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Abstract 

Eriksen’s flanker effect is a classic interference phenomenon that has been widely 

studied in cognitive and behavioural psychology. When a task-relevant stimulus (target) 

is presented with multiple task-irrelevant stimuli (flankers) surrounding that are 

incongruent with the target, people tend to make slower and less accurate responses to the 

task in contrast to the conditions when the target and the flankers are congruent with each 

other. Despite the extensive investigations, the precise neural mechanisms causing the 

flanker interference are still under debate. Here, I compared two major approaches that 

have been widely applied to model the flanker interference: the continuous-flow model 

(CFM) and the drift-diffusion model (DDM). Although these models have some 

superficial similarities, they posit different origins for the flanker interference. The CFM 

suggests that sensory information flows continuously from the sensory cortex into 

cortical areas responsible for response execution, so that interference can be conceived as 

competition between response channels. In contrast, the DDM emphasises interference 

arising at the sensory and cognitive levels. The present study tested these two models 

with neural measures to evaluate which model provides a more appropriate and 

neurologically plausible explanation to the flanker interference. For CFM, I recorded the 

lateralized readiness potential (LRP) as an indicator of relative response activation. In 

particular, I was interested in whether this would reveal evidence for early activation of 

the incorrect response when incompatible flankers were displayed (the “Gratton Dip”). 

For the DDM, I computed “drift rate” as an index of the accumulation rate of sensory 

evidence. To calculate the drift rate, I flickered the target and flanker stimuli at different 

frequencies and recorded the resulting steady-state visual evoked potentials (SSVEPs). 
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Results in the LRP failed to reveal the “Gratton dip” in response to incompatible flankers, 

but instead revealed a delayed peak in the incongruent condition. On the other hand, the 

drift rate calculated at occipital electrodes (centred on Oz) for this condition was notably 

lower than for the compatible condition. Both the delayed LRP peak and the slowed drift 

rate were significantly correlated with response time. Taken together, these data provide 

more support for drift-diffusion models in which flanker interference arises at 

sensory/perceptual levels of processing rather than at the level of response selection. 
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1. Introduction 

1.1. The Eriksen Flanker Effect. 

Introduced by Eriksen and colleagues in the mid-1970s, the noise-compatibility 

(or “flanker”) task is a classic experimental paradigm in cognitive and behavioural 

psychology. In a standard visual flanker task, participants are presented with a set of 

stimuli, consisting of a task-relevant target surrounded by multiple task-irrelevant 

flankers. A judgement response to the target is required with response time and accuracy 

recorded. The target-flanker congruency is manipulated, creating a congruent condition in 

which the target and the flankers are compatible with each other (e.g., >>>>>) and an 

incongruent condition in which the target is incompatible with the flankers (e.g., >><>>). 

Behavioural results from the flanker tasks typically show longer response time (RT) and 

lower accuracy in the incongruent trials than in the congruent ones (e.g., Eriksen & 

Eriksen, 1974). This is commonly termed as “the flanker effect”. Over the past half 

century, the flanker paradigm has been widely used to study various topics, such as 

cognitive control and perceptual decision making. Ever since its introduction, Eriksen’s 

flanker task has been extensively applied in experimental and clinical research, and the 

congruency effect was consistently observed with different modifications among various 

populations (e.g., Erb et al., 2016; Eriksen & Eriksen, 1974; Miller 1991). 

Most researchers today concur that the flanker effect reflects competition between 

the target and the flankers in information processing. Yet, debates remain about the 

stage(s) of processing at which such conflicts occur, and which neural signatures 

correspond to such competition. The main point of issue is whether competition arises 
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early in cognitive processing – perhaps arising in sensory cortex (e.g., Ratcliff & 

McKoon, 2008; White, Ratcliff, & Starns, 2011) – or at relatively late stages of 

processing such as at the level of response selection or activation (e.g., Cole et al., 1985; 

Eriksen & Eriksen, 1974; Gratton et al., 1988). 

 

1.2. The Continuous-Flow Model.  

One popular perspective on this topic proposed that the flanker effect is mainly 

caused by conflicts at the level of response activation. This view is commonly found 

under the theoretical framework known as the continuous-flow model (CFM) of 

information processing, which argues that the response system is concurrently influenced 

by the information inputted from both the target and flankers (Eriksen & Schultz, 1979). 

An important characteristic of the continuous-flow framework was the absence of a 

separate decision stage between the stimulus input and response delivery. Instead of 

having an explicit target recognition before responding, the CFM holds that the streams 

of sensory inputs in the visual system are constantly fed to the response channels. 

According to this model, both the target and flankers are processed in the visual system in 

the early period of perception, leading to activation of both responses (i.e., the response 

associated with the target and the response associated with the flankers). Later, as 

cognitive mechanisms like selective attention take effect, the representation of flankers in 

the visual system will be increasingly suppressed as time proceeds, while the target 

representation will be enhanced. Consequently, it will allow the activation in the target-

related channels to outcompete its flanker-related counterpart and eventually reach a 
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threshold of overt response evocation. The selective attention process will become more 

laboring when the target and flankers are incongruent, hence delaying response 

execution. 

 

1.2.1. Evidence for the CFM.  

One of the biggest supporters of the CFM is probably Charles Eriksen himself. In 

fact, Eriksen had already raised the idea of the continuous flow in his first paper 

introducing the flanker effect (Eriksen & Eriksen, 1974). In this study, researchers 

manipulated not only the perceptual congruency, but also, critically, the response 

compatibility between target and flankers. The incongruent trials were further divided 

into an incongruent-compatible condition in which the flankers were perceptually 

different but semantically corresponding to the same response with the target (e.g., “H H 

H K H H H”, both “H” and “K” correspond to right-hand response), and an incongruent-

incompatible condition in which the flankers were perceptually different and semantically 

opposite from the target (e.g., “H H H S H H H”, “S” and “H” correspond to left- and 

right-hand responses, respectively). Behavioural response time (RT) showed that 

responses in the incongruent-incompatible trials were significantly slower than in the 

congruent condition, while the incongruent-compatible trials obtained only trivial 

differences. Eriksen suggested that the RT impairment was mostly determined by the 

response compatibility of the noises rather than their perceptual similarity, hence the 

major target-flanker competition must happen between the response channels. 
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Eriksen’s argument was also supported by biophysiological evidence. In 1985, 

Eriksen and colleagues measured the electromyographic (EMG) waveforms from the two 

arms when performing a standard flanker task (Eriksen et al., 1985). Results showed 

increased EMG activities from both the correct-response arm and the opposite in about 

40% of all incongruent trials; while only 8% of trials in the congruent condition elicited a 

similar pattern. This result indicated that both response channels were activated and were 

competing with each other in the incongruent trials, which accorded to the prediction of 

the CFM. Later, Coles et al. (1985) replicated Eriksen’s finding using a similar flanker 

task design, but with responses made by squeezing dynamometers with left and right 

hands. In order to obtain EMG data with better quality, participants in this study were 

required to squeeze into dynamometers with at least 25% of their maximal force to 

register responses. Consistent with Eriksen’s earlier finding, Coles and colleagues found 

EMG activities from both hands in the incongruent trials regardless of their overt 

responses, consistent with the concurrent activation of correct and incorrect response 

channels. More importantly, the EMG onsets from the incorrect response hand tended to 

be earlier than from the correct hand, suggesting that the incorrect responses were 

initially activated but later surpassed by the correct ones in these trials. Similar findings 

were also reported from further literature using EMG measures (e.g., Coles et al., 1995; 

Fournier et al., 1997; Davranche et al., 2005; Suarez et al., 2015). 

More recently, evidence from response movement trajectory has offered 

researchers more insights into the dynamics of information flow in the flanker paradigm. 

Developments in technology over the past two decades have allowed researchers to use 

new techniques like hand- and mouse-tracking to explore the classic flanker effect (e.g., 
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Erb & Marcovitch, 2018; Faulkenberry, Witte, & Hartmann, 2018; Hermens, 2018). Like 

in the classic flanker task, participants in a typical curvature experiment are presented 

with target-flanker stimuli with different congruency conditions; but their responses are 

required to be a continuous stream of movements with trajectory recorded (e.g., hand 

reaching or mouse sliding) instead of an instantaneous action (e.g., key pressing). It also 

led to the practical variation that the curvature data is best captured in single-hand 

responses, while the classic flanker studies relied heavily on results generated from 

bilateral body movements. Despite the differences from the traditional flanker task, 

however, the curvature-based findings provided us with a novel perspective of studying 

the flanker effect with richer temporal and spatial information than usual. For example, 

Erb and colleagues (2016) recorded the hand movement trajectories from participants 

performing a modified version of the flanker task. Responses in this study were made by 

reaching and touching locations corresponding to the target on a touch screen, while the 

manual movements were traced via electromagnetic sensors attached to participants’ right 

index finger. Results showed that the incongruent trials obtained significantly larger 

curvatures than the congruent ones in terms of the area under the curve (AUC), indicating 

deviations from the shortest possible path to the correct response. Critically, these 

trajectories tended to deviate from the correct response towards the flanker-specific 

incorrect responses at the initial period of reaching, which met the prediction of the CFM. 
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1.2.2. Lateralized Readiness Potential and the “Gratton Dip”. 

The evidence discussed so far seems to support Eriksen’s proposal with overt 

responses or activities observable in the peripheral nervous system (e.g., limbs and 

hands), but researchers are also interested in understanding the neural bases of the 

continuous flow and the competing processes that potentially happening in the brain 

cortices. One of the most potent neurological supports of the continuous-flow model 

came from a series of work conducted by Gratton and colleagues in the 1980s and 90s 

using the lateralized readiness potential (LRP). LRP is a lateralization-based event-

related potential (ERP), calculated by subtracting the ERPs from the primary motor area 

ipsilateral to the response hand from the contralateral ones (Eimer, 1998). It is often 

observed as a negativity over the contralateral hemisphere to the response hand onsets 

before the execution of overt response (e.g., Deecke et al., 1976; Kutas & Donchin, 1980; 

Smid et al., 1987). LRP has been considered as reflecting the preparation of response 

delivery in the primary motor cortex, and typically a negative deflection in the LRP 

waveform indicates cortical preparation to the correct response hand movement, whereas 

a positive deflection in LRP indexes activation in the primary motor cortex favouring the 

incorrect response hand. In addition, the peak amplitude of LRP is believed to reflect the 

threshold level of cortical preparation needed for overt response generation, and the 

timing of the LRP peak is often closely associated with the overt response time 

(Smulders, Miller, & Luck, 2012).  

In 1988, Gratton and colleagues replicated Eriksen’s work (1985) with both EMG 

and LRP recorded. In line with the previous findings, behavioural results showed an 

eminent congruency effect in response time, and EMG excitations were exhibited in both 
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the correct and the incorrect response hands in the incongruent condition. In addition, 

researchers observed a slight positivity in LRPs between 150 and 250 ms post-stimulus in 

the incongruent trials, as illustrated in Figure 1, while the LRP in the congruent condition 

at the same time window did not show such a pattern. Thus, although the LRP waveform 

in the incongruent condition returned to negative shortly afterwards, the peak LRP 

amplitude was notably weakened in contrast to its congruent counterpart. Given the 

general understanding of the nature of LRP discussed above, this positive waveform in 

the incongruent condition was believed to reflect a slight motor preparation towards the 

incorrect response hand shortly after the stimulus onset when flankers were conflicting. 

This result fit perfectly with the continuous-flow model (CFM) of information processing 

which predicted that the incongruency could misguide the subject to slightly activate the 

false response at the early stage of processing when the perceptual presence of the 

flankers was dominant. Such misguidance could be overcome later when selective 

attention inhibits the distractions, but the preparation, and consequently the execution of 

the response would be lagged. It also indicated that the interference from the conflicting 

flankers could be observed, at least partially, in the response channels in the primary 

motor cortices even at an early stage after stimulus onsets. They further suggested that 

information from the stimulus array could be continuously accumulated and made 

available to the response system (Gratton et al., 1988). Gratton and colleagues replicated 

this finding in another study in 1992, in which they consistently found the early positivity 

in LRP in incongruent trials even under various manipulations on trial sequence, global 

probability, and cueing validity (Gratton, Coles, & Donchin, 1992). Since this positivity 

found by Gratton in LRP was presented as a down-facing “dip” in the old-school ERP 
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imaging custom, this pattern has frequently been referred to as the “Gratton dip” in the 

literature. 

 

 

 

  

Figure 1. Lateralized readiness potential (LRP) waveform (adapted from Gratton et al., 

1988). LRP amplitudes were measured in microvolts. A slight positivity in LRP was found at 

the early stage (150 - 250 ms) after the stimulus onset in the incongruent (dashed) condition 

but not in the congruent (solid) condition, which was later known as the “Gratton dip”. The 

peak and mean amplitude of LRP was weakened in the incongruent condition in contrast to 

the congruent one. 
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1.3. The Drift-Diffusion Model. 

In parallel to the development and exploration of the continuous-flow model, 

many other researchers have investigated the flanker effect from a cognitive decision 

making perspective. The diffusion model is probably one of the most representative 

schools among them. Emerged from the longstanding aim in cognitive psychology of 

building mathematically computable models of decision, diffusion models are generally 

designed to be applied to all rapid sensory tasks involving simple two-alternative forced 

choices (2AFC), including the flanker task (Ratcliff, 1978; Ratcliff & McKoon, 2008; 

Ratcliff et al., 2016), but some recent works also showed the potential of fitting the 

diffusion model to the tasks with continuous outcomes (Harlow & Donaldson, 2013; 

Zhou et al., 2021). While the name of diffusion model can be generally referred to the 

entire class of models sharing a common theoretical framework (e.g., Busemeyer & 

Townsend, 1993; Diederich & Busemeyer, 2003; Gold & Shadlen, 2001; Laming, 1968; 

Link & Heath, 1975; Palmer, Huk, & Shadlen, 2005; Ratcliff, 1978, 1981, 1988, 2002; 

Ratcliff, Cherian, & Segraves, 2003; Ratcliff & Rouder, 1998, 2000; Ratcliff & Smith, 

2004; Ratcliff, Van Zandt, & McKoon, 1999; Roe, Busemeyer, & Townsend, 2001; 

Stone, 1960; Voss, Rothermund, & Voss, 2004), the present study will primarily discuss 

the drift-diffusion model (DDM) proposed by Roger Ratcliff (1978), which is the most 

representative one.  

 



16 

 

1.3.1. DDM Parameters. 

Unlike the CFM which highlights the competition between the two motor 

response channels, the DDM approach tends to attribute the flanker congruency effect to 

interference in sensory processing and conflicts at the stage of internal decision making. 

According to the DDM, decision making in 2AFC tasks involves a noisy accumulation of 

perceptual information, or the cognitive “evidence” favouring one choice out of the two. 

The evidence is assumed to start from a certain “starting point” (z) and gradually 

accumulate as a function of time until hitting the “boundary” (a), a threshold amount of 

evidence supporting one of the decisions. Depending on the noisiness of perceptual 

inputs at each time point, the mathematical value of the accumulated evidence could go 

either positively or negatively respective to the accumulation starting point, in other 

words “drift” towards or be “diffused” away from the boundary of the correct choice, 

respectively. When the accumulation reaches the threshold of the wrong choice, an 

incorrect response will be made. The speed of evidence accumulation is labelled as the 

“drift rate” (v). The accumulation of evidence is proposed to take place in one or more 

accumulators, which is an important cognitive structure proposed in DDM. In contrast to 

the continuous-flow model (CFM), the diffusion model assumes an explicit decisional 

process happening at the sensory and cognitive level, and it is distinct from non-

decisional factors or errors (Ter), such as the time needed for response preparation and 

execution (Ratcliff & McKoon, 2008). A graphic illustration of a simulated drift-

diffusion process is presented in Figure 2. In a way, decision making under the diffusion 

framework is considered as an all-or-none process such that one would make a decision 

only when the accumulated evidence reaches the threshold of one response. Together, a 
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combination of these parameters determines the behavioural outcome of a trial. Ceteris 

paribus, a higher drift rate, a smaller disparity between the starting point and the 

boundary, and a shorter non-decisional time would lead to a faster response. 

