
Key Exchange and Zero-Knowledge
Proofs from Isogenies and Hyperelliptic

Curves

Samuel Alexander Dobson

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Mathematics
The University of Auckland

2022

Abstract

Cryptography plays a vital role in the modern age of computing and security. Of the many
branches of cryptography, we primarily focus on two in this thesis. The first is post-quantum
secure key exchange from isogenies. Key exchange protocols are critical for setting up secure
communication over the internet. We construct a new initial key agreement protocol to replace
the classical extended triple Diffie–Hellman (X3DH) scheme in the Signal Protocol, using
Supersingular Isogeny Diffie–Hellman (SIDH) for post-quantum security. As part of this work,
we introduce a new model capturing the security properties of Signal X3DH, and within this
model prove security of our new scheme (SI-X3DH).

The SI-X3DH protocol requires a way of proving knowledge of SIDH secret keys. This brings us
to the second primary focus of this thesis: zero-knowledge proofs. As suggested by the name,
such schemes allow a statement to be proved without leaking any information other than the
validity of the statement. We propose a zero-knowledge proof protocol that fixes a flaw in the
security proof of the De Feo–Jao–Plût identification scheme from 2014. We then propose a second
protocol that additionally proves correctness of the torsion points in SIDH public keys. These
schemes admit the first secure, non-interactive Proofs of Knowledge for SIDH secret keys.

Still in the line of zero-knowledge proofs, we study a primitive used in various classical construc-
tions: unknown-order groups. Our contributions here are threefold. We study the security of
recommended parameter sizes for ideal class groups as groups of unknown order, and show that
these do not meet their claimed level of security when accounting for Sutherland’s primorial
steps algorithm in generic groups. In response, we propose new parameters for various levels of
security. Secondly, we give a new method of compressing elements of ideal class groups, requiring
only 3/4 of their uncompressed size. Finally, we concretely propose a new method of generating
groups of unknown order using Jacobians of genus-3 hyperelliptic curves—including an analysis
of their security. We show that Jacobians may provide a more efficient choice for unknown-order
groups than ideal class groups of imaginary quadratic fields.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Professor Steven D.
Galbraith, for the guidance you provided me, your patience, intuition, and feedback, and your
support and good nature. I am very grateful to have had you as my supervisor, and could not
have wished for a better one.

Besides my supervisor, there are many others in my academic life that deserve thanks. These
include my co-supervisor, Associate Professor Giovanni Russello, my advisor, Dr Jeroen Schille-
waert, and my many other teachers at the University of Auckland and Massey University. I
appreciate your encouragement and support throughout this journey, and for the guidance and
time you provided me, as both teachers and friends. Thank you to my co-authors—especially
Benjamin Smith and Luca De Feo—for lending your experience and guidance to my work. Special
thanks must also go to my colleagues and friends in the department of mathematics at UoA,
including Lukas Zobernig, Yan Bo Ti, Trey Li, Shalini Banerjee, Jason LeGrow, Oxana Novikova,
and many others. Your friendship and help have been invaluable as I found my place in Auckland
and the academic world, and I have learned so much from you all.

I cannot thank enough my parents, Neil and Helen, and my brother, Matthew, for raising
and always being there for me, even after I moved away from home. Your love, guidance,
encouragement, and care have been so significant and formative, and I have so much to credit
you with. I am immensely blessed, grateful, and proud to have such an incredible family.

Thanks also to Greg and Margot Ross, for welcoming me into your home and lives, and for looking
after me so kindly and generously in Auckland. I could not ask for better parents-in-law.

Finally, thank you so much to my wife, Sarah. I cannot overstate how much your love and support
has meant to me throughout my PhD and beyond. Thank you for your patience, kindness, care,
and affirmation. You are such a blessing on my life.

Soli Deo gloria - Glory to God alone.

Please note: an editor has not been used in the construction of this thesis.

iii

iv

Contents

Introduction 1

1 Isogenies and SIDH 7

1.1 Elliptic curves and isogenies . 7

1.2 The supersingular isogeny graph . 10

1.3 Supersingular Isogeny Diffie–Hellman . 11

1.4 Some useful lemmas . 13

2 Cryptographic Hardness Assumptions from Isogenies 17

2.1 Standard SIDH hardness assumptions . 18

2.2 A degree-insensitive assumption . 20

2.2.1 Uniqueness of isogenies from public keys 23

2.2.2 Experimental evidence . 24

2.2.3 The di-SI-GDH oracle . 26

2.3 New SIDH hardness assumptions . 27

2.3.1 Double variants . 28

2.3.2 SI-CDH-based assumptions . 30

3 Adaptive Attacks and Public Key Validation 33

3.1 The GPST attack on SIDH . 33

3.2 k-SIDH . 34

3.3 The Weil pairing check . 37

3.4 The Fujisaki–Okamoto transformation . 38

4 SIDH Proof of Knowledge 41

4.1 Preliminaries: Sigma protocols . 43

4.2 Previous SIDH identification scheme . 44

4.2.1 De Feo–Jao–Plût scheme . 44

4.2.2 Soundness proof issues . 45

4.2.3 Counterexample to soundness . 46

v

4.3 New SIDH zero-knowledge proof scheme . 48

4.4 Correctness of the points in an SIDH public key 53

4.4.1 Ideas for potential improvements . 59

4.5 SIDH signatures and non-interactive zk-PoKs . 61

5 Post-Quantum Signal Key Agreement with SIDH 63

5.1 Relation to other work . 65

5.2 The Signal X3DH protocol . 67

5.3 Security model . 68

5.3.1 Key indistinguishability experiment . 70

5.3.2 Further security properties . 73

5.4 Using SIDH for post-quantum X3DH . 74

5.5 Proof of security . 77

5.5.1 Cases E2, E3, E6 (MEX) . 79

5.5.2 Cases E1, E7 . 80

5.5.3 Case E5 (wPFS) . 81

5.5.4 Deniability . 82

5.6 Efficiency . 83

6 Hyperelliptic Curves and Ideal Class Groups 85

6.1 Ideal class groups . 85

6.2 Form class groups . 87

6.3 Compressing class group elements . 87

6.3.1 Bleichenbacher’s Rabin signature compression algorithm 88

6.3.2 An improved class group element compression algorithm 88

6.4 Hyperelliptic curves . 91

7 Trustless Groups of Unknown Order 95

7.1 Motivation: Cryptographic accumulators . 96

7.2 Sutherland’s algorithm: The security of generic groups 98

7.3 Ideal class groups as unknown-order groups . 100

7.4 Hyperelliptic Jacobians as unknown-order groups 101

7.4.1 Point-counting algorithms . 102

7.4.2 Discrete logarithm algorithms . 103

7.4.3 Avoiding special curves . 104

7.4.4 Generating hyperelliptic Jacobians of unknown order 105

7.5 Elements of known order . 106

7.5.1 Low-order assumptions and cofactors . 107

7.5.2 Elements of known order in class groups and Jacobians 109

vi

Conclusions and Future Work 111

Bibliography 113

vii

xii

Introduction

In 1976, Whitfield Diffie and Martin Hellman [DH76] introduced the world to public-key cryptog-
raphy via their key exchange protocol—now known simply as the Diffie–Hellman (DH) protocol.
This scheme revolutionised internet security, allowing a shared secret to be established by two
parties at distance, impervious to eavesdroppers.

The original protocol works with the multiplicative group of integers modulo a prime p. Two
participants who wish to partake in the protocol will first agree on this prime as well as g, a
primitive root modulo p. Each party i will then choose a private key uniformly at random,

xi ← Z/pZ,

and from there compute their corresponding public key,

Xi ≡ g
xi (mod p).

The claimed infeasibility of computing the private key xi from public key Xi is known as the
discrete logarithm problem (DLP), and is one of the most pervasive hardness assumptions in
all of public-key cryptography. Under the assumption of its hardness, participants can confidently
share their public keys Xi with each other without risking leakage of their secrets—hence the
“public” designation.

Suppose Alice and Bob wish to conduct a key exchange. Let Alice’s private key be a and public
key be A, and let Bob’s private and public keys be b and B in the same manner. After exchanging
public keys A and B, Alice and Bob will both be able to compute the same secret value K as
follows:

K = Ba = Ab = gab (mod p).

This introduces a second major cryptographic assumption—the Diffie–Hellman assumption—
which is that an eavesdropper who learns both A and B, and who knows g and p, cannot feasibly
compute K. Consequently, K can be used as a shared secret key known only to Alice and
Bob.

Key exchange protocols modelled after this original Diffie–Hellman scheme have become ubiquitous
throughout public-key cryptography, and form one of the key backbones of security on the internet.
Notably, elliptic curves naturally provide an efficient variant of the DH protocol, known as ECDH—
with security based on the hardness of the cryptographic elliptic curve DLP (ECDLP) and elliptic
curve Diffie–Hellman (ECDH) assumptions.

1

Post-quantum cryptography

Peter Shor, in 1994, discovered an algorithm for factoring integers and computing discrete
logarithms in polynomial-time using a quantum computer [Sho94, Sho97]. This breakthrough
was alarming news for the world of public-key cryptography, putting heavily-relied-upon schemes
such as RSA, Diffie–Hellman, and elliptic curve cryptography directly in the firing line. If a
sufficiently powerful quantum computer should ever be created, it would signal the end of these
schemes’ security.

While some parties are sceptical about the feasibility of creating such quantum computers, a
potential threat like this cannot be ignored. It is important to allow time for new cryptographic
schemes to be studied and tested before they are entrusted with real world security, so research
and standardisation needs to be done long before it is required. Thus began a search for new
cryptographic schemes and primitives, which could still provide security in a world where powerful
quantum computers existed. These new schemes, which boast claims of security even in the
presence of quantum-enabled adversaries, are labelled post-quantum. For clarity, the schemes
and assumptions which are not quantum-resistant are often termed classical.

To date, progress on construction of quantum computers is slow but steady. IBM recently
announced a 127-qubit quantum processor called Eagle [IBM21], in line with their goal of
creating a 1000-qubit device by the end of 2023. The current state of affairs and its impact on the
security of the aforementioned algorithms is difficult to determine, however, as there are many
different models of quantum computation being researched and trialled, with incomparable claims
of progress. Until the smoke clears, cryptographic research needs to prepare for the worst.

With the new goal of quantum-resistant assumptions in mind, some old schemes have resurfaced
with new purpose, while other entirely new ideas have been proposed. There are five frontrunners
in the post-quantum search:

• Lattice-based cryptography: These schemes generally rely on high-dimensional lattices, in
which certain problems are easy when given a “nice” (short, fairly orthogonal) basis, but
hard when the basis provided consists of large, highly non-orthogonal vectors. Well-studied
hard problems include finding the closest point in a lattice to a non-lattice point, and finding
short vector(s) in a lattice. The seminal work in this area was by Ajtai in 1996 [Ajt96], while
important lattice-based schemes include NTRU [HPS98] for encryption and CRYSTALS-
Dilithium [DKL+18] for signatures—both of which (among other lattice-based schemes) are
third-round candidates in the NIST standardisation competition [AAA+20].

• Hash-based cryptography: The first work in this area was by Lamport [Lam79], who
constructed a one-time signature scheme from hash functions. Merkle [Mer79] improved
upon this to construct a finite-use signature scheme using what he called “tree authentication”,
which we now call a Merkle tree. This area of cryptography has undergone revival due to
lack of known quantum attacks, and has also found use in other areas such as zero-knowledge
proofs [BBHR18] in recent years.

• Multivariate cryptography: These schemes are based on the hardness of solving systems
of polynomial equations in multiple variables, a task which has been proven to be NP-
complete [GJ79]. With the ideas first introduced by Matsumoto and Imai [MI88] (and
broken seven years later by Patarin [Pat95]), subsequent signature schemes include the
Unbalanced Oil and Vinegar scheme [KPG99] and the Rainbow scheme [DCP+19] based on
it—another third-round candidate in the NIST standardisation competition. A practical
attack on Rainbow was recently presented by Beullens [Beu22].

2

• Code-based cryptography: While error-correcting codes are an interesting area of research
in themselves, they have also been used to construct public-key cryptosystems. Originally
introduced by McEliece in 1978 [McE78], such schemes did not attract much interest when
first proposed, but have become popular for their conjectured post-quantum security. The
hardness of these schemes is based on the (NP-complete) problem of decoding general linear
codes. The NIST post-quantum competition includes the McEliece scheme as a code-based
contender.

• Isogeny-based cryptography: Discovered (but unpublished) by Couveignes in 1997 [Cou06],
isogeny-based cryptography was rediscovered and introduced as a post-quantum primitive
by Rostovtsev and Stolbunov in 2006 [RS06]. It gained popularity after the proposal of
SIDH by Jao and De Feo [JD11], and also yielded CSIDH [CLM+18], another interesting
key exchange scheme. The mathematics and use of isogenies in cryptography will be a
major feature in this thesis.

Both lattice- and code-based cryptosystems are generally fast—leveraging linear algebra and
parallelisation—but suffer from large key sizes. Hash-based and multivariate cryptosystems offer
reasonable signature schemes but have so far not resulted in efficient encryption or key exchange
protocols. Finally, isogeny-based schemes have relatively high computational complexity, but
offer very short key and signature sizes. For example, SQISign [DKL+20] and CSI-FiSh [BKV19]
are both relatively practical isogeny-based signature schemes boasting some of the shortest key
and signature sizes of all post-quantum schemes.

We will soon be introduced, in Chapter 1, to an isogeny-based variant of the Diffie–Hellman
scheme, known as Supersingular Isogeny Diffie–Hellman (SIDH) [JD11, DJP14]. The spotlight
remains on SIDH and isogeny-based key exchange until Chapters 4 and 5.

Zero-knowledge proofs

There is great interest in using cryptography (both classical and post-quantum) to prove various
statements in secure ways. For example, we may wish to prove knowledge of some secret without
revealing any information about it, or prove that a large computation was done correctly without
requiring the verifier to repeat the entire process. Schemes for proving a statement while revealing
no other information—only whether the proof is valid or not—are known as zero-knowledge
proofs.

An accessible example of such proofs can be given in terms of graph isomorphisms. Suppose we
have two graphs G0 and G1, such that a prover, Peggy, knows an isomorphism α : G0 → G1

between them, and wants to convince a verifier, Victor, that she does (without revealing anything
about the isomorphism to Victor). To do so, Peggy can choose a random third graph H,
isomorphic to G0 via β : G0 → H (and therefore isomorphic to G1 via β ◦ α−1), and send this
graph H to Victor. Victor will choose a random challenge bit b ∈ {0, 1} and give b to Peggy.
Finally, Peggy will respond with

resp :=

{
β if b = 0,

β ◦ α−1 if b = 1.

Figure 1 shows the relationship between G0, G1, and H visually. Regardless of whether the
verifier sends challenge 0 or 1, they will only learn an isomorphism Gb → H, and will learn
nothing about the isomorphism between G0 and G1. But each challenge offers the verifier a 1/2
chance of catching out a dishonest prover—only a prover who knows α can successfully answer

3

both challenges every time the protocol is run. So after t iterations of this protocol between
Victor and Peggy, Victor will be convinced with probability 1 − 1/2t that Peggy does indeed
know α.

G0

G1

Hα

β

β ◦ α−1

Figure 1: Zero-knowledge proof of a secret graph isomorphism α

Proving knowledge of a secret key without leaking information about it is a standard idea
in cryptography. Many signature schemes, for example the Schnorr signature scheme [Sch91],
are Proofs of Knowledge of the secret key used in signing. Chapter 4 proposes a similar zero-
knowledge Proof of Knowledge (zk-PoK) for SIDH secret keys. The area of zero-knowledge
proof research is vast and varied, though, certainly not limited to just proving knowledge of
keys. Some constructions require more complicated setups which may include secret trapdoor
knowledge—trapdoors which, if used maliciously, would undermine the schemes’ security. There is,
therefore, general interest in schemes that can be set up in a manner that does not require trusting
other participants to behave honestly, and setups that can be verified as correct after-the-fact.
This idea is appropriately named trustless setup. When this is possible, and a scheme is set up
in this way, the scheme can simply be used without fear of being tricked by someone with inside
knowledge.

As we will see in Chapter 7, a common requirement for trustless setup is the ability to generate
a group whose order is unknown. In many schemes based on this idea, knowledge of the group
order would allow proofs to be forged. We study methods for generating groups of unknown order
trustlessly, so that no one is able to learn the group order throughout the process of generating
it.

Structure of this thesis

Overall, this thesis has two primary focuses. The first is isogeny-based key exchange—we study
and propose some novel cryptographic assumptions related to isogeny-based authenticated key
exchange protocols, and show how SIDH can be used to securely instantiate a post-quantum
Signal initial key agreement protocol.

Chapter 1 gives an introduction to the mathematics and use of supersingular elliptic curves
and isogenies in cryptography, and the SIDH protocol. Chapter 2 delves into cryptographic
hardness assumptions related to isogeny-based cryptography, and in particular those related to
SIDH. This chapter also introduces some novel assumptions that are used later in this thesis.
As part of this chapter, Section 2.2 contains work which is published in [DG19]. Chapter 3
discusses the prominent adaptive attacks on SIDH key exchange protocols, and discusses the
difficulties involved with public key validation to prevent such attacks. As discussed below, we
then introduce a new zero-knowledge Proof of Knowledge for use in validating SIDH public keys.
Finally, Chapter 5 studies the Signal extended triple Diffie–Hellman (X3DH) key establishment
protocol and its security model, and proposes a new SIDH-based variant of X3DH which we call

4

SI-X3DH. The material in this chapter has previously been published in [DG21].

The second branch of this thesis is concerned with zero-knowledge proofs. In this respect,
Chapter 4 demonstrates a flaw in the soundness proof of the SIDH identification scheme by De
Feo, Jao, and Plût [DJP14], and proposes a new, sound, protocol which is a zero-knowledge
Proof of Knowledge (zk-PoK) of SIDH secret keys. This admits the first secure non-interactive
zk-PoK for this purpose. The material in Chapter 4 has previously been published in [DDGZ21].
We also delve into the realm of zero-knowledge proofs from classical cryptographic assumptions,
discussing systems that require groups of unknown order to achieve a trustless setup. Background
material is provided in Chapter 6, where we also introduce our new method of compressing class
group elements (Section 6.3). In Chapter 7 we then show that previous estimates of the security
of trustless unknown-order groups greatly underestimate certain attacks. We thus suggest new
cryptographic parameter sizes for these groups, and also a new way of generating such groups
using Jacobians of hyperelliptic curves. Chapters 6 and 7 cover work that is included in the
publication [DGS21].

Summary of contributions

The main contributions of this thesis are related to the Supersingular Isogeny Diffie–Hellman
(SIDH) key exchange protocol. These original contributions include:

• Demonstration of a flaw in the SIDH identification scheme soundness proof and the proposal
of a new protocol that is proved to be sound and zero-knowledge.

• The introduction of a new SIDH public key well-formedness verification method in the
shape of a non-interactive zero-knowledge Proof of Knowledge (NIZK-PoK), with respect to
a non-standard distributional definition of zero-knowledge, which proves the correctness of
the two torsion points in SIDH public keys.

• An analysis of the security properties of the Signal initial key agreement protocol, known as
extended triple Diffie–Hellman (X3DH), and the proposal of a new security model capturing
these properties formally.

• The design of a post-quantum variant of the Signal initial key agreement protocol (X3DH)
based on SIDH, using a novel variant of the Fujisaki–Okamoto transformation and the above
NIZK-PoK of SIDH keys to avoid adaptive attacks. This includes a proof of security in the
new model mentioned in the previous point.

• Analysis of a cryptographic assumption in a previous work on authenticated key exchange
based on supersingular isogenies, called the degree-insensitive SIDH assumption, and the
provision of computational evidence to demonstrate that this assumption is invalid.

Additionally, we study groups of unknown order and their part in cryptography. We have three
main contributions in this area:

• A technical discussion on the impact of Sutherland’s algorithm on trustless hidden-order
group security, and the proposition of new security estimates and parameter sizes with
respect to a new definition of security for these groups.

• A new method of compressing ideal class group elements, improving their representation
size to 3/4 of their uncompressed length.

• Analysis of the security of using Jacobians of hyperelliptic curves as groups of unknown
order, and a proposal of methods for doing so securely, as well as a comparison of their

5

efficiency against ideal class groups.

Notation and conventions

Throughout this thesis, Fq will denote a finite field of cardinality q where, by convention, q = pr

for some power r, with p the (prime) characteristic of the field. If k is a field, k will denote its
algebraic closure. If R is a ring (or, in particular, a field), R× will denote its multiplicative group.
E will be used to represent an elliptic curve, while P,Q,K will often be elliptic curve points.
As a convention, we will use Kφ to denote a point that generates the kernel of a cyclic isogeny
φ. The identity of the elliptic curve group law (the point at infinity) will be represented as OE ,
where the subscript will be omitted when the curve is clear from context. Note that O will also
be used for orders and oracles—the meaning will be clear from the context.

We will use a dashed box around a variable or parameter x to indicate that x is optional and
may be omitted (or set to null). When X is a finite set, x← X will be used to indicate that x
is chosen uniformly at random from X. When A is an algorithm, x ← A will denote running
the algorithm A and assigning its output to x. We use x ‖ y to denote concatenation of the two
values x and y, and ⊕ to denote the exclusive-OR (XOR) of two bit-strings.

We use big-O notation to represent asymptotic algorithm complexity. Recall that an algorithm A
running in time T (n) on an input of size n has complexity O(g(n)) if there exists some constant
M such that, for all sufficiently large n, T (n) ≤Mg(x). If this inequality holds for any positive
constant ε for sufficiently large n > N , then A has complexity o(g(x)). Recall that

Õ(x) = O((log x)c · x)

for some constant c, and for sub-exponential algorithms,

Lx(α) = exp [(1 + o(1))(log x)α(log log x)1−α]

for 0 ≤ α ≤ 1. Finally, we let negl be a negligible function, such that |negl(κ)| < 1/poly(κ) for
all polynomials poly and sufficiently large κ.

6

Chapter 1

Isogenies and SIDH

A significant proportion of this thesis relates to the Supersingular Isogeny Diffie–Hellman (SIDH)
identification and key exchange protocols. Therefore, it makes sense to begin with an introduction
to isogenies, supersingular elliptic curves, and isogeny-based cryptography. Elliptic curves have
been a cornerstone of classical cryptography for the past two decades due to the efficiency and
small key sizes of many primitives using them. They are well-understood mathematically, offer
useful features such as pairings, and cryptographic hardness assumptions such as the elliptic
curve discrete logarithm problem (ECDLP) have been thoroughly studied and tested.

Despite the looming threat of Shor’s quantum algorithm against classical cryptosystems, it seems
a shame to throw away these decades of research around elliptic curves. The field of isogeny-based
cryptography as a post-quantum contender is therefore interesting for its use of elliptic curve
theory among other reasons. Isogeny-based cryptography also features some of the shortest key
sizes of all post-quantum primitive proposals.

This chapter shall serve as a brief introduction to the topic of isogeny-based cryptography,
highlighting the Supersingular Isogeny Diffie–Hellman (SIDH) key exchange protocol, which is of
particular interest and will be revisited many times throughout this thesis.

1.1 Elliptic curves and isogenies

Excellent references for background and detail on elliptic curves include Silverman’s [Sil09] and
Galbraith’s [Gal12] books—both considered canonical references for these topics. We assume
some familiarity with these fundamentals but provide a compact refresher.

Recall that an algebraic curve is a dimension one algebraic variety. A non-singular projective
algebraic curve of genus one with a distinguished point O is called an elliptic curve. Let E be
such a curve.

In all fields k of characteristic char k 6= 2, 3, an elliptic curve can be given by a short Weierstrass
equation

E : y2 = x3 +Ax+B, (1.1)

for coefficients A,B ∈ k (that is, E is defined over k). Non-singularity follows if the discriminant
of the curve, ∆E = −16(4A3 + 27B2), is non-zero. Note that the Weierstrass equation is affine,
but we are really identifying a projective curve (the projective closure), on which the point at
infinity O lies.

In this thesis, we are interested only in elliptic curves over finite fields Fq of cardinality q = pn,
where p ≥ 5 is the characteristic of the field. This will be assumed henceforth.

7

The j-invariant of an elliptic curve with Weierstrass equation y2 = x3 + Ax+ B is defined as
follows:

Definition 1.1 (j-invariant of an elliptic curve E).

j(E) = 1728
4A3

4A3 + 27B2

Two elliptic curves E,E′ are isomorphic (over the algebraic closure Fq) if and only if their
j-invariants are equal. This does not mean, however, that the isomorphism is defined over Fq.
For example, if d is a quadratic non-residue in Fq, then dy

2 = x3 + Ax+B defines an elliptic
curve Ed with the same j-invariant as E, but to which the isomorphism from E is not defined
over Fq. This curve is known as a quadratic twist of E, since the isomorphism between E and
Ed is only defined over a quadratic extension of Fq.

We can also provide a converse mapping, from j-invariants to elliptic curves. For any j ∈ k,
j 6= 0, 1728, define the curve

Ej : y2 = x3 +
3j

1728− j
x+

2j

1728− j
. (1.2)

Then j(Ej) = j. The curves E0 : y2 = x3 + 1 and E1728 : y2 = x3 + x have j-invariant 0 and
1728 respectively.

For a field k, E(k) denotes the set of k-rational points (points whose coordinates lie in k) on
E:

E(k) =
{

(x, y) ∈ k2
∣∣∣ x3 +Ax+B = y2

}
∪ {OE}, (1.3)

where OE is the point at infinity on E. It is well known that E(k) forms an abelian group
under the “chord and tangent” rule (with identity OE)—the foundation of classical elliptic curve
cryptography—making E an abelian variety. This group structure is inherited from the divisor
class group Pic0(E) of E’s Jacobian variety JE ∼= E, but can be easily computed geometrically.
The divisor class group and Jacobian are discussed further in Chapter 6.

The number of points in E(Fq) is bounded by Hasse’s Theorem, which states that

#E(Fq) = q + 1− t, (1.4)

where |t| ≤ 2
√
q is the trace of Frobenius. It is a fact that the trace of Frobenius of the

quadratic twist of E is −t.

An isogeny of degree d (or a d-isogeny) is a surjective morphism with a finite kernel. An isogeny
φ : E → E′ preserves the point at infinity, so that φ(OE) = OE′ . Isogenies are, therefore,
homomorphisms of the group structure on the elliptic curves. If two elliptic curves have an
isogeny between them, they are called isogenous, and it is a well-known theorem of Tate that
two elliptic curves E,E′ are isogenous over Fq if and only if they have the same cardinality
#E(Fq) = #E′(Fq) [Tat66].

Almost all isogenies we will encounter in this thesis are separable, which implies that the order
of the kernel is equal to the degree of the isogeny. What is more, we shall usually only deal with
cyclic isogenies—isogenies whose kernel subgroups are cyclic—so that ker(φ) = 〈K〉 for a point
K of order d, if φ has degree d.

8

Isogenies φ : E → E whose codomain and domain coincide are called endomorphisms. All
endomorphisms of E, together with the zero-map on E (which sends all points on E to OE),
form a ring under the operations of composition and point-wise addition. This is known as the
endomorphism ring of E, and is denoted by End(E).

An example of an isogeny is the multiplication-by-n map, [n] : E → E. This isogeny is separable
when n is coprime to p, and has degree n2. Such multiplication maps are contained in the
endomorphism ring End(E) for all elliptic curves E. As the name suggests, the multiplication-
by-n map sends points P 7→ [n]P on E. These isogenies [n] can be considered an embedding of
Z into (the centre of) End(E). Over fields of positive characteristic, including all finite fields we
work with in this thesis, End(E) is bigger than just Z, though. We say that such curves with
endomorphism rings larger than Z have complex multiplication. For example, the (q-power)
Frobenius endomorphism is defined as

πq((x, y)) = (xq, yq). (1.5)

This is an example of a purely inseparable isogeny, which every E over Fq possesses in its
endomorphism ring, but is not (in general) in the image of Z.

The kernel of the multiplication-by-n isogeny is, by definition, the set of points P ∈ E(Fq) of
order dividing n. These points form the n-torsion subgroup of E, denoted by E[n]. When n is
not divisible by p, these torsion subgroups have the form

E[n] ∼=
Z
nZ
× Z
nZ

. (1.6)

Of special importance in the theory of elliptic curves, though, are the pr-torsion subgroups (for
all powers r). We have two cases,

E[pr] ∼=

{
{OE} or
Z/prZ.

(1.7)

In the first case, the curve is called supersingular. These curves have especially large, non-
commutative endomorphism rings over Fq—isomorphic to maximal orders in a four-dimensional
quaternion algebra (specifically, the unique quaternion algebra over Q ramified at exactly p and
∞), with rank four as Z-modules. It is these supersingular curves that are of the most interest to
us in this thesis. The trace of Frobenius of a supersingular elliptic curve is equal to 0 modulo p,
and the converse also holds. Note, then, that supersingularity is an isogeny invariant, by Tate’s
isogeny theorem and [Sil09, Exercise 5.13].

Otherwise (the second case), if a curve is not supersingular, it is known as ordinary. The
endomorphism rings of ordinary curves are isomorphic to dimension two orders inside the ring
of integers of K = Q

(√
t2 − 4q

)
, an imaginary quadratic extension, where t is the trace of

Frobenius of the curve.

Every isogeny φ : E1 → E2 has a unique dual isogeny, denoted by φ̂ : E2 → E1, of the same
degree d [Sil09, Theorem III.6.1]. This dual isogeny has the defining property that φ̂ ◦ φ = [d].
An isogeny of degree 1 is an isomorphism, whose inverse is the dual, since [1] (their composition)
is the identity map on E.

Vélu [Vél71] presented explicit formulae for computing a degree-` separable isogeny with a
given kernel G on an elliptic curve E. Vélu’s algorithm runs in time polynomial in the degree

9

of the isogeny (or equivalently, the size of its kernel). This makes knowledge of an isogeny
interchangeable with knowledge of its kernel. Two isogenies are equivalent if their kernels are
equal (that is, the isogenies are equal up to post-composition with an isomorphism). We thus
have a 1–1 correspondence between finite subgroups of E and separable isogenies φ : E → E′ up
to equivalence [Mum08, pg. 72, Theorem 4].

Every isogeny of composite degree can be factored as the composition of a sequence of isogenies
of prime degree [Gal12, Theorem 25.1.2]. This makes the computation of smooth-power isogenies
efficient, such as those of degree 2n and 3m, which will feature heavily in this thesis.

1.2 The supersingular isogeny graph

The Fq-isogeny class of a curve E is the set of Fq-isomorphism classes of elliptic curves over Fq that
are isogenous over Fq to E. Note that, because Fq is not algebraically closed, these isomorphism
classes cannot be identified with their j-invariants in general—for example, a supersingular elliptic
curve and its quadratic twist will both have the same j-invariant, but will not be isomorphic
over Fq, as we have seen above. If we work over the algebraic closure of Fq, this problem goes
away, since all isomorphisms will then be defined.

Definition 1.2 (The general isogeny graph). Let ` be a prime. The `-isogeny graph over Fq
is the directed graph whose vertices are Fq-isomorphism classes of elliptic curves over Fq, and
whose edges correspond to degree-` isogenies (up to equivalence) between the corresponding
Fq-isomorphism classes.

Over an algebraically closed field, Fq, the `-isogeny graph is (`+ 1)-regular—that is, every vertex
has (`+ 1) unique edges incident on it—corresponding to the (`+ 1) different degree-` subgroups
of E[`]. Because Fq is not algebraically closed, however, not all of these isogenies will be defined
over Fq.

We care, in particular, about the supersingular curves. Because supersingularity is isogeny-
invariant, we can simply consider the connected components of the isogeny graph consisting of
the supersingular curves (the “supersingular components”) and ignore the ordinary components.
The ordinary components are very different from the supersingular components and have found
various uses, but are not important for this thesis, so shall not be discussed here.

Definition 1.3 (The supersingular isogeny graph). For a prime `, the supersingular `-isogeny
graph over Fq consists of the Fq-isomorphism classes of supersingular elliptic curves and the
`-isogenies between them. It is a subgraph of the degree-` isogeny graph over Fq.

Every supersingular curve E is isomorphic to one defined over F
p
2 , and j(E) ∈ F

p
2 . Therefore,

it is common to work over F
p
2 when dealing with supersingular curves. The number of Fp-

isomorphism classes of supersingular curves over F
p
2 is bp/12c + εp where εp = 0, 1, 1, 2 for

p ≡ 1, 5, 7, 11 (mod 12) respectively [Gal12, Theorem 9.11.12].

Recall that a path in a graph is a sequence of directed edges, where the start of each edge is the
same as the end of the previous. A graph is strongly connected if there is a (directed) path from
every vertex to every other vertex.

The supersingular isogeny graph consisting of degree-` isogenies (defined over Fp) is strongly

10

connected, for any prime ` [Gal12, Theorem 25.3.17]. Graphs of supersingular elliptic curves
are Ramanujan [Piz98, CLG09], a particular type of expander graph, implying excellent mixing
properties—it is only a short walk from any node to any other node due to the highly-connected
nature of the graph.

In the world of supersingular elliptic curves, there are two values of the j-invariant of particular
note: j(E) = 0 (corresponding to A = 0 in the Weierstrass equation 1.1) and j(E) = 1728
(corresponding to B = 0). Curves with these j-invariants have non-trivial automorphisms
(endomorphisms of degree 1) on them, in addition to the usual [1] and [−1] maps. In the first case,
there is an automorphism η6 : (x, y) 7→ (ζ3x,−y) of order six, where ζ3 is a primitive cube root of
unity. In the latter case, we have instead an automorphism of order four, η4 : (x, y) 7→ (−x, iy),
where i is a primitive fourth root of unity.

Consider an isogeny φ : E0 → E1, whose dual φ̂ has kernel K. If η is an automorphism on E1

which does not fix K, then η ◦ φ is an isogeny equivalent to φ, but whose dual is not equivalent
to φ̂. Thus, although there is only one edge φ going from E0 to E1 (or, more precisely, their
isomorphism classes) in the isogeny graph, there will be multiple distinct edges returning from
E1 to E0, whenever such non-trivial automorphisms exist on E1. As just discussed, this only
happens on curves with j-invariant 0 or 1728. Therefore, away from these two j-invariants, we
can consider the supersingular isogeny graph to be undirected and unweighted: every edge has a
single “dual” edge with the exception of edges to these curves with extra automorphisms.

1.3 Supersingular Isogeny Diffie–Hellman

One of the most prominent contributions in the sphere of isogeny-based cryptography is the
Supersingular Isogeny Diffie–Hellman (SIDH) protocol, introduced by David Jao and Luca De
Feo in 2011 [JD11] and later extended with Jérôme Plût [DJP14]. The critical ingredient in this
key exchange scheme is the idea of providing the images of torsion bases under the secret isogenies
to facilitate a commutative square between the two participants. As we shall discuss later in
this thesis, the SIDH protocol has formed the basis of the SIKE [ACC+17] key encapsulation
mechanism (KEM) which is an alternative third-round candidate in the NIST post-quantum
standardisation competition [AAA+20].

We set the scene for the SIDH protocol with various public parameter choices. We have a prime
of the form p = `

e1
1 `

e2
2 f ± 1, where `1, `2 are distinct small primes, f is an integer cofactor, and

`
e1
1 ≈ `

e2
2 . This prime p defines the field F

p
2 which we shall work over. Typically, we let `1 = 2

and `2 = 3, as is the case in SIKE, because computing isogenies of small-prime degree is generally
more efficient than using isogenies of larger degree. There are some SIDH variants which use
other primes, however, such as eSIDH [COR21].

As an analogue of the base g in the Diffie–Hellman protocol, we fix a supersingular elliptic curve
E0 such that E0(F

p
2) has cardinality (`

e1
1 `

e2
2 f)2. This ensures that E0 has full F

p
2-rational `e11 -

and `e22 -torsion subgroups, and therefore also that the `1- and `2-power isogeny computations are
done over F

p
2 too for efficiency, rather than requiring larger field extensions.

On E0, we choose a basis (or generating set) for both the `e11 - and `e22 -torsion subgroups. By
Equation 1.6, such bases consist of two independent points of the correct order, so denote by
{Pi, Qi} the chosen basis for `eii (such that E0[`

ei
i] = 〈Pi, Qi〉). Throughout this thesis, we will

also refer to the two participants in a key exchange by the standard names Alice and Bob—we
accordingly treat both the index 1 and the subscript A as equivalent for Alice, while B and 2
will be used interchangeably for Bob’s information. This is done for clarity in various situations

11

and for consistency with existing literature.

In full, then, SIDH public parameters consist of pp = (`1, `2, e1, e2, p, E0, P1, Q1, P2, Q2). Suppose
two parties Alice and Bob have agreed on these public parameters and wish to participate in
a key exchange. The secret key of each party will be an isogeny with domain E0. To generate
an isogeny of degree `eii from E0, a participant could generate randomly chosen secret integers
ai, bi ∈ Z/`eii Z, not both divisible by `i, and compute the isogeny with kernelKi = 〈[ai]Pi+[bi]Qi〉
via Vélu’s formulae. However, Galbraith et al. [GPST16, Lemma 2.1] formally present the idea
of “equivalent keys”, which were implicit in previous works including Costello et al. [CLN16] and
are a common theme across other areas of cryptography:

Definition 1.4 (Equivalent SIDH keys). Two SIDH secret keys (a, b) and (a′, b′) are equivalent
if they generate the same subgroup for any basis of the `eii -torsion subgroup. This is true when
(a′, b′) = (θa, θb) for some θ ∈ (Z/`eii Z)×. Assume that a is not divisible by `i, then we can
choose θ ≡ a−1 (mod `

ei
i), giving an equivalent key (1, b′) with b′ ≡ a−1b (mod `

ei
i). Similarly, if

b is not divisible by `i, we can invert it and obtain equivalent key (a′, 1). Hence, we realise a
shorter representation of secret keys, without loss of generality, requiring only a single element of
(Z/`eii Z) and one extra bit (to determine the case).

From this idea, rather than working with the full generality of choosing two integers ai, bi, we
restrict to secret keys the form (1, α) for simplicity. This only reduces the size of the effective
secret keyspace by a single bit, and is exactly what is done in SIKE and many other protocols.
Alice will simply choose a single integer α← Z/`e11 Z and compute the isogeny

φA : E0 → EA = E0/〈P1 + [α]Q1〉 (1.8)

which has degree `e11 . In kind, Bob will sample β ← Z/`e22 Z and compute φB of degree `e22 with
kernel 〈P2 + [β]Q2〉.

All three of φA, its kernel 〈P1 + [α]Q1〉, and the integer α will be referred to interchangeably
as Alice’s “secret key”. Alice’s public key takes the form (EA, φA(P2), φA(Q2)), providing both
the codomain of her secret isogeny and the image of the `e22 -torsion subgroup under said isogeny.
The reason for the latter points being included is so that Bob is able to “transport” his secret
isogeny to EA, and permits a kind of commutativity.

When given Alice’s public key, Bob will compute the isogeny

φAB : EA → EAB = EA/〈φA(P2) + [β]φA(Q2)〉. (1.9)

Similarly, given Bob’s public key (EB, φB(P1), φB(Q1)), Alice will compute

φBA : EB → EBA = EB/〈φB(P1) + [α]φB(Q1)〉. (1.10)

Because isogenies are group homomorphisms and these kernels have trivial intersection, the
codomains of both these curves will be isomorphic to the curve

EAB ∼= EBA ∼= E0/〈P1 + [α]Q1, P2 + [β]Q2〉. (1.11)

Consequently, the j-invariants of these curves computed by the participants will be equal,
and can be used as a shared secret key. In fact, because Vélu’s formulae produce normalised
isogenies, both Alice and Bob will actually arrive at exactly the same curve, not just isomorphic
ones [Leo20].

12

E0 EA

EB EAB

φA

φB

φBA

φAB

Figure 1.1: Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and ker(φAB) =
φA(ker(φB)).

Figure 1.1 depicts the commutative diagram making up the key exchange.

Throughout this thesis, we will use the function SIDHpp(·, ·) to represent this protocol with
respect to public parameters pp, whose output is the final j-invariant derived by both participants.
Generally, the public parameters will be clear from context, so they may be omitted for ease
of notation. The arguments to SIDHpp will be the two public keys of the participants, because
clearly the result is independent of which participant computed the value (using their secret key).
Specifically, if β is the secret key corresponding to the public key KB = (EB, P

′
1, Q

′
1), then

SIDHpp((EA, P
′
2, Q

′
2),KB) = j(EA/〈P

′
2 + [β]Q′2〉). (1.12)

We will discuss the cryptographic hardness assumptions pertaining to isogenies and the SIDH
protocol in Chapter 2.

1.4 Some useful lemmas

We collect here some basic definitions and lemmas that we will use repeatedly later in this
thesis—especially in Chapter 4. These lemmas include the use of the Weil pairing, which we will
introduce in more detail in Section 3.3.

Lemma 1.5. Let E be an elliptic curve, let m = `e where ` 6= p is prime and e is a positive
integer, and let (P,Q) be a basis of E[m]. Let R = [a]P +[b]Q and S = [c]P +[d]Q. The following
conditions are equivalent:

(i) (R,S) forms a generating set (or basis) of E[m].

(ii) ` does not divide ad− bc, or in other words, the matrix

A =

(
a b

c d

)

is invertible modulo m.

(iii) The value of the m-th Weil paring w = em(R,S) has order m. That is, wm/` 6= 1.

Proof. (i) ⇒ (ii): Both (P,Q) and (R,S) are bases (or generating sets) of the same torsion
subgroup E[m]. Hence, we must be able to write (P,Q) in terms of (R,S), and we can represent
this transformation as a matrix Ã. Composing these shifts between (P,Q) and (R,S) and back,
it becomes clear that AÃ = I2, the identity matrix. So Ã = A−1, and evidently A is invertible,
therefore so too is its determinant ad− bc (mod m).

13

(ii) ⇒ (iii): We have that

w = em(R,S) = em([a]P + [b]Q, [c]P + [d]Q).

Then, since em is bilinear, w = em(P,Q)ad−bc. Now em(P,Q) has orderm because em is surjective
onto the group of m-th roots of unity (c.f. [Sil09, Corollary III.8.1.1]), and since ` does not divide
ad− bc, then w must also have exact order m = `e.

(iii) ⇒ (i): Recall from Equation 1.6 that E[m] ' Z/mZ× Z/mZ. Thus, in order for R and S
to form a basis, we must show 〈R〉 ∩ 〈S〉 = {OE}.

Suppose [t]R = [u]S 6= OE for some integers t, u. By assumption, it must be that m - t and
m - u. Now consider em([t]R− [u]S, S) = 1, since em(OE , T) = 1 for any T . By the bilinearity
of the pairing, this gives

em([t]R− [u]S, S) = em(R,S)tem(S, S)−u.

Then, because em(S, S) = 1, we arrive at the conclusion em(R,S)t = 1, which is a contradiction
since em(R,S) has order m and m - t. Thus, there can exist no such integers t, u, and therefore
〈R〉 ∩ 〈S〉 = {OE}.

Definition 1.6 (Independent points, isogenies). When two points R,S ∈ E satisfy any of the
equivalent properties in Lemma 1.5, we say they are independent of one another. Similarly,
we say that two cyclic groups of order `e are independent whenever any of their generators are.
Finally, we say that two isogenies of degree `e are independent if their kernels are.

Lemma 1.7. Let φ : E → E/〈R〉 be an isogeny of degree `e with kernel 〈R〉, and let S be a point
of order `e, such that S and R are independent. Then φ(S) has order `e and generates ker(φ̂).

