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Abstract

The objective of this research was to investigate the parallelisation of desktop
environments in light of multi-core processors becoming mainstream. In contrast
to the parallelisation of typical high performance computer applications, par-
allel computing for desktop applications involves further challenges. Although
improving performance is the primary aspect of parallel computing, a vital focus
of this research was on the software engineering approach. In particular, this
included developing an object-oriented solution to desktop parallelisation.

To address these issues, two concepts were developed in this research. The
first concept, the Parallel Iterator, is an object-oriented solution for data paral-
lelism. The Parallel Iterator is the parallel extension to the standard sequential
iterator, to support parallel traversal of elements in an arbitrary collection. The
second concept, Parallel Task, is an object-oriented solution for task parallelism.
An important design aspect of Parallel Task was its semantic integration with
the structure of typical desktop applications.

Both of these concepts have been successfully implemented. The solutions
provide ease of use by following familiar programming approaches and encapsu-
lating parallelisation details away from programmers. The results for both the
Parallel Iterator and Parallel Task concepts show superior performance com-
pared to standard parallelisation approaches.

This research has made a vital contribution to parallel computing on main-
stream desktop systems. By identifying challenges specific to the parallelisation
of desktop applications and their current structure, the concepts developed are in
line with object-oriented programming and the software engineering approach.
The concepts and tools developed not only ease the programming effort, but also
enhance the user’s desktop experience by promoting responsive and interactive
applications.
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Chapter 1

Introduction

Despite the performance benefits, parallel computing has traditionally been, and
still remains, notoriously difficult for software developers [38, 84]. In addition
to the usual challenges of developing a sequential program, parallel computing
presents a new range of complications. First come the theoretical challenges of
task decomposition, dependence analysis and task scheduling. Then there are
the practical challenges such as synchronisation, debugging and portability. The
situation is even worse for parallel desktop applications since they are generally
irregular with short run-times. They also run on non-dedicated systems, let
alone knowing what the system specifications are in the first place (e.g. number
of processors, amount of memory and so on).

Since the objective behind parallel computing is to reduce the execution time
of a program, parallelising code has traditionally been paired with general code
optimisations for performance (especially in the scientific and engineering area).
It is therefore no surprise that applications for these domains have been (and
are still) written in low-level, but speed-efficient, languages like Fortran or C
[25]. When it comes to desktop applications and object-oriented languages, how-
ever, one wants to improve the performance through parallelisation, but without
sacrificing the benefits of high-level languages and the software engineering ap-
proach to programming. Hence the challenge is to parallelise object-oriented
code without resorting to low-level approaches, defying the purpose of code ab-
straction, encapsulation and so on. This thesis addresses this challenge. The
primary motivation is to relieve programmers from many of the effortful and
tedious aspects demanded from parallel computing (section 2.1), but of course
without neglecting the end performance.
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In proposing new tools to parallelise desktop applications, it is vital to un-
derstand their structure. Consequently, this thesis focuses on object-oriented
languages due to their popularity [102], especially for desktop application de-
velopment. For example, common languages for Windows programming include
C++, C# and Java. The K Desktop Environment (KDE) for Linux is devel-
oped in C++ using Trolltech’s Qt toolkit [103] and Mac OS X is developed
using Objective-C. However, focusing on the parallelisation of object-oriented
applications is typically not enough: one must also look deeper at the structure
of desktop applications (section 2.3.3).

Parallel computing has arrived at mainstream desktop systems in the form
of multi-core processors because of the difficulties maintaining improvements
in uni-processor clock-speed. Even though parallel computing is decades old,
desktop parallelisation is fairly new. Users will not witness any performance
improvements if desktop applications are not parallelised with performance in
mind [11, 99].

This thesis addresses two major programming idioms: iterative computa-
tions and dataflow-style computations. Iterative computations usually carry
the lion’s share of computational load, and in object-oriented languages this is
often implemented with iterators:

Collection items = ...

Iterator<Object> it = items.iterator();

while (it.hasNext()) {

process(it.next());

}

For the second class of problems, consider the example application of figure
1.1. The programmer has identified 4 independent computations to be executed
in response to the user pressing a button. This idiom of responding to user
actions through a visual interface is typical of desktop applications. Such a
visual interface is called a graphical user interface (GUI) and will be further
discussed in section 2.3. In a sequential program, the following code is written:

public void actionPerformed(ActionEvent e) {

File file1 = compute1(“myimage.jpg”);

File file2 = compute2(“myimage1.jpg”);

File file3 = compute3(“myimage1.jpg”);

2



Figure 1.1: Four tasks with dependences amongst them. Only the second and
third computations may execute in parallel, since they must wait for the first
computation to complete. The display() method performs GUI-related com-
putations.

File file4 = compute4(“myimage2.jpg”, “myimage3.jpg”);

display(“myimage4.jpg”);

}

As will be shown in section 2.3, the actionPerformed() is an event handler
whose computation should complete with minimal time. Even though paralleli-
sation may help speed the 4 computations, this still might be insufficient for
a responsive event handler. In fact, the actionPerformed() (and any other
event handler) should appear instantaneous because it is executed by an event
handling thread that must be free to respond to other events. Yet only this very
same thread may call display() when the 4 computations are completed: this
is required by most graphical user interface (GUI) toolkits, as will be discussed
in section 2.3.3. In event-based applications, different threads have different
roles.

Graphics Processing Units (GPUs)

Parallelism in a desktop system may be realised by the multi-core processor or
a graphics processing unit (GPU). The GPU typically has the specialised role
of accelerating graphics rendering by offloading the computation away from the
CPU. In fact, the computational power of today’s GPUs easily outperforms the
most powerful CPU [74, 101]. In order to execute on the GPU, programmers
are required to write low-level code using libraries that are different from the
standard object-oriented languages and libraries that are used for the CPU; for
example, CUDA (Compute Unified Device Architecture) is a C-based library
for NVIDIA GPUs. General purpose computing on graphics processing units

3



(GPGPU) extends the applicability of GPUs and is the process of using the
GPU to execute code typically executed by the CPU.

Even with frameworks such as CUDA, the programmability of GPUs for
general purpose computing is still difficult when attempting to achieve good
performance [60]. For this reason, this thesis does not take GPUs into consid-
eration for general purpose computing. As discussed earlier, the focus here is
on object-oriented languages and the software engineering process. Achieving
good performance on GPUs for general purpose computing requires program-
mers have a good understanding of the underlying hardware (unlike simple GPU
programming, where only some of the graphics pipeline was accessible). This in
particular violates important software engineering concepts such as encapsula-
tion and high-level abstraction.

Although this thesis addresses the problem of data parallelism (namely the
Parallel Iterator of sections 3 and 4), GPUs cannot be used for many of the
collections that are supported by the Parallel Iterator (for example graphs and
trees, including XML documents). The Parallel Iterator’s primary purpose is to
iterate a collection in an object-oriented approach with minimal change to the
sequential approach and abstracting away details of the underlying collection;
such an approach is not possible using GPUs for complex data collections such
as trees.

Contributions

This thesis presents two parallelisation concepts targeting object-oriented lan-
guages: the Parallel Iterator and Parallel Task (short ParaTask). The Parallel
Iterator targets the parallelisation of iterative computations, using an approach
familiar to programmers who have used standard sequential iterators. For ap-
plications that require the parallelisation of computation (applications with a
dataflow-style structure), ParaTask is presented; it has the unique feature of
including support for the parallelisation of GUI applications.

Parallel Iterator The Parallel Iterator (chapter 3) is a new powerful concept
for object-oriented programming that serves to iterate any collection type in
a thread-safe manner, even those inherently sequential (e.g. linked-lists and
trees). The typical iteration code of the program remains the same, meaning
that the structure of the program is not changed. The Parallel Iterator has also
been implemented with the exact interface of the familiar Java-style sequential
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iterator. When the Parallel Iterator is used in combination with OpenMP [82]
(which is supported by many compilers, including Visual C++, Intel and GCC),
the loop code does not require restructuring even when reductions are necessary.
The concepts proposed are applicable to most object-oriented languages, this
thesis presents the C++(Qt) and Java implementations (chapter 4).

Several scheduling schemes are supported: static, dynamic and guided (cov-
ering all major loop-scheduling schemes). In addition, the scheduling policy
and chunk size may be decided dynamically during run-time for each loop. The
concept of reductions is integrated with the Parallel Iterator concept, providing
a true object-oriented solution for reductions generalised to allow user-defined
reductions on any data type. Global semantics for the break statement are also
presented to achieve early loop termination, as well as providing helpful means
to object-oriented exception handling in a parallel traversal. Performance of the
Parallel Iterator (chapter 4) reveals that the overhead is small and justifiable
for object-oriented code using iterators in the first place. Finally the Parallel
Iterator may be used with any threading environment and very elegantly with
OpenMP.

Parallel Task In light of multi-cores becoming mainstream on typical desk-
top systems, the vision is not only to introduce task parallelism but also to
create a simple and intuitive approach to event-based applications in a paral-
lel environment. Parallel Task (chapter 5) allows a wide range of computation
problems to be catered for by integrating different task types into the same
model (one-off tasks, interactive tasks and multi-tasks) and respecting object-
oriented concepts. Further features are presented, including support for intuitive
dependence handling, non-blocking notification, exception handling and reduc-
tion for multi-tasks. Parallel Task also supports flexible scheduling options:
work-stealing (for nested parallelism), work-sharing and a mixture of both. The
implementation and performance compared to a range of typical parallelisation
approaches are also presented (chapter 6).
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Chapter 2

Background

Since this thesis presents parallelisation concepts targeting object-oriented lan-
guages, different forms of parallelism in the context of desktop applications
are explored. But firstly the challenges of parallel computing are discussed,
focussing on the additional challenges particular for desktop applications.

2.1 Inhibitors for desktop parallelisation

What are the challenges that programmers face when parallelising desktop ap-
plications? The programmer is first faced with the general challenges of parallel
computing (section 2.1.1). Unfortunately, parallel computing is further compli-
cated for desktop applications (section 2.1.2).

2.1.1 General parallel computing challenges

The prominent challenge in parallel computing is the theoretical and practical
difficulty of producing an effective program to exploit the available hardware.
The developer will need to deal with many more issues that do not exist in
sequential programming.

Theoretical challenges

Some of the challenges surrounding parallel computing are inherent in the prob-
lem itself, regardless of any practical solutions that may be implemented.

6



Missing central parallel model Much of the success of the uniprocessor
computer industry is to be credited to the von Neumann model that connects the
hardware and software of sequential programming. This allows software to be
developed independent of hardware, and hardware to be developed independent
of software. Even with this separation, the software and hardware complement
each other and the result consistently executes with satisfactory performance.
Parallel computing is missing such a central unifying model that the sequential
computing has been so successful on [67, 100, 106].

Numerous models for parallel computing have been developed and proposed,
but parallel computing is still lacking a single dominant model. The characteris-
tics of a successful model include simplicity to understand and use, architecture
independence and accurate performance prediction [91]. These characteristics
are contradictory and as a result have resulted in a large number of parallel com-
puting models being developed. Highly abstract models make it easy to develop
portable parallel programs, but such programs will result in highly uncertain
performance. On the contrary, highly detailed models allow optimised programs
but are considerably more difficult and less portable due to the explicit details.

The PRAM model for example is very simple to use, but at the expense of
hiding vital performance influencing factors such interprocessor communication
and synchronisation [53]. Other models such as LogP and BSP have gained
some attention [12], but parallel computing is still waiting for the one dominant
model to rise above all and standardise parallel computing.

Task decomposition In order to increase the throughput of an application,
the developer needs to examine and decompose the original sequential problem
into sub-tasks. Identification of such sub-tasks will determine which areas of the
problem may be executed simultaneously. Whether the developer is modifying
an already existing sequential program, or coding parallel code from scratch,
task decomposition is the first thing to perform.

A developer may also decide to restructure the program in a way to increase
the inherent parallelism of the problem, such as seeking to use alternative al-
gorithms. This is based on the idea that some conceptual models may be par-
allelised with greater ease than other models. Therefore, seeing the problem
in a different light may ease the difficulty and consequently make the inherent
parallelism more noticeable.
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Dependence analysis Even when the problem has been decomposed into
independent tasks, this does not mean the tasks are free to execute in any
random order. There are ordering constraints that govern the way tasks ought to
proceed. Such constraints prohibit tasks from simply operating independently
of each other, as they may frequently need to halt due to the state of other
tasks [10]. Dependences must be respected in order to ensure that the meaning
of the program remains correct.

Dependences take on many forms and primarily fall into the categories of
either data or control dependences. A data dependency is when two or more
active tasks both require access to the same data, and the order in which the
data is modified influences the correctness of the program. A control dependence
is when the execution of some part of the program is dependent on the outcome
of another part of the program.

Flow dependency is a type of data dependency where the result of a task
is required as an input to a future task. The consequence is that a lot of code
is forced to execute sequentially in the program, consequently reducing the
inherent parallelism of the problem. The consequence of control dependences
means that code cannot be explicitly parallelised since the execution flow is
uncertain until runtime.

After attempting task decomposition and dependency analysis, the developer
may conclude that the problem is not a suitable candidate for parallelisation.
The classification of a problem’s inherent parallelism is rarely black or white. A
single problem may have a wide range of inherent parallelism, simply depending
on the specific goal or instance of the problem class [96]. For example, the
problem of installing light bulbs is not inherently parallel if the goal is to install
a single bulb. But the problem is inherently parallel if the goal is to install ten
bulbs.

Some problems simply cannot be parallelised due to the inherent requirement
of consecutive instructions that need to be executed one after the other [27].
Even if the developer attempted to force some level of parallelism into the
implementation of such a problem, the performance improvement is likely to
be quite minimal. It may actually be faster to execute the problem sequentially
due to the fact that there exists a lot of dependences between the tasks.

Scheduling It is well known that determining the optimal schedule for a set
of tasks is an NP-hard problem [90]. Scheduling becomes more difficult when
the tasks to schedule have varying priorities, or when the main objective of the

8



scheduling changes. The user may have important tasks, and the response of
those tasks is of more interest rather than the overall execution time of all the
tasks in the system. In some cases, static scheduling is impossible since the tasks
are unknown up front and as a result dynamic scheduling needs to be used.

It generally makes sense that load balancing is important in order to create
tasks that take roughly the same amount of time to execute, otherwise some
processors will simply be idle while others have a large amount of computation to
complete [46]. However, it is interesting to note that achieving a well balanced
load may not necessarily always result in the best performance. If a large
amount of dependences exist between a set of tasks, the high communication
costs between processors could mean that having select processors do more work
will result in a lower execution time.

Practical challenges

In addition to the inherent theoretical challenges of parallelisation, other issues
commonly tend to arise due to the way that things have traditionally been
done. Much of the practical challenges are a result of the underlying theoretical
challenges.

Portability When parallel programs are written, developers will always want
to ensure that they effectively exploit the available hardware to achieve maxi-
mum performance. In order to optimise the parallel program, it is necessary to
understand the specific hardware details for the target system. Many parallel
programming solutions are therefore architecture and machine dependent [100].
Simply porting the program to another machine would not provide the same
performance and the program would require modification, or in the worst case
be rewritten from scratch.

Parallel programming using the message passing model usually results in
higher performance in comparison to the shared memory model [55]. The down-
side of such an approach is that it involves explicit parallelism where the de-
veloper needs to carefully examine the problem and implement the parallelism.
Due to the weak support available for parallel programming, developers have
largely produced specific and custom tools for their particular purpose [67].
Along with the issue of portability, this creates a wide mass of non standardised
tools and programs.
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Synchronisation The need for synchronisation arises when data locations
are reused in the program, and so this issue is of particular interest to the
shared memory paradigm. Synchronisation further complicates the challenge
of scheduling, since now there is timing constraints between some tasks that
must be adhered to throughout the entire system execution. It is important to
respect the synchronisation requirements of a parallel program if it is to make
satisfactory progress [46]. If the multiple threads (of a parallel program) were
scheduled independently, they may end up running sequentially (on the same
processor): such a scheduling would prove counterproductive for the parallel
application due to the overhead introduced in the parallelisation. A task that
is falling behind could also impede the progress of other dependent tasks if
undesirable scheduling takes place [65].

Debugging Amajor problem in having tasks execute concurrently is that they
may need to access the same data, and the order in which this is done may change
the correctness of the program. This is known as a race condition, and this
non-deterministic behaviour makes it difficult to reproduce when attempting to
understand the error [34]. The debugging process itself may actually interfere
with the monitored program, therefore altering its behaviour and not necessarily
displaying the same behaviour without the debugging mode. Debugging has
become increasingly complicated and tools to assist developers are limited [45].
Debugging of a parallel program may generally mean that a large amount of
data needs to be gathered which may be difficult to manage.

2.1.2 Additional challenges for desktop parallelisation

The challenges discussed in section 2.1.1 apply to parallel programs in general.
The development of parallel desktop applications involves additional challenges
that generally did not apply to traditional parallel programs. Such challenges
need to be discussed since parallelisation is needed on the desktop. So far,
users have been interested in faster machines; hence, it may be assumed that
they are still interested. Parallelisation is therefore needed otherwise there will
be no improvement given the current trend in processor technology, as well as
increasing user demands.

Different application types Most of the effort for parallel computing has
focused on theoretically trivial applications that possess a high degree of inher-
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ent parallelism. The decomposition of such problems is often trivial and the
resulting tasks have minimal, if any, communication between each other. Such
problems are commonly termed embarrassingly parallel and usually fall into the
area of scientific, engineering and database problems that are usually highly
regular in structure [55]. These ideal candidates for parallelisation also tend to
be computationally intensive and require little, if any, user intervention during
their execution.

However, desktop users have different needs and are generally not interested
in running such scientific and engineering applications like weather forecasting
programs on their desktop. This contributes to why desktops were not tradi-
tionally equipped with numerous processors. However, parallelisation on the
desktop is of interest where day to day users may benefit. So the question is,
what are those applications that desktop users run that may benefit from par-
allelisation? The first concern is to address the issue why parallelism has not
been exploited for daily desktop users.

The first clear observation is that most applications running on the desktop
cannot be classified as embarrassingly parallel problems. The types of problems
that are likely to run on a desktop are irregular in nature, therefore making the
issues of task decomposition and dependency analysis more troublesome for de-
velopers. As well as being irregular, desktop applications are rather interactive,
constantly accepting input from the user and are not as computationally de-
manding. Irregular problems tend to be dealt with using threads where sections
of the program are identified as having the potential to be executed simultane-
ously alongside other sections of the program.

Graphical user interfaces As will be discussed in section 2.3, GUI applica-
tions have an additional threading demand compared to their console-equivalent
versions. Since most desktop applications involve a GUI, this further compli-
cates the parallelisation of desktop applications as programmers must serialise
all GUI-related aspects [21, 62, 73, 79].

Actual performance versus perceived performance The traditional mo-
tivation behind parallelisation has been to reduce wall-clock time, i.e. the actual
time to execute the program. Although reducing this physical time will in real-
ity improve the actual performance, desktop users might not necessarily concur
with this improved performance. Desktop users typically rely on mental esti-
mations rather than objective measurements to determine duration (and conse-
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quently performance) [89]. It is therefore the user’s perceived performance that
ultimately dictates performance for interactive desktop applications [44]. To
truly benefit from multi-core desktop systems, programmers must now strive to
improve both actual time and perceived time:

• Actual time is important to compare the application against benchmarks
and verify performance objectives.

• Perceived time is important for a successfully responsive application and
positive user experience.

So if reducing the execution time (for example by parallelisation) does not neces-
sarily contribute to perceived performance, what else can the programmer do?
Possible examples include ensuring that the user interface does not “freeze”,
progress indication and completing tasks in an expected order. Parallel pro-
grammers must now be concerned with such human-computer interaction (HCI)
issues that were traditionally unnecessary for parallel computing, especially in
the engineering and scientific fields.

Short runtime Desktop applications tend to be interactive in nature, where
the user initiates tasks with a series of input events. During the execution of
these tasks, the user usually remains seated in front of the desktop waiting
for the tasks to complete. Most of these tasks tend to have a relatively small
runtime in comparison to the computationally intensive programs that would
normally run on high performance computers. The user generally expects most
tasks to be accomplished “soon” while they wait.

Since these tasks tend to have short runtimes anyway, chances are that im-
proving their response time through parallelisation would simply go unnoticed
by the user. One of the leading contributors as to why such an attempt would
be futile is the fact that sequential overhead will be introduced in the paralleli-
sation process. The overhead will be introduced when decomposing the problem
into tasks, the communication between the tasks, and interpreting the tasks at
the end. If all this overhead is significant in comparison to the parallelised com-
putation, then this will actually have an adverse effect on the overall execution
time of the task.

In the past, the benefits of parallelising desktop applications were usually
shadowed by the cost of this extra effort meaning that applications were simply
not parallelised. This is due to the non-trivial nature of parallelising most
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problems that are likely to run on desktops. It has been easier for desktop users
to “just wait” until a faster processor became available (or more affordable)
in order to run their day to day applications (also, multi-cores were not the
norm). This contributes as to why there was little pressure in the past to use
parallelism in order to improve desktop performance. The aim now is to change
this, making parallelisation more common on desktop environments.

Introduced overhead is only acceptable when the simultaneous execution of
multiple parts of the program will eventually compensate for the overhead. In
these cases, even though some regions experienced a delay, the overall execution
time is reduced. However, desktop applications are overhead sensitive as such
delays will impact the user’s experience. The consequence of having such over-
head sensitivity means that a lot of desktop tasks may never be parallelised,
and the focus will become on large time demanding tasks.

Non-dedicated Developers have mostly produced parallel programs under
the assumption that it will be the sole program executing on the system [57, 80].
Such an assumption is especially necessary when using parallel models such
as message passing that involve explicit parallelism. There would be minimal
amounts of system processes, if any, to interrupt the execution of the parallel
program, simply because issues such as scheduling are already taken care of.

Unfortunately, developers do not have the luxury of making this assumption
when developing parallel desktop applications. A number of varying programs
will be running alongside the parallel application. The set of applications on
the user’s desktop cannot possibly be determined by the developer. Even if the
user decides to “dedicate” the system for a parallel application, there will still
be system processes that will periodically interrupt. Linux, for example, would
typically have as much as 100 processes once booted when the user is doing
“nothing”.

Due to the high rate of context switching that occurs in operating systems,
this increases the chance of poor performance due to the fact that when a
thread is rescheduled it may have some of the cache contents it requires over-
written [57]. Even small system noise, including the periodic clock tick, has
been found to interfere with the performance of fine-grained parallel applica-
tions [105]. Consequently, this all means that the program will not display the
intended performance as it competes for resources with other applications.
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Non-deterministic Traditional computationally intensive scientific applica-
tions running on high performance computers will generally follow a predeter-
mined execution flow. Once the program has been set up, it will largely run
with minimal user intervention until it finishes. Consequently, the developer
knows what the computation to be performed is and may therefore optimise.

However, desktop applications possess a high degree of non-determinism
due to their interactive nature. There is non-determinism in what parts of the
application will be executed, and when they will execute. There is also non-
determinism in the workload that the application will be exposed to, not to
mention that the workload would vary from time to time.

Interactive applications differ from batch-like programs in the sense that the
developer does not know what will be the exact execution flow of the program.
Such non-deterministic programs means it is unknown until runtime what the
data is, therefore making it difficult, if not impossible, for the developer to de-
termine how to decompose the problem [15] since the program flow is dependent
on input from the user.

Execution of certain applications cannot begin until the user performs the
necessary activating action. This sporadically timed action is accompanied with
input parameters that are possibly from an infinite data range, which will deter-
mine the specific instance of the problem to be executed. This non-determinism
means that strategies to improve performance cannot be exercised during devel-
opment. The ability to decompose and perform dependence analysis is extremely
impaired, and the developer cannot perform static scheduling since the tasks are
unknown.

Unknown target system Section 2.1.1 discussed how parallel programs are
typically optimised to maximise their performance. However, it is difficult for
the developer of a desktop application to know the target system, especially
when there is such a diverse range of desktop systems available. Consequently,
the developer needs to make assumptions and simplifications about the target
system’s architecture and components. The effect of not knowing the details of
the target platform means that the parallel program cannot be optimised.

How many processors will there be available for the application to use?
Factors such as the architecture and cache level may also impact the design
of the parallel application. Cache thrashing has a worse impact on parallel
machines since a miss could also involve communication and cache coherency
between the processors [55].
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Desktop applications need to be able to run on a large variety of hardware.
Some users might have a desktop with just a uni-processor, while others may
have a dual-core, a quad-core processor, or other multi-core processor. Yet users
would certainly expect the application to be capable of performing well on all
hardware. Developers will not reach a large market of users if the software
they produce is not suitable for certain systems. The consequence of this uncer-
tainty means that developers are limited when it comes to developing optimised
applications for desktops. Optimisation must be dynamic at runtime which is
different to conventional parallel systems.

External influences Some candidate desktop applications could theoreti-
cally benefit from parallelism, and might even be categorised as embarrassingly
parallel. Unfortunately, achieving the theoretical parallelism is currently im-
practical due to external practical factors. These factors limit the rate of in-
formation that is available for keeping the processor busy. Highly parallel file
searching may be limited by the disk bandwidth. Internet downloading is lim-
ited by network speed. Consequently, some high latency tasks disturbing the
desktop user cannot be remedied with parallel computing due to the slow I/O
speed of networks and disks.

2.2 Data parallelism

In object-oriented programming, collections (or containers) are used to store ob-
jects (i.e. elements). They come in many forms, including vectors, linked-lists,
trees, sets, maps, stacks and so on. Some of these collections are random-access
(amortised constant-time access to random elements), e.g. array-lists, while
others are inherently sequential, e.g. linked-lists. Regardless of the collection
type, iterators provide a consistent means to access the elements. Iterators are
not only used for basic collections, but also for complex data types, for example
traversing an XML document.

2.2.1 The Java-style sequential iterator

The Java-style sequential iterator provides two primary methods. The first
method, hasNext(), inquires to see if at least one element remains to be tra-
versed. If this returns true, then next() can be invoked to retrieve that ele-
ment. To illustrate the concept of the Parallel Iterator, consider the following
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very simple, but typical, sequential code segment making use of a sequential
iterator to resize each image in a list of images:

List list = getImages();

Iterator<Image> it = list.iterator();

while (it.hasNext()) {

Image image = it.next();

resize(image);

}

The example above traverses an iterator using a while loop. Alternatively, it
is just as common to achieve the same using a for loop:

List list = getImages();

for (Iterator<Image> it = list.iterator() ; it.hasNext() ; ) {

Image image = it.next();

resize(image);

}

The for loop has the advantage of limiting the iterator’s scope to the loop [14],
but the while loop has the advantage of increased legibility. Although the
while loop has been favoured for the examples throughout this thesis, pro-
grammers may use either style they prefer with the Parallel Iterator.

2.2.2 Traditional parallelism approaches

The inherent parallelism of the above example is to resize the images in parallel.
Unfortunately, it is not thread-safe in a parallel environment to simply share the
sequential iterator since it leads to a classical race condition. The sequential
Java-style iterator requires two separate method calls in order to retrieve an
element: the first (hasNext()) to check if any element exists, while the second
(next()) actually retrieves it. Multiple calls to hasNext() may return true to
more than one thread, when in fact only one element remains in the iterator.
This causes problems when the multiple threads invoke next(), as only one
thread will be successful.

Consequently, what are the possible tools to be used by a desktop application
developer? Thread libraries are available for most object-oriented languages, the
easiest solutions a developer could implement are discussed below (the perfor-
mance of these approaches compared to the Parallel Iterator are presented in
section 4.2.1):
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• Locking on each iteration:
In this approach, a sequential iterator is created and shared amongst all
the threads:

Iterator<Image> it = list.iterator();

Lock lock = new ReentrantLock();

CountDownLatch barrier = ...

In order to be thread-safe, any thread that attempts to get an element
must gain exclusive access to the iterator using a lock: this allows the
thread to atomically call hasNext() and next(). Notice that the pro-
grammer is responsible to ensure thread-safe access to the iterator, as well
as ensuring all threads finish the loop at the same time:

// each thread does this

while (true) {

lock.lock();

if (it.hasNext()) {

Image image = it.next();

lock.unlock();

resize(image);

} else {

lock.unlock();

barrier.countDown();

barrier.await(); // wait for other threads

break;

}

}

• Concurrent collection:
This approach involves using a thread-safe queue (as in Java’s java.util.concurrent pack-
age) which results in a small-grain dynamic load distribution:

ConcurrentLinkedQueue<Image> queue =

new ConcurrentLinkedQueue<Image>(list);

By sharing this collection with all the threads, iterations are distributed
one at a time as a thread requests work (note that this queue does not
permit null elements):
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// each thread does this

Image image = null;

while ((image = queue.poll()) != null) {

resize(image);

}

barrier.countDown();

barrier.await(); // wait for other threads

• Synchronized method:
Another common approach is to create a monitor by using synchronized

methods (or synchronized statements) as supported by Java. This causes
threads to acquire the object’s intrinsic lock [62] before processing the
synchronized code:

public synchronized Image getNext() {

if (it.hasNext())

return it.next();

else return null;

}

The user-code then looks like the following, where myObj denotes
the object for which the intrinsic lock is acquired:

// each thread does this

Image image = null;

while ((image = myObj.getNext()) != null) {

resize(image);

}

barrier.countDown();

barrier.await(); // wait for other threads

• Static decomposition of the collection:
This involves manually creating a static distribution of the images. The
collection is distributed into multiple sub-collections where each sub-collection
is assigned to a thread. This corresponds to a static scheduling policy
where iterations are assigned to threads before any work begins:
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for each thread {

List<Image> privateList = list.subList(...);

Iterator<Image> it = privateList.iterator();

...

}

Unfortunately, the above solutions are unfavourable for several reasons:

• There is a considerable amount of manual programming effort required
by the programmer. This includes the responsibility to ensure thread-
safety depending on the respective approach taken (for example, a barrier
synchronisation at the end of each loop to ensure no thread progresses
past the loop while other threads are still traversing their share),

• Each of the above approaches resembles a single scheduling policy. This
reduces flexibility since:

– The various load distribution (due to the scheduling policy) might
not be adequate to achieve good performance (as will be discussed
in section 4.2.1), and

– If the programmer desires a different scheduling policy, not only will
this involve considerably more work on the implementation side, but
the user’s iteration code might need to be modified also (notice how
the iteration code is different for each of the approaches presented
above).

• Code concerning the original program model (the business logic, here im-
age resizing) becomes tangled with code dealing with parallelism [58] as it
requires restructuring the original code. In fact, the amount of restructur-
ing in this particular example was quite minimal since the business logic
was already in its own method.

2.3 Task parallelism

In parallelising desktop applications, one must first understand the structure of
desktop applications and the threading model that programmers must adhere
to.
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Figure 2.1: A vital component of interactive graphical applications is the event
loop. Here, the GUI responds to events by executing the respective event han-
dler. The application appears unresponsive if events backlog in the event queue;
it is therefore important that control of the GUI thread remains in the event
loop.

2.3.1 Graphical user interfaces

Desktop applications allow users to interact through a graphical user interface
(GUI). The application displays a range of visual components, some acting
as a form of input (e.g. buttons, text fields) while others display application
status (e.g. labels, progress bars). Such an application would be based on the
event-driven paradigm, where the program’s execution flow is determined by
events (e.g. mouse clicks, messages from other threads). As figure 2.1 shows,
the application has an event loop waiting for events to arrive. The events are
then dispatched to the appropriate event handler to take the appropriate action.

Many toolkits are available for programmers to ease the development of
event-based applications. These toolkits provide many graphical components as
well as the event loop and event handling. Generally, programmers only need
to specify the logic of event handlers (e.g. the response to a certain button
being clicked). Programmers must ensure that these event handlers are short
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so that control returns to the event loop: otherwise, events will backlog and
the application appears unresponsive (for example, GUI applications appear
to “freeze” when the GUI does not refresh). Figure 2.1 also shows how GUI
components are typically manipulated by a single thread, hence the name GUI
thread.

2.3.2 Where are the multi-threaded toolkits?

Most GUI toolkits available are single-threaded. Only one dedicated thread
is allowed to access the GUI components: the GUI thread. In Qt, the main
thread [103] (the initial thread that starts the program) is also the GUI thread.
Java is similar in that it allows only one thread to access GUI components,
however this thread is not the main thread: it is a special thread created by Java,
known as the event dispatch thread (EDT) [68]. In most Java GUI applications,
the main thread will exit once the GUI and EDT are started. Why is it that
such GUI toolkits are single-threaded? Even more interestingly, why are they
single-threaded even though they are part of a library that contains threading
support?

In attempting to develop a thread-safe GUI toolkit, one faces the standard
parallelisation challenges. To avoid non-deterministic behaviour, mutual exclu-
sion (usually implemented with locks) is required when multiple threads access
shared data (and at least one thread is modifying the data). Even though such
synchronisation protects the data by serialising the access, it unfortunately in-
troduces other problems. The programmer must now decide the granularity of
mutual exclusion: coarse-grained locking reduces the concurrency while fine-
grained locking complicates the programming and increases the possibility of
deadlock.

Ultimately, a decision has to be made whether multi-threading will be sup-
ported in the toolkit. If the answer is yes, then all aspects of the toolkit need
to be thread-safe. This incurs a performance penalty for applications not multi-
threaded. Combined with the performance versus programmability trade-off
toolkit implementers face, GUI toolkits are single-threaded [21, 62, 73, 79] (this
decision was taken before the arrival of mainstream multi-cores). In fact, the
single-threaded model discussed above is not limited only to GUI toolkits. As
an example, some native libraries require that all access be made from the same
thread [21].
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Figure 2.2: Structure of a multi-threaded Java GUI application. Notice that
the purpose of multi-threading so far is primarily to improve the application’s
responsiveness (rather than improve performance through parallelism). This is
achieved by dispatching all long executing tasks to a helper thread, allowing the
EDT to return to the event loop.

2.3.3 Multi-threaded GUI applications

Although ParaTask has been implemented for Java, it is also applicable to other
object-oriented languages. For example, many of the concepts presented here
were initially prototyped using C++(Qt) [50]. ParaTask has matured consid-
erably since then, the improved semantics are still applicable to other object-
oriented languages. In order to simplify discussions, the examples from herein
shall only focus on Java.

As previously mentioned, any Java GUI application (AWT or Swing) in-
volves at least 2 threads. The main thread is the initial thread created by the
Java Virtual Machine (JVM) to start executing the application’s main method.
An event dispatch thread (EDT) is also created by the JVM and is used to
execute the event handler code listening to the respective events. Since Java’s
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main thread usually serves no purpose as soon as the EDT is initialised, it
subsequently terminates [95].