The diffusion models were designed to explain the data and patterns from 2AFC 

tasks, mostly at the behavioural level, such as the distributions of response time, error 

rate, and the speed-accuracy tradeoff effect. Typically, the DDM parameters are 

estimated via optimization algorithms based on the behavioural response time and 

accuracy and their distributions (e.g., Ratcliff & Tuerlinckx, 2002). Each of these 

parameters is assumed to reflect an independent cognitive aspect in decision making and 

could be systematically affected by some experimental manipulations. For example, 

empirical findings suggested that drift rate (v) could be influenced by the task difficulty, 

such that easier trials correlated with higher drift rates. Individuals with relatively high 

general intelligence also tended to score highly in drift rate on average (Ratcliff et al., 

2010, 2011). On the other hand, the separation between two response boundaries (a) was 

believed to be closely related to the speed-accuracy tradeoff. Several reports indicated 

that an accuracy-highlighting instruction could lead to a greater threshold value, and vice 

versa (Ratcliff & McKoon, 2008; Voss et al., 2004). The starting point (z) was considered 

to reflect a biased tendency favouring one choice over the other, and it could be affected 

by factors such as the reward history (Voss et al., 2004), trial sequence (Nguyen, Josić, & 

Kilpatrick, 2019), probabilistic frequency (Leite & Ratcliff, 2011), and relative valences 

(Voss, Rothermund, & Brandtstadter, 2008). Lastly, several experiments showed that the 

non-decision time (Ter) could increase if the motor response is prolonged, for instance 

changing from a key-pressing to a finger movement response (Voss et al, 2004). Other 
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factors including age, bilingualism and grey matter volumes in the prefrontal cortex also 

tended to correlate with Ter (e.g., Ong et al., 2017; Spaniol, Madden, & Voss, 2006; 

Spaniol, Voss, & Grady, 2008; Soares et al., 2019). 

 

 

 

 

 

 

  

Figure 2. Hypothetical standard drift-diffusion process (adapted from White et al., 2011). 

Noisy evidence from the stimulus inputs accumulates over time from a starting point value z 

at a drift rate of v. A decision would be made as soon as the accumulation reached one of the 

two thresholds, a and 0, and eventually lead to the execution of the corresponding response. 
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1.3.2. Neural Correlates of DDM. 

While the concept of the diffusion model has been proposed for half a century, for 

quite long its influence remained in a relatively limited scope due to its huge demand of 

computation power for iterative calculations and simulations. So far most of the diffusion 

model fittings and simulations were based on simple behavioural data of response time 

and accuracy, while its compatibility with more complicated neurological data was 

largely unclear. Fortunately, favoured by the rapid development in computer science and 

machine learning technology, an emerging number of works in recent years suggested 

that some neural signatures might be associated with the drift-diffusion process. For 

example, Shadlen and colleagues conducted a series of studies in which they recorded the 

neuron firing rate when monkeys were performing motion discrimination tasks with eye-

movement responses (Gold & Shadlen, 2001; Huk & Shadlen, 2005; Kiani, Hanks, & 

Shadlen, 2008; Roitman & Shadlen, 2002). Their results showed monotonically increased 

firing rate in the lateralized intraparietal cortex (LIP). Critically, the timing of the firing 

rate reaching a threshold value strongly predicted the behavioural response time and 

accuracy, which was consistent with the assumption of bounded evidence accumulation 

in the diffusion model. Other studies using a similar paradigm also reported increasing 

firing rates in cells from the frontal eye field (FEF) and superior colliculus (SC) with 

their buildup rates correlated to the drift rate parameter in DDM (Hanes & Schall, 1996; 

Heekeren, Marrett, & Ungerleider, 2008; Ratcliff, Cherian, & Segraves, 2003). However, 

conclusions from these studies remained debatable, since the LIP, FEF and SC regions 

were also closely related to saccadic movement control (Colby et al., 1996; Glimcher & 

Sparks, 1992; Gnadt & Andersen, 1988; Horwitz & Newsome, 1999, 2001; Krauzlis & 
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Dill, 2002; Platt & Glimcher, 1997; Sparks, 1999). Whether activities in these regions 

reflect a real drift-diffusion process or just a mere response preparation, in other words a 

saccadic version of the “Gratton dip”, was not clearly differentiated. On the other hand, 

works based on functional magnetic resonance imaging (fMRI) and repetitive transcranial 

magnetic stimulation (rTMS) suggested that the left dorsolateral prefrontal cortex 

(dlPFC) was also associated with perceptual decision making, but the temporal dynamics 

of accumulation were difficult to examine in these experiments (e.g., Basten et al., 2010; 

Philiastides et al., 2011). 

In comparison, electroencephalography (EEG) tended to be a more ideal non-

invasive technique applicable to human objects to capture the temporal dynamics in 

decision-making. Several EEG-based components had been found to be potentially 

related to the drift-diffusion process. For instance, O’Connell, Dockree and Kelly (2012) 

identified a centro-parietal positivity (CPP) which increased in amplitudes as a function 

of stimulus exposure time and reached maximums at response execution. This signal was 

general to the sensory modality of the stimuli and was observed regardless of whether an 

overt response was presented or not, indicating its independence from the motor 

preparation. This finding was replicated in their later study with a motion detection 

paradigm (Kelly & O’Connell, 2013). Some other works using on single-trial EEG 

analysis also claimed that some positive waveforms sourced from the parietal regions, 

onset at about 300 ms post-stimulus, was correlated with the drift rate in the diffusion 

model (e.g., Nunez, Vandekerckhove, & Srinivasan, 2017; Philiastide, Ratcliff, & Sajda, 

2006). However, even though many of these studies claimed their results as potential 

neural correlates of the drift-diffusion processes, strictly speaking these findings were 
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merely EEG signals that shared some common characteristics (e.g., hit-to-boundary 

amplitude) with the hypothetical drift-diffusion processes. No computational fitting of 

these neural data to the DDM framework was attempted with these neurological data. 

Thus, correlating these signals with the DDM parameters like the drift rate was also 

methodologically problematic, because the mathematical values of these parameters were 

often reversely estimated by the algorithms to best fit the behavioural response time and 

accuracy, so that the reported correlations might actually reflect the associations between 

neural signals and behavioural performances rather than the drift-diffusion processes per 

se. As we can see, few studies so far have managed to build a clear, direct link between 

the theoretical DDM and the actual biophysiological data, and the neural bases of the 

drift-diffusion process in humans remain largely unexplored. 

 

1.3.3. DDM of the Flanker Task. 

Enormous literatures have now shown that the diffusion models make a good 

account for various types of 2AFC tasks such as the motion discrimination task (Ratcliff 

& McKoon, 2008), Stroop task (Alos‐Ferrer, 2018), face recognition task (Philiastides, 

Ratcliff, & Sajda, 2006), lexical decision task (Wagenmakers, Ratcliff, Gomez, & 

McKoon, 2008), and recognition memory task (Arnold, Broder, & Bayen, 2015). Not 

surprisingly, DDM has also been applied to explain the flanker congruency effect. In 

2011, White and colleagues made a comprehensive review of the flanker congruency 

effect under the DDM framework. In particular, they suggested that a diffusion model 
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with a shrinking spotlight assumption of selective attention would provide the best fit for 

the behavioural performance from flanker tasks (White, Ratcliff, & Starns, 2011). 

According to the shrinking spotlight DDM, the evidence accumulation was 

hugely shaped by the temporal dynamics of attention distributed to each item of the 

stimulus array. For an incongruent trial, the attention was assumed to be normally 

distributed to the entire stimulus array at the initial stage of exposure, so that the 

overwhelming flankers would occupy a large proportion of attentional resources in 

contrast to the target. The accumulated evidence was therefore predicted to be attenuated 

or even deviated towards the incorrect decision boundary. As the trial continued, 

selective attention would gradually take effect and become concentrated on the target 

while the flanker presence was suppressed, which would eventually drive the 

accumulation towards the boundary of the correct choice at a late stage. This potential 

“U-turn” in the direction of evidence accumulation meant more perceptual input and 

longer exposure time needed to reach the threshold, which explained the delayed 

response in the incongruent condition. If the deviated accumulations reached the incorrect 

choice boundary before the selective attention took place, response errors were made. 

This interpretation also implied that the competition causing the flanker effect happened 

at the level of sensory evidence accumulation and was largely controlled by the attention 

dynamics. A graphic illustration of the shrinking spotlight DDM is shown in Figure 3. 

White and colleagues examined the fitness of this model with the behavioural data under 

various manipulations in response bias, global probability, speed-accuracy tradeoff, and 

stimulus configuration. Their results suggested that the diffusion model with a shrinking 
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attention spotlight seemed to provide a plausible explanation for the flanker congruency 

effect in all manipulated conditions. 

More importantly, White and colleagues proposed a specific formula in this study 

to compute the evidence accumulation speed based on the input strengths and the 

attention distribution. According to White et al (2011), the drift rate (v) in a trial would 

change as a function of time and could be calculated as: 

v(t) = p target × a target(t) + ∑ p flanker × a flanker(t) 

meaning that the decision evidence sampled at each time point equaled the sum of the 

perceptual input strength (pi) of each item (target or flankers) weighted by their 

corresponding, time-varying attention allocation (a(t)). Although White et al. never 

managed to actually compute the drift rates using this formula due to the difficulty in 

quantifying the changing attention under their experimental design, their proposal still 

introduced us a potentially feasible way to proactively measure the DDM parameter 

instead of relying on the reverse estimations from the behavioural performance. For this 

reason, the shrinking spotlight DDM became one of the major models investigated in the 

present study, and the use of the drift rate formula was highlighted. 
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Figure 3. Evidence accumulation in the shrinking spotlight drift-diffusion model (adapted 

from White et al., 2011). Attention was normally distributed to each item of the stimulus array 

at the start of trial presentation but gradually became concentrated over time. 

Correspondingly, the accumulated cognitive evidence was initially more favouring the 

flanker-related decision but returned to the target-related decision as attention getting focused. 

Attention Distribution Evidence Accumulation 
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1.4. The Present Study. 

1.4.1. Continuous-Flow Model vs. Drift-Diffusion Model. 

Despite the common origins of the continuous-flow model (CFM) and drift-

diffusion model (DDM) and their largely parallel development, few studies have directly 

compared them or sought possible points of connection between them. Development in 

relative isolation has led to some major differences between the two models. The CFM 

explains the flanker-congruency effect from a response perspective, and considers the 

effect as an outcome of competing activation between response channels. In contrast, the 

DDM explains the phenomenon in a decision-making context, and highlights competition 

at sensory and cognitive levels during evidence accumulation. In this context, prolonged 

responses in incongruent trials are due to delayed decision making. In practice, studies 

performed in a CFM context have often highlighted the use of biophysiological evidence 

such as EMG and LRPs; whereas the DDM-based studies have relied largely on 

mathematical modelling and simulations. It also led to a situation in which the CFM has a 

relatively simple theoretical structure, but specific and quantifiable indexes for 

experimental verification - and is hence more strongly supported by empirical evidence – 

whereas the DDM has a more precisely developed theoretical framework but is relatively 

weak in terms of empirical support. Even though some critical findings from CFM 

studies are sometimes cited in the DDM literature, and vice versa, in most cases they 

have still been underestimated with only a subordinate role in contrast to the main 

arguments. For instance, the finding of the “Gratton dip” (Gratton et al., 1988) was 

mentioned in a DDM-based study of flanker-task performance by White et al. (2011) as 

an example of the nondecision activities (i.e., error) that separated from cognitive 
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decision making and could not be well accounted by the DDM. Although they recognized 

that nondecision motor preparation might also be sensitive to the flanker congruency 

under certain conditions as adaptations, overall the nondecision errors were assumed to 

remain relatively constant and would not become the primary reason causing the flanker 

congruency effect. 

On the other hand, even with the abovementioned differences in theoretical 

frameworks and empirical traditions, the CFM and DDM also share some remarkable 

similarities with each other. Firstly, both models posit that stimulus inputs function as 

continuous information streams that are constantly influencing the competition between 

target and flankers, albeit at different levels. Secondly, both models recognize the critical 

role of selective attention as a gradual concentration process favouring the presence of 

the target while suppressing the interference from flankers. Thus, both models assume 

some type of accumulation of the influence from stimulus inputs at some level prior to 

the commission of an overt response. Such stimulus influence is conceptualised in the 

DDM as the accumulation of cognitive evidence towards the hypothetical thresholds 

corresponding to the two alternative decisions. In the CFM, such influence was 

considered to be accumulated in the motor response channels in the form of the 

lateralized readiness potentials (LRPs). These characteristics jointly lead to similar 

predictions of the misled incorrect decisions or the deviated activation towards incorrect 

response at the early stages in the incongruent conditions. 

The driving questions of the present study arise from these discrepancies and 

similarities: Which model best explains the flanker congruency effect? What are the 

connections, if any, between these two models? Could it be possible that the “Gratton 
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dip” actually reflects something similar to the drift-diffusion process? Answering these 

questions would give a more comprehensive view of the processes occurring during the 

flanker task, and more generally in other behaviours involving conflict between 

alternative decisions. To answer these questions, an experiment that could be used to 

examine both the CFM and the DDM needs to be conducted, with effective comparisons 

and contrasts of the explanatory power between the two models.  

As mentioned earlier, the CFM can be tested relatively easily via measurements 

such as the lateralized readiness potentials (LRPs). In contrast, examining the DDM at 

the neurophysiological level entails more ambiguities. A major challenge for the 

experiment design therefore fell on how to effectively evaluate the DDM using neural 

signals. Given the drift rate formula proposed by White and colleagues (2011) based on 

the perceptual input strength weighted by distributed attention, one potential solution to 

this challenge used in the present study was to track the streams of stimulus inputs. 

Specifically, I was interested in how the target and the flankers are represented in the 

visual cortex, and how they vary and interact with each other over the course of the task. 

This information would help us to transfer the drift rate from a hypothetical parameter 

into a measurable index with neural foundations. In animal experiments, such stimulus 

tracking is usually achieved via the single-cell recording technique as time series neural 

signals provide plentiful temporal information (e.g., Gold & Shadlen, 2001; Huk & 

Shadlen, 2005). As a non-invasive substitute applicable in normal human subjects, I took 

advantage of a phenomenon called “frequency tagging” to track the representation of the 

two input streams. 
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1.4.2. Frequency Tagging. 

Frequency tagging is based on the steady-state visual evoked potential (SSVEP).  

This is a special type of visual evoked potential induced by periodically changing stimuli 

at a constant rate. Numerous observations showed that ERPs generated by such stimuli 

are highly stable in amplitudes and coherent in phase, in other words in a “steady state” 

(Adrian & Matthews, 1934; Regan, 1966). Importantly, the power spectrum of these 

visual evoked signals in the frequency domain tends to be strictly related to the 

stimulation rate. For example, when a stimulus flashing at 10 Hz is presented, the 

frequency spectrum of the corresponding SSVEPs typically also shows enhancement at 

10 Hz (Heinrich, 2010). Empirically, SSVEP is best observed at the occipital electrode 

sites (often Oz) with stimulus flashing at a rate between 3 and 20 Hz (e.g., Fawcett et al., 

2004; Di Russo et al., 2007; Muller et al., 1997; Srinivasan, Bibi, & Nunez, 2006), but 

several works have also reported SSVEPs at extremely low and high frequency ranges in 

other cortical regions involving higher-level sensory processes such as motion detection 

and facial recognition (e.g., Alonso-Prieto et al., 2013; Herrmann, 2001; Norcia et al., 

2002; 2015; Regan & Regan, 1988). 

Given its stimulus-signal symmetricity, frequency tagging allows researchers to 

simultaneously measure the visual processing of stimuli presented at different 

frequencies. A typical frequency-tagging task involves two or more sets of stimuli that 

are structurally (temporally or spatially, depending on the research question) isolated 

from each other, with each stimulus set flickering at a unique rate. Conceptually this 

enables us to extract the cortical responses corresponding to each stimulus set from the 

spectral power structure of the EEG signal (Tononi et al., 1998). This method has been 
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proven to be highly effective in studying the temporal dynamics of attention allocation 

and visual processing. For instance, Morgan and colleagues (1996) recorded the evoked 

potential from the bilateral primary visual cortices when participants were presented with 

a string of letters on one side of the screen and a string of numbers on the other half. The 

two strings were flashed at 8.6 and 12 Hz, respectively, and the participants were 

instructed to attend to the left or right by a spatial cue at the beginning of each trial. Their 

results showed that signals collected from the visual cortices were strictly frequency 

tagged to the stimulus flashing rate presented in contralateral visual hemifields. Thus, the 

SSVEPs were notably enhanced when the corresponding hemifield was attended to in 

contrast to the unattended trials. A subsequent fMRI study also connected this effect in 

SSVEPs to the level of blood-oxygen-level-dependent (BOLD) activities in the lateral 

occipital regions (Hillyard et al., 1997). 

Visual processes can also be analyzed via frequency tagging even when multiple 

stimuli are spatially overlapping or embedded in one another. In a study conducted by 

Muller and Hubner (2002), participants were presented with a large letter, flashing at one 

rate, with a small letter embedded in the centre, flashing at some other rate. Participants 

were asked to recognize either the large or the small letter while ignoring the other. 