Proof. Because R and S are independent (Definition 1.6), the subgroups generated by R and S
intersect trivially. Thus, since φ has kernel 〈R〉, no non-trivial point in 〈S〉 is in the kernel of φ.
Furthermore, we know that φ̂ ◦φ = [`e] has kernel E[`e], and that S ∈ E[`e]. Thus, φ̂(φ(S)) = O,
implying φ(S) is in the kernel of φ̂. The same holds for all elements S′ = [λ]S ∈ 〈S〉, and since
φ(S′) 6= O for all non-trivial S′, φ(S) has order `e and generates ker(φ̂).

The following lemma is the main tool we will use, repeatedly, to design the Proofs of Knowledge
in Chapter 4.

Lemma 1.8. Let `1, `2 be distinct primes different from p, and let e1, e2 be positive integers. Let
φA : E → EA be an isogeny of degree `e11 . Furthermore, let φB : E → EB and φAB : EA → EAB
be isogenies of degree `e22 such that ker(φAB) = φA(ker(φB)). Then there exists an isogeny
φBA : EB → EAB of degree `e11 .

Additionally, let S ∈ E be a point of order `e22 such that ker(φB) and 〈S〉 are independent, let
SB = φB(S) and let SAB = φAB(φA(S)). Then SB and SAB both have order `e22 , and generate,
respectively, ker(φ̂B) and ker(φ̂AB). Moreover, φBA(SB) = SAB.

This is visualised in Figure 1.2.

Proof. Let KA be a generator of ker(φA). Then, because the degrees of φA, φB are coprime,
φB(KA) also has order `e11 and generates the kernel of some isogeny χ : EB → EB/〈φB(KA)〉.

14

Observe that EAB is defined as the codomain of φAB ◦φA. We thus have that EAB ∼= E/〈KA,K
′〉

for a point K ′ of order `e22 such that 〈φA(K ′)〉 = ker(φAB). Because ker(φAB) = φA(ker(φB)),
we conclude 〈K ′〉 = ker(φB). Therefore, EB/〈φB(KA)〉 ∼= EAB as required.

By the conditions on S, Lemma 1.7 shows that SB = φB(S) generates ker(φ̂B).

One can verify that using Vélu’s formula [Vél71], φAB(φA(P)) = φBA(φB(P)) for any point
P ∈ E (see [Leo20, Lemma 1]). Hence,

SAB = φAB(φA(S))

= φBA(φB(S))

= φBA(SB).

Finally, because 〈S〉 and ker(φB) are independent, and because ker(φAB) = φA(ker(φB)), then
〈φA(S)〉 and ker(φAB) must also be independent. φA(S) must have order `e22 since the degree of
φA is coprime to the order of S. So by applying Lemma 1.7 again, we arrive at the conclusion
that SAB generates ker(φ̂AB).

The lemma above suggests an algorithm to compute the points SB and SAB , even when the isogeny
φA is only known through its action on E[`

e2
2]. We present such an algorithm in Figure 1.1.

E,S ∈ E EA

EB
SB = φB(S)

EAB
SAB = φBA(SB)
= φAB(φA(S))

φA

φB
φAB

φBA

Figure 1.2: Lemma 1.8, visualised. The lemma shows that φBA exists and the equality on SAB
from both directions holds.

Algorithm 1.1 Algorithm to compute image of a single point under hidden isogeny φBA, as per
Lemma 1.8.
Input: (E,P,Q,EA, PA, QA, φB, φAB) such that 〈P,Q〉 = E[`

e2
2], φB : E → EB and φAB :

EA → EAB have degree `e22 , and for some isogeny φA : E → EA of degree `e11 , we have
ker(φAB) = φA(ker(φB)), PA = φA(P), and QA = φA(Q)

Output: (S, φBA(S)) where S ∈ EB and φBA : EB → EAB is an isogeny such that ker(φBA) =
φB(ker(φA))

1: Find a point S ∈ E such that SB = φB(S) generates the kernel of φ̂B. In fact, it suffices to
use either S = P or S = Q.

2: Write S = [a]P + [b]Q for integers a, b ∈ Z/`e22 Z
3: Compute SA = [a]PA + [b]QA. Then SA = φA(S) despite φA being unknown.
4: Compute SAB = φAB(SA)
5: Output (SB, SAB)

15

16

Chapter 2

Cryptographic Hardness Assumptions
from Isogenies

Mathematical cryptography promotes rigorous proofs of security for cryptographic primitives
and protocols, with reductions to clearly defined assumptions. In this chapter, we tour some
well-established hardness assumptions of isogeny-based cryptography, but also visit some new
ones.

It is usual to first define a “hard problem”, precisely laying out the challenge for adversaries to
solve. From a hard problem, a corresponding hardness assumption can be easily given—usually
that for certain parameter choices, the aforementioned hard problem is infeasible to solve by any
adversary within specified restrictions.

Commonly, problems come in pairs—a computational problem is usually coupled with a decisional
variant. Computational problems are the more general class and refer to challenges in which
the adversary is required to compute some value (for example, finding a secret key or shared
secret). Decisional problems are those where the adversary outputs a binary value stating
whether some relationship holds or not (for example, whether or not the shared secret of two
given Diffie–Hellman public keys is equal to a specified value).

The foundational hardness assumption of isogeny-based cryptography is that it is hard to find an
isogeny between two given curves. This is formalised as follows:

Definition 2.1 (General isogeny problem). Given j-invariants j, j′ ∈ Fq, find an isogeny
φ : E → E′ if one exists, where j(E) = j and j(E′) = j′.

We could also define a decisional variant of this problem: given two curves, to determine whether
there exists an isogeny between them. However, this decisional version is easy to solve—an isogeny
exists over Fq if and only if #E(Fq) = #E′(Fq), as we saw in Chapter 1, and the cardinality of
an elliptic curve can be computed very efficiently [Sch95] (we will discuss this more in Chapter 7).
By [Sil09, Exercise 5.13], the cardinality of E and E′ over field extensions F

q
k are determined by

their cardinalities over Fq.

In the following sections, we will turn to more specialised isogeny-based assumptions that will
appear throughout this thesis and in a variety of schemes in the literature.

17

2.1 Standard SIDH hardness assumptions

Of particular importance in this thesis are the cryptographic hardness assumptions specific to
the SIDH protocol, discussed in Section 1.3. Throughout this section, let pp denote the SIDH
public parameters pp = (`1, `2, e1, e2, p, E0, P1, Q1, P2, Q2). We begin with the indispensable
assumption that a secret key (isogeny) cannot be recovered from an SIDH public key.

Definition 2.2 (Computational Supersingular Isogeny (CSSI) problem). For fixed SIDH public
parameters pp, let φ : E0 → E′ be an isogeny of degree `e11 , and let P ′ = φ(P2), Q′ = φ(Q2).
Given the SIDH public key (E′, P ′, Q′), find an isogeny φ′ : E0 → E′ of degree `e11 such that
P ′ = φ′(P2) and Q′ = φ′(Q2).

This is problem 5.2 of [DJP14] and is also called the SIDH isogeny problem by Galbraith and
Vercauteren [GV18, Definition 2]. Note that we lose no generality by writing of φ having degree
`
e1
1 , because the SIDH public parameters are symmetric and `e11 and `e22 are interchangeable.

In many cryptosystems, it is possible to verify that a given public key is well-formed or valid,
without knowledge of the corresponding secret. For example, in elliptic curve cryptography, it
is simple to validate that a (public key) point P does indeed lie on a given curve E, and that
it lies in the required subgroup of the curve (in cases where we use a curve with a non-trivial
cofactor). In supersingular isogeny-based cryptography, it is possible to confirm that a given
curve is supersingular. The SIDH protocol, however, is in a rather unique predicament. Not
only is there no known way to verify that a given SIDH public key is well-formed, it is in fact
an established cryptographic assumption that such key validation is infeasible, as we shall now
see.

The specific issue with SIDH key validation is that, given a public key (E′, P ′, Q′), we cannot
validate that P ′, Q′ are actually the correct images of basis points P2, Q2 under the secret isogeny
φ. This difficulty lies at the heart of the adaptive attacks discussed in Chapter 3. The best we
can do is to check that the points are indeed a basis of the correct order `e22 , and use the Weil
pairing check which will be discussed in Section 3.3:

e`e22
(P ′, Q′) = e`e22

(P2, Q2)deg(φ). (2.1)

The following decisional problem captures this obstruction to validation and takes after Definition
3 of [GV18]. It is also very similar to the key validation problem of Urbanik and Jao [UJ18,
Problem 3.4] (the key validation problem asks whether a φ of degree dividing `e11 exists). However,
the previous definitions did not take the Weil pairing check into account, which would serve as a
distinguisher. We include this explicitly in our definition.

Definition 2.3 (Decisional SIDH isogeny (DSIDH) problem). For fixed SIDH public parameters
pp, the DSIDH problem is to distinguish between the following two distributions:

• D0 = {(E′, P ′, Q′)} such that φ : E0 → E′ is an isogeny of degree `e11 , P ′ = φ(P2), and
Q′ = φ(Q2).

• D1 = {(E′, P ′, Q′)} such that E′ is any supersingular elliptic curve over F
p
2 with the

same cardinality as E0, and P ′, Q′ is a basis of E′[`e22] satisfying the Weil pairing check
e`e22

(P ′, Q′) = e`e22
(P2, Q2)`

e1
1 .

18

Remark 2.4. As shown by Galbraith and Vercauteren [GV18], Thormarker [Tho17], and Urbanik
and Jao [UJ18], being able to solve this decisional problem is as hard as solving the computational
(CSSI) problem, so key validation is fundamentally difficult. This is done by testing `1-isogeny
neighbouring curves of E1 and learning the correct path one bit at a time (note that this requires
a perfect decision oracle). We refer the reader to [GV18] for details.

Typically, a computational problem that allows the adversary access to an oracle solving the
corresponding decisional problem is called a gap problem (since it relies on there being a gap
between solving the decisional and the computational versions). The reduction from CSSI to
DSIDH shows the gap problem here is easy.

The previous two assumptions are concerned with a single SIDH public key and corresponding
private isogeny. Now, we turn to assumptions about the full SIDH protocol and its commutative
diagram. The following is Problem 5.5 of [DJP14], and intuitively states that it is hard to
determine whether there exist valid “vertical sides” to an SIDH square, given the corners and the
bottom horizontal side.

Definition 2.5 (Decisional Supersingular Product (DSSP) problem). Let φ : E0 → E1 be an
isogeny of degree `e11 . Let P2, Q2 ∈ E0[`

e2
2] be a fixed basis of the `e22 -torsion subgroup. Suppose

we have the following two distributions:

• D0 = {(E2, E3, φ
′)} such that there exists a cyclic subgroup G ⊆ E0[`

e2
2] of order `e22 with

E2
∼= E0/G and E3

∼= E1/φ(G), and where φ′ : E2 → E3 is a degree-`e11 isogeny.

• D1 = {(E2, E3, φ
′)} such that E2 is a random supersingular curve with the same cardinality

as E0, and E3 is the codomain of a random isogeny φ′ : E2 → E3 of degree `e11 .

Let ODSSP be an oracle that behaves as follows: on setup, with public parameters (E0, P2, Q2,
E1, φ(P2), φ(Q2)), it chooses a uniformly random secret bit b← {0, 1}. Each time it is queried,
ODSSP returns a tuple from distribution Db. The DSSP problem is then, given access to such an
oracle, to determine b.

Finally, we come to a pair of problems related to the shared secret of an SIDH key exchange,
rather than the public keys involved.

Definition 2.6 (Computational Supersingular Isogeny Diffie–Hellman (SI-CDH) problem). Let
pp be SIDH public parameters, and

K1 = (E1, φ1(P2), φ1(Q2)) ,

K2 = (E2, φ2(P1), φ2(Q1)) ,

be two SIDH public keys, where φi : E0 → Ei has degree `
ei
i . The SI-CDH problem is, given pp,

K1, and K2, to compute the j-invariant j = SIDHpp(K1,K2).

We define the advantage of a probabilistic polynomial-time (PPT) adversary A solving the
SI-CDH problem as

Advsi-cdh(A) = Pr
[
j′ = SIDHpp(K1,K2)

∣∣ j′ ← A(pp,K1,K2)
]
.

The SI-CDH assumption states that for any PPT adversary A, Advsi-cdh(A) ≤ negl. In other
words, given the two keys involved in an SIDH exchange, it should be infeasible to compute the

19

resulting shared secret of the exchange. This is analogous to the computational Diffie–Hellman
(CDH) problem in classical cryptography, of computing the shared secret gab (mod p) given the
two public keys ga and gb. The corresponding decisional problem follows.

For ease of notation, we define

SSJpp =
{
j(Ei) : Ei defined over Fq and supersingular

}
(2.2)

to be the set of all supersingular j-invariants over the field Fq established by the public parameters
pp. Every shared secret arising from an SIDH key exchange with public parameters pp is therefore
contained in this set.

Definition 2.7 (Decisional Supersingular Isogeny Diffie–Hellman (SI-DDH) problem). Let pp
be SIDH public parameters. Define two distributions:

• D0 = {(K1,K2, j)} such that j = SIDHpp(K1,K2),

• D1 = {(K1,K2, j)} such that j ← SSJpp,

where in both cases

K1 = (E1, φ1(P2), φ1(Q2)) ,

K2 = (E2, φ2(P1), φ2(Q1)) ,

are two SIDH public keys, and φi has degree `
ei
i . The SI-DDH problem is to distinguish between

the distributions D0 and D1.

We define the advantage of a PPT adversary A solving the SI-DDH problem as

Advsi-ddh(A) =

∣∣∣∣Pr
[
b = b′

∣∣ b′ ← A(pp,K1,K2, jb), b← {0, 1}
]
− 1

2

∣∣∣∣ ,
where (K1,K2, jb) ∈ Db. The SI-DDH assumption states that for any PPT adversary A,
Advsi-ddh(A) ≤ negl.

Remark 2.8 (SI-GDH Gap assumption). From Remark 2.4, we know that an oracle solving
the decisional SIDH (DSIDH) problem can be used to solve the computational CSSI problem.
Fujioka, Takashima, Terada, and Yoneyama [FTTY18] show a similar result holds for what they
call the degree-sensitive supersingular isogeny gap Diffie-Hellman (ds-SI-GDH). They show that,
utilising an oracle which perfectly distinguishes the existence of correct-degree isogenies between
the four “corners” of an SIDH commutative square, the SI-CDH problem can be solved efficiently
by an adversary—thus making the ds-SI-GDH problem easy. We refer the reader to [FTTY18,
Proposition 1] for details.

2.2 A degree-insensitive assumption

In this section, we will analyse a novel cryptographic assumption introduced by Fujioka et
al. [FTTY18]. They name this assumption the degree-insensitive supersingular isogeny
gap Diffie–Hellman (di-SI-GDH) assumption, and use it in a proof of security for their biclique
SIDH protocol—an authenticated key exchange protocol from isogenies.

20

Fujioka et al. introduce this degree-insensitive gap assumption in an attempt to avoid the lack of
traditional gap assumptions for SIDH, relating to Remark 2.8. Specifically, reductions such as the
one by Galbraith and Vercauteren [GV18] from the CSSI to the DSIDH problem rely on detecting
whether the specific degrees of the isogenies are correct. Therefore, removing any restriction on
these degrees is a potential avenue for breaking the reduction and forming a “gap”.

We conjecture that this assumption is invalid. When one considers the SIDH commutative
diagram in Figure 1.1, the isomorphism class of the curve EAB is uniquely determined by the
choice of secret kernels (or, equivalently, isogenies) by the participants A and B. In fact, an
important characteristic of the isogenies used in SIDH is that the degrees of these isogenies
φA, φB (both approximately √p) are much smaller than the number of isomorphism classes of
supersingular elliptic curves (which, recall, is roughly p/12). This means that the public curves
(E0, EA, EB) uniquely determine the shared curve EAB (of course, this is still hard to compute
without secret information). Thus, the j-invariant of the final curve produced by both parties
is able to function as a unique shared secret. If the use of larger-degree isogenies is allowed,
then eventually (the isomorphism class of) EAB is no longer uniquely determined by EA and
EB. The natural question then, directly related to the degree-insensitive oracle of [FTTY18],
is whether the provision of torsion generator images provides enough additional restriction to
uniquely define EAB . We investigate this question now, starting with some useful definitions and
formal conjectures.

Definitions and conjectures

We define some notation for clarity and brevity. For a participant i ∈ {1, 2} in an SIDH key
exchange, we let i = (3− i) ∈ {2, 1} represent the other participant.

Let
SSECpp,i =

{
(Ei, φi(Pi), φi(Qi))

∣∣ φi : E0 → Ei, deg(φi) = `
ei
i

}
(2.3)

be the set of all valid public keys for participant i (formed from isogenies of degree `eii) in the
SIDH protocol with public parameters pp.

We now define two additional sets which will be used in the forthcoming discussion. The
first,

SSEC∗pp,i =
{

(E′, P ′, Q′)
∣∣∣ E′ supersingular, P ′, Q′ ∈ E′, 〈P ′, Q′〉 = E′[`

ei
i]
}
, (2.4)

is the set of all possible triples that take the same form as SIDH public keys. Note that
this definition is completely independent of any isogeny from E0 to E′. We then have that
SSECpp,i ⊆ SSEC∗pp,i.

As was mentioned above, and will be discussed in more detail in Section 3.3, the Weil pairing
implies an extra condition on the points in SIDH public keys. Specifically, for an isogeny
φ : E0 → Ei, we can check that

e`eii
(φ(Pi), φ(Qi)) = e`eii

(Pi, Qi)
deg(φ) (2.5)

This is a simple additional condition that can be applied to distinguish between SSECpp,i and
SSEC∗pp,i (and similarly between χ and χds or χdi, defined below). In many cases, such as those
we will see in Section 2.2.2, this in fact provides no extra restriction when deg(φ) can be arbitrary
powers of `1. In cases where it does matter, the Weil pairing check can be simply incorporated
into the definitions of SSEC (and χ), reducing the sizes of these sets. We thus ignore it for

21

the sake of simplicity in the following exposition, observing that a distinguisher between these
modified sets functions in exactly the same manner and that the pairing is easily computed.

Finally, we define the set of degree-insensitive SIDH public keys, following the definition of
the di-SI-GDH oracle by Fujioka et al. [FTTY18].

SSECdi
pp,i =

{
(Ei, φi(Pi), φi(Qi)

∣∣ φi : E0 → Ei, deg(φi) = `mi , m ∈ N
}
. (2.6)

We have, then, that SSECpp,i ⊆ SSECdi
pp,i ⊆ SSEC∗pp,i. As we shall soon discuss, the degree

restraint in the definition of SSECpp,i uniquely determines the φi for each tuple. In the case of
SSECdi

pp,i, however, it is one of our main conjectures that the φi are not uniquely determined by
the triples—that there are multiple isogenies of varying degrees that all produce the same public
key tuple.

Now that we have defined these three sets, we shall define corresponding “SIDH square” sets.
The first of these is the weakest case,

χpp =
{

(K1,K2, j)
∣∣ Ki ∈ SSEC∗pp,i, j ∈ SSJpp

}
. (2.7)

These triples form possible corners of SIDH squares (that is, public keys and shared secret), but
there do not necessarily exist any particular isogenies between these corners. We then have the
degree-sensitive and degree-insensitive restricted versions of this set:

χdspp =
{(
K1,K2, SIDHpp(K1,K2)

) ∣∣ K1 ∈ SSECpp,1, K2 ∈ SSECpp,2

}
, (2.8)

and

χdipp =
{(
K1,K2, SIDHpp(K1,K2)

) ∣∣∣ K1 ∈ SSECdi
pp,1, K2 ∈ SSECdi

pp,2

}
, (2.9)

with elements of these sets each corresponding to a valid SIDH square such as Figure 2.1, in the
degree-sensitive and degree-insensitive setting respectively. The second set simply loosens the
restriction on the isogeny degrees, so that deg(φ1) = deg(φ′1) = `m1 for any m ∈ N, and likewise
deg(φ2) = deg(φ′2) = `n2 for any n ∈ N. We necessarily have that χdspp ⊆ χ

di
pp ⊆ χpp.

E0 K1

K2 E′

φ1

φ2

φ′1

φ′2

Figure 2.1: A re-labelling of the SIDH commutative diagram from Figure 1.1, where j(E′) =
SIDH(K1,K2), ker(φ′1) = φ2(ker(φ1)) and ker(φ′2) = φ1(ker(φ2)).

The degree-insensitive SI-GDH oracle defined by Fujioka et al. [FTTY18] distinguishes between
the sets χpp and χdipp, while the degree-sensitive variant of the oracle distinguishes between χpp

and χdspp. We conjecture that in the former (degree-insensitive) case, χpp = χdipp. That is, all
possible pairs of torsion basis points on every possible supersingular elliptic curve, and all final
shared j-invariants, can be produced by suitable degree-insensitive choices of isogenies φ1 and φ2.
The aim of the rest of this section is to provide some evidence for this conjecture.

Fujioka et al. hint toward the possibility of this problem, stating:

22

Therefore, as an extreme possible case, any tuple of supersingular elliptic curves
(EA, EB, EAB) might form the commutative diagram in [Figure 1.1], that is, any tuple
of such curves would be true instances in the hypothetical case. We cannot exclude such
possibility from our present knowledge of the di-SI-GDH problem.

We conjecture a much stronger result, however, by including all pairs of points in our claim too.
We proceed in two stages. In the first, we will give evidence that all possible SIDH public key
tuples in SSEC∗pp,i do actually arise as valid public key tuples (when considering all possible
choices of degree-insensitive φi). This is Conjecture 2.9.

Conjecture 2.9. SSEC∗pp,i = SSECdi
pp,i

We then give evidence that for any two such public key tuples K1 ∈ SSEC∗pp,1,K2 ∈ SSEC∗pp,2,
and for any choice of supersingular curve E′, then

(
K1,K2, j(E

′)
)
∈ χdipp. In other words, any

supersingular j-invariant is a valid shared secret and may be produced in a degree-insensitive key
exchange with any pair of keys. This is because the loosened restriction on the degrees of the
isogenies φi is not enough to uniquely determine the isomorphism class of the fourth curves EAB ,
owing to the fact that there exist many different isogenies with different kernels which produce
identical public key tuples. This is summarised in Conjecture 2.10.

Conjecture 2.10. χpp = χdipp

2.2.1 Uniqueness of isogenies from public keys

Recall that the SIDH protocol parameters are chosen so that `e11 ≈ `
e2
2 (referred to as balanced

parameters). When this is the case, the public keys used by each participant uniquely determine
the secret isogenies, as shown by Martindale and Panny [MP19].

Theorem 2.11. Two distinct isogenies φ, ϕ : E → E′ of degree d have distinct actions on the
m-torsion E[m] if m2 > 4d.

Proof (due to [MP19]). Suppose φ, ϕ have the same action on E[m]. Then ker(φ− ϕ) ⊇ E[m].
This implies that deg(φ− ϕ) ≥ # ker(φ− ϕ) ≥ m2. We also have, by [Sil09, Lemma V.1.2], that
deg(φ− ϕ) ≤ 4d. Thus, we must have that m2 ≤ 4d. If m2 > 4d, the actions of φ and ϕ must
therefore be distinct.

Precisely, unless `2e22 ≤ 4`
e1
1 , a degree-`e11 isogeny is uniquely defined by its action on the `e22 -

torsion. The analogue for `e22 -isogenies also holds, by the same token. It follows that the shared
secret is also uniquely defined (although, of course, still hard to compute without knowledge of
either of the secret keys). We now show that, with balanced SIDH parameters, even if (only) one
participant uses a degree-insensitive isogeny, the two public keys still uniquely determine the
shared secret both parties derive.

Lemma 2.12. Let pp be standard (balanced) SIDH protocol parameters. If participant i uses
an isogeny φi of (degree-sensitive) degree `eii , then the SIDH shared secret j(EAB) is uniquely
determined regardless of the other participant’s isogeny degree, deg(φi) = `ni for n ∈ N.

23

Proof. Without loss of generality, assume that it is participant B who uses an isogeny φB of
correct degree `e22 . We refer the reader to Figure 2.2 to set some notation. As usual, we have
an elliptic curve E0 along with a chosen `e22 -torsion basis P2, Q2. Consequently, φB has kernel
〈KB = P2 + [β]Q2〉 for some secret β. Suppose that we have two isogenies φA, φ

′
A : E0 → EA

such that

P ′ = φA(P2) = φ′A(P2),

Q′ = φA(Q2) = φ′A(Q2).

Denote generators of the kernels of these maps by KA,K
′
A respectively (so clearly E/〈KA〉 ∼=

E/〈K ′A〉). Now, irrespective of which isogeny participant A used, B will compute the isogeny
φAB with kernel

ker(φAB) = 〈P ′ + [β]Q′〉

because B’s computation is only based on A’s public key (EA, P
′, Q′). Therefore, EAB is uniquely

determined (up to isomorphism) as

E0/〈KA,KB〉 ∼= E0/〈K
′
A,KB〉 ∼= EAB.

E0 EA

EB EAB

φA

φ′A

φB

φBA

φ′BA

φAB

Figure 2.2: Commutative diagram of Lemma 2.12, where ker(φBA) = φB(ker(φA)), ker(φ′BA) =
φB(ker(φ′A)) and ker(φAB) = φA(ker(φB)) = φ′A(ker(φB)).

We thus require for Conjecture 2.10, that both isogenies be of arbitrary-power degree. It is clearly
not sufficient for only one of the two isogeny choices to be degree-insensitive.

2.2.2 Experimental evidence

In this section, we exhibit the experimental evidence we have collected for Conjectures 2.9 and
2.10.

Evidence that all public key tuples are valid

In the case that p = 2332 − 1 = 71, we have shown using MAGMA that using arbitrary paths of
2-isogenies, we can find paths that give, as torsion point images, any pair of points P,Q which
generate E[32] on any elliptic curve E in the isogeny graph (up to isomorphism). There are
exactly 3888 unique ordered tuples of points P,Q on each elliptic curve E(F

p
2) such that both

P and Q have order 32, and 〈P,Q〉 = E[32] (by Equation 3.15). In order to accommodate for

24

isomorphism classes of the curves, one representative curve was (arbitrarily) chosen for each
j-invariant. Then, for all subsequent curves with the same j-invariant found by the algorithm,
the isomorphism to the representative curve was computed and used to translate the points to
this representative curve. This allowed for the removal of duplicate public key tuples. We found
that all 3888 unique ordered pairs on all seven isogenous supersingular curves were reached from
the starting P2, Q2 on the curve E0 with j-invariant 0.

We have also verified this result with high probability over a larger field, where p = 2233−1 = 107.
In this case, there are exactly 314,928 possible ordered pairs P,Q generating E[33] on each
supersingular elliptic curve E (again, by Equation 3.15). We allowed our simulation to run until
the points reached on the curve with j-invariant 94 totalled 314,673, which is approximately
99.92% of the expected total number of points. Due to the probabilistic nature of the algorithm,
the discovery of new pairs of points decreases rapidly as the number of duplicates increases, so
we decided to end the simulation early (after a total of 20 million 2-isogenies had been traversed
in the supersingular isogeny graph), deciding that this was overwhelming evidence that all points
were likely reachable as in the smaller case. We see no reason that these results would not extend
to supersingular curves over finite fields of any choice of p, as required by Conjecture 2.9.

In both of these cases, the Weil pairing imposes no extra restriction on the validity of a randomly
chosen pair of independent points for each choice of isogeny. Observe that for N = 32, 2 has
order 6 modulo 9, and for N = 33, 2 has order 18 = ϕ(33), so there is no apparent theoretical
reason why not all choices would be valid—as we observe in practice.

Evidence that all j-invariants are valid given any public keys

We now discuss Conjecture 2.10. This second conjecture relies on Conjecture 2.9, because if it
were possible to distinguish SSEC∗pp,i from SSECdi

pp,i, the same distinguisher could be applied
to the public keys in χpp to distinguish it from χdipp. Furthermore, Conjecture 2.10 additionally
requires that the j-invariant j(EAB) should not provide any advantage in distinguishing between
the two sets.

We make an important observation, that when the degree of the isogeny is allowed to be an
arbitrary power of `i, the image of points Pi, Qi no longer uniquely determines the isogeny
used. That is, not only does there exist a power-of-`i isogeny φi for any pair P ′, Q′ such that
P ′ = φi(Pi), Q

′ = φi(Qi), there exist many such isogenies—each with a different kernel.

In order to demonstrate this in practice using MAGMA, we used extension fields to define points of
higher order as the kernels of degree-insensitive isogenies. For example, we used F

p
6 when p = 71

as above, to find a point of order 27 generating the kernel of an isogeny φB.

Let α ∈ F
p
6 denote the element which generates the extension F

p
6 over the base field Fp. We

begin with elliptic curve E0 : y2 + y = x3 with j-invariant 0. In the simulation we selected at
random the points

PB = (7α5 + 24α4 + 49α3 + 68α2 + 2α+ 5 :

46α5 + 36α4 + 38α3 + 31α2 + 3α+ 38 : 1),

QB = (41α5 + 29α4 + 3α3 + 23α2 + 32α+ 56 :

9α5 + 41α4 + 63α3 + 57α2 + 33α+ 1 : 1),

(2.10)

as a basis for the `e22 -torsion on E0.

25

We also selected a point of order 27 to define the kernel of the isogeny chosen by participant B
(which must be of degree higher than 32 by Lemma 2.12):

KB = (3α5 + 41α4 + 18α3 + 4α2 + 13α+ 45 :

27α5 + 57α4 + 49α3 + 11α2 + 65α+ 64 : 1).
(2.11)

We proceeded via breadth-first search along non-backtracking 2-isogenies in the isogeny graph
to find two distinct isogenies φA, φ

′
A : E0 → EA, such that φA(PB) = φ′A(PB) and φA(QB) =

φ′A(QB). Note that non-backtracking means that no 2-isogeny step returned along its dual in the
next step, ensuring that distinct paths will compose to produce isogenies with different kernels
(and therefore, isogenies which are not equivalent). We present here an example where EA is the
curve y2 + y = x3 + 46x+ 60 with j-invariant 66, and deg(φA) = deg(φ′A) = 210:

φA(PB) = φ′A(PB) = (28α5 + 25α4 + 54α3 + 59α2 + 8α+ 66 :

66α5 + 64α4 + 36α3 + 63α2 + 29α+ 23 : 1),

φA(QB) = φ′A(QB) = (21α5 + α4 + 5α3 + 62α2 + 6α+ 66 :

58α5 + 67α4 + 51α3 + 36α2 + 47α+ 48 : 1).

(2.12)

Simply showing that there exist isogenies with different kernels which produce the same public key
is an interesting observation. But to properly support Conjecture 2.10, we wish to demonstrate
that these different kernels can produce many (in fact, all) different curves EAB.

The image of the φB kernel generator KB under each of these isogenies φA, φ
′
A is:

φA(KB) = (44α5 + 39α4 + 59α3 + 41α2 + 55α+ 64 :

7α5 + 39α4 + 61α3 + 64α2 + 14α+ 47 : 1),

φ′A(KB) = (67α5 + 49α4 + 11α3 + 19α2 + 53α+ 49 :

40α5 + 65α4 + 13α3 + 24α2 + 12α+ 67 : 1).

(2.13)

Finally, these two images are used to create degree-27 isogenies φAB, φ
′
AB to complete the SIDH

square. The first determines an isogeny to the isomorphism class of curves with j-invariant 17,
while the second arrives at j-invariant 48. Thus, despite both φA, φ

′
A giving the same public

key triple, they each determine a different curve EAB in this degree-insensitive key exchange.
This shows that EAB is not uniquely determined and strongly supports Conjecture 2.10. To
demonstrate that there exist such “collisions” which produce any supersingular j-invariant would
be computationally intensive in practice, but the presence of at least one such case is strong
evidence for our conjecture.

2.2.3 The di-SI-GDH oracle

Above, we have discussed the particular problem of distinguishing between the set of all valid
SIDH commutative diagrams χdspp or χdipp, and the set χpp of all tuples of supersingular elliptic
curves with all possible choices of points on them (subject to the easy-to-compute restrictions
mentioned earlier), and all possible shared secret j-invariants. In this section, we briefly relate
this to the specific working of the di-SI-GDH oracle of Fujioka et al. [FTTY18]. The oracle
receives public SIDH parameters pp including the curve E0, points P1, Q1, P2, Q2 ∈ E0, and
(candidate) public key tuples of party A and B, along with a j-invariant, j′, representing the
shared secret obtained through the SIDH protocol with these keys. The oracle then returns 1 if
isogenies exist between E0, EA, EB, and a curve EAB such that the public points are mapped

26

in the correct way and the j-invariant of EAB is equal to j′ (that is, the provided information
forms a valid SIDH square as in Figure 1.1). Otherwise, the oracle returns 0. This oracle is used
in Fujioka et al.’s security proof for their authenticated key exchange scheme, to allow a correct
simulation in the random oracle model.

Consider, firstly, the public key triples (E′, P ′, Q′) provided. Assuming the points obey the
subgroup generation and Weil pairing restrictions, Conjecture 2.9 claims that these provide no
way to distinguish between SSEC∗pp,i and SSECdi

pp,i, which are equal sets. In addition to this, we
give evidence to support the claim (Conjecture 2.10) that even by fixing a choice of two public
keys, any choice of j-invariant j′ arises from some degree-insensitive choice of isogenies to the
fixed keys. We have given experimental evidence that there exist many different isogenies that
produce any public key, each with a different kernel. We conjecture that because the kernels of
these isogenies uniquely determine the final elliptic curve EAB in the SIDH protocol, but because
these kernels are not determined by the public keys, any j-invariant would be a valid shared
secret for any choice of two public keys.

Thus, we conjecture that the degree-insensitive SI-GDH oracle as a distinguisher between χpp

and χdipp cannot exist, because these sets are equal. Hence, we believe that the security proof
of Fujioka et al. [FTTY18] is not correct. We stress that this does not mean the protocol in
[FTTY18] is broken, only that its security is not justified by the computational assumptions in
the paper.

2.3 New SIDH hardness assumptions

We now define the new hardness assumptions which we employ later in this thesis. These hardness
assumptions come into play when we reach Chapters 4 and 5, and are used in proving security
and zero-knowledge of the protocols we propose. The first of these can intuitively be seen as
a “parallel” version of the DSIDH assumption above. In the DSIDH problem, we are trying to
determine whether an isogeny exists on the “top” horizontal side of an SIDH square, while our
forthcoming new problem does the same for the “bottom” side. We thus call it the decisional
mirror SIDH problem.

Definition 2.13 (Decisional Mirror SIDH (DMSIDH) problem). Let E0 and basis points P2, Q2

for the `e22 -torsion subgroup E0[`
e2
2] be fixed public parameters, and let φ : E0 → E1 be a

randomly sampled isogeny of degree `e11 . Define distributions D0 and D1 as follows: construct a
random SIDH square by letting ψ : E0 → E2 be a random isogeny of degree `e22 , and ψ′ : E1 → E3

an isogeny of degree `e22 whose kernel is φ(ker(ψ)). Next, let φ′ : E2 → E3 be an isogeny of
degree `e11 whose kernel is ψ(ker(φ)). Finally, construct a basis S, T of E2[`

e2
2] with 〈S〉 = ker(ψ̂),

and let the distributions be:

• D0 = {(ψ,ψ′, S, T, φ′(S), T ′)} where T ′ = φ′(T)

• D1 = {(ψ,ψ′, S, T, φ′(S), T ′)} where T ′ = φ′(T + [r]S), and r is random.

Let GenDMSIDH be a randomised DMSIDH instance generation algorithm which, given public
parameters (E0, P2, Q2), samples a random φ and a uniformly random secret bit b← {0, 1}, and
returns (E1, φ(P2), φ(Q2)) and an oracle ODMSIDH outputting samples from Db. The DMSIDH
problem is, given access to ODMSIDH and (E1, φ(P2), φ(Q2)), to determine b. The problem is
visualised in Figure 2.3.

27

In other words, (E1, φ(P2), φ(Q2)) is an SIDH public key, and the ψ and ψ′ are the vertical sides
of an SIDH square. The challenge is to determine whether a point T ′ is the actual image of T
under the hidden horizontal isogeny on the fourth (bottom) side of the SIDH square (which is
guaranteed to exist).

(E0, P2, Q2) (E1, φ(P2), φ(Q2))

(E2, S, T) (E3, φ
′(S), T ′)

φ

ψ ψ′

does T ′ = φ′(T)?

Figure 2.3: The Decisional Mirror SIDH (DMSIDH) problem (Definition 2.13) visualised. Dashed
lines are secret and are not known by the adversary/distinguisher. S is such that 〈S〉 = ker(ψ̂).

Observe that, given an SIDH public key, one can already choose isogenies ψ,ψ′ such that
ker(ψ′) = φ(ker(ψ)). We can also obtain a point S and its image φ′(S) via these ψ and ψ′. This
is possible due to Lemma 1.8 (and achieved in practice using the algorithm in Figure 1.1) Thus,
the only additional information provided in the DMSIDH problem is a candidate image T ′ of
one extra point T on E2 (independent of S).

The advantage of an adversary A against the DMSIDH problem is defined as

Advdmsidh(A) =

∣∣∣∣∣Pr

[
b = b′

∣∣∣∣∣ ((E1, φ(P2), φ(Q2)),O)← GenDMSIDH(pp)

b′ ← AO(pp, (E1, φ(P2), φ(Q2)))

]
− 1

2

∣∣∣∣∣ , (2.14)

where b is the secret bit generated by GenDMSIDH, and the probability is taken over the random
coins used by GenDMSIDH.

2.3.1 Double variants

In Section 4.4, we propose a new sigma protocol that uses two independent SIDH squares
simultaneously. In order to prove zero-knowledge of this scheme, we define a “double” variant of
the DSSP problem. For clarity of the same proof, we also define a double version of our new
DMSIDH problem and prove that this Double-DMSIDH problem is hard if the “single” version is.
Hence, this latter definition is only needed as a tool to simplify the security proof.

Recall from Definition 1.6 the precise meaning of independence here. By slight abuse of termi-
nology, we say two SIDH squares are independent if both use the same isogeny φ for Alice, but
independent isogenies ψ0, ψ1 for Bob, in the sense of Definition 1.6.

The Double-DSSP problem differs from the “single” version by the introduction of two bases
U ′i , V

′
i of the `e11 -torsion subgroups on E2,i, for i ∈ {0, 1}. As we shall see in Chapter 4, these

extra points will be used to verify that the two independent SIDH squares in the “double” protocol
both use consistent isogenies φ′i (that is, both arise from the same hidden φ in the two SIDH
squares). These extra points, plus the requirement that the isogenies ψi used in each of the two
squares should be independent, mean a reduction from DSSP to the Double-DSSP problem is
unlikely. We believe Double-DSSP is a hard problem.

28

Definition 2.14 (Double-DSSP Problem). For public parameters (E0, P2, Q2, E1, φ(P2), φ(Q2)),
let ODSSP be a DSSP instance generator oracle (with secret bit b). The Double-DSSP problem is
to distinguish between the following two distributions:

• D0 =
{

(insti, U
′
i , V

′
i)i∈{0,1}

}
where insti = (E2,i, E3,i, φ

′
i) ← O

DSSP with b = 0, and addi-
tionally, if ψi : E0 → E2,i are the respective isogenies of degree `e22 , then ψ0 and ψ1 are
independent and U ′i , V

′
i = ψi(U), ψi(V) for {U, V } a random basis of E0[`

e1
1].

• D1 =
{

(insti, U
′
i , V

′
i)i∈{0,1}

}
where insti = (E2,i, E3,i, φ

′
i) ← O

DSSP, b = 1, U ′i , V
′
i is a

random basis of the `e11 -torsion subgroup on E2,i such that e`e11 (U ′0, V
′

0) = e`e11
(U ′1, V

′
1), and

there is a pair (a, b) of integers such that the kernel of φ′i is generated by [a]U ′i + [b]V ′i for
both i ∈ {0, 1}.

Intuitively, the DSSP problem states that a distinguisher cannot even determine whether an
isogeny of a certain degree exists between the individual pairs of elliptic curves. This double
problem only introduces the extra condition that if the isogenies exist, they are independent,
and the preimages of the points U ′i , V

′
i under these isogenies are equal. The DSIDH problem

from Definition 2.3 already assumes that it is hard to decide whether a coprime torsion basis
is actually the image of another under a hidden isogeny, and we cannot imagine a scenario in
which one could determine whether the isogenies are independent or not without even knowing
they exist. Thus, we believe this is a reasonable assumption.

Definition 2.15 (Double-DMSIDH Problem). For public parameters pp = (E0, P2, Q2), let

(E1, φ(P2), φ(Q2)),ODMSIDH ← GenDMSIDH(pp)

be a DMSIDH instance with secret bit b. Define the distribution Db = {(insti)i∈{0,1}} where
insti = (ψi, ψ

′
i, Si, Ti, φ

′
i(Si), T

′
i) ← O

DMSIDH, and ψ0 and ψ1 are independent. The Double-
DMSIDH problem is, given access to an oracle that samples from Db, to determine b.

Theorem 2.16. If there exists an adversary A which makes n queries to a Double-DMSIDH
oracle and guesses its bit b with advantage Adv, then there exists an adversary that solves the
DMSIDH problem (with oracle ODMSIDH) with the same advantage Adv, after making an expected
n(`2 + 1)/`2 queries to ODMSIDH.

Proof. The adversary A is given public parameters pp and public key (E1, φ(P2), φ(Q2)), and
has access to a Double-DMSIDH oracle O in an analogous manner to Equation 2.14. The
reduction takes as input a DMSIDH instance ((E1, φ(P2), φ(Q2)),ODMSIDH) and executes A
on input (E1, φ(P2), φ(Q2)). When A makes a Double-DMSIDH oracle query we respond as
follows: we first query ODMSIDH for inst0 = (ψ0, ψ

′
0, S0, T0, φ

′
0(S0), T ′0), then we keep querying

ODMSIDH for inst1 = (ψ1, ψ
′
1, S1, T1, φ

′
1(S1), T ′1) until ψ0 and ψ1 are independent. Finally, we

return (inst0, inst1).

Write ker(ψi) = 〈[ai]P2 + [bi]Q2〉, and say that two pairs ai, bi (i ∈ {0, 1}) are conjugate if
(a0, b0) = λ(a1, b1) for some invertible scalar λ. There are `2 + 1 different such conjugacy classes
of (ai, bi), and being in different conjugacy classes implies that a′0b

′
1 − a

′
1b
′
0 is invertible. Thus,

with probability `2/(`2 + 1), any two random choices of ψi will be independent.

Therefore, if A makes n queries to the Double-DMSIDH oracle, the simulation makes an expected
number n(`2 +1)/`2 of queries to ODMSIDH. Because the simulation is perfect, whatever advantage

29

A has against Double-DMSIDH carries over to DMSIDH.

2.3.2 SI-CDH-based assumptions

We now present two new computational assumptions, both based on the standard SI-CDH
problem from Definition 2.6. We sketch proofs that the SI-CDH problem can be reduced to
both, in the random oracle model. These two assumptions are simply tools used in Chapter 5 to
simplify the proof of security of our new post-quantum Signal key agreement protocol, called
SI-X3DH.

As usual, let pp be fixed SIDH public parameters. For ease of notation, let Ki (the i-keyspace)
be the set of possible isogenies of degree `eii from the fixed SIDH base curve E0. Equivalently,
Ki is the set of points of exact order `eii on E0, acting as isogeny kernel generators, where two
generators are identified as the same key if they generate the same kernel.

Let H1 : {0, 1}∗ → Ki be a pseudorandom generator (PRG) whose codomain is this secret
isogeny keyspace. We also let H2 : {0, 1}∗ → {0, 1}κ be a PRG. Both H1 and H2 are modelled
as random oracles. PubkeyFromSecret is a function taking a secret isogeny or kernel generator
and outputting the usual SIDH public key tuple corresponding to that isogeny (or the isogeny
with that kernel, via Vélu’s formulae).

The first new SI-CDH-type assumption we define adds a “check” oracle to the SI-CDH assumption,
which is provided by the challenge generator. This lets the adversary “verify” their answer before
returning it to the challenger, so we call this the Verifiable SI-CDH problem.