The programmer’s understanding of a multi-threaded Java GUI applica-
tion is depicted in figure 2.2. Since the EDT is responsible for responding to
events, the event handlers must complete quickly to maintain a responsive user
interface. In situations where event handlers require more time to complete,
such code must be executed on another helper thread to allow the EDT control
of the event loop. Programmers are responsible in creating these additional
helper threads and ensuring they only perform background work. Only the
EDT is responsible for GUI manipulations, such as painting components on
the screen since the GUI toolkit is not coded thread-safe (section 2.3.2). Using
such a model, it is not recommended for the main method to even initialise the
GUI [95] (programmers may schedule such code to execute on the EDT using
invokeLater() or invokeAndWait()).

In fact, even the “multi-threaded” application of figure 2.2 might be consid-
ered inadequate to benefit from multi-cores; the helper thread is overwhelmed
with all the computational workload, while the EDT essentially remains idle
waiting for more events. This is because the purpose of multi-threading here
was to achieve responsiveness by freeing the EDT. Even if the application will
knowingly only execute on a uni-processor, multi-threading would still be im-
plemented. However, desktop applications must now be multi-threaded with a
different goal in mind: exploiting the inherent parallelism of these multi-core
processors.

2.3.4 The threading model versus the tasking model

The threading model

In order to improve the parallelism, the programmer may decide to create a
new thread for each computation. Although this has the potential to exploit
the parallelism, many difficulties are encountered. From a performance point of
view, this incurs excess overhead that causes the application response time to
suffer:

• Creating new threads solely for the purpose of executing short-lived com-
putations presents extra work for the JVM. This includes creating the
thread, starting it and then cleaning up after it terminates [62].

• Oversubscription occurs, where the number of active threads exceeds the
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available number of cores. The performance could easily degrade due to
resource contention, scheduling overheads and memory bandwidth limits
[23]. The high number of threads for the application could in turn reduce
fairness for other applications to execute on the available cores [81].

As well as high overheads, this threading model also presents difficulty for the
programmer:

• The code of the independent computations must be migrated into the
run() method of a Thread class. This is performed for each of the in-
dependent computations. This is further complicated if the original code
made reference to any shared variables.

• The model might introduce coupling that was not present in the original
sequential program. For example, notice the dependences between the 4
computations (the example in section 1): compute2 and compute3 must
wait for compute1 to complete, and compute4must wait for both compute2
and compute3 to complete. The programmer must now enforce these de-
pendences using condition variables amongst the different computations.
Not only does this introduce coupling amongst the computations, but it
also reduces the re-use of these computations for other applications that
do not have these dependences.

The tasking model

In overcoming the performance issues of the threading model, a tasking model is
usually implemented. This involves having a fixed pool of threads that are ready
to execute tasks [62, 81]. The thread pool technique serves well for applications
with many short-lived independent computations. Rather than creating threads,
programmers encapsulate independent code within some form of a lightweight
task object. These task objects are then scheduled to be executed by one of the
threads in the pool.

Although the tasking model addresses the performance issues of the thread-
ing model, it generally does not address the programming difficulty. Program-
mers are typically still required to restructure the code into task objects (such as
Runnable) and handle any dependences amongst these tasks. In particular, this
still presents the programmer with the problem of newly introduced coupling
amongst the tasks.
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2.3.5 Typical GUI parallelisation approaches

Since this research focuses on the parallelisation of GUI applications, let us have
a look at the current approaches a programmer may take to parallelise a GUI
application (in Java as a case study). Unfortunately, programmers are limited to
only two options. Section 6.2.1 discusses the performance of these approaches in
comparison to ParaTask. For illustration, the same image application example
of figure 1.1 is parallelised.

Java Threads

Threads have been an integral part of Java since its initial release. Consequently,
parallelising a GUI application manually using Java Threads has traditionally
been the norm. The first step in this approach is to offload all the computa-
tion away from the EDT and into helper thread(s). Since the programmer is
interested in improving performance due to parallelism (and not only just to
improve application responsiveness), the computation is offloaded into multiple
helper threads. A possible solution may resemble that below:

public void actionPerformed(ActionEvent e) {

final Thread t1 = new Thread() {

public void run() {

File f1 = compute1(“myimage.jpg”);

}

};

final Thread t2 = new Thread() {

public void run() {

t1.join();

File f2 = compute2(“myimage1.jpg”);

}

};

final Thread t3 = new Thread() {

public void run() {

t1.join();

File f3 = compute3(“myimage1.jpg”);

}

};

Thread t4 = new Thread() {
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public void run() {

t2.join();

t3.join();

final File f4 = compute4(“myimage2.jpg”, “myimage3.jpg”);

SwingUtilities.invokeLater(new Runnable() {

public void run() {

display(“myimage4.jpg”);

}

});

}

};

t1.start();

t2.start();

t3.start();

t4.start();

}

The above code has many undesirable aspects:

• In terms of improving the program responsiveness, at least one helper
thread must be created (to free the EDT by allowing actionPerformed()

to complete immediately). In terms of improving the program perfor-
mance, at least 2 helper threads must be created (since in this example
the inherent parallelism only allows for tasks 2 and 3 to execute concur-
rently). However, 4 helper threads have been used here to simplify the
example; developing an optimised implementation will require even more
effort on the programmer’s behalf (for example sharing condition variables
amongst the threads, creating and managing a thread pool, and so on).

• Notice the explicit use of invokeLater(). This is necessary since the
display() method may only be computed on the EDT (as discussed in
section 2.3.3).

• The original program code has become largely tangled with parallelisation
code. This tangling of concerns significantly reduces the code legibility
[58].

• The concurrency is coordinated by the caller, rather than the callee, there-
fore breaking encapsulation [85] (discussed further in section 5.7).
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• In addition to reduced legibility, the tangling of concerns reduces code
reuse since the different tasks are now coupled with each other (for exam-
ple, the second thread waiting for the first thread).

There are variations as to how Java threads might be used. In the code snippet
above, a Thread is created for every task. For a large number of fine-grained
tasks, the excessive number of threads will decrease performance (as was dis-
cussed in section 2.3.4). Therefore, the programmer may decide to create a fixed
number of threads and manually assign the tasks to the different threads. Al-
though such a static decomposition reduces the runtime overhead, this unfortu-
nately reduces the load-balancing [3]; it is additional effort on the programmer’s
behalf to find the appropriate balance. Both of these approaches are compared
in section 6.2.1.

SwingWorker

SwingWorker is a significant improvement compared to manually using Java
Threads. Rather than placing code inside a Thread, the code is placed within a
lightweight SwingWorker instance. There are 2 methods to override: time con-
suming computations are placed within doInBackground(), while the optional
done() is used for GUI-related computations.

public void actionPerformed(ActionEvent e) {

final SwingWorker<File, Void> sw1 = new SwingWorker<File, Void>() {

protected File doInBackground() throws Exception {

return compute1("myimage.jpg");

}

};

final SwingWorker<File, Void> sw2 = new SwingWorker<File, Void>() {

protected File doInBackground() throws Exception {

sw1.get();

return compute2("myimage1.jpg");

}

};

final SwingWorker<File, Void> sw3 = new SwingWorker<File, Void>() {

protected File doInBackground() throws Exception {

sw1.get();

return compute3("myimage1.jpg");
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}

};

SwingWorker<File, Void> sw4 = new SwingWorker<File, Void>() {

protected File doInBackground() throws Exception {

sw2.get();

sw3.get();

return compute4(“myimage2.jpg”, “myimage3.jpg”);

}

protected void done() {

display(“myimage4.jpg”);

}

};

sw1.execute();

sw2.execute();

sw3.execute();

sw4.execute();

}

Compared to the approach of manually using Java Threads, the advantage here
is that the programmer no longer needs to be concerned with manually creating
threads and managing a thread pool. However, many of the same disadvantages
still exist (for example: tangling parallelisation code, breaking of encapsulation,
coupling amongst tasks and so on). This thesis addresses these problems in the
following chapters.
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Chapter 3

Parallel Iterator concept and
related work

This chapter introduces the Parallel Iterator concept [48, 49, 51] as a data paral-
lelism solution for object-oriented computations. The concept is then compared
to related work that target object-oriented data parallelism. The next chapter
discusses the implementation and experimental results.

3.1 Parallel Iterator concept

The solution proposed here is the concept of a Parallel Iterator (targeted for
data-parallelism, as discussed in section 2.2). It may conceptually be considered
a thread-safe wrapper around a sequential iterator. Although the Parallel Iter-
ator does not manage thread creation, it does possess awareness of the threads
accessing it. Threads may be created using threading libraries or OpenMP for
C++ (i.e. #pragma parallel as used in the last example of section 3.1.1).
For illustration, simple examples will first be presented throughout this section;
however, the strength of the Parallel Iterator is demonstrated with more com-
plex examples (for example iterating multiple collections in section 3.1.7 and
traversing complex data collections in section 3.1.8).

3.1.1 Interface and usage

The Parallel Iterator concept has been implemented for two object-oriented
languages: Java and C++(Qt). Regardless of the language, the underlying con-
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cepts remain the same. The Parallel Iterator uses the same standard interface
of the sequential iterator: hasNext() returns a boolean denoting whether there
are any elements remaining while next() returns the next element.

However, there is a slight modification to the usage contract of these meth-
ods. If thread A invokes hasNext() and true is returned, the Parallel Iterator
reserves at least one element for thread A. Consequently, only thread A can
access that element by invoking next(). Even if there was only one element
remaining in the iterator, all other threads will receive false since that element
has been allocated to thread A. The implication of this approach is that any
thread that receives a true from hasNext() must eventually follow up with a
next() invocation, otherwise that element will not be traversed by any other
thread. If hasNext() returns true, any subsequent call to hasNext() has no
effect and will continue to return true until next() is eventually called (i.e.
multiple calls to hasNext() will not accumulate more elements).

Each thread must not only have pairing invocations of hasNext() and
next(), but every thread is required to continue invoking the two until hasNext()
returns false . The first reason is because hasNext() serves as a synchroni-
sation barrier (explained below). The second reason is because hasNext() in
general reserves more than one iteration. Similarly, a thread must not invoke
next() without first receiving true from hasNext() since an element needs to
be allocated first (a run-time exception is thrown in such a case).

Below is the parallel version of the image resizing application using the Java
implementation of the Parallel Iterator:

List list = getFiles();

ParIterator<Image> it = ParIterator.createParIterator(list);

// each thread does this (using OpenMP or threads)

while (it.hasNext()) {

Image image = it.next();

resize(image);

} // Parallel Iterator implicit barrier

All logic in regards to scheduling policy and synchronisation are contained within
the Parallel Iterator. From the user’s point of view, the Parallel Iterator is an
ordinary iterator providing a uniform and thread-safe means to traverse ele-
ments in a collection. As shown above, the parallel iteration code remains the
same as the sequential version; in fact, the interface of the Java Parallel Iterator
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extends the standard Java Iterator interface. Note that although the Java
Iterator interface specifies a remove() method, not all implementations sup-
port this (such implementations throw an UnsupportedOperationException).
Some of the current Parallel Iterator implementations take this approach, since
removing elements from a collection in a thread-safe manner depends on the
collection type; letting alone the difficulty of defining parallel semantics for
remove() in an iterator. However, in section 3.1.3.4, these difficulties are dis-
cussed in detail and a compromising solution is suggested.

Implicit barrier synchronisation

In order to preserve semantics of the sequential iterator, the last call to hasNext()
contains an implicit barrier synchronisation; all threads that have completed
their iterations will block at the loop boundary waiting for all other threads
to complete. When all the iterations have been completed and the last thread
calls hasNext(), the barrier synchronisation is released and all threads receive
false. Therefore, a thread will only receive a false when every other thread
completes. Consequently, all iterations have been completed before any thread
proceeds past the loop (therefore preserving sequential semantics).

If the programmer insists on not having the default barrier, they may explic-
itly turn it off when the Parallel Iterator is created (section 3.1.2). This might
be useful where the threading environment already has a barrier enforced (for
example, OpenMP work-sharing constructs or ParaTask’s optional multi-task
barrier in section 5.3.3).

Alternative interface

In the interface discussed above, the hasNext() and next() methods are some-
what connected: an invocation of next() must be preceded by a hasNext() in-
vocation (that returned true), and a hasNext() invocation that returns true
must be followed by a next() invocation. Consequently, an alternative inter-
face is available for languages that support reference variables (such as C++).
This interface combines the two methods into a single atomic boolean next(E&

e) method, where E& denotes a pass by reference parameter (as opposed to pass
by value) to an element of type E.

It is atomic in the sense that it combines the sequential iterator’s next() and
hasNext() methods into a single method. In this way, next() is used in an
atomic test and set fashion. The Parallel Iterator first tests to see if an element
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remains. If there is an element remaining for the requesting thread (the thread
calling next()), then the reference variable (e) is set to that element and true is
returned in an indivisible operation. Otherwise, false is returned when no more
elements exist for the requesting thread.

To use the Parallel Iterator’s alternative interface for the image resizing
example, the required code is presented below (using C++ syntax). OpenMP’s
parallel construct is used, causing multiple threads to execute the while loop.
The only change compared to the sequential version is the use of the Parallel
Iterator and condensing the hasNext() and next() methods into one atomic
next() method. The approach and structure of the program remain the same.

List list = getFiles();

ParIterator<Image> *pi =

ParIterator::createParIterator<Image>(list);

#pragma omp parallel {

Image image;

while (pi->next(image)) {

resize(image);

} // Parallel Iterator implicit barrier

}

Figure 3.1 provides a visualisation how the above code will work. It shows two
threads, A and B, that have shared access to the Parallel Iterator pi. Each
thread has a private variable image, which is passed to the Parallel Iterator to
be set. In the situation image is set to an element, true is returned (e.g. thread
A). Otherwise, false is returned (e.g. thread B) meaning no more iterations
exist for that thread.

This example shows the Parallel Iterator’s flexibility to be used with either
OpenMP [82] or a threading library to manage thread creation. The advantage
of using OpenMP in combination with the Parallel Iterator is that the struc-
ture and context of the program remain unchanged (note that an OpenMP-like
interface is also available for Java [24]).

3.1.2 Construction

A factory class is provided to simplify the creation of a Parallel Iterator. The
examples in section 3.1.1 illustrate the default creation of the Parallel Iterator.
The user is required to at least supply the collection containing the elements to
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Figure 3.1: Visualisation of the Parallel Iterator usage (alternative interface),
situation shown after the last iteration has been allocated to thread A.

traverse. For added flexibility, the user may also specify a scheduling policy and
chunk size in order to override the default policies (discussed in section 3.1.3.1)
as well as the number of threads accessing the Parallel Iterator (defaults to the
number of processors). The programmer also has the option to turn off the
synchronisation barrier:

public static ParIterator createParIterator (

Collection collection,

PI.Schedule schedulePol /* optional */ ,

int chunksize /* optional */ ,

int threadCount /* optional */ ),

boolean barrierOff /* optional */ );

In order to have a single programming paradigm, the Parallel Iterator may be
used to also traverse arrays and integer ranges. Traversing an array is made
possible by specifying the array to the Parallel Iterator:

public static ParIterator createParIterator (

Object[] array,
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PI.Schedule schedulePol /* optional */ ,

int chunksize /* optional */ ,

int threadCount /* optional */ ),

boolean barrierOff /* optional */ );

Consider a developer simply wishing to traverse over an integer range. It would
be redundant if a collection had to be populated just to specify the range. In
such a case, the developer may specify the starting value, size of the range, and
optionally the increment (also known as stride) between values (which defaults
to 1) as shown below:

public static ParIterator createParIterator (

int start,

int size,

int increment /* optional */ ,

PI.Schedule schedulePol /* optional */ ,

int chunksize /* optional */ ,

int threadCount /* optional */ ),

boolean barrierOff /* optional */ );

The above code is shown for the Java implementation, but the C++(Qt) Parallel
Iterator also has the equivalent implementation.

3.1.3 Semantics

The Parallel Iterator may conceptually be considered a thread-safe wrapper
around a sequential iterator. As a consequence, it can virtually support all
collections. How this is possible for inherently sequential collections is explained
in the implementation section (section 4.1).

One important assumption is that iterations can be processed in any order,
because the Parallel Iterator will not process them in sequential order. If a
certain order is necessary for all the loop iterations, then such a loop cannot
be parallelised. However, if only a partial order is necessary, a Parallel Iterator
may be created that enforces the (partial) order (demonstrated in section 3.1.3.1
and section 3.1.8). Hence, again the implementation details are encapsulated in
the Parallel Iterator.

Note that access to shared variables and synchronisation in the loop body are
not addressed by the Parallel Iterator. These can be handled in the usual way
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(such as locks from thread libraries or the corresponding primitives and clauses
in OpenMP). From the Parallel Iterator perspective, any thread may safely
modify elements it receives from the Parallel Iterator, but elements should not
be inserted into or deleted from the collection being traversed (just like Java’s
fail-fast iterators). In section 3.1.3.4, semantics for supporting element removal
is discussed.

3.1.3.1 Scheduling policies and chunk size

A scheduling policy determines how the iteration space is divided amongst
threads into smaller chunks. The Parallel Iterator supports static, dynamic and
guided scheduling policies [82]. A chunk size may also be specified, where the
next chunksize iterations are reserved for the same thread. The purpose of the
chunk size is to find the best trade-off between good load balancing and low
overhead [3]. Figure 3.2 shows examples of the major scheduling policies when
3 threads iterate over a collection. In the following the available policies are
detailed [3, 61]; the necessary parameters for the Parallel Iterator to achieve the
respective scheduling policy are also shown. Let n be the number of iterations
to be distributed amongst p threads.

• Static: all iterations are assigned to threads before the execution of the
loop. This may either be block or cyclic:

– Block : each thread is assigned one large chunk. If dn/pe = bn/pc,
i.e. the number of iterations is divisible by the number of processors,
each thread gets n/p iterations. Otherwise, i.e. dn/pe 6= bn/pc, the
first p−q threads will get a chunk of dn/pe iterations, while the other
q threads get a chunk of bn/pc iterations, where q = p × dn/pe − n.
Figure 3.2(a) shows static block scheduling, for which the Parallel
Iterator parameters are:

createParIterator(mycollection, PI.Schedule.STATIC);

– Cyclic: the iterations are grouped into smaller chunks of chunksize it-
erations and threads are assigned chunks in a round-robin fashion.
Figure 3.2(b) shows cyclic scheduling for the example chunk size of
1, for which the necessary Parallel Iterator parameters are:

createParIterator(mycollection, PI.Schedule.STATIC, 1);

• Dynamic: each thread requests a chunk of iterations to process. When all
iterations of a chunk have completed, another chunk is requested until all
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(a) Static block (b) Static cyclic

(c) Dynamic (d) Guided

Figure 3.2: The major scheduling policies supported by the Parallel Iterator.
These examples show some of the possible ways a collection of nine elements
might be allocated amongst three threads (each colour represents a particular
thread).

chunks have been assigned. Figure 3.2(c) shows an example of dynamic
scheduling with the default chunk size of 1, for which the necessary Parallel
Iterator parameters are:

createParIterator(mycollection, PI.Schedule.DYNAMIC);

• Guided : similar to dynamic, except the size of each chunk decreases as
iterations are distributed. A thread requesting a new chunk is assigned
q = dr/pe iterations, where r is the remaining number of unassigned itera-
tions and p is the number of threads. If q < chunksize, then chunksize it-
erations are assigned (except on the last chunk where there may be fewer
than chunksize iterations remaining). Figure 3.2(d) shows an example of
guided scheduling with the default chunk size of 1, for which the necessary
Parallel Iterator parameters are:

createParIterator(mycollection, PI.Schedule.GUIDED);

If no policy is specified, then the Parallel Iterator selects dynamic scheduling.
The default chunk size for static scheduling is block chunk, while the default
for dynamic or guided scheduling is 1 (all defaults and chunk size calculations
comply with the OpenMP standard [82]). As the experimental results will show
in section 4.2, these scheduling policies are very important.

In some cases, an additional purpose that chunk sizes serve is to enforce
partial ordering for iterations that have simple ordering constraints. As well
as enforcing this partial ordering, the Parallel Iterator hides the details from
the programmer. For example, assume a partial ordering on a collection such
that every ith element is associated with the (i+ 1)

th element, where 1 ≤ i <

collectionSize and i is an odd integer. In such a situation, a Parallel Iterator
may be produced (specifying either dynamic or static scheduling) with a chunk
size of 2 (or any positive even integer).
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3.1.3.2 Supported collections

The major advantage of the Parallel Iterator is that its usage will be familiar to
object-oriented programmers who have used iterators in general and the Java-
style sequential iterator in particular. Just as the sequential iterator supports
traversal of virtually any collection type, the Parallel Iterator supports this
too. Currently supported collections are those available in Qt, namely QList,
QVector, QSet, QLinkedList, QMap, QHash and any of their derived subclasses.
Similarly, all implementations of Java’s Collection interface are supported.

The user has a lot of flexibility. For example they may traverse a Set in
parallel using a dynamic scheduling policy, where each thread is assigned 10
iterations at a time:

ParIterator<MyObj> pi = ParIterator.createParIterator(myset,

PI.Schedule.DYNAMIC, 10);

The user may just as easily traverse a LinkedList in parallel using a static
scheduling policy with chunk size of 5:

ParIterator<MyObj> pi = ParIterator.createParIterator(mylist,

PI.Schedule.STATIC, 5);

In these examples, the actual iteration code does not change even though the
scheduling policies and collection types have changed. This provides a real
object-oriented approach to parallel traversal of any collection.

3.1.3.3 Modifying elements versus modifying the collection

As a thread accesses elements assigned to it through the Parallel Iterator, it
may safely modify those elements; this follows the same policy of the sequen-
tial iterator. What this means, is that elements of the existing collection being
traversed may be modified in-place (this is not the same as modifying the collec-
tion by adding or removing elements). Consider the example of figure 3.3 where
a linked-list collection, consisting of 9 elements, is shared between two threads
A and B. Assume that a Parallel Iterator has been created with a static schedul-
ing policy of chunk size 2. In this case, thread A may modify any of the shaded
elements without synchronisation since these iterations have been reserved for
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Figure 3.3: Example of static scheduling with chunk size of 2. The elements of
this linked-list will be shared amongst two threads; the first thread is assigned
the gray elements, while the second thread is assigned the white elements.

it according to the scheduling policy. Similarly, thread B may modify any of
the white elements without synchronisation.

When it comes to modifying a collection while it is being traversed by an
iterator, different libraries might have different policies. For example, Java’s
fail-fast iterators do not allow direct modification of collections while an iterator
traverses the collection (a ConcurrentModificationException is thrown if this
occurs). Qt, however, allows collections to be directly modified but the non-
mutable iterator ignores any modifications and continues to traverse the original
collection. Consequently, the Parallel Iterator naturally follows the policy of
the respective library used since a sequential iterator is created at the time the
Parallel Iterator is created. Namely, this means programmers cannot modify
the collection if the Java implementation is used, but may modify the collection
if the C++(Qt) implementation is used (but the Parallel Iterator continues to
traverse the original collection). This demonstrates the flexible semantics of the
Parallel Iterator concept, as it adopts the policies of the sequential iterator for
its respective library.

3.1.3.4 Parallel remove() semantics

In addition to the hasNext() and next() methods, some sequential iterators
define a remove() method. Following on from section 3.1.3.3, this is the only
way a collection may be modified while traversing it for a Java-style fail-fast it-
erator. The remove() method in Java’s sequential Iterator interface is defined
as follows [94]:

Removes from the underlying collection the last element returned by
this iterator (optional operation). This method can be called only
once per call to next(). The behaviour of an iterator is unspecified if
the underlying collection is modified while the iteration is in progress
in any way other than by calling this method.
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This is the only way programmers may remove elements from a collection being
traversed (the change is applied through the iterator rather than directly to
the collection). Extending this concept to the Parallel Iterator is possible, al-
though this will require some compromise between the expected semantics and
performance. From the user’s point of view, there is no semantic difficulties of
a parallel remove() since:

• The whole idea behind iterators is that the the underlying collection’s
implementation is hidden from the user (therefore no elements should
appear to “shift” within the original collection), and

• The number of iterations remain the same even if remove() is used.

Therefore, the ideal semantic for supporting remove() with the Parallel Iterator
would be: although elements are removed from the underlying collection, the
original scheduling policy stays in place. Namely, the Parallel Iterator continues
to traverse the original underlying collection, and elements removed by arbitrary
threads do not affect the original scheduling policy. Not only might this defi-
nition ease implementation, but it is essential for the semantics of traversing a
collection in parallel.

Implementation (and performance) challenges for a parallel remove()

Although supporting the above ideal parallel remove semantic is possible, it
will unfortunately affect performance. A “true” remove (where the elements are
really removed from the underlying collection during traversal) would require a
clone of the original collection being traversed. This allows arbitrary elements
from the underlying collection to be safely removed without affecting the original
scheduling policy (i.e. changes in the underlying collection are not reflected in
the Parallel Iterator).

Naturally, this cloning process is essential for collections such as arrays (in
order to avoid the shifting down of elements). The efficiency may of course be
improved, for example using a copy-on-write approach. A viable optimisation
would be that the clone is only performed when the first remove() is called -
therefore avoiding the cloning overhead for loops where no remove() is used. In
addition, sometimes a partial clone might suffice even when remove() is used
(e.g. if half the collection has already been traversed, then no need to clone the
completed half).
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Proposed semantics for a performant parallel remove()

Assume the above semantics of a parallel remove() is supported. As is expected
when parallelising a loop, it is the case that the iterations are independent of
each other. Therefore, the timing of an element’s removal from the underly-
ing collection (through the Parallel Iterator) should not affect the correctness
of other iterations (since they should be independent). For this reason, the
following definition of a parallel remove() integrates nicely with the Parallel
Iterator:

Marks for removal from the underlying collection the last element
returned by this Parallel Iterator to the current thread. Although
the actual removal might take place during traversal, the element is
only guaranteed to be removed from the underlying collection only
when all threads have finished traversal. This method can be called
only once per call to next(). The behaviour of a Parallel Iterator is
unspecified if the underlying collection is modified while the iteration
is in progress in any way other than by calling this method.

By only marking the element for removal, this solves implementation difficul-
ties discussed above (while still maintaining acceptable semantics for parallel
remove()). With this definition, an implementation may decide to delay all
deletions until the end of traversal when all threads complete. This means that
the underlying collection appears unchanged during traversal (even if elements
are removed via the Parallel Iterator); from a semantics point of view, this is
acceptable since iterations are supposed to be independent of each other anyway:

1: List<String> lines = getLinesInFile();

2: ParIterator<String> pi = ParIterator.createParIterator(lines,

PI.Schedule.STATIC);

3: // each thread does this

4: while (pi.hasNext()) {

5: String s = pi.next();

6: if (s.startsWith(“//”)) {

7: pi.remove(); // marks the last element for removal

8: int size = lines.size(); // changes not reflected yet

9: }

10: } // all removes have been committed at this point

11: int finalSize = lines.size();
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In this example, multiple threads traverse a collection where each element rep-
resents a line of code in a file. If the line is a comment (line 6), then it is
marked for removal from the collection (line 7). Since the parallel semantics for
remove() only marks the element for removal, the underlying collection might
remain unchanged. Consequently, calling size() on the underlying collection
(line 8) might not reflect the updated collection size (in a parallel environment
this is not a problem since concurrent removes can occur anyway). The under-
lying collection might only be updated to reflect the removals when all threads
have exited the loop (line 11).

Although it may be undesirable in some applications to serialise these re-
movals in the underlying collection, this compromise provides a balance between
the expected semantic and implementation challenge discussed above. This def-
inition allows for a clean and consistent behaviour since the timing of removals
are guaranteed to be performed before the loop completes.

3.1.4 Reductions

First, a short background is presented on the underlying concepts that the
proposed object-oriented reduction concept has been developed upon: reduc-
tions and thread-local storage. First, the interface for the Java implementation
is presented (which is applicable to most object-oriented languages) and finally
an alternative interface for other languages, like C++, is presented.

Reductions

The Parallel Iterator described so far is sufficient for many, but not all, iterative
computations. For programs that share variables, programmers must provide
mutual exclusion to ensure correct results. In a threading library, this is typically
solved using a mutex. Unfortunately, programs with fine-grained parallelism
would suffer heavily in performance [6]. A reduction is a standard parallelisation
problem [43] and is explained by the simple example in figure 3.4. The 3 threads
calculate the sum of a list containing 9 elements, but each thread calculates only
a partial sum for 3 elements. Rather than sharing a variable (the total sum)
between all threads, each thread maintains its own copy of the variable to avoid
excessive locking. However, this means each thread will have a partial result
(sumA, sumB and sumC respectively) that need to be reduced (i.e. added) into a
final result.
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Figure 3.4: An example of a simple reduction. Three threads (each thread is a
different shade) work in parallel to calculate a sum for their allocated elements.
When all threads complete, the sub-results from each thread (sumA, sumB and
sumC respectively) are reduced into a single result.

OpenMP provides a restricted solution with the reduction clause where
only reductions such as +, *, -, &, |, ^, &&, ||, minimum and maximum are
supported. As well as these common reductions, the primary advantage of
the solution proposed here is that it is object-oriented allowing any kind of
reduction and using any data type. By integrating reductions with the Parallel
Iterator, the scope of the Parallel Iterator is extended to handle even more
situations, without programmers having to manually implement them. Below
is the reduction solution that is applicable to most object-oriented languages.

Thread-local storage

Thread-local storage is a common method used in parallel computing: although
threads refer to the same global variable, they actually refer to different memory
locations (hence the variable is local to each thread) [87]. Several languages have
been extended to support thread-local storage, below is an example using Java’s
ThreadLocal class [94]:

ThreadLocal<Integer> localCount =

new ThreadLocal<Integer>(); // global variable

...

// increment localCount for the current thread

localCount.set( localCount.get() + 1 );
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By creating localCount as a thread-local variable, each thread may read and
write to localCount (using get() and set() respectively) with no need for
locking. However, there is no way a thread may access all the thread-local values
within the thread-local variable. This means that if a programmer wishes to
reduce all the local values within the thread-local variable, then each thread
must copy its local value to another (non thread-local) global variable (since
only that thread is able to read the local value).

3.1.4.1 Reductions with the Reducible object

By combining the two concepts of reductions and thread-local storage, an object-
oriented solution to reductions is proposed. This is presented in the form of the
Reducible object: it is especially attractive when used in conjunction with the
Parallel Iterator. The Reducible object is used just like a typical thread-local
variable, where threads access the local storage using get() and set(). In
addition to these thread-local methods, there is a reduce() method that will
perform a specified reduction across the thread-local values when threads have
finished their work and return the final result.

The example below illustrates these components when trying to find the
maximum of a list of unsigned integers. A Parallel Iterator is created in or-
der to manage the parallel traversal of the list. A Reducible object of type
Integer is created to act as the thread-local maximum variable. In this exam-
ple, each thread updates its thread-local maximum on every iteration. After all
threads have finished, the reduce() operation is invoked on the Reducible ob-
ject specifying the maximum reduction. To implement this example in OpenMP
would require the list to be copied to an array first. Furthermore, this simple
example is only used to convey the concept (which may be applied to more
complex situations not handled by OpenMP).

// initialise Parallel Iterator and Reducible

List list = ...; // get list of numbers

ParIterator<Integer> pi = ParIterator.createParIterator(list);

Reducible<Integer> localMax = new Reducible<Integer>(0);

// each thread does this

while (pi.hasNext()) {

int v = pi.next();

if (v > localMax.get())

43



localMax.set(v);

}

// final code, executed by any thread

int finalMax = localMax.reduce(Reduction.IntegerMAX);

Using the Reducible object is just like a ThreadLocal object, with the addition
that the local values may be reduced by any thread. The current implemen-
tation provides a number of type-specific reductions, the example above using
Reduction.IntegerMAX shows the MAX reduction on the Integer class. This
is necessary since Java does not support operator overloading (section 3.1.4.3
discusses an alternative for languages supporting operator overloading).

Reductions can generally be performed sequentially or in parallel (using a
tree-network [43]). From the user’s point of view, invoking a reduction in parallel
is straightforward: the reduce() method has an optional boolean parameter to
denote if the reduction is to be performed in parallel (the default is false):

// reduction executed in parallel

int finalMax = localMax.reduce(Reduction.IntegerMAX, true);

A reduction is only calculated once, therefore subsequent calls to reduce() re-
sult in the pre-calculated value being returned. Finally, when the user instan-
tiates a Reducible object, they have the option of specifying a default value
(which is assigned to each of the thread’s private copy, just like OpenMP’s
firstprivate). If no default value has been specified, then a runtime excep-
tion is thrown when the user attempts to:

• get() the local value for a thread that has not set() a value, or

• Call reduce() when no threads have set() any value.

3.1.4.2 User-defined reductions

Providing only a few common reductions may be insufficient since there may be
specific reductions that a programmer requires. The user is therefore allowed
to define any custom reduction, which is simply used in place of the supplied
reductions. This is achieved by the user providing an object that implements the
Reduction interface. Only one method needs to be implemented, defining the
reduction of two elements into one. For example, the following defines a possible
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reduction on Color objects (section 3.1.4.3 presents an easier alternative to
create user-defined reductions for languages that support function pointers):

Reduction<Color> colorReduction = new Reduction<Color>() {

public Color reduction(Color first, Color second) {

// User code defining reduction logic

}

};

A reduction may then be performed as usual, only this time specifying the
user-defined reduction:

Color finalColor = localColor.reduce(colorReduction);

This approach allows the programmer to easily define complex reductions that
could even involve entire data structures, for example concatenating lists or
maps. The reduction must be associative (the order of performing the reduction
makes no difference) and commutative (the order of the thread-local values
makes no difference) since the interface does not specify order. In the case the
reduction is executed sequentially (for example, as in figure 3.4), the user-defined
reduction does not need to be coded thread-safe.