Recordings from occipital and parietal regions showed that EEG signals were well tagged 

to the small letter frequency when being asked to focus on the centre, suggesting that 

SSVEP could be observed even when the inducing stimulus was surrounded by 

distractors tagged with a different frequency. More interestingly, trials with instruction to 

attend to the large surrounding letters also obtained strong SSVEPs, indicating that 

attention could be formed in a “doughnut shape”. In another study, Muller et al. (2006) 
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presented the participants with red and blue dots that were randomly distributed on the 

screen with overlap. The red dots were consistently flickering at one rate and the blue 

ones were flickering at another. The participants were instructed to attend to either set at 

the beginning of each trial. SSVEP amplitude enhancements in the occipital regions were 

found for the attended stream without notable interference from the unattended stream 

frequencies. Together, these findings demonstrated the reliability of the frequency 

tagging method even with multiple overlapping stimuli. 

 

1.4.3. Frequency Tagging Application in the Present Study. 

In the present study, the multiple input frequency tagging method was applied to 

trace the processing of the target and flankers. I designed a variant of the flanker task 

with the central target and the surrounding flankers flashing at two distinct rates. The 

choice of flashing rates was determined based on the empirically optimal range (Norcia et 

al., 2015), the capabilities of available equipment, and the compatibility with other task 

features. Thus, unlike the fully spectrum- or time-series-based approaches commonly 

seen in the SSVEP literature, a time-frequency analysis was employed to integrate the 

information from both the time and frequency domains. This would allow us to better 

visualize and explore the interactions between the two frequency-tagged streams over 

time.  

Despite the intuitive appeal of this approach, I identified some critical problems in 

the first several test versions of the experiment. Traditionally, SSVEPs are observed 

under relatively long stimulus exposures, say 1000 or 2000 ms, to allow adequate time 
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for the frequency-tagged modulations to reach a stable steady state that can be reliably 

extracted from the ongoing EEG signal (e.g., Morgan et al., 1996; Muller et al., 2006). In 

sharp contrast, the standard flanker paradigm requires that responses be committed as fast 

as possible, so that typical trials in flanker tasks are shorter than 500 ms on average (e.g., 

Gratton et al., 1988; White et al., 2011). While theoretically the effect of frequency 

tagging should always exist as long as the exposure time exceeded the length of one full 

cycle of stimulus flashing, observing such effects with relatively short stimulus exposure 

can be quite difficult in practice. Thus, EEG signals shortly after the stimulus onset 

usually contain various components in the time-frequency domain, such as some notable 

alpha-band (8-15 Hz) desynchronizations and theta-band (4-8 Hz) synchronizations 

which could be universally observed in almost all kinds of visual perception tasks 

(Klimesch et al., 2011; Petsche et al., 1997; Sauseng et al., 2005). These components are 

likely to be mixed with tagged modulations in the time-frequency data even though they 

are not induced by the flickering of the stimulus. In other words, it would be hard to 

know whether an observed time-frequency power at X Hz was purely due to the X-Hz-

flickers or was induced by other neural mechanisms. To address these issues, I also 

included trials with standard static stimuli in the experimental design as baseline 

comparisons. The working assumption was that if both flashing and static stimulus arrays 

generate the universal components, but the additional frequency-tagged modulations 

could only be found in the flashing trials, then subtracting the non-flashing time-

frequency data from the flashing ones would leave us the net effect of frequency tagging.  

In the present experiment, I used one static and two flashing conditions. 

Participants were asked to respond to the direction of the target by key press. Behavioural 
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response time, accuracy, and EEG signals were recorded during the task. No explicit 

instructions for emphasising the response speed or accuracy were given. The flankers 

could be either congruent or incongruent to the target. EEG data was used for both time-

locked ERP and time-frequency analyses. The primary indicator for the continuous-flow 

model (CFM) examined in this study was the lateralized readiness potential (LRP), 

whereas the drift rate calculated based on the time-frequency data was the main subject of 

examination for the drift-diffusion model (DDM). If the flanker congruency effect is 

more consistent with predictions of the CFM, the “Gratton dip” should be replicated in 

the LRP waveforms, with also attenuated amplitude and delayed peak latency in the 

incongruent condition in contrast to the congruent condition, and such pattern should also 

be mirrored in behavioural responses (RTs). . Alternatively, if the DDM makes a better 

prediction about the flanker congruency effect, the drift rates in the incongruent condition 

would be lower than in the congruent condition, and correlations should also be observed 

between drift rates and RTs 
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2. Methods 

2.1. Participants. 

32 adults were recruited for the present experiment via posters spread around the 

campus of the University of Auckland. 4 participants were excluded from the analysis 

due to either accidental interruptions during the data collections or overall accuracies 

lower than a predetermined standard (< .85), left us 28 samples available for further 

analyses, including 13 females and 15 males. 21 of the subjects were right-handed. All 

participants reported normal or correct-to-normal vision and were aged between 18 and 

36 (M = 22.458, SD = 3.426). An information sheet stating the research objectives and 

interests attached with a written consent form was provided to each participant before the 

experiment. All research protocols were approved by the University of Auckland Human 

Participants Ethic Committee. An NZD 20 gift card was awarded to each participant after 

the experiment for their participation. 

 

2.2. Stimulus. 

All experiments were conducted in a darkened electrically shielded room in the 

School of Psychology at the University of Auckland. An ASUS VG278HE - 3D LCD 

monitor was used for the experiments with a screen size of 1920 × 1080 pixels and a 

maximal refresh rate at 144 Hz. 

Participants were seated at 57 cm in front of the screen during the experiments. 

Each trial started with a cross (‘+’) fixation mark presented at the centre of a homogenous 
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black background (RGB = [0,0,0]) for a warning interval, lasting randomly between 900 

and 1800 milliseconds (ms). The fixation mark obtained 1º visual angle in size at this 

distance. The fixation would flash briefly (onset = 1/3 of the length of the warning 

interval) to signal the start of the trial and drag participants’ attention to the screen centre. 

A horizontal array of 5 white triangles (RGB = [255, 255, 255]) was then displayed at the 

screen centre. Each triangle was subtended to 3º in visual angle and the entire array was 

16º in size. Each array consisted of 1 “target” triangle in the centre and 4 “flankers” 

triangles on the left and right. The top vertex of each triangle could point either to the left 

(L) or to the right (R). Participants were instructed to make a judgement on whether the 

“target” was pointing to the left or to the right via keyboard pressing (‘z’ and ‘/’, 

respectively). The stimulus array would stay on the screen until either a response was 

made, or a time-limit (5000 ms) was reached, whichever was achieved first. After the 

task stimuli disappeared, an inter-trial interval (ITI) of 1000 ms with a static 1º cross 

fixation was presented before the next trial starts. A graphic illustration of the stimulus 

display is presented in Figure 4. 

Within a trial, the direction of all “flankers” were always consistent with each 

other, while the direction of the “target” could be either congruent (“CO”) (e.g., ▶▶▶▶▶) 

or incongruent (“IN”) (e.g., ▶▶◀▶▶) with the surrounding “flankers”. Thus, the “flankers” 

and the “target” simultaneously flashed on different frequencies to produce discriminable 

SSVEPs. 3 flicker conditions were applied in the present experiment: 24Hz target/18Hz 

flankers (“A”), static target/static flankers (“B”), and 18Hz target/24Hz flankers (“C”). 

The choices of flicker frequencies were made based on both the empirical findings from 

SSVEP literature and the hardware limitations. The flashes were achieved via stimuli 
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on/offset switches using 2 square-wave functions of frame numbers (i.e., 24 Hz = 6 

frames per cycle; 18 Hz = 8 frames per cycle). Together, the combination of flicker 

pairing (A/B/C) and congruency (CO/IN) created 6 overall stimulus conditions (“ACO”, 

“AIN”, “BCO”, “BIN”, “CCO”, “CIN”). A complete experiment session consisted of 20 

task blocks, each containing 48 trials, giving 960 trials in total. Trials from all 6 

conditions were equally likely to be presented in each block and throughout the 

experiment (i.e., 160 trials per condition). Each condition contained equal amount of left- 

and right-response trials. A participant-controlled break interval was provided at the end 

of each block, and an experimenter-controlled pause was given at the end the 10th block 

for impedance checks for the EEG data collection.  
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Figure 4. Illustration of the stimulus presentation procedure. A typical trial will start with a 

fixation lasting randomly between 900 and 1800 ms, followed by a stimulus array consisted of 

1 target in the centre and 4 flankers on the surroundings. Target can be either congruent or 

incongruent with the flankers. The target and the flankers will flash at different rates 

depending on their assigned flicker condition. The stimulus array presentation will be 

terminated either when a response was made or when the presentation time exceeded 5000 ms. 

A 1000-ms-long inter-trial interval (ITI) will be given at the end of each trial. 
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2.3. Electroencephalographic Recording and Preprocessing. 

The electroencephalography (EEG) recordings were conducted in an electrically 

shielded room (IAC Noise Lock Acoustic - Model 1375, Hampshire, United Kingdom) 

using 128-channel Ag/AgCl electrode nets (Tucker, 1993) from Electrical Geodesics Inc. 

(Eugene, Oregon, USA). EEG was recorded continuously (1000 Hz sample rate; 0.1-400 

Hz analogue bandpass) with Electrical Geodesics Inc. amplifiers (400-MΩ input 

impedance). Data was acquired using common vertex (Cz) as a reference. Electrode 

impedances were kept below 40 kΩ, an acceptable level for this system (Ferree, Luu, 

Russell & Tucker, 2001), and measured both prior and halfway through the experiment.  

EEG data was preprocessed using EEGLAB toolbox (Delorme & Makeig, 2004) 

written for MatLab (The MathWorks Inc., Natick, Massachustess). The raw EEG data 

was first down-sampled to 250 Hz, then filtered between 0.1hz and 50 Hz using a finite 

impulse response band-pass filter, and finally re-referenced to the average. Line noises 

and artefacts were inspected and removed from the data via the CleanLine (Mullen, 2012) 

and Artifact Subspace Reconstruction (ASR) (Miyakoshi & Kothe, 2013) functions in 

EEGLAB. Discarded channels were interpolated. The continuous data was segmented 

into epochs starting from 1000ms prior stimulus onsets to 1696ms after stimulus 

presentation. The time-zero points were synchronized to the onset of the stimulus array. 

Independent Components Analysis (ICA) was then applied to the segmented data using 

the PICARD algorithm (Ablin, Cardoso, & Gramfort, 2018a, 2018b) in EEGLAB, and 

components that were identified as non-brain artefacts were rejected.  
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2.4. Event-Related Potential and Lateralized Readiness Potential Analyses. 

EEG data cleaned by the preprocessing pipeline were subjective to further event-

related potential (ERP) analysis. Waveforms from each single trial were corrected by 

subtracting the average amplitudes within the baseline time window. For the present 

study, the primary research interest focused on the stimulus-locked neural activities, so 

the ERP baseline window was defined as from 600 to 100 ms pre-stimulus. To explore 

the neural activities happening in the sensory system, the ERP analyses in the present 

experiment focused on the waveforms from 3 central-posterior sites of electrode: Oz, Pz, 

and CPz. 

The lateralized readiness potential (LRP) was measured in the same method as in 

the original literature to effectively replicate the “Gratton dip” (Gratton et al., 1988; 

1992). ERP waveforms collected from C3’ and C4’ were classified as contralateral and 

ipsilateral to the correct response hand depending on the stimuli presented in a given trial. 

For instance, if the correct response of a trial is right-hand pressing, ERP from C3’ will 

be labelled as contralateral and C4’ will be ipsilateral. LRPs were then calculated by 

subtracting the ipsilateral ERP from the contralateral ones.  

Each ERP/LRP component was examined in the mean amplitude over its defined 

time windows. For some components (e.g., LRP), additional features including the peak 

latency (“Latency”), peak amplitude (“Maximum”), and the component duration 

(“Duration”) were also tested to better characterise the data after visually inspecting the 

waveforms. The peak of a component was defined as where its amplitude reached the 
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maximum or minimum, while the duration of a component was defined as the interval 

where the waveform exceeded 1/3 of its peak amplitude (Picton et al., 2000). 

 

2.5. Time-Frequency Analysis. 

Time-frequency analyses were also applied to the preprocessed EEG data. 

Spectral power was estimated by a complex Morlet wavelet transformation in the 

frequency range between .5 to 30 Hz and at .5 Hz precision, using the MNE-Python 

package (Gramfort et al., 2013). Like in the ERP analysis, the baseline time windows 

were defined at between pre-stimulus 600 to 100 ms for the stimulus-locked data. To 

allow possible cross-frequency comparisons and calculations, a relative approach of 

baseline correction was used for the time-frequency analysis, and all time-frequency 

powers were quantified in the unit of percentage changed from the baselines (TF%) (e.g., 

Grandchamp & Delmore, 2011; Hu et al., 2014). While no specific time window of 

interest was determined before the experiment given the exploratory nature of the present 

research, the main analysis focused on the time-frequency dynamics that happened after 

the stimulus onset and before the response implementation. The frequencies of interest 

were mainly focused on 18 and 24 Hz, which were the flashing rates of the flickers. 

As noted in previous sections, one challenge with the current experiment design 

was the difficulty of dissociating frequency-tagged modulations from other components 

generally in wider frequency bands. In other words, power changes on a specific 

frequency, says 18 Hz, might not only be due to the flickers but also other general neural 

activities such as beta-band synchronizations. This issue is worsened by the fact that the 
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effect of frequency tagging tended to be weak under relatively rapid stimulus exposures 

(Norcia et al., 2015). To better dissociate the frequency-tagging effects, the time-

frequency data from the stimulus-flashing conditions (ACO/AIN/CCO/CIN) were then 

subtracted by corresponding stimulus-static (BCO/BIN) conditions, with congruency 

corresponded, to calculate the amount changed from the static baselines, or called the 

time-frequency differences (TFDs). Significant TFDs found at the frequencies tagging to 

the target/flankers would be considered as reliably reflecting the presences of the 

stimulus flashing on the corresponding rates. 

 

2.6. Drift-Diffusion Model Analysis. 

A simplified drift-diffusion model (DDM) modified based on White et al.’s work 

(2011) was used for the present study. The main DDM analysis in the present study 

focused on the drift rate, calculated using the formula below: 

v(t) = p target × a target(t) + ∑ p flanker × a flanker(t) 

The overall drift rate (v) was then calculated by averaging the v(t) within a certain time 

window. The value of pi represented the perceptual input strength of each item (target or 

flankers) and could be positive or negative in relative to the correct response of the trial. 

p flanker would be positive in a congruent trial but negative in an incongruent one; whereas 

p target would always be positive. Since the target and the flankers were completely 

identical in size, color, and luminance, an equal absolute value for each of item that could 

be standardised to 1 in calculations was assumed. The time-varying attention ai (t) for 



41 

 

target and flankers were calculated based on the subtracted time-frequency power at their 

tagged frequencies respectively.  

Other DDM parameters, including the response boundary, starting point, and non-

decisional errors were not systematically manipulated under the present experimental 

design, and therefore were not subject to the analysis. While factors such as the 

individual handedness and the trial sequence could have potential effects on the response 

tendency and decisional threshold, theoretically these effects should be counterbalanced 

on average, as trials in different conditions were equal in number and were presented in 

random orders. 

It is worth addressing one potential concern about the validity of the drift rate 

calculation method used in the present study. Since the perceptual input value pi was 

assumed to be either +1 if its direction matched with the correct response, or -1 if its 

direction was opposite to the answer, it led to a practical fact that drift rates in the 

congruent trials would always be calculated as the sum of the attention distribution of the 

target and the flankers in mathematical values, while the incongruent drift rates would 

always be calculated by subtracting the flanker attention distribution from the targets. As 

a result, it might seem like the drift rates were computed in two different ways depending 

on congruency, and testing the drift rate differences between congruencies might become 

a mere circular justification. However, this concern should not invalidate the drift rate 

analyses. By principle, the input value of each stimulus at the single-trial level was 

determined by its spatial or semantic properties, in our case towards the left or the right, 

but not by its task-related function (i.e., target or flanker) or by trial congruency. In 

practice, the input value of each stimulus was defined to be ±1 for two main reasons: 
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First, the experimental design did not allow us to effectively measure the spatial 

properties of the stimulus. The time-frequency difference (TFD) data recorded at the 

tagging frequencies was influenced only by the perceptual intensity and attention 

distribution of the tagged stimulus, but not by its orientation. Although theoretically such 

spatial properties could be derived from activity in neurons that are selectively responsive 

to shapes and orientations (e.g., Averbeck et al, 2003; Zylberberg et al., 2016), collecting 

these activities requires techniques with an extremely high resolution, such as single-cell 

recording. Electroencephalography (EEG) does not allow us to do so. In the absence of 

orientation information in the time-frequency signal, I had to manually assign a 

perceptual input value to each stimulus based on the known information. 