Definition 2.17 (Verifiable SI-CDH (VCDH) problem). Let pp be SIDH public parameters, and

K1 = (E1, φ1(P2), φ1(Q2)),

K2 = (E2, φ2(P1), φ2(Q1)),

be two SIDH public keys, where φi : E0 → Ei has degree `
ei
i .

Let OK1,K2
be a truth oracle defined as

OK1,K2
(j′) =

{
1 if j′ = SIDHpp(K1,K2),

0 otherwise.

The Verifiable SI-CDH problem is, given pp, K1, K2, and OK1,K2
, to compute the j-invariant

j = SIDHpp(K1,K2).

Essentially oracle OK1,K2
confirms if the answer to the SI-CDH challenge is correct or not. Ergo,

intuitively we should learn no extra information from this oracle—on all except one j-invariant
the oracle will return 0, so in polynomially-many queries, the likelihood of guessing the correct
j-invariant is negligible (as in the SI-CDH problem). We emphasise that K1 and K2 are fixed
into the definition of the oracle, making the oracle significantly less powerful than a DDH oracle
that accepts keys as input. We show that, in the random oracle model, this problem is hard if
the SI-CDH problem is.

Theorem 2.18. Let B be an adversary solving the VCDH problem with advantage ε after making
q queries to the oracle OK1,K2

. Then B can be used to solve the SI-CDH problem with probability
at least ε/2q.

30

Proof. Without loss of generality, we assume all q queries are made with distinct inputs. Let
(K1,K2) be an SI-CDH challenge instance. We define two different oracles O0 and O1. Oracle
O0 will return 0 regardless of the query made. To define oracle O1, we select a random index
0 ≤ ` < q and let O1 return 1 on the `-th unique query (and 0 on all other queries). We run the
adversary B in two settings, giving instance (K1,K2,O

i) to B in setting i ∈ {0, 1}. Define found
to be the event that B makes a query to the oracle O it is given with the correct j-invariant (the
solution to the SI-CDH instance). We can consider the probability of B succeeding against the
VCDH problem as

ε = Pr[B wins | found occurs] · Pr[found occurs]

+ Pr[B wins | found does not occur] · Pr[found does not occur].

If found does not occur, then B running in setting 0 (where oracle O0 always returns 0) will be
unable to distinguish the simulated oracle from the true one, and will win with advantage ε.
Hence,

Pr[B wins in setting 0] ≥ Pr[B wins | found does not occur].

On the other hand, if found occurs, then we correctly simulated the oracle in setting 1 with
probability 1/q (the probability that we guessed ` correctly). Therefore,

Pr[B wins in setting 1] ≥ 1

q
Pr[B wins | found occurs].

We uniformly sample b ← {0, 1} and return the solution from B running in setting b to the
SI-CDH challenger. Because 0 ≤ Pr[found occurs] ≤ 1, we solve the SI-CDH instance with
overall probability

1

2
Pr[B wins in setting 0] +

1

2
Pr[B wins in setting 1]

≥ 1

2
Pr[B wins | found does not occur] +

1

2q
Pr[B wins | found occurs]

≥ 1

2q
(Pr[B wins | found does not occur] + Pr[B wins | found occurs])

≥ 1

2q
ε,

which is non-negligible if ε is (since q must be polynomially-sized).

We call the second of our new SI-CDH-type problems the Honest SI-CDH problem (HCDH).
This problem models an SI-CDH instance with an additional FO-like proof that the first key in
the instance, K1, was honestly generated.

Definition 2.19 (Honest SI-CDH (HCDH) problem). Let pp be SIDH public parameters, and
s← {0, 1}κ be a random seed, where κ is the security parameter. Then, let

K1 = PubkeyFromSecret(H1(s))

be a public key derived from s, where H1(s) is an isogeny of degree `e11 . Let

K2 = (E2, φ2(P1), φ2(Q1))

31

be a second public key, where φ2 : E0 → E2 has degree `e22 . Finally, let π be an FO-proof of the
form

π = s ⊕ H2(SIDHpp(K1,K2)).

The Verifiable SI-CDH problem is, given pp, K1, K2, and π, to compute the j-invariant j =
SIDHpp(K1,K2).

We argue that the FO-like proof leaks no information because we obviously assume that
SIDHpp(K1,K2) is unknown (since it is the answer to the SI-CDH problem) and s is ran-
dom. Thus, if the SI-CDH problem is hard, then so too is this problem. We sketch a reduction in
the random oracle model. Treat H2 as a random oracle. Let B be an adversary making q queries
to H2 and winning with advantage ε against the HCDH problem. Obtain an SI-CDH challenge
(K1,K2). Choose π to be a random binary string, and provide (K1,K2, π) to B.

In order to distinguish the simulated π from an honest FO-proof, B must query H2(j) for the
correct j-invariant solution of the SI-CDH instance. If this occurs, we can return one of the
q queries made to H2 and win with probability 1/q. Otherwise, the output of B wins with
advantage ε despite π being uniformly random, by a simple hybrid argument.

Thus, the reduction can simply return one of the q queries to H2 or the output of B to the
SI-CDH challenger with equal probability. In either case, there is a non-negligible chance that
the returned value wins the SI-CDH challenge, if ε is non-negligible.

32

Chapter 3

Adaptive Attacks and Public Key
Validation

In this chapter, we delve into the adaptive attacks that the SIDH key exchange protocol is
known to be vulnerable to. These attacks have had a significant impact on the adoption of SIDH
as a post-quantum key exchange mechanism. For example, in the context of internet security
layers (SSL/TLS), web servers will generally have a fixed or static key covered by a certificate.
Using SIDH naively in this context would be insecure because the server’s fixed secret could
be progressively learned by malicious clients. Known solutions to this insecurity add varying
degrees of complexity and computational cost to the exchange.

We begin by recapitulating the original adaptive attack on SIDH by Galbraith, Petit, Shani,
and Ti [GPST16]—known as the GPST attack in reference to the authors. Following this, we
examine the most notable countermeasures to this attack proposed in the literature. In short,
there are two primary directions such countermeasures can take—making the GPST attack
infeasible by running many parallel instances of SIDH (as k-SIDH does), or validating the public
keys to ensure they are not maliciously formed (as Kirkwood et al. [KLM+15] propose, using
Fujisaki–Okamoto-like transformations [HHK17]). Throughout the chapter, we implicitly assume
the notation of SIDH from Section 1.3.

We note that, while the GPST attack is the first adaptive attack on SIDH, it is not the only
one. Other adaptive attacks have been proposed since, both on SIDH and on related schemes.
For example, Fouotsa and Petit [FP22] present another attack on SIDH-type schemes based on
torsion-point attacks. Ueno et al. [UXT+22] show how the GPST attack can be used in the
specific instance of side-channel attacks on SIKE. All such attacks have effectively the same
impact, so we use the GPST attack as the prototypical example in our discussion.

3.1 The GPST attack on SIDH

The premise of the GPST attack is that a secret `e-isogeny path can be progressively learned
one `-isogeny step at a time. In the case of ` = 2, this corresponds directly to learning the secret
key α bit-by-bit. We shall demonstrate this case here, with the implicit understanding that the
attack can be generalised to other primes if desired.

The attack is presented in a security model where the adversary is challenged to learn a secret
key α, and has access to an oracle defined as follows:

O(E,R, S,E′) =

{
1 if j(E′) = j(E/〈R+ [α]S),

0 otherwise,
(3.1)

33

where R,S ∈ E.

Such an oracle is feasible in real-world settings, for example where participants verify whether
the secrets they generated in an exchange match via a MAC or other form of symmetric-key
authentication.

Let Bob be the attacker, attempting to learn Alice’s static secret key α. Let Alice’s public key
be (EA, P

′
A, Q

′
A) and suppose Bob has a secret isogeny φB, with codomain EB. Bob will begin

by computing the shared secret curve EAB using φB and Alice’s public key, as in the SIDH
protocol.

Let αi denote the (i+ 1)-th bit of α, where α0 is the least significant bit. We define the i-th
partial key Ki of a key α as

Ki =
i−1∑
k=0

αk2
k. (3.2)

Thus, the key α can be written in the form α = Ki + αi2
i + α′2i+1 for some α′.

Suppose Bob has learned the first i bits of α, and wishes to learn the (i+ 1)-th bit. This includes
the case where i = 0 and Ki = 0. Note that the original paper [GPST16] takes more care to
distinguish between the general cases of equivalent keys (see Definition 1.4), but we take the
simpler, less general route here and assume keys of the form (1, α). Bob will compute

Ri = R+ [−2n−i−1Ki]S,

Si = [1 + 2n−i−1]S,
(3.3)

where R = φB(P1) and S = φB(Q1). His curve EB together with these crafted points Ri, Si will
form the public key Bob gives to Alice.

Now, after Alice has been given the key (EB, Ri, Si) from Bob, she will compute

Ri + [α]Si

= R+ [−2n−i−1Ki]S + [α][1 + 2n−i−1]S

= R+ [α]S + [2n−i−1α− 2n−i−1Ki]S

= R+ [α]S + [2n−1αi]S

=

{
R+ [α]S if αi = 0,

R+ [α]S + [2n−1]S if αi = 1.

(3.4)

Hence, an oracle query of the form O(EB, Ri, Si, EAB) will return 1 if and only if αi = 0. Bob has
consequently learned the next bit of α, and repeats this process until all of α is recovered.

The attack, therefore, only requires making a linear (in the bit-length of the secret) number of
queries to the oracle O in order to recover the full key.

3.2 k-SIDH

Azarderakhsh, Jao, and Leonardi [AJL17] propose a natural method of defending against the
GPST attack, by running multiple instances of the SIDH exchange in parallel and combining all
the resulting shared secrets. The name k-SIDH designates such a protocol in which both parties

34

use k keys each, giving rise to a total of k2 individual SIDH squares. Specifically, Alice randomly
generates k different secret keys

αi ← Z/2nZ 0 ≤ i < k,

and then computes the k corresponding public key tuples (EA,i, PA,i, QA,i), where

φA,i : E0 → EA,i has kernel 〈P1 + [αi]Q1〉, (3.5)

and PA,i, QA,i = φA,i(P2), φA,i(Q2).

Bob, likewise, generates secrets

βi ← Z/3nZ 0 ≤ i < k,

and computes his k corresponding public key tuples (EB,j , PB,j , QB,j) from isogenies

φB,j : E0 → EBj with kernel 〈P2 + [βj]Q2〉, (3.6)

with PB,j , QB,j = φB,j(P1), φB,j(Q1).

Alice’s public key for the k-SIDH exchange is
(
(EA,i, PA,i, QA,i)i∈{0,...,k−1}

)
, and Bob’s is similarly(

(EB,j , PB,j , QB,j)j∈{0,...,k−1}
)
. After exchanging public keys, Alice will compute k2 different

SIDH key exchanges—one for each pair of tuples from her public key and Bob’s public key. Denote
the shared secret from each of these exchanges by

zi,j = j
(
EB,j/〈PB,j + [αi]QB,j〉

)
0 ≤ i, j < k. (3.7)

Alice can then combine all k2 of these values as follows, using H, a preimage resistant hash
function:

h = H(z0,0 ‖ . . . ‖ z0,k−1 ‖ . . . ‖ zk−1,0 ‖ . . . ‖ zk−1,k−1). (3.8)

In the same manner, Bob will also compute k2 shared secrets, and combine them in an identical
way.

z′i,j = j
(
EA,i/〈PA,i + [βj]QA,i〉

)
0 ≤ i, j < k,

h′ = H(z′0,0 ‖ . . . ‖ z
′
0,k−1 ‖ . . . ‖ z

′
k−1,0 ‖ . . . ‖ z

′
k−1,k−1).

(3.9)

Alice and Bob then confirm they have both derived the same shared key, h = h′.

The intuition behind this scheme is that with the many interactions between all of Bob’s keys
and all of Alice’s, there are too many “moving parts” for a malicious Bob to feasibly compute
the secret bits of Alice’s k keys. Any manipulation of a single SIDH tuple in Bob’s public key
will affect at least k of the zi,j values from which the shared secret is computed, and Bob can
only ever derive a matching secret key if all k least significant bits of the secrets are guessed
simultaneously. Otherwise, even a single incorrect guess for one of the zi,j values will cause the
hash h′ to be different from the one Alice derives.

At first glance, one may wonder if even k = 2 is sufficient to thwart the GPST attack—both of
Bob’s keys are used with both of Alice’s to derive the shared secret, so the complexity of the
attack is much higher than in the plain SIDH setting. The hashing of four different derived secrets
may be enough to hide any information about the individual exchanges involved. Unfortunately,
Dobson, Galbraith, LeGrow, Ti, and Zobernig [DGL+20] demonstrate a practical extension of
the GPST attack to k-SIDH for small k, for example k = 2, the case covered explicitly by the

35

authors. The DGLTZ attack scales exponentially with k. The additional complexity of the
attack, compared to GPST, is due to the necessity of recovering intermediate curves and certain
points on them by enumerating possible neighbouring curves at each step. The k-SIDH scheme
is, therefore, confirmed to be insecure for small k.

Instead, Azarderakhsh et al. [AJL17] propose the use of k = 60 (resp. 50) if the static-key user is
working in the 2n-torsion (resp. 3m) subgroup for 128-bits of classical security, and k = 113 (resp.
94) to achieve 128-bits of quantum security. For 128-bit quantum security, therefore, the protocol
concretely requires 10,622 individual SIDH exchanges to be computed. This is, unfortunately,
very slow—on top of the key sizes, which are a hundred times larger than in SIDH. Because using
isogenies of larger degree reduces the required number of instances k, it has been noted that
larger primes may be more efficient overall than using `1 = 2, `2 = 3, despite each individual
isogeny computation being slower.

Urbanik and Jao [UJ20] presented an attempt at improving the efficiency of k-SIDH by using
the non-trivial automorphisms on curves with j-invariant 0 and 1728 to derive extra secrets. As
briefly discussed in Section 1.2, these curves have multiple edges leaving them with the same
codomain curve. Let’s consider E0, where j(E0) = 0. For a single isogeny φ : E′ → E0, there will
be three non-equivalent isogenies φ̃i : E0 → E′, each of which is dual to an isogeny equivalent
to φ. Hence, if Alice takes a secret isogeny φA,0 with kernel GA on E0, she can also obtain two
other secret isogenies to the same curve by acting on GA with η6:

φA,0 : E0 → EA with kernel GA,
φA,1 : E0 → EA with kernel η6(GA),

φA,2 : E0 → EA with kernel η2
6(GA).

(3.10)

These three isogenies will, in general, all be distinct in the first “step” in their paths, when
considered as compositions of prime-degree isogeny steps. Thus, they are non-equivalent as
isogenies, since their kernels differ.

Bob can take the same approach to obtain three isogenies from a single secret kernel GB on E0

as well. Performing nine SIDH exchanges with all combinations of the three keys from each party
results in nine j-invariants. However, only three of these are distinct, since

E0/〈GA, GB〉 ∼= E0/〈η6(GA), η6(GB)〉 ∼= E0/〈η
2
6(GA), η2

6(GB)〉,
E0/〈GA, η6(GB)〉 ∼= E0/〈η6(GA), η2

6(GB)〉 ∼= E0/〈η
2
6(GA), GB〉,

E0/〈η6(GA), GB〉 ∼= E0/〈η
2
6(GA), η6(GB)〉 ∼= E0/〈GA, η

2
6(GB)〉.

(3.11)

Urbanik and Jao [UJ20] argue that if both parties use triples of secrets derived in this way, then
a smaller value of k can be used in k-SIDH, improving efficiency and lowering the size of the
public keys.

Unfortunately, Basso, Kutas, Merz, Petit, and Weitkämper [BKM+20] demonstrate an adaptive
attack on this scheme which is more efficient than the one on k-SIDH, exploiting the extra
structure of the secrets. They consequently show that the Urbanik and Jao scheme actually
scales worse in efficiency than k-SIDH itself, requiring around twice as many SIDH instances for
the same security. It does still result in slightly smaller public keys, though—the public keys are
around 4/5 of the size of those in k-SIDH. We also emphasise that these ideas cannot be used
when the base SIDH curve is not E0 or E1728.

36

Remark 3.1. Urbanik and Jao [UJ20] also suggest a non-interactive scheme for proving correct-
ness of an SIDH public key (including the torsion points), using the same idea of employing the
non-trivial automorphisms on curves E0 and E1728, just as their k-SIDH improvement proposal
does. The idea is that the ephemeral isogeny used in each round of the scheme can be chosen such
that the additional secrets from the automorphism η are pairwise-independent (in the same sense
as Definition 1.6), and that this prevents GPST-style adaptive attacks. We show in Chapter 4
that the soundness proof of this protocol is incorrect, so we do not cover it in detail here. We
refer the interested reader to their work [UJ20, Section 5].

3.3 The Weil pairing check

We have already seen, in Chapter 2, that the Weil pairing can be used to provide additional
validation of points in SIDH public keys. We shall now provide more detail about this pairing
and its use in validation. An excellent reference for the material covered here is given by
Silverman [Sil09, Section III.8].

Suppose E is an elliptic curve defined over a field k, and let m ≥ 2 be an integer coprime to the
characteristic of k. The m-th Weil pairing on E is a map

em : E[m]× E[m] −→ µm,

where µm is the group of the m-th roots of unity, and E[m] is the m-torsion subgroup of E (as
before).

The actual definition of the pairing requires knowledge of divisors, which we introduce in
Section 6.4, and understanding its definition is not critical in this thesis—we can simply take its
existence for granted. In short, it can be defined as

em(S, T) =
g(S +X)

g(X)
, (3.12)

where g is a function with divisor

(g) =
∑

R∈E[m]

(T ′ +R)− (R), (3.13)

for any point T ′ ∈ E such that [m]T ′ = T , and where X ∈ E is any point such that both
numerator and denominator of em are defined and non-zero. Note that T ′ +R is point addition
on the curve, but the sum is a formal sum of points. It happens that this definition is independent
of the choice of T ′, X, and g. The interested reader can refer to Silverman [Sil09] for more detail
and proofs. We are primarily interested in the properties this pairing em provides us with, so we
will examine some of these now.

In particular, em is bilinear, so that

• em(S1 + S2, T) = em(S1, T) · em(S2, T),

• em(S, T1 + T2) = em(S, T1) · em(S, T2).

It is also alternating, implying

• em(S, S) = 1,

• em(S, T) = em(T, S)−1.

37

Finally, it is non-degenerate, so that if em(S, T) = 1 for all T ∈ E[m], then S = OE (and vice
versa).

We now turn to the use of this pairing in validation of SIDH public keys. Let φ : E → E′ be an
isogeny, and let P,Q ∈ E be points of order N , where N is coprime to deg(φ). Following from
Silverman [Sil09, Proposition III.8.2], the Weil pairing induces the condition that

eN (φ(P), φ(Q)) = eN (P,Q)deg(φ), (3.14)

where the first pairing is computed on E, and the second on E′.

Consider an SIDH public key of the form (E′, P ′, Q′). While we do not know the secret isogeny
φ corresponding to this key, we do know its degree, which is part of the SIDH public parameters.
So we can compute eN (P,Q)deg(φ), and we can compute eN (P ′, Q′), and test for equality. This
was discussed by Galbraith et al. [GPST16, GV18] as a potential method of validating SIDH
public keys to protect against adaptive attacks such as the GPST attack. Unfortunately, this
pairing check is insufficient to prevent such attacks. The check holds for many different choices
of basis points, hence is not enough to uniquely determine whether a secret isogeny φ of correct
degree exists in SIDH.

For example, let us return to our usual choice of N = `
e2
2 and deg(φ) = `

e1
1 . We note that there

are
`
4e2−3
2 · (`22 − 1)2/(`2 + 1) (3.15)

different possible choices for ordered bases P,Q of the correct order—this is because there are
`
2e2
2 − `2(e2−1)

2 points of the correct order, and the independence between P and Q introduces a
factor of `2/(`2 + 1). Obviously, many of these choices will not satisfy the Weil pairing check for
a certain degree. However, the codomain of eN has order `e22 , which is much smaller than the
number of choices of points. Therefore there will be far more pairs of points satisfying the Weil
pairing check, than could possibly arise from valid secret isogenies of the correct degree.

Indeed, if (P ′, Q′) are the correct images of (P,Q) under an isogeny φ, then any pair ([a]P ′ +
[b]Q′, [c]P ′ + [d]Q′) such that ad− bc ≡ 1 (mod N) also passes the Weil pairing check. This can
be seen via the bilinearity of eN . Hence, this is not enough to uniquely determine φ, and, in
particular, is insufficient to protect against the GPST adaptive attack. As shown by Galbraith
et al. [GPST16], it is simple to circumvent the Weil pairing check in the GPST attack by scaling
the points [θ]Ri, [θ]Si (where Ri, Si are the maliciously chosen points seen in Section 3.1) using
an appropriately chosen θ (coprime to N , the order of the points).

3.4 The Fujisaki–Okamoto transformation

The Fujisaki–Okamoto transformation [FO99, FO13] is a generic transformation from any one-way
(OW-CPA) secure asymmetric encryption scheme, and any one-time secure symmetric encryption
scheme, into an IND-CCA (indistinguishable under chosen-ciphertext attacks) secure hybrid
encryption scheme in the random oracle model. Specifically, the hybrid encryption is defined
as

Enchy
pk(m; r) := Encasym

pk (r;H(r, c)) ‖ c
where c← Encsym

G(r)(m).
(3.16)

Here, G,H are hash functions (modelled as random oracles), r denotes the random coins used
by Enchy

pk (assumed to be chosen at random from an appropriate domain), Encasym
pk (m; c′) is a

38

OW-CPA secure asymmetric encryption scheme with public key pk on message m using random
coins c′, and Encsym

k is a one-time secure symmetric encryption algorithm with key k.

One-wayness is a very weak security definition for encryption, which only asserts that an adversary
cannot entirely decrypt the encryption of a random plaintext. Intuitively, this means r cannot
be (entirely) recovered from Encasym

pk (r;H(r, c)) by an adversary. Hence, because G(r) is hidden
from the adversary and only used once (since r is random), and because Encsym is one-time
secure, we can achieve an IND-CCA secure scheme Enchy generically.

Hofheinz, Hövelmanns, and Kiltz [HHK17] give more detailed analysis and generalisations of
this transformation. We use “FO transformation” to loosely refer to all transformations in
this vein. The FO transformation has found a wide variety of uses, and in this thesis we are
specifically interested in its application to key exchange protocols. Peikert [Pei14] and Kirkwood
et al. [KLM+15] have both set out methods of using the FO transformation to convert a key
exchange protocol into a secure key encapsulation mechanism (KEM).

This is exactly what was done in the SIKE [ACC+17] protocol, a NIST post-quantum standardis-
ation candidate, derived from the SIDH protocol. SIKE is a secure KEM, preventing the adaptive
attacks that SIDH suffers from by validating key well-formedness with the FO transformation. It
was pointed out by Galbraith et al. [GPST16] that the Kirkwood et al. [KLM+15] validation
method using the FO transformation is sufficient for this purpose. The idea of the FO transfor-
mation is that the initiator, A, of the key exchange can encrypt the randomness they used in the
exchange (for example, to generate their secret key) under the symmetric shared key K they
derived, and send it to their partner B. If the encryption method is one-time secure, then because
only A and B know K, only they can decrypt this randomness. B can then check that the public
key A provided is indeed derived from the randomness A sent, to prove that the public key is
well-formed. This allows B to detect malicious modification of the public key used by A. Clearly
though, because B learns the secret key of such a public key in every exchange, A can only prove
the legitimacy of ephemeral public keys in this way—otherwise, every exchange partner would
be given A’s long-term secret. Hence, while extremely useful, the FO transformation does not
provide a solution in cases where parties wish to perform an exchange while both using static
keys.

Concretely, using SIKE as an example, let m be a uniformly random bit-string, and suppose
we are performing encapsulation under a fixed public key pk = (E,P,Q). We can derive an
ephemeral secret key s deterministically fromm and pk (for example, by hashing: s := H(m‖pk)).
Let c0 be the public key corresponding to s. An SIDH key exchange between pk and c0 gives us a
shared secret r. Then c0 can be considered the ciphertext of an asymmetric-key “encryption” of r
under pk (using randomness s). The symmetric encryption used by SIKE is simply the one-time
pad (OTP), so we compute c1 := m⊕G(r).

Given c0 and c1, the owner of pk can “decrypt” c0 by recomputing the shared secret r ←
SIDH(pk, ek) (the asymmetric step). After this, they can recover m as G(r) ⊕ c. The final
step in validation (outside the scope of the FO transformation itself) is to confirm that this
recovered randomness m does indeed produce s (and c1)—convincing the verifier that c1 is
honestly generated and that the exchange with pk could not have involved an adaptive attack.
This allows the verifier to trust the shared secret produced, but leaks the secret key s, so c1

cannot be securely reused by the sender.

39

40

Chapter 4

SIDH Proof of Knowledge

In Section 1.3, we reviewed the Supersingular Isogeny Diffie–Hellman (SIDH) [JD11, DJP14]
protocol. While this scheme is a fast and efficient post-quantum key exchange candidate, it has
been hampered by the existence of the practical adaptive attacks on the scheme discussed in
Chapter 3—the first of these given by Galbraith et al. [GPST16] (the GPST attack). These
attacks mean it is not safe to reuse a static key across multiple SIDH exchanges without other
forms of protection. As such, various countermeasures have been proposed—though each with its
unique drawbacks.

We saw in Section 3.4 that one method of protection is to require one participant to use a
one-time ephemeral key in the exchange, with a Fujisaki–Okamoto-type transformation [HHK17]
revealing the corresponding secret to the other party. This allows the recipient to verify the
public key is well-formed, ensuring an adaptive attack was not used. This is what was done in
SIKE [ACC+17], and converts the scheme to a secure key encapsulation mechanism (KEM). But
it is of limited use in cases where both parties wish to use a long-term key.

An alternative countermeasure, seen in Section 3.2, is to use many SIDH exchanges in parallel,
combining all the resulting secrets into a single value. This scheme is known as k-SIDH [AJL17],
where k is the number of keys used by each party in the exchange. The authors of the k-SIDH
proposal suggest k = 92 is required for a secure key exchange, and it must be noted that
the number of SIDH instances grows as k2, so this scheme is very inefficient. Urbanik and
Jao’s [UJ20] proposal attempted to improve the efficiency of this protocol by making use of
the special automorphisms on curves with j-invariant 0 or 1728, but it was shown by Basso et
al. [BKM+20] that Urbanik and Jao’s proposal is vulnerable to a more efficient adaptive attack
and actually scales worse in efficiency than k-SIDH itself (although the public keys are around
4/5 of the size, it requires around twice as many SIDH instances for the same security).

Finally, adaptive attacks can also be prevented by providing a non-interactive proof that a public
key is well-formed or honestly generated. While generic NIZK proof systems would make this
possible in a very inefficient manner, Urbanik and Jao [UJ20] claim a method for doing so using
a similar idea to their k-SIDH improvement mentioned above. Their scheme is built on the
SIDH-based identification scheme by De Feo, Jao, and Plût [DJP14].

Unfortunately, however, we show that the soundness of this original De Feo–Jao–Plût scheme is
not rigorously proved—specifically that it does not reduce to the computational assumption they
claim—and give a counterexample to this proof. Precisely, a dishonest prover can successfully
convince a verifier to accept their proof for a public key curve E1 even when there is no isogeny
φ : E0 → E1 of degree `e11 . Because this scheme (and proof) has since been used to build an
undeniable signature by Jao and Soukharev [JS14], a signature scheme by Yoo, Azarderakhsh,

41

Jalali, Jao, and Soukharev [YAJ+17], and also by Galbraith, Petit, and Silva [GPS20], all of these
subsequent papers suffer from the same issue. Our counterexample does not apply to Urbanik
and Jao’s point-validation scheme [UJ20], but their soundness proof nonetheless does not hold
for the same reason (as mentioned in Remark 3.1). Explicit counterexamples to Urbanik and
Jao’s scheme are given by De Feo et al. [DDGZ21].

In this chapter, we examine the issue with the existing soundness proofs and propose two new
SIDH-based zero-knowledge schemes to prove that SIDH public keys are well-formed, meaning
that given base SIDH curve E0 and the curve E1 in the public key, there is an isogeny (the
private key, or witness) φ : E0 → E1 of the correct degree.

First, in Section 4.3, we propose a modification to the De Feo–Jao–Plût scheme that ensures
an extractor for the witness φ : E0 → E1 exists. We express this in terms of a relation we call
the weak SIDH relation, RweakSIDH. There are two key ideas used in the development of this
protocol, which we briefly summarise here using the notation of the De Feo–Jao–Plût scheme,
referring to Section 4.2.1 and Figure 4.1. The first idea is for the prover to provide bases
(P2, Q2) of E2[`

e2
2] and (P3, Q3) of E3[`

e2
2], and for the verifier in the chall = 1 case to check that

(P3, Q3) = (φ′(P2), φ′(Q2)). In the chall = 0 case, the verifier checks that the isogenies from E2

to E0 and from E3 to E1 are “parallel”. The second key idea is, in the 2-special soundness proof,
to view the transcript as an SIDH square where E2 is the “base curve” and where E0 and E3

play the roles of EA and EB in SIDH. It then follows that there is a witness φ as required.

Second, in Section 4.4, we give a new proof that convinces a verifier not only that there is an
isogeny φ : E0 → E1 of degree `e11 , but also that (P1, Q1) = (φ(P0), φ(Q0)). We call this stronger
relation the SIDH relation, RSIDH, to distinguish it from the weak version mentioned above.
Making this non-interactive using the Fiat-Shamir heuristic gives a secure method for proving
well-formedness of SIDH public keys, which is needed if one wants to prevent adaptive attacks.
This is the first such sound proof in the literature (since the soundness proof of Urbanik and Jao’s
scheme [UJ20] is invalid, as mentioned before) and has important applications in all settings
where SIDH key exchange could be used with static keys. Our scheme works with any base
elliptic curve, rather than being restricted to the two curves with j-invariant 0 or 1728 as in
[UJ20]. While the size of our NIZK proof is larger than a k-SIDH public key of the same security
level, it is much more efficient to verify than computing a k-SIDH exchange (due to the quadratic
scaling of k-SIDH).

The new protocol in Section 4.4 builds on the protocol of Section 4.3 but also needs new
ingredients. One key idea is that we need to ensure that the pairs of integers (a, b) used by
the prover to construct their ephemeral isogenies ψ : E0 → E2 for each commitment round of
the scheme are “independent enough”. To achieve this, we “double” the protocol by essentially
running two sessions of the protocol from Section 4.3 for each challenge bit. The prover shows
that the two instances are consistent with each other by providing images of a random torsion
basis in both squares, which the verifier can check are correct. The verifier also checks that the
two instances are independent (in the precise sense of Definition 1.6). This allows us to construct
a 2-special soundness extractor that outputs a correct witness.

Commitments in the original De Feo–Jao–Plût scheme were formed of just two j-invariants of
curves, but our new proofs require committing to various points on curves as well. This makes
the proofs larger. As with the original De Feo–Jao–Plût scheme, it is non-trivial to simulate
valid protocol transcripts without knowing the witness, so we only achieve computational zero-
knowledge. To prove our schemes possess the computational zero-knowledge property, we rely on
some of the new assumptions that we presented in Section 2.3.

42

In recent work, Ghantous, Pintore, and Veroni [GPV21] demonstrated that the soundness property
for the De Feo–Jao–Plût scheme (and those based on it) fails for a different reason—namely, the
existence of multiple isogenies of the same degree between some curves. The protocols we propose
in this chapter are not vulnerable to this issue, as we briefly discuss in Remark 4.8.

This chapter begins with a revision of some standard preliminaries about sigma protocols in
Section 4.1. We then recall the De Feo–Jao–Plût identification scheme in Section 4.2.1 and
outline the issue with its proof of soundness (given in multiple previous works) in Section 4.2.2.
Subsequently, we present the first of our new SIDH identification schemes in Section 4.3, which
modifies the De Feo–Jao–Plût scheme and allows us to prove soundness (and thus security).
We then show how the points in the SIDH public key can also be verified under this zero-
knowledge proof scheme in Section 4.4, including some discussion about potential improvements
in Section 4.4.1. We conclude the chapter with the construction of a secure signature scheme
from our protocols—the first signature scheme which is a Proof of Knowledge of an SIDH secret
key (including proof of torsion point correctness).

Remark 4.1. De Feo, Dobson, Galbraith, and Zobernig [DDGZ21] build on the work presented
in this chapter with a protocol which satisfies the standard definition of computational zero-
knowledge, without requiring any novel assumptions (for example the DMSIDH assumption). De
Feo et al.’s modified protocol uses ternary challenges and has a cheating probability of 2/3. It is
mentioned for completeness, but is less efficient than the protocols given in this chapter, which
are more appropriate for the applications we have in mind.

4.1 Preliminaries: Sigma protocols

A sigma protocol ΠΣ for a relation R = {(X,W)} is a public-coin three-move interactive proof
system consisting of two parties: a verifier V and a prover P . Recall that public-coin informally
means that there are no secret sources of randomness—the verifier’s coin tosses are accessible to
the prover. In practice, this means the challenge sent by the verifier to the prover is uniformly
random. For our purposes, a witness W can be thought of as a secret key, while the statement
X is the corresponding public key. Thus, proving (X,W) ∈ R is equivalent to saying that X
is a valid public key that has a corresponding secret key. We use the security parameter κ to
parametrise the length of the secret keys involved.

Definition 4.2 (Sigma protocol). A sigma protocol ΠΣ for a family of relations {R}κ parametrised
by security parameter κ consists of probabilistic polynomial-time (PPT) algorithms ((P1, P2),
(V1, V2)), where V2 is deterministic, and we assume P1, P2 share states. The protocol proceeds as
follows:

1. Round 1: The prover, on input (X,W) ∈ R, returns a commitment com← P1(X,W) which
is sent to the verifier.

2. Round 2: The verifier, on receipt of com, runs chall← V1(1κ) to obtain a random challenge,
and sends this to the prover.

3. Round 3: The prover then runs resp← P2(X,W, chall) and returns resp to the verifier.

4. Verification: The verifier runs V2(X, com, chall, resp) and outputs either > (accept) or ⊥
(reject).

43

A transcript (com, chall, resp) is said to be valid for a statement X if V2(X, com, chall, resp)
outputs >. Let 〈P, V 〉 denote the transcript for interaction between prover P and verifier V , and
write 〈P, V 〉 = 1 if the verifier accepts after the protocol is complete. We define some standard
properties of sigma protocols which are relevant for this chapter:

Correctness: If the prover P knows (X,W) ∈ R and behaves honestly, then the verifier V
accepts the proof.

2-special soundness: There exists a polynomial-time extraction algorithm Extract that, given a
statementX and two valid transcripts (com, chall, resp) and (com, chall′, resp′) where chall 6= chall′,
outputs a witness W such that (X,W) ∈ R with probability at least 1− ε for soundness error
ε.

Zero-knowledge: We use a non-standard definition of zero-knowledge, sufficient for our ap-
plications, which we call distributional zero-knowledge. A sigma protocol is distributionally
zero-knowledge with respect to an instance generation algorithm Gen if, for any (cheating)
verifier V ∗, there exists a polynomial-time simulator Sim such that the following distinguishing
probability holds for all PPT distinguishers D and sufficiently large κ:∣∣Pr

[
D(X, 〈P (X,W), V ∗(X)〉) = 1

]
− Pr [D(X, Sim(X)) = 1]

∣∣ ≤ negl(κ) (4.1)

where the probabilities are taken over the outputs (X,W)← Gen(1κ), (X,W) ∈ R.

Proof of Knowledge (PoK): There exists a polynomial-time extraction algorithm Extract
that, given an arbitrary statement X and access to any prover P ∗, outputs a witness W such
that (X,W) ∈ R with probability at least Pr[〈P ∗, V 〉 = 1]− ε for knowledge error ε.

It is a known result (e.g. by Hazay and Lindell [HL10, Theorem 6.3.2]) that a correct and
2-special sound sigma protocol with challenge length t is a Proof of Knowledge with knowledge
error 2−t. In this chapter, this will generally equate to a sigma protocol using single-bit challenges,
repeated with t iterations.

4.2 Previous SIDH identification scheme

Along with the SIDH key exchange protocol discussed in Section 1.3, De Feo, Jao, and Plût [DJP14]
also introduced an isogeny-based identification scheme using a similar structure and ideas. We
now recall that original scheme, and examine an issue with the proof of soundness provided by
De Feo et al. for it. We then provide an explicit counterexample to the 2-special soundness proof
of the scheme.

4.2.1 De Feo–Jao–Plût scheme

In an identical manner to SIDH, we let p be a large prime of the form p = `
e1
1 `

e2
2 f ± 1, where `1

and `2 are distinct small primes. We then fix a supersingular elliptic curve E0 defined over F
p
2

with #E0(F
p
2) = (`

e1
1 `

e2
2 f)2. A private key is a random point Kφ ∈ E0(F

p
2) of exact order `e11 ,

or equivalently an isogeny φ : E0 → E1 of degree `e11 (where E1 = E0/〈Kφ〉).

In the identification scheme, we only make use of bases of order-`e22 -torsion subgroups on each
curve involved. Because of this, we use slightly different notation than in the description
of the SIDH key exchange protocol: the subscripts of points will correspond to the elliptic
curve they lie on. In this respect, we denote by P0, Q0 a fixed basis of the torsion subgroup
E0[`

e2
2] = 〈P0, Q0〉.

44

The public parameters are, then, pp = (`1, `2, e1, e2, p, E0, P0, Q0). Public keys have an identical
form to SIDH keys. The De Feo–Jao–Plût identification scheme for public key (E1, φ(P0), φ(Q0))
proceeds as follows:

1. Commitment: The prover chooses a random primitive `e22 -torsion point Kψ and writes

Kψ = [a]P0 + [b]Q0

for some integers 0 ≤ a, b < `
e2
2 not both divisible by `2. These same integers can be used

to compute
Kψ

′ = φ(Kψ) = [a]φ(P0) + [b]φ(Q0).

The prover uses Vélu’s formulae to compute degree-`e22 isogenies ψ and ψ′ whose kernels are
generated by Kψ and Kψ

′ respectively. Let the respective codomains of these isogenies be
denoted by

E2 = E0/〈Kψ〉,
E3 = E1/〈φ(Kψ)〉 = E0/〈Kψ,Kφ〉.

Finally, the prover computes Kφ
′ = ψ(Kφ) and the corresponding isogeny φ′ : E2 → E3.

This gives the diagram in Figure 4.1.

E0 E1

E2 E3

φ

ψ ψ′

φ′

Figure 4.1: Commutative diagram of the SIDH identification scheme.

The prover sends commitment com = (E2, E3) to the verifier.

2. Challenge: The verifier challenges the prover with a random bit chall← {0, 1}.

3. Response:

• If chall = 0, the prover reveals resp = (a, b), from which Kψ and φ(Kψ) = Kψ
′ can be

reconstructed.

• If chall = 1, the prover reveals resp = Kφ
′ .

In both cases, the verifier accepts the proof if the points revealed have the correct order and
generate kernels of isogenies between the correct curves. We iterate this process t times to reduce
the cheating probability to 2−t (where t is chosen based on the security parameter κ).

Note that in an honest execution of the proof, we have

ψ̂′ ◦ φ′ ◦ ψ = [`
e2
2]φ. (4.2)

4.2.2 Issue with soundness proofs for the De Feo–Jao–Plût scheme

A vital aspect of security for an identification scheme, such as the De Feo–Jao–Plût scheme, is
the soundness proof for the protocol. A proof of soundness for the De Feo–Jao–Plût scheme

45

was given by multiple previous works [DJP14, YAJ+17, GPS20] based on the CSSI problem in
Definition 2.2. A sketch of this soundness proof follows.

Suppose A is an adversary that takes as input the public key and succeeds in the identification
protocol (all t iterations) with noticeable probability ε. Given a challenge instance (E,P,Q)
for the CSSI problem with public parameters pp, we run A on the same tuple (E,P,Q) as the
public key. In the first round, A outputs commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t. We then send
a challenge chall ∈ {0, 1}t to A and, with probability ε, A outputs a response that satisfies the
verification algorithm. Now, we use the standard replay technique: rewind A to the point just
after it had output its commitments, but before it received the challenge, and then provide it
with a different challenge chall′ ∈ {0, 1}t. With probability ε, A again outputs a valid response.
Because the challenges differ in at least one bit, we must have a valid response for both chall = 0
and 1 in at least one round of the sigma protocol (with the same commitment).

Let i be such an index where the challenges differ, so that challi 6= chall′i. We now restrict our
focus to this round and drop the subscript i. Thus, A has provided us with the commitment
(E2, E3) and the responses (resp, resp′) for both challenges chall = 0 and chall = 1 successfully, as
per the sigma protocol. Hence, A has provided the maps ψ, φ′, ψ′ in Figure 4.2.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

Figure 4.2: Information provided by adversary A after rewinding.

The extraction argument for 2-special soundness proceeds as follows: we have an explicit
description of an isogeny φ̃ = ψ̂′ ◦ φ′ ◦ ψ from E0 to E1. The degree of φ̃ is `e11 `

2e2
2 . One can

determine ker(φ̃) ∩E0[`
e1
1] by iteratively testing points in E0[`j1] for j = 1, 2, . . . , e1. Hence, one

determines the kernel of φ, as desired.

However, the important issue with this argument, which has so far gone unnoticed, is that it
assumes ker(φ) = ker(φ̃) ∩ E0[`

e1
1]. This assumption has no basis, and we will provide a simple

counterexample to this argument in the following section. While we always recover an isogeny, it
may not be φ at all—it is entirely possible the isogeny we recover does not even have codomain
E1. As a result, this proof of 2-special soundness is not valid.

4.2.3 Counterexample to soundness

Suppose we have fixed public parameters pp = (`1, `2, e1, e2, p, E0, P0, Q0). Begin by generating
a random `

e2
2 -torsion point Kψ ∈ E0(F

p
2), and write Kψ = [a]P2 + [b]Q2 for some integers

0 ≤ a, b < `
e2
2 not both divisible by `2. Let ψ : E0 → E2 be an isogeny with kernel generated by

Kψ.

Next, choose a random point Kφ
′ ∈ E2 of order `e11 , and let φ′ : E2 → E3 be a degree-`e11 isogeny

with kernel generated by Kφ
′ . In the same manner, choose a third random isogeny ψ′ : E3 → E1

of degree `e22 . Then choose points P1, Q1 ∈ E1(F
p
2) such that ker(ψ̂′) = 〈[a]P1 + [b]Q1〉. Finally,

46

publish (E1, P1, Q1) as a public key.

In other words, we have:

E0
ψ−→ E2

φ
′

−→ E3
ψ
′

−→ E1.

Now there is no reason to believe that an isogeny from E0 to E1 of degree `e11 exists, yet we can
successfully respond to both challenge bits 0 and 1 in a single round of the identification scheme.
This violates the 2-special soundness of the sigma protocol. Pulling back the kernel of φ′ via ψ
to E0 will result in the kernel of an isogeny which, in general, will not have codomain E1 (but
instead another random curve). This is because ψ′ is entirely unrelated to ψ in this case (they
are not “parallel”), so we have no SIDH square.

A key observation is that a verifier could be fooled into accepting this public key by a prover
who always uses the same curves (E2, E3) instead of randomly chosen ones. When chall = 0 the
prover responds with the pair (a, b) corresponding to the kernel of ψ and ψ̂′, and when chall = 1
the prover responds with Kφ

′ . The verifier will agree that all responses are correct and will
accept the proof.