3.1.4.3 Alternative interface

Languages such as C++ allow a more flexible interface for the proposed object-
oriented reduction concept due to the supported language features. Of partic-
ular interest are features such as pointers, operator overloading and function
pointers. Again, just as before, the Reducible object is used essentially like
a thread-local. However, rather than a thread modifying its thread-local value
through the set() method, the thread-local value is directly modified through
a pointer (which is retrieved using the getMyCopy() method). Consequently,
the parallel code looks even closer to the sequential equivalent since thread-local
values are not accessed through methods. The same example is shown below,
this time using the alternative interface in C++ syntax:

List list = ...; // get list of numbers

ParIterator<int> *pi = Factory::createParIterator<int>(list);

Reducible<int> localMax(0);
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#pragma omp parallel

{

int v;

int* myMax = localMax.getMyCopy();

while(pi->next(v)) {

if (v > *myMax)

*myMax = v;

}

}

max = localMax.reduce(Reduction::MAX);

Each thread gets a pointer to its thread-local value through the getMyCopy()

method. Finally, when all threads have finished their work, the reduce()method
is invoked to perform the specified reduction on all thread-local values and re-
turn the final result. Note that the example Reduction::MAX used with the
reduce() method is not type-specific (unlike the Java implementation above)
since C++ supports operator overloading. Therefore, the supplied reductions
work for any data type, as long as the data type supports the respective opera-
tion. As an example, if MAX is to be used to reduce a list of MyClass objects, then
the MyClass class needs to have the > operator defined. Also, user-defined types
need to have a copy constructor defined so that the values inside Reducible may
be initialised correctly for each thread.

The advantage of this approach compared to related work (discussed later in
section 3.2) is that only minor modifications are required for the sequential code.
In fact, the structure of the code remains unchanged when used in combination
with OpenMP. In the case that OpenMP is not used, this concept becomes
especially useful since the programmer does not have to manually implement
the reduction.

Figure 3.5 shows a visualisation of the above code example. The Parallel
Iterator (ParIterator *pi) is used on a list (List list) of 8 numbers and
is traversed by two threads (A and B) using a static scheduling policy with
chunk size of 2. The shaded numbers in list correspond to iterations for
thread A, while the white numbers correspond to iterations for thread B. The
Reducible object stores private copies of the maximum for each thread and is
updated as each thread progresses.

Figure 3.5 shows the state of the reducible object after 2 elements have been
processed by each thread (so far thread A got 25 and 9, while thread B got 19
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Figure 3.5: Visualisation of the Reducible object (using the alternative inter-
face), situation shown after 2 elements have been processed by each thread.
Thread A has been allocated the gray elements, while thread B has been allo-
cated the white elements from list.

and 21). The most recent element assigned to each thread is stored in variable
v (9 and 21 respectively for threads A and B). The maximum element traversed
by each thread is stored in myMax (25 and 21 respectively). When all iterations
have been completed, the values stored in the reducible object will be reduced
into one final value (achieved through the reduce() method).

For languages such as C++ that support function pointers, an even simpler
solution is provided to create user-defined reductions. Rather than creating an
instance of an interface, the programmer only needs to define a method reducing
two elements into one:

Color combineRGB( Color a, Color b ) {

// User code defining reduction logic

}

A reduction may then be performed as usual, only this time specifying the
user-defined method:

Color finalColor = globalColor.reduce(combineRGB);
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3.1.5 Break semantics

An important concept in iterative computation is the break statement. In a
sequential loop, this statement stops the execution of any more iterations in the
loop. But in a loop being executed by multiple threads, does the break state-
ment mean to cancel only in the local thread or across all threads? The deci-
sion should be left to the developer, since there are legitimate cases for both
approaches as discussed below. The simple, but powerful, concept below has
been implemented for both the C++ and Java versions.

The programmer needs to be aware of an important aspect before break-
ing from a parallel environment [86]. In the sequential version of a loop, the
break occurs at a particular iteration x after completing a subset S of the entire
iteration space. In the parallel traversal of the loop, iterations are partitioned
between the different processors according to a particular scheduling policy. If
the parallel loop terminates also at iteration x, the completed iterations are not
necessarily the same as those completed during the sequential version (subset
S). However, for a large and common class of problems this does not matter
(this condition is in most cases the same as the condition that the iterations
are independent). A prominent example is searching in a data structure until a
certain object has been found.

3.1.5.1 Global break

The most likely type of break to be performed in a parallel loop is that of
a global break: this is when the programmer wishes to cancel loop iteration
across all threads. For example, an item has been found in a parallel search or
the user pressed the cancel button. In such situations, all threads should stop
their iterations. This is achieved by one thread invoking globalBreak() on
the Parallel Iterator. All threads will then receive a false the next time they
call hasNext() and they all return synchronised from this last hasNext() call.
The advantage of this approach is that each thread breaks out of its loop in a
controlled manner at an iteration boundary.

boolean itemFound = false;

while ( pi.hasNext() ) {

itemFound = searchDocument( pi.next(), searchQuery );

if ( itemFound )

pi.globalBreak();
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}

In this example, multiple threads use a Parallel Iterator to traverse a collection of
documents. If one of the threads finds the search query in one of the documents,
then all threads are requested to stop using the globalBreak().

Without the break semantics the iterator could not be used for search, or
only in a naive implementation by always covering all iterations even after the
target has been found. The benefit can be analysed statistically: if the ’solution’
is at a random position in the iteration space, a single processor on average
needs to do N/2 iterations. For P processors this becomes N/2P iterations, as
each processor gets N/P iterations (balanced load). Without the global break,
the entire iteration space always needs to be explored, hence resulting in N/P
iterations per processor. This difference is a factor of 2 in average speedup.

3.1.5.2 Local break

An alternative type of parallel loop breaking is that of a local break: only the
current thread wishes to cancel, while the other iterations should still be pro-
cessed. An example includes a program checking whether too many threads are
being used and decides the current thread should stop iterating (to reduce disk
contention, for instance). In this case the thread should execute a break with
local semantics so that iterations for the other threads are not affected. This
is achieved by invoking a localBreak() to allow the Parallel Iterator to clean
up, such as releasing any elements previously allocated to the breaking thread.
Even though a thread successfully calls localBreak(), the hasNext() remains
a synchronisation barrier (section 3.1.1) to ensure that no thread (including the
breaking thread) prematurely progresses past the loop:

while ( pi.hasNext() ) {

resize( pi.next() );

if ( tooManyThreads ) {

boolean broke = pi.localBreak();

...

}

}

An important aspect of the local break is that it guarantees unprocessed ele-
ments (originally assigned to the breaking thread) to eventually be processed;
this is what distinguishes a global break from a local break. Even if all threads
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called localBreak(), the Parallel Iterator will guarantee that at least one thread
remains to traverse any unprocessed elements. Therefore, a boolean is returned
from the localBreak() to denote whether the current thread was successfully
excused from traversing the loop.

The next question therefore is, how are the unprocessed elements distributed
amongst the remaining threads? If a thread calls localBreak(), then all it’s
previously allocated elements are released. If there are still other threads travers-
ing the Parallel Iterator, then they share these elements (after those threads
complete their normal iterations) using a dynamic schedule with chunk size 1
(regardless of the original schedule). In such a successful call to localBreak(),
true is returned since that thread has successfully broken locally.

If the thread calls localBreak(), but all the other threads have completed
(and are waiting at the barrier), then that thread will end up executing the
elements itself (therefore the localBreak() has no effect and returns false). If
multiple threads attempt to call localBreak(), then all of them will succeed ex-
cept the last thread. Therefore, the last thread does all the remaining elements,
ensuring that all elements are processed; a localBreak() implies that the user
wants the elements to still be processed, otherwise a globalBreak() should be
used.

3.1.6 Exception handling

An exception is an event that diverts a program from its normal execution
flow [54]. Many programming languages support exceptions to separate error-
code from the actual user code and generalise error handling. This potentially
produces more readable and efficient code since error handling is not integrated
within the normal execution flow. Exceptions are important in object-oriented
languages, hence this section will discuss the relation of the Parallel Iterator
and exceptions.

The duties of the Parallel Iterator are solely to dispense elements amongst
threads. As such, the Parallel Iterator must be aware of what the threads are
doing. Consequently, the Parallel Iterator itself cannot “catch” exceptions. How-
ever, when used in combination with standard exception handling mechanisms,
the Parallel Iterator provides a convenient interface to manage exceptions in a
meaningful way in a parallel environment. Consider the following loop being
executed by multiple threads using a Parallel Iterator:

while ( pi.hasNext() ) {
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...

// Exception thrown

...

}

In the Java threading model, for example, an exception encountered within
this loop will be propagated up the call stack. If the exception is unhandled,
the thread will terminate: all the other threads continue executing and are com-
pletely oblivious to the thread’s termination. Even if the exception is eventually
handled (but not handled within scope of the Parallel Iterator), then that thread
has still abruptly exited traversal of the parallel loop without the Parallel Iter-
ator’s awareness. All the other threads will forever wait at the barrier since the
(potentially terminated) thread still has not come back to call hasNext.

To overcome this, exceptions must be caught (either using a try/catch or
try/finally) within the Parallel Iterator’s scope so that the Parallel Iterator may
be acted upon; otherwise, the Parallel Iterator remains unaware of the thread’s
state and continues forcing other threads to wait (this idiom of catching po-
tential exceptions is equivalent to that of Java Locks [94], where any potential
exceptions must be caught in order to release the Lock). When a thread en-
counters an exception, the following behaviours are possible:

• Do nothing:
The thread catches an exception but decides to ignore it, so it continues
to call hasNext() and next() as usual

• Stop locally:
The thread catches an exception and decides only it should stop iterating,
so it calls localBreak()

• Stop globally:
The thread catches an exception and decides all iterations should stop, so
it calls globalBreak()

This shows that the localBreak() and globalBreak() of section 3.1.5 are
crucial in meaningful exception handling.

The register helper method

It is difficult to define what should happen when an exception is encountered
in a parallel loop [109]. In a sequential loop, an exception may be encountered
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by any iteration: the exception is propagated up to the nearest handler and it
is assumed this was the only exception to have occurred. However, in a parallel
loop it is possible that multiple concurrent iterations encounter an exception
(for example, FileNotFoundException). In such a case, the programmer may
want to know about all the exceptions that occurred. Due to the crucial role of
exceptions in Java [70], the following has been implemented for the Java version
of the Parallel Iterator.

The hasNext() method acts as a boundary between the iterations: a new
iteration i is said to begin when hasNext() is invoked, regardless of whether
the element has been accessed yet or not. If the element has not been accessed
yet (using next()), then we are in the pre-next() region (this implies that the
thread is intending to invoke next() to access the element). If the element
has been accessed, but still not finished the iteration, then we are in the post-
next() region. The iteration of i is considered complete only when the thread
invokes hasNext() again, where the next element becomes the current element
being traversed by this thread.

In order to handle exceptions in parallel, the programmer would need to man-
ually implement logic to record the exception, the iteration in which it occurred,
the thread that encountered it and then notify the other threads. Managing all
this is difficult for the programmer, especially in determining the current iter-
ation if the exception occurs in the pre-next() region. The Parallel Iterator
provides a helper method to conveniently record this information. The pro-
grammer is only required to catch exceptions (standard procedure as if using a
sequential iterator). When an exception is caught, register(Exception) is
invoked which will record the following information (storing them within a
ParIteratorException):

• The Exception encountered

• The Thread that encountered the exception (for potential debugging pur-
poses)

• The iteration in which the exception occurred (determined using hasNext()
as iteration boundary)

What is the expected behaviour when a thread encounters an exception? Is this
exception bad enough that all iterations should stop, or should it only be noted
down while processing of the other iterations continue? The Parallel Iterator
allows the programmer freedom in deciding how to treat exceptions. Consider
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the following example of processing a collection of files, where a number of
exceptions could arise. For example, some files cannot be processed since they
are not found (consequently causing a FileNotFoundException), whereas other
exceptions require that the entire iteration space be canceled:

while ( pi.hasNext() ) {

try {

...

// Exception thrown

...

} catch(FileNotFoundException fe) {

// no thread will stop, just record exception

pi.register(fe);

} catch (TooManyThreadsException te) {

pi.register(te); // disk contention, reduce thread count

pi.localBreak(); // only the current thread will stop

} catch (DiskFullException de) {

pi.register(de); // full disk, might need to clean up

pi.globalBreak(); // all other iterations should stop

}

}

This example shows, depending on the exception encountered, the different
possible behaviours. In some cases, the programmer may only wish to record
the exception and then continue processing the other elements; in other cases,
the programmer may wish to either cancel the current thread or all threads.
Even if the programmer does not wish to use the register() method provided,
they must at least catch the exceptions so that the thread does not terminate
before it has a chance to inform the Parallel Iterator (otherwise the other threads
will continue waiting for it to complete). This requirement is equivalent to that
demanded by Java locks, where any potential exceptions must be caught in
order to release a locked Lock [94].

Finally, when the Parallel Iterator has completed traversing the collection,
all exceptions that occurred during the parallel traversal may be accessed using
getExceptions() (the programmer may then use Java standard methods such
as printStackTrace() on the exception object to determine the exact location
at which the exception occurred):
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ParIteratorException[] piExceptions = pi.getExceptions();

for (int i = 0; i < piExceptions.length; i++) {

ParIteratorException pie = piExceptions[i];

// object for iteration in which exception was encountered

Object iteration = pie.getIteration();

// thread executing that iteration

Thread thread = pie.getThread();

// actual exception thrown

Exception e = pie.getException();

...

// print exact location of exception

e.printStackTrace();

...

}

3.1.7 Iterating over multiple collections

So far, the various features of the Parallel Iterator have been explored in the
form of simple examples. Now, an example that aims to help envision how the
Parallel Iterator is used in more complex applications is presented. Consider an
application where the user wishes to ensure that the contents of two directories
are identical. If the filenames in both directories do not match, then the com-
parison is immediately discontinued. Otherwise, the contents of each file are
compared and any differences stored to a map.

In this implementation, the files for a particular directory are contained
within a sorted set. The elements (i.e. the files) within the sorted sets have
a one-to-one mapping (the ith element in the first collection relates to the ith

element of the second collection):

SortedSet<File> dirOne = ...

SortedSet<File> dirTwo = ...

When these collections are processed in parallel, the correctly paired elements
from each collection must be used. For example, when thread A processes the
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10th element from the first directory, then it should also be assigned the 10th

element from the second directory (i.e. comparing the same file from both
directories). Naturally, the Parallel Iterator encapsulates this co-ordination of
elements between the different collections to ensure a correct distribution:

1: ParIterator<File> pi_one =

ParIterator.createParIterator(dirOne, PI.Schedule.STATIC);

2: ParIterator<File> pi_two =

ParIterator.createParIterator(dirTwo, PI.Schedule.STATIC);

3: Reducible<Map<String,List>‌> diffs = new Reducible();

4: // each thread does this

5: Map<String,List> mydiffs = new HashMap<String,List>();

6: diffs.set(mydiffs);

7: while (pi_one.hasNext() && pi_two.hasNext()) {

8: File f1 = pi_one.next();

9: File f2 = pi_two.next();

10: if (!f1.getName().equals(f2.getName())) {

11: // files in directory do not match

12: pi_one.globalBreak();

13: pi_two.globalBreak();

14: directoriesMatch.set(false);

15: } else {

16: List contentDiff = getDifferences(f1,f2);

17: if (contentDiff != null) {

18: // contents in files do not match

19: mydiffs.put(f1.getName(), contentDiff);

20: }

21: }

22: }

...

23: Map<String,List> allDiffs = diffs.reduce(myMapReduction);

Lines 1 and 2 create a Parallel Iterator for each respective directory, while line 3
creates the Reducible to store the differences between file contents. Beginning
on line 5, each thread creates a private map to store the differences, and this
reference is stored to the Reducible (line 6). Because of this Reducible object,
the programmer does not need to make use of synchronised collections in this
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example.
Each thread keeps traversing both Parallel Iterators (line 7) and accesses the

files from each respective directory (lines 8 and 9). If the names of the two files
do not match, then the directories do not contain identical files (the collections
are sorted). In such a case, a globalBreak() is called (lines 12 and 13) to stop
the other threads iterating both collections. Otherwise, if the files have the same
name, then their contents are compared. A helper method, getDifferences(),
returns any differences between the files (line 16). These differences, if any, are
stored in the thread’s private map for the respective file (line 19). Finally, a
user-defined reduction is performed on line 23 to collate all the differences.

Clearly, such an application is only semantically correct if the programmer
can determine the underlying schedule that is used. With the Parallel Itera-
tor’s current implementation, a static schedule immediately allows for such an
application: in a dynamic or guided schedule, the chunks might not line up to
the same thread if the timing is off. Future versions of the Parallel Iterator
will investigate allowing multiple collections to be traversed using dynamic and
guided scheduling; this requires that the Parallel Iterators have knowledge of
each other (in order to maintain the one-to-one mapping and avoid mis-aligned
chunks of the different collections).

Without the Parallel Iterator, programmers might feel discouraged in at-
tempting a parallel solution and may therefore resort to a sequential solution.
It would be considerably more work to manually implement this application
using, for example, concurrent collections or locking primitives. The Parallel
Iterator, however, elegantly maintains the mapped distribution of elements.

3.1.8 Tree Parallel Iterator

The Parallel Iterator is a powerful way to parallelise code. One of the conditions
of using it efficiently and elegantly is that there are no dependences between the
iterations (otherwise manual dependence control must be implemented by the
user). There are some collections, however, whose processing requires a certain
partial order. A very important and widely used class of such collections are
tree structures. When traversed, it might for example be important that an
element (node) is processed before its child node (i.e. top-down traversal), or
the other way round (i.e. bottom-up). Even with such a restriction, a lot of
iterations can be processed in parallel (for example all nodes on the same level
are independent of each other, and in particular all leafs).
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When processing such a collection in parallel, one would like to separate
the business logic from the code responsible for the correct parallel execution,
including scheduling and precedence order enforcement. This thesis proposes
a generic and flexible Tree Parallel Iterator that does exactly that. It imple-
ments the same simple interface as the regular Parallel Iterator. As such, the
Tree Parallel Iterator stands in the tradition of patterns or skeletons for paral-
lel processing [36]. It provides an encapsulated, tested and optimised form of
parallel processing. Apart from its direct contribution, it illustrates the power-
fulness of the Parallel Iterator concept in conjunction with sophisticated forms
of parallel processing. Many other parallel processing patterns can be elegantly
implemented using this concept.

In order to traverse a tree, one needs a tree collection. Since Java does not
have a tree collection as part of the Collections framework, a Node interface is
defined to represent the nodes in a tree. All nodes in a tree, except for the
root node, have a parent node. A node may have children nodes, otherwise the
node is a leaf node. Finally, a node has a name and stores a value. Below is
the definition of a simple Node interface:

public interface Node<E> {

public void setValue(E value);

public E getValue();

public Node<E> getParent();

public List<Node<E>‌> getChildren();

public boolean addChild(Node<E> child);

}

By storing data within this interface, users may take advantage of the Tree
Parallel Iterator. In addition to this generic Tree Parallel Iterator, a Document
Object Model (DOM) [94] Tree Parallel Iterator is defined to traverse a DOM
Document. Such a Document represents an entire HTML or XML document, and
will be used in the following example. Figure 3.6 shows the relation of these
classes from the user’s point of view: the Tree Parallel Iterator is a generic
extension of the Parallel Iterator.

The discussion throughout this section is generic for the Tree Parallel Iter-
ator (i.e. it applies to both NodeParIterator and DOMParIterator, and any
potential sub-classes of TreeParIterator). The concrete example application
involves traversing a Scalable Vector Graphics (SVG) file [37]. The SVG file
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Figure 3.6: The Tree Parallel Iterator (TreeParIterator) is an interface ex-
tension of the Parallel Iterator (ParIterator). Currently two implementations
of the Tree Parallel Iterator have been developed: one to allow traversal of
DOM Documents (DomParIterator), and one to allow traversal of an arbitrary
collection implementing the Node interface (NodeParIterator).

(a) Contents of an SVG file, in XML format (b) Graphical outcome

Figure 3.7: Example of an SVG file, where vector-based graphics are defined in
XML format. This example defines 3 shapes.

is essentially an XML document that defines vector-based graphics. First, the
general scheduling of the Tree Parallel Iterator is explained. Second, the SVG
example is further explored to illustrate the Parallel Iterator’s ability to be used
elegantly for more complex collections. Figure 3.7(a) shows an example SVG
file that defines 3 shapes and the respective output in figure 3.7(b).

Partial ordering in the Tree Parallel Iterator

The Tree Parallel Iterator implements a well-established work-stealing sched-
ule [17]. Here, the schedule in terms of the partial order semantics from the
user’s point of view is discussed; the implementation is discussed in more depth
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Figure 3.8: Partial ordering with the Tree Parallel Iterator: when a thread
is assigned a node (e.g. node 1), this guarantees the parent (node 0) has al-
ready completed and the children (nodes 3, 4, 5) will not be scheduled until it
completes.

in section 4.1.7. As will be shown in this section, the user code to traverse a
more complex collection (in this case a tree) is no more complicated than the
code to traverse a simple collection (such as a list); this is essentially the ob-
jective behind iterators! This shows how the Parallel Iterator concept may be
extended to incorporate other schedules to traverse other collection types.

Figure 3.8 shows a simple example of a tree, consisting of 8 nodes. The
partial ordering requires that a node (i.e. an iteration in the Parallel Iterator)
only be executed when its parent has completed. Therefore, initially only the
root node may be processed. When the root (node 0) has completed, then nodes
1 and 2 may be scheduled; nodes 3 to 7 remain unscheduled until their respective
parent node has completed. This partial ordering retains the structure of the
tree; without such a policy, then the nodes in the tree are no different than
elements in a list (in which case the standard Parallel Iterator may be used). In
addition to maintaining the tree structure, this policy allows us to achieve the
following:

• A node may safely inherit computed values from its parent node (since
the parent has completed),

• A node n (and subsequently the sub-tree rooted at n) may safely be re-
moved during parallel traversal (i.e. extending the remove() method from
the iterator interface),

• Similarly to remove(), a replace()method may also be defined in parallel
semantics (illustrated below).
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Note that other scheduling policies are possible for trees (for example performing
a bottom-up traversal rather than top-down), all without changing the user-code
(only the logic inside the Parallel Iterator needs to be implemented). Since the
objective is to illustrate the elegance of the Parallel Iterator concept from the
user’s point of view, other scheduling schemes are not elaborated.

SVG shape recognition example

The example application is a parser that reads an input SVG file containing
various shapes defined as generic path elements1. A path is essentially a finite
series of x,y points, meaning that a circle might be defined by multiple points
around its circumference (rather than defining it using the center point and ra-
dius). Not only does this reduce the graphics resolution (i.e. it is no longer truly
scalable as SVG should be), but it also increases the SVG file size; for example,
a circle defined as a path element consumes around 750 bytes, while the circle
defined using the circle element only consumes around 70 bytes. Therefore, the
program transforms the input SVG file into a true SVG file, by replacing paths
with the correct shapes and their parameters.

In this example, DOM Document represents the tree being traversed:

DOMParser parser = new DOMParser();

parser.parse(new File(“shapes.svg”));

Document doc = parser.getDocument();

Once the Document has been constructed, it is passed to the Tree Parallel Iter-
ator as follows:

DomParIterator pi = TreeParIterator.createParIterator(doc, numThreads);

and a number of Reducible objects (section 3.1.4.1) are created to calculate
the total number of each shape and the biggest shape:

Reducible<Integer> numCircles = new Reducible<Integer>(0);

Reducible<Integer> numRectangles = new Reducible<Integer>(0);

Reducible<Shape> biggestShape = new Reducible<Shape>(null);

1This application is motivated by the SVG export feature of the OpenOffice.org application
suite, which defines all shapes as generic path elements.
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By specifying the Document (i.e. the tree) and the number of threads, a Parallel
Iterator has just been constructed: it may be used as seen throughout this
chapter. The application is presented in full below, and then the various parts
are explained:

// each thread does this

...

// private variables for each thread

1: int myCircles = 0;

2: int myRectangles = 0;

3: Shape myBiggestShape = null;

5: ...

// start loop

6: while (pi.hasNext()) {

7: Node n = pi.next(); // DOM Node

8: ...

9: Element e = (Element) n;

10: if (e.getNodeName().equals(“g”)) {

// element is a group, delete if attribute set to invisible

11: String visibility = e.getAttribute(“visibility”);

12: if (visibility.equals(“invisible”))

13: pi.remove();

14: } else if (e.getNodeName.equals(“path”)) {

// element is a path of points, parse into a shape

15: Shape shape = ShapeGuessor.guess(e);

// update myBiggestShape

16: if (myBiggestShape == null) {

// first shape for this thread

17: myBiggestShape = shape;

18: } else if (shape.getArea() > myBiggestShape.getArea()) {

// new shape is bigger than the current biggest shape

19: myBiggestShape = shape;

20: }

21: switch (shape.getType()) {

// switch on type of shape

22: case CIRCLE:

// shape is a circle, record the circle’s attributes

61



23: numCircles++;

24: Circle circle = (Circle) shape;

25: int radius = circle.getRadius();

26: int centerX = circle.getCenterX();

27: int centerY = circle.getCenterY();

// create a new element to represent the circle

28: Element newElement = createElement(“circle”);

// set the attributes to the new circle element

29: newElement.setAttribute(r, String.valueOf(radius));

30: ...

// replace the old path element with the new circle element

31: pi.replace(newElement);

32: case RECTANGLE:

33: ...

34: default:

35: // unknown shape, keep as path

36: }

38: }

39: } // end loop

// update Reducible values with the private values

40: numCircles.set(myCircles);

41: numRectangles.set(myRectangles);

42: biggestShape.set(myBiggestShape);

The highlight of the Tree Parallel Iterator is that the user code to traverse
the nodes essentially looks identical to the standard code to traverse any of
the other collections. This is the whole idea behind iterators: to hide the
collection implementation. The Tree Parallel Iterator, just like the Parallel
Iterator, remains faithful to this idea.

The first point of interest in the above example is that of the remove()

method on line 13. This behaves consistently with the idea discussed in section
3.1.3.4: the last node returned by the Parallel Iterator is to be removed from the
underlying collection. However, the semantics of a remove() on a tree varies
slightly compared to a flat collection (such as a list). In a tree, removing a
node implies that the children nodes are also to be removed. Therefore, calling
remove() ensures that the children nodes will not be scheduled for traversal
(since they were removed when their parent node was removed). Achieving this
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is possible, even in a parallel traversal, due to the semantics discussed in figure
3.8 since the children nodes have not been scheduled.

The other point of interest is that of line 31. Similar to the semantics of
remove(), the Tree Parallel Iterator also supports a replace() method that
allows a new element to be put in place of the last element returned by the Tree
Parallel Iterator (this functionality is essentially a thread-safe wrapper around
the replaceChild() method provided by the DOM Node interface). In this
example, path elements are replaced with the respective shape element. Again,
this is fine in a parallel traversal since the parent has already completed and the
children not started yet.

When each thread completes the loop, it updates the Reducible object to
denote the respective sub-results it has computed (lines 40-42). Finally, the
main thread will execute the reduction across the respective Reducible values
(notice the use of a customised reduction for the Shape object):

int totalNumCircles = numCircles.reduce(Reduction.IntegerSUM);

int totalNumRectangles = numRectangles.reduce(Reduction.IntegerSUM);

Shape finalBiggestShape = biggestShape.reduce(new Reduction<Shape> () {

public Shape reduce(Shape first, Shape second) {

if (first.getArea() > second.getArea())

return first;

else

return second;

}

});

This example did not make use of features such as parallel break semantics
(section 3.1.5) or exception handling (section 3.1.6) in order to maintain the
example size; however, these features may still be used with the Tree Parallel
Iterator. In section 4.2.4, performance benchmarks of the Tree Parallel Iter-
ator are presented (both for this particular SVG example, as well as another
computationally intensive application).
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3.2 Related work

The importance of loop parallelisation and loop scheduling have been extensively
studied before [3, 26, 61]. The work presented here is distinct since it promotes
preserving the qualities of object-oriented sequential code while still providing
flexibility. It applies standard parallel concepts (such as scheduling policies and
reductions) in a way object-oriented programmers are familiar with, namely
using iterators and without code restructuring. The semantics for local and
global breaks have also been integrated with the Parallel Iterator. In other
tools, if the programmer wants the behaviour of the global break then they
must manually implement this.

Over 100 proposals for concurrency in object-oriented languages were sur-
veyed in [85]; the most influential and relevant ones are discussed below in
addition to others. At first glance, it may seem that many previous attempts
have proposed a solution to the problem of parallel iteration in object-oriented
languages. However, the Parallel Iterator presented here differentiates in im-
portant aspects.

Some approaches such as DatTel [13], Parallel Standard Template Library
(PSTL) [64] and Standard Template Adaptive Parallel Library (STAPL) [5]
aim to provide parallel extensions to the Standard Template Library (STL) [92]
in C++. DatTel is a data-parallel template library that overloads certain STL
functions. Although the parallelism is hidden from the user, DatTel is not suited
for mainstream object-oriented parallel computing. It is restricted to containers
composed of simple data types and therefore does not support collections with
user-defined types which is an essential aspect in object-oriented programming.

PSTL provides a par_apply algorithm; STAPL provides a pforall paral-
lel region manager. Both of these are used similarly to the parallel_for in
Threading Building Blocks (TBB) [63] which was recently released by Intel for
parallel programs in C++. Unfortunately, STAPL, PSTL and TBB do not al-
low the user to directly traverse collections (examples of valid ranges to traverse
include integers, STL random iterators and pointers). The main problem is the
restructuring of the code and the creation of a new object. First, the program-
mer must create a function object to specify work to be done for a range of
elements. Secondly, the context of the code changes since now the logic is in
another class (the function object).

CC++ [30] provides a parfor statement (parallel semantics of the sequen-
tial for statement) to iterate over a collection where each iteration is executed
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in parallel. However, efficiency is lost when iterations contain low computation
since the initialisation, update and test parts of the parfor loop remain sequen-
tial. In [8], a for_each_par template method was proposed based on the idea of
range partition adaptors which converts a range into a collection of sub-ranges.
However, only collections with random access iterators are supported and the
user must create objects to partition the collection. Other attempts exist but
have been superseded by OpenMP’s parallel for [82]. Despite OpenMP’s
success, it is insufficient for many object-oriented collections as it can only be
applied to an integer range and the collection needs to be accessible using the
loop index. It therefore cannot be used directly to traverse many collections,
such as linked-lists or sets.

The style and purpose of iterators in scientific-targeted languages such as
Chapel [66] is substantially different from that of Java or C++. The purpose of
iterators here is to traverse a collection; Chapel iterators on the other hand are
essentially functions that return a sequence of values (as opposed to a function
that only returns one value). Therefore, the iterator concept in Chapel is tightly
coupled with the loop; however, in Java and C++, iterators are associated with
a collection of elements [66]. The semantics and syntax of the Chapel iterator
is very similar to that of the CLU iterator [71].

Modern parallel languages (such as Chapel, Fortress [4] and X10 [33]) tend
to target large-scale scientific applications; therefore they focus on a distributed
memory model. Since this thesis addresses desktop applications in light of
mainstream multi-core processors, the focus is on a shared memory program-
ming model. The different target applications is further highlighted by the code
syntax of Fortress: it mimics that of mathematical notation as it is aimed for
scientists.

The Microsoft Parallel Extensions [76] to the .NET Framework support
parallel semantics of the foreach statement with the Parallel.ForEach static
method. Since the parallelism is controlled by the Parallel Extensions, the pro-
grammer does not have any control over threads, scheduling policies and parallel
break semantics. By catching an AggregateException, programmers may han-
dle exceptions thrown from within the body of the Parallel.ForEach method.
Although programmers can analyse the exceptions thrown, it is unknown in
which iteration or thread the exceptions occurred.

Some approaches support aggregate operations, such as PLINQ [77] and
ParallelArray [69], thereby removing the loop altogether. Consider for example
ParallelArray. The collection to traverse in parallel is stored in a ParallelArray
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class:

ParallelArray<Image> images = ...

This allows various operations to be applied:

images.apply(resizeProcedure);

By removing the loop, this is essentially a change in the programming style; it
provides a higher level and black-box style of programming. Whether this is
an advantage or disadvantage is a matter of preference: those with database
programming or functional programming experience may prefer this style [69].
The Parallel Iterator is not a new programming style: it is an extension to
the sequential iterator using the same object-oriented principles. For example,
sometimes the programmer may want more explicit control: the Parallel Iterator
allows this with minimal difficulty, such as fine-tuning the number of threads,
scheduling policy, or early termination (with local/global semantics).

Reductions

OpenMP provides a reduction clause but is limited to only a few predefined
reductions; furthermore, aggregate types (such as arrays), pointer types and
reference types may not appear in the reduction clause. TBB and QtConcur-
rent [104] support user-defined reductions. But since TBB requires reductions
to be defined within a function object, this causes code restructuring and con-
text change. Furthermore, multiple reductions cannot be defined within the
same class definition.

More recently, QtConcurrent provides a mappedReduced method that is
based on MapReduce [40], where the programmer specifies two methods. The
first method (executing in parallel) defines the computation to be performed on
individual elements from the collection (the map). The second method (execut-
ing sequentially) combines the intermediate results into one final result (the re-
duce). Just like TBB’s reduction, this requires restructuring the loop code into
a new method defining work for one element; every loop iteration now results
in a separate method call. QtConcurrent’s reduction method is executed as
many times as there are elements. With the Parallel Iterator, reductions are
only executed as many times as there are threads. This potentially improves
performance since less time is spent in the reduction stage, as observed in the
experimental results of section 4.2.3.2.
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Tree Parallel Iterator

The implementation of the work-stealing [28] schedule is based on the ran-
domised work-stealing variant [17]. Processing an XML document in parallel
has been explored using both static [83] and dynamic [72] partitioning schemes.
However, the implementation of the Tree Parallel Iterator was merely to demon-
strate how the simplicity of the Parallel Iterator concept is applied to hide the
details of traversing complex data collections in parallel.
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Chapter 4

Parallel Iterator
implementation and
performance

This chapter discusses the Parallel Iterator’s implementation and performance.
Although the Java version is mainly focused upon, the C++(Qt) version is also
addressed.

4.1 Implementation

The Parallel Iterator uses the sequential iterator’s standard interface: hasNext()
only returns a boolean while the next() method returns a reserved element, if
any, for the calling thread. Although the calls of hasNext() and next() are
interleaved, they need to appear atomic to the threads accessing the Parallel
Iterator. The primary purpose of the Parallel Iterator’s hasNext() method is
to reserve elements. If hasNext() has reserved at least one element for the
thread, then true is returned. Otherwise the thread waits at a barrier until
all threads complete, i.e. all iterations have been executed, and then returns
false to denote the traversal has completed.
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4.1.1 Scheduling policies

The Parallel Iterator has different implementations depending on factors such as
the collection type, scheduling policy and chunk size. Before discussing schedule-
specific implementation details, an overview of the main concepts is presented.
This is largely based around two categories of collections:

• Random access collections (section 4.1.1.1) provide index-based constant-
time access to elements in the collection, such as array-lists or vectors.

• Inherently sequential collections (section 4.1.1.2) do not provide index-
based constant-time access to the collection, such as linked-lists or sets.
The Parallel Iterator therefore uses a sequential iterator to access elements.