Secondly, I merged the left- and right-response trials when analyzing the effects 

between congruency and flicker conditions. Like most studies on the flanker effect, I 

assumed trials with left- and right-responses had no systematic difference in their 

cognitive and neural mechanisms of decisions, and combining these trials together would 

make the analysis more likely to be generalised. For these merged conditions, the 

absolute spatial orientation of a stimulus became no longer important, and an alternative 

source of input value based on relative measurements was needed. As a result, I 

uniformly defined a standard absolute value of 1 to each stimulus and assign it to be 

positive or negative relative to the orientation of the trial correct answer. The input value 

of a stimulus in the correct orientation would be positive, whereas those in the incorrect 

orientation would be assigned as negative. Conceptually, such assignments were 

completely driven by the inherent properties of the stimulus. Even though these values 

could also be used to reflect the trial congruency when the whole stimulus set was 
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evaluated, by principle they are still independent from the congruency per se. This point 

was also addressed in the work from White et al. (2011). Therefore, comparing the drift 

rates between congruencies was considered as not a subject to a circular justification 

problem.  
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3. Results 

3.1. Behavioural Results. 

I recorded behavioural response time (RT) in milliseconds and accuracy (ACC; 

proportion of correct responses) for all participants in all conditions. Mean ACC and RT 

for each condition are presented in Table 1 and illustrated in Figure 5. I conducted a 2 

(Congruency: congruent vs. incongruent) × 3 (Flicker: 24Hz target/18Hz flanker vs. 

Static target/Static flanker vs. 18Hz target/24Hz flanker) repeated-measures ANOVA, 

which revealed significant main effects of congruency (F(1, 27) = 210.575, p < .001, ηp
2 

= .479) and flicker (F(2, 54)  = 6.991, p < .01, ηp
2 = .206) on RT. Significant congruency 

(F(1, 27)  = 24.845, p < .001, ηp
2 = .479) and flicker (F(2, 54)  = 3.563, p < .05, ηp

2 

= .117) main effects were also found on ACC. No congruency × flicker interaction was 

found on neither RT nor ACC. 

Overall, the results replicated the standard flanker effect. Post hoc pairwise 

comparisons corrected by Tukey’s HSD tests suggested that incongruent condition 

exhibited significantly slower responses (MD = - 34.234, SE = 2.359, t(27) = -14.511, p 

< .001) and lower accuracies (MD = .032, SE = .006, t(27) = 4.985, p < .001) than the 

congruent. Flicker condition C (18Hz target/24Hz flanker) tended to have slightly but 

significantly longer RT (MD = 6.348, SE = 1.702, t(54) = 3.730, p < .001) than condition 

B (Static target/Static flanker). ACC in condition C was also significantly (albeit 

trivially) lower than condition A (24Hz target/18Hz flanker) (MD = -.007, SE = .003, 

t(54) = -2.430, p < .05) and B (MD = -.006, SE = .003, t(54) = -2.172, p = .085). Detailed 

ANOVA and pairwise contrast results are presented in Table 3 and 4 in Appendix A.  
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Table 1.  

Detailed group means and standard deviations of behavioural response accuracy and response 

time in each congruency × flicker condition. 

Condition 

Accuracy Response Time (ms) 

Mean SD Mean SD 

ACO .993 .008 465.975 73.998 

AIN .961 .043 501.633 78.182 

BCO .991 .013 464.515 73.557 

BIN .962 .033 495.983 74.989 

CCO .987 .020 468.810 76.847 

CIN .953 .052 504.385 74.241 

Figure 5. Boxplots showing the group means and distributions of behavioural response 

accuracy (left panel) and response time (right panel) in milliseconds in each congruency × 

flicker condition. Flicker condition A (24Hz target/18Hz flanker) was presented in red, B 

(Static target/Static flanker) in blue, and C (18Hz target/24Hz flanker) in green. 

Note. SD = Standard deviation. Conditions were named as the combination of its assigned 

flickers (A = 24Hz target/18Hz flanker; B = Static target/Static flanker; C = 18Hz target/24Hz 

flanker) and congruency (CO = Congruent; IN = Incongruent). 
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3.2. Lateralized Readiness Potential. 

Stimulus-locked event-related potentials (ERPs) recorded from C3’ and C4’ were 

classified as contralateral or ipsilateral to the correct response hand in each condition. 

The ipsilateral waveforms were then subtracted from the contralateral ones to calculate 

the lateralized readiness potentials (LRPs). Figure 6 illustrates the LRP waveforms in 

each condition. Based on the literature (e.g., Gratton et al., 1988; Kappenman et al., 

2021) and the overall patterns of the present data, the LRP analyses in the present study 

focused on the negative deflection in the subtracted waveform between 150 and 450 ms 

time window post-stimulus. To better understand the role of LRP in the decision-making 

process, the LRP component was examined not only by the mean amplitude (LRP 

Amplitude) over the defined time window, but also by the peak latencies of LRPs (LRP 

Latency). The peak latency was defined as the time point at which the LRP amplitude 

reached its maximum. 

2 × 3 repeated-measure ANOVA tests were applied to LRP Amplitude and LRP 

Latency. A significant flicker × congruency interaction was found on LRP Amplitude 

(F(2, 54) = 3.909, p < .05, ηp
2 = .126). Pairwise comparisons (Tukey’s HSD corrected) 

showed that condition AIN (24T/18F-Incongruent) resulted in significantly larger mean 

amplitude (MD = -.113, SE = .040, t(107) = -2.801, p < .05) than condition CIN 

(18T/24F-Incongruent). No significant congruency or flicker main effect was found in 

LRP Amplitudes. For LRP Latency, I observed a significant congruency main effect 

(F(1, 27) = 30.730, p < .001, ηp
2 = .532), suggesting that LRP reached to its peak 

significantly faster in the congruent condition than the incongruent (MD = -56.271, SE = 

10.205, t(27) = -5.543, p < .001). No significant flicker effect was observed in LRP 
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Latency. Full ANOVA and pairwise comparison statistics for LRP Amplitude and LRP 

Latency are presented in Table 5 and Table 6 in Appendix B. 

 

  

Figure 6. Grand average lateralized readiness potential (LRP) amplitudes as a function of 

time. LRP analyses in the present study focused on the main component of LRP in the time 

window (150 - 450 ms) highlighted in green. Solid lines represented the congruent (CO) 

conditions, and dashed lines represented the incongruent (IN) conditions. Red, blue, and 

orange lines represented the flicker condition A (24Hz target/18Hz flanker), B (Static 

target/Static flanker), and C (18Hz target/24Hz flanker), respectively. 
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3.3. Event-Related Potentials (ERPs). 

Figures 7, 8, and 9 show the stimulus-locked event-related potentials (ERPs) 

recorded at the Oz (midline occipital), Pz (midline parietal), and CPz (midline central-

parietal) sites, respectively. At each site, 3 major ERP components were identified for 

analysis, namely N1, P2, and P3. N1 was defined as the negative deflection occurring 

approximately 100-150 ms post-stimulus. P2 and P3 were the positive waveforms 

occurring between 150-250 ms and 250-450 ms, respectively. Each ERP component was 

measured by the mean amplitude (Amplitude) in μV in its defined window. For P3, the 

aspects of peak latency (Latency), peak amplitude (Maximum), and component duration 

(Duration) were additionally measured to better characterise the results after visually 

inspecting the ERP waveforms. The peak of a component was defined as the time point at 

which its amplitude reached the maximum absolute value, while the component duration 

was defined as the interval where the waveform exceeded 1/3 of its peak amplitude 

(Picton et al., 2000). For ease of description in the following sections, each ERP measure 

is named as the combination of the component, the recording electrode, and the specific 

aspect of ERP. For example, the mean amplitude of N1 recorded in Oz would be labelled 

as “N1 Oz Amplitude”. 

2 × 3 repeated-measure ANOVA tests were applied to each ERP measure at each 

site. The complete ANOVA and pairwise contrast statistics are presented in Table 7 - 12 

in Appendix C. Significant flicker main effects were found in the mean amplitudes of N1 

components at Oz (F(2, 54) = 41.810, p < .001, ηp
2 = .608), Pz (F(2, 54) = 22.430, p 

< .001, ηp
2 = .454), and CPz (F(2, 54) = 24.620, p < .001, ηp

2 = .477). Pairwise 

comparisons (Tukey’s HSD corrected) showed that condition B obtained significantly 
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stronger N1 than condition A (Oz: MD = -.832, SE = .112, t(27) = -7.414, p < .001; Pz: 

MD = -.377, SE = .076, t(27) = -5.001, p < .001; CPz: MD = -.199, SE = .004, t(27) = -

5.552, p < .001) and condition C (Oz: MD = -.832, SE = .112, t(27) = -7.414, p < .001; 

Pz: MD = -.377, SE = .076, t(27) = -5.001, p < .001; CPz: MD = -.199, SE = .004, t(27) = 

-5.552, p < .001). No other congruency main effect or flicker × congruency interaction 

was observed in N1 mean amplitudes. 

Similarly, significant flicker main effects were also observed in the mean 

amplitudes of the P2 components at Oz (F(2, 54) = 10.980, p < .001, ηp
2 = .289), Pz (F(2, 

54) = 18.360, p < .001, ηp
2 = .405), and CPz (F(2, 54) = 4.044, p < .05, ηp

2 = .130), and 

pairwise comparisons revealed significantly stronger P2 in condition B than in condition 

A (Oz: MD = .339, SE = .079, t(27) = 4.277, p < .001; Pz: MD = .326, SE = .062, t(27) = 

5.262, p < .001; CPz: MD = .077, SE = .034, t(27) = 2.273, p = .07) and C (Oz: MD 

= .301, SE = .079, t(27) = 3.799, p < .01; Pz: MD = .324, SE = .062, t(27) = 5.233, p 

< .001; CPz: MD = .089, SE = .034, t(27) = 2.617, p < .05). Again, no congruency main 

effect or flicker × congruency interaction was observed on P2 mean amplitudes in none 

of the channels. 

For the P3 component at the Oz electrode, there was a near-significant main effect 

of congruency in the mean amplitude measure (F(1, 27) = 3.760, p = .063, ηp
2 = .122), 

revealing weaker P3 amplitude in the congruent condition than in the incongruent (MD = 

-.110, SE = .057, t(27) = -1.939, p = .063). No other meaningful main effect or 

interaction was found in the peak latency, peak amplitude, or the duration measure at Oz. 

At site Pz, on the other hand, P3 exhibited a significant congruency main effect in peak 

latency (F(1, 27) = 7.814, p < .01, ηp
2 = .224), peak amplitude (F(1, 27) = 10.740, p 
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< .01, ηp
2 = .285), and component duration (F(1, 27) = 14.620, p < .001, ηp

2 = .351); but 

no notable main effect or interaction was found in the mean amplitude of P3. Post hoc 

comparisons showed advanced peak latency (MD = -12.0, SE = 4.310, t(27) = -2.795, p 

< .01), enhanced peak amplitude (MD = .222, SE = .068, t(27) = 3.277, p < .01), and 

shortened duration (MD = -12.3, SE = 3.210, t(27) = -3.823, p < .001) in the congruent 

conditions than the incongruent. A similar pattern was also observed for P3 at CPz, but 

only the peak amplitude measure showed a significant congruency main effect (F(1, 27) 

= 4.703, p < .05, ηp
2 = .148), reflecting slightly stronger maximal amplitude in the 

congruent conditions than the incongruent ones (MD = .08, SE = .037, t(27) = 2.169, p 

< .05).   
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Figure 7. Grand average event-related potential (ERP) amplitudes collected at electrode Oz as 

a function of time. Time windows of N1 (100 - 150 ms), P2 (150 - 250 ms), and P3 (250 - 450 

ms) components were highlighted in light blue, light yellow, and light green, respectively. 

Solid lines represented the congruent (CO) conditions, and dashed lines represented the 

incongruent (IN) conditions. Red, blue, and orange lines represented the flicker condition A 

(24Hz target/18Hz flanker), B (Static target/Static flanker), and C (18Hz target/24Hz flanker), 

respectively. 
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  Figure 8. Grand average event-related potential (ERP) amplitudes collected at electrode Pz as 

a function of time. Time windows of N1 (100 - 150 ms), P2 (150 - 250 ms), and P3 (250 - 450 

ms) components were highlighted in light blue, light yellow, and light green, respectively. 

Solid lines represented the congruent (CO) conditions, and dashed lines represented the 

incongruent (IN) conditions. Red, blue, and orange lines represented the flicker condition A 

(24Hz target/18Hz flanker), B (Static target/Static flanker), and C (18Hz target/24Hz flanker), 

respectively. 
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  Figure 9. Grand average event-related potential (ERP) amplitudes collected at electrode CPz 

as a function of time. Time windows of N1 (100 - 150 ms), P2 (150 - 250 ms), and P3 (250 - 

450 ms) components were highlighted in light blue, light yellow, and light green, respectively. 

Solid lines represented the congruent (CO) conditions, and dashed lines represented the 

incongruent (IN) conditions. Red, blue, and orange lines represented the flicker condition A 

(24Hz target/18Hz flanker), B (Static target/Static flanker), and C (18Hz target/24Hz flanker), 

respectively. 
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3.4. Time-Frequency Data. 

Similar to the ERP results, time-frequency analyses were applied to the EEG data 

from 3 major electrodes (Oz, Pz, CPz). Figure 10 illustrates the time-frequency 

representations in each condition recorded at each of the electrodes. The time-frequency 

data from the stimulus-flashing conditions (ACO/AIN/CCO/CIN) were then subtracted 

by corresponding stimulus-static (BCO/BIN) conditions at each electrode to calculate the 

amount changed from the non-flashing baselines, here termed “time-frequency 

differences” (TFDs). The subtracted TFDs were examined between 0 and 500 ms post-

stimulus. The boundary of this time window was determined by the average behavioural 

response time. To inspect whether the data reflected reliable enhancements from the 

baselines, TFDs were split into 5 100-ms-long bins. Figure 11 shows the representations 

of TFDs calculated at each flashing condition at each electrode. 

One-sample t-tests were applied to the mean TFD over each bin at each stimulus-

tagging (i.e., the target or the flanker) frequency at each site for each condition. These 

examination results would be evaluated overall and allow us to distinguish the sites and 

time windows that TFDs could be credibly used for further stage analyses. In general, 

TFDs were reliably found at Oz, Pz, and CPz. The initial 0-100 ms bin showed almost no 

significant TFD at any of the sites and conditions, and at neither the target nor the flanker 

frequency. However, all subsequent bins (100-200 ms, 200-300 ms, 300-400 ms, 400-500 

ms) at all 3 sites exhibited significantly positive TFDs at both the target- and the flanker-

tagged frequencies in most of the conditions, indicating that TFDs observed during these 

periods could reliably reflect the influence of the stimuli flashing on the corresponding 

rates. The detailed t-test results are presented in Tables 13 - 18 in Appendix D. According 

to these results, the next-step drift rate analyses will be limited within the time range 

between 100 and 500 ms post-stimulus.
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Figure 10. Time-frequency representation collected at electrode Oz (top), Pz (middle), and CPz (bottom) in each congruency × flicker 

conditions. Conditions were named as the combination of its assigned flickers (A = 24Hz target/18Hz flanker; B = Static target/Static flanker; 

C = 18Hz target/24Hz flanker) and congruency (CO = Congruent; IN = Incongruent). Time-frequency power were corrected as the percentage 

changed (TF%) relative to the baseline (-600 - -100 ms). 
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Figure 11. Time-frequency difference (TFD) representations at electrode Oz (top), Pz (middle), and CPz (bottom) in each congruency × flicker 

conditions. Conditions were named as the combination of its assigned flickers (A = 24Hz target/18Hz flanker; C = 18Hz target/24Hz flanker) 

and congruency (CO = Congruent; IN = Incongruent). For each condition at each electrode, TFDs between 0 and 500 ms were evenly divided 

into 5 100-ms-long time bins, and t-tests were applied to the mean TFDs in each time bin at the target-tagging (red) and the flanker-tagging 

(blue) frequencies. * p < .05. 
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3.5. Drift Rate. 

Based on the overall evaluations on the time-frequency difference (TFD) results, 

the drift rate (v) analyses concentrated on the interval between 100 and 500 ms post-

stimulus at Oz, Pz, and CPz. Considering the common understanding that the evidence 

accumulation is a continuous process with a duration shorter than the overt response time, 

calculating the drift rates separately at each 100-ms-long time window would probably be 

overly discrete and lead to difficulties in showing the whole picture, while counting the 

overall period between 100 and 500 ms would be too general and might include irrelevant 

noises into account. As a compromise solution, the 100-500 ms interval was evenly 

divided into an early (100-300 ms) and a late (300-500 ms) time window, each being 

200-ms in duration. Mean drift rates were calculated for each window using the 

corresponding TFD data based on the formula adapted from White et al. (2011). Similar 

to the ERP components in the previous sections, each drift rate measure was named after 

the combination of its corresponding electrode and time stage. For example, the mean 

drift rate calculated in Oz at the early window would be labelled as “v Oz - early”. Figure 12 

shows the mean drift rate in each flashing condition at each window computed at each 

electrode. 