It is true that the verifier could test whether the commitments (E2, E3) are being reused, but
this has never been stated as a requirement in any of the protocol descriptions. To tweak the
verification protocol we need to know how “random” the pairs (E2, E3) (or, more realistically,
the pairs (a, b)) need to be. One may think that the original scheme seems to be secure despite
the issue with the proof, as long as the commitment (E2, E3) is not reused every time. However,
in experiments with small primes, it is entirely possible to construct instances where even with
multiple different commitments, a secret isogeny of the correct degree between E0 and E1 does
not exist. We expect that this extrapolates to large primes too, although one could potentially
argue that finding enough such instances is computationally infeasible.

It is also true that repeating (E2, E3) means the protocol is no longer zero-knowledge. We
emphasise that soundness and zero-knowledge are independent security properties, which are
proved separately (and affect different parties: one gives an assurance to the verifier and the
other to the prover). The counterexample we have provided is a counterexample to the soundness
proof. The fact that the counterexample is not consistent with the proof that the protocol is
zero-knowledge is irrelevant.

Finally, one could consider basing security of the protocol on the general isogeny problem
(Definition 2.1) because, even in our counterexample, an isogeny E0 → E1 exists and can be
extracted—it just does not have degree `e11 . We find it interesting that none of the previous
authors chose to do it that way. However, some applications may require using the identification
or signature protocols to prove that an SIDH public key is well-formed, implying the secret
isogeny has the correct degree. For such applications, we need soundness to be rigorously proved
rather than the relation to be weakened.

The issue in the security proofs in the literature is not only that it is implicitly assumed that
there is an isogeny of degree `e11 between E0 and E1. The key issue is that it is implicitly assumed
that the pullback under ψ of ker(φ′) is the kernel of this isogeny. Our counterexample calls these
assumptions into question and shows that the proofs are incorrect as written.

To make this very clear, consider again the soundness proof from De Feo et al. [DJP14]. The
following diagram is provided within their proof. It implicitly assumes that the horizontal isogeny
φ′ has kernel given by ψ(S), so that the image curve is E/〈S,R〉.

47

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ

φ′

ψ′

This implicit assumption seems to have been repeated in all subsequent works, such as by Yoo et
al. [YAJ+17] and Galbraith et al. [GPS20].

4.3 New SIDH zero-knowledge proof scheme

Let pp = (p, `1, `2, e1, e2, E0, P0, Q0) be public parameters such that E0(F
p
2)[`

e2
2] = 〈P0, Q0〉. As

before, suppose a user has a secret isogeny φ : E0 → E1 of degree `e11 with kernel ker(φ) =
〈Kφ〉.

We propose a new sigma protocol to prove knowledge of this isogeny given the public key
(E1, P1 = φ(P0), Q1 = φ(Q0)). The protocol is presented in Figure 4.4. IsogenyFromKernel is a
function taking a kernel point and outputting an isogeny and codomain curve with said kernel.
CanonicalBasis2 is a deterministic function taking a curve and outputting an `e22 -torsion basis on
the given curve. DualKernel is a function taking an isogeny ψ and outputting a generator K

ψ̂
of

the dual isogeny ψ̂ (c.f. Lemma 1.7). Figure 4.3 shows the commutative diagram of the sigma
protocol.

Intuitively, the scheme follows Section 4.2.1, with a single bit challenge—if the challenge is 0, we
reveal the vertical isogenies ψ and ψ′, while if the challenge is 1, we reveal the horizontal φ′. The
difference is the introduction of additional points on E3 to the commitment, which force ψ,ψ′

to be, in some sense, “compatible” or “parallel”. This restriction allows the proof of 2-special
soundness to work.

We then repeat the sigma protocol t times in parallel (where t is chosen based on the security
parameter κ) and set com to be the concatenation of all individual [comi]i∈{1,...,t} for each iteration
i, chall = [challi]i∈{1,...,t} and resp = [respi]i∈{1,...,t}.

E0 E1

E2 E3

φ

ψ

φ′

ψ′

Figure 4.3: Commutative diagram of the SIDH identification scheme, as in Figure 4.1. Here,
points P3, Q3 = φ′(P2), φ′(Q2) are provided on E3, where P2, Q2 ← CanonicalBasis(E2).

Remark 4.3. There are certainly improvements that can be made to increase efficiency and
compress the size of signatures, but many of these are standard, and we will not explore them

48

Round 1 (commitment)
1: Sample random `

e2
2 -isogeny kernel 〈Kψ〉 ⊂ E0

2: Write Kψ = [a]P0 + [b]Q0 ∈ E0 for a, b ∈ Z/`e22 Z
3: Kψ

′ := φ(Kψ) = [a]φ(P0) + [b]φ(Q0) ∈ E1

4: ψ,E2 ← IsogenyFromKernel(Kψ)
5: P2, Q2 ← CanonicalBasis2(E2)
6: Kφ

′ := ψ(Kφ) ∈ E2

7: φ′, E3 ← IsogenyFromKernel(Kφ
′)

8: P3, Q3 := φ′(P2), φ′(Q2) ∈ E3

9: Prover sends com := (E2, E3, P3, Q3) to the verifier

Round 2 (challenge)
1: Verifier sends chall← {0, 1} to the prover

Round 3 (response)
1: if chall = 1 then
2: resp := Kφ

′

3: else
4: K

ψ̂
← DualKernel(ψ)

5: Write K
ψ̂

= [c]P2 + [d]Q2 for c, d ∈ Z/`e22 Z
6: resp := (c, d)

7: Prover sends resp to the verifier

Verification
1: (E2, E3, P3, Q3)← com
2: if chall = 1 then
3: Kφ

′ ← resp

4: Check Kφ
′ has order `e11 and lies on E2, otherwise output reject

5: P2, Q2 ← CanonicalBasis2(E2)
6: φ′, E′3 ← IsogenyFromKernel(Kφ

′)

7: Verify E3 = E′3 and P3, Q3 = φ′(P2), φ′(Q2), otherwise output reject
8: else
9: (c, d)← resp

10: P2, Q2 ← CanonicalBasis2(E2)
11: K

ψ̂
:= [c]P2 + [d]Q2

12: K
ψ̂
′ := [c]P3 + [d]Q3

13: Check K
ψ̂
, K

ψ̂
′ have order `e22 , otherwise output reject

14: ψ̂, E′0 ← IsogenyFromKernel(K
ψ̂

)

15: ψ̂′, E′1 ← IsogenyFromKernel(K
ψ̂
′)

16: Check E0 = E′0 and E1 = E′1, otherwise output reject
17: Output accept

Figure 4.4: One iteration of the sigma protocol for our new SIDH zero-knowledge proof and
identification scheme. The public parameters are pp = (p, `1, `2, e1, e2, E0, P0, Q0). The public
key is (E1, P1, Q1), and the corresponding secret isogeny is φ.

49

here. For example, in practice, the commitment information (E3, P3, Q3) would be replaced with
a triplet of three x-coordinates of points, as in SIKE [ACC+17]. Alternatively, P3, Q3 could be
represented in terms of CanonicalBasis2(E3) using a compressed change-of-basis matrix.

Theorem 4.4. The sigma protocol in Figure 4.4 for relation

RweakSIDH =
{

((E1, P1, Q1), φ)
∣∣ φ : E0 → E1, deg(φ) = `

e1
1

}
(4.3)

is correct, 2-special sound, and distributionally zero-knowledge (with respect to the output distribu-
tion of the uniform SIDH key generation algorithm) assuming the DMSIDH and DSSP problems
are hard. Repeated with κ iterations, it is thus a Proof of Knowledge for RweakSIDH with knowledge
error 2−κ.

Proof. We prove the three properties of Theorem 4.4 separately below.

Correctness: Following the protocol honestly will result in an accepting transcript. This is
clear for the chall = 1 case. For the chall = 0 case, observe that

φ′(K
ψ̂

) = φ′([c]P2 + [d]Q2)

= [c]P3 + [d]Q3

= K
ψ̂
′ ,

(4.4)

so K
ψ̂
′ generates the kernel of ψ̂′.

2-special soundness: Without loss of generality, suppose we obtain two sigma protocol
transcripts (com, 0, resp), (com, 1, resp′), for example, by rewinding an adversary A after it
outputs com and providing a different challenge. Then recover (c, d) ← resp and Kφ

′ ← resp′,
and let φ′ be an isogeny whose kernel is generated by Kφ

′ . Applying Lemma 1.8, with (φA, φB,
φAB) := (φ′, ψ̂, ψ̂′), we obtain an isogeny χ : E0 → E1 of degree `e11 . The conditions of the lemma
on the kernels of ψ̂ and ψ̂′ are satisfied because φ′(K

ψ̂
) = K

ψ̂
′ , as above.

This shows the protocol is 2-special sound, and that it is a Proof of Knowledge of an isogeny
corresponding to the given public key curve. Because this protocol does not guarantee correctness
of the points P1, Q1 in the public key (as briefly discussed at the end of this section), this is only
a proof for the weakSIDH relation. In the next section, we will modify this protocol further to
also include these torsion points in the relation.

Zero-knowledge: Proof of distributional zero-knowledge (with respect to the usual SIDH key
generation algorithm Gen) follows as in [DJP14]. Let V ∗ be a cheating verifier, which shall be
used as a black box by the simulator Sim. Let ((E1, P1, Q1), φ)← Gen be an SIDH key pair. We
show that Sim can generate a valid transcript for t iterations of the protocol with respect to
statement (E1, P1, Q1). At each step, Sim makes a guess as to what the next challenge bit chall
will be, and then proceeds as follows:

• If chall = 0, Sim simulates as per the honest protocol by choosing a random kernel 〈Kψ〉 on
E0 of order `e22 , writingKψ = [a]P0+[b]Q0 for a, b ∈ Z/`e22 Z, and settingKψ

′ := [a]P1+[b]Q1

on E1. Sim computes the two vertical isogenies ψ : E0 → E2, ψ
′ : E1 → E3 from these kernel

generators respectively. The simulator then computes the corresponding dual isogenies
and the canonical basis P2, Q2 ← CanonicalBasis2(E2). Let K

ψ̂
and K

ψ̂
′ be generators of

50

the kernels of ψ̂ and ψ̂′ respectively. The simulator writes K
ψ̂
in terms of the canonically-

generated basis on E2 as [c]P2 + [d]Q2, then chooses a torsion basis on E3 as P3, Q3 ∈ E3 in
such a way that these points P3, Q3 are indistinguishable from points chosen in an honest
protocol transcript:

1. Obtain a point S ∈ E2 and its image S′ = φ′(S2) via the algorithm in Figure 1.1 despite
φ′ being unknown (c.f. Lemma 1.8).

2. Choose any T ∈ E2 of order `e22 such that E2[`
e2
2] = 〈S, T 〉.

3. Choose a point T ′ ∈ E3 such that E3[`
e2
2] = 〈S′, T ′〉, and such that e`e22 (S, T)`

e1
1 =

e`e22
(S′, T ′).

4. Solve discrete logarithms of P2, Q2 with respect to S, T on E2 to obtain a change-of-basis
matrix, and apply the same change of basis to S′, T ′ on E3 to obtain points P3, Q3.

Note that the above operations are efficient due to the ease of computing discrete logarithms
when the group order is very smooth [Tes99].

• If chall = 1, the simulator chooses a random supersingular elliptic curve1 E2 and a random
point Kφ

′ ∈ E2 of order `e11 . Sim then computes an isogeny φ′ : E2 → E3 with kernel 〈Kφ
′〉.

Finally, the simulator generates a canonical basis P2, Q2 ← CanonicalBasis2(E2), computes
P3, Q3 := φ′(P2), φ′(Q2), and sets the commitment to (E2, E3, P3, Q3) and the response to
Kφ

′ .

After providing com to V ∗, if the challenge bit that V ∗ outputs is not the same as Sim’s guess,
Sim simply discards that iteration and runs again. Sim stops whenever V ∗ rejects or after t
successful rounds. Suppose the probability of V ∗ not choosing the same bit as Sim’s guess is
noticeably different from 1/2. Then V ∗ can be used as a distinguisher for the DSSP problem (in
fact, an even harder problem than the DSSP where, instead of the isogeny φ′, only its action on
E2[`

e2
2] is given). We show this below, in the chall = 1 case of this proof. So the probability Sim

guesses correctly each round is exponentially close to 1/2 if the DSSP problem is hard. Thus,
Sim will run in polynomial-time.

To prove the indistinguishability of simulated transcripts from true interactions of a prover P
with V ∗, it is enough to show that one round of the sigma protocol is indistinguishable (by the
hybrid technique of Goldreich, Micali, and Wigderson [GMW91]).

When chall = 0, the choice of ψ and ψ′ is done exactly as in the honest protocol, so the curves
E2, E3 in the commitment are perfectly indistinguishable from those in honest transcripts. We
show that the points P3, Q3 are also indistinguishable, assuming the DMSIDH problem is hard.
Suppose B0 is a PPT adversary which can distinguish between the simulation and the real
transcripts for chall = 0 with advantage Adv0. Let ((E0, P0, Q0), (E1, φ(P0), φ(Q0)), ψ, ψ′, S, T,
φ′(S), T ′) be a challenge instance of the DMSIDH problem. Denote by E2 the codomain of ψ,
and E3 the codomain of ψ′. Set P2, Q2 ← CanonicalBasis2(E2), and proceed as in Step 4 of the
simulation above to obtain points P3, Q3 from S′, T ′ using a change of basis matrix A = (ai)
derived from (P2, Q2) and (S, T): (

P2

Q2

)
=

(
a0 a1

a2 a3

)
·

(
S

T

)
(4.5)

1One way to do so is to take a random `2-isogeny walk from E0. To ensure a distribution close to uniform, we
take a walk of length & log(p) ≈ 2e2. However, a walk of length e2 is sufficient to get a variant of DSSP that is
also believed to be hard.

51

Write the kernel of ψ̂ as ker(ψ̂) = [c]P2 + [d]Q2 for scalars c, d. Finally, give to B0 the transcript

com := (E2, E3, P3, Q3),

chall := 0,

resp := (c, d).

(4.6)

If T ′ = φ′(T) in the challenge instance of the DMSIDH problem (i.e., if the instance is from
distribution D0), then we necessarily have that P3 = [a0]φ′(S) + [a1]φ′(T) = φ′(P2), and similarly
Q3 = φ′(Q2). Hence, the distribution of transcripts will be identical to the honest protocol. On
the other hand, the transcript simulator selects a random T ′ such that E3[`

e2
2] = 〈S′, T ′〉 and

e`e22
(S, T)`

e1
1 = e`e22

(S′, T ′). Let T ′ = [q]φ′(T) + [r]φ′(S) = [q]φ′(T) + [r]S′. The pairing condition

gives e`e22 (S′, [q]φ′(T) + [r]S′) = e`e22
(S′, φ′(T))q implying q = 1. Hence, T ′ = φ′(T + [r]S). Then,

because the transcript simulator behaves identically to the reduction in computing P3, Q3 (via
applying the same change of basis matrix to S′, T ′), the transcript distribution in the reduction
will be identical to the transcripts generated by the simulator. Therefore, the response from B0

will solve the DMSIDH problem with advantage Adv0.

When chall = 1, we consider the distribution of (E2, E3, φ
′). While this distribution is not correct

a priori, the DSSP computational assumption in Definition 2.5 implies it is computationally
hard to distinguish the simulation from the real game (as in the proof in [GPS20]). Because
the action of φ′ on canonical basis P2, Q2 ∈ E2 can be computed by any party who knows φ′,
the distribution of (E2, E3, P3, Q3) must also be indistinguishable between simulation and real
transcripts.

Suppose B1 is a PPT adversary which can distinguish between the simulation and the real tran-
scripts for chall = 1 with advantage Adv1. Given an instance of the DSSP problem, (E2, E3, φ

′),
compute P2, Q2 ← CanonicalBasis2(E2). Then let P3 := φ′(P2) and Q3 := φ′(Q2), and set

com := (E2, E3, P3, Q3),

chall := 1,

resp := Kφ
′ ,

(4.7)

where Kφ
′ is any generator of ker(φ′).

B1, given (com, chall, resp), will then solve the DSSP with the same advantage Adv1. It is for this
same reason that a cheating verifier V ∗ is unable to distinguish based on com alone whether the
simulator is attempting a chall = 0 or chall = 1 simulation with non-negligible advantage, if it
cannot solve the DSSP problem with non-negligible advantage.

Hence, the scheme is computationally zero-knowledge assuming the DSSP and DMSIDH problems
are hard.

Remark 4.5. We note that the points P1, Q1 are not actually used in the verification algorithm,
so could be omitted entirely in practice if desired. After observing just two honest iterations of
the sigma protocol, on average, the verifier would be able to reconstruct (P1, Q1). This idea is
made more rigorous in the Section 4.4, where instead of recovering the points, we prove their
correctness instead. There, too, the points could actually be omitted from the public key since
their correct recovery is guaranteed. We cannot remove the points entirely from the protocol
in theory, though, because they are required for the simulator in the proof of zero-knowledge.
Because the proof of zero-knowledge assumes indistinguishability from a prover who behaves
honestly, the points used by the simulator are required to be correct.

52

Remark 4.6. If there was an efficient solution to the computational version of the DMSIDH
problem—that is, the problem of finding the correct image of T under the secret φ′—then we
could obviously simulate perfectly in the proof of zero-knowledge. Moreover, if there did exist an
efficient distinguisher for the DMSIDH problem, then integrating it into the verification step of
the protocol in Figure 4.4 would be enough to prove the strong relation that we will define in
Section 4.4.

It would be surprising if there was a gap between DMSIDH and its computational analogue,
leading to an efficient, but not zero-knowledge, protocol for both the weak and the strong relation.
Our intuition tells us that such a gap should not exist, but we have been unable to prove it.

Why this protocol does not prove the correctness of the points (P1, Q1)

We briefly explain why the protocol in this section does not convince a verifier that (P1, Q1) =
(φ(P0), φ(Q0)). The first observation is that Figure 4.4 does not actually use P1 or Q1 anywhere,
so of course, nothing is proved. But one could tweak the protocol in the chall = 0 case to use the
isogenies ψ̂ : E2 → E0 and ψ̂′ : E3 → E1 to test the points. For example, computing the duals of
these isogenies one could compute integers (a, b) such that ker(ψ) = 〈[a]P0 + [b]Q0〉 and then
test whether ker(ψ′) = 〈[a]P1 + [b]Q1〉.

The problem for the verifier is that this is not enough to deduce that (P1, Q1) = (φ(P0), φ(Q0)).
For example, a dishonest prover who wants to perform an attack might set (P1, Q1) = (φ(P0),
φ(Q0) + T) where T is a point of order `2. If the prover always uses integers b that are multiples
of `2 then this cheating will not be detected by the verifier. Hence, the protocol needs to be
changed so that the verifier can tell that the kernels of the isogenies ψ̂ are sufficiently independent
across the executions of the protocol. This is the fundamental problem that we solve in the next
section.

4.4 Correctness of the points in an SIDH public key

We have shown in Section 4.3 that successful completion of the new sigma protocol indeed proves
knowledge of a degree-`e11 isogeny from E0 to E1 (as per the relation RweakSIDH in Theorem 4.4).
However, an SIDH public key (E1, P1, Q1) also consists of the two torsion points, and these points
are the cause of issues such as the adaptive attack [GPST16], as discussed in Section 2.1. In this
section, we show that the choice of points P1, Q1 by a malicious prover is severely restricted if
they must keep them consistent with “random enough” values of a, b (i.e., random choices of
ψ)—preventing adaptive attacks entirely. This gives the following stronger SIDH relation:

RSIDH =

{
((E1, P1, Q1), φ)

∣∣∣∣ φ : E0 → E1, deg(φ) = `
e1
1 ,

P1 = φ(P0), Q1 = φ(Q0)

}
. (4.8)

Figures 4.5 and 4.6 show the modified protocol proving knowledge of a witness in this strong
relation.

Let us reconsider the protocol in Figure 4.4 for a moment. We have that ker(ψ̂′) = φ′(ker(ψ̂))
by the 2-special soundness of Theorem 4.4. Applying the algorithm in Figure 1.1 to (E2,
P2, Q2, E3, P3, Q3, E0, E1, ψ̂, ψ̂

′) gives us a pair (R0, R1 = χ(R0)) for χ : E0 → E1, where
ker(χ) = ψ̂(ker(φ′)). Note that φ in the algorithm and Lemma 1.8 corresponds to φ′ here because
we have flipped the SIDH square “upside down.” Because the degrees of φ′ and ψ̂ are coprime,
we can translate this to ψ(ker(χ)) = ker(φ′). Note that R0 and R1 will be scalar multiples

53

(by the same scalar) of the Kψ and Kψ
′ used by the prover in the commitment round of the

protocol.

Consequently, two (honest) answers to chall = 0 reveal two pairs of points R1,0, R1,1 =
χ(R0,0), χ(R0,1). If these are independent, they fix the action of χ on the whole `e22 -torsion (as a
basis for the `e22 -torsion subgroups on both curves), and then if this action is the same as the
action of φ, we must have that χ = φ. The easiest way to enforce two such honest answers is to
“double” the protocol. Thus, in each round of our new sigma protocol, we shall commit to two
SIDH squares rather than just one, and require that the kernel generators of the ψ’s in these
two squares are independent of each other. We add this independence as an extra check during
verification. We also require an assurance that both squares use consistent isogenies φ′. For this
purpose we use a random `

e1
1 -torsion basis (U, V) on E0 and compute the image of this basis

on both curves E2,i—if both φ′0 and φ′1 are the images of φ under the vertical isogenies ψi, then
both should be representable in terms of (ψi(U), ψi(V)) using the same coefficients. These extra
checks achieve a 2-special sound protocol for the stronger SIDH relation above. We stress that
the points U, V are not made public in the commitment. In the following protocol, RandomBasis1
is a function taking a curve and outputting a random pair of points U, V which generate the
`
e1
1 -torsion subgroup on the given curve. The function RandomBasis1 is called many times on
the same curve E0 during t rounds of the protocol, and it is important that the outputs are
independent and not known to the verifier in the chall = 1 case.

Theorem 4.7. For a fixed security parameter κ and SIDH public key (E,P,Q), a proof consisting
of κ iterations of the sigma protocol in Figure 4.5 is a distributionally zero-knowledge (with respect
to the usual SIDH key generation algorithm) Proof of Knowledge for RSIDH with knowledge error
2−κ, assuming the DMSIDH and Double-DSSP problems are hard.

Proof. Again we prove correctness, soundness, and zero-knowledge individually.

Correctness: As mentioned above, the point R0,i will always be an invertible scalar multiple
of the point Kψ used by the prover in the commitment round (in the i-th SIDH square) of
the protocol, because both Kψ and R0,i are generators of the kernel of ψi in the i-th SIDH
square. This implies the pair (a′i, b

′
i) is an invertible scalar multiple of (ai, bi). Hence, because

the honest prover will use commitments such that a0b1 − a1b0 is invertible, then a′i, b
′
i necessarily

exist such that a′0b
′
1 − a′1b

′
0 is invertible in line 22 of verification. Also note that because

Kφ
′
,i = [e]U ′i + [f]V ′i = [e]ψi(U) + [f]ψi(V) for both i ∈ {0, 1}, and U, V have order coprime to

the degree of ψi, the checks involving U ′i , V
′
i , e, and f will also succeed. The correctness of the

rest of the protocol can also be verified in a straightforward way.

Zero-knowledge: Let V ∗ be a cheating verifier, and ((E1, P1, Q1), φ) ← Gen a randomly
sampled SIDH key pair. Sim will generate a valid transcript for t iterations of the protocol as
follows: at each step, Sim will make a guess as to what the next challenge bit chall will be, and
proceeds appropriately:

• If chall = 0, Sim will behave as in the proof of Theorem 4.4 to generate the first SIDH
square arbitrarily. The simulator will then generate a second SIDH square in almost the
same way, but ensuring that the second ψ chosen uses kernel coefficients independent of
those used in the first square (just like the honest prover would do in the commitment round
of Figure 4.5). Sim will also randomly generate a basis (U, V) of the `e11 -torsion on E0 and
compute the images U ′i , V

′
i = ψi(U), ψi(V) exactly as in Figure 4.5. The commitment and

response will be formed exactly as in the honest protocol.

54

Round 1 (commitment)
1: Run commitment from Figure 4.4, giving commitment com0 = (E2,0, E3,0, P3,0, Q3,0). Let
a0, b0 be the coefficients used in Line 2 and ψ0 be the isogeny from Line 4 (of Figure 4.4) of
this execution.

2: Run commitment from Figure 4.4 again, subject to one extra condition:
If a1, b1 are the coefficients used in Line 2 (of Figure 4.4) of this execution, then require
a0b1 − a1b0 invertible modulo `e22 . Otherwise, repeat Line 1 (of Figure 4.4).

Let com1 = (E2,1, E3,1, P3,1, Q3,1) be the commitment returned by this execution, and ψ1 be
the isogeny from Line 4.

3: U, V ← RandomBasis1(E0)
4: for i ∈ {0, 1} do
5: U ′i := ψi(U)
6: V ′i := ψi(V)

7: Output com := (com0, U
′
0, V

′
0 , com1, U

′
1, V

′
1)

Round 2 (challenge)
- same as in Figure 4.4, outputting chall -

Round 3 (response)
1: if chall = 1 then
2: Write Kφ = [e]U + [f]V for e, f ∈ Z/`e11 Z
3: Output resp := (e, f)
4: else
5: for i ∈ {0, 1} do
6: K

ψ̂
← DualKernel(ψ)

7: Write K
ψ̂

= [ci]P2 + [di]Q2 for ci, di ∈ Z/`e22 Z
8: respi := (ci, di)

9: Output resp := (resp0, resp1)

Figure 4.5: Modification of the Sigma protocol in Figure 4.4 to prove the stronger relation
RSIDH. Lines in grey are unchanged from Figure 4.4 to highlight the differences. The verification
algorithm is given in Figure 4.6.

55

Verification
1: (com0, U

′
0, V

′
0 , com1, U

′
1, V

′
1)← com

2: if chall = 1 then
3: (e, f)← resp
4: for i ∈ {0, 1} do
5: Recover Kφ

′
,i := [e]U ′i + [f]V ′i

6: Verify (comi, chall,Kφ
′
,i) as in Figure 4.4 verification

7: If verification fails, output reject
8: else
9: for i ∈ {0, 1} do

10: (E2, E3, P3, Q3)← comi

11: (c, d)← respi
12: P2, Q2 ← CanonicalBasis2(E2)
13: K

ψ̂
:= [c]P2 + [d]Q2

14: K
ψ̂
′ := [c]P3 + [d]Q3

15: Check K
ψ̂
, K

ψ̂
′ have order `e22 , otherwise output reject

16: ψ̂i, E
′
0 ← IsogenyFromKernel(K

ψ̂
)

17: ψ̂i
′
, E′1 ← IsogenyFromKernel(K

ψ̂
′)

18: Check E0 = E′0 and E1 = E′1, otherwise output reject
19: Choose (c′, d′) such that c′d− d′c is invertible modulo `e22

20: R0,i := ψ̂i([c
′]P2 + [d′]Q2)

21: R1,i := ψ̂i
′
([c′]P3 + [d′]Q3)

22: Check there exist a′i, b
′
i ∈ Z/`e22 Z such that, simultaneously,

i. R0,i = [a′i]P0 + [b′i]Q0,
ii. R1,i = [a′i]P1 + [b′i]Q1,

otherwise output reject
23: Check ψ̂0(U ′0) = ψ̂1(U ′1) and ψ̂0(V ′0) = ψ̂1(V ′1), otherwise output reject
24: Check that a′0b

′
1 − a

′
1b
′
0 is invertible modulo `e22 , otherwise output reject

25: Output accept if all the above conditions hold

Figure 4.6: Modification of the verification algorithm in Figure 4.4 for the proof of the stronger
relation RSIDH. Lines in grey are unchanged from Figure 4.4 to highlight the differences.

56

• When chall = 1, the behaviour of Sim is similar to the chall = 1 simulation in the proof
of Theorem 4.4, but repeated twice. First, Sim will choose two random curves E2,i, for
i ∈ {0, 1}. Sim will then choose a random point Kφ

′
,0 ∈ E2,0 of order `e11 , and a random basis

〈U ′0, V
′

0〉 = E2,i[`
e1
1], and writeKφ

′
,0 = [e]U ′0+[f]V ′0 for integers e, f . Next, Sim will randomly

generate a basis (U ′1, V
′

1) of the `e11 -torsion subgroup on E2,1 such that e`e11 (U ′0, V
′

0) =

e`e11
(U ′1, V

′
1), and let Kφ

′
,1 = [e]U ′1 + [f]V ′1 . Let φ

′
0, φ
′
1 be isogenies with respective kernels

Kφ
′
,0,Kφ

′
,1, and let E3,i be the codomain of φ′i. Finally, the simulator generates canonical

bases P2,i, Q2,i ← CanonicalBasis2(E2,i), computes P3,i, Q3,i := φ′i(P2,i), φ
′
i(Q2,i), and sets

com :=
(
(E2,i, E3,i, P3,i, Q3,i, U

′
i , V

′
i)i∈{0,1}

)
and resp := (e, f).

After providing com to V ∗, if the challenge bit that V ∗ outputs is not the same as Sim’s guess,
Sim simply discards that iteration and runs again. Sim stops whenever V ∗ rejects or after t
successful rounds. Suppose the probability of V ∗ not choosing the same bit as Sim’s guess is
noticeably different from 1/2. Then V ∗ can be used as a distinguisher for (a harder variant of)
the Double-DSSP problem. This is analogous to the reasoning in the proof of Theorem 4.4,
and follows directly from the proof of indistinguishability of chall = 1 transcripts below. So the
probability Sim guesses correctly each round is exponentially close to 1/2 if the Double-DSSP
problem is hard. Thus, Sim will run in polynomial-time.

Correctness of the simulator: We now show that the simulator will successfully generate valid
transcripts with the additional R0, R1 check in the protocol. Suppose the verifier arbitrarily
chooses c′, d′ such that c′d− d′c is invertible modulo `e22 , where c, d were used in the response of
either square i ∈ {0, 1}. We have that

R2 =
(
c′ d′

)(P2

Q2

)
=
(
c′ d′

)
A

(
S

T

)
, (4.9)

where the matrix A is the same change-of-basis matrix from Equation 4.5 of the proof of
Theorem 4.4. So,

R0 = ψ̂(R2) =
(
c′ d′

)
A

ψ̂(S)

ψ̂(T)

 =
(
c′ d′

)
A

OE0

ψ̂(T)

 (4.10)

because S is in the kernel of ψ̂. Similarly,

R3 =
(
c′ d′

)(P3

Q3

)
=
(
c′ d′

)
A

 φ′(S)

φ′(T + [r]S)

 (4.11)

from the simulator in the proof of Theorem 4.4. In the case of an honest prover (or a DMSIDH
instance from D0 where T ′ = φ′(T)), r here would be zero. Then,

R1 = ψ̂′(R3) =
(
c′ d′

)
A

 ψ̂′(φ′(S))

ψ̂′(φ′(T + [r]S))

=
(
c′ d′

)
A

 OE0

ψ̂′(φ′(T))

 (4.12)

because again, φ′(S) is in the kernel of ψ̂′. Hence, we must have that R1 = φ(R0) regardless of
which of the two distributions the DMSIDH instance was chosen from (and equivalently, which

57

of the two Double-DMSIDH distributions). This implies that the coefficients a′i, b
′
i in each SIDH

square of the protocol exist and can be used to satisfy the verification algorithm regardless of
whether a simulator or an honest prover generated the transcript.

Indistinguishability of the simulator: Suppose B0 is a PPT adversary which can distinguish
between the simulation and the real transcripts for chall = 0 with advantage Adv0. We show that
B0 can then also solve the Double-DMSIDH problem with the same advantage Adv0. Let (ψi, ψ

′
i,

Si, Ti, φ
′(Si), T

′
i)i∈{0,1} be an instance of the Double-DMSIDH problem. For both i ∈ {0, 1}, we

proceed as in the proof of Theorem 4.4 to create a transcript com = (E2,i, E3,i, P3,i, Q3,i)i∈{0,1},
chall = 0, resp = (ci, di)i∈{0,1}. We also compute the images U ′i , V

′
i = ψi(U), ψi(V) of the

random basis (U, V), exactly as above. We then provide this transcript to B0. This will produce
transcripts in a distribution identical to those produced by the simulator, because the steps
are the same. Therefore, the response from B0 will solve the Double-DMSIDH problem with
advantage Adv0.

Now, coming to the chall = 1 case, we similarly suppose B1 is a PPT adversary which can
distinguish between the simulation and the real transcripts for chall = 1 with advantage Adv1.
Let (E2,i, E3,i, φ

′
i, U
′
i , V

′
i)i∈{0,1} be an instance of the Double-DSSP problem. As in the proof of

Theorem 4.4, compute P2,i, Q2,i ← CanonicalBasis2(E2,i), and let P3,i, Q3,i := φ′i(P2,i), φ
′
i(Q2,i).

Finally, write ker(φ′i) = 〈[e]U ′i + [f]V ′i 〉 and set com := (E2,i, E3,i, P3,i, Q3,i, U
′
i , V

′
i)i∈{0,1}, chall :=

1, and resp := (e, f), and give (com, chall, resp) to B1. If B1 outputs 1, then we respond to the
Double-DSSP instance with 1 and win with advantage Adv1.

Recall that an adversary with non-negligible advantage against the Double-DMSIDH problem
can solve the DMSIDH problem, by Theorem 2.16. Hence, assuming the Double-DSSP and
DMSIDH problems are hard, transcripts generated by the simulator are indistinguishable from
honest transcripts generated as per the protocol in Figure 4.5.

2-special soundness: Suppose we obtain two accepting transcripts (com, 0, resp) and (com, 1,
resp′). The secret isogeny corresponding to the public key X = (E1, P1, Q1) can be recovered as
follows, hence Extract can extract a valid witness W for the statement X such that (X,W) ∈
RSIDH. From such a pair of commitments and responses, for each of the two SIDH squares
committed to in Figure 4.5, we can recover φi : E0 → E1 of degree `e11 by the proof of Theorem 4.4.
Now,

ker(φ0) = ψ̂0(ker(φ′0))

= 〈ψ̂0([e]U0 + [f]V0)〉

= 〈ψ̂1([e]U1 + [f]V1)〉

= ψ̂1(ker(φ′1))

= ker(φ1).

(4.13)

Therefore, we recover the same isogeny φ0 = φ1 = φ from both squares. For each of these two
squares i ∈ {0, 1}, the verifier will choose an R0,i and also learn its image R1,i under φ. This
follows from Lemma 1.8, with S := [c′]P2 + [d′]Q2.

Now, because the two R0,i = [a′i]P0 + [b′i]Q0 are independent, 〈R0,0, R0,1〉 forms another basis for
〈P0, Q0〉 = E0[`

e2
2], with change-of-basis matrix

B =

(
a′0 b′0

a′1 b′1

)
. (4.14)

58

We can then see (due to Line 22 of verification) that(
R0,0

R0,1

)
= B

(
P0

Q0

)
and

(
R1,0

R1,1

)
= B

(
P1

Q1

)
, (4.15)

and from Lemma 1.8, we also have(
φ(R0,0)

φ(R0,1)

)
=

(
R1,0

R1,1

)
= B

(
φ(P0)

φ(Q0)

)
. (4.16)

Therefore,

B

(
φ(P0)

φ(Q0)

)
= B

(
P1

Q1

)
, (4.17)

and since B is invertible, we must have that P1 = φ(P0) and Q1 = φ(Q0), as required.

Note that the protocol in Figure 4.5 essentially runs the previous protocol (in Figure 4.4)
twice, while introducing the extra points U, V , hence the transcripts produced by this Proof of
Knowledge for RSIDH will be more than twice the size.

Remark 4.8. Ghantous et al. [GPV21] discuss issues with extraction of a witness in two different
scenarios. Their first scenario (“single collision”) involves two distinct isogenies φ′ : E2 → E3

in the SIDH square of the identification scheme. Neither of our new schemes are impacted by
such collisions because the provision of points P3, Q3 ∈ E3 uniquely determines the isogeny φ′,
as shown by Martindale and Panny [MP19] (c.f. Theorem 2.11). Their second scenario (“double
collision”) involves two distinct (non-equivalent) isogenies φ, φ̃ : E0 → E1, both of degree `e11 and
a point R ∈ E0 such that

E1/〈φ(R)〉 ∼= E1/〈φ̃(R)〉.

Our second protocol, for the relation RSIDH, ensures that the witness extracted is a valid witness
for the public key used (including the torsion points). Hence, this second collision scenario does
not have any impact on the soundness of our protocol either. Again, the witness extracted will
be unique, by Martindale and Panny [MP19].

4.4.1 Ideas for potential improvements

Figure 4.5 has each round commit and respond to two SIDH squares (giving 2κ SIDH squares in
total). This is the basic requirement to ensure the prover can indeed perform the protocol using
independent isogenies ψ with overwhelming probability, and admits a simple proof of 2-special
soundness. However, it may be possible to do better than this. We shall discuss some ideas
here.

The points U, V of order `e11 are used in the protocol for RSIDH to ensure that the φ′ : E2 → E3

in each SIDH square are both derived from the same secret φ : E0 → E1. This problem arises
because there may be multiple isogenies between E0 and E1 of degree `e11 . An obvious example
occurs by pre-composing φ with a non-trivial automorphism on E0 with j-invariant 0, as we have
already seen in Section 3.2.

If we make an assumption that the number of distinct isogenies of degree `e11 between the two
curves is bounded (or at least, that it is infeasible to find more than a certain number of them),

59

then we may be able to argue that using a sufficient number of rounds with different, “random
enough” isogenies ψ is enough to prove existence and knowledge of φ. However, it is not clear
how an extractor would work in this case. Reasoning about collisions is highly related to the
work of Ghantous et al. [GPV21].

We now sketch an idea for a very different alternative protocol, though. As we have seen, the
main idea of the proof for RSIDH is to require the prover to successfully respond with independent
choices of ψ. Figure 4.5 does this with two independent pairs each round of the sigma protocol.
We can go further than just two, though. Recall from Chapter 1 that there are `2 + 1 different
order-`2 subgroups of the `2-torsion on an elliptic curve E. If we write ψ = [a]P0 + [b]Q0 and
consider the pair (a, b), this corresponds to the `2 + 1 distinct independent classes of pairs a, b
where two pairs (a0, b0) and (a1, b1) belong to the same class if λ(a1, b1) ≡ (a0, b0) (mod `2) for
some invertible λ. Away from curves with j-invariant 0, 1728, these `2 + 1 independent classes
correspond to the distinct “directions” you can leave E via isogenies of degree `2 (since the
supersingular isogeny graph is `2 + 1 regular). Obviously when j(E) = 0 or 1728, this idea of
distinct directions no longer holds, but the number of distinct conjugacy classes remains the
same. Whenever two such pairs are not conjugate, it holds that a0b1− a1b0 is invertible (by basic
properties of matrices), and thus that ψ0 and ψ1 are independent. Let cl0, . . . , cl`2 represent the
`2 + 1 conjugacy classes of (a, b) values, in a fixed ordering.

The proof will involve (`2 +1)dκ/`2e rounds of a sigma protocol similar to the one in Figure 4.4. In
the first dκ/`2e rounds, the prover will only choose isogenies ψ such that if ker(ψ) = 〈[a]P0+[b]Q0〉,
then (a, b) lie in cl0. Similarly, the second “block” of dκ/`2e sigma protocol rounds will all use
isogenies ψ such that (a, b) lie in cl1, and likewise for all subsequent blocks. The sigma protocol
otherwise proceeds as in Figure 4.4 for commitment, challenge, and response.

For verification, for any round i in which challi = 0, the verifier will recover ψ and ensure that
the a, b pair generating its kernel is in the appropriate conjugacy class clj , where j = bi`2/κc. If
this does not hold for any i, verification will fail. Then, verification of each round of the sigma
protocol individually proceeds as in Figure 4.6, ignoring the for-loops, the checks on Ui, Vi, and
the a′0b

′
1 − a

′
1b
′
0 check (as each round only uses a single SIDH square now).

We have been unable to formally argue the soundness of this scheme, but intuitively, we believe
it can offer κ-bit security after only κ rounds. This is because being able to consistently respond
in two different “blocks” implies the prover is behaving honestly, as we have already seen. Due
to requiring valid commitments and responses for pairs of challenges in different blocks, this
protocol would have 4-special or some more general type of soundness, rather than 2-special
soundness.

Precisely, if the prover can answer both challi = 0 and challi = 1 for some i in two (or more)
different blocks, then they must be able to respond correctly using at least two independent
isogenies ψ (or conjugacy classes of (a, b)). This immediately implies the correctness of the points
in the public key, by the argument in Section 4.4. Thus, a prover can only reliably cheat in at
most one of the `2 + 1 blocks—leaving `2 blocks where a dishonest prover would need to guess
the challenge in order to cheat (otherwise they would be caught with probability 1/2 in each of
the remaining `2dκ/`2e rounds). Because (`2 + 1)/`2 < 2 for all primes `2, and the points U ′i , V

′
i

are no longer needed in the commitments, this is an improvement in transcript size over the
double square protocol in Section 4.4. For example, this would give only 4κ/3 rounds in the case
`2 = 3.

The fact that the prover must use multiple different isogenies ψ in all conjugacy classes cli
also appears to limit their ability to exploit “collisions” (multiple isogenies of the same degree

60

between curves), as mentioned above. This protocol is therefore interesting and worthy of further
thought and analysis, but we leave that for future work. It is likely that other improvements to
the efficiency and size of the schemes we presented in this chapter are also possible with more
analysis.

4.5 SIDH signatures and non-interactive zk-PoKs

We conclude with some brief, standard remarks about the use of the new zero-knowledge proof
protocols we have proposed in this chapter.

It is standard to construct a non-interactive signature scheme from an interactive protocol using
the Fiat–Shamir transformation (secure in the (quantum) random oracle model [LZ19]). This
works by making the challenge chall for the t rounds of the ID scheme a random-oracle output,
from input the vector of commitments com = [comi]i∈{1,...,t} and a message M . That is, for
message M ,

V O1 (com) := O(com ‖M). (4.18)

Thus, the prover does not need to interact with a verifier and can compute a non-interactive
transcript. This is a standard design pattern for signature schemes, because the transcript now
also commits to the message M .

Because the sigma protocol described in the preceding sections not only proves knowledge of the
secret isogeny between two curves, but also correctness of the torsion points in the public key, we
obtain a signature scheme that is also a Proof of Knowledge of the secret key corresponding to a
given SIDH public key. As we have discussed, such a proof guarantees that the SIDH public key
is well-formed, since a valid secret key (isogeny) must exist. For example, simply signing a public
key (as the message M) with its own secret key using the new scheme gives a simple NIZK proof
of well-formedness for the public key, which provides protection against adaptive attacks.

The unforgeability of such a scheme is additionally based on the CSSI problem (Definition 2.2).
This is because 2-special soundness of the sigma protocols only guarantees that, given two
transcripts for the same commitment but with different challenges, we can recover the secret
isogeny φ : E0 → E1. It does not guarantee that recovering φ from E0 and E1 alone (or from an
SIDH public key) is difficult. Assuming the CSSI problem is hard, though, we achieve the desired
result. This part of the proofs given in the literature (for example, by Galbraith et al. [GPS20])
remains unchanged by the results we have presented in this chapter.

Such a NIZK Proof of Knowledge of an SIDH secret key can, among other applications, be used
to achieve a secure non-interactive key exchange scheme based on SIDH. Specifically, it would
enable both participants to verify non-interactively that the other participant’s key is honestly
formed and safe to use without fear of adaptive attack. We will see this done in Chapter 5.

61

62

Chapter 5

Post-Quantum Signal Key Agreement
with SIDH

Signal is a widely-used secure messaging protocol with implementations in its namesake app
(Signal Private Messenger), as well as others including WhatsApp, Facebook Messenger and
more. Due to its popularity, it is an interesting problem to design a post-quantum secure variant
of the protocol. However, some difficulty arises due to the lack of a formally-defined security
model or properties for the original protocol itself.