Note that the copying, locking and other management discussed below are all
implemented within the Parallel Iterator and hidden from the user.

4.1.1.1 Random access collections

If the collection to traverse supports index-based access in (amortised) constant-
time, then index computations are performed within the Parallel Iterator to keep
track of the next iteration for each thread. Consequently, elements are accessed
directly using the integer index. Each thread stores the following integers:

• nextIndex specifies the next index to iterate

• chunkStop specifies the index just outside the current chunk

Using these two indices, and n to denote the collection size, the index boundary
test (used below) is defined as follows:

if ( nextIndex > n)

// no more elements for this thread

else

chunkStop = min( chunkStop ,n) // “left-overs” for last chunk

Whenever nextIndex is less than chunkStop, this means at least one element
(i.e. the element at nextIndex) remains for the thread. If so, this element is
returned. Otherwise, depending on the scheduling policy, one of the following
is performed to determine the next chunk of elements:

• Static scheduling :
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1. Increment nextIndex by
chunksize×(numThreads −1)
This moves nextIndex to the start of the next chunk

2. Increment chunkStop by

chunksize×numThreads
This moves chunkStop to the end of the next chunk

3. Perform index boundary test

• Dynamic or guided scheduling :
For dynamic and guided scheduling, nextFree is a shared integer index
that represents the start of the next chunk to be allocated.

1. Obtain exclusive access to nextFree by acquiring a lock

2. Update nextIndex to nextFree

3. (For guided scheduling) calculate new chunksize

4. Increment nextFree by chunksize

5. Perform index boundary test

6. Update chunkStop to nextFree

7. Release lock

Figure 4.1 shows an example where a list of 9 elements are being traversed using
a chunk size of 4. Thread A has iterations 0, 1, 2, and 3 while thread B has
iterations 4, 5, 6 and 7. If this is static scheduling, then thread A also gets
iteration 8. If this is dynamic scheduling, then the first thread to finish their
chunk will get iteration 8. The elements shaded in the collection are those that
have been accessed by their respective thread. In the next iteration, thread
A will execute 3 while thread B executes 5.

4.1.1.2 Inherently sequential collections: on-demand copying

In section 4.1.1.1, elements from the underlying collection were accessed using
integer indexing. Unfortunately, this is inefficient for collections that do not
support constant-time access to random elements. The working principle now
is that the Parallel Iterator essentially acts as a thread-safe wrapper to the se-
quential iterator. Since the sequential iterator is traversed only once, this means
the sequential iterator will not usually be pointing to the next correct element
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Figure 4.1: Implementation for random access collections. The Parallel Itera-
tor maintains indexes representing the next element for each respective thread.
Situation shown after the first 4 elements have been allocated to thread A (3 of
which have completed) while the next 4 elements have been allocated to thread
B (1 of which has completed).

for the current thread. In order to handle this, elements need to be copied
(accessed using the sequential iterator) and reserved for the correct thread to
access them. During this process, the sequential iterator is locked to avoid other
threads interrupting.

The semantics of copying as used throughout this section must be clarified.
Copying actually refers to retaining a pointer to the original object and storing
this pointer in a buffer (essentially an array). It does not refer to making a
deep clone or duplicate of the original object. In this way, minimal amounts of
memory and time are used. The second concept used by the Parallel Iterator
that extends copying is on-demand copying. Rather than copying all the
elements of a collection, elements are copied into the buffer only as required.
The advantages of on-demand copying is that copying is performed in parallel
as other threads are executing iterations. Also, in the case the Parallel Iterator
breaks (as in section 3.1.5), less time would have been wasted on unnecessary
copying.

The approach differs depending on the scheduling policy of the Parallel Itera-
tor (the implementation for guided scheduling is essentially identical to dynamic
scheduling):
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Dynamic scheduling When a thread first calls hasNext, it copies the next
chunksize iterations: this requires exclusive access (by acquiring a lock) to the
sequential iterator as the next chunksize elements are copied to the thread’s
private subarray. Locking is not needed for every call to hasNext, but is per-
formed by each thread only once every chunksize calls to hasNext. Each
thread keeps up to chunksize unprocessed iterations in its private subarray at
any one time. The first thread to complete its private subarray will copy the
next chunksize iterations. Subsequent hasNext calls will not require locking if
there are unprocessed elements remaining in the thread’s private subarray.

Figure 4.2 shows the internals of a Parallel Iterator used to traverse a linked-
list (an inherently sequential collection) using a dynamic scheduling policy with
chunk size of 3. In figure 4.2(a), thread B calls hasNext() for the first time.
Since none of the iterations have been requested yet, 3 elements are copied
over from the sequential iterator to the private buffer for thread B, and true is
returned to thread B as shown in figure 4.2(b). Thread B now has 3 iterations
reserved for it. Further calls to hasNext() by thread B do not affect the state
of the iterator since there are still 3 elements to be processed, and these are
only accessible when thread B calls next().

Copying is necessary when accessing inherently sequential collections such as
a linked-list since accessing elements from the collection takes time proportional
to the collection size. Only during such copying (inside a hasNext() invocation)
will locking of the sequential iterator occur. No locking occurs when a thread
calling hasNext() already has unprocessed elements in the private buffer. No
locking occurs inside next() also, since this method only accesses reserved ele-
ments from the private buffer.

Figure 4.2(c) shows the state of the Parallel Iterator when all elements have
been assigned to threads (due to hasNext()), but not necessarily processed yet
(since some are yet to be accessed using next()). Thread A has completed
iterations 3 to 5, while thread B is working on iteration 6 but has already
reserved iterations 7 and 8 as well (due to the scheduling chunk size). Therefore
thread A invokes hasNext() to see if any more elements remain, but false will
be returned.

Static scheduling Implementation of static scheduling is slightly more in-
volved compared to the other scheduling policies. Just as copying was per-
formed for dynamic scheduling above, it is necessary to copy elements here also
(since elements are most efficiently accessed using a sequential iterator since
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(a) Thread B is first (b) Thread B returns (c) Thread A calls
to call hasNext(). from hasNext() call. hasNext() but no more

elements remain.

Figure 4.2: Implementation of dynamic scheduling for inherently sequential
collections. When a thread’s private buffer is empty, elements are reserved
from the collection.

no constant-time access is supported to random elements). The difference now
is that the buffer size is collection size/number of threads. Consequently, the
static scheduling might need more memory compared to dynamic scheduling
(this could be significant for very large collections).

By definition, static scheduling requires that the iterations are allocated first
before any iteration is executed. But rather than naively copying all the elements
at the beginning, the elements are copied on-demand. This is illustrated using
the same collection of figure 3.3 where thread A is to be allocated iterations 0,
1, 4, 5 and 8 while thread B gets 2, 3, 6 and 7 (i.e. static cyclic scheduling with
chunk size 2). The Parallel Iterator for this implementation may be visualised
using figure 4.3. In figure 4.3(a), it is seen that only iterations 0 to 3 have been
copied over into the subarray section; thread A has also completed iteration
0 while thread B has completed iterations 2 and 3. The sequential iterator is
currently pointing at iteration 4 as the next element to copy across.

Assume now that thread B is ready for its next iteration, which should be
iteration 6. Since the sequential iterator is still pointing at 4, thread B copies
across all iterations up to iteration 7 as in figure 4.3(b); it then processes iter-
ation 6 and leaves iterations 4 and 5 for thread A. This is on-demand copying,
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(a) Before copy (b) After copy

Figure 4.3: Static scheduling with on-demand copy. Situation shown when
thread B needs its next iteration (element 6), but the sequential iterator still
points at element 4 (due for thread A) (a). Therefore, thread B also copies
elements on behalf of thread A (b).

where iterations are only copied when required. When thread A finishes itera-
tion 1, it will find that its next iteration chunk (iterations 4 and 5) has already
been copied over. The advantage of on-demand copying is that the copying is
not a startup cost, since the copying and processing (by other threads) occurs
at the same time and overlaps with computation.

4.1.2 Alternative interface implementation

As explained in section 3.1.1, the Parallel Iterator may take the form of an
alternative interface: the hasNext() and next() methods are combined into
one atomic next() method. The implementation however largely remains the
same, except that the elements are reserved in the next() method (as there is
no hasNext() method for this alternative Parallel Iterator interface).

With that said, there is an optimised implementation for this Parallel It-
erator interface when using a dynamic scheduling policy and a chunk size of
1, regardless of the collection type. Here, the Parallel Iterator is implemented
simply as a wrapper to a sequential iterator. Each call to next() on the Par-
allel Iterator involves acquiring a lock to the sequential iterator and calling
hasNext() on the sequential iterator. If hasNext() on the sequential iterator
returns true, then next() is invoked on the sequential iterator to retrieve the
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actual element before finally releasing the lock and returning the element.

4.1.3 Reductions

The Reducible class may essentially be viewed as an extended thread-local vari-
able with thread-local set() and get() methods (just like Java’s ThreadLocal
class [94]). In addition to behaving like a thread-local, the class defines a
reduce() method that accepts a Reduction object:

public class Reducible<E> {

private Map<Thread,E> locals = ...;

public E get() { ... }

public void set(E e) { ... }

public E reduce(Reduction<E> red) {

if (has not been reduced yet )

reduce local values and store result

else

return result

}

Unlike a typical thread-local method which behaves locally to the calling thread,
the reduce() method may be invoked by any thread. All the internal thread-
local values within the Reducible object are accessed and reduced to a sin-
gle result using the Reduction object (which defines an arbitrary reduction);
the result is then stored in the case reduce() is called again (i.e. the re-
duction is performed only once). Section 3.1.4.1 showed an example using
Reduction.IntegerMIN, which is one of many pre-defined reductions:

public interface Reduction<E> {

public E reduction (E a, E b);

public static Reduction< Integer > IntegerMIN =

new Reduction<Integer>() {

@Override

public Integer reduction(Integer a, Integer b) {

return a < b ? a : b;

}

};

public static Reduction< Integer > IntegerMAX = ...
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public static Reduction< Double > DoubleMIN = ...

...

}

The alternative interface for reductions (section 3.1.4.3) is implemented simi-
larly. The only differences include using function pointers as arguments to the
reduce()method (as opposed to a Reduction object) and thread-local values of
the Reducible object are accessed through pointers. Since C++ also supports
operator overloading, this interface allows the definition of type-independent
reductions:

class Reduction {

public:

template<typename T>

static T min(T a, T b) {

return a < b ? a : b;

}

...

};

To make use of type-independent reductions for arbitrary types, programmers
overload the respective operator. For example, to make use of the above min re-
duction to determine the smallest Shape, the < operator is overloaded:

class Shape {

public:

bool operator<(const Shape& other) const {

return area() < other.area();

}

};

4.1.4 Parallel remove

Supporting remove() is fairly straightforward. The remove() acts on the last
element given to the respective thread through next(). Consequently, the Par-
allel Iterator stores this element until the thread calls next() again (in which
case the new element is stored). In the case of most Parallel Iterator imple-
mentations, this element is stored into a collection containing elements to be
removed; at the end when all threads reach the synchronisation barrier, one
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thread commits all the deletions from the underlying collection. In the case of
Java, the removeAll() defined for the Collection interface is used to ensure
efficiency.

4.1.5 Parallel break

The local and global breaks are implemented as conditions inside the Parallel
Iterator. An invocation of localBreak() will set the condition for that thread,
as well as release any allocated elements (to allow another thread to traverse
them). The globalBreak() sets the condition for all threads. This way, all
subsequent calls to hasNext() made by any thread return false, regardless of
the number of elements yet to be processed.

If a thread successfully calls localBreak() and breaks from the Paral-
lel Iterator, all reserved elements are released for the other threads to tra-
verse. The breaking thread then waits at the barrier in the hasNext() method
(therefore the localBreak() is a way to safely reduce contention). When the
globalBreak() is called, the current iterations being executed are allowed to
complete in order to safely terminate. For example, assume thread A is working
on an iteration and then thread B calls globalBreak(). If thread C calls
hasNext(), it will be blocked (to synchronise loop termination between all
threads) and false will be returned as soon as currently executing iterations are
completed. Note that in comparison OpenMP does not allow a break statement
within a work sharing construct such as parallel for.

4.1.6 Exceptions

Registering exceptions as presented in section 3.1.6 has been implemented for the
Java Parallel Iterator only. When a thread invokes register() on the Parallel
Iterator, it stores the exception to a java.util.concurrent.ConcurrentHashMap.
The Parallel Iterator creates a wrapper exception (ParIteratorException) to
associate other information with the exception:

public class ParIteratorException<E> {

public Exception getException();

public E getIteration();

public Thread getRegisteringThread();

}
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Along with the exception that has occurred, this also includes the current thread
registering the exception (determined using Thread.currentThread()) and the
element the thread is currently working on (according to the hasNext boundary
as explained in section 3.1.6).

4.1.7 Tree Parallel Iterator

To make use of the Tree Parallel Iterator, any tree collection can be handled
as long as it implements the Node interface mentioned in section 3.1.8 (since
no generic tree collection exists in Java). Alternatively, the tree collection may
be represented by a DOM Document. The scheduling implementation discussed
in this section applies to both cases. The Tree Parallel Iterator must enforce
a partial order: a node may only be executed when its parent node has com-
pleted. To enforce this partial order, the Tree Parallel Iterator only enqueues
the children of a node at the time it completes.

A potential scheduling scheme to achieve this partial ordering is work-stealing
[28]. This concept is not new and others have enhanced it with numerous vari-
ations. The variant that the Tree Parallel Iterator implements is based on the
randomised work-stealing [17], which will be summarised below in the context
of the Tree Parallel Iterator. Each thread has a private deque (a double ended
queue) to store nodes that are ready to execute. When a thread operates on
nodes on its own deque, a last in first out (LIFO) policy is used (therefore op-
erating on the latest local node). When a thread’s private deque is empty, it
becomes a thief and selects a victim thread at random. The thief attempts to
steal the oldest node on the victim’s deque, therefore using a first in first out
(FIFO) policy when stealing.

The benefit of work-stealing has been extensively developed and evaluated
[18]. The reason that nodes are executed using a LIFO policy on the local
deque is to take the initiative to execute a process towards the depth of the tree
[28]; such behaviour models that of a sequential depth-first traversal (therefore
reducing parallelism overhead when sufficient work exists). Threads encourage
parallelism when they steal with a FIFO policy, as this expands the breadth of
the tree (the thief takes ownership of a new sub-branch). This naturally encour-
ages good data locality and cache reuse [72] since thieves favour the victim’s
oldest node (i.e. the coldest node in the victim’s cache), while the hottest nodes
are left for the local thread. In fact, some work-stealing variants further enhance
data locality by performing a locality-guided steal (rather than a random steal)
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(a) Initially, only the root node is ready for execution.

(b) Thread B steals the oldest node from thread A.

(c) Both threads take from their local deque.

Figure 4.4: Example run of the work-stealing implementation using 2 threads.
Each thread maintains a local deque to store nodes that are ready to execute.
Threads favour nodes on their local deque using a LIFO policy, while threads
steal from other deques using a FIFO policy. Nodes are only added to the deque
when the respective parent node has completed.

[1].
Figure 4.4 shows an example of 3 stages of the Tree Parallel Iterator, where 2

threads are traversing a tree consisting of 10 nodes. As discussed in section 3.1.8,
a node is only scheduled to execute when its parent node has been completed.
Therefore, initially only the root node is ready to execute, and this is placed on
one of the thread’s deque (figure 4.4(a)). In the context of the Parallel Iterator,
the thread to process this node is the one that calls hasNext() first: in this
example, this happens to be thread A. In the meantime, thread B is trying to
steal from another random thread (in this case it only has one other thread to
steal from).

Since thread A has been assigned node 0 (when it called hasNext()), it
follows up with a call to next() to retrieve this node. The node is considered
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complete when thread A calls hasNext() again, implying that it has completed
node 0 and wishes to be assigned another node. In this situation, the Tree
Parallel Iterator will enqueue the children of node 0 to thread A’s private deque
(figure 4.4(b)). Consequently, nodes 1, 2 and 3 are ready to be executed.

Now that 3 nodes have been enqueued to thread A’s deque, thread B has
found its victim: it steals the oldest node from thread A, which happens to be
node 1. In the meantime, thread A takes it’s latest node (node 3) and executes it.
This example illustrates the discussion above, where thread B has encouraged
parallelism by stealing work in a breadth manner. On the other hand, thread
A has sufficient amount of work and continues to execute in a sequential depth-
first manner (therefore minimising unnecessary parallelism overhead).

When thread B completes it’s computation (figure 4.4(c)), it enqueues the
children (nodes 4 and 5) of the last node it completed. Consequently, thread
A does not need to perform another steal since it has unprocessed nodes on
it’s deque; thread A now executes its most recent local node. Similarly, node 9
becomes thread A’s most recent local node when node 3 is completed. The par-
allel traversal of the tree is considered complete when all threads are attempting
to steal. The remove() for the Tree Parallel Iterator is implemented similarly
as discussed for the other collections in section 4.1.4, with the addition that
children nodes are not enqueued if a remove() was called.

The major advantage of the Parallel Iterator is that implementation details
are hidden from the user. First, by encapsulating the parallelisation logic within
the Parallel Iterator, this separates it from the business logic of the loop body
(this is especially valuable when traversing non-trivial collections in parallel,
such as trees). As a result, the business logic is very similar to the sequential
version. Second, the scheduling scheme details are hidden: this allows for other
further scheduling implementations of the Tree Parallel Iterator. For exam-
ple, another potential scheduling scheme might involve distributing nodes only
when the children nodes are complete (i.e. processing leaf nodes first, therefore
processing the tree in a bottom-up manner). Since the implementation details
would be hidden from the user, the user code (to iterate nodes) does not require
modification when a different scheduling scheme is used.
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4.2 Performance

In this section, the Parallel Iterator is extensively tested using a number of
benchmark applications for both the C++(Qt) and Java implementation. The
objective is to evaluate the overhead it introduces and its ability to exploit
the inherent parallelism of an iterative computation. Hence, the scalability
is compared across a number of processors and the overhead in comparison
to the sequential execution. The benchmarks were executed 4 times (each a
separate JVM), taking the median of each. The times were measured using
Java’s System.currentTimeMillis() (or System.nanoTime() for fine-grained
iterations) or Qt’s QTime::elapsed(). In order to reduce effects of caching,
benchmarks were repeated at least 3 times (5 times in most cases).

The performance of the Parallel Iterator is compared to the traditional Java
parallelism approaches in section 4.2.1, while section 4.2.2 presents performance
of the C++(Qt) version executing unbalanced and computationally intensive
workloads. Section 4.2.3 focuses on more disk-intensive and potential desktop
applications, and compares the performance of reductions to a commercial im-
plementation of Qt. Finally, the Tree Parallel Iterator is evaluated in section
4.2.4. Note that these results were obtained during the course of the thesis
research, and are therefore for different setups and workloads.

All the C++(Qt) benchmarks use OpenMP to create threads, while the
Java benchmarks use Java threads. In every benchmark below, the baseline
in determining the speedup is the sequential code that uses the standard se-
quential iterator. The benchmarks ran on shared memory systems which may
be considered typical future desktop platforms running Linux. The first has
two Quad-Core Intel Xeon processors (total of 8 cores) running at 1.86GHz
with 8GB of RAM. The second system has four Quad-Core Intel Xeon proces-
sors (total of 16 cores) running at 2.4GHz with 64GB of RAM. Where noted,
synthetic workloads (e.g. the Mandelbrot and Newton fractals) were selected
because of high computation and low I/O, allowing for a better understanding
of the Parallel Iterator’s overhead.

Supporting sequential collections

The results discussed in this section refer to iterating over objects stored in
random access collections (QList for C++(Qt), ArrayList for Java). The code
was then modified to store the objects in inherently sequential collections that
do not support random access to elements in constant time (QLinkedList for
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C++(Qt), LinkedList for Java). The difference in time was imperceptible in
the measurement noise, showing that the implemented parallel iterator is also
suitable for these kind of inherently sequential collections. Namely, the buffering
is not relevant in comparison to overhead.

4.2.1 Comparing to traditional Java parallelism approaches

The first set of results presented are to emphasize the competitiveness of the
Parallel Iterator, even in terms of speed. In this section, performance of the
Parallel Iterator is compared to some of the traditional approaches (as discussed
in section 2.2.2) that programmers would typically take to parallelise traversal
of a collection of elements (namely in Java). The locking approach is further
broken down into two categories, depending on the underlying implementation
of the Lock:

• Fair locking: When the lock is competed for, access to the lock is favoured
for the thread that has been waiting the longest [94].

• Unfair locking: When competed for, no order is guaranteed for access to
the lock [94].

Each of the graphs in figure 4.5 represents a different workload (each workload
contains 1 million iterations). Figure 4.5(a) shows the speedup for a balanced,
but fine-grained, workload (each iteration takes on average 3.5µs). Out of the
traditional approaches, the best was static decomposition since this approach
minimises runtime overhead and eliminates lock contention. The Parallel Itera-
tor (here using guided scheduling with chunk size of 5) executes with similar per-
formance. As expected, the locking approaches (especially fair locking) perform
very poorly. Rather surprising is the concurrent collection’s poor performance
(using a concurrent queue from java.util.concurrent).

Figure 4.5(b) shows the speedup for an unbalanced workload. The Paral-
lel Iterator (in this case using a dynamic scheduling policy with a chunk size
of 10,000) is again the leading solution. Notice the inconsistency of the other
traditional approaches: the static decomposition performed best for the first
workload (figure 4.5(a)), while it performed worst in the second workload (fig-
ure 4.5(b)). The synchronised code and unfair locking were the only other
approaches with respectable speedup.

These benchmarks show that the Parallel Iterator (with policy and chunk
size tuning) is the only consistent solution across the different workloads. Most
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(a) Balanced workload with fine-grained iterations.

(b) Unbalanced workload.

Figure 4.5: The Parallel Iterator is compared to some of the traditional Java
parallelism approaches using different workloads.
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importantly is that the user’s iteration code remained unchanged across all work-
loads, even when a different scheduling scheme was used for the Parallel Iterator.
This re-usability, combined with the performance across a range of workloads, is
a very valuable contribution to object-oriented parallel programming. Without
this easy fine tuning of policy and chunk size, programmers might struggle with
the tuning especially for workloads with unknown characteristics.

4.2.2 Scheduling policies

The Mandelbrot set [108] is a popular fractal consisting of a set of points in
the complex plane. Because there is no dependence between the points, it is
well suited to measure the overhead and the load balancing abilities of the
Parallel Iterator. Although this is not a typical object-oriented application, it is
interesting because of the unbalanced load (the amount of computation varies
from point to point). Six levels of precision were tested, and their respective
timings for the sequential code are shown in table 4.1. Level 1 produces a set
with low precision, while level 6 produces a high precision set.

Level 1 2 3 4 5 6
Time(s) 0.2 0.4 1.3 5 19 75

Table 4.1: Levels of precision and their sequential computation times

Figures 4.6(a) and (b) show the speedup over the number of employed pro-
cessors for the different scheduling policies and chunk sizes. Figure 4.6(a) is for
level 1 precision, while figure 4.6(b) is for level 6 precision. Both figures show
that the overhead introduced is low when running the parallel code on a single
processor. For level 1 precision, the application ran within 2% of the time for se-
quential code across all scheduling policies, except for dynamic scheduling with
a chunk size of 1 in which case the program was 14% slower. For level 2 preci-
sion and above, the overhead quickly became imperceptible for most scheduling
policies when running the parallel code on a single processor.

All scheduling policies demonstrated speedup greater than 1, showing it was
worthwhile parallelising any levels of precision; figure 4.6(a) shows the only
exception was for level 1 when used in conjunction with dynamic scheduling of
chunk size 1. Even for the 3rd level of precision, speedups as high as 80-95% of
the linear speedup were achieved when used with the guided scheduling policy.
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(a) Level 1 (low precision)

(b) Level 6 (high precision)

Figure 4.6: Speedup for Mandelbrot benchmark. One benchmark involved low
amounts of computation per iteration, while the second benchmark involved a
higher degree of computation. In either case, Mandelbrot involves unbalanced
workloads.
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This was respectable considering the low computation in each iteration, as the
sequential version itself was already only 1.3 seconds for all iterations. For the
level 6 precision as in figure 4.6(b), all scheduling policies performed well except
for static scheduling with block chunks. This was due to unbalanced regions of
computational intensity in the Mandelbrot set, therefore threads are assigned
with unbalanced workloads due to the scheduling policy. Most of the other
scheduling schemes demonstrated almost linear speedup when used on level 6
precision. The unbalance in the Mandelbrot set is not completely random, and
therefore even the cyclic static approaches (i.e. static 1 and static 100) balanced
the load well.

The Mandelbrot benchmark illustrates the importance of having the correct
scheduling scheme [90]. For example, the speedup for level 1 (lowest level) preci-
sion using 8 processors was 2.19 when using a guided scheduling policy, whereas
a dynamic scheduling policy with a chunk size of 1 resulted in a speedup of 0.05
(20 times slower than the sequential version). Such a scheduling scheme would
have been used in the case of a work queue, locking or synchronized method
as discussed in section 2.2.2.

4.2.3 Disk-intensive applications

The scalability of the Parallel Iterator using more realistic desktop applications
is now investigated, in particular those requiring high amounts of disk access.
These results use the C++(Qt) implementation of the Parallel Iterator.

4.2.3.1 Image resizing

In the next experiment, the application is image resizing of a folder of images.
This is an example of a typical desktop application with inherent parallelism.
Three different image sizes were used as shown in table 4.2, where resizing
higher-resolution images is computationally more intensive. Testing was per-
formed on three sets of images, each containing a total of 96 images as shown
in table 4.3.
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Size Resolution

small 400x300
medium 800x600
large 1600x1200

Table 4.2: Image sizes and their resolutions

Set #Small #Medium #Large Image Ordering

A 0 0 96 uniform
B 32 32 32 by size (L,M,S)
C 32 32 32 random

Table 4.3: Sets of images used

Figures 4.7(a), (b) and (c) show the speedup over the number of employed
processors for the different scheduling policies and chunk sizes. Figure 4.7(a) is
for set A, figure 4.7(b) is for set B, and figure 4.7(c) is for set C. Regardless of
the scheduling policy or set of images, all three figures show the parallel code
executed with imperceptible overhead when running on a single processor.

For speedup, dynamic scheduling with low chunk sizes performed most con-
sistently across all sets of images, achieving speedups between 90-99% of the
linear speedup. Figure 4.7(b) shows static block and guided scheduling per-
formed poorest when using set B, producing speedups of roughly 47% of the
linear speedup. This is expected as the first thread gets the biggest portion
of the large images. However, guided scheduling performed well on sets A and
C, commonly producing speedups between 90-99% of the linear speedup. Static
scheduling really only performed well for set A, with speedups of over 95% of the
linear speedup when the iteration space is divided evenly amongst the threads.

These results once again confirm the importance of having a flexible way
to modify the scheduling scheme of an iteration space. Static scheduling with
a block chunk size produced poor results for computations with varying loads,
yet this is possibly one of the easiest policies for programmers to manually
achieve (section 2.2.2). Dynamic scheduling with a low chunk size would be
most effective for image resizing, yet it was inappropriate for the Mandelbrot
application. Consequently, the Parallel Iterator provides this flexibility since the
chunk size and scheduling policy are parameters that may be chosen dynamically
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during run-time.

4.2.3.2 Word count and permutation (reductions)

The first benchmark, word count, reads text files in a folder (and subfolders
recursively) and counts the occurrence of each word. Such an application is
typical of a search functionality on a desktop environment. The second bench-
mark, word permutation, also recursively reads text files in a folder. However,
rather than just counting occurrences of each word, more complex permutations
are performed on each word. Such behaviour would be typical of a spell checker
functionality on a desktop environment. In both benchmarks, since files are
searched in parallel, a reduction is required to collate individual file results into
one final result set.

Figure 4.8 shows the speedup of the word count benchmark, comparing the
mappedReduced method (section 3.2) of QtConcurrent (QTC) with the Parallel
Iterator (PI). Two folders with C++ source files were used, one contained 650
files while the other contained 1755 files; the average sequential times were 0.5
and 2.1 seconds respectively. The first observation is the performance degrada-
tion due to the disk access bottleneck, but remember this is a realistic desktop
application. The Parallel Iterator scaled better than QtConcurrent reaching a
speedup of 2.9 with 6 processors for 1755 files. QtConcurrent peaked at 4 pro-
cessors with a speedup of 2.2, but this required disabling processors since there
was no support to limit the thread count1. The Parallel Iterator is more flexible
since it allows the thread count to be adjusted as required per loop.

The speedup for the computationally intense word permutation program
is shown in figure 4.9. Two folders containing C++ source files were used;
sequential times took 18 seconds for 85 files and 186 seconds for 650 files. Disk
access became less of an issue because more computation occurs for each file.
On average, the Parallel Iterator performed slightly better than QtConcurrent
on both folders. However, with only 85 files used, the efficiency slightly degrades
as more threads came into contention.

In figure 4.8, the Parallel Iterator’s performance is slightly better than Qt-
Concurrent. This may be attributed to the high number of reductions that Qt-
Concurrent makes. Assume a parallel program where N elements and P threads
are involved. For QtConcurrent, N-1 reductions (therefore 1754 reductions in

1In the meantime Qt 4.4 introduced the QThreadPool class to allow control over thread
count. However, this thread count will consequently be applied to the entire ThreadPool, not
only to one loop.
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(a) Set A: The images in this dataset all had the same resolution.

(b) Set B: The images in this dataset had different resolutions. The images
were ordered within the collection from largest to lowest resolution.

(c) Set C: The images in this dataset had different resolutions. The images
were ordered randomly within the collection.

Figure 4.7: Speedup for image resizing benchmark. The scheduling policies
where evaluated on varying datasets.
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Figure 4.8: Speedup for the word count application. Performance in such an
application is sensitive to the resource contention (disk access in this case).

Figure 4.9: Speedup for the word permutation application. Although there
is contention for disk access in this benchmark, this is alleviated by the high
workload per iteration.
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Figure 4.10: Speedup of the Tree Parallel Iterator for the SVG application.
Four different workloads (each a different SVG file) were used: ellipses only,
rectangles only, triangles only, or a mixture of all the shapes. Each SVG file
contained 50,000 shapes.

the case of the 1755-file word count) are required regardless of the thread count.
The Parallel Iterator however only requires P-1 sequential reductions (therefore
7 when 8 threads are used). In addition to this, QtConcurrent requires that the
code for each iteration be restructured into a separate method.

QtConcurrent uses all the available processors, but in some cases the pro-
grammer might want to reduce the thread count (this would have been very
beneficial in the example of figure 4.8). This is especially important in a desk-
top environment when other applications are executing, especially with disk-
intensive applications such as searching. By default the Parallel Iterator uses
all available processors, but this may easily be modified for each loop.

4.2.4 Tree Parallel Iterator

This section evaluates the Java implementation of the Tree Parallel Iterator as
discussed in section 3.1.8. Two benchmarks are used: the first is the SVG shape
application presented in section 3.1.8, while the second one is more computa-
tionally intensive. The important observation here is that good speedups can
be achieved with the Parallel Iterator for very high level programs, employing
object-oriented code, XML and SVG.

Figure 4.10 shows the speedup for the processing of an SVG file where the
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(a) Low computation (0.4ms per node)

(b) Higher computation (6ms per node)

Figure 4.11: Speedup for Tree Parallel Iterator where each node performs a
Newton-Raphson method. Notice how the speedup scales better for larger trees.

92



shapes are recognised. The 4 workloads shown denote the shape types in the
SVG file. Notice that triangles and rectangles are a lot easier to recognise than
ellipses. The fourth workload is a mixture of triangles, rectangles and ellipses.
Just as was explored in the previous benchmarks, speedup improves with more
computationally intensive applications.

The next set of benchmarks involve computing a synthetic load (here the
Newton-Raphson method to produce a Newton fractal) at each node of the
tree. The first benchmark of figure 4.11(a) contains fine grained computations,
where each node involves approximately 0.4ms of computation. This shows
that the benefit of parallelisation is greater for larger trees. For example, a
tree with only 2000 nodes scales up to 11 threads to a speedup of almost 5.
However, a tree with 200,000 nodes scaled close to linear speedup. This is quite
encouraging considering the low amounts of computation at each node and the
complex structure of the collection.

Figure 4.11(b) repeats the same experiment, only this time performing more
computation at each node: in this case, each execution of the Newton-Raphson
method takes 6ms. In such a workload, the speedup for each tree size is signifi-
cantly better. The largest tree scaled to over 98% the linear speedup, while the
smallest tree produced speedups of over 75% the linear speedup. This is encour-
aging, since for example, the runtime of the 2000 node tree in figure 4.11(b) is
reduced from 12 seconds to 1 second; in terms of traditional parallel computing
this is a very small workload.

In conclusion, the Tree Parallel Iterator is not only easy to use as discussed
in section 3.1.8, but it also yields good speedup. By traversing the nodes of
a tree, threads are assigned nodes that are ready to execute. The user code
is simple and resembles standard iterator logic: users need not concern with
children nodes and so on. The Tree Parallel Iterator hides all implementation
details from the user, in particular the scheduling and synchronisation of nodes
amongst multiple threads.
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Chapter 5

Parallel Task concept and
related work

This chapter introduces Parallel Task (short ParaTask) [50, 52], a task par-
allel solution for object-oriented applications (in particular for graphical user
interface applications). This section discusses the features of ParaTask, while
the full grammar is presented in appendix A. Related work that also targets
object-oriented task parallelism is also discussed.

5.1 Parallel Task overview

5.1.1 Model overview

To investigate and implement a concept of task parallelism for object-oriented
programs, the overall issue of tasks and threads was thoroughly analysed at
the beginning of the research. The objective was to develop one general and
unifying concept that would be a true task parallel concept. Threads in contrast
are rather virtual processors, hence the thinking process of a programmer and
the implementation is quite different to the general concepts of tasks. With
that said, programmers are still left with the possibility to use threads alongside
Parallel Task if they wish.
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Different types of tasks

In analysing threading and concurrent programs, various task concepts can be
identified. Some tasks have short runtimes and are computationally intensive;
other tasks have long runtimes and are interactive (i.e. react to input/output).
Some tasks execute once, while others need to be executed multiple times. Dif-
ferent task types are therefore supported by ParaTask, all unified in a single
model:

• One-off tasks
These tasks are CPU-bound computations. When invoked, a single in-
stance of the task is enqueued to be executed from start to finish by any
of the processors.

• Multi-tasks
These are multiple tasks for data parallelism, hence they map to different
processors.