2 × 2 repeated-measure ANOVA tests were applied to the averaged drift rates in 

the early and the late stages. In the early stage, a significant main effect of congruency 

was observed at all sites (Oz: F(1, 27) = 34.001, p < .001, ηp
2 = .557; Pz: F(1, 27) = 

8.437, p < .01, ηp
2 = .238; CPz: F(1, 27) = 10.968, p < .01, ηp

2 = .289), indicating higher 

drift rates in the congruent conditions than the incongruent ones (Oz: MD = .176, SE 

= .030, t(27) = 5.831, p < .001; Pz: MD = .095, SE = .033, t(27) = 2.905, p < .01; CPz: 
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MD = .091, SE = .027, t(27) = 3.312, p < .01). There was also a main effect of flicker 

condition on drift ratet (Oz: F(1, 27) = 14.400, p < .001, ηp
2 = .348; Pz: F(1, 27) = 6.168, 

p < .05, ηp
2 = .186; CPz: F(1, 27) = 9.236, p < .01, ηp

2 = .255), revealing lower drift rates 

in conditions with 24T/18F flickers than the 18T/24F ones (Oz: MD = -.147, SE = .039, 

t(27) = -3.795, p < .001; Pz: MD = -.067, SE = .027, t(27) = -2.484, p < .05; CPz: MD = 

-.065, SE = .022, t(27) = -3.039, p < .01). No significant interaction was found at any of 

the sites. Similar results were obtained at the late stage. The significant congruency main 

effect observed at the three sites (Oz: F(1, 27) = 17.390, p < .001, ηp
2 = .392; Pz: F(1, 27) 

= 10.256, p < .01, ηp
2 = .275; CPz: F(1, 27) = 7.146, p < .05, ηp

2 = .209) suggested that 

congruent conditions were higher in drift rates than the incongruent ones (Oz: MD 

= .161, SE = .037, t(27) = 4.170, p < .001; Pz: MD = .124, SE = .039, t(27) = 3.203, p 

< .01; CPz: MD = .084, SE = .031, t(27) = 2.673, p < .01). The flicker main effect was 

also significant (Oz: F(1, 27) = 8.735, p < .01, ηp
2 = .244; Pz: F(1, 27) = 6.771, p < .05, 

ηp
2 = .200; CPz: F(1, 27) = 8.751, p < .01, ηp

2 = .245), showing lower drift rates in 

conditions with 24T/18F flickers than the 18T/24F conditions (Oz: MD = -.203, SE 

= .069, t(27) = -2.956, p < .01; Pz: MD = -.097, SE = .037, t(27) = -2.602, p < .05; CPz: 

MD = -.113, SE = .038, t(27) = -2.958, p < .01). Again, no significant interaction was 

observed. The complete ANOVA and pairwise contrast statistics are presented in Table 

19 -24 in Appendix E. 
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  Figure 12. Boxplots showing the group means and distributions of the mean drift rates in the 

early (left panel) and late (right panel) stages in each congruency × flicker condition 

calculated at electrode Oz (top), Pz (middle), and CPz (bottom). Flicker condition A (24Hz 

target/18Hz flanker) was presented in red, and C (18Hz target/24Hz flanker) in green. 
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3.6. Correlations. 

Since the ultimate goal of the present research is to find out which neural 

signature(s) provide the best explanation for the flanker effect, it is important to 

understand not only the effects of congruency on these signatures, but also their potential 

predictive power for the behavioural results. For this reason, I computed the correlations 

with RT for each measurement that showed significant variance between conditions. 

Non-flashing conditions (BCO/BIN) were excluded from the correlation analyses due to 

the lack of meaningful drift rate data. Among these measurements, RT showed significant 

or near-significant positive correlations with LRP Latency (r = .375, p < .001) and P3 Pz 

Latency (r = .183, p = .053); whereas significant negative correlations were found with v 

Oz - early (r = -.201, p < .05) and P3 Pz Maximum (r = -.196, p < .05). Figure 13 presents the 

correlations between RT and these measures. The complete correlation statistics are 

shown in Table 2. 
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Figure 13. Scatter plots with regression lines (blue dashed) illustrating the correlations 

between behavioural response time (RT) and LRP latency (panel a), v Oz - early (panel b), P3 Pz 

Latency (panel c), and P3 Pz Maximum (panel d). Correlation coefficients (r) and correlation 

significance p-values were labelled. .  p < .1, * p < .05, ** p < .01; *** p < .001.  
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Table 2.  

Correlation statistics between behavioural response time (RT) and measures revealed significant 

main effects or interactions in the previous ANOVA tests. 

  

Measure r p 

LRP Amplitude .108 .256 

LRP Latency .375 <.001 *** 

N1 Oz Amplitude .085 .372 

P2 Oz Amplitude -.039 .683 

P3 Oz Amplitude .074 .439 

v Oz - early -.201 <.05 * 

v Oz - late -.082 .390 

N1 Pz Amplitude .074 .439 

P2 Pz Amplitude .059 .539 

P3 Pz Latency .183 .053 . 

P3 Pz Maximum -.196 <.05 * 

P3 Pz Duration .128 .179 

v Pz - early -.078 .413 

v Pz - late -.060 .531 

N1 CPz Amplitude -.037 .697 

P2 CPz Amplitude -.010 .919 

P3 CPz Maximum -.084 .381 

v CPz - early -.146 .124 

v CPz - late -.061 .523 

Note. r = Pearson’s r-value. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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4. Discussion 

4.1. Summary of Results. 

The present study examined two models of Eriksen’s flanker effect, the 

continuous-flow model (CFM) and the drift-diffusion model (DDM). Overall, response 

time (RT) was shorter, and response accuracy (ACC) higher in the target-flanker 

congruent (CO) conditions than in the incongruent (IN) conditions. This result replicated 

the pattern of a typical flanker congruency effect, showing that the introduction of 

flashing stimulus pairs did not affect the fundamental mechanisms underlying the flanker 

effect. On the other hand, RTs in flicker condition A (24Hz target/18Hz flanker) tended 

to be longer those than in flicker condition B (Static target/Static flanker), while ACC in 

condition A tended to be lower than in conditions B and C (18Hz target/24Hz flanker). 

These variations suggested that differences in flicker pairs might also have some 

unexpected effects on the behavioural performances. 

The lateralized readiness potential (LRP) did not show notable difference in 

amplitudes between conditions, except that a slightly stronger LRP was found in 

condition AIN than in CIN. The “Gratton dip” component was not observed in the 

incongruent LRP waveforms in this study. The peak latency measure revealed that LRPs 

in the congruent condition reached their maxima faster than in the incongruent ones, 

suggesting delayed motor readiness in the incongruent condition. For other event-related 

potential (ERP) components, N1 and P2 recorded at Oz, Pz, and CPz sites all showed 

stronger amplitudes in the static conditions than both of the flashing ones. The mean 

amplitudes of P3 were slightly stronger in the incongruent condition at the Oz site. At Pz, 
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the P3 component exhibited shorter peak latency, stronger peak amplitude, and shorter 

duration in the congruent condition than the incongruent, but no significant difference 

between congruencies in the mean amplitude was found. P3 at CPz showed a similar 

pattern as at the Pz site, though only in the peak amplitude measure showed a statistically 

significant between-congruency difference.  

The cortical processing of the target and the flankers was examined by 

quantifying time-frequency power differences (TFDs) between the flashing and static 

conditions. At Oz, Pz, and CPz, TFDs at both the target- and flanker-tagging frequencies 

were reliably detected between 100 and 500 ms post-stimulus. Drift rates in each 

condition were calculated based on the TFDs at Oz, Pz, and CPz at an early (100-300 ms) 

and a late stage (300-500 ms). Results showed that the drift rates at all three sites scored 

higher in the congruent conditions than in the incongruent conditions in both stages. 

Also, flicker condition A tended to produce lower drift rates than condition C conditions 

at all these sites. 

Finally, examining the correlations between RT and the major measures found 

with systematic differences between conditions, LRP peak latency showed moderately 

positive correlation with RT. P3 peak latency at Pz also showed weakly positive 

correlations with RT. The early-stage drift rate at Oz and the peak amplitude of P3 at Pz 

showed weak negative correlation with RT. No other measure was found to have 

significant correlation with RT. 
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4.2. LRP, the Continuous-Flow Model, and the “Gratton Dip”. 

The continuous-flow model was not supported by the results from the present 

study. For the continuous-flow model (CFM), the primary neural measure examined in 

the present study was the lateralized readiness potential (LRP), and observing the 

“Gratton dip” component in the LRP waveforms was of particular interest. As a 

reminder, the “Gratton dip” was characterised by a slight positivity in the LRP waveform 

in the incongruent conditions at an early stage post-stimulus (Gratton et al., 1988; 1992). 

The positive “dip” was interpreted as a cortical activation favouring the wrong response. 

In consequence, the overall LRP amplitude in the incongruent conditions should be lower 

than the congruent ones if the CFM is correct. 

Surprisingly, results from the present experiment did not replicate the “dip” found 

by Gratton et al. in 1988. The present results did not manifest any amplitude difference 

between congruencies on average. Although the incongruent LRPs indeed tended to be 

less negative than the congruent ones in the early time windows (approximately 100-300 

ms), the waveforms did not go positive evidently, meaning no evidence for activation in 

the ipsilateral motor cortices or towards the incorrect direction. Thus, the amplitude 

patterns reversed later when the incongruent conditions obtained more negative LRPs 

than the congruent at the following stage (300-500 ms). Such reverse led to the mean 

amplitude equality of the overall LRP between congruencies. In contrast, the peak latency 

revealed significant delay in the incongruent conditions. LRPs reached their maximum 

slower in the incongruent trials for about 50 ms than in the congruent ones. This 

asynchrony also roughly matched with the RT difference between congruencies. Further, 
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when associating with the overt RT, LRP latency was found with a moderate positive 

correlation, while the LRP amplitude showed no notable correlation. 

Taking these measurements together, the LRP results from the present experiment 

seemed to be better explained as a peak shift in LRP rather than the “Gratton dip” 

proposal, and the behavioural flanker effect observed in the incongruent trials was most 

likely due to delayed activity in the motor cortices but not weakened readiness strength or 

misdirected activation in the wrong response channels. In other words, the key feature 

influenced by the congruency in the response channels was the onset timing of readiness 

of the correct response but not the confusion about which response to make. In the 

incongruent condition, the onset of the response readiness in the primary motor cortices 

was lagged by the flanker interference happening at some earlier stage of the information 

processing, which consequently led to the extended response time as the flanker 

congruency effect. No consistently positive component like the “Gratton dip” from the 

present LRP results that could indicate any cortical preparation favouring the incorrect 

response hand movement was found in the incongruent condition. It further implied that 

the cortical readiness of motor response was more likely to be activated only once some 

judgement was made in the previous hierarchy, rather than being continuously influenced 

by the sensory inputs, in contradiction to Eriksen and Gratton’s arguments in the CFM 

(Eriksen et al., 1985; Gratton et al., 1988) and fitted better to the prediction of the DDM. 

Overall, the continuous-flow model was not strongly supported by the LRP results from 

the present study. 
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4.3. The Drift-Diffusion Model. 

On the other hand, the drift diffusion model (DDM) seemed to account well for 

the present results. The primary DDM parameter examined in the present study was the 

drift rate (v), which theoretically reflects the speed of cognitive evidence accumulation. 

Drift rates were calculated at Oz, Pz, and CPz based on the formula from White et al.’s 

work (2011). The time-frequency differences (TFDs) recorded at these sites were used to 

quantify the time-varying attention allocation. For the flanker effect, the diffusion model 

expected lower drift rates in the incongruent condition than in the congruent. DDM also 

predicted that drift rates should negatively correlate with the overt response time (RT) at 

some degree. 

Our results confirmed these predictions. At all three sites, the drift rates were 

found significantly higher in the congruent conditions than in the incongruent at both the 

early (100-300 ms) and the late stage (300-500 ms). Yet, when associating with the overt 

RT, only the drift rate at Oz at the early stage showed a negative correlation, meaning 

that a faster drift rate at this site within this interval predicted a shorter response time. No 

drift rate result in other windows or at other sites exhibited this association with RT. 

Two important facts could be revealed from these results: First, TFDs collected at 

the Oz site had the most explanatory power in accounting for the allocation of attention. 

This is consistent with the general understanding that perceptual inputs in the visual 

stream are retinotopically mapped onto the primary visual region and surrounding 

extrastriate cortices, and these projections are constantly affected by not only the bottom-

up inputs but also top-down modulatory influences such as selective attention. The 
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retinotopic maps in the primary visual cortex are usually believed to be the lowest-level 

perceptual elements in the hierarchical cortical visual system, which also means they 

contain the most straightforward, unselected, and lossless information from perception 

(e.g., Crick & Koch, 1995; Hubel & Wiesel, 1962). In contrast, TFDs collected at Pz and 

CPz failed to well account for the time-varying attention allocation needed for the DDM 

calculations. The input streams could still be recognized at these regions by frequency 

tagging, but the retinotopic projections were more or less distorted by the functional 

selectivity in these higher-level extrastriate cortices (Belliveau et al., 1991; Hung et al., 

2015; Turner et al., 1993). As a result, although drift rates calculated at these channels 

also roughly matched the congruency effect, they were unable to support reliable 

predictions about RTs, which undermined their explanatory power as elements of 

computational models. These results also indicated that the evidence accumulation 

process was probably dominated by some low-level mechanisms in the hierarchy of 

sensory processing. 

Secondly, the early stage (100-300 ms post-stimulus) tended to be the critical time 

window for evidence accumulation. Drift rates calculated at Oz exhibited good 

correlation with RT only at the early but not at the late stage. This result probably means 

that the average time needed for making a cognitive decision in the present task was 

about or less than 300 ms, even though the overt responses were not yet observable at 

that point. This interpretation fitted a critical argument in DDM that conceptual decisions 

must be made before any possible response elicitations or implementations. It suggested a 

hierarchical relationship between the sensory and the motor systems and a threshold-like 

decision making mechanism. Although drift rate values could still be calculated 
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mathematically at the late stages since the stimulus presentations were not terminated 

until the responses were made, those income information at the late periods were 

probably less relevant to the conceptual decision making. Interestingly, this result also 

seemed to match the findings in the lateralized readiness potential (LRP), given that the 

early-stage time window’s boundary at 300 ms was roughly consistent with the average 

peak latencies of the LRPs. 

Taking these findings together, the present study supported the DDM as a 

computational explanation for the flanker effect, and suggests that flanker interference 

arises relatively early in visual processing. The successful correlation with RT indicated 

that drift rate could be used for not only discriminating the congruency but also providing 

a reliable prediction of the precise response time. These results also helped validate the 

feasibility of applying the diffusion model to the neurophysiological data. I have shown 

here that neural TFD data recorded via electroencephalography (EEG) can be integrated 

in the DDM framework, and the drift rates computed based on EEG enabled effective 

predictions about decision making and behavioural responses. Nonetheless, the 

correlation found between the early-stage drift rate at Oz and RT was still relatively 

weak, meaning its predictive power was very limited. It also indicated the potential 

influences from other unmodelled factors to the decisions and responses, such as the 

individual differences in cautiousness and decisional threshold. Considering the DDM in 

the present study was highly simplified, this limitation was understandable. Such factors 

may be able to be modelled in a comprehensive diffusion model by introducing other 

parameters including the starting point (z), response boundaries (a), and non-decision 



70 

 

errors (Ter). Future research may be able to quantify these parameters with some 

observable neural measures to improve the model. 

 

4.4. DDM vs. CFM. 

Comparing the findings from LRP and drift rate, a conclusion seems obvious: the 

drift-diffusion model provided a reasonable explanation for the flanker effect observed in 

the present study, while the continuous-flow model was not strongly supported. 

Responses in a standard flanker task probably involve firstly a conceptual decision and 

then followed by activation in the corresponding motor channels. The flanker congruency 

effect is mainly due to the delay in the conceptual decision process. 

Overall, this interpretation is reasonable. The continuous-flow model’s proposal 

about accumulating perceptual evidence in the response channels is probably 

oversimplified. Considering the efficiency of cortex utilisation, the cortical pivot of 

evidence accumulation is highly unlikely to locate in the lateralized primary motor 

cortices since it only fits decision making in the 2-alternative choice scenarios like a 

standard flanker task. In contrast, situations in real life are often much more complex, and 

most decisions people encounter could have more than two options. There are also 

abundant cases in which people will make internal choices without performing any overt 

motor responses. In some other cases, behavioural responses can be delivered by non-

lateralized actions, such as the saccadic eye movements. The continuous-flow model 

could not well explain the decision processes in these situations, whereas the diffusion 

model offers a flexible framework suitable for most of them. 
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Nevertheless, the present result does not simply assert the continuous-flow model 

of the flanker effect to be false. The key problem for the continuous-flow model in the 

present study was the failure in replicating the classic “Gratton dip” in LRPs in the 

incongruent condition. Several critical differences between the present study and Gratton 

et al.’s works (1988; 1992) may contribute to this failure. First, the response intensities 

were probably stronger in Gratton et al.’s studies at the present. According to the 

literature, participants in these experiments made behavioural responses by squeezing 

dynamometers in the corresponding hands, and each response required more than 25% of 

the person’s maximal forces to register the response. Such responses were likely to 

involve active uses of whole-hand and even arm muscles as well. Similar designs were 

also found in earlier non-EEG works that built the theoretical foundations of the 

continuous-flow model (e.g., Eriksen et al., 1985; Coles et al., 1985). In contrast, 

responses in the present experiment required only keyboard pressing with fingers, which 

was less effortful than dynamometer squeezing. This variation could lead to weaker 

motor cortex activation in participants in the present experiment when making responses, 

and consequently made the differences in LRPs harder to be recognized. 