The Signal protocol consists of two general stages: the first is the initial key agreement, which is
then followed by the double ratchet protocol [MP16a]. The initial key agreement is currently
done via a protocol known as Extended Triple Diffie–Hellman (X3DH) [MP16b]. While Alwen,
Coretti, and Dodis [ACD19] construct a version of the double ratchet component using key
encapsulation mechanisms (KEMs), which can be made post-quantum secure, the X3DH stage
has proven to be more subtle and challenging to replace in an efficient way with post-quantum
solutions. Recent work by Brendel, Fischlin, Günther, Janson, and Stebila [BFG+20] examines
some of these challenges and suggests that SIDH cannot be used to make X3DH post-quantum
secure due to its vulnerability to adaptive attacks when static keys are used.

Specifically, Brendel et al. are referring to the adaptive attack described in Section 3.1, known as
the GPST attack. The Signal X3DH protocol is an authenticated key exchange (AKE) protocol,
requiring keys from both parties involved. Without a secure method of validating the other
party’s public key correctness, it would be insecure to perform a naive SIDH key exchange. For
example, the initiator of a key exchange could adaptively modify the ephemeral public keys
they use to learn the receiver’s long-term identity private key, as we have seen. None of the
previous methods of validation that we examined in Chapter 3 are well-suited to solving this issue
in the Signal X3DH context. We have already observed that the Weil pairing is not sufficient
to detect adaptive attacks, and using k-SIDH [AJL17] would be very inefficient. While the
Fujisaki–Okamoto (FO) transformation (Section 3.4) is able to prevent adaptive attacks in some
cases, it cannot handle scenarios where both parties use static identity keys. We cannot exclude
the possibility that the long-term keys are used as part of an attack: a dedicated or well-resourced
attacker could certainly register many new accounts whose identity keys are maliciously crafted,
and initiate exchanges with an unsuspecting user (perhaps by marauding as their friends or
colleagues) to learn their secret key. For these reasons, Brendel et al. disregard SIDH as a
contender and suggest using CSIDH [CLM+18] for an isogeny-based variant of Signal. However,
this primitive is much less efficient than SIDH—in part due to sub-exponential quantum attacks
that lead to much larger parameters.

One of the primary goals of this chapter is to show that SIDH can indeed be used to construct a

63

post-quantum X3DH replacement that satisfies the same security model as the original X3DH
protocol—despite the claim by Brendel et al. [BFG+20].

In order to design good post-quantum replacements for the Signal protocol, a clear security
model is required. This is an area of difficulty because the original Signal protocol did not define
a security model—it appears to be designed empirically. There have since been a few efforts
to formalise the security properties of the Signal protocol and X3DH. Notably, the work by
Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [CCD+20] was the first to propose a
security model and prove the security of Signal in it. The recent work of Hashimoto, Katsumata,
Kwiatkowski, and Prest [HKKP21] also proposes a generic security model for the Signal initial
key agreement (specifically, for what they call Signal-conforming AKEs), and gives a generic
construction from KEMs and signature schemes (as mentioned above, KEMs do not allow static–
static key exchange, so a signature scheme is required to provide explicit authentication of the
initiating party). From these analyses of the protocol, the following security properties have been
identified as important, which any post-quantum replacement should therefore also satisfy:

1. Correctness: If Alice and Bob complete an exchange together, they should derive the same
shared secret key.

2. Secrecy (also known as key-indistinguishability): Under the corruption of various combi-
nations of the participants’ secret keys, the shared secret for the session should not be
recoverable, or even distinguishable from a random key. The combinations are defined
by the specific security model used, for example, the CK model [CK01] or the model in
[CCD+20]. This is, of course, a basic requirement for any secure key exchange.

3. (Implicit) authentication: Both participants should know who they are talking to, and be
able to verify their partner’s identity.

4. Perfect forward secrecy (PFS): Past communication should remain secure and unreadable
by adversaries even if the participants’ long-term keys are compromised in the future.

5. Asynchronicity: The protocol can be made non-interactive by hosting participants’ public
keys on a third-party server, which is untrusted. In the security model, the only possible
malicious ability the server should have is that it could deny Alice the retrieval of Bob’s keys
(or, say, not give out his one-time keys). This property is also called receiver obliviousness
by Hashimoto et al. [HKKP21], because the uploaded public keys are not intended for any
particular user, but can be retrieved and used by anyone.

6. (Offline) deniability [VGIK20], also known as identity-hiding: The transcript of an exchange
session should not reveal the participants of the exchange (in a non-repudiable way).

We propose a new, efficient, post-quantum key exchange protocol using SIDH, modelled after
X3DH, which we call SI-X3DH. This new protocol solves the problem of adaptive attacks by
using a variant of the FO transformation to prove that the initiator’s ephemeral key is honestly
generated, and the SIDH Proof of Knowledge (from Chapter 4) to prove each party’s long-term
keys are well-formed—something which only needs to be verified once (and could be offloaded
to the PKI server depending on the trust model used). We prove security of the SI-X3DH
protocol formally in a new model defined in Section 5.3, in the random oracle model (ROM).
The security proof reduces to the hardness of the VCDH and HCDH problems we defined in
Section 2.3.2, which we showed further reduce to the hardness of the SI-CDH assumption in
the ROM. In that respect, the security of the SI-X3DH protocol reduces to standard isogeny
hardness assumptions.

Because SIDH is an efficient post-quantum key exchange proposal with very small key sizes

64

(although still larger than classical elliptic curve keys used in the original X3DH), and because
SI-X3DH requires only three or four SIDH exchanges (unlike k-SIDH), our protocol is also
efficient and practical. For example, SIDH is much faster than CSIDH—suggested in the proposal
by Brendel et al. [BFG+20]—because CSIDH uses larger-prime degree isogenies while SIDH
commonly uses only isogenies of degree (a power of) two and three. Our scheme also does not
rely on expensive machinery such as post-quantum ring signatures to achieve deniability (as
[HKKP21] does). However, a large drawback of our scheme is that it relies on proving knowledge
of the secret long-term identity keys, by using the protocol we proposed in Chapter 4 for example.
This only needs to be done once per contact (or could be offloaded to the keyserver, depending
on the trust model), but for users who add many new contacts regularly, this may create an
unacceptable overhead. The efficiency of our scheme is discussed more in Section 5.6.

Another disadvantage of our scheme, as discussed in Section 5.4, is that SI-X3DH suffers from
the possibility of more permanent key compromise impersonation (KCI) than the original Signal
X3DH protocol does. Technically, neither Signal X3DH nor SI-X3DH satisfy the KCI resistance
requirement of the eCK and CK+ security models, but there is a practical difference between the
schemes. Impersonation was possible with the compromise of the semi-static key in Signal X3DH,
whereas in SI-X3DH, impersonation is possible with compromise of the long-term identity key.
Thus, cycling the semi-static key is no longer sufficient to prevent long-term impersonation. This
is worth considering, but we believe the change is acceptable, as medium-term impersonation
seems just as damaging as long-term, and corruption of an identity key is a severe break in
security anyway.

We begin with an overview of recent work on post-quantum Signal X3DH replacement proposals,
in order to understand the improvements our scheme makes. We then recall the existing Signal
X3DH scheme in Section 5.2, and discuss an appropriate security model for it in Section 5.3—this
includes the definition of our new security model, the Signal-adapted-CK model. Subsequently,
we present the construction of our new SI-X3DH protocol in Section 5.4 using SIDH, and give a
proof of security for it in Section 5.5. Finally, Section 5.6 discusses the efficiency of our protocol
and the key differences between SI-X3DH and the original X3DH scheme.

5.1 Relation to other work

As we will soon see, the SI-X3DH protocol we propose has some structural differences from X3DH.
In particular, SI-X3DH performs an SIDH exchange between the two parties’ identity keys (IKA
and IKB), whereas previously, X3DH used IKA and SKB instead (involving Bob’s semi-static
key, rather than his identity key). Due to the asymmetry between the degrees of the isogenies
the two parties in SIDH use, our protocol requires parties to register two keys rather than
one: a receiving key and a sending key. Finally, in order to prevent adaptive attacks, SI-X3DH
uses a single FO-proof per exchange, and a once-off proof of well-formedness of each party’s
identity keys (see Section 5.4 for discussion of this). Despite these differences, the structure
of the protocol more closely resembles X3DH than any of the other post-quantum proposals
presented to date. For example, our protocol allows Bob the balance between one-time keys
and medium-term (semi-static) keys—where the former may be exhausted, leading to denial of
service, while the latter provide less security in some attack scenarios. These properties and
differences are discussed further in Section 5.3.

The original Signal X3DH scheme requires Bob to sign his semi-static keys, to prevent a malicious
keyserver from providing its own keys and compromising the perfect forward secrecy guarantee
of the scheme. This requirement must still hold in any post-quantum replacement too (although

65

some literature omits reference to it). In general, these X3DH replacements (including SI-X3DH)
are agnostic to the signature scheme used for this purpose, so any efficient post-quantum signature
scheme may be used alongside them—there is no restriction to use an isogeny-based signature
scheme with SI-X3DH. Regardless of the choice, a signature verification key must be registered
independently of the public keys used in the exchange itself.

Brendel et al. [BFG+20] proposed a new model for post-quantum X3DH replacements using a
primitive they call split-KEMs. Their construction is a theoretical work, as they leave it an open
question whether post-quantum primitives such as CSIDH satisfy the security definitions of their
split-KEM.

Recently, Hashimoto et al. [HKKP21] presented their Signal-Conforming AKE (SC-AKE) con-
struction, also using post-quantum KEMs to construct a generic Signal X3DH replacement. To
achieve deniability, their scheme requires a post-quantum ring signature scheme. Independently,
but following a very similar approach to Hashimoto et al., Brendel et al. [BFG+22] also proposed
a deniable AKE using post-quantum KEMs (which they call “Signal in a Post-Quantum Regime”
(SPQR)) and a designated verifier signature (DVS) scheme. As they mention, little work has
been done to date in constructing DVS schemes from post-quantum assumptions, so Brendel et al.
also propose using a two-party post-quantum ring signature scheme for the same purpose.

We briefly outline the differences between these works and that presented in this chapter using
Table 5.1, with the original Signal X3DH protocol included as a reference.

Scheme PQ-secure Deniable Requires sig Long-term data Exchanged data

Original Signal
X3DH protocol x X X K 3 keys

Split-KEM based
X3DH [BFG+20]

X ? X K,Kσ
3 keys,

4 ciphertexts

Signal-Conforming
AKE [HKKP21] X

*with PQ
ring signature X(×2) K,Kσ,K

∗
σ

1 key,
3 ciphertexts

SPQR [BFG+22] X
*with PQ ring

signature or DVS X(×2) K,Kσ,K
∗
σ

2 keys,
4 ciphertexts

SI-X3DH
(this chapter) X X X

K2,K3,Kσ

+ PoK
3 keys,

1 ciphertext

Table 5.1: Comparison of post-quantum Signal X3DH replacements. Long-term data refers to
the size of the initial registration cost for each user (the “offline” data). Exchanged data gives the
amount of ephemeral data sent in a single exchange (by both parties combined), that is, the size
of the “online” transcript. Note that all schemes require a signature scheme (Requires sig) to
obtain PFS—post-quantum schemes use a separate signature verification key Kσ while Signal
X3DH reused the same key K for both exchange and signature verification (with ECDH and
XEdDSA [Per16]).

The Split-KEM protocol [BFG+20] does not discuss the requirement for a signature scheme on
the semi-static keys, but the same attack on PFS applies to their scheme as it does to the original
Signal X3DH protocol if the semi-static keys are not signed—a malicious server or tampering
man-in-the-middle can insert their own semi-static key rather than Bob’s, and later compromise
Bob’s long-term identity key, thus allowing recovery of the shared secret. The Signal-Conforming
AKE protocol and SPQR protocol require this signature for PFS too, for the same reason. These
latter two schemes also use a second (ring/DVS) signature (discussed below)—two signatures per

66

exchange. Because ring signatures and DVS schemes are much more expensive than standard
signatures, for efficiency it would likely be preferable to use two separate schemes, hence the
two signing keys Kσ,K

∗
σ in Table 5.1. Our construction, as mentioned above, requires a single

signature on the semi-static key. Because there are no efficient post-quantum constructions
with a public key that can be used in both a signature scheme and a key exchange, requiring a
separate signature scheme (and verification key) seems unavoidable for any post-quantum X3DH
replacement.

For deniability, SC-AKE requires the initiator of the key exchange to sign the session ID.
This signature creates non-repudiable evidence of the initiator’s involvement in the exchange.
Hashimoto et al. [HKKP21] and Brendel et al. [BFG+22] suggest using a ring signature to
attain deniability. Specifically, a signature under a two-party ring involving just the sender and
receiver is sufficient to authenticate the other party in the exchange (since one party knows the
signatures that they themselves generated), but to a third party, the signature could have been
generated by either participant. Unfortunately, however, a post-quantum ring signature scheme
is a much more expensive construction than a standard signature. Deniability of the split-KEM
construction is not discussed by the 2020 work of Brendel et al. [BFG+20], and would appear
to depend on how the split-KEM is instantiated. We emphasise that the signature on Bob’s
semi-static keys mentioned above does not have any impact on deniability, as that signature exists
independently of any particular exchange session or counterparty. These deniability drawbacks
are only caused by signatures on session-specific information like the session ID, for the sake of
authentication.

Finally, it is important to note that the SC-AKE protocol does not use a semi-static key—only
long-term and ephemeral keys. This means that unlike in Signal X3DH, if a receiver is offline
for an extended period of time, it is possible for all the ephemeral keys they uploaded to the
server to be exhausted (either due to popularity or a malicious attempt to do so). This creates
an opportunity for denial of service which is not present when semi-static keys are used and the
ephemeral component is optional. Brendel et al. [BFG+22] address this by using a semi-static
and an ephemeral KEM encapsulation key if available, as in Signal’s X3DH.

In other recent work, Fouotsa and Petit [FP21] propose a protocol similar to SIDH which they
claim is not vulnerable to adaptive attacks. They call this protocol HealSIDH (“healed” SIDH).
This protocol operates by requiring participants to also reveal the action of their isogenies
on points of larger order than in SIDH. However, this protocol is interactive and would not
allow a key exchange to take place while one participant is offline—it requires the receiver to
send certain points back to the initiator for validation before the exchange can be completed.
Specifically, this fails the requirement of asynchronicity, so would not be suitable for use in a Signal
X3DH replacement. It is for the same reason that proposals for post-quantum TLS handshake
replacements, including by Schwabe, Stebila, and Wiggers [SSW20], also fail to be applicable
in the Signal context—these protocols involve messages sent by both parties sequentially over
multiple rounds, and often do not authenticate one of the two parties (the client).

5.2 The Signal X3DH protocol

The basic process of the X3DH protocol is given in Figure 5.1, where Alice is the initiator and
Bob is the responder. Let DHpp(A,B) = gab (mod N) denote the result of a Diffie–Hellman key
exchange between keys A = ga and B = gb (at least one of the private keys a, b is needed to
compute this, but the result is unambiguous), with public parameters pp including g and N .
Because we assume fixed public parameters, we will usually omit the subscript pp. We remind

67

Alice Server Bob

register IKB

upload SKB ,SigB(SKB), {EK
i
B}i

request prekey bundle

IKB , SKB , SigB(SKB), EKB

IKA,EKA, fingerprint(EKB)

dh1 = DH(IKA,SKB)
dh2 = DH(EKA, IKB)
dh3 = DH(EKA, SKB)

dh4 = DH(EKA,EKB)

K = KDF(dh1 ‖ dh2 ‖ dh3 ‖ dh4)

Figure 5.1: The X3DH protocol [MP16b]. dh4 is optional on the basis of one-time key availability.

the reader that dashed boxes are used in this thesis to denote optional parameters which may
be omitted.

Because the X3DH protocol is designed to work when the recipient (Bob) is offline, Alice obtains
his public key information from a server. IKA and IKB are the fixed long-term identity keys of
Alice and Bob respectively. Bob additionally uploads a semi-static public key SKB signed by
him to the server, which he rotates semi-regularly. He also uploads a number of one-time keys
EKB, but the use of these is optional, as the supply on the server may run out.

After Alice has received Bob’s identity, semi-static, and (optional) one-time keys from the server,
she performs a three- or four-part key exchange with her own identity key and ephemeral key.
The three or four intermediary shared values computed are specified in the figure (denoted by
dhi), and are combined using some sort of secure hash or key derivation function (KDF). We
shall assume they are simply concatenated and hashed with a cryptographic hash function. This
results in the master shared secret for the exchange, which is then used in subsequent protocols
such as Signal’s Double Ratchet protocol.

Finally, Alice sends to Bob identifiers of which of his semi-static and one-time public keys she
used (for example, short fingerprints), as well as her own identity and ephemeral keys. This
allows Bob to also compute the same shared master secret.

Verification of the long-term identity keys is out-of-scope for the protocol and may be done either
by trusting a third party (e.g. the server) as a PKI, or verifying the keys in-person or out-of-band
in some other way.

5.3 Security model

Authenticated key exchange (AKE) security is a complex field of properties and models. Of
primary interest is the notion of key indistinguishability, sometimes simply known as AKE security
due to its universality. The seminal work by Bellare and Rogaway [BR93] defined a security
model for authenticated key exchange (known as the BR model). Security in the BR model is
based on the indistinguishability of true session keys from random, even when the adversary is
given certain powers to control protocol flow, interactions, and to reveal long-term secret keys
and states. A number of other models have since been developed, based on this original BR

68

model, including the CK model [CK01] (named after its creators, Canetti and Krawczyk), the
CK+ model [Kra05], and the eCK model [LLM07]. These models all differ in the specific powers
the adversary is granted in the key-indistinguishability game (as well as having other differences
such as how partner sessions and session IDs are defined). The main difference between the
CK/CK+ models and the eCK model is that the latter uses ephemeral-key reveal queries while
the former two use session-state reveal queries. These models are incomparable, as shown by
Cremers [Cre09].

The eCK and CK+ models are generally viewed as the strongest and most desirable models, as
they capture attacks that are outside the scope of the CK model: weak perfect forward secrecy
(wPFS), key compromise impersonation (KCI), and maximal exposure (MEX). All of these
properties relate to certain combinations of long-term and ephemeral keys being compromised by
an adversary. Security in these models relies on allowing the adversary all non-trivial combinations
of exposure—that is, any combination of keys from both parties that does not form a vertex cover
on the graph of Diffie–Hellman exchanges in the protocol (the graph whose nodes are keys, and
edges represent that a DH key exchange between the two incident keys is used in the protocol).
A vertex cover would trivially allow the adversary to compute the shared secret, because in that
case, at least one secret is known to the adversary in every DH exchange (edge). However, if the
adversary does not have a vertex cover, at least one DH exchange (edge) cannot be computed,
because the adversary does not have either of the secret keys involved. In this case, the overall
session key of the protocol should remain hidden. We refer the reader to the work of Fujioka,
Suzuki, Xagawa, and Yoneyama [FSXY12] for a more detailed analysis of the difference between
these models.

Unfortunately, Signal X3DH does not meet the definition of security required by all of these
models. This was observed by Cohn-Gordon et al. [CCD+20]. Precisely, there do not exist edges
in the exchange graph for every possible pair of keys—for example, there is no DH exchange
between Alice’s identity key and Bob’s identity or ephemeral keys. Our benchmark for security
is that a replacement protocol should meet at least the same security definition as that of the
original protocol, so we must observe where exactly the original protocol breaks down in the eCK
model. This allows us to propose a slightly weaker model, though still stronger than the CK
model, that successfully represents the security goals of Signal X3DH. This gives a more formal
and well-defined security model than the one Cohn-Gordon et al. [CCD+20] used to prove security
of the original Signal X3DH protocol. We call our new security model the Signal-adapted-CK
model.

The recent work of Hashimoto et al. [HKKP21] provided a similar security model, for what they
call a Signal-conforming AKE protocol. Their security model differs from ours in the fact that it
does not take semi-static keys into account (their proposed construction does not use semi-static
keys). They also use the language of state-reveals rather than ephemeral-key-reveals. Their
model is stronger than the Signal-adapted-CK model—in fact, the original Signal X3DH protocol
would not satisfy their model (it requires security against the two events E4 and E8 in Table 5.3,
discussed further below). However, our goal is to propose a model that exactly captures the
security properties of the original Signal X3DH protocol, which was not the goal of their model.
In other words, we wish to analyse Signal, not some stronger protocol.

Before we begin, let us briefly recall the meanings of the security notions mentioned above:

• Perfect forward secrecy (PFS) implies that an adversary who corrupts one or both of the
participants’ long-term secret keys should not be able to reveal the session key of previous
sessions executed by those participants—the past remains secure. This is achieved by the
use of ephemeral keys whose corresponding secrets are erased on successful completion of

69

the exchange protocol. Weak PFS implies that this PFS is only achieved if adversaries
cannot interfere with the protocol during the exchange (e.g., man-in-the-middle attacks),
they can only attack it after the fact.

• Key compromise impersonation (KCI) resistance captures the scenario where an adversary
reveals or corrupts the long-term secret key of a participant A: the adversary should be
unable to impersonate other parties to A (but of course, can still impersonate A to other
parties). For example, if Carol has compromised Alice’s secret keys, she should be unable
to send messages to Alice that Alice believes came from an uncorrupted third party, Bob.

• The maximal exposure (MEX) property states that, when given any one (long-term or
ephemeral) secret key of each party in an exchange, the adversary should still be unable to
distinguish the real session key from random. This property essentially takes into account
all other combinations of keys that may be compromised in practice, hence the “maximal”
denomination.

Standard security models generally define keys to be either long-term or ephemeral. As a recipient
in the Signal protocol uses up to three keys, including a semi-static (medium-term) key, it is not
at first obvious how to integrate this semi-static key into such two-key models. We choose to
consider it as both long-term and ephemeral in different situations. This is discussed further in
Remark 5.3.

We define the formal key indistinguishability experiment for our Signal-adapted-CK model now.
We then provide a proof of security of our construction in this model in Section 5.5.

5.3.1 Key indistinguishability experiment

Let K denote the space of all possible session keys that could be derived in an exchange between
two parties. We model n parties P1, . . . , Pn through oracles Πj

i , denoting the j-th session run by
participant Pi. We limit the number of sessions per party by 1 ≤ j ≤ S. Each oracle has access
to the secret key of the corresponding party Pi’s fixed long-term identity key IKi, as well as the
secrets for each of the m semi-static keys SK1

i , . . . ,SK
m
i . Each oracle also has the following local

variables:

• Πj
i .rand: The fixed randomness of oracle i for its j-th session (where Πj

i is deterministic
based on this randomness).

• Πj
i .role ∈ {⊥, init, resp}: The role of participant i in their j-th exchange.

• Πj
i .sk id: The index ` of the semi-static key SK`i that participant i uses in their exchange j.

• Πj
i .peer id: The index k of the alleged peer Pk in the j-th exchange of oracle i.

• Πj
i .peer sk id: The index ` of the alleged peer’s semi-static key SK`peer id used in the exchange.

• Πj
i .sid: The session ID, explained further below.

• Πj
i .status ∈ {⊥, accept, reject}: Indicates whether the oracle has completed this session

of the key exchange protocol and computed a session key from the exchange.

• Πj
i .session key ∈ K: The computed session key.

These values are all initialised to ⊥ at the start of the security experiment, except rand, which is
initialised with random coins for each oracle. The oracle status is set to accept or reject on
the computation of session key.

70

The session ID is a feature of the security experiment, not the real protocol. We define the session
ID to be a tuple (Π, IKI , IKR,SKR,EKI , EKR) where I,R denote the initiator and responder
respectively, Π is a protocol identifier, and EKR is optional (so may be null). We say two sessions
with the same sid are matching. This is done to restrict the adversary from making queries
against any session matching the test session for the game—to avoid trivialising security. For
a session Πj

i we also define a partner session to be any session Π`
k for which Πj

i .peer id = k

and Π`
k.peer id = i, Πj

i .role 6= Π`
k.role, and Πj

i .sid = Π`
k.sid. We say any two such sessions are

partners. Note that if two sessions are partners, they are also, by definition, matching.

Setup The security game is played between challenger C and a probabilistic polynomial-time
(PPT) adversary A. C will generate identity keys for the n participants, IK1, . . . , IKn, and for
each participant i, generate m semi-static keys SK1

i , . . . ,SK
m
i . C will finally choose a uniformly

random secret bit b← {0, 1}, and provide A with access to the oracles Πj
i .

Game Adversary A can adaptively make the following queries in the game:

• Send(i, j, µ): Send an arbitrary message µ to oracle Πj
i . The oracle will behave according

to the key exchange protocol and update its status appropriately.

• RevealIK(i): Return the secret long-term key of participant i. After this, participant i is
corrupted.

• RevealSK(i, `): Return the `-th secret semi-static key of participant i. After this, SK`i is
said to be revealed.

• RevealEK(i, j): Return the ephemeral key (i.e., the random coins) of the j-th session of
participant i. After this, EKji and Πj

i .rand are said to be revealed.

• RevealSessionKey(i, j): Return Πj
i .session key. After this, session Πj

i is said to be
revealed.

Test At some point in the game, A will issue a special Test(i, j) query exactly once. C will
return Kb to the adversary, where K0 := Πj

i .session key and K1 ← K (a random key from the
keyspace). After this query is made, session Πj

i is said to be tested. A can continue to adaptively
make queries to the above game functions after the Test query has been issued. Finally, A
outputs a bit b∗ ∈ {0, 1} as their guess.

At this point, the tested session Πj
i must be fresh. Freshness is defined in Definition 5.1, and the

cases for freshness are also summarised in Table 5.2 for clarity. If the tested session is not fresh,
C will abort the game and output a uniformly random bit b′ ← {0, 1} on behalf of A.

Definition 5.1 (Freshness). A session Πj
i , with Πj

i .peer id = k, is fresh if none of the following
hold:

• Πj
i .status 6= accept.

• The session key of Πj
i , or any matching session, is revealed.

• If Πj
i .role = init:

– Both RevealIK(i) and RevealEK(i, j) are issued.

71

– Πj
i has a partner Π`

k for some `, RevealIK(k) is issued, and either
RevealSK(k,Πj

i .peer sk id) (?) or RevealEK(k, `) are issued.
See Remark 5.3.

• If Πj
i .role = resp:

– Πj
i has a partner Π`

k for some ` and both RevealIK(k) and
RevealEK(k, `) are issued.

– RevealIK(i) and either RevealSK(i,Πj
i .sk id) (?) or

RevealEK(i, j) are issued. See Remark 5.3.

• Πj
i has no partner session and RevealIK(Πj

i .peer id) is issued.

To define security in this model, we require correctness and soundness. Soundness ensures that,
if the adversary is restricted to making only reveal queries that keep the test session fresh, then
its advantage in distinguishing the session key from random is negligible.

Definition 5.2. Let A be a PPT adversary. We define the advantage of A in winning the
above key indistinguishability experiment kie with n parties, m semi-static keys per party, and S
sessions per party, as

Advkie
n,m,S(A) =

∣∣∣∣Pr [b = b∗]− 1

2

∣∣∣∣ .
An authenticated key exchange protocol Π is secure in the Signal-adapted-CK model if it is:

• Correct: Any two parties following the protocol honestly derive the same sid, session key,
and both arrive at an accept state.

• Sound: The advantage of any PPT adversary A is Advkie
n,m,S(A) ≤ negl.

We emphasise that Table 5.2 and our definition of freshness in Definition 5.1 are strictly weaker
than the standard eCK/CK+ cases and definitions—specifically, we have removed the adversary’s
ability to perform two specific cases of KCI attack. Both of these removed cases are given in
Table 5.3, and correspond to the extra restrictions on freshness marked with a (?) in Definition 5.1.
These are the cases that weaken the eCK/CK+ models to our Signal-adapted-CK model.

The reason for these exclusions from our model is that the original Signal X3DH protocol does not
satisfy these properties, and our goal is to precisely model the security of that original protocol.
Hence, these cases should be removed. The KCI attack on the original protocol is as follows: if
Bob’s semi-static key SKB is compromised, an adversary can impersonate anyone to Bob. This
is because Alice is only authenticated through dh1 (the exchange with SKB), so an adversary
can claim the use of any other public key IKE and calculate the correct Diffie–Hellman value
with SKB. As SKB is periodically replaced by Bob, the impersonation to Bob can last only as
long as he accepts exchanges with that particular SKB. However, we consider this a failure of
the KCI property because SKB is not ephemeral. This is discussed further in Remark 5.3.

Remark 5.3. In the original Signal X3DH protocol, the semi-static keys SKB are used to strike
a balance between perfect forward secrecy and key-exhaustion denial of service. To correctly
model the purpose of this key, we assume it is “ephemeral enough” to have been replaced some
time before a PFS attack (event E5 in Table 5.2) takes place—this is generally a longer-term
attack and the cycling of the semi-static key is designed to prevent this precise attack.

72

Event Matching session
exists IKI EKI IKR SKR EKR Attack

E1 No X x x X - KCI
E2 No x X x x* - MEX
E3 No x - x x* X MEX
E5 Yes X x X x x wPFS
E6 Yes x X x x* X MEX
E7 Yes X x x X X KCI

Table 5.2: Behaviour of the adversary in our model, corresponding to the various freshness
conditions in Definition 5.1. I and R denote whether the key belongs to the initiator or responder
respectively. “X” means the corresponding secret key is revealed or corrupted, “x” means it is
not revealed, and “-” means it does not exist or is provided by the adversary.
*Discussed further in Remark 5.3.

Event Matching session
exists IKI EKI IKR SKR EKR Attack

E4 No x - X X x KCI
E8 Yes x X X X x KCI

Table 5.3: The two cases of the eCK/CK+ model which are NOT satisfied by Signal’s X3DH,
and so are not included in our model. This lack of KCI is exactly where these protocols break
down.

Because the semi-static key is reused and not actually ephemeral, we do not assume it is simply
a long-term key in the other events of Table 5.2. In the KCI attacks, we allow it to be revealed
as both ephemeral and long-term, to properly capture various forms of key-leakage that could
lead to that attack and to strengthen the model (as mentioned above).

The MEX cases are more interesting, however. The original Signal X3DH protocol is not secure if
the semi-static key can be revealed in cases E2, E3, and E6. Hence, they are set to x in Table 5.2
due to our goal of accurately capturing the security of this original Signal protocol. In the spirit
of the MEX property, the protocol would ideally be secure even when these three cases allowed
SK to be revealed—there is no reason to treat the semi-static key as long-term in these cases. As
we will show later, our new protocol (SI-X3DH) is secure even if these three cases marked by
asterisks are changed to X.

5.3.2 Further security properties

We briefly discuss (full) perfect forward secrecy (PFS) as opposed to just weak PFS, which is
proved in the model above. Krawczyk [Kra05] shows that any two-message key exchange protocol
authenticated via public keys (without a secure shared state already established) cannot achieve
true perfect forward secrecy. Despite this, it is claimed in [MP16b] that X3DH can be considered
to have PFS, assuming that the identities of the users can be trusted via some means outside
the protocol. In this specific case, Bob’s signature on the semi-static key can be used to verify
that the semi-static key does indeed belong to Bob, preventing even an active attacker from
tampering with the keys Bob provides to defeat PFS (in particular, the server cannot maliciously

73

provide semi-static keys to Alice while pretending they came from Bob). The same holds for our
proposed scheme, but will not be discussed further in this thesis—the situation is identical to the
original Signal X3DH.

Another very important property of X3DH, which is not captured by the above security model
(or in general by the eCK or CK+ models), is that of deniability. Deniability has two flavours:
offline and online deniability. A protocol is offline-deniable if an adversary can gain no non-
repudiable evidence of message authorship from a transcript even if the long-term keys involved
are compromised. On the other hand, online-deniability means that even by interacting with
the target (or colluding with another user with whom the target interacts), the adversary cannot
gain any such evidence. A protocol satisfying both offline and online deniability is known as
strongly-deniable. Unfortunately, the Signal protocol fails to achieve online-deniability, as
shown by Unger and Goldberg [UG18]—although this notion is very difficult to obtain and arguably
less important than offline-deniability. The first formal proof that offline-deniability is indeed
achieved by Signal was given by Vatandas, Gennaro, Ithurburn, and Krawczyk [VGIK20].

The proof of offline-deniability for Signal carries over to our protocol in an essentially identical
manner, because of how similar the two protocols are. The proof reduces to the Knowledge
of DH (KDH) assumption and its variants (K2DH and EKDH) which informally state that it
should be infeasible for an adversary, given as input public keys for which the secret keys are
unknown, to output DH values and other public keys they do not know the secret key to, yet still
satisfy relationships of the form dhi = DH(K1,K2) (where K1,K2 are public keys). We will not
formally define the assumptions here, but refer the reader to [VGIK20]. We give a brief, informal
outline of this proof in Section 5.5.4.

5.4 Using SIDH for post-quantum X3DH

Suppose, first, that we naively drop SIDH in as a replacement for DH in Figure 5.1. In order to
prevent adaptive attacks from either party, it suffices to require proof that certain public keys are
honestly generated (for example, requiring proof that each member knows their corresponding
private key). In the case of EKA, this could easily be done through an FO-type transformation
[HHK17], as was done in SIKE [ACC+17] (discussed in Section 3.4).

However, upon further examination, we notice that Bob’s semi-static public key poses an issue.
As Bob may be offline at the time of exchange, and this key will be reused across multiple
iterations of the protocol, he cannot reveal the secret key to Alice. Even if EKA is proven to be
honestly generated, there would be a concrete attack allowed in the CK security model, despite
Galbraith’s [Gal18, A.3] claim that using an ephemeral key in the exchange introduces enough
randomness to prevent information about the long-term secret being leaked. Precisely, in CK-type
models, the adversary can use a reveal query on the private key of EKA to essentially remove
the protection it provides, and then perform an adaptive attack using a malicious semi-static
key. The best we can hope for then is that Bob also provides a non-interactive proof of honest
generation of SKB. Unfortunately, because the key SKB is regularly rotated, such a proof would
have to be regenerated and reverified every time, and these proofs are not (currently) efficient
enough to make this an attractive course of action.

Instead, we opt to modify the original X3DH protocol somewhat, so that SKB is not used in a
key exchange with IKA (temporarily removing dh1 from Figure 5.1, which we shall soon replace).
This means that even if Bob maliciously adapts SKB in order to learn Alice’s key, the only
key he could learn is the secret to EKA, which is ephemeral and revealed to him using the
FO transformation anyway. The other components, dh2, dh3, and dh4, all involve only Alice’s

74

provably honest ephemeral key, so neither party can learn anything in these exchanges. Therefore,
the only thing left to resolve is how to replace dh1 so that IKA is still used safely to implicitly
authenticate Alice. We cannot use an exchange SIDH(IKA,EKB) for a symmetrical reason to
above, even if we ignored the fact that EKB is only optional. Thus, to include the key IKA in the
exchange to authenticate Alice, we are left only with one option: dh1 = SIDH(IKA, IKB).

In this case, we must prove that the long-term keys IKA, IKB are honestly generated, to ensure
an adaptive attack cannot be performed by registering multiple fake users with adaptive public
identity keys. Because these keys are fixed and registered (or even authenticated) in advance, we
do not encounter the efficiency degradation of using a more expensive proof to prove knowledge
of the corresponding secret keys—a proof would have to be verified only once per new contact.
In fact, depending on the trust model we use for the server, the verification of these proofs could
be offloaded to the server at registration time and would have no impact on users. If we do
not wish to place such trust in the server, it is simple to verify these proofs out-of-band at the
time of first communication with any new contact. In fact, the Signal X3DH protocol already
assumes that participants will authenticate each other’s identity public key via some unspecified
external channel, depending on the desired trust model [MP16b]. The Signal Private Messenger
app presents “safety numbers” and QR codes that can be used to verify contacts in-person. Thus,
the introduction of these proofs does not change the trust model of Signal. Proving SIDH public
keys are honestly generated can be done using a non-interactive zero-knowledge (NIZK) Proof
of Knowledge (PoK) of the corresponding secret key. In Chapter 4 we present such a proof
protocol and show that using it as part of a non-interactive key exchange is much more efficient
than resorting to other protocols such as k-SIDH (in terms of isogeny computations) or generic
NIZK proof systems. Note that the definition of distributional zero-knowledge that we used
in Chapter 4 is sufficient for this application, because the keys in the protocol are generated
randomly in accordance with the usual SIDH key generation algorithm Gen. Thus, this SIDH
PoK is perfectly suitable for our situation.

Exactly as in Signal’s X3DH, we still also require a signature by Bob on SKB, to ensure that
the server does not fake SKB and break perfect forward secrecy by later corrupting IKB (one
of the adversarial abilities in our security model). This poses another obstruction to efficiency,
because using an SIDH signature here would require sending and verifying such a signature
regularly—every time Bob replaces his semi-static key. SIDH signatures are inefficient, and we do
not recommend their use for practical systems where signatures need to be regularly created and
verified. Instead, we suggest using another post-quantum signature scheme, such as a hash-based
signature. The ability to use any post-quantum signature scheme for this purpose was already
discussed in Section 5.1. Whichever verification key Bob uses for these signatures should be
registered (and verified) in advance, just as the identity keys are.

If IKA and IKB are proven to be honestly generated then we can use dh1 = SIDH(IKA, IKB) in
the exchange without risk of adaptive attack. Historically, H(EAB, EXY) type protocols are
referred to as the “unified model”. A naive scheme of this form was shown to be vulnerable to
interleaving and known-key attacks by Blake-Wilson, Johnson, and Menezes [BJM97, Protocol
3]. Essentially, the adversary starts two sessions with the same user: Πs

i,j and Πu
i,j (participant i

thinking they are communicating with j for the s- and u-th time, respectively). In each of these
two sessions, the ephemeral key Eu (or Es) provided by i is forwarded to the other session, and
given back to i (as if coming from j). Then the shared key of both sessions will be H(Eij , Eus).
Revealing either of the two session keys will reveal the session key of the other. For comparison,
a protocol of the form H(EAY , EBX) has that H(Ejs, Eiu) 6= H(Eju, Eis), so the attack would
not be possible. Including the ephemeral keys Es and Eu individually in the hash too would
prevent this attack, because the ordering would differ between the two sessions. Jeong, Katz,

75

and Lee [JKL04] prove this to be secure (T S2) in the ROM provided knowledge of the secret
keys is proven. In the Signal case, because we additionally have dh2 = SIDH(EKA, IKB) in the
exchange, this symmetry between sender and receiver is already broken. Therefore, we claim
that our modified dh1 computation is secure.

One other disadvantage of this modification is that it impacts the KCI resistance of the scheme.
That is, if the adversary corrupted IKB , they could pretend to be Alice by choosing any ephemeral
key they like, and calculating dh1 using the known secret key, so Bob would accept it as coming
from Alice herself. However, as above, this was the case with the original Signal X3DH anyway (if
SKB was corrupted). It is important to note that due to this modification, the impersonation can
persist for longer than in X3DH, since corruption is no longer repaired by the regular replacement
of SKB. While worthy of consideration, we believe the change is acceptable. As mentioned
in the introduction of this chapter, medium-term impersonation seems just as damaging as
long-term, and corruption of an identity key is a severe break in security anyway. Because neither
scheme can claim to have KCI resistance, we still assert that SI-X3DH satisfies the same security
requirements as Signal X3DH, despite this practical difference.

Unlike traditional Diffie–Hellman, where both participants’ keys are of the form gx, in SIDH we
have an asymmetric setup—one user uses a degree-`e11 isogeny, while the other uses a degree-`e22

isogeny. In order to make this work in X3DH where users can be both initiators and receivers, we
require that each user has two long-term identity keys: one of each degree. For concreteness, we
shall assume that `1 = 2 and `2 = 3, therefore the isogenies used by Alice and Bob have degree
2e1 and degree 3e2 respectively. The 3e2-isogeny key is used when initiating a key exchange
(that is, by Alice), and the 2e1-isogeny key is used by the receiver (Bob), so that there is no
ambiguity or incompatibility. This arrangement is chosen so that the sender has a slightly higher
computational burden than the receiver.

All the semi-static keys Bob uploads to the third-party keyserver should thus be generated
from 2e1-isogenies, as should his one-time (ephemeral) keys be. Whenever Alice initiates a key
exchange, her ephemeral key should be a 3e2-isogeny key. Then all three (or four) SIDH exchanges
used in the protocol will work as usual.

Thus, we arrive at our modified protocol, which we call SI-X3DH (Supersingular Isogeny X3DH).
The protocol is given in Figure 5.2. In each instance of the protocol, Alice requests Bob’s public
key package from the server, as before. This key package includes Bob’s signature verification key
VKB , which is used to validate the signature on his semi-static key SKB . Alice will then generate
a random seed s and use a preimage resistant hash function H1 to compute an ephemeral secret
key ske ← H1(s). Let the corresponding public key be denoted EKA. She will then compute the
pre-shared key PSK, and an FO-proof π as follows:

dh1 = SIDH(IKA, IKB),

dh2 = SIDH(EKA, IKB),

dh3 = SIDH(EKA,SKB),

dh4 = SIDH(EKA,EKB) ,

PSK = KDF(dh1 ‖ dh2 ‖ dh3 ‖ dh4),

π = s⊕H2(dh1)⊕H2(dh2)⊕H2(dh3) ⊕H2(dh4) .

(5.1)

H1 and H2 are the same PRGs used in Section 2.3.2. The reason π takes this form will be clear
from the security proof we present in Section 5.5.

76

Alice Server Bob
register IKI

A, IK
R
A ,VKA register IKI

B , IK
R
B ,VKB

upload SKB , SigB(SKB), {EK
i
B}i

request prekey bundle

IK
R
B , SKB , SigB(SKB), EKB

Alice verifies SigB(SKB) using VKB .
s← {0, 1}κ; derive EKA from s.
Compute PSK and π as in Eq 5.1.

IKA,EKA, π, fingerprint(EKB)

Bob verifies π and recovers s.
Compute PSK as in Eq 5.1.

Both Alice and Bob compute shared secret K = KDF(s ‖ EKA ‖ PSK).

Figure 5.2: The SI-X3DH protocol.

Alice then sends (EKA, π) to Bob, along with an identifier for herself, and information about
which of his ephemeral keys she used in the exchange (if any). Bob can check π is valid and honest
by re-computing PSK′ using IKA and EKA, computing s′ from π by XORing with the values
H2(dhj) (for j = 1, 2, 3, and if used, 4), then recomputing sk′e ← H1(s′), and checking that the
corresponding public key is equal to EKA. He computes PSK as in Equation 5.1. If the verification
of π succeeded, both Alice and Bob can compute the shared secret K = KDF(s ‖ EKA ‖ PSK).
However, if verification failed, Bob should instead choose a random r ← {0, 1}κ and compute
K = KDF(r ‖ EKA ‖ PSK). This way, his key will not match the one Alice derives with
overwhelming probability, and the exchange fails, with Alice learning no information about the
cause of failure (or about Bob’s secret keys).

5.5 Proof of security

Theorem 5.4. The SI-X3DH protocol presented in Section 5.4 is secure (correct and sound) in
the Signal-adapted-CK model of Definition 5.2, in the random oracle model (where H1, H2 and
KDF are modelled as random oracles), assuming the SI-CDH problem is hard.