• Interactive tasks
These tasks are I/O-bound computations, for example background tasks
waiting for events (e.g. mouse or key press). They should not be defined
as one-off tasks since they would cause a backlog of ready-to-execute tasks
[62]. Many tasks are perfect candidates for interactive tasks, for example
web-based tasks. These tasks correspond to classical threads.

Different types of threads

Since ParaTask is a task-model, rather than a threading model, programmers
think in terms of tasks rather than threads. This means that programmers
do not require an understanding of ParaTask’s underlying threading implemen-
tation. However, since ParaTask focuses on parallelising object-oriented GUI
applications, programmers should be mindful of the existence of the following
threads in order not to violate the structure of GUI applications:

• ParaTask worker threads
A ParaTask application consists of a fixed number of worker threads (the
default thread pool size is equal to the number of processors, but program-
mers may initialise the thread pool to a different size)1. Worker threads

1ParaTask may create more worker threads for special tasks, see section 5.1.2.3.
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have the sole duty of executing tasks. Therefore, worker threads must not
access any of the Swing components (as discussed in section 2.3.3).

• The Event Dispatch Thread (EDT)
All GUI applications employ an EDT; its purpose is to handle events, and
all access to GUI components must be restricted to the EDT. The EDT
should not execute time-consuming computations, since an application
with a graphical user interface must remain responsive.

• User-defined threads
From the point of view of ParaTask, any other additional thread that is
neither a ParaTask worker thread nor the EDT is a user-defined thread
(therefore the main thread also falls under this category). Most applica-
tions have no need for such threads; however, ParaTask is aware of them
just in case the user produces them (for example, ParaTask will not exe-
cute any tasks on user-defined threads). Finally, just like worker threads,
these threads should not access any of the GUI components.

5.1.2 Syntax and semantics

The 3 task types presented in section 5.1.1 are implemented and supported
by ParaTask. They are implemented with a single keyword, only using small
modifiers to make them multi or interactive. For illustration, the same image
application example from figure 1.1 is parallelised. To define a one-off task, the
programmer annotates the method declaration with the TASK keyword:

public class ImageApplication {

TASK public File compute1(String filename) { ... }

...

}

The TASK keyword acts as a modifier to a method declaration. This one-off task
may now be invoked like a typical method:

TaskID<File> id = compute1(“image.jpg”);

The only difference to the standard method invocation is that a TaskID object is
always returned, even if the original method signature has a void return type.
All tasks have a unique global ID, accessed using CurrentTask.globalID().
Tasks with a return value are supported by ParaTask and will be discussed in
section 5.3.
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5.1.2.1 Semantics of a task (as opposed to a method)

Throughout this thesis, any method annotated with the TASK keyword is referred
to as a task (to distinguish it from a standard method). By making use of the
TASK keyword, what is its significance?

• Asynchronous execution
A task is essentially separated into two components: task invocation and
task execution. After a task is invoked, its execution is always asyn-
chronous with the caller (i.e. the task is executed by one of the ParaTask
worker threads). Consequently, parallelism has been introduced by a sin-
gle keyword. Programmers do not need to restructure the code, wrap
sections of code in Runnable objects, or create and manage threads.

• TASK keyword as a form of documentation
Since the TASK keyword is associated with the method declaration, it de-
notes that the method code is task-safe2. This places responsibility upon
the task implementer to ensure safe asynchronous execution. As a result,
users of tasks are relieved from this burden of determining whether a task
is parallel-safe.

By combining these two points, the usefulness of tasks is especially evident for
event handlers: invoking a task from an event handling thread (such as the EDT)
will enqueue it for execution on another thread (i.e. a ParaTask worker thread).
This frees the EDT to respond to other events, supporting a responsive GUI.
This also means that tasks must not contain GUI code since GUI components
may only be accessed from the EDT (section 5.3.4 presents ParaTask features
that support GUI-related work).

Since there are a fixed number of worker threads, blocking is discouraged
within one-off tasks (unless blocking on ParaTask data structures, discussed in
section 5.3.1). Similarly, lengthy background tasks should not be defined as
one-off tasks as this causes a backlog of tasks that are ready to execute.

5.1.2.2 Private and shared variables

When a programmer implements a task, variables will be used to define the task.
Since a task is executed concurrently with its caller (and also concurrently with

2The term task-safe (as opposed to thread-safe) is used to denote parallel-safe code since
ParaTask is a tasking-model (not a threading-model). This means that programmers think in
terms of tasks rather than threads.
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other tasks), it is important that the variables are used is a task-safe manner.
ParaTask makes it natural for programmers to reason about which variables are
task-private, and which variables are shared amongst other tasks and methods.
Consider the following example code:

public class ImageApplication {

private int numberOfErrors;

...

TASK public String concatenate(List argsList) {

String tempStr = “”;

...

}

}

Programmers should already be familiar with the following concepts since they
are standard programming scope policies:

• Private variables
Local variables defined within a task are immediately task-safe since their
scope is limited to the task (for example tempStr). These task-private
variables make it easy to reason about the task-safety of the task.

• Shared variables
Variables defined outside a task (for example numberOfErrors) have a
larger scope that allows them to be accessed by many tasks and meth-
ods (therefore no need to restructure code into separate classes); but, as
usual in parallel programming, developers must regulate the access to such
variables to ensure their task-safety. A subtle point that programmers
should be aware of is that task arguments passed as references (for exam-
ple argsList) are also shared since other code segments have reference to
the object instance.

5.1.2.3 Different task types

Multi-tasks
Multi-tasks support the concept of data parallelism or SPMD (Single Program
Multiple Data), where the same task is executed multiple times. There are
differences between invoking a multi-task once versus invoking a one-off task
multiple times:
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• Amulti-task provides better documentation since the programmer is aware
of the intention to execute it multiple times.

• The subtasks of a multi-task map to different worker threads in a round
robin fashion (static scheduling) as opposed to all going to the same queue
(dynamic scheduling).

• A multi-task has group awareness; this can be used for efficient partition-
ing or scheduling of the workload and allow operations such as reductions
to be performed.

Whereas a one-off task is annotated with TASK, a multi-task is annotated with
TASK(*) meaning it is created for each ParaTask worker thread. Alternatively,
annotating the multi-task with any integer n (instead of using *) will create
n tasks (n may be an integer constant or integer variable name). In addition to
global IDs, the following concepts are useful for multi-tasks:

• multi-task size represents the number of subtasks within a multi-task, and

• relative ID is the ID of the subtask with respect to the other subtasks in
the same multi-task (starting at 0 and ending at multiTaskSize-1).

The following is an example of a multi-task:

TASK(*) public String multiTask() {

int myPos = CurrentTask.relativeID();

int num = CurrentTask.multiTaskSize();

if ( myPos == 0 )

print(“Multi-task has ”+num+” subtasks.”);

String name = “subtask”+myPos;

print(“Hello from ”+name);

return name;

}

Amulti-task is enqueued the same way as a one-off task, except that a TaskIDGroup is
returned:

TaskIDGroup<String> multiID = multiTask();

A TaskIDGroup is used to store the TaskIDs of the subtasks. A particular
subtask may be accessed using getSubtask(int relativeID) by specifying
the subtask’s relative ID, or by iterating through all the TaskIDs:
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Iterator<TaskID<String>‌> it = multiID.groupMembers();

while (it.hasNext()) {

TaskID<String> task = it.next();

String result = task.getResult();

...

}

Reductions Section 3.1.4 discussed reductions, particularly in context with
the Parallel Iterator concept. In respect with ParaTask, below is the code to
implement the same example of figure 3.4 with ParaTask (in combination with
the Parallel Iterator from chapter 3):

TASK(*) public int sum(ParIterator<Integer> pi) {

int s = 0;

while (it.hasNext()) {

s += it.next();

}

return s;

}

By combining the Parallel Iterator with ParaTask multi-tasks, the programmer
easily enqueues multiple tasks as follows:

1: List<Integer> list = ...; // get the list of numbers

2: ParIterator<Integer> pi = ParIterator.create(list);

3: TaskIDGroup<Integer> sumTask = sum(pi);

4: int finalSum = sumTask.reduce(Reduction.IntegerSUM);

Line 2 creates a ParIterator instance for the list of numbers, which is then
passed as an argument to the multi-task (line 3). Consequently, the multi-task
has been enqueued and each of the subtasks will share the ParIterator instance.
Line 4 performs a reduction: return values of the multi-task is reduced to one3.
This is very intuitive, as a multi-task is also handled as one task.

Although this was a simple and trivial example, it is used for illustrative
purposes. The real power of ParaTask comes out as more complex reductions

3Although a Parallel Iterator is used in this example, this ParaTask reduction is not to
be confused with the Reducible object of section 3.1.4.1. The difference with the ParaTask
reduction here is that it reduces return values from multi-tasks.
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are handled elegantly. This example shows the power and ease of the ParaTask
multi-task approach; the programmer only needs to focus on the business logic
of their application since many parallelisation concerns are hidden:

• With just a single keyword, concurrency is introduced; the multi-task code
(the sum task) is essentially the same as the original sequential method.

• By specifying * as the multi-task size, the optimal number of tasks is
created (this equals to the size of the worker thread pool). Programmers
may easily customise this with any integer value.

• Details and implementation of the reduction is hidden, this includes the
necessary synchronisation of the sub-results. The sub-results of the multi-
ple tasks are elegantly reduced into a final result using a single statement.

ParaTask provides a range of common reductions (e.g. sum, minimum, maxi-
mum). ParaTask also allows the programmer to define custom reductions; this
object-oriented solution allows any kind of reduction while using any data type.
The reduction must be associative (the order of evaluating the reduction makes
no difference) and commutative (the order of the thread-local values makes no
difference) since the interface does not specify order. Customised reductions are
easily composed by providing an object that implements the Reduction inter-
face. Only one function needs to be implemented, defining the reduction of two
elements into one. Below is an example of a custom reduction:

public Reduction<Shape> biggestShape = new Reduction<Shape>() {

public Shape reduce(Shape a, Shape b) {

if (a.getArea() > b.getArea())

return a;

else

return b;

}

};

The user-defined reduction is then used as an argument to the reduce method
on the TaskIDGroup. Reductions can generally be performed sequentially or in
parallel (using a tree-network [43]). From the user’s point of view, invoking a
reduction in parallel is straightforward: the reduce() method has an optional
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boolean parameter to denote if the reduction is to be performed in parallel (the
default is false):

int finalSum = sumTask.reduce(Reduction.IntegerSUM, true);

Interactive tasks
I/O-bound computations that block waiting for external events should not be
enqueued on the global task pool. Tasks with such characteristics should be
identified by the task’s developer in order to preserve encapsulation (the user
of the task should not need to know any implementation details). ParaTask
enforces this responsibility by requiring such tasks be annotated using the
INTERACTIVE_TASK keyword rather than the standard TASK keyword. Consider
the following task that retrieves information from the web:

INTERACTIVE_TASK public File webSearch(String query) {

// involves blocking and long waiting times

}

This interactive task is used in the same manner as an ordinary task:

TaskID<File> id = webSearch(“foo”);

Interactive tasks execute on a separate interactive thread (not enqueued on a
worker thread) as soon as all dependsOn dependences (section 5.2), if any, have
been satisfied. Interactive tasks execute immediately without waiting for a free
worker thread, therefore improving the responsiveness of important interactive
activities. Many tasks are perfect candidates for interactive tasks, for example
web-based tasks: these tasks should start as soon as possible and should not
preoccupy a worker thread when it starts.

5.1.2.4 Nested parallelism

ParaTask allows nested parallelism, defined as a task enqueuing other tasks; this
is especially important for recursive divide and conquer applications. Consider
the following nested parallelism example:

TASK public void taskA() {

TaskID id1 = taskB();

TaskID id2 = taskC();

}
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In this example, the parent task (taskA) enqueues the children tasks (taskB and
taskC). Since ParaTask is an asynchronous model, the parent task is considered
“complete” possibly before the inner tasks even start. Some threading models,
on the other hand, are fully strict [16] and would include an implicit barrier
at the end of taskA. Although this simplifies reasoning about the behaviour
of the program (since the current method/task blocks until the children tasks
complete), it unfortunately blocks the enqueuing thread. For example, the
actionPerformed method of any interactive Java application must never block
waiting for tasks it enqueued.

Tasks should be viewed as a substitute for threads. In a threading library,
the programmer is allowed to create threads from within other threads, and
the parent thread is allowed to end before the children thread ends (a common
example is Java’s main thread ending as soon as the EDT is up and running).
Since threading libraries do not impose such an implicit barrier, then ParaTask
also does not impose this restriction. If programmers want the current method
to block until all inner tasks complete, then they may explicitly code this (just
like they would have to do with a threading library). Section 5.3 discusses
various solutions to easily achieve this.

5.1.2.5 Canceling a task

ParaTask allows tasks to be safely canceled:

TaskID id = myTask(); // task is now enqueued to execute

...

boolean canceled = id.requestCancel(); // attempt to cancel task

The requestCancel() method may be called on a TaskID in an attempt to can-
cel it. If true is returned, ParaTask guarantees the task has not started execut-
ing yet and will therefore not be scheduled to execute in the future. If false is
returned, this means the task has already started executing, or the task has
already completed. If the task is already executing, then requestCancel() has
no effect unless the task periodically queries its own status to check if a cancel
has been requested:

TASK public void myTask() {

...

if (CurrentTask.cancelRequested())
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return;

...

if (CurrentTask.cancelRequested())

return;

...

}

5.1.2.6 ParaTask clauses

The rest of the chapter will present various ParaTask clauses that may be used
in conjunction with a task invocation. A task invocation may contain zero or
more ParaTask clauses, in the form of the following example:

TaskID myID = myTask(“Hello”) (ParaTask clause)*;

Where ParaTask clause may be one of dependsOn (section 5.2), notify (section
5.3.4), notifyGUI (section 5.3.4), notifyInterim (section 5.3.5) or asyncCatch
(section 5.4).

5.2 Dependences

In sequential programs, ordering constraints are naturally obeyed since code
segments are executed one at a time in the specified order. For example, recall
the dependence graph of figure 1.1. The following sequential program naturally
observes the ordering constraints:

File f1 = compute1(“myimage.jpg”);

File f2 = compute2(“myimage1.jpg”);

File f3 = compute3(“myimage1.jpg”);

File f4 = compute4(“myimage2.jpg”, “myimage3.jpg”);

Figure 1.1 requires that compute2 and compute3 do not commence until compute1 is
complete, and similarly compute4 must wait for both compute2 and compute3.
In a sequential program as above, these constraints are naturally observed since
invocation of these methods is synchronous with the caller (since the calling
thread executes them).

However, if these methods were asynchronous (i.e. annotated with the
TASK keyword), then their execution would overlap and possibly violate the
ordering constraints. Specifying such ordering constraints in ParaTask is made
simple by stating the dependences at the time the task is invoked:
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public void actionPerformed(ActionEvent e) {

TaskID<File> id1 = compute1(“myimage.jpg”);

TaskID<File> id2 = compute2(“myimage1.jpg”) dependsOn(id1);

TaskID<File> id3 = compute3(“myimage1.jpg”) dependsOn(id1);

TaskID<File> id4 = compute4(“myimage2.jpg”, “myimage3.jpg”)

dependsOn(id2,id3);

...

}

Tasks 2 to 4 cannot proceed until the tasks specified in the dependsOn clause
have completed. The programmer does not need to manually code synchro-
nisation mechanisms to manage such dependences; in this example, no syn-
chronisation mechanisms such as barriers or wait conditions are required at all
since the synchronisation will be handled by runtime system. By using the
dependsOn clause, blocking is not needed in dependent tasks. Not only does
this ease the programming effort, it also improves performance since only ready
tasks are scheduled.

No coupling between tasks

The dependsOn keyword has an important benefit: it promotes the design of
maintainable code [107] since there is no coupling introduced between tasks. In
the particular example above, even though the 4 tasks have ordering constraints,
the tasks remain decoupled; the tasks have no knowledge of each other. The
programmer does not need to code any synchronisation mechanisms within the
tasks. This allows the tasks to be reused for other applications that do not
have the same dependence structure of figure 1.1. In threading libraries, the
programmer must explicitly create wait conditions between the tasks, and this
would be specific for the particular application.

Deadlock

Using the dependsOn keyword, programmers declare dependences at the time of
a task’s invocation. Therefore, a circular dependence cannot be created since a
task may not depend on tasks yet to be enqueued (this makes sense because the
same principle applies in sequential programs). Therefore, deadlock is not pos-
sible using the dependsOn clause. However, programmers may find themselves
in a deadlock situation if they do not use other synchronisation mechanisms
carefully (such as locks and wait conditions from threading libraries).
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5.3 Task completion

A task is essentially a method that is executed asynchronously with the caller.
Accessing the return value of a task (or simply synchronising with the task’s
completion) may be achieved using a blocking (section 5.3.1) or non-blocking
approach (section 5.3.4). Since various threads have different roles, ParaTask
distinguishes at runtime between the 3 different thread types (as discussed in
section 5.1.1).

The definition of a blocking function refers to the situation where the com-
putation following the function will not be executed until the function has com-
pleted. In other words, the calling thread is unable to progress until the function
returns. Such a function is blocking, regardless of whether the calling thread is
doing something useful in the meantime or not. In some cases, the calling thread
will sleep or poll (i.e. not process anything useful). But in other cases, as will
be discussed in this section, the calling thread may actually process other work
while it remains blocked from the caller’s point of view. ParaTask supports such
“blocking”, where in some cases control is given to the ParaTask runtime.

5.3.1 Blocking on a TaskID

Continuing on the image application example, the programmer may wish to
access the result of the task invocation:

File finalImage = id4.getResult();

If the task has not yet completed, then the current thread will block until the
result is ready. This is the common approach taken by implementations of the
future concept (as discussed in section 5.8). Similarly, a programmer may block
on the TaskID to wait for it to complete:

id4.waitTillFinished();

This is useful when waiting on a task that does not have a return value, or when
the return value is not needed (therefore used purely as a synchronisation mech-
anism). In fact, waitTillFinished() is used implicitly when the programmer
calls getResult().

Both these blocking methods provide a convenient synchronisation mecha-
nism for the programmer, and the blocking is generally acceptable so long as the
waiting is for a short length of time. In using these methods, the programmer
should be aware which thread is blocking. This is discussed below.
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Figure 5.1: Visualisation of a recursive task with only two worker threads.
Tasks A and B start executing, tasks C, D and E are created (but do not start
executing), while tasks F and G are not even created. ParaTask avoids such
deadlock situations.

Blocking from within an event handling thread

Blocking has the disadvantage that the thread cannot progress until the task has
completed. This impact is especially harmful when it is an event handling thread
blocking (such as the EDT). Since this could cause a backlog of waiting events,
programmers are encouraged never to block from an event handling thread.
This rule of thumb not only applies to blocking on a TaskID, but any blocking
in general made on an event handling thread [68]. Section 5.3.4 presents an
alternative mechanism to support non-blocking notification of task completion.

Blocking from within a ParaTask worker thread (nested parallelism)

ParaTask supports nested parallelism: namely, tasks may invoke other tasks.
The reason this is a special scenario is because tasks might block on the TaskID of
another task. As discussed in section 2.3.4, there is a fixed number of worker
threads. When all worker threads are busy executing tasks, any other tasks that
are ready to execute are enqueued until one of the worker thread frees up.

This poses a potential problem (namely deadlock) if all worker threads block
indefinitely. For example, consider the following recursive divide and conquer
task. It executes a sequential algorithm for small inputs up to a certain cutoff,
while larger inputs are divided and the task is called recursively (effectively
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creating more tasks). The current task blocks until results from the subtasks
are complete, at which point the final answer is returned:

TASK List mergeSort(List nums) {

if (nums.size() < cutoff)

return sequentialSort(nums);

int middle = nums.size() / 2;

TaskID left = mergeSort(nums.subList(0,middle));

TaskID right = mergeSort(nums.subList(middle,nums.size());

return merge(left.getResult(), right.getResult()); // blocks till both complete

}

Using such a model, the programmer assumes that there are sufficient worker
threads to execute the other subtasks while the current worker thread blocks
waiting for the sub-results. Figure 5.1 shows a visualisation of this task exe-
cuting on a task pool of two worker threads. This example clearly shows how
deadlock is possible if worker threads end up blocking. The first worker thread
executes task A, creating two more tasks (tasks B and C) and waits for those
tasks to complete. In the meantime, the second worker thread executes task B,
creating two more tasks (tasks D and E) and waits for those tasks to complete.
Both worker threads are blocked waiting for tasks to complete: deadlock has
occurred. Tasks F and G have not even had a chance to be created.

One possible solution to avoid such deadlock would be to temporarily cre-
ate additional worker threads to offload some of the tasks, therefore eventually
allowing the original worker threads to continue. Unfortunately, such an ap-
proach is easily susceptible to large amounts of overhead due to the creation
and management of the extra threads [23]. This is especially undesirable in a
recursive situation that could potentially create lots of small tasks, as in this
example.

Therefore, ParaTask takes the following approach to avoid deadlock: when-
ever a worker thread blocks on a TaskID (e.g. worker thread 1 blocking on task
B and C), it executes another task from the ready queue. The next task it
receives is dependent on the scheduling scheme (section 5.6) and may not nec-
essarily be the particular task it is waiting on. In this example, worker thread
1 created tasks B and C. When worker thread 1 blocks on task B, it finds that
task B has not completed yet (but it has started on worker thread 2). Therefore,
rather than waiting for it to complete, worker thread 1 attempts to get another
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Figure 5.2: Visualisation of how ParaTask avoids deadlock, by executing other
ready tasks when a worker thread blocks on a TaskID for a task that has not
yet completed.

ready task: in this case, it finds task C and executes it. This behaviour repeats
recursively, as worker thread 2 also blocks on unfinished tasks.

If tasks B and C have still not completed, then the worker thread attempts
to execute yet another task. Figure 5.2 shows a possible execution of the same
example using this approach. When the first worker thread creates tasks B and
C, the second worker thread starts executing task B and creates tasks D and
E. When the first worker thread blocks waiting for tasks B and C to complete,
it gets a new task to execute: it finds task C is the next ready task. Tasks
F and G are now created and enqueued. In the meantime, when the second
worker thread blocks waiting for tasks D and E, it starts executing the next
ready task: this happens to be task E, and similarly task D. When the leaf
tasks are complete, the worker threads return to their original task: deadlock
has just been avoided.

5.3.2 Blocking on non-ParaTask data structures

In the case that a worker thread blocks on a TaskID, then ParaTask determines
this and automatically substitutes another task to execute as discussed above.
As with any parallel programming environment, programmers should be careful
with blocking on data structures that ParaTask has no knowledge about (e.g.
concurrent data structures and locks from other libraries). Any form of blocking
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on a non-ParaTask object should be avoided while inside a one-off task or multi-
task. At best, a blocked task will prohibit other ready tasks from executing
(reducing performance). At worst, multiple tasks blocked will result in deadlock.
To avoid these problems, programmers should use interactive tasks instead.

Thread-safe is not necessarily task-safe

The example of figure 5.2 illustrated an important point: a worker thread could
potentially be switching between multiple tasks (when it blocks on an incom-
pleted TaskID). For this reason, programmers should be careful when using
certain mechanisms:

• Thread-local storage
Using thread-local variables are discouraged since tasks might not exe-
cute atomically on a worker thread (in the case they are substituted when
blocking on a TaskID). In fact, thread-local storage generally does not
make sense in a tasking model such as ParaTask. This is because the pro-
grammer is not guaranteed which worker thread will execute a particular
task (unlike a threading model where the programmer explicitly controls
the threads executing methods).

• Locks and condition variables from threading libraries
Since semi-executed tasks might be substituted with another task, locking
inside of tasks could lead to nested locking [81]. This poses a potential
problem as shown in the following simple example:

TASK public void taskA() {

mylock.lock(); // start critical region

...

TaskID id = taskB();

id.waitTillFinished();

...

mylock.unlock(); // end critical region

}

TASK public void taskB() {

mylock.lock(); // start critical region

...

mylock.unlock(); // end critical region

110



}

Consider the worker thread executing taskA that has been granted exclu-
sive access to mylock. Consequently, this worker thread has just entered
the critical region and assumes it has exclusive access until it unlocks at
the end of taskA. Within this critical region, it blocks on another task.
Since taskB is still waiting to be executed, the current worker might end
up executing it (as discussed earlier). Consequently, the same worker
thread has entered the critical region of taskB (since the worker thread
already holds the lock to mylock [81]). In some situations, this might not
be the desired behaviour since the critical region of taskA has not been
exited yet.

The OpenMP tasking feature [82] also requires programmers to take the same
precautions as above, since tasks might be substituted at various task scheduling
points [9]. The interactive tasks in ParaTask allow the use of thread-local storage
and blocking on non-ParaTask objects since these tasks are in fact threads.

5.3.3 Synchronisation inside multi-tasks

Synchronisation inside SPMD is a common and useful idiom in parallel com-
puting and cannot be neglected. In the context of ParaTask, this particularly
applies to multi-tasks when synchronisation is required between the subtasks.
For example, consider the following situation:

// multi-task

TASK(*) public void A() {

// perform computation

...

barrier.wait(); // synchronise with sibling subtasks

...

// continue

}

Consider if the barrier.wait() statement refers to an external library data
structure that ParaTask has no knowledge about. As an extension of the discus-
sion in section 5.3.2, this could lead to deadlock if other (multi-)tasks contained
such blocking. Before presenting a solution to this problem, another situation
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is presented that is even more error prone: nested multi-tasks. Assume the
following application has 4 worker threads and all multi-tasks are also of size
4, where Xy refers to the yth subtask of multi-task X (e.g. A2 is the second
subtask of multi-task A):

// A(), B(), C(), D() and E() are all multi-tasks

TASK(4) public void A() {

...

TaskIDGroup<Integer> id;

int result;

if (inside A1) {

id = B();

result = id.getResult();

barrier.wait(); // deadlock if this blocks

} else if (inside A2) {

id = C();

result = id.getResult();

barrier.wait(); // deadlock if this blocks

} else if (inside A3) {

barrier.wait(); // deadlock if this blocks

id = D();

result = id.getResult();

} else {

barrier.wait(); // deadlock if this blocks

id = E();

result = id.getResult();

}

...

// do something with result

}

In this example, subtasks A1 and A2 spawn a multi-task each and reach the
barrier after getting the result from their multi-task (B() and C() respectively).
But subtasks A3 and A4 wait at the barrier before creating their multi-task
(D() and E() respectively). If barrier.wait() is a blocking function external
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to ParaTask (i.e. control is not given back to the ParaTask runtime), this means
deadlock has been reached: threads 3 and 4 will not execute their share of multi-
tasks B() and C() (i.e. B3, B4, C3, C4) until the barrier is released, and threads
1 and 2 will not reach the barrier until all of B() and C() are completed.

Extending from the idea of the non-blocking getResult() in section 5.3.1,
ParaTask supports a synchronisation barrier for multi-tasks. Instead of using an
external library to synchronise the subtasks, programmers use CurrentTask.barrier().
This function is a barrier in the sense that the subtask does not progress past
it until the other subtasks also reach it. Every ParaTask multi-task has its own
barrier, initialised to the size of the multi-task. When the barrier has been
reached, it is automatically reset to allow for further synchronisations within
the same multi-task.

In the above example, here is how this avoids deadlock. When threads 3 and
4 reach the barrier, they check the queues to find another waiting (sub)task.
They happen to find subtasks B3, B4, C3 and C4, which are eventually all
executed since the threads cannot progress past the barrier. In a similar fashion,
threads 1 and 2 will complete subtasks B1, B2, C1 and C2 while they are in
getResult(). At this point all subtasks of B() and C() are completed and the
barrier is released.

5.3.4 Non-blocking: The notify clause

As discussed in section 5.3.1, event handling threads (such as the EDT) should
never block waiting for a task’s completion. It is important for event han-
dling threads to maintain control in the event loop so that events are handled
promptly [31]. While blocked, the thread cannot process any pending events
(for example, stalled repaint events will produce a frozen GUI).

Consequently, ParaTask provides non-blocking task synchronisation: when
the programmer invokes a task, a comma-separated list of slots may be specified
using a notify clause. These slots are called automatically when the task has
completed, meaning that no thread or task is blocked while waiting for the task
to complete. If the task returns a value, the user may notify a slot accepting a
TaskID parameter (allows the result to be accessed from within that method).
Adding to the code of section 5.2, the example initially introduced in figure 1.1
is completed:

public void actionPerformed() {

TaskID<File> id1 = compute1(“myimage.jpg”);
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Figure 5.3: Using the ParaTask’s notify clause allows the enqueuing thread to
later synchronise with completion of the task without blocking. This is especially
important for event handling threads.

TaskID<File> id2 = compute2(“myimage1.jpg”) dependsOn(id1);

TaskID<File> id3 = compute3(“myimage1.jpg”) dependsOn(id1);

TaskID<File> id4 = compute4(“myimage2.jpg”,“myimage3.jpg”)

dependsOn(id2,id3)

notify(display(TaskID)4);

// event-handling thread does not block

}

The display() slot is defined as an ordinary method:

public void display(TaskID<File> id) {

File result = id.getResult();

...

}

This example is illustrated in figure 5.3. Since actionPerformed() is an event
handler, it is executed by the EDT. Consequently, the EDT is the enqueuing
thread of the compute4() task: a worker thread executes this task while the
EDT is immediately allowed to return to the eventLoop() to process other
events. The EDT is informed (via the event loop) when the task completes,
therefore allowing display() to be executed.

Sequential semantics

Since ParaTask allows for multiple methods to appear in the notify clause,
this supports good coding practices since the programmer may create sepa-

4The TaskID is needed if the method being notified accepts TaskID as parameter, otherwise
it is omitted. This ensures at compile time that the correct method signature is used.
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rate methods for different components and not need to put all code into one
method. The notify clause has more semantic contributions than just being a
non-blocking synchronisation mechanism: it essentially introduces “sequential”
semantics that make it easier to reason about the program behaviour:

• The original enqueuing thread executes the notify clause (not the worker
thread that executes the task): In most cases, this means that slots inside
the notify clause need not be coded task-safe since they will only be
executed by the original enqueuing thread5. This is especially useful for
the EDT:

– When an event occurs, the EDT is easily and immediately freed since
time-consuming tasks are dispatched to worker threads just by using
the TASK keyword.

– Any necessary updates are easily scheduled on the enqueuing thread
using the notify clause.

• Slots in the notify clause are executed in the same order they are de-
clared: For example:

TaskID id = computeTask()

notify( saveFile(), updateGUI(TaskID) );

When computeTask completes, saveFile and updateGUI are executed in
that same order. If the slots in the notify clause refer to tasks (rather than
ordinary methods), then the execution order is not guaranteed (but the
enqueuing order is guaranteed); such task “slots” will in fact be executed on
worker threads rather than the enqueuing thread, since they are actually
defined as parallelisable tasks6.

• Slots in the notify clause are executed before the dependsOn clause: A
task is not considered “complete” until the slots in the notify clause (and
also slots in the asyncCatch clause as will be discussed in section 5.4.1)
are executed. This distinction is important when used in combination
with the dependsOn clause, as shown below:

5Slots might be executed concurrently with other threads (and would therefore need to be
task-safe) if the same slot is used from multiple threads; there is only an implicit ordering
with the enqueuing thread. In other words, they are synchronous with the enqueuing thread.

6If t1() and t2() are both TASKs, then t1 notify(t2) is equivalent to t2 dependsOn(t1).
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TaskID id1 = task1() notify(slot1(), slot2());

TaskID id2 = task2() dependsOn(id1);

In this example, when a worker thread completes task1, slot1() is ex-
ecuted by the original enqueuing thread (followed by slot2()). When
slot1() and slot2() have both completed, only then will task2 be ready
to execute.

The notify clause used from within a worker thread

Since ParaTask allows nested parallelism, this means that tasks may invoke
other tasks. This means that the notify clause might also be used from within
a worker thread. The following question now arises: if multiple worker threads
use the notify clause, then how is the “sequential” semantics (see above) of
the notify clause preserved? This is achieved by having a special worker slot
thread (SWST) that is only responsible for executing all the notify clauses
from all the worker threads. This way, the programmer need not make the slots
in the notify clause task-safe, etc.

Forcing slots to always execute on the EDT

In some cases, the programmer may want some slots to always execute on the
EDT, regardless of which was the enqueuing thread. For example, consider the
following:

TASK public taskA() {

TaskID id = taskB() notify(slot1(), updateGUI());

}

In this example, taskB is invoked from within another task (taskA). The prob-
lem with this code is that the updateGUI() is now due to execute on the SWST
(since the original enqueuing thread is one of the worker threads). This is not
the desired behaviour because any GUI-related work must only execute on the
EDT. For this reason, ParaTask provides a slight extension to the notify clause:
the notifyGUI clause; all methods inside a notifyGUI clause are executed on
the EDT, regardless of who the enqueuing thread was. The above example
is now correctly re-written (assuming that slot1() does not involve any GUI
computations):
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TASK public void workA() {...} TASK public void workA() {...}
TASK public void workB() {...} public void workB() {...}
... ...
public void method() { public void method() {
... ...
TaskID id1 = workA(); TaskID id = workA()
TaskID id2 = workB() notify( workB() );

dependsOn(id1);
// no blocking // no blocking

} }

(a) taskB() as a TASK (b) taskB() as a method

Figure 5.4: Semantic differences of task dependences (dependsOn clause) versus
non-blocking notification (notify clause).

TASK public taskA() {

TaskID id = taskB() notify(slot1()) notifyGUI(updateGUI());

}

Remaining consistent with the sequential semantics discussed above, the order
of the notify and notifyGUI clauses will determine their execution order. Fur-
thermore, programmers may interleave multiple notify and notifyGUI clauses
to achieve a desired execution order for multiple slots.

Semantic difference between notify and dependsOn

The methods in the notify clause will be executed when the task completes. A
semantic question arises now: what is the difference between the two scenarios
of figure 5.4? In both cases no blocking is involved, and workA must complete
before workB begins. In scenario (a), workA and workB are both TASKs: they
are both task-safe. Scenario (b) however treats workB as a normal method: it
is not task-safe to be executed by any other thread.
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Even though taskB in figure 5.4(b) is not task-safe, the programmer does
not wish to block inside method() until workA completes (since the enqueuing
thread should return to the event loop). For this reason, ParaTask will record
the enqueuing thread of workA so that the methods in the notify clause will be
executed on the enqueuing thread. This shows that methods in a notify clause
have sequential semantics, as opposed to tasks, since they are executed by the
same thread that enqueued the task.