Second, the response strategies used in these studies might be different. Extensive 

studies on the speed-accuracy tradeoff have showed that people would employ strategies 

to control their behaviours in typical 2AFC tasks, especially when one or more aspects of 

their performance were highlighted or motivated (e.g., Dambacher & Hübner, 2013; 

Osman et al, 2000; Sanders & Lamers, 2002; Wylie et al., 2009). In Gratton’s 

experiments, participants were explicitly instructed to emphasise their response speed 

over accuracies. The overt responses in Gratton’s studies were often fairly quick, while 
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the error rates were relatively high. In one experiment (Gratton et al., 1992), for example, 

the average RTs for the congruent and incongruent conditions were 316 and 364 ms 

respectively, while the error rates were .067 for the congruent conditions and .272 for the 

incongruent conditions. In contrast, participants in the present experiment were not given 

any instruction about the speed or accuracy so that they could respond in a neutral state. 

The average RTs obtained in the present study were 466 ms for the congruent conditions 

and 501 ms for the incongruent ones, while the error rates were less than .01 and .05, 

respectively. 

Further to the failed replication of the “Gratton dip”, one possible explanation 

could be that the cognitive mechanisms might vary with the changes in response 

strategies. In speed-driven conditions like Gratton’s experiments, the continuous-flow 

model may be a reasonable proposal, as it could allow people to respond as quickly as 

possible. The primary motor cortices in such situations are likely to be highly vigilant and 

prepared for initiating responses as quickly as possible, and this could make them 

sensitive to the continuous stimulus influences. Alternatively, when a neutral or 

accuracy-driven strategy was employed, people are more likely to make a confident 

conceptual decision before generating any response preparation. In more conservative 

situation, one may even suppress the excitations in their response channels, intentionally 

or not, to guarantee the correctness of their responses. These situations are more 

analogous to the present experiment where the diffusion model tends to provide a better 

explanation. Future studies may be able to examine this hypothesis using controlled 

comparisons between participant groups using these two strategies. 
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4.5. Exploratory ERP: P3 and the Flanker Effect. 

Except for the LRP and drift rates, additional analyses were conducted to explore 

if any other neural signatures were related to the flanker effect or provide complements to 

the previous discussions and arguments. Specifically, finding a reliable neural indicator 

of the precise time of conceptual decision making was of high interest since it could not 

be pinpoint from the drift rate or time-frequency difference (TFD) data directly. Based on 

this motivation, exploratory analyses focused on the ERPs at the 3 sensory system 

channels (Oz, Pz, CPz) given the high temporal resolution of ERP. While the peak 

latency of LRPs could also show some clues about the decision time boundary, arguably 

it was still not directly reflecting activities in the sensory system. According to the 

expectation, a valid ERP marker of cognitive decision should exhibit some peak shifts 

between congruencies which might indicate the delayed decision making in the 

incongruent conditions. 

The actual results, however, were more complicated than expected. At site Oz, the 

mean amplitude of P3 overall was slightly higher in the incongruent conditions, but no 

other measurement showed notable variances between congruencies. At site Pz, the 

between-congruency difference was found in several aspects of the P3 components. The 

incongruent conditions were found with not only delayed peak latencies, but also 

attenuated maximal amplitudes and extended component durations. Similar pattern was 

also found at site CPz, though only the difference in peak amplitude reached a 

statistically significant threshold. Thus, the peak latency of P3 at Pz showed a weakly 

positive correlation to the overt RT, while the P3 maximal amplitude at Pz was weakly 

negatively correlated with RT. Taking these observations together, the ERP results could 
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be concluded as a weaker but more durable P3 at site Pz, probably also CPz, in the 

incongruent trials than in the congruent ones. 

One way to interpret these results was that P3 at Pz/CPz indeed indicated the 

cognitive decision making process, and a decision was made at the time P3 reached its 

peak. This interpretation was mainly supported by the delayed peak latency in the 

incongruent trials, which suited with the previous arguments of slower cognitive decision 

based on drift rates and LRPs. The positive correlation between P3 latency and RT also 

favoured this explanation. A potential reason for this result could be that the intensities of 

cognitive decisions were averagely lower in the incongruent trials due to factors such as 

lower subjective confidence. However, few theories or empirical evidence could stand for 

this hypothesis, neither could it be verified with the existing data. Thus, such 

interpretation could not account for the attenuated peak amplitude as well as the extended 

duration found in the incongruent conditions. Also, the P3 at Pz and CPz tended to reach 

its peak after 300 ms post-stimulus on average, later than the LRP peak latencies 

discussed previously, meaning it occurred after the response preparation initiated in the 

motor channels. This contradicted with the previous argument based on DDM that 

cognitive decisions were made prior to the start of response readiness. In addition, 

disparities of P3 latency between congruencies were also relatively small in size and were 

not so proportional to the disparities in the overt RT or the LRP latency. Hence, the 

present findings at P3 probably did not indicate differences in cognitive decision making 

in the flanker task. 

An alternative interpretation was that P3 at Pz/CPz reflected the strength of 

attentional control engaged in the ongoing monitoring and processing of the sensory 
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inputs. In the incongruent trials, the attentional control could be weakened since the 

attentional resource was more likely to be divided and distributed to the flankers, leading 

to the attenuation in P3 peak amplitudes. This explanation was consistent with findings 

from several works about P3 under multi-task environments, which reported weakening 

P3 amplitudes as more distractors were presented simultaneously (Isreal et al., 1980). 

Evidence from visual oddball studies also found decreases in P3 amplitudes when task 

difficulty increased (Kramer et al., 1985; Wickens et al., 1983). On the other hand, given 

the experimental design that the trial presentation would not be terminated until a 

behavioural response was carried out, the stimulus exposures in the incongruent trials 

were on average longer than in the congruent ones in the same way as the flanker effect 

in RT, and such prolonged exposure was likely to result in the extended P3 duration 

observed at these channels. This interpretation would probably be more appropriately 

explain the observations in P3. 

 

4.6. Limitations. 

Despite the findings discussed above, it should be addressed that the present study 

was a first-step attempt of bridging the cognitive theories of the flanker effect with actual 

neural data. Many aspects of the present experimental design and analysis methods were 

still relatively primitive, and several limitations must be addressed.  
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4.6.1. The Flicker Effect. 

A major source of potential issues came from the variances between conditions 

with different target-flanker flicker pairs. In fact, notable main effects were found not 

only between congruencies but also between flicker pairs in most of the examined 

measurements. 

One type of the variance was between the static condition (B) and the two 

flashing conditions (A and C). In the behavioural performance results, both conditions A 

and C scored longer response time (RT) than the conditions with static stimuli on 

average. Condition C also obtained lower accuracy (ACC) than in the static and the 

condition A. Similar patterns were observed from the event-related potential (ERP) 

results as well. At site Oz, Pz, and CPz, the mean amplitudes of the N1 and P2 

components were found weaker in both of the flashing conditions in contrast to the static 

condition. A possible explanation to this type of variances could be the changes of 

perceptual intensity in the flashing conditions. In contrast to static stimuli, flickers 

achieved via stimulus on/offset alterations would have only half of the effective exposure 

within the same unit of time. Consequently, the physical intensity of input from the 

flashing stimuli, also known as the luminous flux, would theoretically be less than the 

static counterparts in a linear system and be perceived as “dimmer”. This interpretation 

was supported by the attenuated amplitudes in the flashing conditions in N1 and P2, since 

these components were known to be highly sensitive to the intensity of visual stimuli 

(e.g., Carrillo-De-La-Peña et al, 1999; Vogel & Luck, 2000). Importantly, this type of 

variance violated the assumption that introducing flashing stimuli would not cause 

systematic differences from the static condition other than the presence of frequency-
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tagged neural markers, which could in consequence undermine the validity of using the 

static condition as the baseline in the subsequent time-frequency power subtractions. 

Nonetheless, pairwise comparisons suggested that effects of flashing stimuli on the 

behavioural performances were extremely limited. Overall, the RT delays in the flashing 

conditions were less than 5 ms, and the ACC declines were less than .01. Thus, these 

differences between the flashing and the static conditions did not show notable 

interference with the congruency effect in the flanker task, which was of the primary 

research interest. Therefore, this assumption violation probably would not greatly damage 

the major arguments about the flanker effect, but investigations on other potential 

influences from it can still be worthwhile for future studies. 

The other type of variance occurred between the two flashing conditions with 

different flicker pairs. In the time-frequency difference (TFD) and drift rate results, the 

18T/24F condition obtained stronger mean drift rates than the 24T/18F conditions in both 

time windows at Oz, Pz, and CPz. Such variance was most likely due to the disparities in 

the relative saliency between stimuli flashing on different rates. A well-known illusion in 

the studies of periodic visual stimulus was called the flicker fusion, which describes a 

tendency of perceiving a rapid-flashing stimulus as a near-steady one at weakened 

contrast (Simonsen & Brozek, 1952). This tendency increases as the flashing rate of the 

stimulus becoming faster until approaching to a critical threshold, sometimes known as 

the flicker fusion rate. This phenomenon was also extensively learned as an important 

factor of the visual persistence effect (Anderson & Anderson, 1993). Most researchers 

now believe that the flicker fusion effect is caused by the difficulty of the visual system 

in discerning the differences between the repetitive rapid stimulus on/offsets (Kelly, 
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1964; Landis, 1954). On top of the flicker fusion effect, it has been empirically testified 

that flickers at lower rate, in other words perceptually less steady, tend also to be more 

salient in perceptions. Many studies on the steady-state visual evoked potential (SSVEP) 

reported stronger amplitudes induced by lower frequency flickers than the rapid ones 

(e.g., Lee et al., 2011; Norcia et al., 2015; Pisarchik, Chholak, & Hramov, 2019). 

Researchers believed this was because flashier stimuli are more likely to trigger the 

change detection mechanisms in the human sensory system and get better 

discriminability from the backgrounds (e.g., Gawen & Martin, 2002; He & Lau, 2014; 

Hong, Thong, & Tam, 2004; Itti & Koch, 2001; Li, 2002). 

In the present study, the target and flankers were simultaneously presented at two 

dissociable flashing rates, which probably led to variations in the perceived steadiness 

between the two types of stimuli, and consequently made the slow-flashing stimulus 

stand out from the rapid-flashing rests. Specifically, the saliency of the target relative to 

the flankers in the 24T/18F condition would be attenuated, while the relative saliency of 

the target in the 18T/24F condition would be amplified. Such saliency differences could 

be further intensified by modulations from selective attention mechanisms. As a result, 

participants were more likely to recognize and react faster to the targets in the 18T/24F 

condition in contrast to the 24T/18F, manifested as higher drift rates. Nonetheless, this 

saliency effect was most strongly found on the TFD-based drift rate results but was not 

evident in other measurements including the behavioural RT, the lateralized readiness 

potential (LRP) and other ERP components. This probably meant that the saliency 

differences in the present design did not impair the flanker effect at the overt response 
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level as much as at the sensory level. Systematic reviews in the future are needed to gain 

more detailed understandings on the exact effect of flicker pair manipulations. 

 

4.6.2. Uncontrolled Drift-Diffusion Parameters. 

The second major defect of the present study was the absence of effective control 

on the drift-diffusion model (DDM) parameters other than the drift rate. As mentioned in 

the introduction, a complete DDM according to Ratcliff (1978) should be able to define 4 

key parameters, namely the drift rate, the decisional boundary, the starting point of 

evidence accumulation, and the time needed for other non-decisional processes. The 

present study primarily investigated the drift rate differences in different conditions, 

while the rest of the parameters were not examined and were assumed to be invariable 

overall. The purpose was to ensure the analyses to be concentrated and simplified as 

possible, but it was also partly due to the lack of effective way to quantify these 

parameters directly with the current design. Unlike the drift rate that closely associated 

with the continuous sensory inputs, the remaining parameters are more dependent to 

discrete qualitative factors. For example, the decisional boundary would vary between 

employing speed-driven and accuracy-driven response strategies (Ratcliff & McKoon, 

2008; Voss et al., 2004); the starting point can be influenced by the reward history and 

trial sequences (Nguyen, Josić, & Kilpatrick, 2019); the non-decision time have been 

suggested related to some physiological individual differences such as age and grey 

matter volumes in the prefrontal regions (e.g., Ong et al., 2016; Spaniol, Madden, & 



80 

 

Voss, 2006; Spaniol, Voss, & Grady, 2008; Soares et al., 2018). The precise effects from 

these discrete factors are difficult to be digitised into numeric parameter values. 

Since no explicit manipulation on these parameters was introduced in the present 

experiment design, the assumption about their overall invariance should be reasonable. 

Even so, the inability in modeling these parameters made the interpretations about the 

DDM incomplete. In fact, several attempts, such as response-locked analyses and the 

explorations on the P3 component, were made in the initial plans in order to precisely 

pinpoint the evidence accumulation interval for each participant, but all of them failed to 

provide reasonable accounts for the unmodelled parameters. The lack of reliable non-

decision time measurement stalled us from dissociating how long the decisional evidence 

accumulation should last, whereas the absence of decisional boundary values made us 

hard to tell when exactly the evidence accumulation started and ended. As a result, 

although many useful information still got revealed based on the drift rates alone, the data 

fitting quality in the present study was very restricted, and the practical value of the 

present findings as a predictive computational model was limited. For future studies, 

these parameters may be able to be measured by incorporating different recording and 

analysis methods. For example, some studies had suggested that the decisional boundary 

could be quantified by neuron firing rates in some critical cortices via single-cell 

recording (e.g., Gold & Shadlen, 2001; Huk & Shadlen, 2005). Other works in the field 

of computer science and mathematics showed the potential of applying machine learning 

algorithms to find the optimal estimations of these diffusion model parameters 

(Vandekerckhove & Tuerlinckx, 2007). 
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4.6.3. Holism vs. Reductionism. 

Last but not least, a more general issue was the reductionism in the theories of the 

flanker effect. Both the DDM and the CFM studied the flanker effect from a differential 

approach, which treated the role of each stimulus (target or flanker) as an isolated part 

and assumed some simple linear relationships between them when contributing to the 

decision or response. Such a view ignores the potential effects of the whole stimulus 

array as a holistic entity in cognitive processing, which is alternatively emphasised in a 

Gestaltism approach. The Gestalt theories particularly argue for a strongly rooted 

tendency of visual grouping and creating configurations when multiple stimuli are 

simultaneously presented (Wertheimer, 2000). 

Without suggesting the reductionist theories to be incorrect, it would be beneficial 

to address that the cognitive processes in a flanker task can be affected not only by each 

stimulus separately but also by the entire array as a whole. Although few studies in the 

recent decades focused on the Gestalt theories, many fundamental principles, such as the 

laws of proximity, similarity, and closure, could well apply to the perceptual recognitions 

and judgements in the flanker task, at least to some extent. For example, the array in a 

congruent trial will be more likely to be perceived as an integrated entity because of the 

spatial identity of stimuli, but such integration may be broken in an incongruent trial 

since the target becomes visually distinguished from the flankers. These effects are 

probably more obvious when the task function of a stimulus rely on its spatial properties 

(e.g., shape) rather than the semantics (e.g., correspondent meaning) (Overvliet & Sayim, 

2016; Rouder & King, 2003). Future works may be able to investigate these effects in 

detail and make improvements to the flanker effect theories. 
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5. Conclusion 

In the present study, I examined two theoretical models of the flanker congruency 

effect, namely the continuous-flow model (CFM) and the drift-diffusion model (DDM), 

using EEG-based neural indicators. For the CFM, the lateralized readiness potential 

(LRP) was recorded, and the “Gratton dip” component in the incongruent condition was 

particularly investigated. For the DDM, the drift rate was calculated as an index of the 

sensory evidence accumulation rate based on the time-frequency power tagging to the 

flashing rates of the target and flanker stimuli. Results in the LRP failed to reveal the 

“Gratton dip” in response to incompatible flankers, but instead observed a significantly 

delayed peak in the incongruent condition. On the other hand, the drift rate calculated at 

occipital electrodes (centred on Oz) for this condition was notably lower than for the 

compatible condition. Both the delayed LRP peak and the slowed drift rate were 

significantly correlated with response time. Overall, results from the present study 

provide more support for the DDM in which flanker interference arises at sensory levels 

of processing rather than at the level of response selection. Nonetheless, the examination 

method used in this study was still a primitive attempt at this question, and several 

potential limitations and defects might have impacts on my results and arguments. 