Proof sketch: We briefly outline the proof methodology. The proof is similar to the one given by
Cohn-Gordon et al. [CCD+20], refitted to our Signal-adapted-CK model and using the Verifiable
and Honest SI-CDH assumptions instead of the standard DDH oracle in the gap assumption.
In particular, the Verifiable SI-CDH problem provides an oracle reminiscent of the usual DDH
oracle but with fixed keys, rather than taking keys as input. This important weakening of the
oracle allows us to achieve security based on SI-CDH without requiring a gap assumption here
(and a similar approach could be taken with the classical X3DH protocol too if desired). Cases
E2, E3, and E6 require IKA and IKB not to be revealed, so we use that as the basis for security
in those cases. Similarly, cases E1 and E7 will use the fact that EKA and IKB are not revealed,
and case E5 relies on EKA and SKB not being revealed. Informally, the proof begins by forming
a game in which the challenger guesses in advance which session will be tested, as well as the
peer ID of that session. The challenger then simulates the game and inserts a VCDH or HCDH
challenge into that predicted session, showing that an adversary winning the game can be used

77

to successfully solve the respective hard problem. Once the cases are combined, this gives a proof
of soundness of the SI-X3DH protocol.

Proof. It is clear that two parties following the protocol honestly will become partners. It is
also clear that they will both successfully derive the same session key and enter an accept state,
as an SIDH protocol has no failure probability if both parties are faithful. Thus, the SI-X3DH
protocol is correct.

To prove soundness, we will use a series of game hops. The proof will require splitting into cases
following Table 5.2. Games 0 to 3 are common to all cases; we then break into a case-by-case
proof.

Game 0. This game is equal to the security experiment in Section 5.3.1. The advantage of the
adversary in this game is Adv0. All queries to the random oracles (H1, H2,KDF) are simulated
in an on-the-fly manner, and a table of (query, result) pairs is stored.

Game 1. We ensure all honestly generated SIDH keys are unique, or in other words, that there
are no key collisions. If a key is generated that collides with any previously generated key, the
challenger aborts and the adversary loses the game. With at most n parties, S sessions per
party, m medium-term (semi-static) keys per party, we have at most n + nm + nS receiving
(2e1-isogeny) keys, and at most n+ nS sending (3e2-isogeny) keys. A collision among these keys
is an instance of the generalised birthday problem, which we now briefly recall.

If M is the size of the domain from which N ≤M objects are uniformly drawn, the generalised
birthday problem shows that the probability of a collision between two objects is

p(N ;M) = 1−
N−1∏
k=1

(
1− k

M

)
. (5.2)

So,
Adv0 ≤ p(n+ nm+ nS; |K2|) + p(n+ nS; |K3|) + Adv1.

To be explicit, the size of an `e-isogeny keyspace is

(`+ 1) · `e−1, (5.3)

so |K2| = 3 · 2e1−1 and |K3| = 4 · 3e2−1. Note that the difference between Adv0 and Adv1 is
therefore negligible, since the numerator in the collision probability is polynomially-sized while
the denominator is exponential.

Game 2. We guess in advance which session Πi
u the adversary will call the Test query against,

and abort if this guess is incorrect. Note that we abort with high probability—there is only a
1/nS chance of success—but the advantages still only differ by a polynomial factor.

Adv1 = nSAdv2.

78

Game 3. In this game, we guess in advance the index of the peer of the test session Πi
u—we

guess a v ∈ {1, . . . , n} and abort if Πi
u.peer id 6= v. The probability of guessing v correctly is

1/n, so
Adv2 ≤ nAdv3.

We now split into cases based on Table 5.2. The cases will be grouped by the approach we take
to reduce each case to the VCDH and HCDH hard problems. Specifically, in each scenario, we
consider which of the SIDH exchanges is not compromised by reveal queries (that is, which of
the edges in the exchange graph is not covered by the revealed vertices), and embed the hard
problem into that pair of keys. Firstly, we address the MEX events, where neither IKA nor IKB
are revealed—cases E2, E3, and E6. We then treat the KCI events, cases E1 and E7, where EKA
and IKB remain unrevealed. Finally, we come to the wPFS event, E5, in which the adversary
does not reveal either EKA or SKB.

We shall have, overall, that

Adv3 = Adv2,3,6
3 + Adv1,7

3 + Adv5
3.

5.5.1 Cases E2, E3, E6 (MEX)

As mentioned above, the three cases E2, E3, and E6 all rely on IKA and IKB not being revealed—
the adversary should thus be unable to compute SIDH(IKA, IKB). This is the basis for the
following part of the security proof.

Game 4. In this game, we abort if the adversary queries dh1 = SIDH(IKA, IKB) as the first
component of a call to the KDF oracle. We call this event abort4.

Whenever abort4 occurs, we show that we can construct an algorithm B that can solve the
Verifiable SI-CDH problem (VCDH) in Definition 2.17. As per that problem, B receives a triple
(EA, EB,O). B will simulate Game 3, except that it replaces IKu with EA and IKv with EB. It
is guaranteed by freshness that B will never have to output the corresponding (unknown) secret
keys. However, these two keys may be used in other sessions, so B must be able to behave in a
consistent manner even when these keys are involved. Specifically, there are only two cases in
which B is unable to compute the session key:

1. A non-tested session between the same users u, v where u is the initiator and v is the
responder.

2. A non-tested session between any user other than u, and v, where v is the responder.

In the first of these two cases, the simulator does not know SIDH(EA, EB), which is needed for
two reasons: B needs it to compute the session key, but it is also the solution to the VCDH
challenge. In the second case, the simulator does not know SIDH(EKE , EB) for potentially
malicious ephemeral key EKE , whose secret key is unknown to B. In all other situations, B
will know at least one of the secret keys involved in each SIDH exchange because they were all
generated by the challenger.

We begin with the first case. If a session key or ephemeral key reveal query is made on such a
session, B returns a random key. B also maintains a list of these random keys it generated, and
correspondingly the public keys which should have been used to compute each one. Then, to
ensure that other KDF queries made are consistent with these replaced keys, we do the following
on receipt of a query KDF(dh1 ‖ dh2 ‖ dh3): B will query O(dh1), and if 1 is returned, this
is exactly the case where abort4 occurs—then B can return dh1 as the answer to the VCDH

79

challenge. Otherwise, B samples a new random key to return as the KDF response, and updates
its list accordingly.

In the second case, we involve the FO-proof πE also sent as part of the key exchange—a
proof of honest generation for EKE . In such a session, B will check through the output table
of queries A has made to oracle H2 (which can only have polynomially-many entries). Let
IKw be the identity key of the initiator. For each pair of entries (h, h′), we check whether
H1(πE ⊕ h ⊕ h

′ ⊕ H2(SIDH(IKw, EB))) is the secret key of EKE . The simulator can always
compute SIDH(IKw, EB) when w 6= u because it knows the private key for IKw. In order for πE
to be valid, it must have the form

πE = sE ⊕H2(SIDH(IKw, EB))⊕H2(dh2)⊕H2(dh3)

so the only way for the adversary to have honestly generated πE is for it to have queried H2

on inputs dh2, dh3. Therefore, searching through all pairs (h, h′) of queries will always result in
recovery of sE if πE is valid, and if no such pair exists, the receiver would reject the FO-proof and
fail the exchange. If such a pair is found, we can use the computed secret key to also compute
SIDH(EKE , EB). B can now use this j-invariant in a query to KDF to compute a consistent
session key.

Thus, Adv(abort4) = Advvcdh(B) and

Adv2,3,6
3 ≤ Advvcdh(B) + Adv4.

Game 5. In this game, we replace the session key of the test session with a uniformly random
key. Because Game 4 aborts whenever a KDF oracle query is made involving dh1, we know in this
game that the adversary never queried KDF to get the true session key. Hence, the advantage of
winning this game is

Adv4 = Adv5 = 0.

Therefore, we have
Adv2,3,6

3 ≤ Advvcdh(B).

5.5.2 Cases E1, E7

These two cases rely on EKA and IKB not being revealed. Then dh2 = SIDH(EKA, IKB) should
be unknown to the adversary. The proof is very similar to the first cases above, but now relies
on the Honest SI-CDH assumption from Definition 2.19. The main difference is that now, we
must guess which of the signed semi-static keys will be used in the test session.

Game 4′. In this game, the challenger guesses the index j ∈ {1, . . . ,m}, such that signed
semi-static key SKjv is used in the test session, and aborts if this guess is wrong. Consequently,

Adv1,7
3 ≤ mAdv

4
′ .

Game 5′ and 6′. In Game 5′, we abort if the adversary queries the KDF oracle with second
component dh2, equal to the test session’s dh2 component (derived from EKu and IKv). Once
again, B will simulate Game 4′. After receiving an HCDH instance triple (EA, π, EB), B will
replace the ephemeral key of the test session with EA, and IKv with EB . B will then also replace
the test session FO-proof with πT := π⊕H2(SIDH(EA, SK

j
v))⊕H2(SIDH(IKu, EB)). Recall from

80

the definition of the HCDH problem, that π already includes the component H2(SIDH(EA, EB)),
as required, so πT has the correct form.

There are two cases in which B will not be able to compute valid session keys for non-tested
sessions. The first is for a session where any user initiates with EKE 6= EKu, and v is the
responder. This is because SIDH(EKE , EB) is unknown when the secret key of EKE is unknown.
The second case is a special case of the first, when EKu is reused in an exchange with v as the
responder. As above, at least one secret key is known in all other situations, so these are the
only two SIDH exchanges unable to be computed by B.

In the first case, B will look up all pairs (h, h′) in the polynomial-length output table of queries
A has made to H2. Suppose IKw is the identity key of the initiator, and πE is the FO-proof sent
along with the ephemeral key EKE . B will check whether H1(πE ⊕ h⊕ h

′ ⊕H2(SIDH(IKw, EB)))
is the secret key of EKE . As above, SIDH(IKw, EB) is known to B since the secret key of IKw is.
Also as above, the only way for the adversary to have generated a valid proof πE is if they had
made queries H2(dh2) and H2(dh3)—otherwise, even if the adversary guessed the outputs of H2

correctly (with negligible probability), they would not be able to verify that the πE they created
was actually correct without making the required queries to H2 anyway. Hence, the only case
the proof πE is accepted is when a valid pair (h, h′) exists in the query list of H2, and if such a
pair is found, we can use the secret key to compute the needed j-invariant SIDH(EKE , EB). B
can now use this j-invariant in a query to KDF to compute a consistent session key. If no pair is
found, the receiver would reject the FO-proof and fail the exchange.

In the second case, we cannot compute the output of KDF because dh2 = SIDH(EA, EB) is
unknown. So B will return a random key and keep a table for consistency as in the previous
cases. Whenever the adversary makes a query to the KDF oracle, we check if H1(π ⊕H2(dh2))
corresponds to the secret key of EA, and if it does, B has learned dh2 as the SI-CDH value of EA
and EB , this is also the case in which the game aborts. Note that the π used here is the one from
the HCDH challenge, not from the exchange (πE) or the test session (πT). There is a negligible
probability 1/2κ that the adversary guessed the correct output of H2 without making a query of
the form H2(dh2) (leading to an abort without recovering the answer to the HCDH challenge).

Game 6′ is identical to Game 5 in the previous section. We therefore have

Adv1,7
3 ≤ m(Advhcdh(B) + 1/2κ).

5.5.3 Case E5 (wPFS)

This case relies on EKA and SKB not being revealed (wPFS assumes that, in the future, these
secrets are unrecoverable). Alternatively, this proof could be reduced to EKA and EKB which are
both purely ephemeral. However, because EKB is optional in the Signal protocol (to avoid key
exhaustion DoS), we reduce to the former scenario. In this case, we must again guess which of
the signed semi-static keys will be used in the test session.

Game 4′′. In this game, the challenger guesses the index j ∈ {1, . . . ,m}, such that signed
semi-static key SKjv is used in the test session. The game aborts if this guess is wrong. Hence,

Adv5
3 ≤ nmAdv4

′′ .

81

Game 5′′ and 6′′. These proceed exactly as in Games 5′ and 6′ of cases E1 and E7 above,
but with the HCDH challenge keys inserted into EKu and SKjv. Furthermore, exactly as in
the previous subsections, B knows the secret keys needed to compute the SIDH values of all
exchanges except in two cases: an exchange with v as the responder using semi-static key SKjv
(because EKE is unknown and potentially maliciously chosen), and the specific subcase where
EKE = EKu. This is essentially identical to cases E1 and E7. We conclude that

Adv5
3 ≤ m(Advhcdh(B) + 1/2κ).

Finally, bringing all the game hops and cases together, we have

Advkie
n,m,S ≤ p(n+ nm+ nS; |K2|)

+ p(n+ nS; |K3|)

+ n2S[Advvcdh + 2mAdvhcdh +m/2κ−1],

(5.4)

where n is the number of participants, m is the number of semi-static keys per participant, and
S is the maximum number of sessions run per party.

Because the VCDH and HCDH problems are hard if the SI-CDH problem is (shown in Sec-
tion 2.3.2), we have that SI-X3DH is secure if the SI-CDH problem is hard, as required.

5.5.4 Deniability

As mentioned in Section 5.3.2, the proof of offline-deniability of SI-X3DH is almost identical to
that of the original Signal X3DH protocol (given in [VGIK20]), due to the similarity between the
schemes. We give a brief informal outline of the proof below.

Proof outline: Intuitively, for Bob to prove Alice’s involvement, he would have to provide
a Diffie–Hellman value DH(A, ·) which he could not possibly have generated himself—it must
therefore have been generated by Alice. Because no DH values are exchanged between Alice
and Bob in X3DH or SI-X3DH, and because the KDH, K2DH and/or EKDH assumptions
hold, this is impossible. On top of this, because neither protocol uses a signature on session-
specific information (unlike [HKKP21]), there is no loss of deniability there either. Proof of
offline-deniability proceeds as an argument about simulatability, which we shall now sketch.

In the case of deniability for the initiator, given Alice’s public key IKA, the simulator Sim will
generate x ← K3 and compute EKA. Sim will then send this to Bob, who outputs keys IKB,
SKB,EKB. The simulator can compute dh2 = SIDH(EKA, IKB), dh3 = SIDH(EKA,SKB), and
dh4 = SIDH(EKA,EKB) because x is known, but cannot compute SIDH(IKA, IKB). Under the
KDH-type assumptions, there must be an extractor B̂ for Bob’s key IKB—let us call it B̂. If B̂
outputs Ẑ then the shared key is KDF(Ẑ ‖ dh2 ‖ dh3 ‖ dh4)—the real shared key. On the other
hand, if B̂ outputs ⊥, then Sim chooses a session key at random. In either case, Sim also computes
the FO-proof π using the session key it computed. In the second case, no PPT algorithm can
compute SIDH(IKA, IKB) without knowing IKB , so the random key is indistinguishable from the
real key.

We come now to the case of deniability for the responder, given Bob’s public key IKB , and also a
signed semi-static key SKB, SigB(SKB). The simulator will send these two public keys to Alice,
who outputs a key EKA. Under the KDH-type assumptions, there exists an extractor Â for Alice
which will either output the required SIDH values needed to compute the real key or will fail to

82

output, in which case a random key will be indistinguishable from the real one as above. Thus,
either way, assuming the KDH, K2DH and EKDH assumptions hold in the SIDH setting (which
we claim they do), our SI-X3DH protocol is offline-deniable.

5.6 Efficiency

SIDH is a practically efficient post-quantum key exchange proposal. SIKE, derived from SIDH,
is an alternate candidate in round 3 of NIST’s post-quantum standardization competition.
Duits [Dui19] examined the practical efficiency of using SIDH in the Signal protocol (though note
that the implementation is not SI-X3DH, but the naive implementation, vulnerable to adaptive
attacks), and found it entirely practical.

The SI-X3DH protocol uses three or four SIDH exchanges as part of the process to derive the
shared key—a reflection of how Signal X3DH also uses three or four DH exchanges. In a single
SI-X3DH exchange, the only other information sent (on top of the SIDH public keys) is the
FO-proof π. This is simply κ bits, which does not have a significant impact on the efficiency of
the protocol. Thus, using SIDH for a post-quantum X3DH replacement is efficient at exchange
time.

One of the main drawbacks of the SI-X3DH protocol is that it requires registering two keys rather
than one on the server—a receiving key and a sending key. This is due to the inherent asymmetry
of the SIDH protocol. However, SIDH has among the shortest key sizes of any post-quantum
key exchange scheme, so this is not an issue. Note, too, that to initiate a conversation with a
peer, only one key is required to be retrieved (the peer’s sending key is not needed if they are
the responder).

The second major drawback is that these keys also require an SIDH Proof of Knowledge or proof
of honest generation, such as the one presented in Chapter 4. Depending on the trust model,
this can be offloaded to the server at registration time or verified out-of-band, and only needs
to be verified once. The best case is that a user verifies the proof for a contact once and then
continues creating sessions with that same contact over a long period of time. However, if users
regularly add new contacts, this could create a large overhead by requiring verification of such a
proof for each. In the worse case, if a proof is required on nearly every new key exchange session,
the overhead would be very large, and our scheme would no longer be efficient.

As discussed earlier, it appears that any post-quantum Signal X3DH replacement requires a
post-quantum signature scheme to achieve perfect forward secrecy, and our scheme is no different.
However, we emphasise that the use of a single signature is much more efficient than the generic
schemes by Hashimoto et al. [HKKP21] and Brendel et al. [BFG+22], which both require two
signatures per exchange—one of which must be a more expensive ring or DVS signature to attain
deniability.

We now consider the exchange-time efficiency of our protocol compared to the others proposed
in the literature. By exchange-time, we mean the protocol occurring after the identity keys of
the peer have been retrieved and verified (thus not taking into account the SIDH PoK on the
identity keys). We consider the exchange-time efficiency because we assume a scenario in which
we are beginning a new exchange with an already-verified peer, or a peer whose keys were verified
in-person some time in advance.

As mentioned previously, our protocol is more efficient in terms of computation at exchange-time
than Brendel et al.’s Split-KEM based X3DH [BFG+20] protocol using CSIDH (assuming CSIDH
does even satisfy the security properties needed for their split-KEM scheme, which they leave

83

as an open problem). Based on NIST security level 1, we compare the fast, constant-time
CTIDH [BBC+21] implementation of CSIDH-512 with the SIKEp434 parameter set. According
to Banegas et al. [BBC+21], the cost of computing the CSIDH action is approximately 125
million Skylake clock cycles, while Cervantes et al. [COR21] state that SIKEp434 key generation
and agreement takes around 5 million Skylake clock cycles—roughly 25 times faster. The split-
KEM protocol proposed by Brendel et al. would require two CSIDH actions for each of the
four encapsulations and decapsulations. SI-X3DH, on the other hand, requires only four SIDH
exchanges, so in total would be around 50 times faster.

While the Signal-conforming AKE scheme proposed by Hashimoto et al. [HKKP21] and the
SPQR protocol by Brendel et al. [BFG+22] can be instantiated using efficient KEMs such as
SIKE or other NIST post-quantum KEM candidates, the need for a post-quantum secure ring
signature or DVS scheme is a large drawback to the efficiency of these protocols. Instantiating
with the ring signature schemes of Beullens, Katsumata, and Pintore [BKP20], and choosing the
lattice-based instantiation (Falafl) to optimise for speed (rather than signature and key size),
would require around 78 million clock cycles for signing. Therefore, the signing time alone is
already four times slower than the full SI-X3DH key exchange, and such a signature would be
around 30 KB in size. The smaller isogeny-based instantiation (Calamari), whose signatures
are around 3.6 KB, would take on the order of 1011 clock cycles—many orders of magnitude
slower.

Thus, concretely, when performing an exchange with a user whose identity key has been verified
via an SIDH Proof of Knowledge in advance or out-of-band, SI-X3DH is the fastest exchange-time
post-quantum alternative to Signal’s X3DH protocol currently in the literature.

Finally, to summarise the key differences with the original Signal X3DH protocol in a short
form:

• Users must register two long-term public keys rather than one—a receiving and a sending
key.

• Key compromise impersonation attacks (KCI) can no longer be rectified by replacing
the semi-static key. Bob needs to switch to a new long-term key if his long-term key is
compromised.

• Long-term key registration requires a proof of honest generation (such as the SIDH Proof of
Knowledge in Chapter 4), to avoid adaptive attacks by registering many fake users with
malicious long-term keys.

• The signatures on Bob’s semi-static keys can use any post-quantum signature scheme,
and Bob should additionally register his signature verification public key so these can be
validated.

• When initiating a new key exchange, Alice must also send a small FO-proof (κ bits in size)
along with her ephemeral public key, and Bob must check this proof on its receipt.

84

Chapter 6

Hyperelliptic Curves and Ideal Class
Groups

In Chapter 7, we will discuss the use of class groups and hyperelliptic curves in constructing
“groups of unknown order” for zero-knowledge proofs and other applications. This chapter
will serve as background, providing some mathematical detail we will rely upon in the next
chapter.

Recall from Chapter 1 that an elliptic curve is a non-singular projective algebraic curve of genus
one. We can certainly generalise this definition to higher genus, and a special case of these higher-
genus curves are the hyperelliptic curves—a particular class of smooth, projective algebraic
curves of genus greater than one. Note that as curves, these still have dimension one—otherwise
we would be talking about algebraic surfaces, or more generally, algebraic varieties. As we will
see, curves of higher genus no longer have a group structure on their set of points like elliptic
curves do. That is because, unlike elliptic curves, higher genus curves are no longer isomorphic
to their corresponding Jacobian varieties and thus do not inherit an abelian group structure
through this isomorphism in the same way that elliptic curves do. However, we can obtain a
group structure on these curves in a different form, also inherited from their Jacobians. This will
be explored in Section 6.4.

First, though, we will venture into the realm of ideal class groups of imaginary quadratic fields,
and their correspondence with class groups of binary quadratic forms. While ideal class groups
were suggested for use in cryptography by Buchmann and Williams in 1988 [BW88], they did
not find popularity until much later, when they became useful as groups of unknown order. We
will look further at this application in Chapter 7, but will examine some preliminary theory
now.

A major result of this chapter is a more compact representation of class group elements. Inspired
by a signature compression method of Bleichenbacher [Ble04], in Section 6.3 we compress elements
of class groups to 3/4 of the size of their usual representation.

6.1 Ideal class groups

Detailed references for this section include the books of Cohen [Coh10] and of Cox [Cox89].

An imaginary quadratic field is an algebraic extension

K = Q(
√
d) =

{
a+ b

√
d
∣∣∣ a, b ∈ Q

}
(6.1)

85

where d < 0 is a square-free integer and
√
d denotes the positive imaginary square root of d. In

particular,
√
d has degree two (i.e.,

√
d satisfies a quadratic form f(

√
d) = 0), so K has dimension

two as a vector space over Q. There is a one-to-one correspondence between square-free integers
d and quadratic fields K (note that 0 and 1 are not considered square-free). It is the condition
that d < 0 that makes the field imaginary—those fields where d is positive are called real.

Recall that the ring of integers of a field K, denoted by OK , is made up of the algebraic
integers of the field (the elements which are roots of monic polynomials with integer coefficients).
OK is a free Z-module, and when K is a quadratic number field, OK has dimension two.
Consequently, we can specify an integral basis of OQ(

√
d) consisting of two elements {1, ω},

where

ω =

{
1
2(1 +

√
d) when d ≡ 1 (mod 4),√

d otherwise.
(6.2)

Because OK is a subring of K and a full Z-lattice (a finitely generated Z-submodule of K such
that Q⊗ZOK = K) of rank 2 = [K : Q], then OK is an order in K. In fact, the ring of integers
is the unique maximal order of the field and is always a Dedekind domain. We also observe that
the discriminant ∆ of Q(

√
d), which is defined using the basis {1, ω}, is

∆ =

{
d when d ≡ 1 (mod 4),

4d otherwise.
(6.3)

A discriminant such as this is more precisely known as a fundamental discriminant. It is
therefore often more convenient to choose a square-free discriminant ∆ ≡ 1 (mod 4), rather than
checking that ∆/4 is square-free.

A fractional ideal of OK is an OK-submodule J of K, such that rJ ⊆ OK for some r ∈ OK .
Intuitively, r can be thought of as the common denominator of J , and clearing the denominators
gives an ideal in the usual sense (also known as an integral ideal, for distinction). Because OK is
a Dedekind domain, every non-zero fractional ideal J has an inverse

J−1 = {x ∈ K : xJ ⊆ OK}. (6.4)

These non-zero fractional ideals of OK form an abelian group, which we denote by JK . In this
group, (1) = OK itself is the identity. The product of two fractional ideals I, J is given by

IJ =
{∑

aibi

∣∣∣ ai ∈ I, bi ∈ J} . (6.5)

As usual, a principal fractional ideal is a fractional ideal generated by a single non-zero element.
Let PK < JK be the subgroup of principal fractional ideals. Then the ideal class group is the
quotient group

Cl(OK) = JK/PK . (6.6)

In other words, this is the abelian group of fractional ideal classes under the equivalence relation
a ∼ b if and only if (α)a = (β)b for some principal ideals (α), (β). We denote the class of an
ideal a as [a]. The identity of this group is, therefore, [(1)].

The order of Cl(OK) is the class number of K, denoted by h(∆). It is always finite when
constructed with a ring of integers as we have described. It follows from the Brauer–Siegel

86

theorem (see [HM00]) that for sufficiently large negative discriminants, on average, the class
number satisfies

log h(∆) ∼ log
√
|∆| as ∆→ −∞. (6.7)

We can therefore conservatively assume ≈ 1
2 log2 |∆|-bit group sizes for cryptographic-sized

negative discriminants.

6.2 Form class groups

In practice, it is more efficient to represent and compute in Cl(OK) using binary quadratic forms.
The ideal class group of an imaginary quadratic field of discriminant ∆ < 0 is isomorphic to
the form class group of the same discriminant ∆. We let (a, b, c) denote the binary quadratic
form

(a, b, c) = ax2 + bxy + cy2 ∈ Z[x, y] with b2 − 4ac = ∆ . (6.8)

When ∆ is fixed, we can represent this form using only two elements (a, b), because c is uniquely
determined by the equation c = (b2−∆)/4a. A form is primitive if the greatest common divisor
of a, b, and c is 1. This will always be the case for us, since forms whose discriminants ∆ are
fundamental are always primitive, and we always work with such ∆. A form is positive definite
if a > 0. As with ideal class groups, there is an equivalence relation on these quadratic forms.
Two forms f, g are equivalent, f ∼ g, if

f(x, y) = g(αx+ βy, γx+ δy) (6.9)

for some α, β, γ, and δ in Z with αδ−βγ = 1 (that is, if they are in the same orbit under SL2(Z)).
Equivalent forms always have the same discriminant so the class group of forms under this relation,
denoted by Cl(∆), is well-defined.

We represent each equivalence class in Cl(∆) using the unique reduced form in that class. A
form (a, b, c) is reduced if |b| ≤ a ≤ c, and if |b| = a or a = c, then b ≥ 0. Lagrange [Lag75], and
later Gauss [Gau66] and then Zagier [Zag81], gave algorithms to find the equivalent reduced
form for any binary quadratic form.

The group law in the form class group is known as composition of forms, and is due to Gauss (it
corresponds exactly to the multiplication of ideals in Cl(OK) that we defined in the previous
section). Composition of forms is well-defined but does not usually output a reduced form, so
reduction must be performed as an additional step. We shall not give these algorithms here, but
refer the reader to Cohen’s book [Coh10]. The identity in Cl(∆) is the equivalence class of the
principal form: (1, 0,−k) when ∆ = 4k, or (1, 1, k) when ∆ = 4k + 1.

6.3 Compressing class group elements

We now propose a new method of compressing ideal and form class group elements, based on
Bleichenbacher’s Rabin signature compression algorithm [Ble04]. In Chapter 7, we will encounter
class groups of large discriminant, so being able to compress their elements will be a welcome
relief in some situations. We first review the original signature compression algorithm, and
then in Section 6.3.2 we show how to apply it to elements of the form class group described
above.

The class group element compression algorithm presented in this section is a corrected version of
the algorithm in the published version of this work [DGS21].

87

6.3.1 Bleichenbacher’s Rabin signature compression algorithm

A Rabin signature on a message m under the public key N (an RSA modulus) is an integer σ
such that

σ2 ≡ m (mod N). (6.10)

Normally σ is the same size as N , but Bleichenbacher showed how to bring this down to
√
N .

The continued fraction algorithm (or the Euclidean algorithm) can be used to compute integers
s and t with 0 ≤ s <

√
N and 0 < |t| ≤

√
N such that σt ≡ s (mod N): see Algorithm 6.1 and

Lemma 6.1 below. The compressed signature is t. Given the message m and this compressed
signature t, let x = mt2 mod N . Then s2 ≡ σ2t2 ≡ x (mod N), but 0 ≤ s <

√
N , so s2 will

always be less than N . Therefore, we can recover s from m and t by taking the integer square
root of x, ignoring the modulus completely. It is then trivial to recover σ ≡ t−1s (mod N).
Note that if t is not invertible modulo N , then we have found a factor of N , and the signature
scheme is broken. Therefore σ is recoverable from t, which is only half the bit-length of σ, so
this compression provides a nice saving.

The following algorithm (Algorithm 6.1), presents the partial extended Euclidean algorithm
used to find s and t above (on input N, σ). This will be used for our new class group element
compression technique too, as we shall see.

Algorithm 6.1 PartialXGCD.
Input: Integers a > b > 0
Output: Integers s ∈ [0,

√
a) and t ∈ [−

√
a,
√
a] such that s ≡ bt (mod a)

1: (s, s′, t, t′, u, u′)← (b, a, 1, 0, 0, 1)
2: while s ≥

√
a do . Invariants: 0 ≤ s < s′, s = au+ bt, s′ = au′ + bt′

3: q ← s′ div s . Euclidean division without remainder
4: (s, s′, t, t′, u, u′)← (s′ − qs, s, t′ − qt, t, u′ − qu, u)

5: return (s, t)

Lemma 6.1. Given integers a > b > 0, Algorithm 6.1 returns (s, t), such that s ≡ bt (mod a),
0 ≤ s <

√
a, and 0 < |t| ≤

√
a.

Proof. Algorithm 6.1 is a truncated version of the extended Euclidean algorithm, stopping when
s <
√
a rather than s = 0. The invariants s′ > s ≥ 0, s = au+ bt, and s′ = au′ + bt′ are easily

verified. It directly follows from s = au+ bt that s ≡ bt (mod a). Another invariant,
∣∣s′t∣∣ ≤ a, is

proven in [Gal12, Lemma 2.3.3]. It is also proven there that
∣∣t′∣∣ ≤ |t|, and since t is initialised to

1, t 6= 0. Since s takes a sequence of strictly decreasing values, at some point 0 ≤ s <
√
a and

s′ ≥
√
a; this is where the loop terminates. It remains to show that at this point, we also have

|t| ≤
√
a: but this follows from the invariant

∣∣s′t∣∣ ≤ a and s′ ≥
√
a.

6.3.2 An improved class group element compression algorithm

Suppose we have a reduced form (a, b) in Cl(∆), for a fixed ∆ < 0. Since the form is reduced,
we have |b| ≤ a <

√
|∆|, so the pair (a, b) can be encoded in approximately log2 |∆| bits. This is

the traditional “compressed” representation of a class group element.

We can do better than this, though. Since b2 − 4ac = ∆, we have

b2 ≡ ∆ (mod a), (6.11)

88

a relation reminiscent of the Rabin signature verification equation. The situation is not exactly
the same—a is not an RSA modulus, and b is in (−a, a] rather than [0, a)—but it is not difficult
to adapt signature compression to class group element compression, encoding the coefficient b in
half the space.

First, we reduce to the case where b ≥ 0: we store the sign of b as ε = 1 if b < 0, and 0 otherwise,
and replace b with |b|. We will treat the special cases a = b and b = 0 later; in the meantime, we
may suppose that 0 < b < a. Using Algorithm 6.1, we compute integers s and t such that bt ≡ s
(mod a), 0 ≤ s <

√
a, and 0 < |t| ≤

√
a. Then

s2 ≡ b2t2 ≡ ∆t2 (mod a). (6.12)

Given a and t, we can compute x = ∆t2 mod a, and then x = s2 as an integer because 0 ≤ s <
√
a.

Thus, s can be recovered as the exact (positive) integer square root. Now bt ≡ s (mod a), and
the Bleichenbacher approach suggests compressing b to t and recovering b as t−1s (mod a). Since
a is not an RSA modulus, though, we may (and often do) have gcd(a, t) 6= 1, and in this case, t
cannot be inverted modulo a.

To fix this, we compress (a, b) to (a′, g, t′, b0, ε), where

g = gcd(a, t),

a′ = a/g,

t′ = t/g,

b0 = |b| mod f.

(6.13)

Here, f ≥ g is the smallest integer such that lcm(f, a′) ≥ a, and ε and t are defined as above. The
reason for this choice of f is that since b is an integer satisfying 0 < b < a, it is not necessary to
compute b by computing b (mod a). Instead, we can recover b (mod N) for any integer N ≥ a.
Here we use N = lcm(f, a′), where we ensure N ≥ a, and this f is deterministically computable
by the decompression algorithm. This avoids a failure to recover b uniquely, in the case that a′

and g share common factors, if we had simply used f = g.

To decompress, we compute
a = a′g,

t = t′g,

x = t2∆ mod a,

s =
√
x.

(6.14)

Let b′ ≡ s′(t′)−1 (mod a′), where s′ = s/g. We note that s is always divisible by g since
both a and t are, via the invariant s = au + bt from Algorithm 6.1. Then, b′ ≡ b (mod a′),
and we can compute b uniquely from b ≡ b0 (mod f) and b ≡ b′ (mod a′) using the Chinese
Remainder Theorem, since b < lcm(f, a′). Roughly, because two random numbers are coprime
with probability 6/π2 [CJ88], then we expect f to only be a small additive factor higher than
g, and therefore that log2 f ≈ log2 g. Concretely, we compressed more than 30 million random
class group elements of 3845-bit discriminants using an implementation in python, and found
that f − g had an average value of 0.1234, and a maximum value of 16, after all these attempts.
These numbers did not appear to grow with the size of ∆. Finally, if ε = 1 then we correct the
sign, replacing b with −b. We therefore arrive at the uncompressed form (a, b). If required, c can
also be computed as usual with (b2 −∆)/(4a).

89

For the special case a = b, we exceptionally let t = 0. This is not ambiguous, because t = 0
cannot occur in any other case. The compressed form is then (a′, g, t′, b0, ε) = (1, a, 0, 0, 0). For
b = 0, we compress to (a, 0, 0, 0, 0). Again, this is unambiguous—no other element of Cl(∆)
compresses to this value.

Algorithms 6.2 and 6.3 make the compression and decompression procedures completely explicit.
Note that

log2 a
′ + log2 g = log2 a ≈ log2

√
|∆| (6.15)

and

log2 t
′ + log2 b0 ≤ log2 t

′ + log2 f ≈ log2 t ≈
1

2
log2

√
|∆| . (6.16)

Algorithm 6.2, therefore, compresses the form (a, b, c) to a
3

4
log2|∆|-bit representation—three-

quarters of the size of the traditional (a, b). When a party receives a compressed group element,
it is necessary for them to execute Algorithm 6.3 before performing group operations on the
element. Thus, despite the decrease in size, there is some additional overhead when computing
with elements in this compressed form.

Algorithm 6.2 Element compression for Cl(∆).
Input: A reduced form (a, b, c) in Cl(∆), where c may be omitted
Output: A compressed form (a′, g, t′, b0, ε)

1: if b = 0 then
2: return (a, 0, 0, 0, 0)

3: if a = b then
4: return (1, a, 0, 0, 0)

5: ε :=

{
1 if b < 0
0 otherwise

6: b := |b|
7: (s, t)← PartialXGCD(a, b) . Now s ≡ bt (mod a), with 0 ≤ s <

√
a

8: g := gcd(a, t)
9: a′ := a/g

10: t′ := t/g
11: f := |g|
12: while lcm(f, a′) < a do
13: f ← f + 1

14: b0 := b mod f
15: return (a′, g, t′, b0, ε)

Example 6.2. Suppose we have a reduced form (4, 2, 19), where ∆ = −300. The partial extended
GCD (Algorithm 6.1) of a = 4 and b = 2 gives us s = 0 and t = −2, so that

0 ≡ −2b (mod 4).

The GCD of a = 4 and t = −2 is g = 2, so we obtain a′ = 2 and t′ = −1. Finally, to
compute b0, we use f = 3 = g + 1. This is the smallest integer f ≥ g such that lcm(f, a′) ≥ a,
because lcm(g, a′) = 2 < a. Then b0 = b mod 3 = 2. This gives a final compressed element
(a′ = 2, g = 2, t′ = −1, b0 = 2, ε = 0).

90

Algorithm 6.3 Element decompression for Cl(∆).
Input: A compressed form (a′, g, t′, b0, ε) and ∆
Output: A reduced form (a, b, c) in Cl(∆), where c may be omitted
1: if (g, t′, b0, ε) = (0, 0, 0, 0) then
2: return (a′, 0,−∆/4a′)

3: if t′ = 0 then
4: Return (g, g, (g2 −∆)/(4g))

5: a := g · a′

6: t := g · t′

7: x := t2∆ mod a
8: s :=

√
x . Integer square root

9: s′ := s/g . Exact integer division
10: b′ := s′ · (t′)−1 (mod a′)
11: f := |g|
12: while lcm(f, a′) < a do
13: f ← f + 1

14: b← ChineseRemainderTheorem((b′, a′), (b0, f)) . b ≡ b′ (mod a′) and b ≡ b0 (mod f)
15: if ε = 1 then
16: b := −b
17: return (a, b, (b2 −∆)/4a)

When decompressing, we compute

s2 = t2∆ mod a = (t′g)2∆ mod a = −300 · 4 mod 2 = 0,

and thus recover s = 0 successfully as the integer square root. We then compute b′ = s′(t′)−1 mod
a′ = 0, giving the congruence b ≡ 0 (mod 2). Solving the Chinese remainder theorem with b ≡ 0
(mod 2) and b ≡ 2 (mod 3) gives the solution b ≡ 2 (mod 6), and so we successfully deduce that
b = 2. Note that here, b0 is equal to b (as an integer), but this will not be true in general.

6.4 Hyperelliptic curves

Good references for more detailed theory of hyperelliptic curves are the books by Menezes, Wu,
and Zuccherato [MWZ96] and by Galbraith [Gal12].

Let k be a field of characteristic not 2, with algebraic closure k. A hyperelliptic curve C of genus
g is a curve of the form

y2 + h(x)y = f(x), (6.17)

where h, f ∈ k[x], h has degree at most g, and f is a monic, square-free polynomial of degree
2g + 1 or 2g + 2. As in the earlier chapters of this thesis, we will only concern ourselves with
fields k = Fq for a prime power q, which will again be assumed henceforth. For simplicity, we
shall further narrow our consideration of hyperelliptic curves to those where h(x) = 0 and where
deg(f) = 2g + 1 for the remainder of this thesis.

For an extension field K/k, we denote by C(K) the set of points

C(K) =
{
P
∣∣∣ P ∈ K2

}
(6.18)

91

satisfying C (the finite points over K), together with the projective point at infinity ∞ ∈ P 2(k).
Recall that every P = (x, y) on C has an opposite point P̃ = (x,−y), with ∞ = ∞̃. Unlike
points on elliptic curves (which correspond to genus g = 1), the points in C(K) do not form a
group. Instead, the group we use is the class group of degree-0 divisors on C, also known as
the Jacobian. This will be defined below. We require that the affine curve C be non-singular,
or in other words, that C has no singular points (u, v) ∈ F2

q that satisfy both C and its partial
derivatives.

The coordinate ring of a hyperelliptic curve C over K is the quotient ring

K[C] = K[x, y]
/

(y2 − f(x)) , (6.19)

where the modulus is the ideal generated by the equation of C. Elements of K[C] are called
polynomial functions on C. Every polynomial function G(x, y) can be written in the form
a(x)− b(x)y for some a, b ∈ k[x]. The ring k[C] is an integral domain.

The function field K(C) of C is the field of fractions of K[C]. We say that a function R ∈ k(C)
is defined at a point P 6=∞ in C(K) if and only if there exist polynomial functions G,H ∈ k[C]
such that R = G/H and H(P) 6= 0. If this holds, then R(P) = G(P)/H(P).

A divisor on C is a formal sum of points

D =
∑

mPP (6.20)

where mP = 0 for all but finitely many points P ∈ C over K. The degree of a divisor is
deg(D) =

∑
mP , and the support is the set of points {P | mP 6= 0}. The divisors form a group

Div(C), and the divisors of degree zero form a proper subgroup Div0(C) < Div(C). A principal
divisor is a divisor of the form (γ) =

∑
P∈C ordP (γ)P for some γ in the function field Fq(C).

Here, ordP (γ) is the order of vanishing (the order of the zero, or if negative, the pole) of γ at the
point P .

Denote by P(C) the set of principal divisors of C. It is a fact that principal divisors have degree
0, so P(C) < Div0(C). Then the divisor class group or Jacobian of C (over K) is the quotient
group

JacC ∼= Div0(C)
/
P(C) . (6.21)

This is also known as the degree-0 Picard group, denoted by Pic0. Technically, the Jacobian is an
abelian variety, not just a group—but the points of the Jacobian are in one-to-one correspondence
with elements of Pic0, so we treat them as the same. We observe that two divisors D1, D2 ∈ Div0

are equivalent if D1 −D2 ∈ P(C).

Computation in the group JacC is done with reduced divisors in Mumford representation. It is
possible to associate to any element in the group a unique equivalent divisor in Div0(C) called a
reduced divisor. A reduced divisor is one of the form D = P1 + · · ·+ Pr − r∞ (with the Pi
finite and not necessarily distinct), with r ≤ g and Pi 6= P̃j for all i 6= j. Reduced divisors have a
unique Mumford representation [Mum07] as a pair of polynomials 〈u(x), v(x)〉, where u is monic,
deg(v) < deg(u) ≤ g (the genus), and v2 ≡ f (mod u) [Can87]. Specifically, the roots of u(x)
are the x-coordinates of the points in the support of the divisor.

If we have a curve C of genus g over the finite field of cardinality q, the Fq-rational elements
of the Jacobian (that is, the divisor classes where u and v have coefficients in Fq) form a finite
group, which we shall denote JacC(Fq). The Hasse-Weil bound tells us that # JacC(Fq) ∼ q

g, or
more precisely,

(
√
q − 1)2g ≤ # JacC(Fq) ≤ (

√
q + 1)2g. (6.22)

92

An abelian variety—and specifically, in this case, the Jacobian—is simple if it does not contain a
(non-zero) proper abelian subvariety. For example, if C has a non-trivial map to an elliptic curve
E, which induces a map JacC → E, then JacC is isogenous to E ×A for some dimension-(g − 1)
abelian variety A, and #A(Fq) divides # JacC(Fq). This type of splitting may reduce the
difficulty of order computations, an undesirable characteristic for the application we discuss in
Chapter 7. Therefore, we want to restrict to simple Jacobians. Fortunately, Jacobians in general
are simple with overwhelming probability.

The group law on JacC(Fq) can be computed using Cantor’s algorithm [Can87] (see also the work
of Costello and Lauter [CL11]). Efficient explicit formulae exist for g = 2 (by Lange [Lan05])
and g = 3 (by Fan, Wollinger, and Gong [FWG07]).

On elliptic curves, it is well known that division polynomials Ψn(X) exist for all n ∈ Z+, where
the roots of the n-th division polynomial are the points with order n—that is, the torsion subgroup
E[n] minus OE (see, for example, [Sil09, Section III] or [Gal12, Section 9.8]). For odd primes
`, the degree of Ψ` is (` − 1)/2. The hyperelliptic curve analogues of these polynomials are
division ideals—homogenous ideals vanishing on the torsion subgroups. In this sense, the genus
one division ideals are the principal ideals generated by the n-division polynomials. Comparably,
in general genus, there exists a system of equations for each ` whose solutions give points or
divisors of order ` [Can94, CFA+12]. A useful result of Abelard [Abe18] is that in genus three,
the degrees of Cantor’s `-division polynomials are bounded by O(`2).

93

94

Chapter 7

Trustless Groups of Unknown Order

In Chapter 4, we proposed a new zero-knowledge Proof of Knowledge for SIDH secret keys.
Continuing now in the theme of zero-knowledge proofs, we turn to a building block relied upon
in a number of generic constructions: unknown-order groups.

