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Abstract
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Department of Physiology

Doctor of Philosophy

by Isuru Dilshan Jayasinghe

Calcium (Ca2+) induced release of Ca2+ from the sarcoplasmic reticulum (SR) triggered
by voltage-dependent trans-sarcolemmal Ca2+ fluxes is thought to form the basis of
excitation-contraction (EC) coupling in cardiac myocytes. Clusters of ryanodine recep-
tors (RyR) that are responsible for this Ca2+ release are known to reside on termini of
the SR (located abundantly near z-lines) that form close junctions with the sarcolem-
mal membrane and invaginations known as t-tubules. Sarcolemma and t-tubules con-
tain L-type Ca2+ channels and Na+/Ca2+ exchanger (NCX) proteins that may provide
effective Ca2+ trigger currents if placed close to junctional RyRs. Using a novel pro-
tocol of immunofluorescence confocal microscopy, the architecture of SR and t-tubules
in rat ventricular myocytes has been visualized at a resolution that was previously not
achieved with optical techniques. This method revealed a subset of RyR clusters that
were apparently non-junctional. Improved co-localization analysis methods were applied
to confocal images and total internal reflection fluorescence images to quantify the co-
localization of key trigger proteins (L-type Ca2+ channels and NCX) with clusters of
RyR in the cell interior and near the surface. These confocal images also revealed that
z-disks are non-planar. The three-dimensional topology of the z-disks was reconstructed
from confocal images of the sarcomeric protein, α-actinin. 3D visualization of this data
showed that adjacent sarcomeres may be misregistered. Some were arranged in heli-
coids that occupied large regions within the cell, effectively reducing the longitudinal
distance between Ca2+ release sites. This was expected to improve the synchrony in the
activation of contraction. Images of mammalian ventricular myocytes suggested that
their t-tubules closely follow this z-disk topology although additional axial connections
provided a more complex 3D architecture. Super-resolution images produced by single
fluorophore localization were used for detailing the fine ultrastructure of RyR clusters
that could underlie the variability observed previously in localized Ca2+ release events.
An ∼ 10-times finer resolution (compared to conventional confocal microscopy) allowed
the quantification of junctional NCX that could participate in evoking Ca2+ release. A
protein involved in junction formation, junctophilin, was strongly associated with the
RyR cluster geometry, underscoring its role as a potential determinant and marker of
RyR cluster size and shape. These new structural insights are discussed with respect
to the formation and maintenance of junctions and the consequences for cardiac EC
coupling.
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