Further investigations with methodological improvements are needed to get more 

comprehensive knowledge on the neural bases underlying the flanker congruency effect. 
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6. Appendices 

Appendix A: ANOVA & Pairwise Comparison Result Tables of Behavioural ACC and RT. 

 

Table 3.  

2 × 3 repeated-measure ANOVA results on behavioural accuracy (ACC) and response time (RT).

Measure Predictor df SS MS F p ηp
2 

        

ACC 

Congruency 1 .042 .042 24.840 <.001 *** .479 

Flicker 2 .002 .001 3.563 <.05 * .117 

Congruency × Flicker 2 .000 .000 .766 .470 .028 

Error 27 .103 .004    

        

RT (ms) 

Congruency 1 49223 49223 210.6 <.001 *** .886 

Flicker 2 1134 566.9 6.991 <.01 ** .206 

Congruency × Flicker 2 161 80.34 1.209 .307 .043 

Error 27 904777 33510    

        

Note. ACC = Accuracy; RT = Response time, df = Degree of freedom; SS = Sum of Squares; 

MS = Mean Square; ηp
2 = partial η2. .  p < .1, * p < .05, ** p < .01; *** p < .001. 



84 

 

Table 4.1.  

Pairwise comparisons of behavioural response accuracy (ACC). 

 

Table 4.2.  

Pairwise comparisons of behavioural response time (RT) (ms). 

 

  

Predictor Contrast MD SE df t p 

Flicker 

A - C .007 .003 54 2.430 <.05 * 

B - C .007 .003 54 2.172 .085 . 

A - B .001 .003 54 .257 .964 

Congruency CO - IN .032 .006 27 4.985 <.001 *** 

Predictor Contrast MD SE df t p 

Flicker 

A - C -2.79 1.7 54 -1.641 .237 

B - C -6.35 1.7 54 -3.730 <.01 ** 

A - B 3.56 1.7 54 2.089 .102 

Congruency CO - IN -34.2 2.36 27 -14.5110 <.001 *** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001.  
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Appendix B: ANOVA & Pairwise Comparison Result Tables of LRP. 

 

Table 5.  

2 × 3 repeated-measure ANOVA results on the lateralized readiness potential (LRP) amplitude 

and latency. 

   

Measure Predictor df SS MS F p ηp
2 

        

LRP Amplitude (μV) 

Congruency 1 .002 .002 .043 .837 .002 

Flicker 2 .042 .021 .848 .434 .030 

Congruency × Flicker 2 .162 .081 3.909 <.05 * .126 

Error 27 3.018 .112    

        

LRP Latency (ms) 

Congruency 1 134414 134414 30.730 <.001 *** .532 

Flicker 2 8810 4405 1.013 .370 .036 

Congruency × Flicker 2 5282 2641 1.07 .350 .038 

Error 27 237168 8784    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 
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Table 6.1.  

Pairwise comparisons of lateralized readiness potential (LRP) amplitude (μV) between flicker × 

congruency conditions. 

 

Table 6.2.  

 Pairwise comparisons of lateralized readiness potential (LRP) latency (ms) between congruency 

conditions. 

 

 

Predictor Contrast MD SE df t p 

Flicker × Congruency 

ACO - CCO  .035  .040  107 .878   .655 

BCO - CCO .030  .040  107 .744   .738 

ACO - BCO .005  .040  107 .134   .990 

AIN - CIN  -.113  .040  107 -2.801   <.05 * 

BIN - CIN -.072  .040  107 -1.795   .176 

AIN - BIN -.041  .040  107 -1.006   .575 

Predictor Contrast MD SE df t p 

Congruency CO - IN -56.571 10.205 27 -5.543 <.001 *** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Appendix C: ANOVA & Pairwise Comparison Result Tables of ERP. 

Table 7.  

2 × 3 repeated-measure ANOVA results on the ERP components at Oz. 

  

  

Measure Predictor df SS MS F p ηp
2 

        

N1 Oz Amplitude (μV) 

Congruency 1 .147 .147 1.531 .227 .054 

Flicker 2 29.49 14.744 41.81 <.001 *** .608 

Congruency × Flicker 2 .007 .004 .033 .968 .001 

Error 27 679.9 25.18    

        

P2 Oz Amplitude (μV) 

Congruency 1 .190 .190 1.861 .184 .064 

Flicker 2 3.872 1.936 10.98 <.001 *** .289 

Congruency × Flicker 2 .057 .028 .638 .532 .023 

Error 27 470.9 17.44    

        

P3 Oz Amplitude (μV) 

Congruency 1 .509 .509 3.76 .063 . .122 

Flicker 2 .085 .043 .644 .529 .023 

Congruency × Flicker 2 .050 .025 .889 .417 .031 

Error 27 101.2 3.747    

        

P3 Oz Latency (ms) 

Congruency 1 1090 1090 1.077 .309 .038 

Flicker 2 378 189.2 .339 .714 .012 

Congruency × Flicker 2 368 184.1 .477 .623 .017 

Error 27 318046 11779    

        

P3 Oz Maximum (μV) 

Congruency 1 .002 .002 .006 .94 .001 

Flicker 2 .396 .198 1.251 .294 .044 

Congruency × Flicker 2 .231 .115 1.538 .224 .054 

Error 27 392.7 14.54    

        

P3 Oz Duration (ms) 

Congruency 1 2752 2752.4 2.834 .104 .095 

Flicker 2 1586 793.2 1.894 .16 .066 

Congruency × Flicker 2 205 102.4 0.262 .771 .010 

Error 27 201819 7475    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1,  * p < .05, ** p < .01; *** p < .001. 
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Table 8.  

2 × 3 repeated-measure ANOVA results on the ERP components at Pz. 

  

Measure Predictor df SS MS F p ηp
2 

        

N1 Pz Amplitude (μV) 

Congruency 1 .162 .162 1.952 .174 .067 

Flicker 2 7.151 3.576 22.43 <.001 *** .454 

Congruency × Flicker 2 .093 .047 .84 .437 .030 

Error 27 217.8 8.066    

        

P2 Pz Amplitude (μV) 

Congruency 1 .199 .199 2.901 .1 .097 

Flicker 2 3.944 1.972 18.36 <.001 *** .405 

Congruency × Flicker 2 .039 .019 .564 .572 .020 

Error 27 378.5 14.02    

        

P3 Pz Amplitude (μV) 

Congruency 1 .006 .006 .064 .803 .002 

Flicker 2 .026 .0129 .249 .781 .009 

Congruency × Flicker 2 .0835 .0417 2.229 .118 .076 

Error 27 184.9 6.849    

        

P3 Pz Latency (ms) 

Congruency 1 6096 6096 7.814 <.01 ** .224 

Flicker 2 189 94.4 .119 .888 .004 

Congruency × Flicker 2 2848 1424.1 1.462 .241 .051 

Error 27 237244 8787    

        

P3 Pz Maximum (μV) 

Congruency 1 2.064 2.064 10.74 <.01 ** .285 

Flicker 2 .063 .032 .346 .709 .013 

Congruency × Flicker 2 .13 .0649 1.067 .351 .038 

Error 27 520.5 19.28    

        

P3 Pz Duration (ms) 

Congruency 1 6339 6339 14.62 <.001 *** .351 

Flicker 2 349 174.4 .324 .724 .012 

Congruency × Flicker 2 453 226.6 1.135 .329 .040 

Error 27 85238 3157    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 
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Table 9.  

2 × 3 repeated-measure ANOVA results on the ERP components at CPz. 

  

Measure Predictor df SS MS F p ηp
2 

        

N1 CPz Amplitude (μV) 

Congruency 1 .016 .016 .628 .435 .023 

Flicker 2 1.765 .883 24.62 <.001 *** .477 

Congruency × Flicker 2 .030 .0148 .694 .504 .025 

Error 27 50.08 1.855    

        

P2 CPz Amplitude (μV) 

Congruency 1 .016 .016 .924 .345 .033 

Flicker 2 .260 .130 4.044 <.05 * .130 

Congruency × Flicker 2 .009 .004 .256 .775 .009 

Error 27 33.93 1.257    

        

P3 CPz Amplitude (μV) 

Congruency 1 .016 .016 .650 .427 .024 

Flicker 2 .003 .002 .102 .903 .004 

Congruency × Flicker 2 .012 .006 .966 .387 .035 

Error 27 40.41 1.497    

        

P3 CPz Latency (ms) 

Congruency 1 138 137.5 .196 .662 .007 

Flicker 2 2383 1191.5 1.252 .294 .044 

Congruency × Flicker 2 2492 1246 .782 .462 .028 

Error 27 226120 8375    

        

P3 CPz Maximum (μV) 

Congruency 1 .269 .269 4.703 <.05 * .148 

Flicker 2 .012 .006 .197 .822 .007 

Congruency × Flicker 2 .001 .001 .033 .968 .001 

Error 27 106.9 3.958    

        

P3 CPz Duration (ms) 

Congruency 1 3810 3810 2.297 .141 .078 

Flicker 2 141 70.6 .055 .947 .002 

Congruency × Flicker 2 737 368.7 .345 .71 .013 

Error 27 246223 9119    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 
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Table 10.1.  

Pairwise comparisons of N1 Oz Amplitude (μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C .104 .112 54 .929   .624 

B - C -.832  .112 54 -7.414   <.001 *** 

A - B  .936  .112 54 8.343 <.001 *** 

       

Table 10.2.  

Pairwise comparisons of P2 Oz Amplitude (μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C -.038  .079  54 -.478   .882 

B - C .301  .079  54 3.799 <.01 ** 

A - B  -.339 .079  54 -4.277 <.001 *** 

       

Table 10.3.  

Pairwise comparisons of P3 Oz Amplitude (μV) between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN -.110 .0568 27 -1.939   .063 . 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 

 



91 

 

  

Table 11.1.  

Pairwise comparisons of N1 Pz Amplitude(μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C .102 .076 54 1.358   .370 

B - C -.377 .076 54 -5.001 <.001 *** 

A - B  .480 .076 54 6.359 <.001 *** 

       

Table 11.2.  

Pairwise comparisons of P2 Pz Amplitude (μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C -.002 .062 54 -.028 .999 

B - C .324 .062 54 5.233 <.001 *** 

A - B  -.326 .062 54 -5.262  <.001 *** 

       

Table 11.3.  

Pairwise comparisons of P3 Pz Latency (ms) between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN -12.0  4.31  27 -2.795   <.01 ** 

       

Table 11.4.  

Pairwise comparisons of P3 Pz Maximum (μV) between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .222  .068 27 3.277    <.01 ** 

       

Table 11.5.  

Pairwise comparisons of P3 Pz Duration (ms) between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN -12.3  3.21  27 -3.823   <.001 *** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Table 12.1.  

Pairwise comparisons of N1 CPz Amplitude (μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C .034 .036 54 .940 .6173 

B - C -.199  .036 54 -5.552   <.001 *** 

A - B  .232 .036 54 6.492   <.001 *** 

       

Table 12.2.  

Pairwise comparisons of P2 CPz Amplitude (μV) between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker 

A - C .012 .034 54 .344   .9369 

B - C .089 .034 54 2.617   <.05 * 

A - B  -.077 .034 54 -2.273   .0684 

       

Table 12.3.  

Pairwise comparisons of P3 CPz Maximum (μV) between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .08  .0369  27 2.169    <.05 * 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Appendix D: t-test Result Tables of Time-Frequency Differences. 

Table 13.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

target-tagging frequency at electrode Oz. 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO .029 .128 27 1.204 .120 .228 

AIN -.010 .171 27 -.316 .623 -.060 

CCO .015 .159 27 .501 .310 .095 

CIN .004 .132 27 .175 .431 .033 

        

100-200 ms 

ACO .098 .107 27 4.842 <.001 *** .915 

AIN .036 .161 27 1.167 .127 .221 

CCO .156 .191 27 4.310 <.001 *** .815 

CIN .149 .202 27 3.901 <.001 *** .737 

        

200-300 ms 

ACO .207 .246 27 4.458 <.001 *** .842 

AIN .191 .232 27 4.348 <.001 *** .822 

CCO .338 .393 27 4.545 <.001 *** .859 

CIN .340 .381 27 4.717 <.001 *** .892 

        

300-400 ms 

ACO .266 .391 27 3.595 <.001 *** .679 

AIN .304 .355 27 4.521 <.001 *** .854 

CCO .454 .607 27 3.961 <.001 *** .749 

CIN .471 .579 27 4.304 <.001 *** .813 

        

400-500 ms 

ACO .245 .435 27 2.979 <.01 ** .563 

AIN .317 .453 27 3.701 <.001 *** .699 

CCO .434 .657 27 3.495 <.001 *** .661 

CIN .474 .619 27 4.054 <.001 *** .766 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Table 14.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

flanker-tagging frequency at electrode Oz. 

 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO -.015 .164 27 -.483 .683 -.091 

AIN -.029 .133 27 -1.148 .870 -.217 

CCO .056 .148 27 1.985 <.05 * .375 

CIN -.062 .154 27 -2.146 .980 -.406 

        

100-200 ms 

ACO .060 .145 27 2.195 <.05 * .415 

AIN .065 .141 27 2.427 <.05 * .459 

CCO .086 .094 27 4.835 <.001 *** .914 

CIN -.005 .137 27 -.202 .579 -.038 

        

200-300 ms 

ACO .127 .135 27 4.963 <.001 *** .938 

AIN .118 .109 27 5.762 <.001 *** 1.089 

CCO .110 .123 27 4.734 <.001 *** .895 

CIN .059 .112 27 2.764 <.001 *** .522 

        

300-400 ms 

ACO .098 .127 27 4.109 <.001 *** .777 

AIN .132 .107 27 6.541 <.001 *** 1.236 

CCO .102 .165 27 3.261 <.01 ** .616 

CIN .078 .103 27 4.017 <.001 *** .759 

        

400-500 ms 

ACO .098 .110 27 4.746 <.001 *** .897 

AIN .143 .129 27 5.872 <.001 *** 1.110 

CCO .084 .118 27 3.755 <.001 *** .710 

CIN .076 .100 27 4.037 <.001 *** .763 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Table 15.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

target-tagging frequency at electrode Pz. 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO -.002 .113 27 -.076 .530 -.014 

AIN -.033 .096 27 -1.820 .960 -.344 

CCO .004 .147 27 .152 .440 .029 

CIN .008 .135 27 .315 .378 .060 

        

100-200 ms 

ACO .031 .116 27 1.394 .087 . .264 

AIN -.001 .087 27 -.062 .524 -.012 

CCO .055 .125 27 2.331 <.05 * .441 

CIN .080 .141 27 3.012 <.01 ** .569 

        

200-300 ms 

ACO .071 .146 27 2.578 <.01 ** .487 

AIN .075 .089 27 4.444 <.001 *** .840 

CCO .136 .187 27 3.831 <.001 *** .724 

CIN .165 .208 27 4.206 <.001 *** .795 

        

300-400 ms 

ACO .102 .201 27 2.672 <.01 ** .505 

AIN .122 .151 27 4.257 <.001 *** .805 

CCO .209 .283 27 3.921 <.001 *** .741 

CIN .211 .273 27 4.081 <.001 *** .771 

        

400-500 ms 

ACO .070 .207 27 1.797 <.05 * .340 

AIN .128 .184 27 3.691 <.001 *** .697 

CCO .188 .312 27 3.180 <.01 ** .601 

CIN .201 .298 27 3.557 <.001 *** .672 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Table 16.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

flanker-tagging frequency at electrode Pz. 