As the name implies, a group G has unknown order (or hidden order) if the order of G is
infeasible to compute. Of course, to be useful, the group operation on G should be efficiently
computable, elements of G should have a compact representation, and it should be possible to
efficiently sample random elements of G. Interest in such groups has been fuelled in recent years
by a number of interesting applications such as delay functions [BBF18, Wes19], accumulators
[BBF19], and zero-knowledge Proofs of Knowledge [BFS20]. Class groups also feature in a number
of ECDSA threshold schemes [CCL+19, CCL+21] and multi-signature schemes [CY21].

There are two common settings for these groups, known as trusted and trustless setup. Trusted
setup implies that the order is known to (or computable by) the creator of the group, who has
access to extra secret information during the setup of the group. On the other hand, if even the
creator(s) of the group G cannot feasibly compute the order of G, the setup is called trustless.
We are particularly interested in the trustless setting, which has a number of useful applications
but which we believe is under-studied.

Previously, there have been two proposals for concrete unknown-order groups: RSA groups
[RSW96], and ideal class groups of imaginary quadratic fields [Lip12, BW88].

RSA groups are groups of the form (Z/NZ)×, where N = pq is the product of two primes.
Computing the order of (Z/NZ)× is equivalent to factoring N . A trusted party can efficiently
generate an RSA modulus that resists all known order-computing attacks (including Sutherland’s
algorithm, which we shall soon discuss). However, using RSA groups in a trustless setting
(where the factorisation of N is not known to anyone) is much more difficult. Sander [San99]
gave an algorithm to generate a modulus N in a trustless manner, such that (with very high
probability) N has two large factors—he calls this an RSA-UFO (unknown factorisation object).
However, to match even the lower security of 1024-bit RSA moduli, RSA-UFOs need “bit length
(much) greater than 40,000 bits”; this is far too large to be efficient in most unknown-order group
applications.

Class groups, on the other hand, can be generated without a trusted setup, and so have received a
lot of recent attention (see, for example, [Lip12, Wes19, BBF19]). Buchmann and Hamdy [BH01]
suggested that 1665-bit discriminants (≈ 833-bit orders) provide security equivalent to 3072-bit
RSA (i.e., 128-bit security). More recently, Biasse, Jacobson Jr., and Silvester [BJS10] claim that
1827-bit discriminants (≈ 914-bit orders) are required to reach the same security level.

95

A major result of this chapter is that the usual notions of security level are not appropriate when
evaluating class group security for applications such as accumulators, where the group is fixed
and used by all participants. In Section 7.2 we recall Sutherland’s algorithm for computing the
order of a generic group, and reanalyse the security of unknown-order groups with respect to this
algorithm. We believe the relevance of this algorithm to the unknown-order group setting has
previously been overlooked, and that the recommended discriminant sizes for trustless generation
of such groups have been dramatically underestimated.

Brent [Bre00] briefly mentioned using the Jacobian of a hyperelliptic curve as a group of unknown
order. This follows work by Koblitz [Kob89] on the use of Jacobians as groups in which the
discrete logarithm problem is infeasible. Unlike the use of class groups of imaginary quadratic
fields, this Jacobian idea has received very little further attention. The second (and more
speculative) contribution of this chapter is to revisit this idea, analysing the use of genus-3 curves
as a source of unknown-order groups without trusted setup. This is discussed in Section 7.4,
where we propose the idea more concretely.

We find that Jacobians offer a distinct advantage over class groups at the same security level:
the element representation size is smaller (2/3 of the size if our new class group compression
algorithm from Section 6.3.2 is used, and if not, 1/2 the size), since point compression for curves
is optimal. Using Jacobians also allows us to take advantage of the wealth of algorithms for
group operations and exponentiation that have been developed and implemented for hyperelliptic
discrete-log-based cryptography, which may be more efficient than their class group equivalents
(though the lack of recent competitive implementations makes it difficult to compare Jacobians
and class groups in terms of real-world speed).

We acknowledge that there are, in theory, polynomial-time algorithms to compute the group
order of hyperelliptic Jacobians [Pil90, GH00]. However, there is evidence that these algorithms
are already impractical for discrete-log-based cryptographic group orders of around 256-bits, let
alone the much larger group orders that we have in mind. While curves of any genus ≥ 2 might
be considered, we suggest that genus-3 curves are the best choice: their point-counting algorithms
are already very complex, and their DLP is harder relative to higher-genus curves. Naturally, if
Schoof-type algorithms for genus three could be made efficient over large prime fields, then these
groups would become insecure—but at least we have provided motivation for such work.

Some unknown-order group protocols make stronger assumptions. For example, one may wish to
assume that that finding elements of a given order is hard, or that extracting roots of a given
element is hard. In Section 7.5 we consider the problem of constructing points of known order in
class groups and Jacobians, and explain how we might work with Jacobians when the low-order
(LOA) or adaptive root (ARA) assumptions are imposed.

7.1 Motivation: Cryptographic accumulators

To provide some motivation to the idea of unknown-order groups, we shall now briefly outline
what a cryptographic accumulator is, and why groups of unknown order are useful to create
them.

An accumulator is a construction that allows efficient representation of a set of elements in a
much smaller (ideally constant) size than the set itself. Accumulators were originally introduced
by Benaloh and de Mare [BdM93], and then generalised by Baric and Pfitzmann [BP97]. Given
an accumulator value A representing a large set X, it is possible to create a membership witness
w for an element x ∈ X such that anyone with (A, x,w) can verify that x is indeed “in” the

96

accumulator—that is, x is part of the set X which A represents—without needing to provide
the entire set X. There are a number of additional properties which accumulators may possess,
giving flexibility for use in various situations. For example, a dynamic accumulator, introduced
by Camenisch and Lysyanskaya [CL02], is one that allows insertion and deletion of accumulated
elements—in contrast to the original (static) accumulators, which support neither operation
(the set X must be fixed at the start). Li, Li, and Xue [LLX07] later proposed universal
accumulators, which also support proofs of non-membership.

Accumulators have attracted attention in recent years due to their potential in blockchain
situations, among other uses. Specifically, there have been proposals to represent the current
state of the Bitcoin blockchain as a compact dynamic accumulator value, rather than as an
unbounded set of unspent transaction outputs (UTXOs) [Dry19, BBF19]. Spending of a UTXO
would then require a proof that the UTXO is indeed in the accumulator.

Let us now consider a simple construction. Working in an abelian group G with generator g,
suppose we let the “empty” accumulator be A0 := g (representing an empty set). Given the
current state of an accumulator Ai = gs, we can “accumulate” an odd prime p by setting the new
accumulator state to Ai+1 := Api = gs·p. The membership of p in Ai+1 is witnessed by wx = Ai
(the state of the accumulator without x). Membership verification is done by checking that
wpx = Ai+1. The requirement that the elements be odd primes is so that, after accumulating two
elements p and q, we cannot claim membership of their product pq (or arbitrary combinations of
factors from two composite accumulated elements).

To discuss the security of cryptographic accumulators, we require a few important definitions.
An accumulator is complete if, for any instance of the accumulator A, any element x, and any
valid membership (resp., non-membership) proof wx for x ∈ X (resp., x 6∈ X), verification of
(A, x,wx) accepts. An accumulator is sound if, for any accumulator A representing X, and any
element y 6∈ X, it is infeasible for an adversary to generate an accepting proof wy of membership
for y in A. Similarly, for any element x ∈ X, it is infeasible for an adversary to generate an
accepting proof of non-membership w∗x for x in A. Finally, we define undeniability, which is often
used as the standard requirement a secure accumulator must satisfy:

Definition 7.1 (Undeniability). An accumulator generated with respect to security parameter
κ is undeniable if, for any probabilistic polynomial-time (PPT) adversary A, the probability that
A can produce an accumulator state A, an element x, and both a proof of membership wx and
a proof of non-membership w∗x for x with respect to A is negligible in κ.

Let us consider again the accumulator construction above. An actor who knows the order of g
as a group element can efficiently create membership proofs for elements not contained in the
accumulator, a violation of the accumulator soundness. This is because computing roots is easy
when the group order is known. The original proposals [BdM93, BP97] used the RSA group
(Z/NZ)× mentioned above—accumulators constructed in this way are accordingly referred to as
RSA accumulators. Clearly, though, anyone who knows the factorisation of the modulus N = pq
also knows the order of the group and can forge proofs. Note that a group of unknown order is
necessary but not sufficient for security of the RSA accumulator—computing roots may still be
easy, and security is usually reduced to the strong RSA assumption in G (which requires that
the adversary cannot compute any roots of a given element g). We refer the reader to the work
of Boneh, Bünz, and Fisch [BBF19, Theorem 4] for more information.

Lipmaa [Lip12] proposed the static root accumulator as an alternative to the RSA accumulator,
without a trusted setup, using groups of unknown order (specifically, the class group of an

97

imaginary quadratic field). The use of unknown-order groups for accumulators was further
expanded on by Boneh et al. [BBF19], who propose a dynamic accumulator with efficient
membership proof aggregation using groups of unknown order. Trusted setup is an undesirable
property in some settings (including the Bitcoin UTXO setting described above)—one reason
why unknown-order groups are an interesting avenue of study.

7.2 Sutherland’s algorithm: The security of generic groups

Sutherland’s primorial-steps algorithm [Sut07, Algorithm 4.2] computes the order of an element
in a generic group. It can therefore be used to probabilistically determine the exponent of a
group. It runs in O(

√
N/log logN) = o(

√
N) time (where N is the group order) in the worst

case, but in fact, the expected runtime depends heavily on the multiplicative structure of N .
The algorithm runs particularly quickly when N is smooth, which we do not expect (or desire)
in unknown-order groups, but it also poses a significant threat to a larger class of groups.

Sutherland’s algorithm is based on Shanks’ baby-step giant-step (BSGS) algorithm, but one can
also use Pollard’s rho (explored in Athukorala’s thesis [Ath22]). Suppose we wish to compute the
order of an element α ∈ G. Instead of computing consecutive powers of α in the baby-steps, we
compute a new element β = αE such that the order of β is coprime to all primes 2, 3, . . . , pn ≤ L
for a chosen bound L, by taking E to be the product of the pi, each raised to an appropriate
exponent blogpi(M)c (where M is an upper bound of the group order). The baby-steps are then
all powers of β with exponents coprime to Pn, and the giant-step exponents are multiples of Pn,
where Pn =

∏n
i=1 pi. As in BSGS, a collision allows |β| to be learned, which then allows |α| to

be computed very efficiently.

Sutherland showed that if the order N of α is uniformly distributed over [1,M] (for sufficiently
large M) and L = M1/u, then this is an O(M1/u) time and space algorithm that successfully
computes N with probability P ≥ G(1/u, 2/u) [Sut07, Proposition 4.7]. Here, G(r, s) is the
semi-smooth probability function

G(r, s) = lim
x→∞

ψ(x, xs, xr)/x (7.1)

for 0 < r < s < 1, where ψ(x, y, z) is the number of integers up to x that are semi-smooth with
respect to y and z—that is, numbers whose prime factors are all less than y, with at most one
greater than z.

u G(1/u, 2/u) u G(1/u, 2/u) u G(1/u, 2/u)

2.1 0.9488 5.0 0.4473 12.0 4.255e-12
2.9 0.5038 6.0 1.092e-03 16.0 6.534e-19
3.0 0.4473 10.0 5.382e-09 20.0 2.416e-26

Table 7.1: Asymptotic semi-smoothness probabilities from [Sut07] and [BP96].

As mentioned in the introduction of this chapter, we claim that the usual notions of security level
are not appropriate when evaluating class group security for applications such as accumulators,
where the group is fixed. The computational assumptions underlying security are not defined for
a fixed group, and there is no random self-reduction to show that all instances have the same
security. We argue that much larger group sizes are needed for secure unknown-order groups in
applications where the group is fixed for many users and used for a long period of time.

Precisely, using Sutherland’s algorithm as motivation, we propose a new security model for
unknown-order groups, depending on two parameters (λ, ρ).

98

Definition 7.2. Let Gen be an algorithm that outputs a group. We say that Gen reaches security
level (λ, ρ) if, with probability 1− 1/2ρ over the outputs of Gen, any algorithm A given an output
G of Gen requires at least 2λ bit operations to succeed in computing #G with probability close
to 1.

A similar concept of security is implicit in [AMPS18], which considers the security of cryptosystems
depending on a prime system-parameter p provided by a possibly malicious party, when in practice
the users only verify the primality of p (and thus ensure the security level of the system) up
to a certain probability—if at all. One recommendation of [AMPS18] is that users “ensure
that composite numbers are wrongly identified as being prime with probability at most 2−128”,
corresponding to ρ = 128.

In our context, the probabilistic nature of security is not due to malicious parties, or unreliable
verification, but rather to a fundamental mathematical fact about the distribution of random
abelian group orders. The problem is that among class groups with prime discriminants of a
given size, there is a set of weak instances depending on the order. A randomly-generated group
is only vulnerable with small probability, but since the order is unknown, we cannot check for
vulnerability without simply attempting to run the algorithm for the given time. In contrast, in
the RSA setting with trusted setup, the group order is known to its generator, who can thus easily
choose a group that is not vulnerable. Because the runtime of Sutherland’s algorithm depends on
the (unknown) order itself, rather than the supposed size of the order, we must take into account
the non-negligible probability that the order of a generated group can be computed much more
efficiently than desired. The relevance of this algorithm to cryptographic unknown-order groups
seems to have been overlooked until now.

For each choice of ρ (corresponding to the probability that a weak group is generated), one must
determine u such that 1/2ρ ≈ G(1/u, 2/u). It then follows that the group size should be at
least uλ bits so that a 1/u-th root attack requires at least 2λ operations. Table 7.1 gives some
numerically computed values for G(1/u, 2/u) from [BP96] and [Sut07]. Using the method of
Banks and Shparlinski [BS07] to approximate the density of semi-smooth numbers, we calculate
that for a success probability of less than 2−100, we should take u = 22.5; for 2−128, we should
take u = 26.5.

Considering all groups generically, we propose new group sizes in response to Sutherland’s
algorithm, depending on (λ, ρ). A paranoid choice, (λ, ρ) = (128, 128), requires group sizes of
around 3392 bits, since u ≈ 26.5 and 26.5 · 128 = 3392. A more realistic (but still cautious)
choice, (λ, ρ) = (128, 55), corresponds to u = 15 and requires ≈ 1920-bit group sizes (and so
3840-bit discriminants; more than double the previous suggestion). Table 7.2 gives sizes of group
orders for various combinations of (λ, ρ). An alternative would be to use multiple smaller groups
in parallel, however, we believe this approach is less efficient than working in a single larger
group. Once again we stress that our setting is different to the usual world of security levels. We
are dealing with a fixed class of weak instances of the computational problem.

In the next sections, we will consider the specific cases of class groups and Jacobians, both taking
into account Sutherland’s algorithm, and the details specific to those constructions.

We remark that Sutherland’s algorithm is less of a threat to unknown order groups with trusted
setup. For example, if there is an authority that can be trusted to generate an RSA modulus
N = pq where p and q are safe primes, then the order of (Z/NZ)× cannot be computed using
Sutherland’s approach.

99

ρ
40 55 64 80 100 128

λ

55 660 825 880 1045 1265 1430
80 960 1200 1280 1520 1840 2080
100 1200 1500 1600 1900 2300 2600
128 1536 1920 2048 2432 2944 3392

Table 7.2: Group size (bits) for various attack success probabilities 2−ρ and running costs 2λ.

7.3 Ideal class groups as unknown-order groups

In this section, we reconsider the security of imaginary quadratic ideal class groups as a source
of trustless unknown-order groups. We assume the background knowledge on ideal class groups
that we presented in Section 6.1.

The use of class groups in cryptography was first suggested by Buchmann and Williams [BW88].
Hafner and McCurley [HM89] gave a sub-exponential L|∆|(1/2) algorithm for computing the
order of Cl(∆) in 1989. Buchmann [Buc90] extended this to compute the group structure and
discrete logarithms. The important thing to note is that these algorithms all have the same
sub-exponential complexity L|∆|(1/2), depending essentially on the size of |∆|.

Thus, the order of a class group Cl(∆) of negative prime discriminant ∆ ≡ 1 (mod 4) is believed
to be difficult to compute, if ∆ is sufficiently large. Lipmaa [Lip12] proposed that Cl(∆) can be
used as a group of unknown order without trusted setup, simply by selecting a suitably large ∆
and choosing an element in Cl(∆) to be treated as a generator (it is not possible to know if it
generates the whole of Cl(∆), or just a subgroup; we discuss this further below). This idea has
since been used by Wesolowski [Wes19] and others.

We emphasise that until now, cryptographic class group parameters (that is, the required sizes of
the ∆’s used) have mainly been proposed with respect to these known sub-exponential algorithms
for computing orders of such groups. In this section, we reassess the security of these parameters
in light of Sutherland’s algorithm and propose new (much larger) parameter sizes targeting the
128-bit security level.

In contrast to the above algorithms, Sutherland’s algorithm has exponential worst-case runtime
but performs much faster with a non-negligible probability depending on the structure of the
class group—a factor that Hafner–McCurley cannot exploit. When computing the order of a
random class group, therefore, the small probability that Sutherland’s algorithm outperforms
Hafner–McCurley must be taken into account.

The cryptographic parameter sizes in [HM00] and [BH01] both suppose that Hafner–McCurley
is the best-known algorithm. Concretely, it is suggested that a 1665-bit negative fundamental
discriminant, which means an approximately 833-bit group order (by Equation 6.7), should
provide 128-bit security. Biasse, Jacobson Jr., and Silvester [BJS10] improve on previous attacks
and suggest 1827-bit discriminants (which implies ∼ 914-bit orders) are needed to achieve 128-bit
security. These estimates have been quoted in more recent works, including by Bünz, Fisch, and
Szepieniec [BFS20] who estimate that 1600-bit discriminants provide 120-bit security, and by
Boneh, Bünz, and Fisch [BBF19] which proposes a slightly more conservative discriminant size
of 2048 bits for 128-bit security.

Suppose we try to compute the order of a random class group with a 1827-bit negative funda-
mental discriminant using Sutherland’s algorithm. Sutherland’s algorithm has some important

100

practical speed-ups when specialised from generic groups to class groups—for example, class
group element negation is practically free, so time and memory can be reduced by a factor of

√
2

(see [Sut07, Remark 3.1])—but these improvements do not significantly impact security levels.
The performance of Sutherland’s algorithm on a given quadratic imaginary class group depends
entirely on the class number.

Hamdy and Möller [HM00] show that imaginary class numbers are more frequently smooth
(although not significantly so) than uniformly random integers of the same size. We may therefore
conservatively approximate the smoothness probability of random class group orders as being
the same as for random integers. With the results of Section 7.2, the probability that a random
class group with 1827-bit fundamental negative discriminant has less than 128 bits of security
(u = 7.1) is at least 2−14.3, and the chance it has less than 64-bit security is 2−50. If a system is
using a fixed class group as an accumulator, then we need to ask if these probabilities of weakness
are acceptable. Such groups do not satisfy Definition 7.2 for (λ, ρ) = (128, 128), and so we claim
that the security is weaker at these discriminant sizes than was previously thought.

Bach and Peralta [BP96] give G(1/u, 2/u) for u = 20 as 2.415504× 10−26 ≈ 2−85. Thus, even for
85-bit security, we require 3400-bit discriminants. Using Banks and Shparlinski’s [BS07] method
of approximating G(1/u, 2/u), we estimate that for 100-bit security with respect to Sutherland’s
algorithm, a discriminant of around 4600 bits would be required. For 128-bit security, u = 26.5
gives G(1/u, 2/u) ≈ 2−128, which implies a group order N ≈ 2128×26.5 = 23392, and hence we
estimate that ∆ should be approximately 6784 bits. We emphasise that G(1/u, 2/u) is only a
lower bound for the success probability of Sutherland’s algorithm, but this should still serve at
least as a guideline.

7.4 Hyperelliptic Jacobians as unknown-order groups

We now revisit Brent’s proposal of using hyperelliptic Jacobians as a concrete source of unknown-
order groups, focusing on genus g = 3. Hyperelliptic Jacobians can be seen as the ideal class
groups of quadratic function fields. We will argue that even despite the existence of theoretical
polynomial-time point-counting algorithms, these Jacobians may still present a more efficient
alternative to class groups at the same security levels. We assume the background material
presented in Section 6.4.

Let C be a hyperelliptic curve of genus g over Fq, where q = pn, and let JacC be its Jacobian.
Recall that # JacC(Fq) ≈ q

3, from Equation 6.22. For JacC(Fq) to be useful as an unknown-order
group, calculating # JacC(Fq) should be infeasible. Besides generic algorithms, two classes of
algorithms specific to hyperelliptic Jacobians are relevant here: point-counting and discrete-log
algorithms.

As a baseline, C must be chosen such that JacC(Fq) resists Sutherland’s algorithm with acceptable
probability, as in Section 7.2. Sutherland’s algorithm has some important practical optimisations
when specialised to hyperelliptic Jacobians—for example, we can again exploit the fact that
negation is effectively free to decrease storage and runtime by a factor of up to

√
2 (see [Sut07,

Remark 3.1]), and even if a Jacobian is not directly vulnerable to Sutherland’s algorithm, its
order may be deduced from that of vulnerable twists, as in [Sut09]. However, these improvements
do not significantly impact security levels.

To reach acceptable levels of security against Sutherland’s algorithm using genus-3 curves, q must
be sub-exponentially large. Looking at Table 7.2, the cautious (λ, ρ) = (128, 55) level requires
1920-bit groups, or q ≈ 2640, while the paranoid (128, 128) level requires 3392-bit groups, or

101

q ≈ 21131. Fields of this size also address the concerns of Lee [Lee20].

7.4.1 Point-counting algorithms

Computing # JacC(Fq) is a classic problem (called “point counting”) in algorithmic number
theory: the goal is to compute the zeta function of C, from which we immediately get # JacC(Fq).
The many dedicated point-counting algorithms fall naturally into two broad classes: p-adic
algorithms and `-adic “Schoof-type” algorithms. The p-adic algorithms (notably Kedlaya’s
algorithm [Ked01] and its descendants [Har07]) have complexity polynomial with respect to g
and n, but exponential in log p. Taking q = p, we can safely ignore these algorithms.

Schoof-type algorithms compute # JacC(Fq) in polynomial-time for fixed g. Indeed, from
a theoretical point of view, the existence of Schoof-type algorithms may make the use of
hyperelliptic Jacobians as unknown-order groups seem perverse. But Schoof-type algorithms are
totally impractical over large prime fields, even in genus as small as 3. To understand why, we
need to look at how they operate.

First, consider the case of elliptic curves (g = 1). Schoof’s ground-breaking Õ(log5 q) algo-
rithm [Sch85], the first polynomial-time point-counting algorithm for elliptic curves, computes
the characteristic polynomial of Frobenius for a series of small primes `, using polynomial
arithmetic modulo the division polynomials Ψ`, before combining the results with the Chinese
Remainder Theorem (CRT) to compute the trace of Frobenius (and therefore the number of
points on the elliptic curve).

Specifically, recall from Equation 1.5 that the (q-power) Frobenius endomorphism πq : E → E

sends points (x, y) to (xq, yq). Every endomorphism φ satisfies a quadratic equation φ2−tφ+d = 0
in End(E), where d is the degree of the isogeny and t is called its trace [Gal12, Theorem 9.9.3].
This equation is called the characteristic polynomial of the endomorphism. The characteristic
polynomial of πq is

π2
q − [t]πq + [q] = 0, (7.2)

where t is the trace of Frobenius we were introduced to in Equation 1.4. Since all points
defined over Fq are fixed by πq, then ker(πq − [1]) = E(Fq). From this it can be derived that
#E(Fq) = deg(πq − [1]) = q + 1− t. This gives us the familiar equality #E(Fq) = q + 1− t we
have already seen. Thus, by computing t via CRT, we learn the number of points on E.

The successor of Schoof’s algorithm, the Schoof–Elkies–Atkin (SEA) algorithm [Sch95], runs in
time Õ(log4 q), and has made elliptic-curve point counting routine.

Pila generalised Schoof’s algorithm to higher-dimensional abelian varieties [Pil90], including
all Jacobians of curves. Pila’s algorithm is polynomial-time in p and n, but badly exponential
in g. As far as we know, it has never been implemented. The task gets a little simpler when
we specialise from general abelian varieties to hyperelliptic Jacobians. The crucial objects are
the analogues of the division polynomials: these are multivariate division ideals vanishing on
coordinates of points in torsion subgroups, as we mentioned in Section 6.4. Cantor constructs
generators for the `-division ideal in [Can94] (see also the book of Cohen et al. [CFA+12]).

Schoof-type point counting is already challenging in genus two. Several genus two algorithms
have been implemented and analysed, beginning with Gaudry and Harley [GH00] and Gaudry
and Schost [GS04a]. Pitcher’s PhD thesis [Pit09] gave a genus two algorithm with complexity
O((log q)7). Gaudry and Schost [GS12] used an improved algorithm, with a mixture of Pitcher’s
approach and exponential birthday-paradox algorithms, to find a curve of secure order over the
127-bit Mersenne prime field Fp with p = 2127 − 1. In their experiments, they claimed around

102

1,000 CPU-hours on average to compute the order of a random genus-2 curve over this 127-bit
field. Computing `-division ideals and analysing the action of Frobenius on them can become
impractical for even moderately small `: the computations mentioned above, with an 8 GB limit
on RAM, used primes ` ≤ 31 (the earlier [GS04a] used ` up to 19). They also used small prime
powers `k = 216, 36, 54, and 72. These ` and `k are not sufficient to determine the group order;
to finish the order computation, they used one- or two-dimensional random walks (a low-memory
algorithm with square root complexity—see [GS04b] for details). The fact that finishing this
point-counting computation is a situation where in practice, an exponential algorithm is more
practical than a polynomial-time one, underlines the impracticality.

We have found no practical work for general genus-2 curves going beyond ` = 31 in the literature.
Abelard’s PhD thesis [Abe18] discusses the feasibility of continuing with larger `. With time
complexity Õ(`6 log q) and space complexity Õ(`4 log q), running time becomes more of an
issue than memory. For 192-bit q, the computation for ` = 53 could take around 1,000 CPU-
days, yet still leave a search space of ∼ 295 elements in the exponential “collision” step of the
algorithm.

This practical work has not been extended to genus three. The main obstruction is the complexity
of computing with division ideals. Some theoretical analysis and projected complexities appear
in the 2019 work of Abelard, Gaudry, and Spaenlehauer [AGS19b]. First steps were made by
Abelard et al. [AGS19a] for the very special class of genus-3 Jacobians with known and efficiently
computable real multiplication endomorphisms, following the analogous genus-2 algorithm by
Gaudry, Kohel, and Smith [GKS11], but this approach does not apply to general genus-3
hyperelliptic Jacobians.

Concretely, taking q ∼ 2100 in genus three would appear sufficient to resist point counting on
most curves C, and result in # JacC(Fq) ∼ 2300. Therefore, the much larger group and field sizes
required to resist Sutherland’s algorithm render point counting irrelevant as an attack. While
point counting for fixed genus g > 2 is polynomial-time in theory, it remains impractical—even
infeasible—in the real world. This is already true of the relatively small field sizes relevant
to discrete-logarithm-based cryptography, and it is even more so for the much larger, sub-
exponential-sized fields required to protect against Sutherland’s algorithm in the unknown-order
setting.

Remark 7.3. Some work has been done on generating genus-2 and genus-3 Jacobians with a
known number of points using CM theory, for applications in DLP-based cryptography, notably
by Weng [Wen01, Wen03] (see also e.g. [GS12] and [HSS01]). Obviously, these curve-generation
methods must be avoided for unknown-order applications.

Remark 7.4. One might hope that progress in computing higher-genus modular polynomials
might yield a SEA analogue improving substantially on pure Schoof-style point counting. However,
any SEA analogue in genus g > 3 would actually be slower than pure Schoof. Indeed, the number
of isogenies splitting [`] (and hence the degree of the ideal that a SEA analogue would use at
the prime `) is in O(`g(g+1)/2); this exceeds the degree of the `-division ideal, which is in O(`2g).
Even for g = 3, the asymptotic complexity of SEA is no better than that of Schoof.

7.4.2 Discrete logarithm algorithms

If the DLP can be efficiently solved in a subgroup 〈G〉 ⊂ JacC(Fq), the order of 〈G〉 can also
be efficiently computed. Precisely, if xG = O, where O is the identity element, then x is (a

103

multiple of) the order of 〈G〉. Suppose, that we want to solve the DLP in JacC(Fq), where C is
a curve of genus g over Fq. Gaudry, Thomé, Thériault, and Diem [GTTD07] and Nagao [Nag04]
present algorithms for small g running in time Õ(q2−2/g), improving on the O(q2) algorithm
of Gaudry [Gau00], and the single-large-prime algorithm of Thériault [Thé03]. This has better
performance for genus three than square-root algorithms like Pollard’s rho, which has expected
runtime in Õ(q3/2). However, in genus two, Pollard’s rho algorithm is more efficient—running in
time Õ(q). Avanzi, Thériault, and Wang [ATW08] further discuss security in these cases.

Smith [Smi09] gives a method of transferring the DLP from hyperelliptic to non-hyperelliptic
genus-3 Jacobians that applies to 18.57% of genus-3 curves. Diem’s algorithm [Die06] can then
be used to solve the DLP in time Õ(q). Laine and Lauter [LL15] examine and improve on Diem’s
attack (including analysis of the logarithmic factors, which they estimate to be O(log2 q)), but
the memory requirement for their attack is high, at Õ(q3/4). The practical results from Laine
and Lauter’s work [LL15] suggest that even for q ∼ 2100, discrete logarithms require around 2113

field multiplications and 1.2× 1014 TB of memory, assuming the reduction of [Smi09] applies;
if not, the algorithm of Gaudry et al. [GTTD07] would require on the order of 2133 operations.
Genus-3 hyperelliptic curves avoiding isogeny-based attacks are constructed in [Lai15].

As g tends to infinity, there exist sub-exponential attacks on the DLP using index calculus (for
example, [Eng02]). However, these have no impact for fixed genus two and three.

7.4.3 Avoiding special curves

Previous work on generating hyperelliptic curves for cryptography focused on generating Jacobians
that avoid known DLP attacks. For example, the order should have a large prime factor, to avoid
Pohlig–Hellman; the largest prime factor should not divide qk− 1 for small k, to avoid MOV-type
attacks [FR94]; and the group order should be prime to p = char(Fq) to avoid “anomalous curve”
attacks [Rüc99]. In the context of unknown-order groups, it is (by definition) not possible to
know whether the Jacobian meets these conditions or not. Fortunately, the vulnerable group
orders are extremely rare: a randomly generated hyperelliptic Jacobian will have a large prime
dividing its order with very high probability. The security of random ideal class groups as groups
of unknown order depends on similar assumptions and heuristics [CL84].

To ensure that we do not reduce the difficulty of point counting using maps to subvarieties (as
mentioned in Section 6.4), the curve should have a simple Jacobian—that is, there should not be
any non-trivial abelian subvarieties in the Jacobian. A randomly chosen C will ensure this with
overwhelming probability (generic Jacobians are absolutely simple), but we should still be careful
to ensure that there is no morphism C → D with D not isomorphic to C or the projective line
(for example, D an elliptic curve), since then JacD would be a non-trivial abelian subvariety of
JacC .

We must also exclude curves whose Jacobians have special endomorphisms, such as the efficiently-
computable real multiplication exploited by Abelard et al. [AGS19a]. Again, a randomly chosen
C will avoid these special classes of curves with overwhelming probability, since they form
positive-codimensional subspaces of the moduli space. Recent work of Thakur [Tha20] further
discusses classes of curves to avoid. The thesis of Alexandrovich [Ale22] also suggests classes of
curves to avoid and potential mechanisms for generating safe curves. We shall not delve into
such details here, but instead refer the interested reader to the works mentioned.

104

7.4.4 Generating hyperelliptic Jacobians of unknown order

We now concretely propose a simple method for generating Jacobians of genus-3 hyperelliptic
curves, for use as groups of unknown order. Algorithm 7.1 (Gen) takes security parameters (λ, ρ)
(as in Definition 7.2), and outputs a generator P for a group G such that Sutherland’s algorithm,
running in time 2λ, succeeds in computing #G with probability less than 1/2ρ. The group G is
realised as (a subgroup of) a genus-3 hyperelliptic Jacobian. Having chosen a suitable prime p
as a function of (λ, ρ), the algorithm samples a uniformly random monic irreducible degree-7
polynomial f(x) in Fp[x] and polynomials u and v such that 〈u, v〉 is the Mumford representation
of a divisor class P in JacC(Fp), where C is the curve defined by y2 = f(x). Being random, P
generates a large-order subgroup of JacC(Fp) with high probability.

Taking f to be random makes the probability that C is a “weak” curve overwhelmingly small, as
mentioned above. Furthermore, taking f irreducible over Fp ensures that JacC(Fp) has no points
of order 2. As we will see in Section 7.5, it may be possible to construct points of small odd
order. We could try this for a few small primes ` to eliminate C with small factors in # JacC(Fp),
but this makes no significant difference to the probability of semi-smoothness of # JacC(Fp),
and thus to the effectiveness of Sutherland’s algorithm. Our simulations showed that rejecting
random group orders divisible by the first few primes decreased the semi-smoothness probability
by less than a factor of two.

Algorithm 7.1 Gen. Constructs a random unknown-order (subgroup of a) genus-3 hyperelliptic
Jacobian.
Input: (λ, ρ)
Output: A prime p, a hyperelliptic genus-3 curve C/Fp, and P ∈ JacC(Fp) such that 〈P 〉 has
unknown order
1: Determine n such that a random genus-3 curve over an n-bit prime field has λ-bits of security

with probability 1− 1/2ρ

2: p← a random n-bit prime
3: Sample random u(x) = x3 + u2x

2 + u1x+ u0 in Fp[x]

4: Sample random v(x) = v2x
2 + v1x+ v0 in Fp[x]

5: repeat
6: Sample random w(x) = x4 + w3x

3 + w2x
2 + w1x+ w0 in Fp[x]

7: f(x) := v(x)2 + u(x)w(x)
8: until gcd(f(x), f ′(x)) = 1 and f is irreducible
9: P ← 〈u, v〉

10: return (p, C, P) where C is the hyperelliptic curve y2 = f(x) over Fp

To ensure that not even the constructor of C knows # JacC(Fp), and that C and P = 〈u, v〉 were
indeed generated randomly, we suggest that u, v, and w be chosen by a deterministic “nothing
up my sleeve”-type process. For example, the coefficients of the polynomials might be taken from
the hash of a certain string. Suppose this process was manipulated by taking multiple “seeds”,
and testing each resulting curve for weakness. If the probability of encountering a weak curve
among random curves is δ, and testing for weakness costs 2n operations, then a malicious actor
requires around 2n/δ operations to generate a weak C. A sceptical verifier, on the other hand,
must only test the proposed C just once to detect cheating, at a cost of just 2n operations. This
imbalance between the cost of cheating versus verifying is a deterrent for attackers, regardless of
the weakness in question.

Now, the order of the Jacobian JacC(Fp) (and the subgroup generated by P) cannot feasibly

105

be computed, not even by the party who constructed the curve. We have therefore achieved a
trustless setup, as desired. This group can then be used in cryptographic constructions including
accumulators and verifiable delay functions (VDFs). Overall, the generation of a new hyperelliptic
curve is relatively cheap. Therefore, just as in the case of class groups, it should be feasible
to generate a new group of unknown order for each new instance of an accumulator or VDF if
desired.

Elements of JacC(Fq) are represented as pairs of polynomials 〈u, v〉 with deg(v) < deg(u) ≤ g,
so elements can be stored concretely with six elements of Fq, and further compressed to just
three Fq-elements and three extra bits using the method of Hess, Seroussi, and Smart [HSS01].
For (λ, ρ) = (128, 55), with ∼ 640-bit fields, this means that group elements can be stored in
approximately 1920 bits. On the other hand, elements of a class group of equivalent security
require ∼ 2880 bits with the compression of Section 6.3, or around 3840 bits without it. Moving
to the more paranoid security level of (λ, ρ) = (128, 128), hyperelliptic Jacobian elements require
∼ 3396 bits while class group elements require ∼ 5090 bits (or ∼ 6784 bits without the compression
of Section 6.3). We therefore claim that genus-3 Jacobians offer more compact elements than
class groups at the same security level.

Given that hyperelliptic Jacobians are a function-field analogue of ideal class groups of quadratic
fields, it is natural to ask why the almost-ideal hyperelliptic Jacobian element compression
algorithm of Hess et al. [HSS01] does not have an efficient class group analogue—why is the
compression algorithm given in Section 6.3 not as efficient as this? To compress a Jacobian
element 〈u, v〉, the algorithm of Hess et al. [HSS01] begins by factoring u, a polynomial over
a finite field. This can be done efficiently. However, a class group analogue compressing (a, b)
would need to factor the integer a, which is a much harder problem, as we know. The algorithm
we presented in Section 6.3 avoids this issue and is efficient to use.

We conclude this section with Tables 7.3 and 7.4, comparing the relative sizes of parameters and
element representations of ideal class groups and Jacobians, for different security parameters
(λ, ρ).

ρ
40 55 64 80 100 128

λ

55
q = 220

1320, 663
q = 275

1650, 828
q = 293

1758, 882
q = 348

2088, 1047
q = 422

2532, 1269
q = 477

2862, 1434

80
q = 320

1920, 963
q = 400

2400, 1203
q = 427

2562, 1284
q = 507

3042, 1524
q = 613

3678, 1842
q = 693

4158, 2082

100
q = 400

2400, 1203
q = 500

3000, 1503
q = 533

3198, 1602
q = 633

3798, 1902
q = 767

4602, 2304
q = 867

5202, 2604

128
q = 512

3072, 1539
q = 640

3840, 1923
q = 683

4098, 2052
q = 781

4686, 2346
q = 981

5886, 2946
q = 1131

6786, 3396

Table 7.3: Parameter q, uncompressed element size, and compressed element size (respectively)
using Jacobians of genus-3 curves at various security levels.

7.5 Elements of known order

We now briefly consider the problem of constructing points of known order in groups of unknown
order. As mentioned at the start of this chapter, a number of settings require it to be infeasible
to compute elements of low or known order, or to find roots of elements in the group. A better

106

ρ
40 55 64 80 100 128

λ

55
∆ = 1320
1320, 990

∆ = 1650
1650, 1238

∆ = 1758
1758, 1319

∆ = 2088
2088, 1566

∆ = 2532
2532, 1899

∆ = 2862
2862, 2147

80
∆ = 1920
1920, 1440

∆ = 2400
2400, 1800

∆ = 2562
2562, 1922

∆ = 3042
3042, 2282

∆ = 3678
3678, 2759

∆ = 4158
4158, 3119

100
∆ = 2400
2400, 1800

∆ = 3000
3000, 2250

∆ = 3198
3198, 2399

∆ = 3798
3798, 2849

∆ = 4602
4602, 3452

∆ = 5202
5202, 3902

128
∆ = 3072
3072, 2304

∆ = 3840
3840, 2880

∆ = 4098
4098, 3074

∆ = 4686
4686, 3515

∆ = 5886
5886, 4415

∆ = 6784
6784, 5090

Table 7.4: Parameter ∆, uncompressed element size, and compressed element size (respectively)
using ideal class groups at various security levels.

understanding of points of known order will give us an idea of how to work with Jacobians when
these low-order or adaptive root assumptions are imposed.

7.5.1 Low-order assumptions and cofactors

We now define some of the common additional requirements on unknown-order groups more
concretely:

• The low-order assumption states that finding an element P and its order 1 < s < 2κ in
G (for security parameter κ) should be computationally infeasible (see [BBF18, Definition
1]).

• The adaptive root assumption states that computing random (prime) roots of any non-
trivial element in the group should be computationally infeasible. That is, it is infeasible
for any efficient adversary to output a non-trivial element Q such that, given a random
prime `, the adversary also outputs P such that Q = [`]P in G (see [BBF18, Definition 2]
and [Wes19]).

We emphasise that these assumptions only make sense if the adversary must solve arbitrary
instances in a randomly-sampled G. It is not possible to define security for a fixed G.

To motivate these assumptions, we now outline Wesolowski’s Proof of Exponentiation (PoE), a
protocol for proving that a value w is the correctly-computed x-th power of another element u,
without requiring the verifier to repeat the full exponentiation computation. We present this
protocol in Example 7.5.

Example 7.5 (Proof of Exponentiation (PoE)). Let G be a group, chosen according to security
parameter κ. The Proof of Exponentiation takes as input u and w in G and x ∈ Z, and aims to
prove that ux = w in significantly less time than it takes to compute ux. It proceeds interactively
as follows:

1. Verifier sends a random prime `← Primes(κ) to the prover.

2. Prover computes q = bx/`c and Q = uq, and sends Q to the verifier.

3. Verifier computes r = x mod `, and accepts if Q`ur = w.

107

Here, Primes(κ) is a set containing the first 2κ prime numbers. This protocol can be made non-
interactive with the Fiat–Shamir transformation, by hashing u,w into Primes(κ) (see [Wes19]).

To see why the security of this protocol requires the low-order assumption, suppose we know an
element ε of order 2 in G (for example, if G is an RSA group, then we can take ε = −1). Then for
any valid proof that ux = w, we can easily generate a false proof of the contradictory statement
ux = εw, by replacing Q with Q′ = εQ in the proof. Since ` is odd, (Q′)`ur = εQ`ur = εw holds
despite the fact that ux 6= εw. This is why, when using RSA groups, it is important to use the
quotient (Z/NZ)×/〈±1〉 to eliminate this element.

Furthermore, if the prover is able to compute arbitrary roots of elements in G, then in Step 2 of
the PoE protocol they can compute an `-th root of w̃/ur for any value w̃ of their choice, and
wrongfully convince the verifier that ux = w̃. Hence, the adaptive root assumption in G is also
required for this protocol to be sound.

Suppose we are given an algorithm Gen constructing unknown-order groups reaching the (λ, ρ)
security level. Suppose too that S is a set containing all the integers s such that we can
construct elements of order s or extract s-th roots in groups G output by Gen in < 2λ operations
with probability > 2−ρ. If we can specify such a set S, then the low-order and adaptive root
assumptions hold in the subgroup

[S]G = {[S]P | P ∈ G} where S := lcm(S) . (7.3)

This cofactor S “kills off” all elements of small order. By definition, it also raises all elements
by a multiple of every integer s, making the ability to find s-th roots in G useless. We will
propose conservative choices for S for concrete groups below. In the meantime, to give some
concrete intuition, if we take S = {1, . . . , 60} then S is an 84-bit integer, so multiplication by S
is efficient.

The operation of protocols such as accumulators in [S]G is standard, but some protocols may need
modification. For example, proofs may require an extra check that an element is indeed in the
group [S]G. The issue here is that, given a point Q in G, testing subgroup membership Q ∈ [S]G
is not easy. However, the original point Q is effectively a proof that [S]Q is in [S]G, because this
can be easily verified. Consequently, Q should be sent instead of [S]Q in cryptographic protocols,
and the verifier can perform the multiplication by S themselves.

Using [S]G in place of G has an impact on efficiency, due to the extra scalar multiplications
required. This impact is highly protocol-dependent, but in most cases only a few extra multipli-
cations should be needed. To give a specific example, we revisit the PoE from Example 7.5 in
Example 7.6 (note that we use additive rather than multiplicative notation now for clarity). The
verifier only needs to perform one extra multiplication-by-S during verification when working
in [S]G instead of G. We suggest that this is efficient enough for practical use, and that other
protocols using the adaptive root assumption can be modified in a similar way.

