical Reasoning. 2021.
DOI: 10.48550/ARXIV.2104.07307. URL: https://arxiv.org/abs/2104.
07307.

[103] Zhilin Yang et al. “XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding”. In: (June 2019). arXiv: 1906.08237 [cs.CL].

[104] Deming Ye et al. “Coreferential Reasoning Learning for Language Represen-
tation”. In: (Apr. 2020). arXiv: 2004.06870 [cs.CL].

[105] Dani Yogatama et al. “Learning and Evaluating General Linguistic Intelli-
gence”. In: (Jan. 2019). arXiv: 1901.11373 [cs.LG].

https://arxiv.org/abs/1603.08884
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/2110.03192
https://web.archive.org/web/20220317194759/https://psychology.fandom.com/wiki/Cognitive_processes
https://web.archive.org/web/20220317194759/https://psychology.fandom.com/wiki/Cognitive_processes
https://web.archive.org/web/20220317194759/https://psychology.fandom.com/wiki/Cognitive_processes
https://web.archive.org/web/20220320021023/https://deepai.org/machine-learning-glossary-and-terms/f-score
https://web.archive.org/web/20220320021023/https://deepai.org/machine-learning-glossary-and-terms/f-score
https://web.archive.org/web/20220320021023/https://deepai.org/machine-learning-glossary-and-terms/f-score
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2012.04808
https://doi.org/10.48550/ARXIV.2104.07307
https://arxiv.org/abs/2104.07307
https://arxiv.org/abs/2104.07307
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/2004.06870
https://arxiv.org/abs/1901.11373


Bibliography 79
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