 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO -.016 .127 27 -.666 .744 -.126 

AIN -.027 .115 27 -1.267 .892 -.239 

CCO .026 .129 27 1.086 .144 .205 

CIN -.029 .132 27 -1.153 .870 -.218 

        

100-200 ms 

ACO .045 .132 27 1.790 <.05 * .338 

AIN .035 .111 27 1.677 .053 . .317 

CCO .040 .106 27 1.974 <.05 * .373 

CIN .010 .142 27 .381 .353 .072 

        

200-300 ms 

ACO .083 .127 27 3.466 <.001 *** .655 

AIN .077 .113 27 3.610 <.001 *** .682 

CCO .054 .094 27 3.040 <.01 ** .575 

CIN .062 .121 27 2.706 <.01 ** .511 

        

300-400 ms 

ACO .082 .124 27 3.502 <.001 *** .662 

AIN .104 .119 27 4.616 <.001 *** .872 

CCO .053 .114 27 2.442 <.05 * .462 

CIN .078 .087 27 4.728 <.001 *** .894 

        

400-500 ms 

ACO .070 .143 27 2.599 <.01 ** .491 

AIN .111 .098 27 5.975 <.001 *** 1.129 

CCO .028 .093 27 1.590 .062 . .301 

CIN .064 .087 27 3.909 <.001 *** .739 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Table 17.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

target-tagging frequency at electrode CPz. 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO .014 .087 27 .820 .210 .155 

AIN -.024 .101 27 -1.236 .886 -.234 

CCO .022 .106 27 1.118 .137 .211 

CIN -.003 .119 27 -.110 .543 -.021 

        

100-200 ms 

ACO .054 .098 27 2.920 <.01 ** .552 

AIN .011 .104 27 .567 .288 .107 

CCO .065 .105 27 3.275 <.01 ** .619 

CIN .070 .124 27 2.992 <.01 ** .566 

        

200-300 ms 

ACO .076 .136 27 2.958 <.01 ** .559 

AIN .075 .110 27 3.641 <.001 *** .688 

CCO .156 .180 27 4.588 <.001 *** .867 

CIN .170 .173 27 5.200 <.001 *** .983 

        

300-400 ms 

ACO .104 .206 27 2.659 <.01 ** .503 

AIN .126 .145 27 4.582 <.001 *** .866 

CCO .220 .303 27 3.836 <.001 *** .725 

CIN .233 .258 27 4.780 <.001 *** .903 

        

400-500 ms 

ACO .094 .227 27 2.187 <.05 * .413 

AIN .141 .192 27 3.875 <.001 *** .732 

CCO .208 .351 27 3.139 <.01 ** .593 

CIN .222 .318 27 3.686 <.001 *** .697 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Table 18.  

One-sample t-test results on the mean time-frequency differences (TFDs) in each time bin at the 

flanker-tagging frequency at electrode CPz. 

 

  

Time Bin Condition Mean SD df t p Cohen’s d 

        

0-100 ms 

ACO .020 .123 27 .838 .205 .158 

AIN -.026 .120 27 -1.157 .871 -.219 

CCO .033 .117 27 1.474 .076 .279 

CIN -.045 .117 27 -2.026 .974 -.383 

        

100-200 ms 

ACO .054 .109 27 2.632 <.01 ** .497 

AIN .030 .117 27 1.339 .096 .253 

CCO .048 .107 27 2.386 <.05 * .451 

CIN .002 .114 27 .093 .463 .018 

        

200-300 ms 

ACO .075 .102 27 3.910 <.001 *** .739 

AIN .054 .112 27 2.576 <.01 ** .487 

CCO .044 .104 27 2.250 <.05 * .425 

CIN .029 .118 27 1.312 .100 .248 

        

300-400 ms 

ACO .064 .097 27 3.493 <.001 *** .660 

AIN .071 .121 27 3.117 <.01 ** .589 

CCO .044 .134 27 1.723 <.05 * .326 

CIN .036 .095 27 1.985 <.05 * .375 

        

400-500 ms 

ACO .068 .105 27 3.408 <.01 ** .644 

AIN .086 .082 27 5.565 <.001 *** 1.052 

CCO .032 .119 27 1.403 .086 . .265 

CIN .032 .099 27 1.703 .050 . .322 

        

Note. SD = Standard deviation; df = Degree of freedom. . p < .1, * p < .05, ** p < .01; *** p 

< .001. 
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Appendix E: ANOVA and Pairwise Comparison Result Tables of Drift Rates. 

Table 19.  

2 × 2 repeated-measure ANOVA results on the drift rates (v) at Oz at the early and the late stage. 

 

 

 

Table 20.  

2 × 2 repeated-measure ANOVA results on the drift rates (v) at Pz at the early and the late stage. 

 

  

Measure Predictor df SS MS F p ηp
2 

        

v Oz - early 

Congruency 1 .863 .863     34.001 <.001 *** .557 

Flicker 2 .606  .606  14.400 <.001 *** .348 

Congruency × Flicker 2 .067  .067  2.122   .157 .073 

Error 27 4.585   .170    

        

v Oz - late 

Congruency 1 .728 .728  17.39  <.001 *** .392 

Flicker 2 1.158   1.158   8.735  <.01 ** .244 

Congruency × Flicker 2 .011  .011    .461   .503 .017 

Error 27 25.84   .957    

        

Measure Predictor df SS MS F p ηp
2 

        

v Pz - early 

Congruency 1 .252  .252    8.437  <.01 ** .238 

Flicker 2 .124 .124   6.168  <.05 * .186 

Congruency × Flicker 2 .043  .043    1.222   S.279 .043 

Error 27 1.467  .054    

        

v Pz - late 

Congruency 1 .432  .432   10.256  <.01 ** .275 

Flicker 2 .263 .263    6.771  <.05 * .200 

Congruency × Flicker 2 .011 .011   .501   .485 .018 

Error 27 5.455   .202    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 
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Table 21.  

2 × 2 repeated-measure ANOVA results on the drift rates (v) at CPz at the early and the late stage. 

 

  

Measure Predictor df SS MS F p ηp
2 

        

v CPz - early 

Congruency 1 .229 .229    10.968 <.01 ** .289 

Flicker 2 .119 .119    9.236  <.01 ** .255 

Congruency × Flicker 2 .040 .040   1.378   .251 .049 

Error 27 1.23 .046    

        

v CPz - late 

Congruency 1 .198 .198    7.146  <.05 * .209 

Flicker 2 .357 .357   8.751  <.01 ** .245 

Congruency × Flicker 2 .019   .019   .814   .375 .029 

Error 27 6.474   .240    

        

Note. df = Degree of freedom; SS = Sum of Squares; MS = Mean Square; ηp
2 = partial η2. .  p 

< .1, * p < .05, ** p < .01; *** p < .001. 
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Table 22.1.  

Pairwise comparisons of v Oz - early between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.147 .039 27 -3.795 <.001 *** 

       

Table 22.2.  

Pairwise comparisons of v Oz - late between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.203 .069 27 -2.956 <.01 ** 

       

Table 22.3.  

Pairwise comparisons of v Oz - early between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .176 .030 27 5.831 <.001 *** 

       

Table 22.4.  

Pairwise comparisons of v Oz - late between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .161 .039 27 4.170 <.001 *** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Table 23.1.  

Pairwise comparisons of v Pz - early between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.067  .027  27  -2.484    <.05 * 

       

Table 23.2.  

Pairwise comparisons of v Pz - late between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.097  .037  27  -2.602    <.05 * 

       

Table 23.3.  

Pairwise comparisons of v Pz - early between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .095  .033  27  2.905    <.01 ** 

       

Table 23.4.  

Pairwise comparisons of v Pz - late between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .124  .039  27  3.203    <.01 ** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Table 24.1.  

Pairwise comparisons of v CPz - early between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.065  .022  27  -3.039    <.01 ** 

       

Table 24.2.  

Pairwise comparisons of v CPz - late between flicker conditions. 

Predictor Contrast MD SE df t p 

Flicker A - C -.113  .038  27  -2.958    <.01 ** 

       

Table 24.3.  

Pairwise comparisons of v CPz - early between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .091  .027  27  3.312    <.01 ** 

       

Table 24.4.  

Pairwise comparisons of v CPz - late between congruency conditions. 

Predictor Contrast MD SE df t p 

Congruency CO - IN .084  .031  27  2.673    <.01 ** 

Note. MD = Mean difference; SE = Standard error; df = Degree of freedom. p values were 

corrected by Tukey’s HSD test. .  p < .1, * p < .05, ** p < .01; *** p < .001. 
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Appendix F: Ethics Approval. 

Office of the Vice-Chancellor 

Office of Research Strategy and Integrity (ORSI) 

The University of Auckland 

Private Bag 92019 

Auckland, New Zealand 

Level 11, 49 Symonds Street 

Telephone: 64 9 373 7599 

Extension: 83711 

humanethics@auckland.ac.nz 

 

UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS COMMITTEE (UAHPEC) 

20-Aug-2019 

MEMORANDUM TO: 

Assoc Prof Paul Corballis 

Psychology 

Re: Application for Ethics Approval (Our Ref. 022966): Approved 

The Committee considered the application for ethics approval for your study entitled The electrophysiology of 

visual cognition. 

We are pleased to inform you that ethics approval has been granted for a period of three years. 

The expiry date for this approval is 20-Aug-2022. 

Completion of the project: In order that up-to-date records are maintained, you must notify the Committee once 

your project is completed. 

Amendments to the project: Should you need to make any changes to the project, please complete an 

Amendment Request form in InfoEd, giving full details along with revised documentation. If the project changes 

significantly, you are required to submit a new application to UAHPEC for approval. 

Funded projects: If you received funding for this project, please provide this approval letter to your local 

Faculty Research Project Coordinator (RPC) or Research Project Manager (RPM) so that the approval can be 

notified via a Service Request to the Research Operations Centre (ROC) for activation of the grant.  
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The Chair and the members of UAHPEC would be happy to discuss general matters relating to ethics approvals. 

If you wish to do so, please contact the Ethics Administrators at humanethics@auckland.ac.nz in the first 

instance. 

Additional information: 

1. Do not forget to complete the 'approval wording' on the PISs, CFs and/or advertisements and emails, giving 

the dates of approval and the reference number. This needs to be completed before you use the documents or 

send them out to your participants. 

Please quote Protocol number 022966 on all communication with the UAHPEC regarding this application. 

(This is a computer generated letter. No signature required.) 

UAHPEC Administrators 

University of Auckland Human Participants Ethics Committee 

c.c. Head of Department / School, Psychology 

Mr Eric Rosentreter 

Kane Pavlovich 

Miss Garima Bawa 

Tessa Chaffey 

Dr Judith Buckley 

Miss Laura Jacks 

Yichen Qian 

Ms Xiao Lin Kee 

Miss Sreekari Vogeti 
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Appendix G: Participant Information Sheet. 

 

 

PARTICIPANT INFORMATION SHEET 
Please retain this information sheet for future reference. 

 

 

Project title:  

The electrophysiology of visual cognition 

Principal Investigator/Supervisor:  

Associate Professor Paul M. Corballis 

Other Researchers:  

Jude Buckley, Eric Rosentreter, Steven Qian, Nitish Iyer, Daniele Scanzi, Carley Braddock, Tamar 

McCambridge 

 

Researcher introduction 

This research is being carried out in the School of Psychology at the University of Auckland 

under the supervision of Associate Professor Paul M. Corballis.  I would like to invite you to 

participate in our research project in the School of Psychology at the University of Auckland.  It 

is important to read this document carefully so that you can make an informed decision about 

whether you would like to participate.  

Research Background 

The goal of these experiments is to investigate the neural mechanisms of visual cognition in healthy adults.  

Your results will help us understand more about how the brain processes visual information. 

Procedure 

During the experiment you will make simple judgements about visual stimuli presented on a computer 

monitor.  Your responses will be in the form of button presses using the computer keyboard or a button 

box.  You will be given specific instructions at the start of each task.   

In addition, your brain waves will be measured during the task using an electroencephalogram (EEG). For 

EEG, the electrodes will be placed on the surface of your scalp by means of an elastic ‘net’.  The electrodes 

are encased in sponges, which are soaked in an electrolyte solution (consisting of shampoo, salt, and water) 

You will be given brief rest breaks every few minutes during the experiment.  Please ask the experimenter 

any questions that may arise while you are doing the task(s).   

 

We require a total of two hours of your time for this experiment. If you feel any discomfort during the 

session, please inform the experimenter immediately.   

Risks 

There are no known risks involved with this experiment beyond those encountered in everyday life.  The 

electrodes and the device used to record your EEG are electrically isolated, so there is no possibility of 

shock in the unlikely event of an electrical fault in the equipment.  The electrode cap is disinfected after 

each use to prevent the possibility of biological contamination.  
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Right to Withdraw 

You can choose to stop participation at any time without giving a reason. You also have the right 

to withdraw your data from the research for up to a month after your participation without 

providing a reason.  

Benefits 

There is no direct benefit to you by participating in this study, however; your participation will 

help us to gain a better understanding of the relationships between brain activity and visual 

cognition.     

Koha 

If you are participating as part of the School of Psychology Research Participation Scheme, you 

will receive two hours of credit in return for your participation.  If not, you will be given a $20 

voucher. If you decide to leave the study early, you will be compensated for the time you 

participated.  You can also request a copy of the final published report of this study.  

Confidentiality 

Participation in this study is entirely voluntary, and if you choose to participate, you can change 

your mind at any time without giving a reason and without any negative consequences. Whether 

you decide to participate in the research or not, it will not influence your relationships with the 

researchers or the University of Auckland in any way. 

 After your participation is completed, you will still have the right to request that your data be 

withdrawn from the study for up to one month.  You will be given a copy of this document to 

keep.  The questionnaire responses and other data you provide will be preserved and any 

information that identifies you as a participant will be used confidentially.  Your name will only 

appear on the attached Consent Form, which will be coded with an identification number that will 

be used throughout the study.  If the information you provide is reported or published, this will be 

done in a way that does not identify you as its source. 

Access to consent forms, questionnaire responses and data will be restricted to the researchers 

directly involved in this project and will be stored in a locked cabinet on university premises.  All 

data will be kept for a period of six years to allow for publication and future re-analysis, after 

which it will be securely and confidentially disposed. 

Participants will be required to be between 18-60 years of age.  Participants with a history of 

epilepsy or migraine will be excluded, as will participants with uncorrected visual deficits or who 

experience difficulties in recognising faces or emotional expressions (participants with eyeglasses 

or contact lenses will be included). 

If you would like to participate in this research project, please contact the researcher via email.  If 

you any have questions or concerns about the project, please contact one of the following: 

 

Principal Investigator 

Associate Professor Paul M. Corballis 

School of Psychology 

The Head of School of Psychology  

Professor Suzanne Purdy 

School of Psychology 
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The University of Auckland 

Private Bag 92019 

Auckland 1142 

Ph: (09) 3737599 Ext 88562 

p.corballis@auckland.ac.nz 

 

The University of Auckland 

Private Bag 92019 

Auckland 1142 

Ph: (09) 3737599 Ext 82073 

sc.purdy@auckland.ac.nz 

 

Other Researchers 

Jude Buckley  jb.h.adv@xtra.co.nz  

Eric Rosentreter ericthomasrosentreter@gmail.com  

Steven Qian  yqia803@aucklanduni.ac.nz 

Tamar McCambridge tmcc380@aucklanduni.ac.nz  

Daniele Scanzi dsca347@aucklanduni.ac.nz  

Nitish Iyer  niye502@aucklanduni.ac.nz  

Carley Braddock cbut010@aucklanduni.ac.nz  

   

For any concerns regarding ethical issues you may contact the Chair, the University of Auckland 

Human Participants Ethics Committee, at the University of Auckland Research Office, Private 

Bag 92019, Auckland 1142. Telephone 09 373-7599 ext. 83711. Email: ro-

ethics@auckland.ac.nz 

  

mailto:jb.h.adv@xtra.co.nz
mailto:ericthomasrosentreter@gmail.com
mailto:yqia803@aucklanduni.ac.nz
mailto:tmcc380@aucklanduni.ac.nz
mailto:dsca347@aucklanduni.ac.nz
mailto:niye502@aucklanduni.ac.nz
mailto:cbut010@aucklanduni.ac.nz
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Appendix H: Participant Consent Form. 

CONSENT FORM 
 

Project title:  

The electrophysiology of visual cognition 

Principal Investigator/Supervisor:  

Associate Professor Paul, M. Corballis 

Other Researchers:  

Jude Buckley, Eric Rosentreter, Steven Qian, Nitish Iyer, Daniele Scanzi, Carley Braddock, Tamar 

McCambridge 

 

I have read and understood the accompanying Participant Information Sheet, which 

explains this research project and my role as a participant. I have had an opportunity to 

ask questions and have had them answered satisfactorily. 

 

In particular, I understand that: 

 

• I voluntarily agree to take part in this research. 

• I will receive either two hours of participation credit or a voucher valued at $20 in return for my 

participation in this research. 

• I have the right to stop participation at any time without having to give a reason. 

• Whether or not I participate will not affect my relationship with the researchers or 

with the University of Auckland. 

• For one month after my participation I will still have the right to request that my data 

be withdrawn from the study. 

• My name will appear only on this form. The data from this research will be stored 

confidentially, coded by number, which will be non-traceable to me. 

• All data will be kept for a period of six years to allow for publication and future re-

analysis, after which it will be securely and confidentially disposed 

• Research publications and presentations from this study will not contain any images 

information that could identify me without my permission. 

• Transcription or analysis of my data will only be conducted by the researchers. 

• I consent to have electrodes for EEG attached to my head or face during the 

experiment 

• I wish to receive a summary of findings     ☐ Yes  ☐ No 

If yes, include an email address that they can be emailed to:  

 

________________________________________. 
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Name   ___________________________  

 

 

Signature ___________________________  

 

 

Date  ___________________________   

 

  

Researcher Use Only 

Participant Number 
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