Using the notify clause on other instances

Consider the following use of the notify clause:

TaskID id = taskA() notify( slot1() );

From a semantic point of view, it is clear that slot1() must be a method
defined within the current class. Consequently, slots are by default executed
on this object instance (unless the slot is static, in which case no instance is
needed). If the programmer wishes to invoke a slot on another object instance,
they may do so:

TaskID id = taskA() notify( slot1(), myObj::slot2() );

In this case, there are two slots to notify. The first one is executed using
this instance, while the second one is executed on the myObj instance. If
the modifier of slot2() is not public, then the program will not compile. This
preserves the standard Java access rules.

Incorrectly using slots with a notify clause

When the programmer specifies slots in a notify clause, ParaTask enforces that
the slots are valid at compile time (rather than delaying this to runtime as in
Qt [103]). Some of the common errors that ParaTask avoids include: incorrect
spelling of a method name, incorrect parameter type and invalid access (e.g.
trying to notify a private method of another instance, or accessing an instance
method from a static method). If such errors exist, then the ParaTask pro-
gram will not compile and the programmer must fix these errors. Essentially,
ParaTask ensures that methods are accessed correctly as the programming lan-
guage requires, even if the methods are accessed through the notify clause.

118



Threads without an event loop

Since notify clauses are handled by posting events, each thread wishing to use
the notify clause must have its own event loop. Where does this event loop
come from? In the case of the EDT, it already has an event loop and ParaTask
will enqueue notify clauses to be executed on the EDT. When programmers
wish to use their own threads, those threads must register into a ParaTask event
loop. This has been simplified for the programmer and involves two method calls
to be executed by the registering thread:

public void run() {

EventLoop.register();

...

// create tasks, etc

...

EventLoop.exec();

}

The EventLoop.register() method will initialise an event loop for the current
thread. After calling this method, the thread is free to invoke tasks and use the
notify clause. However, the notify methods will only be queued and will not be
executed until the thread enters the event loop by calling EventLoop.exec().
The thread remains in this event loop until it calls EventLoop.exit() (this
may, for example, be called from within a slot). One of the design features of
ParaTask is that to be a generalised tasking model that may also be used for
non-GUI applications. By providing this event loop, this allows notify to be
used in a generalised fashion like the rest of the ParaTask features.

5.3.5 Interim progress and notifications

To improve the interactivity of an application, it is desirable to display a task’s
progress as it proceeds. For example, consider a task that retrieves photos from
the web: it is undesirable to update the GUI only when all photos have been
retrieved. Ideally, the task should update its progress (e.g. as a percentage) and
display any retrieved photos (i.e. interim results) to the user. Recall from section
2.3.3 that only the EDT is allowed to access GUI components (e.g. the progress
bar and other visual results). Achieving this is easy with ParaTask. First,
methods interested in the task’s progress (and interim results) are registered
using the notifyInterim clause:
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TaskID<List<Photo>‌> id = getPhotos(list)

notifyInterim(updateSearchDisplay(TaskID,Photo));

The notifyInterim clause behaves much like the notify clause: the methods
are processed in a non-blocking fashion by the enqueuing thread. The only dif-
ference is that methods inside the notifyInterim clause are invoked whenever
the task publishes interim results:

1: INTERACTIVE_TASK public List<Photo> getPhotos(List<String> names) {

2: List<Photo> results = new ArrayList<Photo>();

3: for (int i = 0; i < names.size(); i++) {

4: Photo p = Flickr.getPhoto(names.get(i)); // web I/O

5: CurrentTask.setProgress((i+1)/names.size()*100);

6: CurrentTask.publishInterim(p); // results published

7: results.add(p);

8: }

9: return results;

10: }

In this example, getPhotos() is defined as an interactive task (line 1) since
it retrieves results from the web. Each time a photo is retrieved (line 4), the
task updates it’s current progress (line 5). This allows other interested compo-
nents (e.g. updateSearchDisplay()) to query the progress of the task. Line 6
shows an interim result (the newly retrieved photo) being published. Since the
publication of interim results is non-blocking, this allows the task to progress
with the computation without waiting for the interim result being delivered.
All methods registered with the notifyInterim clause are executed by the en-
queuing thread. In this example, the updateSearchDisplay() is executed by
the EDT (the enqueuing thread) to update the GUI every time a new photo is
retrieved. For example, the progress bar is updated and a thumbnail of the new
photo is displayed:

public void updateSearchDisplay(TaskID id, Photo p) {

progressBar.setProgress(id.getProgress());

thumbnailsPanel.add(p);

}

Using the notifyInterim clause allows the tasks to remain decoupled from the
methods interested in interim results. For example, the getPhotos() task above
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has no knowledge about updateSearchDisplay() or any other method inter-
ested in the interim results. This allows other methods to be connected/disconnected
without affecting the task. Much like the notifyGUI version of the notify clause,
there is also a notifyInterimGUI version of the notifyInterim clause. The
notifyInterimGUI clause is necessary when the enqueuing thread is not the
EDT, yet the user wishes to ensure the intermediate results are delivered to the
EDT.

5.4 Exception handling

An exception is an event that diverts a program from its normal execution flow
[54]. Many programming languages support exceptions to separate error-code
from the user-code. This potentially produces more readable and efficient code
since error handling is not integrated within the normal execution flow. Ex-
ceptions are especially important in object-oriented languages, hence exception
handling with ParaTask is discussed.

When a thread runs, it invokes some methods that may in turn invoke other
methods. This ordered list of method invocations is known as the call stack.
When an exception is thrown, the call stack is analysed in the reverse order to
find an exception handler capable of catching the exception. If such a handler
is found, then the program continues executing from the handler. If no capable
handler is found in the call stack, then the thread terminates. In the case of a
single-threaded program, the program terminates.

Figure 5.5 shows the relationship between the different kinds of exceptions
in Java, categorised into two main groups [110]:

• Checked exceptions
These are exceptions that an application is expected to anticipate and
recover from.

• Unchecked exceptions
These are exceptions that an application is not expected to anticipate and
recover from. Unchecked exceptions may further be broken down into:

– Errors: These exceptions are external to the program, such as a
system or hardware failure.

– Runtime exceptions: These exceptions are internal to the program,
such as a typical programming bug or logic mistake.
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Figure 5.5: In Java, all exceptions and errors extend the Throwable class.
As shown, these fall into one of two main categories: checked exceptions and
unchecked exceptions. Applications are expected to anticipate and recover from
all checked exceptions by conforming to the Catch or Specify Requirement.

The Catch or Specify Requirement

Since an application is expected to anticipate (and hence recover from) checked
exceptions, how does Java enforce this? Code that might throw such an ex-
ception must conform to the Catch or Specify Requirement [110], otherwise the
program will not compile. This requires the programmer to take one of two
options:

• Surround the code with a try/catch block, or

• Use a throws clause for the current method to specify it throws such an
exception.

Some programmers circumvent the Catch or Specify Requirement by developing
programs that only throw unchecked exceptions (e.g. making all exceptions
subclass RuntimeException). The temptation is convenience from omitting
the extra code while avoiding complaints from the compiler. This defeats the
intention of the Catch or Specify Requirement, possibly causing problems for
the users since checked exceptions are a part of the method’s signature [110].

5.4.1 Asynchronous exception handling

Consider the following task that throws two checked exceptions:
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TASK public int myTask() throws MyExceptionA, MyExceptionB { ... }

Since this task throws checked exceptions, Java requires the programmer to fol-
low the Catch or Specify Requirement. Unfortunately, the standard approaches
to either “specify” or “catch” do not automatically extend to an asynchronous
model as shown in the following cases:

Incorrectly using Specify

In attempting to honor the Catch or Specify Requirement, a programmer may
specify the checked exceptions in the signature of the enclosing method (e.g.
compute() in the following example):

// incorrect exception handling for tasks

1: public void compute() throws MyExceptionA, MyExceptionB {

2: TaskID id = myTask();

3: // asynchronous model: enqueuing thread continues...

4: }

Unfortunately, this is incorrect in an asynchronous model since compute()might
return without throwing either of MyExceptionA or MyExceptionB since myTask
(line 2) has not even started yet. Consequently, callers of compute() could face
confusing results since compute() does not throw the checked exceptions syn-
chronously (even though compute() is defined as a synchronous method). Of
course, one solution would be to block the current thread (until myTask() com-
pletes) before returning from compute(). Although such blocking would honor
the Catch or Specify Requirement, this is undesirable for event handling threads.

Incorrectly using Catch

Alternatively, a programmer may attempt to catch the checked exceptions in
order to honor the Catch or Specify Requirement:

// incorrect exception handling for tasks

1: try {

2: TaskID id = myTask();

3: ...

4: } catch (MyExceptionA e) {

5: myHandlerA();
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6: } catch (MyExceptionB e) {

7: myHandlerB();

8: }

9: // asynchronous model: enqueuing thread continues...

Such a try/catch block around the method invocation only works in a syn-
chronous model. But in an asynchronous model, such as ParaTask, the try/catch
block is futile: the caller (enqueuing thread) continues to progress past line 9,
possibly before a worker thread even starts executing myTask() on line 2. Again,
a possible solution is to block the current thread at line 3 until myTask completes
but this is often undesirable as discussed earlier.

Parallel semantics for exception handling: the asyncCatch clause

As shown above, using a standard try/catch block (or specifying exceptions in
method signatures) will only produce the desired result in a synchronous model;
it is therefore required to have parallel semantics for exception handling. In par-
ticular, this includes developing semantics for the Catch or Specify Requirement
in an asynchronous model: ParaTask achieves this by using the non-blocking
asyncCatch clause:

TaskID id = myTask() asyncCatch( MyExceptionA myHandlerA(TaskID),

MyExceptionB myHandlerB(TaskID));

Using this asyncCatch clause is the asynchronous equivalent to the sequential
try/catch block. A ParaTask exception handler is a standard method. Like the
notify clause, methods in the asyncCatch clause are executed on the enqueuing
thread (as shown in figure 5.4). The programmer may access the exception
through the TaskID:

public void myHandlerA(TaskID id) {

print(“Task ” + id.getID() + “ threw an exception:”);

id.getException().printStackTrace();

}

The asyncCatch clause must be used when invoking tasks with checked ex-
ceptions, otherwise the ParaTask program will not compile. This ensures that
the Catch or Specify Requirement is honored in the asynchronous model. The
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 5.6: Visualising the respective call stacks for two threads. The progres-
sion of the enqueuing thread’s call stack is shown in (a1) to (a3) as the task is
enqueued. Figures (b1) to (b3) show the call stack of the worker thread as it
executes the task.

asyncCatch clause may also be used on any task invocation (to also catch
unchecked exceptions, not just for tasks with checked exceptions). The major-
ity of the semantics of the asyncCatch clause are equivalent to the semantics
of the notify clause as discussed in section 5.3.4.

Propagating up the “task call” stack

In understanding the semantics of exceptions in a parallel environment, it is
important to distinguish between the synchronous and asynchronous models:

Synchronous exception handling: In the synchronous model, a single thread
calls methods. As a new method is called, the method is added to the top of the
thread’s call stack. Since the methods are synchronous, the top of stack refers
to the currently executing method. When a method is completed, it is removed
off the call stack.

If the thread encounters an exception, it starts looking for an appropriate
handler. If one is not found in the current method, then the previous method
on the call stack is analysed and so on until an appropriate handler is found.
If no handler was found after analysing the entire call stack, then the thread’s
default handler is executed. In most cases, this means the exception’s stack
trace is printed and the thread terminates.

Asynchronous exception handling: In a model with asynchronous method in-
vocations, such as ParaTask, things are slightly different than the synchronous
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model. Although threads still have their call stack, there is one particularly
important difference: when an (enqueuing) thread removes an asynchronous
method (i.e. a task) off it’s call stack, this does not necessarily mean that the
task has completed. This is illustrated in figure 5.6: figures (a1) to (a3) show
the call stack of the enqueuing thread as a task is enqueued, while figures (b1)
to (b3) show the call stack of a worker thread as the same task is later executed.

In (a1), the enqueuing thread is inside the actionPerformed() method and
calls the task myTask(). At (a2), the thread is now inside myTask() in the pro-
cess of enqueuing the task to be executed by another thread. In (a3), the task
has been enqueued and the thread returns to the actionPerformed(). There-
fore, myTask() has been removed off the call stack of the enqueuing thread (but
the task has not started executing yet). Later on in (b1), a worker thread comes
along looking for a task to execute. The worker thread starts executing the task
in (b2), and finally the task is completed in (b3).

So, what is the significance of this asynchronous model when it comes to
exception handling? First, unhandled exceptions that escape a task are termed
as asynchronous exceptions (to differentiate them from standard exceptions that
escape a sequential method). Therefore, if a worker thread encounters such an
exception while executing a task (i.e. the position denoted by figure 5.6(b2)),
then which call stack should it analyse? It cannot analyse it’s own call stack since
the previous method (i.e. getNextTask()) did not enqueue the task. It also
cannot analyse the call stack of the original enqueuing thread since this could
have largely changed (e.g. actionPerformed() removed from figure 5.6(a3),
other methods added, and so on).

Consequently, the notion of a task-call stack (as opposed to a call stack) is
introduced: this task-call stack is essentially the stack that is created due to
nested parallelism (when a task enqueues another task). When a worker thread
encounters an asynchronous exception, it traverses up the task-call stack to find
an appropriate asynchronous exception handler (i.e. a asyncCatch clause). As
discussed earlier in this section, the standard ways to catch or specify syn-
chronous exceptions do not transfer to an asynchronous model. For this reason,
the only valid exception handlers of exceptions resulting from tasks are those
specified using a asyncCatch clause. The following example illustrates this:

1: public void method() {

2: try {

3: TaskID id = taskA()
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asyncCatch(RuntimeException myHandler(TaskID));

4: } catch (Exception e) { ... } // never used

5: ...

6: }

7: TASK public void taskA() {

8: TaskID id = taskB() asyncCatch(IOException fileHandler(TaskID));

9: ...

10: }

11: TASK public void taskB() throws IOException {

12: ...

13: // exception thrown

14: ...

15: }

If an IOException occurs at line 13, then fileHandler(TaskID) is called since
an asynchronous exception handler was registered on line 8. However, if a
NullPointerException occurs at line 13, then the asynchronous exception han-
dler of line 8 cannot support this exception (since NullPointerException is not
a subclass of IOException). Therefore, ParaTask determines that taskB was
invoked from within another task (taskA), so ParaTask propagates the asyn-
chronous exception up the task-call stack. It determines that when taskA was
enqueued (line 3), an asynchronous exception handler was registered: this han-
dler is therefore called since a NullPointerException is a subclass of Runtime-
Exception.

If ParaTask does not find an appropriate asynchronous exception handler
(for example, assume line 13 threw a ClassNotFoundException), then the
stack trace is printed and the worker thread continues to execute another task.
This behaviour is equivalent to the EDT when it encounters an unhandled ex-
ception: the idea is that the entire application should remain responsive and
not be terminated due to a single exception. Notice how the try/catch block
of lines 2 and 4 are ignored by ParaTask, because such synchronous excep-
tion handlers are insufficient to handle asynchronous exceptions (even though
ClassNotFoundException is a subclass of Exception).

As a note, there is one point that programmers should be aware of: an
asynchronous exception handler could potentially be called multiple times due to
nested parallelism (since multiple tasks may have been forked within the region
guarded by an asyncCatch clause). For example, assume that taskA throws
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a NullPointerException at line 9: this exception is thrown after taskB has
been enqueued. Assume that taskB also throws a NullPointerException at
line 13 (unrelated reasons to the exception from line 9). In both these cases,
the asynchronous exception handler on line 3 will handle these exceptions (once
for taskA and once for taskB). Inside the myHandler method, the programmer
may easily inquire on the TaskID to distinguish between them.

The power of ParaTask’s asyncCatch clause is that it essentially follows the
same expected behaviour as the standard rules of the synchronous try/catch
block, but modified to conform in a parallel environment. In particular, this
means that the programmer may specify multiple exception handlers on the
same task invocation. Consider the following sequential program, using syn-
chronous exception handling:

try {

work();

} catch (IOException e) {

fileHandler();

} catch (RuntimeException e) {

myHandler();

} catch (Exception e) {

defaultHandler();

}

The equivalent code for the a ParaTask program making use of asynchronous
exception handling would consist of the following:

TaskID id = workTask() asyncCatch(

IOException fileHandler(TaskID),

RuntimeException myHandler(TaskID),

Exception defaultHandler());

The ParaTask syntax could even arguably be considered more legible than the
original sequential code! In order to further illustrate the point, the asyn-
chronous exception handlers (essentially just ordinary methods) may also ac-
cept a TaskID argument. This allows the programmer to determine which task
encountered the exception for debugging purposes.
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5.4.2 Exception handling while blocked on TaskID

The asyncCatch clause is intended for, but not limited to, tasks that spec-
ify checked exceptions. Therefore, the asyncCatch clause is optional for tasks
that do not specify throwing any checked exceptions. However, just because
a task does not throw checked exceptions, it does not mean that the task will
not throw any other unchecked exception (e.g. runtime exceptions such as a
NullPointerException).

For this reason, a thread that is blocked waiting for a task to complete
must take this into consideration. The standard approach used by Java Futures
[94] is to re-throw the exception when a thread attempts to access the result.
ParaTask also supports this for the blocking methods waitTillComplete() and
getResult() (i.e. the caller must be made aware that something might have
gone wrong):

TaskID<Integer> id = myTask();

...

try {

int ans = id.getResult(); // blocking method

} catch (ExecutionException e) {

e.getCause().printStackTrace();

} catch (InterruptedException e) {

...

}

The ExecutionException (part of the java.util.concurrent package) is thrown
when attempting to get the result of a task that terminated by an exception.
The InterruptedException (part of the java.lang package) is required since
getResult() is a blocking method. Although most examples throughout this
thesis have omitted this detail for readability, programmers are required to fol-
low the Catch or Specify Requirement for these checked exceptions.

5.4.3 Dependences and notifications

The next question that arises is what happens in the case of dependences and
notifications? Consider the following example:

TaskID id1 = taskA() notify(update())

asyncCatch(Exception myHandler(TaskID));
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TaskID id2 = taskB() dependsOn(id1);

If a task (for example id1) exits with an exception, it is considered “complete”
after the following takes place:

1. If an appropriate asynchronous exception handler is specified using the
asyncCatch clause (e.g. myHandler(TaskID)), it is executed by the en-
queuing thread (before continuing to points 2 and 3 below). If no asyn-
chronous exception handler is found, the stack trace is printed (in this
case points 2 and 3 below are not performed, essentially canceling any
dependent tasks).

2. Next, if any method is specified in the notify clause (e.g. update()),
they are executed by the enqueuing thread.

3. Only at this stage (after all the asyncCatch and notify clauses are ex-
ecuted) is the task considered “complete”. Therefore, other tasks waiting
(e.g. id2) are ready to be executed by a worker thread (assuming no more
dependences on other tasks).

Therefore, the ordering of the clauses is not important (for example, if the
asyncCatch clause in the above example was specified before the notify clause).
The reason for this is that the asyncCatch clause allows a task to clean up
after an exception occurs; only after cleaning up is it safe to continue with the
sequential methods of the notify clause. Similarly, dependent tasks may then
proceed since it is assumed that exceptions were cleaned up.

If any uncaught exceptions are encountered from methods inside a notify

clause (or even a asyncCatch clause!), then the stack trace of those exceptions
are printed. For simplicity, ParaTask does not allow exception handlers to be
specified around clauses, since those exception handlers might in turn throw
more exceptions. Furthermore, unhandled exceptions should not terminate the
entire application (this follows the same policy as Java’s EDT); but these un-
handled exceptions will terminate dependent tasks as discussed in point 1.

Canceling dependent tasks

As discussed above, dependent tasks will automatically be cancelled if the task
they depend on terminates with an uncaught exception. If programmers do not
want dependent tasks terminating, then an explicit asyncCatch(Exception)

clause would be sufficient to catch any potential exceptions. In the case where
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exceptions are caught, the programmer may cancel dependent tasks in the ex-
ception handler. For example, the exception handler of the above example might
look like this:

public void myHandler(TaskID taskWithExc) {

TaskIDGroup dependentTasks = taskWithExc.getDependentTasks();

dependentTasks.requestCancel();

...

}

The advantage of this solution is that taskA() and taskB() remain decou-
pled. Furthermore, the requestCancel() (section 5.1.2.5) will always succeed
since none of the dependent tasks would have started yet. As an example,
taskA() might refer to an image being loaded, while taskB() refers to it being
processed, and the exception in taskA() would be FileNotFoundException.

Another solution would be to check for exceptions in the dependent task(s).
This requires adding a TaskID to the parameter list of the dependent task(s):

TaskID id2 = taskB(id1) dependsOn(id1);

Here, the TaskID of the first task is passed to the second task, this allows check-
ing to see if the first task completed without error using getException() on
the TaskID. Alternatively, the exception will be re-thrown when attempting to
get the result (section 5.4.2). This approach could also be applied to methods
in the notify clause. Therefore, the programmer may customise whether the
dependent tasks (such as taskB()) or notify methods (such as update()) should
be executed if taskA encountered an exception. Although this solution is less
elegant because it couples tasks together and requires passing TaskIDs, it may
be useful if dependent tasks need to know of the reason another task failed.

5.4.4 Multi-task exceptions

Unlike one-off tasks or interactive tasks, a multi-task might result in more than
one exception. This is because a multi-task consists of multiple tasks. Consider
the following multi-task definition, with a fixed size of 4:

TASK(4) public String multiTask() throws IOException {

...

}
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By following the policies of section 5.4.1, below is a valid invocation of this
multi-task:

TaskIDGroup<String> group = multiTask() asyncCatch(

IOException handlerA(TaskID),

RuntimeException handlerB(TaskID));

Notice that IOException is a checked exception, while RuntimeException is
an unchecked exception: the discussion here applies equally to both cases.
Even though this is a multi-task, the semantics is the same as has been dis-
cussed throughout this section. The only thing to note is that the handlers
are invoked once for each exception instance. For example, assume that two
of the subtasks encountered an IOException, while one subtask encountered a
RuntimeException. This means that handlerA is called twice, while handlerB is
called once; in each case, the TaskID passed is that of the respective subtask
that encountered the exception (from the subtask’s TaskID, the programmer
may gain access to the TaskIDGroup that represents the entire multi-task).

5.5 Grouping tasks

A programmer may wish to invoke multiple independent tasks, yet treat them
collectively as a group to simplify their management. Consider the following
example:

TaskID id1 = task1();

TaskID id2 = task2();

...

TaskID id9 = task9();

Here, nine independent tasks are created. These tasks may be added to a task
group as follows:

TaskIDGroup group = new TaskIDGroup();

group.add(id1, ..., id9);

Tasks may also be added to the group one at a time. However, at some stage,
ParaTask needs to know how many tasks are inside the group (for example, in
order to correctly determine when the group is complete). Therefore, the group
is “sealed” automatically before it is used:
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• In a dependsOn clause:
TaskID finalID = finishTask() dependsOn(group);

Here, the necessity of sealing is obvious since ParaTask needs to know
when finishTask() may safely start.

• When blocking:
group.waitTillComplete();

Again, the necessity of sealing is clear since ParaTask needs to know when
the blocking thread may safely resume. Not only is this simpler than
waiting on multiple TaskIDs, but it is also more efficient since the blocking
thread will only wake up when all tasks have completed. Otherwise, the
thread will be woken up, only to block on the next TaskID.

If the programmer attempts to add another TaskID to a group after it has been
sealed, then a runtime exception is thrown. The programmer may access the
individual TaskIDs of the tasks using getMembers(), therefore allowing access
to the individual results of each task. This is especially useful for multi-tasks.

5.6 Scheduling schemes

Throughout this thesis, ParaTask has been shown to achieve different examples
of parallel patterns [36]. For example, not only is the embarrassingly paral-
lel pattern covered, but also the use of the divide and conquer pattern (the
merge sort example of section 5.3.1). The underlying scheduling scheme is cru-
cial for the performance of a parallel application. Three scheduling schemes
are currently supported, but more may be added as plugins. Users may select
the most suitable one for their application (one schedule is allowed per appli-
cation). ParaTask’s default schedule is mixed (section 5.6.3) as it combines the
benefits of work-sharing (best for fairness) and work-stealing (best for nested
parallelism).

5.6.1 Work-sharing schedule

The first scheduling scheme is a simple work-sharing policy: tasks are executed
using a fair policy (i.e. in the order they were originally enqueued). This is
beneficial for pipeline pattern applications where the user expects older tasks to
complete before newer tasks. Such a scheduling policy is important for perceived
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performance from the user’s point of view (as demonstrated in section 6.2.2)
since the user expects tasks to complete in the rough order they were launched
(such as thumbnail previews). For example, consider an application that is
expected to behave like the pipeline pattern:

for (int i = 0; i < data.size; i++) {

TaskID id1 = stageA(data[i]);

TaskID id2 = stageB(id1) dependsOn(id1);

TaskID id3 = stageC(id2) dependsOn(id2);

}

The purpose of showing this pipeline pattern is to illustrate the scheduling of
dependent tasks in ParaTask. This pipeline has three stages, and the output
of each stage is used as input to the next stage (in this example, assume that
stageA is much longer than the other stages). Notice that stageA is always
ready to execute (it has no dependences), therefore a possible output of the
execution trace might result as follows:

stageA: iteration 0

stageA: iteration 1

stageA: iteration 2

stageB: iteration 0

stageB: iteration 1

stageB: iteration 2

stageC: iteration 0

stageC: iteration 1

stageC: iteration 2

The output above results if the implementation executes dependent tasks in
the order they were ready (not the order they were originally enqueued). For
example, stageA of all iterations were ready before any iteration of stageB (and
were therefore put on the ready queue earlier). To avoid this behaviour, tasks
are prioritised according to their original enqueuing timestamp (rather than the
time they were ready to execute). This allows the trace to be as follows:

stageA: iteration 0

stageB: iteration 0

stageC: iteration 0

stageA: iteration 1
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Figure 5.7: This recursive application is an example of nested task parallelism.
In this case, a parent task is only considered complete when its children are
completed. The numbers denote the time stamp of when the task was originally
enqueued. To increase efficiency, tasks should not be executed in this same
order (and even becomes impractical in larger applications).

stageB: iteration 1

stageC: iteration 1

stageA: iteration 2

stageB: iteration 2

stageC: iteration 2

Of course, the actual order is not guaranteed (except when the dependsOn clause
is used between tasks); however, this example illustrates that the next favoured
task to execute is the one with the earliest original enqueue. Such a scheduling
is achieved using a work-sharing policy.

5.6.2 Work-stealing schedule

The performance of some applications might suffer significantly with a work-
sharing schedule (as will be shown in section 6.2). This is especially the case for
recursive applications, for example those based on the divide and conquer pat-
tern. Consider the example recursive application of figure 5.7: the numbers
denote the order the tasks were originally enqueued. If the tasks were executed
in this same order (i.e. using the fair work-sharing policy of section 5.6.1), then
this will result in extremely poor performance:

• Since each task is executed in the original order it was enqueued, this
implies that the whole task tree needs to be in memory since a task is
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not considered complete until its children are complete. In other words,
a thread’s call stack keeps increasing until the last enqueued tasks are
reached. Therefore the memory footprint is extremely high. Not only will
this reduce performance due to increasing garbage collection, but it also
becomes impractical to execute larger applications due to limited amounts
of memory.

• Executing such an application in a breadth manner results in poor cache
reuse [72, 1], since a thread executes “colder” tasks in preference to the
latest tasks spawned.

Clearly, an intuitive schedule would be to execute the children tasks first (depth-
first manner in order to complete the current task sooner); however, the work-
sharing schedule of section 5.6.1 will instead jump branches and execute the
tree in a breadth-first manner. For this reason, ParaTask also supports a work-
stealing schedule [28]. This ensures a minimal call stack for the threads, since
it only consists of the depth of the task tree. The work-stealing variant used by
ParaTask is based on the well-established randomised variant [17], which will
be discussed in section 6.1.2.2.

5.6.3 Mixed schedule

What happens in an application containing a component that requires fair-
ness, while another component involves highly nested parallelism? Which of
the scheduling policies should be chosen? A work-sharing policy has the benefit
of fairness (but fails for the nested parallelism component), while work-stealing
has the benefit of aptitude for nested parallelism (but fails in fairness). ParaTask
supports a combined scheduling scheme that defaults to work-sharing (i.e. is
fair), but whenever nested parallelism is detected, these tasks are handled in
a work-stealing manner. This overall policy ensures that ParaTask maintains
fairness whenever possible, but temporarily (yet necessarily) resorts to a work-
stealing schedule for nested parallelism components. As will be shown in section
6.2, this scheduling policy allows us to take the best of work-stealing and work-
sharing.
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5.7 Adherence to object-oriented programming

By introducing concurrency to an object-oriented language, one must discuss the
impact this has on important object-oriented concepts; the three most important
ones are encapsulation, inheritance and polymorphism [107]. A discussion on
the inheritance anomaly is also presented.

5.7.1 Encapsulation

Encapsulation, an important aspect of object-oriented programming, protects
the attributes and methods of an object from improper use [107]. A major
aspect of encapsulation is data hiding, since any irrelevant internal details are
hidden. ParaTask promotes encapsulation in the following ways:

• Concurrency is coordinated by the callee:
In ParaTask, concurrency is coordinated by the callee rather than the
caller (the TASK keyword is a modifier associated with the declaration
rather than invocation). Whether a task is safe to execute concurrently
is the responsibility of the implementation. This preserves encapsulation
for two reasons [85]. First, the implementation details of a task remain
hidden from the caller. Second, modification of a task’s implementation
will not require modification of any caller code since the task signature
remains the same.

• ParaTask enforces policies of access specifiers:
The access specifiers (for example, public, protected and private) of the
programming language are enforced by ParaTask. Not only does this in-
clude access to tasks, but also access to methods specified inside notify and
asyncCatch clauses (presented later in this chapter). For example:

TaskID id = myTask() notify(myObj::target());

Assume that target refers to a protected method defined inside the class
of instance myObj. Since the statement myObj.target() is not allowed
inside the current class that myTask is called from, the above code will not
compile. Therefore, ParaTask ensures that programmers do not circum-
vent the policies of access specifiers.
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5.7.2 Inheritance

Reusing code is very important in object-oriented programming. One of the
ways this is achieved is by having classes inherit code from other classes, known
as inheritance. From Java’s point of view, a ParaTask task is essentially an or-
dinary method; consequently, tasks are seen as standard class members and are
therefore inherited by subclasses. Tasks may even be overridden by subclasses,
just as methods are overridden; the only requirement is that the TASK keyword
is also carried down, otherwise the program will not compile. Therefore, the
TASK keyword is viewed as a modifier and is very much a part of the method’s
signature.

5.7.3 Polymorphism

Following on closely to inheritance, polymorphism is also a very powerful object-
oriented concept. Multiple subclasses inherit the interface of a common super-
class, allowing for each subclass to respond differently to the same method. As
discussed in section 5.7.2, the TASK keyword is a modifier and subclasses must
therefore be consistent. Even though the logic of tasks may be overridden,
their synchronicity may not: methods will always execute synchronously and
tasks will always execute asynchronously. Therefore, there is no confusion when
programmers invoke tasks.

5.7.4 Inheritance anomaly

The integration of concurrency with object-oriented languages is said to intro-
duce a new set of problems termed the inheritance anomaly [75, 78]. Although
this is an interesting and important issue, it is not confined specifically to con-
current object-oriented programming. In fact, this section shows that the in-
heritance anomaly still affects sequential object-oriented programs: it is merely
more visible and apparent for concurrent object-oriented programs. Therefore,
a counter-example against the original definition of inheritance anomaly is pre-
sented, and then an improvement of the definition is proposed.

The argument made here is that the inheritance anomaly occurs when the
(subclassed) object is responsible for maintaining correct usage of the object
(rather than relying on the user). A similar example from [78] is re-used to
explain this. Consider the following sequential code defining a buffer:

public class Buffer {
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...

public Object get() {

if (empty )

throw new NoSuchElementException();

...

}

public void put(Object v) {

if (full )

throw new IllegalStateException();

...

}

public int size() { ... }

}

From the code above, it is evident that the user of the buffer object is responsible
for its correct usage. For example, the user should not insert elements into a
full buffer or attempt to withdraw an element from an empty buffer. The
programmer now wishes to extend this buffer by introducing a new method
gget() that works like get(), except that it may not be immediately executed
after a get() (this is the same example of [78]):

public class HistoryBuffer extends Buffer {

...

public Object gget() {

return super.get();

}

// put(Object), get() and size() all inherited

}

In this case, the inheritance anomaly does not arise because the put(Object),
get() and size() methods are inherited. However, it is the responsibility of the
user to ensure that gget() is used correctly (and not the responsibility of the
object HistoryBuffer). The programmer now redefines the HistoryBuffer in
such a way that it contains some error handling to ensure it is used correctly
(rather than naively relying on the user):

public class HistoryBuffer extends Buffer {

boolean afterGet = false;
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...

public Object gget() {

if (afterGet)

throw new IllegalStateException(“Cannot call after get()!”);

afterGet = false;

return super.get();

}

public Object get() {

Object o = super.get();

afterGet = true;

return o;

}

public void put(Object v) {

super.put(v);

afterGet = false;

}

public int size() {

int s = super.size();

afterGet = false;

return s;

}

}

Note that the programmer has not introduced concurrency, yet the inheritance
anomaly exists: get(), put(Object) and size() must be redefined! This
counter-example illustrates that the inheritance anomaly is not specific to the
introduction of concurrency within the object, but rather to the introduction
of responsibility of correct usage within the object. Since synchronisation is a
subset of this responsibility, this explains why the inheritance anomaly exists in
concurrent objects. Therefore, this thesis proposes that the following definition
is better suited for inheritance anomaly:

The hindrance of inheritance when the responsibility of an object’s
correct usage is incorporated within the object rather than solely
relying on the object’s user.

For this reason, the inheritance anomaly is something that also affects sequential
object-oriented programs: it is onlymore likely to occur for concurrent programs
since thread-safety in these programs will demand responsibility.
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5.8 Related work

An important aspect of developing new parallelisation tools is to focus on the
user requirements [84], in this case the desktop application developer. Most
related work have the objective of combining parallelism with object-oriented
applications. Even though most desktop applications are in fact object-oriented,
this objective is insufficient for successfully parallelising desktop applications.
Rather, this thesis proposes that the focus should be on combining parallelism
with (graphical) object-oriented desktop applications. The keyword here, desk-
top, is vital: one must understand and respect the structure of graphical desktop
applications (as discussed in section 2.3.3) before attempting to introduce par-
allelism [95]. This is one of the first aspects that distinguish ParaTask from
previous work. ParaTask’s objective is not only to use concurrency to improve
performance, but also to create responsive GUI applications that do not freeze.
Moreover, ParaTask remains generalised enough to be applicable to console ap-
plications without a GUI.