Example 7.6 (PoE in [S]G). We begin the PoE protocol with input U ∈ G, W ∈ [S]G, and
x ∈ Z. The claim to be proven is that [x][S]U = W in [S]G. The protocol proceeds as follows:

1. Verifier selects a random ` from Primes(λ) \ S and sends ` to the prover.

2. Prover computes q = bx/`c, computes Q = [q]U in G and sends Q to the verifier.

3. Verifier computes r = x mod `, and accepts if Q is in G and [S]([`]Q+ [r]U) = W .

108

The security of this protocol depends on the choice of S. Given a valid proof of [x][S]U = W , in
order to falsely prove [x][S]U = W + P , the prover must compute [1/`]P for the ` chosen by the
verifier. This may be possible if the order of P is known, but this is supposed to be infeasible
because ` is not in S.

Remark 7.7. The impact of finding small-order elements is highly domain-specific. For example,
in the VDF of [Wes19, BBF18], even if points of known order can be found, forging a false PoE
still requires knowing the true result of the exponentiation—and hence still requires computing
the output of the VDF. Relying on a PoE would thus break the requirement that the VDF
output is unique, but it would still provide assurance of the delay. For accumulators, we need an
analogue of the strong RSA assumption rather than the adaptive root assumption: it should be
hard to find chosen prime roots of an element (recall that the membership witness of ` in A is the
`-th root of A). This case can be addressed differently, by simply disallowing the accumulation
of small primes ` dividing elements of S. Finding `-th roots with ` not in S is supposed to be
infeasible, so here we do not need to use [S]G.

7.5.2 Elements of known order in class groups and Jacobians

For class groups, it is well-known that the factorisation of ∆ reveals the 2-torsion structure of
Cl(∆), and even allows the explicit construction of elements of order 2. Similarly, for Jacobians,
if C/Fq is defined by y2 = f(x), then the factorisation of f(x) reveals the 2-torsion structure
of JacC(Fq), and lets us construct explicit points of order 2. This motivates the restriction to
negative prime ∆ when using Cl(∆) as an unknown-order group, and our restriction to irreducible
f in Algorithm 7.1.

Belabas, Kleinjung, Sanso, and Wesolowski [BKSW20] give several constructions of special
discriminants ∆ together with a known ideal of small odd order in Cl(∆). Similarly, we can
construct hyperelliptic Jacobians equipped with a point of small order, as shown by Dobson,
Galbraith, and Smith [DGS21]. These discriminants and curves generally do not occur when ∆
or f is chosen in a “nothing up my sleeve” way. In any case, the risk of choosing groups with
constructible small-order elements can be eliminated by using a smooth cofactor S.

There are three curve-specific methods for constructing elements of known small order, or
deducing information about small divisors of the order of a given element, which do not apply to
class groups. The first is to use the division ideals. This is practical for small primes like 2, 3,
and 5 (reinforcing the need for the cofactor S above). However, if we assume that there exists no
feasible Schoof-type algorithm for counting points on genus-3 curves, then we implicitly assume
that it is infeasible to construct `-division ideals for ` larger than some bound that is polynomial
with respect to the security parameters.

The second method is to use repeated divisions by 2 in JacC(Fq) to construct points of order 2k

for arbitrarily large k. Since 2k is coprime to all odd primes `, this allows a malicious prover to
easily find `-th roots for these points (that is, given a point Q, find P such that [`]P = Q). But
repeated division by 2 in JacC(Fq) requires the repeated extraction of square roots in Fp, which
quickly requires repeatedly taking quadratic field extensions, and the field computations blow up
exponentially. Using hyperelliptic curves in the form y2 = f(x) with f(x) irreducible ensures
that the required square roots do not exist in Fp.

Similarly, we might calculate repeated divisions by very small odd primes. Using the group
[S] JacC(Fq) will kill off powers of these small primes dividing the group order. It could also
be possible to simply test for these repeated divisions during the curve generation procedure,

109

allowing parties to check for small factors of the group order—and then kill these off with a
tailored choice of S. It is an interesting open problem to generate an easily verifiable proof that
a Jacobian does not have any points of low order.

The third method involves the Tate pairing, another pairing similar to the Weil pairing seen
earlier in this thesis. Let C be a hyperelliptic curve over Fq, let ` be a prime (coprime to q), and
let k be the smallest positive integer such that ` | qk − 1. The reduced `-Tate pairing is a bilinear
mapping

t` : JacC [`]× JacC(F
q
k)
/
` JacC(F

q
k) −→ µ` ⊂ F×

q
k

where µ` is the group of `-th roots of unity (see [GHV07] for background on pairings on
hyperelliptic curves). If we can find points of known order `, then the `-Tate pairing can give
information about the `-divisibility of other points.

Suppose we can find a point Q in JacC(F
q
k) of known small-prime order `. Then, for any point

P in JacC(Fq), we can efficiently compute t`(Q,P) in µ` (assuming k is only polynomially large
in log q). Now, if ` - |P | (the order of P), then P = `P ′ for some P ′, so t`(Q,P) = 1. By the
contrapositive, if t`(Q,P) 6= 1, then ` divides the order of P .

Unfortunately, the converse is not so simple: t`(Q,P) = 1 for a single point Q of order ` does
not imply ` - |P |. Instead, it must be shown that t`(Q,P) = 1 for all Q in JacC [`]. Thus, we
require a basis {Q1, . . . , Q2g} of JacC [`] which we can test: if t`(Qi, P) = 1 for 1 ≤ i ≤ 2g,
then the bilinearity of the Tate pairing implies t`(Q,P) for all Q in JacC [`], and hence that
gcd(|P |, `) = 1.

The utility of this approach is limited by the difficulty of constructing points of order `, but
also by the field extension degree k (since the coordinates of Q and the value of t`(Q,P) are in
F
q
k). The embedding degree k, being the order of q modulo `, tends to blow up with `. If q is

well-chosen, then in practice we can learn very little information about the orders of random
points in JacC(Fq), or any information at all for points in [S] JacC(Fq) for a suitable S.

For the Jacobian case, we conjecture that S = {1, . . . , 60} is sufficient for a (128, 128) security
level, based on the discussion in Section 7.4.1. For class groups, S can either be empty in the
case of a prime discriminant, or S = {2} if a non-prime discriminant is used.

110

Conclusions and Future Work

We thank the reader for the time they have taken in order to make it to the end of this thesis.
We hope the experience was worthwhile.

This thesis has covered a varied range of topics, from post-quantum key exchange protocols, to
classical groups of unknown order; analyses of hardness assumptions, to Proofs of Knowledge.
Through it all, we hope that the usefulness and beauty of the mathematics involved—elliptic
curves, isogenies, hyperelliptic curves, pairings, and more—has been visible and fascinating. It is
our goal that those familiar with these topics have found something new, and those less familiar
have been introduced and motivated.

We also hope that the work in this thesis will be built and improved upon, to develop even better
schemes and protocols. Progress is of benefit to everyone. We therefore finish this thesis with
a brief summary of some ideas for future pursuits, with the goal of encouraging new ideas and
developments in these areas and beyond.

The landscape of SIDH-based hardness assumptions we touched on in Chapter 2 is complex and
diverse. It would be valuable work to more rigorously analyse these assumptions (especially the
new assumptions we introduce). A more standard, formal documentation of these assumptions,
which come in different forms and under different names across the literature, would also be
useful. SIDH-based assumptions seem to resist easy reductions to other, existing problems, even
when they appear strongly related. Thus, any progress toward proving new reductions between
these problems would be a relief.

As mentioned in Chapter 4, we expect that further improvements to the efficiency and size of the
SIDH zero-knowledge proof and identification schemes presented in that chapter are possible
with more analysis. At the end of that chapter (in Section 4.4.1), we outlined some ideas for
more efficient protocols, which certainly need much more thought and study. This could be an
interesting and worthwhile direction of research, as better efficiency of the SIDH PoK would be
an important contribution for practical applications.

In Chapter 5, we proposed a post-quantum replacement for a classical, real-world protocol—Signal
X3DH key agreement. While the theoretical development of new schemes and primitives is vital
in cryptography, applying these primitives in concrete protocols is also important and necessary.
There are a large number of protocols being used on the internet today with only classical
security, so there are plenty of inviting problems to work on in developing efficient post-quantum
alternatives for these systems—including further improvements to the Signal protocol beyond
what we have proposed in this thesis.

Regarding groups of unknown order, we believe our proposal of generating these groups from
Jacobians of hyperelliptic curves (in Chapter 7) is worthy of more consideration and study. It
would be an especially interesting direction to work further on efficient point-counting algorithms

111

for genus-3 curves. In general, we believe that unknown-order groups are under-studied, and
more analysis of both Jacobians and ideal class groups in the light of assumptions such as the
low-order and adaptive root assumptions would be worthwhile—as would be examination of other
ways in which the trustless construction process for these groups could be manipulated (or proofs
that it has not been).

Finally, the required sizes we propose in Chapter 7 for the orders of secure unknown-order groups
are much larger than previously suggested parameters. Thus, further work on improving the
efficiency of operating in large class groups and Jacobians would also be valuable.

112

Bibliography

[AAA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al., Status
report on the second round of the NIST post-quantum cryptography standardization
process, US Department of Commerce, NIST (2020).

[Abe18] Simon Abelard, Counting points on hyperelliptic curves in large characteristic: Algo-
rithms and complexity, Ph.D. thesis, Université de Lorraine, 2018.

[ACC+17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian A. LaMacchia, Patrick Longa, et al.,
Supersingular isogeny key encapsulation, Submission to the NIST Post-Quantum
Standardization project (2017).

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis, The double ratchet: Security
notions, proofs, and modularization for the Signal protocol, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 11476, Springer, 2019,
pp. 129–158.

[AGS19a] Simon Abelard, Pierrick Gaudry, and Pierre-Jean Spaenlehauer, Counting points
on genus-3 hyperelliptic curves with explicit real multiplication, Proceedings of the
Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2, Math.
Sci. Publ., Berkeley, CA, 2019, pp. 1–19.

[AGS19b] , Improved complexity bounds for counting points on hyperelliptic curves,
Found. Comput. Math. 19 (2019), no. 3, 591–621.

[AJL17] Reza Azarderakhsh, David Jao, and Christopher Leonardi, Post-quantum static–static
key agreement using multiple protocol instances, Selected Areas in Cryptography -
SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August 16-18, 2017,
Revised Selected Papers, 2017, pp. 45–63.

[Ajt96] Miklós Ajtai, Generating hard instances of lattice problems (extended abstract), Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, ACM, 1996, pp. 99–108.

[Ale22] Novoselov Semen Alexandrovich, Подсчёт числа точек на гиперэллиптических
кривых с геометрически разложимым якобианом [Counting the number of points
on hyperelliptic curves with a geometrically decomposable Jacobian], Thesis, Immanuel
Kant Baltic Federal University, 2022.

113

[AMPS18] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and Juraj Somorovsky,
Prime and prejudice: Primality testing under adversarial conditions, Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, ACM, 2018, pp. 281–298.

[Ath22] Pabasara Athukorala, Point counting on groups of unknown order, Master’s thesis,
The University of Auckland, 2022, unpublished.

[ATW08] Roberto Avanzi, Nicolas Thériault, and Zheng Wang, Rethinking low genus hyperel-
liptic Jacobian arithmetic over binary fields: Interplay of field arithmetic and explicit
formulæ, J. Math. Cryptol. 2 (2008), no. 3, 227–255.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Meyer, Benjamin Smith, and Jana Sotáková, CTIDH: Faster constant-time
CSIDH, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021 (2021), no. 4, 351–387.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch, A survey of two verifiable delay functions,
Cryptology ePrint Archive, Report 2018/712, 2018, https://ia.cr/2018/712.

[BBF19] , Batching techniques for accumulators with applications to IOPs and stateless
blockchains, Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 11692, Springer, 2019, pp. 561–586.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev, Scalable, trans-
parent, and post-quantum secure computational integrity, Cryptology ePrint Archive,
Report 2018/046, 2018, https://ia.cr/2018/046.

[BdM93] Josh Cohen Benaloh and Michael de Mare, One-way accumulators: A decentralized
alternative to digital signatures (extended abstract), Advances in Cryptology - EURO-
CRYPT ’93, Workshop on the Theory and Application of of Cryptographic Techniques,
Lofthus, Norway, May 23-27, 1993, Proceedings, Lecture Notes in Computer Science,
vol. 765, Springer, 1993, pp. 274–285.

[Beu22] Ward Beullens, Breaking Rainbow takes a weekend on a laptop, Cryptology ePrint
Archive, Report 2022/214, 2022, https://ia.cr/2022/214.

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas
Stebila, Towards post-quantum security for Signal’s X3DH handshake, Selected Areas
in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS, Canada
(Virtual Event), October 21-23, 2020, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 12804, Springer, 2020, pp. 404–430.

[BFG+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas
Stebila, Post-quantum asynchronous deniable key exchange and the Signal handshake,
Public-Key Cryptography - PKC 2022 - 25th IACR International Conference on
Practice and Theory of Public Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part II, Lecture Notes in Computer Science, vol. 13178, Springer, 2022,
pp. 3–34.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec, Transparent SNARKs from DARK
compilers, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, Lecture Notes in Computer Science,
vol. 12105, Springer, 2020, pp. 677–706.

114

https://ia.cr/2018/712
https://ia.cr/2018/046
https://ia.cr/2022/214

[BH01] Johannes Buchmann and Safuat Hamdy, A survey on IQ cryptography, Public Key
Cryptography and Computational Number Theory, De Gruyter Proceedings in
Mathematics, De Gruyter, 2001, pp. 1–15.

[BJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes, Key agreement protocols and
their security analysis, Cryptography and Coding, 6th IMA International Conference,
Cirencester, UK, December 17-19, 1997, Proceedings, Lecture Notes in Computer
Science, vol. 1355, Springer, 1997, pp. 30–45.

[BJS10] Jean-François Biasse, Michael J. Jacobson Jr., and Alan K. Silvester, Security
estimates for quadratic field based cryptosystems, Information Security and Privacy
- 15th Australasian Conference, ACISP 2010, Sydney, Australia, July 5-7, 2010.
Proceedings, Lecture Notes in Computer Science, vol. 6168, Springer, 2010, pp. 233–
247.

[BKM+20] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Char-
lotte Weitkämper, On adaptive attacks against Jao–Urbanik’s isogeny-based protocol,
Progress in Cryptology - AFRICACRYPT 2020 - 12th International Conference on
Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, Lecture Notes in
Computer Science, vol. 12174, Springer, 2020, pp. 195–213.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore, Calamari and Falafl: Loga-
rithmic (linkable) ring signatures from isogenies and lattices, Advances in Cryptology
- ASIACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part II, Lecture Notes in Computer Science, vol. 12492, Springer, 2020,
pp. 464–492.

[BKSW20] Karim Belabas, Thorsten Kleinjung, Antonio Sanso, and BenjaminWesolowski, A note
on the low order assumption in class group of an imaginary quadratic number fields,
Cryptology ePrint Archive, Report 2020/1310, 2020, https://ia.cr/2020/1310.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren, CSI-FiSh: Efficient
isogeny based signatures through class group computations, Advances in Cryptology -
ASIACRYPT 2019 - 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 11921, Springer, 2019, pp. 227–247.

[Ble04] Daniel Bleichenbacher, Compressing Rabin signatures, Topics in Cryptology - CT-
RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San Francisco,
CA, USA, February 23-27, 2004, Proceedings, Lecture Notes in Computer Science,
vol. 2964, Springer, 2004, pp. 126–128.

[BP96] Eric Bach and René Peralta, Asymptotic semismoothness probabilities, Math. Comp.
65 (1996), no. 216, 1701–1715.

[BP97] Niko Baric and Birgit Pfitzmann, Collision-free accumulators and fail-stop signature
schemes without trees, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, Lecture Notes in Computer Science, vol.
1233, Springer, 1997, pp. 480–494.

[BR93] Mihir Bellare and Phillip Rogaway, Entity authentication and key distribution, Ad-
vances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Con-

115

https://ia.cr/2020/1310

ference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, Lecture
Notes in Computer Science, vol. 773, Springer, 1993, pp. 232–249.

[Bre00] Richard P. Brent, Public key cryptography with a group of unknown order, Tech.
report, Oxford University, 2000.

[BS07] William D. Banks and Igor E. Shparlinski, Integers with a large smooth divisor,
Integers 7 (2007), A17, 11.

[Buc90] Johannes Buchmann, A subexponential algorithm for the determination of class groups
and regulators of algebraic number fields, Séminaire de Théorie des Nombres, Paris
1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 27–41.

[BW88] Johannes Buchmann and Hugh C. Williams, A key-exchange system based on imagi-
nary quadratic fields, J. Cryptol. 1 (1988), no. 2, 107–118.

[Can87] David G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp.
48 (1987), no. 177, 95–101.

[Can94] , On the analogue of the division polynomials for hyperelliptic curves, J. Reine
Angew. Math. 447 (1994), 91–145.

[CCD+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila, A formal security analysis of the Signal messaging protocol, J. Cryptol. 33
(2020), no. 4, 1914–1983.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker, Two-party ECDSA from hash proof systems and efficient instantiations,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III,
Lecture Notes in Computer Science, vol. 11694, Springer, 2019, pp. 191–221.

[CCL+21] , Bandwidth-efficient threshold EC-DSA revisited: Online/offline extensions,
identifiable aborts, proactivity and adaptive security, Cryptology ePrint Archive,
Report 2021/291, 2021, https://ia.cr/2021/291.

[CFA+12] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren, Handbook of elliptic and hyperelliptic curve
cryptography, 2nd ed., Chapman & Hall/CRC, 2012.

[CJ88] George E. Collins and Jeremy R. Johnson, The probability of relative primality of
Gaussian integers, Symbolic and Algebraic Computation, International Symposium
ISSAC’88, Rome, Italy, July 4-8, 1988, Proceedings, Lecture Notes in Computer
Science, vol. 358, Springer, 1988, pp. 252–258.

[CK01] Ran Canetti and Hugo Krawczyk, Analysis of key-exchange protocols and their use for
building secure channels, Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding, Lecture Notes in Computer Science, vol. 2045,
Springer, 2001, pp. 453–474.

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr., Heuristics on class groups of number fields,
Number theory, Noordwijkerhout 1983, Lecture Notes in Math., vol. 1068, Springer,
Berlin, 1984, pp. 33–62.

116

https://ia.cr/2021/291

[CL02] Jan Camenisch and Anna Lysyanskaya, Dynamic accumulators and application to
efficient revocation of anonymous credentials, Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2442,
Springer, 2002, pp. 61–76.

[CL11] Craig Costello and Kristin E. Lauter, Group law computations on Jacobians of
hyperelliptic curves, Selected Areas in Cryptography - 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers,
Lecture Notes in Computer Science, vol. 7118, Springer, 2011, pp. 92–117.

[CLG09] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren, Cryptographic hash functions
from expander graphs, J. Cryptology 22 (2009), no. 1, 93–113.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes,
CSIDH: An efficient post-quantum commutative group action, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part III, Lecture Notes in Computer Science, vol. 11274, Springer,
2018, pp. 395–427.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig, Efficient algorithms for supersin-
gular isogeny Diffie–Hellman, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 9814, Springer, 2016,
pp. 572–601.

[Coh10] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics, vol. 138, Springer, 2010.

[COR21] Daniel Cervantes-Vázquez, Eduardo Ochoa-Jiménez, and Francisco Rodŕıguez-
Henŕıquez, Extended supersingular isogeny Diffie–Hellman key exchange protocol:
Revenge of the SIDH, IET Information Security (2021).

[Cou06] Jean-Marc Couveignes, Hard homogeneous spaces, Cryptology ePrint Archive, Report
2006/291, 2006, https://ia.cr/2006/291.

[Cox89] David A. Cox, Primes of the form x2 + ny2: Fermat, class field theory, and complex
multiplication, Monographs and textbooks in pure and applied mathematics, Wiley,
1989.

[Cre09] Cas J. F. Cremers, Formally and practically relating the CK, CK-HMQV, and eCK
security models for authenticated key exchange, Cryptology ePrint Archive, Report
2009/253, 2009, https://ia.cr/2009/253.

[CY21] Handong Cui and Tsz Hon Yuen, A trustless GQ multi-signature scheme with identifi-
able abort, Information Security and Privacy - 26th Australasian Conference, ACISP
2021, Virtual Event, December 1-3, 2021, Proceedings, Lecture Notes in Computer
Science, vol. 13083, Springer, 2021, pp. 673–693.

[DCP+19] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin
Yang, Rainbow, Tech. report, 2019, Available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DDGZ21] Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig, SIDH

117

https://ia.cr/2006/291
https://ia.cr/2009/253
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

proof of knowledge, Cryptology ePrint Archive, Report 2021/1023, 2021, https:
//ia.cr/2021/1023.

[DG19] Samuel Dobson and Steven D. Galbraith, On the degree-insensitive SI-GDH problem
and assumption, Cryptology ePrint Archive, Report 2019/929, 2019, https://ia.
cr/2019/929.

[DG21] , Post-quantum Signal key agreement with SIDH, Cryptology ePrint Archive,
Report 2021/1187, 2021, https://ia.cr/2021/1187.

[DGL+20] Samuel Dobson, Steven D. Galbraith, Jason T. LeGrow, Yan Bo Ti, and Lukas
Zobernig, An adaptive attack on 2-SIDH, Int. J. Comput. Math. Comput. Syst.
Theory 5 (2020), no. 4, 282–299.

[DGS21] Samuel Dobson, Steven D. Galbraith, and Benjamin Smith, Trustless unknown-order
groups, presented at MathCrypt, 2021, https://ia.cr/2020/196.

[DH76] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans.
Inf. Theory 22 (1976), no. 6, 644–654.

[Die06] Claus Diem, An index calculus algorithm for plane curves of small degree, Algorithmic
number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006,
pp. 543–557.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût, Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies, J. Math. Cryptol. 8 (2014), no. 3, 209–247.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé, CRYSTALS-Dilithium: A lattice-based digital
signature scheme, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018 (2018), no. 1,
238–268.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski, SQISign: Compact post-quantum signatures from quaternions and isoge-
nies, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference
on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part I, Lecture Notes in Computer
Science, vol. 12491, Springer, 2020, pp. 64–93.

[Dry19] Thaddeus Dryja, Utreexo: A dynamic hash-based accumulator optimized for the
Bitcoin UTXO set, Cryptology ePrint Archive, Report 2019/611, 2019, https://ia.
cr/2019/611.

[Dui19] Ines Duits, The post-quantum Signal protocol: Secure chat in a quantum world,
Master’s thesis, University of Twente, 2019.

[Eng02] Andreas Enge, Computing discrete logarithms in high-genus hyperelliptic Jacobians
in provably subexponential time, Math. Comp. 71 (2002), no. 238, 729–742.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto, Secure integration of asymmetric and
symmetric encryption schemes, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, Lecture Notes in Computer Science, vol. 1666, Springer, 1999,
pp. 537–554.

118

https://ia.cr/2021/1023
https://ia.cr/2021/1023
https://ia.cr/2019/929
https://ia.cr/2019/929
https://ia.cr/2021/1187
https://ia.cr/2020/196
https://ia.cr/2019/611
https://ia.cr/2019/611

[FO13] , Secure integration of asymmetric and symmetric encryption schemes, J.
Cryptol. 26 (2013), no. 1, 80–101.

[FP21] Tako Boris Fouotsa and Christophe Petit, SHealS and HealS: Isogeny-based PKEs
from a key validation method for SIDH, Advances in Cryptology - ASIACRYPT 2021
- 27th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part IV, Lecture
Notes in Computer Science, vol. 13093, Springer, 2021, pp. 279–307.

[FP22] , A new adaptive attack on SIDH, Topics in Cryptology - CT-RSA 2022
- Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings, Lecture Notes in Computer Science, vol. 13161, Springer, 2022,
pp. 322–344.

[FR94] Gerhard Frey and Hans-Georg Rück, A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves, Math. Comp. 62 (1994), no. 206,
865–874.

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama, Strongly
secure authenticated key exchange from factoring, codes, and lattices, Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory
in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
Lecture Notes in Computer Science, vol. 7293, Springer, 2012, pp. 467–484.

[FTTY18] Atsushi Fujioka, Katsuyuki Takashima, Shintaro Terada, and Kazuki Yoneyama, Su-
persingular isogeny Diffie–Hellman authenticated key exchange, Information Security
and Cryptology - ICISC 2018 - 21st International Conference, Seoul, South Korea,
November 28-30, 2018, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 11396, Springer, 2018, pp. 177–195.

[FWG07] Xinxin Fan, Thomas J. Wollinger, and Guang Gong, Efficient explicit formulae for
genus 3 hyperelliptic curve cryptosystems over binary fields, IET Inf. Secur. 1 (2007),
no. 2, 65–81.

[Gal12] Steven D. Galbraith, Mathematics of public key cryptography, Cambridge University
Press, Cambridge, 2012.

[Gal18] , Authenticated key exchange for SIDH, Cryptology ePrint Archive, Report
2018/266, 2018, https://ia.cr/2018/266.

[Gau66] Carl Friedrich Gauss, Disquisitiones arithmeticae, translated into English by Arthur
A. Clarke, Yale University Press, 1966, original text in Latin, 1801.

[Gau00] Pierrick Gaudry, An algorithm for solving the discrete log problem on hyperelliptic
curves, Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding, Lecture Notes in Computer Science, vol. 1807, Springer,
2000, pp. 19–34.

[GH00] Pierrick Gaudry and Robert Harley, Counting points on hyperelliptic curves over
finite fields, Algorithmic number theory (Leiden, 2000), Lecture Notes in Comput.
Sci., vol. 1838, Springer, Berlin, 2000, pp. 313–332.

[GHV07] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren, Hyperelliptic pairings,
Pairing-Based Cryptography - Pairing 2007, First International Conference, Tokyo,

119

https://ia.cr/2018/266

Japan, July 2-4, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4575,
Springer, 2007, pp. 108–131.

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to
the theory of NP-completeness, A Series of Books in the Mathematical Sciences, W.
H. Freeman and Co., San Francisco, Calif., 1979.

[GKS11] Pierrick Gaudry, David Kohel, and Benjamin Smith, Counting points on genus
2 curves with real multiplication, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, Lecture
Notes in Computer Science, vol. 7073, Springer, 2011, pp. 504–519.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson, Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems, J. ACM 38 (1991),
no. 3, 691–729.

[GPS20] Steven D. Galbraith, Christophe Petit, and Javier Silva, Identification protocols and
signature schemes based on supersingular isogeny problems, J. Cryptol. 33 (2020),
no. 1, 130–175.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti, On the security
of supersingular isogeny cryptosystems, Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, 2016,
pp. 63–91.

[GPV21] Wissam Ghantous, Federico Pintore, and Mattia Veroni, Collisions in supersingular
isogeny graphs and the SIDH-based identification protocol, Cryptology ePrint Archive,
Report 2021/1051, 2021, https://ia.cr/2021/1051.

[GS04a] Pierrick Gaudry and Éric Schost, Construction of secure random curves of genus
2 over prime fields, Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, Lecture Notes in Computer Science, vol.
3027, Springer, 2004, pp. 239–256.

[GS04b] , A low-memory parallel version of Matsuo, Chao, and Tsujii’s algorithm,
Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer,
Berlin, 2004, pp. 208–222.

[GS12] , Genus 2 point counting over prime fields, J. Symbolic Comput. 47 (2012),
no. 4, 368–400.

[GTTD07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem, A double
large prime variation for small genus hyperelliptic index calculus, Math. Comput. 76
(2007), no. 257, 475–492.

[GV18] Steven D. Galbraith and Frederik Vercauteren, Computational problems in supersin-
gular elliptic curve isogenies, Quantum Inf. Process. 17 (2018), no. 10, 265.

[Har07] David Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not.
IMRN (2007), no. 22, Art. ID rnm095, 29.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz, A modular analysis of the
Fujisaki–Okamoto transformation, Theory of Cryptography - 15th International

120

https://ia.cr/2021/1051

Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part I, Lecture Notes in Computer Science, vol. 10677, Springer, 2017, pp. 341–371.

[HKKP21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest, An
efficient and generic construction for Signal’s handshake (X3DH): Post-quantum,
state leakage secure, and deniable, Public-Key Cryptography - PKC 2021 - 24th
IACR International Conference on Practice and Theory of Public Key Cryptography,
Virtual Event, May 10-13, 2021, Proceedings, Part II, Lecture Notes in Computer
Science, vol. 12711, Springer, 2021, pp. 410–440.

[HL10] Carmit Hazay and Yehuda Lindell, Sigma protocols and efficient zero-knowledge,
pp. 147–175, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[HM89] James L. Hafner and Kevin S. McCurley, A rigorous subexponential algorithm for
computation of class groups, J. Amer. Math. Soc. 2 (1989), no. 4, 837–850.

[HM00] Safuat Hamdy and Bodo Möller, Security of cryptosystems based on class groups
of imaginary quadratic orders, Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kyoto, Japan, December 3-7, 2000, Proceedings, Lecture Notes in
Computer Science, vol. 1976, Springer, 2000, pp. 234–247.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, NTRU: A ring-based public
key cryptosystem, Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, Lecture Notes in
Computer Science, vol. 1423, Springer, 1998, pp. 267–288.

[HSS01] Florian Hess, Gadiel Seroussi, and Nigel P. Smart, Two topics in hyperelliptic cryp-
tography, Selected Areas in Cryptography, 8th Annual International Workshop, SAC
2001 Toronto, Ontario, Canada, August 16-17, 2001, Revised Papers, Lecture Notes
in Computer Science, vol. 2259, Springer, 2001, pp. 181–189.

[IBM21] IBM, IBM Quantum breaks the 100-qubit processor barrier, https://research.ibm.
com/blog/127-qubit-quantum-processor-eagle, 2021, Accessed: 2022-01-18.

[JD11] David Jao and Luca De Feo, Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies, Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December 2, 2011. Pro-
ceedings, Lecture Notes in Computer Science, vol. 7071, Springer, 2011, pp. 19–34.

[JKL04] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee, One-round protocols for two-party
authenticated key exchange, Applied Cryptography and Network Security, Second
International Conference, ACNS 2004, Yellow Mountain, China, June 8-11, 2004,
Proceedings, Lecture Notes in Computer Science, vol. 3089, Springer, 2004, pp. 220–
232.

[JS14] David Jao and Vladimir Soukharev, Isogeny-based quantum-resistant undeniable
signatures, Post-Quantum Cryptography - 6th International Workshop, PQCrypto
2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings, Lecture Notes in
Computer Science, vol. 8772, Springer, 2014, pp. 160–179.

[Ked01] Kiran S. Kedlaya, Counting points on hyperelliptic curves using Monsky–Washnitzer
cohomology, J. Ramanujan Math. Soc. 16 (2001), no. 4, 323–338.

[KLM+15] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley, Jerome A. Solinas,

121

https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle

and David Tuller, Failure is not an option: Standardization issues for post-quantum
key agreement, 2015, Workshop on Cybersecurity in a Post-Quantum World.

[Kob89] Neal Koblitz, Hyperelliptic cryptosystems, J. Cryptol. 1 (1989), no. 3, 139–150.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin, Unbalanced oil and vinegar signa-
ture schemes, Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, Lecture Notes in Computer Science, vol. 1592, Springer,
1999, pp. 206–222.

[Kra05] Hugo Krawczyk, HMQV: A high-performance secure Diffie–Hellman protocol, Ad-
vances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, Lecture
Notes in Computer Science, vol. 3621, Springer, 2005, pp. 546–566.

[Lag75] Joseph-Louis Lagrange, Recherches d’arithmétique, C.F. Voss, 1775.

[Lai15] Kim Laine, Security of genus 3 curves in cryptography, Ph.D. thesis, University of
California, Berkeley, 2015.

[Lam79] Leslie Lamport, Constructing digital signatures from a one way function, Tech. Report
CSL-98, October 1979, This paper was published by IEEE in the Proceedings of
HICSS-43 in January, 2010.

[Lan05] Tanja Lange, Formulae for arithmetic on genus 2 hyperelliptic curves, Appl. Algebra
Eng. Commun. Comput. 15 (2005), no. 5, 295–328.

[Lee20] Jonathan Lee, The security of groups of unknown order based on Jacobians of
hyperelliptic curves, Cryptology ePrint Archive, Report 2020/289, 2020, https:
//ia.cr/2020/289.

[Leo20] Christopher Leonardi, A note on the ending elliptic curve in SIDH, Cryptology ePrint
Archive, Report 2020/262, 2020, https://ia.cr/2020/262.

[Lip12] Helger Lipmaa, Secure accumulators from Euclidean rings without trusted setup,
Applied Cryptography and Network Security - 10th International Conference, ACNS
2012, Singapore, June 26-29, 2012. Proceedings, Lecture Notes in Computer Science,
vol. 7341, Springer, 2012, pp. 224–240.

[LL15] Kim Laine and Kristin E. Lauter, Time-memory trade-offs for index calculus in genus
3, J. Math. Cryptol. 9 (2015), no. 2, 95–114.

[LLM07] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin, Stronger security of
authenticated key exchange, Provable Security, First International Conference, ProvSec
2007, Wollongong, Australia, November 1-2, 2007, Proceedings, Lecture Notes in
Computer Science, vol. 4784, Springer, 2007, pp. 1–16.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue, Universal accumulators with efficient non-
membership proofs, Applied Cryptography and Network Security, 5th International
Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings (Jonathan Katz
and Moti Yung, eds.), Lecture Notes in Computer Science, vol. 4521, Springer, 2007,
pp. 253–269.

[LZ19] Qipeng Liu and Mark Zhandry, Revisiting post-quantum Fiat–Shamir, Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,

122

https://ia.cr/2020/289
https://ia.cr/2020/289
https://ia.cr/2020/262

Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, Lecture Notes
in Computer Science, vol. 11693, Springer, 2019, pp. 326–355.

[McE78] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep
Space Network Progress Report 44 (1978), 114–116.

[Mer79] Ralph Merkle, Secrecy, authentication and public key systems: A certified digital
signature, Thesis, Dept. of Electrical Engineering, Stanford University, 1979.

[MI88] Tsutomu Matsumoto and Hideki Imai, Public quadratic polynominal-tuples for effi-
cient signature-verification and message-encryption, Advances in Cryptology - EU-
ROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, Lecture Notes in
Computer Science, vol. 330, Springer, 1988, pp. 419–453.

[MP16a] Moxie Marlinspike and Trevor Perrin, The double ratchet algorithm, https://signal.
org/docs/specifications/doubleratchet/, 2016, Revision 1, 2016-11-20.

[MP16b] , The X3DH key agreement protocol, https://signal.org/docs/
specifications/x3dh/, 2016, Revision 1, 2016-11-04.

[MP19] Chloe Martindale and Lorenz Panny, How to not break SIDH, CFAIL, 2019.

[Mum07] David Mumford, Tata lectures on theta II, Birkhäuser, 01 2007.

[Mum08] , Abelian varieties, Tata Institute of Fundamental Research Studies in Mathe-
matics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay;
by Hindustan Book Agency, New Delhi, 2008, With appendices by C. P. Ramanujam
and Yuri Manin, Corrected reprint of the second (1974) edition.

[MWZ96] Alfred Menezes, Yi-Hong Wu, and Robert J. Zuccherato, An elementary introduction
to hyperelliptic curves, Appendix in Algebraic Aspects of Cryptography by Neal
Koblitz, Springer-Verlag, 1998, pages 155-178, 1996.

[Nag04] Koh-ichi Nagao, Improvement of Thériault algorithm of index calculus for Jacobian
of hyperelliptic curves of small genus, Cryptology ePrint Archive, Report 2004/161,
2004, https://ia.cr/2004/161.

[Pat95] Jacques Patarin, Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88, Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995, Pro-
ceedings, Lecture Notes in Computer Science, vol. 963, Springer, 1995, pp. 248–261.

[Pei14] Chris Peikert, Lattice cryptography for the internet, Post-Quantum Cryptography -
6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3,
2014. Proceedings, Lecture Notes in Computer Science, vol. 8772, Springer, 2014,
pp. 197–219.

[Per16] Trevor Perrin, The XEdDSA and VXEdDSA signature schemes, https://signal.
org/docs/specifications/xeddsa/, 2016, Revision 1, 2016-10-20.

[Pil90] Jonathan Pila, Frobenius maps of abelian varieties and finding roots of unity in finite
fields, Math. Comp. 55 (1990), no. 192, 745–763.

[Pit09] Nicole L. Pitcher, Efficient point-counting on genus-2 hyperelliptic curves, Ph.D.
thesis, University of Illinois at Chicago, 2009, p. 124.

123

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://ia.cr/2004/161
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/

[Piz98] Arnold K. Pizer, Ramanujan graphs, Computational perspectives on number theory
(Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence,
RI, 1998, pp. 159–178.

[RS06] Alexander Rostovtsev and Anton Stolbunov, Public-key cryptosystem based on isoge-
nies, Cryptology ePrint Archive, Report 2006/145, 2006, https://ia.cr/2006/145.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner, Time-lock puzzles and timed-
release crypto, Technical Report MIT/LCS/TR-684, 1996.

[Rüc99] Hans-Georg Rück, On the discrete logarithm in the divisor class group of curves,
Math. Comp. 68 (1999), no. 226, 805–806.

[San99] Tomas Sander, Efficient accumulators without trapdoor (extended abstract), Infor-
mation and Communication Security, Second International Conference, ICICS’99,
Sydney, Australia, November 9-11, 1999, Proceedings, Lecture Notes in Computer
Science, vol. 1726, Springer, 1999, pp. 252–262.

[Sch85] René Schoof, Elliptic curves over finite fields and the computation of square roots
mod p, Math. Comp. 44 (1985), no. 170, 483–494.

[Sch91] Claus-Peter Schnorr, Efficient signature generation by smart cards, J. Cryptol. 4
(1991), no. 3, 161–174.

[Sch95] René Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres
Bordeaux 7 (1995), no. 1, 219–254, Les Dix-huitièmes Journées Arithmétiques
(Bordeaux, 1993).

[Sho94] Peter W. Shor, Algorithms for quantum computation: Discrete logarithms and factor-
ing, 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New
Mexico, USA, 20-22 November 1994, IEEE Computer Society, 1994, pp. 124–134.

[Sho97] , Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comput. 26 (1997), no. 5, 1484–1509.

[Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in
Mathematics, vol. 106, Springer, Dordrecht, 2009.

[Smi09] Benjamin Smith, Isogenies and the discrete logarithm problem in Jacobians of genus
3 hyperelliptic curves, J. Cryptol. 22 (2009), no. 4, 505–529.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers, Post-quantum TLS without
handshake signatures, CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020, ACM, 2020,
pp. 1461–1480.

[Sut07] Andrew V. Sutherland, Order computations in generic groups, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2007.

[Sut09] , A generic approach to searching for Jacobians, Math. Comput. 78 (2009),
no. 265, 485–507.

[Tat66] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2
(1966), 134–144.

[Tes99] Edlyn Teske, The Pohlig–Hellman method generalized for group structure computation,
J. Symb. Comput. 27 (1999), no. 6, 521–534.

124

https://ia.cr/2006/145

[Tha20] Steve Thakur, Constructing hidden order groups using genus three Jacobians, Cryp-
tology ePrint Archive, Report 2020/348, 2020, https://ia.cr/2020/348.

[Thé03] Nicolas Thériault, Index calculus attack for hyperelliptic curves of small genus,
Advances in Cryptology - ASIACRYPT 2003, 9th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan,
November 30 - December 4, 2003, Proceedings, Lecture Notes in Computer Science,
vol. 2894, Springer, 2003, pp. 75–92.

[Tho17] Erik Thormarker, Post-quantum cryptography: Supersingular isogeny Diffie–Hellman
key exchange, Thesis, Stockholm University, 2017.

[UG18] Nik Unger and Ian Goldberg, Improved strongly deniable authenticated key exchanges
for secure messaging, Proc. Priv. Enhancing Technol. 2018 (2018), no. 1, 21–66.

[UJ18] David Urbanik and David Jao, SoK: The problem landscape of SIDH, Proceedings
of the 5th ACM on ASIA Public-Key Cryptography Workshop, APKC AsiaCCS,
Incheon, Republic of Korea, June 4, 2018, ACM, 2018, pp. 53–60.

[UJ20] , New techniques for SIDH-based NIKE, J. Math. Cryptol. 14 (2020), no. 1,
120–128.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and Naofumi
Homma, Curse of re-encryption: A generic power/EM analysis on post-quantum
KEMs, IACR Transactions on Cryptographic Hardware and Embedded Systems
(2022), 296–322.

[Vél71] Jacques Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273
(1971), A238–A241.

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk, On the
cryptographic deniability of the Signal protocol, Applied Cryptography and Network
Security - 18th International Conference, ACNS 2020, Rome, Italy, October 19-22,
2020, Proceedings, Part II, Lecture Notes in Computer Science, vol. 12147, Springer,
2020, pp. 188–209.

[Wen01] Annegret Weng, A class of hyperelliptic CM-curves of genus three, J. Ramanujan
Math. Soc. 16 (2001), no. 4, 339–372.

[Wen03] , Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math.
Comp. 72 (2003), no. 241, 435–458.

[Wes19] Benjamin Wesolowski, Efficient verifiable delay functions, Advances in Cryptology
- EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part III, Lecture Notes in Computer Science, vol. 11478, Springer, 2019,
pp. 379–407.

[YAJ+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev,
A post-quantum digital signature scheme based on supersingular isogenies, Financial
Cryptography and Data Security - 21st International Conference, FC 2017, Sliema,
Malta, April 3-7, 2017, Revised Selected Papers, 2017, pp. 163–181.

[Zag81] Don Zagier, Zetafunktionen und quadratische körper: Eine einführung in die höhere
zahlentheorie, Hochschultext (Berlin), Springer-Verlag, 1981.

125

https://ia.cr/2020/348

	Introduction
	Isogenies and SIDH
	Elliptic curves and isogenies
	The supersingular isogeny graph
	Supersingular Isogeny Diffie–Hellman
	Some useful lemmas

	Cryptographic Hardness Assumptions from Isogenies
	Standard SIDH hardness assumptions
	A degree-insensitive assumption
	Uniqueness of isogenies from public keys
	Experimental evidence
	The di-SI-GDH oracle

	New SIDH hardness assumptions
	Double variants
	SI-CDH-based assumptions

	Adaptive Attacks and Public Key Validation
	The GPST attack on SIDH
	k-SIDH
	The Weil pairing check
	The Fujisaki–Okamoto transformation

	SIDH Proof of Knowledge
	Preliminaries: Sigma protocols
	Previous SIDH identification scheme
	De Feo–Jao–Plût scheme
	Soundness proof issues
	Counterexample to soundness

	New SIDH zero-knowledge proof scheme
	Correctness of the points in an SIDH public key
	Ideas for potential improvements

	SIDH signatures and non-interactive zk-PoKs

	Post-Quantum Signal Key Agreement with SIDH
	Relation to other work
	The Signal X3DH protocol
	Security model
	Key indistinguishability experiment
	Further security properties

	Using SIDH for post-quantum X3DH
	Proof of security
	Cases E2, E3, E6 (MEX)
	Cases E1, E7
	Case E5 (wPFS)
	Deniability

	Efficiency

	Hyperelliptic Curves and Ideal Class Groups
	Ideal class groups
	Form class groups
	Compressing class group elements
	Bleichenbacher's Rabin signature compression algorithm
	An improved class group element compression algorithm

	Hyperelliptic curves

	Trustless Groups of Unknown Order
	Motivation: Cryptographic accumulators
	Sutherland's algorithm: The security of generic groups
	Ideal class groups as unknown-order groups
	Hyperelliptic Jacobians as unknown-order groups
	Point-counting algorithms
	Discrete logarithm algorithms
	Avoiding special curves
	Generating hyperelliptic Jacobians of unknown order

	Elements of known order
	Low-order assumptions and cofactors
	Elements of known order in class groups and Jacobians

	Conclusions and Future Work
	Bibliography