There has been numerous research on combining concurrency with object-
oriented programming: Briot et al [22] has classified some previous work into
various categories, while Philippsen [85] surveyed over 100 concurrent object-
oriented languages. In both surveys, the most relevant work includes Concurrent
Object Oriented Language (COOL) [32], Compositional C++ (CC++) or some
form of the active object pattern [59, 2]. More recent work includes Cilk++ [35],
ThreadWeaver [19], QtConcurrent [104], Intel Threading Building Blocks (TBB)
[63], the new OpenMP tasking feature [82, 9], Apple’s Grand Central Dispatch
(GCD) [7], Java 1.6’s SwingWorker [94] and Foxtrot [20]. Other languages
currently under development include X10 [33] and the Visual Studio 2010 Task
Parallel Library (TPL) [76].

The first primary difference is that ParaTask, as presented here, uniquely
integrates different task types into one concept. Second, none of the related
work provide support for automatically handling task dependences (except for
ThreadWeaver). Third, ParaTask has the primary focus of providing parallelism
to desktop applications without code restructuring: this implies adherence to
the threading model of graphical applications (section 2.3.3) and conforming
to object-oriented concepts. In particular, ParaTask guarantees that tasks are
always executed asynchronously with the enqueuing thread (unlike, for exam-
ple, OpenMP, Cilk++, TBB and TPL). This is a fundamental requirement
for responsive concurrent applications [97, 98]. Further specific differences are
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discussed below.
An active object is essentially a proxy that separates method invocation

from method execution. Although this pattern works well for many distributed
computing applications, it is not well suited for shared memory models such as
programming desktop applications. Furthermore, most active object implemen-
tations do not support intra-object concurrency: only one method executes at a
time while others are delayed. Even though this makes the program correctness
easier to justify, it greatly reduces parallel performance [85].

ThreadWeaver and Intel TBB have a task concept where programmers en-
close independent code snippets within a separate object. But just like active
objects and thread libraries, these tools require considerable code restructur-
ing. For example, ThreadWeaver requires the task’s user code to be defined
within the run() method of a Job instance: very similar to the requirements of
threading libraries. Jobs can only be used once, therefore a new instance needs
to be created for each invocation of the task. Intel TBB is similar, except that
the term task is used instead of Job, and execute() instead of run(). For
example, below is the definition of a task:

class MyTask: public task {

public:

...

task* execute() {

// user code

}

}

To make use of this task, programmers must allocate space for the task and
explicitly spawn the task to make it start:

MyTask& t = *new (task::allocateSpace()) MyTask(); // create task

task::spawn(t); // start task

Some languages, such as X10 (which is designed for non-uniform cluster com-
puting rather than the shared memory systems of current desktops) and CC++,
create concurrency using a special keyword in front of the method invocation.
This brings convenience to the programmer since code does not need to be re-
structured into a separate object. However, here lies a fundamental disadvantage
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typical of concurrent languages that coordinate concurrency by the caller (as
opposed to the callee): encapsulation, an essential object-oriented programming
concept, is immediately broken [85]. First, implementation details of an invoked
method must be understood by the caller. Second, all caller code must be care-
fully analysed every time the callee code is modified.

OpenMP’s task construct also falls under this category, where programmers
wrap code with compiler directives:

#pragma omp parallel

{

...

#pragma omp single

{

...

#pragma omp task

myTask(“Hello, World”);

...

}

} // implicit barrier

Note the number of additional pragmas required: the parallel pragma creates
a team of threads, while the single pragma ensures the task is enqueued only
once (since the task pragma must be used within a parallel pragma envi-
ronment). The parallel pragma itself includes an implicit barrier at the end,
therefore all tasks must complete before exiting this construct; it is therefore
unacceptable to place the parallel pragma within an event-handler. Synchro-
nisation is achieved by using an optional and explicit taskwait pragma (for
nested tasks), causing the current task to block until all its children tasks fin-
ish. In order to achieve finer-grained synchronisation (i.e. subset of the tasks),
programmers must wrap the task subset within a dummy task and wait on that
subset [47]. All of these show that the underlying threading model of OpenMP
is not well suited for developing interactive GUI applications.

Rather than using a keyword, other concurrent languages coordinate con-
currency by the use of a special enqueuing method. The advantage here is
that concurrency is introduced within libraries, therefore eliminating the need
for an additional intermediate compiler. Examples of these languages include
QtConcurrent and TPL. Below is a QtConcurrent example:
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QFuture<String> future =

QtConcurrent::run(QtConcurrent::bind(myMethod, "Hello, World"));

The future object [88] allows return values to be accessed once the asynchronous
task has completed. Unfortunately, these languages still possess the disadvan-
tage of breaking encapsulation since concurrency is coordinated by the caller.
Furthermore the resulting code is less legible, especially when the programmer
must bind the arguments to the method.

COOL takes a different approach: concurrency is coordinated at the callee
side by prefixing the parallel keyword to method declarations (just like for
ParaTask). Although COOL addresses the broken encapsulation issue discussed
above, it still possesses some setbacks that are also common to CC++. First,
return results are discarded. Second, these languages spawn user-level threads
for each task, resulting in poor performance when a large number of smaller
tasks are created (especially in recursive divide and conquer applications) [62].

Cilk++ allows programmers to annotate method declarations with a spe-
cial keyword to denote parallelisable methods. The advantage is that the serial
version of the program is produced when the keywords are removed from the par-
allel code. ParaTask’s work-stealing implementation is motivated by Cilk++’s
well-proven work-stealing scheduling policy [17]. Unfortunately, Cilk++ does
not focus on event-based desktop applications; one cannot parallelise a GUI
application using this model (section 6.2.1.3). The same semantics have also
been applied to JCilk [39]: a Java implementation that also takes into consid-
eration exception handling. The difference is Cilk++ and JCilk implement a
work-first policy, while ParaTask implements a help-first policy [56].

In the work-first policy, threads leave their current task to sequentially exe-
cute a newly created task. Other threads may then steal from where the thread
left. This performs well for extremely fine-grained nested parallelism since the
thread completes the task before another thread has a chance to steal (where
stealing is expensive). In the help-first policy, threads enqueue the newly cre-
ated task (in the hope that another thread will execute it) while the thread
continues with its current task. In terms of desktop application semantics, a
work-first policy would violate the structure of multi-threaded GUI applications:
this would mean the enqueuing thread (i.e. the GUI thread) executes the tasks
(which will reduce the application’s responsiveness), and other worker threads
would continue where the GUI thread left off (but only the EDT is allowed to
access GUI components). In fact, it is not possible to develop a parallel GUI
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application using this model. Assume the method myTask() is annotated with
the cilk keyword; below is the “required” code, for example using JCilk:

// code will not compile

cilk public void actionPerformed() {

// EDT thread starts to execute event handler

...

result = spawn myTask();

...

// implicit cilk barrier waits for spawned tasks

}

The above code fails on many aspects in an event-handling environment:

• Since actionPerformed() is calling a cilk method (i.e. myTask()), then
it must be annotated with the cilk keyword itself (otherwise the Cilk
compiler will complain). But this is not possible, since the Java com-
piler will not allow the signature of actionPerformed() to be modi-
fied. Even if it were possible, it would provide poor documentation since
actionPerformed() is now a cilk method too!

• When myTask() is spawned, the EDT begins to execute it (work-first
policy). If another thread were to help, it would steal where the EDT
left off (i.e. continue the statement after the spawn) - but this violates
the GUI threading model (section 2.3.3). Consequently, only a help-first
policy is viable for GUI applications.

• The implicit barrier at the end of the method means that the EDT cannot
progress until all child tasks are completed. This means no other events
can be handled, therefore reducing interactivity.

Most importantly, the TASK keyword in ParaTask serves as a form of docu-
mentation to ensure encapsulation is maintained for tasks. This is not so for
Cilk++, since methods that call other tasks must themselves be annotated with
the same keyword. As will be presented in section 6.2.1, the work-stealing of
JCilk does not produce good performance for embarrassingly parallel code.

The languages mentioned so far do not make any special consideration for
parallel GUI applications, which is vital for desktop applications. Java 1.6 in-
troduced the SwingWorker class to assist programmers in developing responsive
GUI applications. Every invocation of a task is enclosed in a SwingWorker
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object where programmers implement a doInBackground() method to be ex-
ecuted on a worker thread. When the worker thread completes, the EDT will
execute the done() method. SwingWorker is only designed to be used once,
therefore the programmer must create a new instance for each task invocation.
This model is only applicable to the EDT (hence the name), whereas ParaTask
is also generalised to be useful for non-GUI parallel applications.

Although SwingWorker is a simpler alternative to manually using threads,
programmers unfortunately end up breaking encapsulation since they must know
whether the code inside doInBackground() is thread-safe. ParaTask, on the
other side, encourages encapsulation (and therefore code reuse) since the tasks
are naturally documented as thread-safe. SwingWorker requires explicit calls
(e.g. to start the worker) and provides no support for specifying dependences
amongst tasks.

Foxtrot provides two solutions to avoid freezing the GUI. The first approach
is the asynchronous solution, which is essentially identical to the SwingWorker
discussed. In the second approach, the synchronous solution, code executes
“sequentially” as it appears. In order not to block the EDT when it invokes
a task, the EDT is re-routed to continue processing events. When the task
completes, the EDT is again re-routed to resume executing where it left off. The
benefit of such a model is that callback methods are not needed. Unfortunately
this model is less intuitive to use, especially when multiple tasks are invoked.
Foxtrot, like SwingWorker, only applies to the EDT.

In 2009, Apple released GCD which supports task parallelism. The major
difference, compared to ParaTask and all the above related work, is that GCD
is integrated into the operating system rather than at the application-level.
This has the advantage that the operating system manages the thread pool and
task execution across a number of applications. Programmers enqueue tasks
as functions or blocks (a non-standard extension developed by Apple for C,
C++ and Objective-C to create closures). This is similar to some of the above
approaches, where tasks are queued to various dispatch queues. Unfortunately
such a syntax breaks encapsulation, requires developers specify which queue to
send tasks to and involves tangling parallelisation concern with business logic:

dispatch_queue_t queue;

queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

int taskInput = ...; // input to the task
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// option 1: submit task as block

dispatch_async(queue,^{

myTask(taskInput);

});

// option 2: submit task as function

// requires void* type as function input

dispatch_async_f(queue, (void *) taskInput, myTask);
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Chapter 6

Parallel Task implementation
and performance

This chapter discusses ParaTask’s implementation and performance. The full
ParaTask grammar may be found in appendix A. This chapter also presents an
example application developed using ParaTask, as well as a discussion on the
combination of ParaTask with the Parallel Iterator.

6.1 Implementation

Figure 6.1 presents an overview of a task invocation. When a task is created,
this is placed on a queue that is being monitored by a pool of worker threads
(section 5.1.1). When the enqueuing thread calls the task, this is essentially
translated into an enqueue of the task (step 1). The enqueuing of a task to the
taskpool (step 2) involves the following:

• creating a new TaskID object

• storing any task arguments

• recording the enqueuing thread (necessary for notify and asyncCatch clauses)

• recording the enclosing task (necessary for propagating unhandled asyn-
chronous exceptions up the task-call stack)

• registering any methods to be called in notify and/or asyncCatch clauses
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Figure 6.1: When a task is called, this results in an asynchronous execution
since the enqueuing thread only enqueues the task to the taskpool. This involves
recording all the necessary information that is later required for a worker thread
to then execute the task.

When these steps have been completed, the new TaskID is returned (step 3)
and the caller continues execution (step 4). Meanwhile, a worker thread will
eventually execute the newly created task (step 5).

6.1.1 ParaTask source-to-source compiler

ParaTask applications are essentially standard Java applications with the ad-
ditional use of a few keywords (e.g. TASK, dependsOn, asyncCatch, notify).
Figure 6.2 shows how programmers develop ParaTask source files (.ptjava ex-
tension), which are then parsed by the ParaTask compiler into standard Java
source files (.java extension). The ParaTask compiler performs one-to-one pre-
processing, namely an equivalent x.java Java source file is produced for every
x.ptjava ParaTask source file. Finally, all Java source files are compiled using
a standard Java compiler.

The token manager and parser

The parser is generated using JavaCC (Java Compiler Compiler) [93], a popular
parser generator for use with Java applications, originally developed by Sun
Microsystems. To support ParaTask keywords, the stable and official Java 1.5
grammar released with JavaCC is extended; appendix A presents the modified
sections of this grammar to support ParaTask. Consequently, this grammar is
stable to parse all Java code up to Java 1.5.

Taking the grammar in appendix A as input, JavaCC produces some Java
source files. Of particular interest are the token manager and parser:

• ParaTaskTokenManager.java (the token manager)
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Figure 6.2: Developing ParaTask source code is just like Java source code,
except the source files are preprocessed by the ParaTask compiler before the
Java compiler.

A lexical analyser that analyses the input stream into meaningful tokens
(e.g. “int”, “(”, “main”, “dependsOn” ).

• ParaTaskParser.java (the parser)
The structure of the tokens produced by the token manager are analysed
by the parser, producing an abstract syntax tree (AST).

Once these files (the parser, etc.) have been produced, input streams may now
be tested to ensure they conform to the ParaTask grammar of appendix A:

CompilationUnit ast =

ParaTaskParser.parse(new File(“/home/user/ImageApplication.ptjava”));

If the input stream does not conform, the parser reports an exception and ends.
For example, assume the programmer accidentally types dependOn instead of
dependsOn:

********* Failed to parse ImageApplication.ptjava

japa.parser.ParseException: Encountered "dependOn" at line 7, column 36.

Was expecting one of:
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"dependsOn" ...

";" ...

...

The tree visitor

If the input stream is correct, then an AST is produced (i.e. CompilationUnit)
by the parser. Since this AST contains ParaTask-specific nodes, it is vis-
ited to replace them with standard Java code. This is accomplished with the
TaskVisitor, which is based on JavaCC’s default DumpVisitor (it essentially
just reproduces the input stream from the AST).

TaskVisitor visitor = new TaskVisitor();

ast.accept(visitor); // TaskVisitor traverses AST

String fileContent = visitor.getSource(); // get output produced by visitor

printContentsToFile(fileContent); // create a corresponding “.java” file

Below is a small extract from the TaskVisitor showing, as an example, how a
task declaration node (see grammar in appendix A) is visited. An example of
the output produced by the visitor follows in section 6.1.1.1.

public final class TaskVisitor {

// the output is added to this printer

private SourcePrinter printer = new SourcePrinter();

...

public void visit(TaskDeclaration td) {

// get the method

MethodDeclaration method = td.getMethodDeclaration();

int modifiers = method.getModifiers(); // e.g. public static

printer.print(Modifier.toString(modifiers));

printer.print(“ ”);

if (td.isMultiTask()) // if multi-task, return TaskIDGroup

printer.print(“TaskIDGroup<”);

else

printer.print(“TaskID<”);

Type retType = method.getReturnType(); // original return type

printer.print(retType);

printer.print(“> ”);

printer.print(method.getName()); // print method name
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printer.print(“(”); // start parameter list

...

// enqueue to the task pool

printer.print("return TaskpoolFactory.getTaskpool().enqueue");

...

}

public void visit(LineComment n) {

printer.print("//");

printer.printLn(n.getContent());

}

...

}

6.1.1.1 Parsing task declarations

Consider a ParaTask source file with the following declaration for a one-off task:

TASK public int myTask(String str) {

/* user-code */

}

The TaskVisitor translates the above into standard Java code:

1: private Method _pt_myTask_String = null;

2: public TaskID<Integer> myTask(String str) {

3: return myTask(str, null);

4: }

5: public TaskID<Integer> myTask(String str, TaskInfo taskinfo) {

6: if (_pt_myTask_String not initialised) {

7: ...

// parameter types for the task

8: Class[] params = new Class[] { String.class };

// the class containing this task

9: Class currentClass = getClass();

// get Method using Java reflection

10: _pt_myTask_String = currentClass.getDeclaredMethod(“_pt_myTask”, params);

11: }
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12: Object[] args = new Object[] {str};

13: if (taskinfo == null)

14: taskinfo = new TaskInfo();

15: taskinfo.setMethod(_pt_myTask_String);

16: taskinfo.setTaskArgs(args);

17: taskinfo.setEnqueuingThread(Thread.currentThread());

18: return Taskpool.enqueueOneOff(taskinfo);

19: }

20: public int _pt_myTask(String str) {

21: /* user-code */

22: }

The first thing to notice is that the original user-code has been moved into
another method whose name has been changed (lines 20 to 22); the reflected
Method variable of line 1 refers to this method that contains the user-code.
Therefore, the name of the original task now refers to new methods that perform
the enqueuing of the task. The first method, declared on line 2, is used in the
case that no ParaTask clauses, such as dependsOn etc., are used when the task
is called.

In order to delay execution of the task (since it is being enqueued), reflection
is used to retrieve the Method representing the user-code (lines 7 to 10). This
requires the Class that the task is contained within (line 9), as well as the
signature of the method, including the name and parameter types (line 8). With
this information, the method is accessed (line 10). To reduce runtime overhead,
ParaTask ensures this step is performed at most once for every task (line 6).

The TaskInfo object is used to save details necessary to invoking the task.
This includes the task arguments (line 12), the actual user-code to execute, as
well as recording the enqueuing thread. This is finally sent to the taskpool
(line 18), which returns a TaskID after enqueuing the task. Parsing multi-tasks
and interactive tasks is similar. There is only a slight difference: rather than
calling enqueueOneOff on line 18, enqueueMulti or enqueueInteractive is
called respectively. Therefore, the ParaTask runtime system enqueues the task
appropriately.
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6.1.1.2 Parsing task invocations

If a task is invoked without specifying any ParaTask clauses, then the ParaTask
compiler does not modify the invocation. This is because a task invocation is a
valid method invocation from the Java compiler’s point of view; the invocation
of the task refers to the enqueuing of the task rather than the original user-code
(line 2 of section 6.1.1.1). Consider now a task invocation making use of at least
one ParaTask clause:

TaskID myID = myTask(“Hello”) (ParaTask clause)+;

Since at least one ParaTask clause is specified at the task invocation, the
ParaTask compiler will create a new TaskInfo object:

TaskInfo _pt_myID = new TaskInfo();

The TaskInfo is then populated with information regarding the respective
ParaTask clause. Once all this information is stored, the final task invocation
becomes:

TaskID myID = myTask(“Hello”, _pt_myID);

Since the TaskInfo now contains all the necessary information required to invoke
the task, the original ParaTask clauses are removed. The above call refers to line
5 of section 6.1.1.1. How the TaskInfo is populated for the respective clauses
is now discussed.

Parsing a dependsOn clause

Consider the following use of the dependsOn clause:

TaskID myID = myTask(“Hello”) dependsOn(id1);

Parsing a dependsOn clause is very simple. The ParaTask compiler only needs
to produce the following:

_pt_myID.addDependency(id1);

If multiple dependences are specified within the same dependsOn clause, the
above is repeated for each dependency. If the programmer misspelled the vari-
able name of a dependency (e.g. wrote it1 instead of id1), then the resulting
Java code will not compile (assuming it1 does not refer to another TaskID in-
stance within scope).
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Parsing a notify or notifyGUI clause

The notify and notifyGUI clauses have a few components that need careful
consideration:

TaskID myID = myTask(“Hello”)

notifyGUI(update(TaskID)) notify(myObj::complete());

Note that multiple methods may be specified within each of the notify or
notifyGUI clauses. The first method in the notifyGUI clause above, update,
has a TaskID parameter and must be invoked by the EDT (since it is notifyGUI)
on this object instance (the default if no instance is specified). The second
method in the notify clause, complete, has no parameters but will be invoked
on the instance myObj by the enqueuing thread (determined in section 6.1.1.1).
In either case, ParaTask must enforce that both these methods are accessible
from the current scope. Below is the resulting code:

// notifyGUI(update(TaskID))

1: Method _pt_myID_notify1 = ParaTaskInternal.getDeclaredMethod(getClass(),

“update”, new Class[] {TaskID.class});

2: if (false) // never executed - compiler to check syntax

3: update(ParaTaskInternal.dummyTaskID);

4: _pt_myID.addNotify(_pt_myID_notify1, this, true);

// notify(myObj::complete())

5: Method _pt_myID_notify2 = ParaTaskInternal.getDeclaredMethod(myObj.getClass(),

“complete”, new Class[] {});

6: if (false) // never executed - compiler to check syntax

7: myObj.complete();

8: _pt_myID.addNotify(_pt_myID_notify2, myObj, false);

The ParaTaskInternal.getDeclaredMethod on line 1 is a helper function that
internally uses Java reflection to retrieve the method. Note that in some cases,
the method might actually be inherited from a super-class. The above example
assumes that the enclosing method is an instance method (since it is making
use of getClass()). If the ParaTask compiler determines the enclosing method
is static, then the class is attained from the class execution stack (from a Java
SecurityManager).
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Unfortunately, line 1 can only determine at runtime if the programmer cor-
rectly used the notify clause (e.g. “update” is spelt correctly and the correct
parameter types are specified). Therefore, the purpose of lines 2 and 3 is solely
to ensure correct usage of the notify clause. Line 3 is never executed, but is
used for a compile-time check. If the programmer misspelled the method name,
attempted to invoke a method with incorrect parameter type, or if the method
is out of scope (e.g. declared private in a super-class), then the Java compiler
will complain. The ParaTask compiler simplifies its duties by using the Java
compiler to determine such problems.

Finally, the method to notify is registered inside the TaskInfo instance
(line 4). If the programmer does not specify an instance to invoke the method
on, the default is this instance (or null if the enclosing method is a static
method). The true refers to whether the method should be forced to execute
on the EDT: this is true for notifyGUI clauses and false for notify clauses.
The second method is determined in a similar way (lines 5 to 8). The differences
include finding the method within the class of myObj (rather than using the
current class). The notifyInterim and notifyInterimGUI clauses are parsed
similarly to the notify and notifyGUI clauses.

Parsing a asyncCatch clause

The asyncCatch also has a few noteworthy aspects. In particular, ParaTask
ensures that the programmer adheres to the Catch or Specify Requirement.
Assume that the signature of a task declaration includes a throws clause, for
example:

TASK public int myTask(String str) throws IOException {

/* user-code */

}

This task declaration is parsed exactly as discussed in section 6.1.1.1: the
throws clause in the method signature is also included in the output source
code. Since IOException is a checked exception, then the programmer must
now use the asyncCatch clause (the asyncCatch clause may also be used for
general exception handling when invoking any task). Below is a corresponding
task invocation written by the user:

TaskID myID = myTask(“Hello”) asyncCatch(IOException handler(TaskID));
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By specifying an exception handler to catch the IOException, the following
code is produced by the ParaTask compiler:

// asyncCatch(IOException handler(TaskID))

1: Method _pt_myID_exc1 = ParaTaskInternal.getDeclaredMethod(getClass(),

“handler”, new Class[] {TaskID.class});

2: if (false)

3: handler(ParaTaskInternal.dummyTaskID);

4: _pt_myID.addExcHandler(IOException.class, _pt_myID_exc1, this, false);

5: TaskID id = null;

6: try {

7: id = myTask(“Hello”, _pt_myID);

8: } catch (IOException _pt_e) { /* dummy try/catch block */ }

Notice how lines 1 to 3 are essentially identical to that produced when parsing
a notify clause: these lines are used to ensure that the method specified in
the exception handler exist (as discussed above). Line 4 registers the exception
type, IOException, with the exception handler so that the ParaTask runtime
knows which handler to invoke when an IOException occurs. The actual task
invocation is now reconstructed as in lines 5 to 8. First, the TaskID declaration
(line 5) is separated from the assignment (line 7) so that the TaskID instance
stays in the same scope the programmer expects. The assignment is finally
surrounded with a try/catch block, catching the exceptions specified in the
asyncCatch clause.

The try/catch block of lines 6 and 8 is actually a dummy try/catch: its pur-
pose is solely to quiet the Java compiler (since a checked exception is thrown
by myTask) to ensure that the programmer follows the Catch and Specify Re-
quirement. Now assume that an IOException was in fact thrown by myTask at
runtime. Regardless of where the enqueuing thread is when this exception is
thrown (even if it passes line 8, after the try/catch block), the ParaTask run-
time will catch the exception and invoke the asynchronous exception handler
specified in the asyncCatch clause. If the programmer does not correctly use
the asyncCatch clause to handle an IOException, then the resulting Java code
will not compile because there will be no surrounding try/catch (lines 6 & 7).
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6.1.2 ParaTask runtime system

The Java implementation currently consists of three possible scheduling policies
for the runtime. The implementation of these policies are discussed below,
and the programmer may decide which is more suitable for their particular
application. The motivation behind allowing this choice is to show the flexibility
of how the underlying runtime system is independent of the ParaTask language
syntax. In fact, the current implementation allows for more scheduling policies
[90] to be added as plugins. Figure 6.3 overviews the ParaTask runtime system,
regardless of the particular scheduling scheme to be used.

An interesting question that arises is whether there should be a limit on
the number of active interactive tasks? The motivation behind this is that
an interactive task is essentially a thread, therefore creating a vast number of
interactive tasks could potentially result in reduced performance [23, 81]. How-
ever, if ParaTask were to limit the number of active interactive tasks, then this
would be equivalent to a threading library limiting the number of threads an
application could make. Therefore, ParaTask simply provides a helper func-
tion, ParaTask.activeInteractiveTaskCount(), that returns the number of
interactive tasks that are currently active. After querying this, the programmer
decides on the necessary course of action.

Task enqueuing The first phase, naturally, starts when a task is enqueued by
the enqueuing thread. During this phase, a TaskID is created in order to record
the details of the task invocation. If the task dependsOn other tasks, it is stored
with the waiting tasks. Otherwise, the task is ready to execute: one-off tasks
and multi-tasks are enqueued according to the scheduling scheme plugin (and
any sleeping worker threads are woken up), while interactive tasks execute
on a new interactive thread. As soon as the task is enqueued, the enqueuing
thread continues to process other work: in this example, the enqueuing thread
returns to the event loop to process other events.

Worker thread is ready All tasks, except interactive tasks, are executed by
worker threads. The worker thread continues to execute all tasks in its private
ready queue. Once the private ready queue is empty, a task is taken from the
scheduling scheme plugin. If the task is reserved for another worker thread (i.e.
in the case of multi-tasks), it is queued to that worker thread’s private ready
queue. Otherwise the task is executed.
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Figure 6.3: ParaTask’s runtime system allows for different scheduling schemes
to be plugged in. The life of a task starts when the enqueuing thread creates and
deposits it for another thread to execute. The task is finally considered complete
after any post-task methods (e.g. methods in a notify or asyncCatch clause)
are executed.
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Task execution Java reflection is used to execute the user-code of the tasks.
In most cases, the worker thread will execute the task in its entirety before
executing another task. The exception to this is if a worker thread blocks on
the TaskID of another task that has not yet completed (e.g. task B) while it is
currently executing task A. In this case, the worker thread retrieves another task
(e.g. task C) from the scheduling scheme plugin and executes it. When task C
is completed, the worker thread checks the status of task B. If it has completed,
then the worker thread continues where it left off with task A; otherwise, another
task (selected according to the scheduling policy) is executed again until task
B is completed. This behaviour is also repeated recursively if necessary (e.g. if
task C in turn blocks on another unfinished task).

Task completion When a task is finally executed by the worker thread (or
interactive thread), it is not necessarily considered complete just yet. First, the
worker thread checks to see if the task has any post-task methods that need
to be executed (e.g. methods in a notify or asyncCatch clause). If no such
methods exist, then the task is considered complete: the worker thread signals
this by updating the task dependences.

If a task has post-task methods, then these need to be executed by the en-
queuing thread (not the worker thread). Therefore, the worker thread signals
the enqueuing thread (by emitting an event) that it should execute the respec-
tive post-task methods. When the enqueuing thread executes the post-task
methods, a signal is sent back to update the task dependences. If an exception
occurs, these are treated in the same manner as post-task methods since they
are executing by the enqueuing thread.

6.1.2.1 Work-sharing schedule

Implementing a work-sharing policy is straight forward. When tasks are en-
queued to the scheduling scheme plugin, they are placed onto a shared ready
queue using a first in, first (FIFO) out policy. As discussed in section 5.6.1,
the tasks in this shared ready queue are ordered according to the original order
they were enqueued (which is not necessarily the same as the order they became
ready to execute).
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6.1.2.2 Work-stealing schedule

Rather than having a single shared ready queue, the work-stealing runtime
consists of a local deque (a double ended queue) for each worker thread. Note
that this local deque is distinct from the private ready queue: the private
queue is used to store only multi-tasks reserved for the owner thread, while the
local deque stores all the task types and these may be stolen by other threads.

Although the work-stealing implemented for ParaTask is the same as that of
the Tree Parallel Iterator (discussed in section 4.1.7), some aspects are repeated
here in context of ParaTask. Figure 6.4 shows 3 stages of an application run,
where 2 threads are executing the task graph of figure 5.7.

Each thread has a private deque to store tasks that are ready to execute.
When a thread operates on tasks on its own deque, a LIFO policy is used
(therefore operating on the latest local node). When a thread’s private deque
is empty, it becomes a thief and selects a victim thread at random. The thief
attempts to steal the oldest task on the victim’s deque, therefore using a FIFO
policy when stealing.

In the example application of figure 5.7, the first (root) task is enqueued.
This task is placed on one of the thread’s deque. In the example, thread A hap-
pens to be the first thread to grab the task. In the meantime, thread B is trying
to steal from another random thread (in this case it only has one other thread
to steal from). While thread A is processing task 1, it enqueues 2 more tasks
(i.e. 2 task invocations are made). These tasks are enqueued to thread A’s
private deque (figure 6.4(a)). Consequently, tasks 2 and 3 are now ready to be
executed.

Now that 2 new tasks have been enqueued to thread A’s deque, thread B has
found its victim: it steals the oldest task from thread A, which happens to be
task 2. In the meantime, when thread A blocks on the TaskID on an incomplete
task, it takes the latest task from its local deque (node 3) and executes it. As
thread B executes task 2 (figure 6.4(b)), it enqueues 2 more tasks (tasks 4 and
5). It soon blocks on the TaskID of these new and incompleted tasks (while
processing task 2), and therefore starts a new task. This time, thread B does
not need to perform another steal since it has unprocessed tasks on its local
deque: it executes the most recent local task (task 5). Similarly, task 7 becomes
thread A’s most recent local task when task 3 is completed.

Finally, each thread completes a task that does not spawn another task (i.e.
the leaf tasks in the task tree). For example, figure 6.4(c) shows thread A having

161



(a) When task 1 executes, it creates tasks 2 & 3. Task 2 is stolen

by thread B (FIFO), while thread A operates on task 3 (LIFO).

(b) With sufficient tasks on their own deque, each thread uses a LIFO

policy. Note that tasks 1-3 still have not completed (recursive parallelism).

(c) Each thread has completed a leaf task in the recursive parallelism, and

continue using a LIFO policy while their respective deque is not empty.

Figure 6.4: Example of 2 threads executing a recursive task-parallelism applica-
tion using the work-stealing schedule. When a ParaTask worker thread blocks
on the TaskID of an incomplete task, it executes another ready task from its
own local deque (if not empty) using a LIFO policy. Otherwise, a FIFO policy
is used when stealing tasks from another worker thread.
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(a) (b) (c)

Figure 6.5: Mixed schedule implementation. In (a), both threads are work-
sharing. In (b), thread A starts work-stealing due to nested parallelism, while
thread B continues work-sharing. In (c), thread B starts work-stealing as no
more tasks remain on the global work-sharing queue.

completed task 15. In this case, thread A returns to task 7, only to find it is
still blocked (since task 14 has not be completed by another thread). In this
case, it picks another task from its local deque. This happens to be task 14,
which is then executed.

6.1.2.3 Mixed schedule

Figure 6.5 illustrates the mixed work-sharing and work-stealing schedule. Figure
6.5(a) shows 3 tasks enqueued using a FIFO policy behaving much like the
work-sharing policy of section 6.1.2.1. In this example, task 2 happens to create
3 more tasks (i.e. nested parallelism). Since work-sharing is unsuitable for
nested parallelism, these tasks are processed using the LIFO work-stealing policy
of section 6.1.2.2 (figure 6.5(b)). Consequently, thread A must temporarily
compromise fairness in favour of executing the recursive parallelism. In the
meantime, thread B strives for fairness by processing tasks from the global
queue. When a thread finds no tasks in its local deque or the global queue, it
steals a task from another thread (as discussed in section 6.1.2.2). For example,
figure 6.5(c) shows thread B stealing the oldest task from thread A.

6.2 Performance

The performance of ParaTask compared to traditional parallelism approaches is
evaluated, as well as the overhead relative to sequential code and Java threads.
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In light of mainstream multi-cores, benchmarks typical of desktop applications
are included as well as considering user-perceived performance. The benchmarks
ran on a shared memory system which may be considered a typical future desk-
top platform running Linux. It has four Quad-Core Intel Xeon processors (total
of 16 cores) running at 2.4GHz with 64GB of RAM. All benchmarks were coded
in Java, and the sequential code of each benchmark forms as the baseline for
all speedup calculations. The default JVM memory allocation was sufficient for
most benchmarks, except for those of section 6.2.1.2 where 16GB was allocated.
Throughout all the benchmarks, Java’s default garbage collector was used.

6.2.1 Comparing to traditional Java parallelism approaches

This section compares the performance of a number of typical parallelisation
approaches a programmer may take, including:

• JT-max : as presented in sections 2.3.4 and 2.3.5, a new Java thread is
created for every task. This is a typical approach programmers would
take to manually parallelise an application.

• JT-min : as a variation to JT-max, this involves creating the minimum
number of threads in order to match the processor count. A static distri-
bution of the tasks is created, where each thread is assigned roughly an
equal number of tasks (but this might not necessarily equate to an equal
workload at runtime if the tasks are unbalanced). Although this approach
requires more work than JT-max, programmers may opt for this in hope
to reduce runtime overhead.

• SwingWorker : as presented in section 2.3.5, this involves wrapping each
task in a SwingWorker object. Being a tasking model, SwingWorker is an
improvement to the runtime overhead of the JT-max threading model.

• JCilk : as presented in section 5.8, tasks are defined as methods and
annotated with the cilk keyword. Although this model cannot be used
for GUI applications, it is used in the following benchmarks to compare
the work-first policy to ParaTask’s help-first policy

• PT-sharing : as presented in section 5, tasks are defined as methods and
annotated with the TASK keyword. The runtime used is the work-sharing
schedule discussed in section 5.6.1.
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• PT-stealing : as presented in section 5, tasks are defined as methods and
annotated with the TASK keyword. The runtime used is the work-stealing
schedule discussed in section 5.6.2.

• PT-mixed : as presented in section 5, tasks are defined as methods and
annotated with the TASK keyword. The runtime used is the mixed schedule
discussed in section 5.6.3.

Note that the 3 ParaTask approaches above all used exactly the same coding
approach. The only difference is the scheduling selected at runtime (the default
is PT-mixed, therefore its performance is obtained without tweaking).

6.2.1.1 Compute-intensive applications

This section aims to understand the overhead and load balancing of the var-
ious approaches. The first benchmark computes a synthetic load (here the
Newton-Raphson method) for each task. Figure 6.6(a) shows the speedup using
a medium-grained and balanced workload (each task takes an average 0.3ms).
Using Java threads achieves the best performance when statically allocating
computations to the minimum number of threads (JT-min). If a thread is as-
signed for each computation (JT-max), this achieves the worst performance.

ParaTask achieves better performance using work-stealing over work-sharing
as the processor count increases. Even though there is no nested parallelism in
this benchmark, the reason that PT-stealing performs better than PT-sharing
is because of the high contention. PT-sharing consists of a single queue for
the tasks, therefore all threads contend on the same queue (they even contend
at the same end of the queue). In PT-stealing however, tasks are randomly
distributed to multiple queues (in the case that tasks were enqueue by a non-
worker thread). This not only means less contention because of more queues,
but also because stealing threads take from the opposite end that the victim
thread operates on. ParaTask mixed scheduling incurs slightly higher overhead
compared to ParaTask work-stealing because it checks for nested parallelism.

Figure 6.6(b) shows the speedup for an unbalanced workload. Due to this
imbalance, JT-min is now one of the worst performers. ParaTask now per-
forms best amongst the other approaches, and the difference between the work-
stealing, mixed and work-sharing is less evident since task granularity has in-
creased. These results show that the overhead of ParaTask is very small, while
the workload is balanced well to produce consistent speedup between the differ-
ent workloads. In both benchmarks, JCilk’s reduced performance is attributed
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(a) Fine-grained and balanced workload

(b) Unbalanced workload

Figure 6.6: Comparing to typical Java parallelisation techniques.
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to the high cost of stealing in the work-first policy: a steal involves a new thread
taking over the context (e.g. variables and their values) of the victim thread.

6.2.1.2 Disk-intensive applications

The scalability of the different approaches using more realistic desktop appli-
cations is now investigated, in particular those requiring high amounts of disk
access. Figure 6.7(a) shows the speedup for an image-resizing application. This
involved a collection of 256 identical images, each 1MB (1600×1200 pixels), all
stored on the same disk. The resizing of each image was designated as a single
task, and no image was reused for another task in order to reduce cache effects.
The sequential time to resize all 256 images took an average of 585ms for each
image.

Figure 6.7(b) shows the speedup for a word permutation application (for
example, typical of a spell checker). This benchmark consisted of 3505 different
text files, stored on the same disk within a total of 172 sub-folders. The size of
the files ranged from 22 bytes to over 100 KB, each file was designated as a task
(unbalanced workload) without reusing any file for another task. These files
are in fact the Linux system’s C language general-use include files stored under
/usr/include. The sequential time to perform the permutation on all these files
totaled 26 seconds. Each task consists of reading the words inside a file and
performing various string comparisons with the other words within the same
file.

For these benchmarks, most approaches only scale up to around 14 processors
due to the high disk contention. ParaTask allows the programmer to easily fine-
tune the thread count for such a reason. In both benchmarks, the 3 ParaTask
runtimes performed best. In the case of the image resizing benchmark, JT-min
also performed well since the workload was balanced. However, this was not
the case with the word permutation due to the unbalanced workload. JT-max
continues to produce poor results, this time attributed to multiple disk-intensive
tasks being active concurrently.

6.2.1.3 Recursive applications

While ParaTask was dominating all previous benchmarks, a critical analysis
must also reveal its weaker points. Fine-grained recursive benchmarks are where
ParaTask is weaker. Interestingly, JCilk, which did not perform too well before,
can shine here. The next benchmark, CountQueens, illustrates this. Given an
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(a) Image resizing benchmark

(b) Word processing benchmark

Figure 6.7: Typical desktop applications making large amounts of disk access.
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Figure 6.8: CountQueens benchmark, comparing JCilk to ParaTask.

n×n board, CountQueens finds all the possible solutions to the Queens problem
[29]. Not all the approaches could handle this application: Java Threads quickly
ran out of memory, SwingWorker resulted in deadlock (since all tasks blocked
waiting for sub-tasks) and work-sharing resulted in stack overflow (recursion too
deep). The only viable approaches were PT-stealing, PT-mixed and JCilk (all
based on the same work-stealing).

Figure 6.8 shows the speedup for both JCilk and ParaTask, using a Coun-
tQueens board size of 15. JCilk outperforms ParaTask for this benchmark,
even though both implement the same work-stealing [17] schedule. The dif-
ference is JCilk implements a work-first policy, while ParaTask implements a
help-first policy [56]. In the work-first policy, threads leave their current task to
sequentially execute a newly created task. Other threads may then steal from
where the thread left. This performs well for extremely fine-grained nested
parallelism (such as CountQueens) since the thread completes the task before
another thread has a chance to steal (where stealing is expensive).

The reason that a work-first policy is not implemented for ParaTask is
twofold. First, as shown in all the benchmarks above (except for fine-grained
nested parallelism such as CountQueens), a work-first steal is extremely expen-
sive as it requires transferring the context (state of variables) from the enqueuing
thread to the thief thread. This expense greatly affects performance when many
steals occur (i.e. tasks are not fine-grained enough, therefore other threads have
the chance to steal).
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Second, a responsive concurrent application requires that tasks are guaran-
teed to always execute asynchronously [97]. A work-first policy will produce
synchronous tasks. In terms of desktop application semantics, a work-first pol-
icy violates the structure of multi-threaded GUI applications: this means the
enqueuing thread (i.e. the GUI thread) executes the tasks and other worker
threads would continue where the GUI thread left off (but only the EDT is
allowed to access GUI components). Consequently, only a help-first policy is
viable for GUI applications.

These results show that ParaTask executes recursive applications well, but
only for higher granularity. The CountQueens benchmark may be considered a
worst-case for help-first scheduling policies, but a best-case for work-first poli-
cies. Consequently, ParaTask would perform better for higher grained applica-
tions.

6.2.2 User-perceived performance

In section 6.2.1, it was shown that the work-stealing tends to outperform work-
sharing as the thread count increases. Therefore, for batch-type applications,
the work-stealing would be most useful in reducing wall-clock time. But what
about an interactive environment? Due to the interactive nature of desktops,
it is generally agreed that the users perception of performance becomes a vital
metric in measuring performance [89, 44, 42]. For example, a web-based appli-
cation addressing multiple users or a desktop application where a single user
launches multiple tasks. In such a situation, users expect tasks to be treated
fairly: in particular, using a FIFO policy.

The aim of the following benchmark was to quantify how much the actual
order deviates from the expected order. In particular, how the deviation is
effected as the number of tasks increases. Therefore, the benchmark is interested
in the order that the tasks are completed in, and not the actual computational
time. The tasks used had identical runtimes and involved computing a synthetic
load (the Newton-Raphson method). The following table is used as an example
to explain the process in calculating the deviation:
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Task number (i.e. enqueue order) 1 2 3 4 5 6 7 ... 16
Expected finishing order: e 1 2 3 4 5 6 7 ... 16
Actual finishing order: a 3 8 2 1 7 4 9 ... 11

Difference: e− a -2 -6 1 3 -2 2 -1 ... 5
Difference2: (e− a)2 4 36 1 9 4 4 1 ... 25
Sum:

∑
(e− a)2 218

Deviation:
√

1
N

∑
(e− a)2 3.69

This example dataset shows how the deviation would be calculated for 16
tasks in a single run of the benchmark (number of tasks, N = 16). The 1st
row lists the tasks and the order they were queued in. Naturally, a user would
expect these tasks to finish in this very same order (2nd row). Unfortunately
the tasks are likely to finish in a different order at runtime, for example the
3rd row. The deviation of the actual finishing order from the expected finishing
order is calculated similarly to the standard deviation. The differences (4th
row) are squared (5th row) and summed (6th row), and finally the average is
computed (last row). This whole process is repeated for a total of 5 times, and
the average is plotted as the deviation of finishing order for 16 tasks. This is
then repeated for 32, 64, ... and 65536 tasks for each of the scheduling schemes.

The result is shown in figure 6.9. It shows how the actual finishing order de-
viates from this expected FIFO order as more tasks are introduced (the thread
count is fixed at 16). This shows that work-sharing best models the user’s
expectation of the ordering, consequently resulting in better perceived perfor-
mance. Of particular interest is the mixed scheduling policy, which achieves
similar user-perceived performance of the work-sharing. This result, along with
those of section 6.2.1, shows that the ParaTask mixed scheduling allows us to
achieve the advantages of work-sharing and work-stealing into the same policy.

6.2.3 Overhead

In section 6.2.1, the performance of ParaTask was discussed in relation to other
parallelism approaches. ParaTask’s performance is now discussed compared to
sequential code and Java threads. In particular, one wants to know how much
slower are ParaTask tasks compared to sequential methods and how much faster
compared to Java threads. The graphs in figure 6.10 show that the speedup
factor depends on the number of tasks created and their granularity. All the
tasks again involved a balanced synthetic load. One would expect a task be
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Figure 6.9: Deviation of actual finishing order compared to the expected finish-
ing order. The higher the deviation, the lower the perceived performance from
the user’s point of view.

several times slower than a method invocation because of the task overhead,
especially for fine-grained computations.

Figure 6.10(a) shows that ParaTask averages out to be around 4 times slower
than sequential methods for extremely fine-grained tasks (each task runtime
averages to 7µs), 1.5 times slower for medium-grained tasks (task average of
67µs), and 1.1 times slower for coarse-grained tasks (task average of 690µs).
This result is encouraging since these tasks are all considered extremely fine-
grained for an interactive environment (at least 100ms of visual experience is
needed before humans perceive duration [41]). Figure 6.10(b) confirms that
the tasking model better scales than the threading model as the number of
computations increase. This is especially evident for fine-grained tasks.

6.3 Example application: ParaImage

In addition to the benchmarks discussed in section 6.2, ParaTask has been
applied to other applications. This section presents ParaImage, an image ma-
nipulation application co-developed by the author and Peter Nicolau (a 2nd
year Software Engineering undergraduate student). What is most encouraging
about this experience is that Peter was previously never exposed to parallel
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(a) Comparing to sequential methods

(b) Comparing to Java threads

Figure 6.10: Comparing ParaTask to sequential methods and Java threads.
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computing, let alone ParaTask. In particular, he quickly grasped ParaTask just
by referring to previous ParaTask publications [50, 52] and following the code
of the example application. This section first presents the application features
before discussing the underlying implementation.

Even for sequential applications, the programmer would want to make it
responsive. When doing this with ParaTask, the parallelisation is virtually free.
If the programmer uses threads to increase the responsiveness of a sequential
application (i.e. figure 2.2), not only is this more involved, but it does not
help with parallelisation. Yet, the same thought process and restructuring is
necessary.

6.3.1 ParaImage features

At the bottom of the ParaImage application, there is a panel displaying the
current mode of the application. Users of the application may at any time
switch between the sequential mode (red bottom panel, for example figure 6.11)
or the parallel mode developed purely using ParaTask (green bottom panel,
for example figure 6.12). This helps desktop users to encounter first-hand why
parallel computing is so important for an interactive desktop experience. Please
note that the sequential mode in fact refers to the situation of figure 2.1. The
options available to the user are to create a new project from the file menu.
Current projects include a Flickr image search or an image editing project,
both discussed in detail below. To assist desktop users in experiencing the
difference between a sequential and a multi-threaded application (developed
using ParaTask), the bottom panel allows them to easily switch between the
two modes.

Flickr search

The first project provides the user with a search interface to retrieve images from
Flickr (a website for sharing images). Figure 6.11 shows a new Flickr search
project with the sequential mode selected. On the top panel, users enter their
search criteria. This includes the search query (1) and the number of images to
retrieve per page (5). Once a search has been submitted (2), the progress (4)
is displayed and the cancel button (3) is enabled. Users may also retrieve the
previous (6) and next (8) set of results.

When the user submits the search query, thumbnails of the results appear
in the centre (9). If the sequential mode is enabled, then users will have an
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Figure 6.11: ParaImage with an empty Flickr search project. This interface is
the same for both the sequential and parallel modes.

unresponsive application until all the results are being retrieved. During this
time, none of the buttons or menus will respond. Not even the cancel button
will respond in the sequential mode while a search is taking place (since the
EDT thread is performing the search). Also negative for the user’s experience
is that the progress bar does not update until 100% complete.

Figure 6.12 shows an example of the search interface, only this time using
the parallel mode. The first difference that users will notice while using the
parallel mode is the prompt arrival of intermediate results. When a search is
submitted, partial results (in the form of thumbnails) will be displayed as they
become available. Figure 6.12(a) shows the stage where 70% of the search has
already completed. Notice that the cancel button is enabled: pressing it will
cancel the retrieval of any more thumbnails.

The next difference that the user will notice is the high responsiveness of the
application. For example, even while the thumbnails are still arriving, the user
may download the full size of selected images by pressing (1). After the full size
has been retrieved from the server, it may be viewed (2) or saved to disk (3).
Figure 6.12(b) shows this responsiveness: the user has entered a search criteria,
retrieved some full size images and viewed a full sized image all while only 85%
of the search has been completed. In the sequential mode, the user would not
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(a) Search in progress (70%), with responsive buttons.

(b) Full size image retrieved and displayed while search still in progress (85%).

Figure 6.12: While in parallel mode, the application remains fully responsive.
Not only does this mean an updating progress bar, but thumbnail results are
displayed as they come available. Users may also retrieve and save full-size
images while the search is still in progress.
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Figure 6.13: ParaImage with an image editing project.

have even seen a single thumbnail during this time.
This responsiveness is not limited to only within a single search project: it is

an application-wide responsiveness. For example, the user may decide to create
a new search project (which will appear as a new tab in the main screen). Even a
new non-search project, such as an image editing project (discussed next), may
also be opened. The entire application will remain interactive while the different
projects perform their respective operations (and of course, the parallelisation
is also improving the wall-clock performance).

Image editing

The next project that a user may create involves performing various filters on
a set of images (figure 6.13). After the user adds images to the project (1), a
thumbnail preview appears in the centre, with the option to view the full size
(15). The various filters that can be performed include edge detection (5), colour
invert (6), blur (7), sharpen (8), mosaic (9) and image mosaic (10). The other
options include mosaic settings (13), creating (11) and deleting (12) palettes,
saving changes (2), undoing changes (3), removing images from view (4) and
shortcuts to selecting/deselecting all images (14).
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Figure 6.14(a) shows the edge detection filter being applied to the set of
images. At this stage, the filter has been applied to the first 3 images. Since the
application is running in the responsive parallel mode, the user may enqueue
more filters as the current filters are being applied. Figure 6.14(b) shows the
colour invert filter being applied. As the user would expect, the filters on each
image are applied progressively in the order enqueued. For example, the colour
invert is applied to the edge detected image (not to the original image).

In the case that sequential mode was selected, such a project will firstly be
more time consuming since only one thread (i.e. the EDT) will be performing all
the filters. Secondly, a new filter cannot be enqueued until the current filter is
finished. This is because the GUI becomes unresponsive during the time filters
are being applied. Finally, as in the case of the Flickr search, intermediate
results are not displayed. Instead, the user will be faced with an unresponsive
application until the current filter finishes for all the selected images.

A particularly interesting filter is the image mosaic (filter (10) of figure 6.13).
The user first selects a set of images that will be stored in a palette (11). The
images in this palette are used as small tiles of the mosaic. Figure 6.15(b)
shows an example of such an image mosaic. The tiles of this mosaic consist
of the images in the palette of figure 6.13. For example, the red aspects of
the lady’s dress in figure 6.15(b) would be composed from the tomato image of
figure 6.13.

An important aspect for such an application is when multiple filters are
applied. For example, consider the blurred image of figure 6.15(c). To achieve
this desired level of blurness, the blur filter was repeatedly applied (5 times)
since applying it once produces only a slight blur effect. In the sequential mode,
the user must wait after each time the filter is applied since the EDT is occupied
with the filter.

The interesting part of this scenario is in the parallel mode. In this case, due
to the responsiveness, the user manages to press the blur filter 5 times before the
very first blur is even completed. The user would expect that each of the 5 blur
actions are accumulated (rather than just being applied to the original image).
Note that an intermediate blur (necessary for the subsequent blur) would not
have been available at the time the blurs were queued. Section 6.3.2 will discuss
how this was easily achieved using ParaTask.
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(a) Edge detection applied to all selected images. 3 images have already completed.

(b) Colour invert immediately follows the above edge detection.

Figure 6.14: While in parallel mode, the application the user is able to continue
enqueuing multiple filters. The application remains responsive, updating the
thumbnails as filters are applied.
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(a) Original image (b) Image mosaic filter (c) Blur filter

Figure 6.15: Example of an image mosaic and blur filter. The image mosaic is
composed from a set of tiles, each tile an image from the palette in figure 6.13.

6.3.2 ParaImage implementation

This section discusses the implementation of the ParaImage features presented
in section 6.3.1. The application was first developed as a sequential program
by concentrating on the general framework without parallel computing in mind.
Once the (sequential) functionality was developed, implementing the parallel
mode was simple. Particular implementation aspects of interest are discussed
below.

Code reuse

The code snippet below shows an example of the sequential code to perform a
filter on a photo:

public static Image edgeDetect(Image i) {

...

}

In order to implement the parallel mode for this functionality, another method
is created and annotated with the TASK keyword. The elegance here is evident
as the business logic of the sequential code is reused:

TASK public static Image edgeDetectTask(Image i) {
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return edgeDetect(i);

}

The event handler uses the above code as follows:

if (sequentialModeSelected ) {

Image result = Filters.edgeDetect(image);

panel.setImage(result);

} else {

TaskID<Image> result = Filters.edgeDetectTask(image)

notify(panel::setImageTaskID(TaskID));

}

If sequential mode is selected, then the EDT computes the filter and displays
the result to the panel. Alternatively, if the parallel mode is selected, then the
task is invoked (therefore freeing the EDT) and notify clause is used to update
the GUI when the result is ready. Since the original setImage method requires
an Image parameter, another method is required. Code reuse is again achieved:

public void setImageTaskID(TaskID<Image> id) {

setImage(id.getResult());

}

Interactive tasks and interim results

Since the search functionality involves external I/O, this functionality is defined
as an interactive task. Again, like the examples above, code reuse is achieved:

INTERACTIVE_TASK public static List<Image> searchTask

(String query, int picsPerPage, int pageOffset) {

return search(query, picsPerPage, pageOffset);

}

Recall from section 6.3.1 that the sequential mode of the search did not support
canceling or interim updates of partial results (because the EDT is unresponsive
during the search). However, implementing these functionalities for the parallel
mode is easy with ParaTask. But first, here is the event handler to invoke the
search functionalities:

181



if (sequentialModeSelected ) {

List<Image> results = Search.search(query, picsPerPage, pageOffset);

for (Image image: results) {

panel.addImage(image);

}

progressBar.setValue(100);

searchCompleted();

} else {

currentSearchID = Search.searchTask(query, picsPerPage, pageOffset)

notify(searchCompleted())

notifyInterim(receiveIntermediate(TaskID,Image));

}

In the case of the sequential mode, the thumbnail results are added to the
panel only when all images are retrieved. After this, the GUI is updated via
searchCompleted(). In the case of the parallel mode, the GUI is updated via
the notify clause. The currentSearchID refers to the TaskID of the project’s
current search. If the user presses the cancel button, then the EDT will respond
by sending a cancel request, i.e. currentSearchID.requestCancel() (sec-
tion 5.1.2.5). Via receiveIntermediate(), the notifyInterim clause (section
5.3.5) is used to populate the panel as each image (intermediate result) arrives:

private void receiveIntermediate(TaskID id, Image image) {

panel.addImage(image);

progressBar.setValue(id.getProgress());

}

So, how are the interim results emitted by the task? And how is the progress
of the task updated? A slight modification is added to the sequential code of
the search functionality. Recall that the sequential code is used in both the
sequential and parallel modes (since searchTask() calls search()):

public static List<Image> search(String query, int picsPP, int offset) {

List<Image> results = new ArrayList<Image>();

// retrieve IDs of photos that match the search criteria
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PhotoList pList = Flickr.getPhotoIDs(query, picsPP, offset);

// retrieve the thumbnails and add to results

int i = 0;

for (Photo p: pList) {

Image thumb = Flickr.getThumbnail(p);

results.add(thumb);

// check if inside a task

if (CurrentTask.insideTask()) {

// check if task should terminate early

if (CurrentTask.cancelRequested()) {

CurrentTask.setProgress(100); // update task progress

return list;

} else {

// update task progress

CurrentTask.setProgress(++i/pList.size()*100);

// publish interim result

CurrentTask.publishInterim(thumb);

}

}

}

return results;

}

In order to introduce task-specific code, CurrentTask.insideTask() will deter-
mine if the current thread is a ParaTask worker thread (i.e the parallel mode).
The task will intermittently check whether a cancel request has been submitted.
If so, it will cease retrieving the rest of the thumbnails and return immediately.
Otherwise, it updates its progress and publishes the newly retrieved thumbnail.
This approach demonstrates decoupling since the search functionality does not
need knowledge of code that is interested in the progress and intermediate re-
sults of the task.

Accumulating filters

Section 6.3.1 discussed an example where the image in figure 6.15(c) was created
by applying the blur filter multiple times. The images in figure 6.14 were created
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in a similar fashion, where the colour invert filter was applied on top of the edge
detection filter. Because the application remains responsive during the parallel
mode, it is very likely that the user will be enqueuing filters (i.e. tasks) at a
faster rate than they complete. Therefore, in order to achieve an accumulated
filter effect in the parallel mode, the TaskIDs of the respective filters are added
to the filter history of the respective image (remember that this does not apply
to the sequential mode since the interface is unresponsive when a filter is being
applied):

// each image has a history of filters

TaskIDGroup<Image> history = historyMap.get(image);

// enqueue the new task, but it must wait for previous filters

TaskID<Image> newFilter = Filters.blurTask(image)

notify(panel::setImageTaskID(TaskID))

dependsOn(history);

// add the new filter to the history (for future filters)

history.add(newFilter);

In this fashion, the dependsOn clause ensures that the newly launched filter
is not applied until all the previous filters have been applied to the image.
Otherwise, the task will be enqueued immediately and the filter applied to the
current state of the image.

As shown with the ParaImage application, it is easy to transform a sequential
application into a responsive one. As a bonus, the parallelisation is also achieved
without any additional effort. If programmers used threading libraries, consid-
erable effort is first necessary to produce a responsive application and then more
effort to also introduce parallelisation. With ParaTask, responsiveness and par-
allelism come together.

6.4 Combining ParaTask & the Parallel Iterator

By combining the Parallel Iterator with ParaTask, programmers have an easy
way to develop SPMD programs (in particular when combined with multi-tasks):

TASK(*) public void processElements(ParIterator pi) {

while (pi.hasNext()) {
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process(pi.next());

} // PI implicit barrier synchronisation

...

// all elements processed at this stage

...

}

As presented in section 3.1.1, the default Parallel Iterator contains an implicit
barrier synchronisation. From ParaTask’s point of view, the Parallel Iterator’s
implicit barrier is a form of external blocking. In order to overcome this block-
ing in the multi-task, the Parallel Iterator should be constructed without the
barrier synchronisation (section 3.1.1). If it is necessary to synchronise at the
end of a multi-task, there is an implicit synchronisation at the end of multi-
tasks that achieves this (i.e. the multi-task’s TaskIDGroup). If internal syn-
chronisation is necessary within the multi-task, the programmer may use the
CurrentTask.barrier() presented in section 5.3.3:

TASK(*) public void processElements(ParIterator pi) {

while (pi.hasNext()) {

process(pi.next());

} // no blocking in the Parallel Iterator

CurrentTask.barrier();

// all elements processed at this stage

...

}

This allows the multi-task to implement a barrier synchronisation, while en-
suring that worker threads do not block. This benefit is twofold. First, it
helps to eliminate deadlock since worker threads are always progressing some
task (especially important for nested parallelism). Second, it helps to improve
performance for other tasks since worker threads are not idle.
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Chapter 7

Conclusions

The aim of this thesis was to address desktop parallelisation. Traditionally,
candidate applications for parallel computing were typically restricted to the
scientific, engineering and database fields. With the advent of multi-core pro-
cessors for mainstream systems, desktop applications must also be parallelised
in order to benefit. Unfortunately, parallelisation for the desktop applications
is even more complicated than that of general parallel computing problems.
One of the biggest reasons for this difficulty is that desktop applications have
a different structure: they are event-based and composed of a graphical user
interface. This requires a rethinking of parallelism.

Due to the structure of typical desktop applications, this thesis acknowledges
that the focus needs to be on object-oriented parallelisation. An important
aspect in this approach is that the current software engineering approach must
not be broken. As a result, two concepts have been developed: the Parallel
Iterator and Parallel Task. Although one is for data parallelism and one for
task parallelism, the two concepts complement each other.

The first concept, the Parallel Iterator, was proposed for object-oriented
programs on shared memory systems. The Parallel Iterator concept allows par-
allel traversal of a collection of elements while the structure of the program
remains unchanged. This may be performed virtually with any collection, even
those inherently sequential, therefore being a faithful extension to the sequen-
tial iterator. The interface of the Parallel Iterator even imitates the standard
Java-style sequential iterator. The Parallel Iterator promotes encapsulation and
separation of concerns by hiding parallelisation and collection details from the
programmer. When used in combination with OpenMP, the structure of the
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sequential program remains virtually unchanged.
The core concept of the Parallel Iterator is sufficient for many, but not all

iterative computations. As such, the scope of the Parallel Iterator was expanded
to solve more parallel computing situations. The first includes user-defined
reductions in an object-oriented approach, essentially allowing programmers to
realise arbitrary reductions for any data type. The second included support for
exception handling in a parallel loop. This is especially important for object-
oriented languages. Another feature included parallel semantics for the loop
break, and also parallel semantics for removing elements during traversal. These
features complement each other and can even be used elegantly together. The
Parallel Iterator concept was further extended to allow parallel traversal of tree
structures, such as XML documents, in the form of the Tree Parallel Iterator.

In addition to the ease of use compared to other common approaches, the
results show negligible overhead with effective load scheduling which produce
the expected inherent speedups. It was also confirmed that flexible scheduling
policies are important and this is easy with the Parallel Iterator, even decid-
able dynamically at run-time. Such fine-tuning available to the programmer
includes scheduling scheme, chunk size and the number of threads involved. In
particular for interactive desktop applications involving heavy disk usage, con-
trolling the thread count is important. The performance of the Parallel Iterator
is in many cases superior to that of traditional parallelism approaches, including
QtConcurrent.

The second concept, Parallel Task, is an object-oriented solution for the par-
allelisation of a wide range of applications. Programmers introduce parallelism
with a single keyword: a method modifier that also serves as a form of docu-
mentation. The model supports the entire spectrum of common task types. The
standard type, one-off tasks, is sufficient for most situations when asynchronous
computation is necessary. To support SPMD type computations, multi-tasks are
provided to spawn multiple tasks with group awareness. Added functionality for
multi-tasks include synchronising with its sibling tasks and performing reduc-
tions. Finally, interactive tasks allow the programmer to define asynchronous
computations that involve external I/O. All these task types are unified in the
same model and may also be used in nested parallelism.

Many parallel applications are non-trivial, where individual tasks will in-
volve dependences between each other. Implementing such synchronisation with
ParaTask is trivial with the intuitive dependsOn clause. As well as simplifying
the programming effort, this clause promotes code reuse because of the decou-
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pling amongst tasks. Also supporting decoupling is the notify clause: it allows
tasks to inform registered methods of its completion in a non-blocking fashion.
This is especially helpful because such communication will mostly occur between
different threads.

An important goal in developing ParaTask is to ensure the software engi-
neering approach is maintained by adhering to object-oriented principles. Since
the various task modifiers are associated with the method signature, this en-
sures encapsulation and provides a form of documentation. It also ensures that
inheritance and polymorphism are enforced since the modifiers must be consis-
tent in subclasses. Exception handling is also a vital object-oriented concept. In
particular, ParaTask ensures that the Catch or Specify requirement is adhered
to in an asynchronous model.

An important aspect of this thesis was the parallelisation of desktop appli-
cations. As such, interactivity from the user’s point of view is vital. ParaTask
achieves this interactivity not only with asynchronous tasks, but it also helps the
programmer develop programs that publish interim results and the canceling of
tasks. Most of the aspects discussed in this thesis were used to implement an
example desktop application, ParaImage. In addition to parallelising computa-
tions, it allows users to experience first-hand why parallel computing is vital for
a successful interactive desktop experience.

ParaTask’s help-first work-stealing scheduling policy led speedup perfor-
mance for a range of applications compared to typical Java parallelisation ap-
proaches, while ParaTask’s work-sharing scheduling policy demonstrated supe-
rior user-perceived performance. The default scheduling policy, using a mixture
of work-stealing and work-sharing, allows for the benefit of both policies. As
well as traditional parallelism approaches, ParaTask’s performance was com-
pared to JCilk, overall demonstrating superior performance. ParaTask has also
been successfully applied to various desktop applications. The ParaImage appli-
cation demonstrated how easily parallelism and responsiveness may be achieved
in an application, allowing for high code reuse and decoupling while promoting
encapsulation.

Future work

Overall, the major components of the Parallel Iterator concept have been deeply
studied. Consequently, both the semantics and the implementation of the Par-
allel Iterator are stable. In fact, the Java implementation of the Parallel Iterator
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and Parallel Task have been released and are available1 for public use. However,
there are some interesting aspects that could be explored further:

• Incorporate a mechanism to allow multiple collections to be traversed such
that dynamic and guided scheduling may be used (as mentioned in sec-
tion 3.1.7).

• Implementing and evaluating further scheduling schemes for the Tree Par-
allel Iterator (such as bottom-up dependences, or other variants of the
work-stealing).

• Study and optimise the Parallel Iterator for data locality. For example, the
distribution of elements amongst threads and how performance is affected
by cache effects (for example, to avoid false sharing) and NUMA (Non-
Uniform Memory Access) systems.

The semantics underlying ParaTask are stable and have integrated well with the
structure of typical GUI desktop applications. With that said, there are various
optimisations and extensions to consider:

• Integrate the Parallel Iterator and OpenMP into the ParaTask compiler.

• Develop tool support for ParaTask in an integrated development environ-
ment, for example: syntax highlighting, code completion, visualisation of
dependsOn and notify.

• Optimise runtime to improve speed.

• Introduce memory awareness for the scheduling, for example to avoid false
sharing.

1www.parallelit.org
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Appendix A

ParaTask grammar

ParaTask was essentially implemented as an extension to Java’s grammar. Rather
than reproducing the entire Java grammar here, only modified sections of the
original Java grammar is presented to focus on ParaTask’s integration. The
highlighted sections refer to specific additions made to accommodate ParaTask,
while the rest refers to aspects of the original Java grammar that remain un-
changed. All the following are extracts from the Java 1.5 grammar file that
JavaCC uses to parse Java code, now adapted to parse ParaTask code.

A.1 Tokens

In order to allow the grammar to recognise ParaTask keywords, these have been
defined as tokens (added to the end of the standard Java tokens):

TOKEN :
{
< ABSTRACT : “abstract” >
< BOOLEAN : “boolean” >
...
< TASK : “TASK” >
< INTERACTIVE_TASK : “INTERACTIVE_TASK” >
< DEPENDS_ON : “dependsOn” >
< NOTIFY : “notify” >
< NOTIFY_GUI : “notifyGUI” >
< NOTIFY_INTERIM : “notifyInterim” >
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< NOTIFY_INTERIM_GUI : “notifyInterimGUI” >
< ASYNC_CATCH : “asyncCatch” >

}

A.2 Task declarations

A task declaration is essentially a method declaration with a task modifier. This
may appear as part of a class or interface declaration.

ClassOrInterfaceBody →
”{” ( ClassOrInterfaceBodyDeclaration )* “}”

ClassOrInterfaceBodyDeclaration →
Modifiers FieldDeclaration

|
Modifiers MethodDeclaration

|
TaskDeclaration

|
...

TaskDeclaration →
TaskModifier [ MultiTaskCount ] Modifiers MethodDeclaration

TaskModifier→
“TASK”

|
“INTERACTIVE_TASK”

MultiTaskCount→
“(”

“*”
|

IntegerLiteral
|

Name
“)”

Name →
IDENTIFIER ( “.” IDENTIFIER )*
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Modifiers →
(

“public”
|

“static”
|

...
)*

MethodDeclaration →
MethodHeader ( Block | “;” )

MethodHeader →
ResultType IDENTIFIER [ “throws” NameList ] “(” [ ParameterList ] “)”

A.3 Task invocations

A task invocation is essentially a method call expression followed by at least
one ParaTask clause. This may be part of a statement expression, or a variable
declaration.

StatementExpression →
(

PreIncrementExpression
|

PreDecrementExpression
|

PrimaryExpression
[
“++”

|
“- -”

|
“=”
(
TaskClauseExpression

|
Expression
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)
]

) “;”

PrimaryExpression →
IDENTIFIER

|
...

BlockStatement →
Statement

|
VariableDeclarationExpression “;”

...

VariableDeclarationExpression →
Modifiers Type VariableDeclarator ( “,” VariableDeclarator )*

VariableDeclarator →
IDENTIFIER [ “=” VariableInitialiser ]

VariableInitialiser→
ArrayInitialiser

|
TaskClauseExpression

|
Expression

|
...

TaskClauseExpression→
MethodCallExpression
(
“dependsOn” “(” ArgumentList “)”

|
Notify “(” NotifyArgumentList “)”

|
“asyncCatch” “(” HandlerArgumentList “)”

)+
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Notify→
“notify”

|
“notifyGUI”

|
“notifyInterim”

|
“notifyInterimGUI”

NotifyArgumentList→
NotifyArgument ( “,” NotifyArgument )*

NotifyArgument→
[ Expression “::” ] MethodCallExpression

HandlerArgumentList→
HandlerArgument ( “,” HandlerArgument )*

HandlerArgument→
Name NotifyArgument
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