Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Resolving the Structural Basis of Cardiac Excitation-Contraction Coupling

by

Isuru Dilshan Jayasinghe

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy

in the
Faculty of Medical and Health Sciences
Department of Physiology

23rd of December, 2010
Calcium (Ca\(^{2+}\)) induced release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR) triggered by voltage-dependent trans-sarcolemmal Ca\(^{2+}\) fluxes is thought to form the basis of excitation-contraction (EC) coupling in cardiac myocytes. Clusters of ryanodine receptors (RyR) that are responsible for this Ca\(^{2+}\) release are known to reside on termini of the SR (located abundantly near z-lines) that form close junctions with the sarcolemmal membrane and invaginations known as t-tubules. Sarcolemma and t-tubules contain L-type Ca\(^{2+}\) channels and Na\(^+\)/Ca\(^{2+}\) exchanger (NCX) proteins that may provide effective Ca\(^{2+}\) trigger currents if placed close to junctional RyRs. Using a novel protocol of immunofluorescence confocal microscopy, the architecture of SR and t-tubules in rat ventricular myocytes has been visualized at a resolution that was previously not achieved with optical techniques. This method revealed a subset of RyR clusters that were apparently non-junctional. Improved co-localization analysis methods were applied to confocal images and total internal reflection fluorescence images to quantify the co-localization of key trigger proteins (L-type Ca\(^{2+}\) channels and NCX) with clusters of RyR in the cell interior and near the surface. These confocal images also revealed that z-disks are non-planar. The three-dimensional topology of the z-disks was reconstructed from confocal images of the sarcomeric protein, α-actinin. 3D visualization of this data showed that adjacent sarcomeres may be misregistered. Some were arranged in helicoids that occupied large regions within the cell, effectively reducing the longitudinal distance between Ca\(^{2+}\) release sites. This was expected to improve the synchrony in the activation of contraction. Images of mammalian ventricular myocytes suggested that their t-tubules closely follow this z-disk topology although additional axial connections provided a more complex 3D architecture. Super-resolution images produced by single fluorophore localization were used for detailing the fine ultrastructure of RyR clusters that could underlie the variability observed previously in localized Ca\(^{2+}\) release events. An ~10-times finer resolution (compared to conventional confocal microscopy) allowed the quantification of junctional NCX that could participate in evoking Ca\(^{2+}\) release. A protein involved in junction formation, junctophilin, was strongly associated with the RyR cluster geometry, underscoring its role as a potential determinant and marker of RyR cluster size and shape. These new structural insights are discussed with respect to the formation and maintenance of junctions and the consequences for cardiac EC coupling.
Acknowledgements

I extend my gratitude to:

Assoc. Prof. Christian Soeller for the unprecedented supervision which made this doctoral study successful, timely and a truly pleasurable experience. I wouldn't trade the time spent working under Christian’s supervision for anything.

My secondary-supervisor, Prof. Mark Cannell whose feedback and encouragement was priceless. His novel angles of thinking have added value to my findings and interpretations.

Cherrie Kong, undoubtedly the best friend that I’ve made during this time, for sharing her experimental protocols and enzymatically isolating cells for my work. She has been an awesome team player and has repeatedly rescued me from tricky situations.

Lin-Chien Huang, whose warm friendship and genuine willingness to listen to me helped me get through some of the long days in campus. I look up to her stamina every day.

Ray Gilbert whose mentoring in immunocytochemistry laid a strong foundation for high quality immunolabelling.

Dr. David Baddeley whose hard work has allowed the super-resolution imaging work presented here, for sharing the super-resolution microscopy and image analysis techniques that he developed and for providing some much-valued (constructive) criticism.

Dr. David Crossman for sharing his protocols of immunohistochemistry and allowing me to be a part of the programme in studying the ultrastructure of failing human hearts.

Dr. Nelly Kitaeff for training me for enzymatic isolation of rat myocytes and handling animals.

Dr. Patricia Cooper for her constant encouragement, generosity in supplying isolated myocytes and teaching me the fine art of dissecting and isolating cardiac myocytes.

Dr. Angus McMorland for his insightful feedback and convincing me to compile this thesis in LATEX.

Dr. Marie Ward, who as my PhD advisor, reminds me to apply my spatial measurements into the context of cardiac muscle function

My other lab mates: Dr. Linda Zhang, Chantelle Fourie, Leo Lam, Sabrina Roßberger, Imogene Scott, Xin Shen and Sarbjot Kaur who have made my stint in this laboratory enjoyable and for sharing samples and solutions.
Other friends that I have made in the department including Nuwan Dharmawardana, Vinthiya Paramananthasivam, Raj Selvarathnam, Irene Voronsova and Nancy Liu who helped in various ways.

Jacqui Ross and Hilary Holloway of the BIRU for their kind assistance with the imaging equipment.

Molecular Vision and Molecular Physiology (now Auditory Physiology) labs for sharing their equipment

Former Head of department, Prof. Paul Donaldson for being very encouraging and supportive towards my work.

My girlfriend, Ruth Newport for cheering me on and for being the inspiration behind this work in the past year.

My parents: Sisira and Deepthi Jayasinghe, siblings: Prasadi and Tharindu for their patience.

Assoc. Prof. Christian Soeller, Dr. David Baddeley, Lin-Chien Huang, Cherrie Kong and Ruth Newport provided me with valuable feedback on the contents and language during the compilation of this thesis.
1 Introduction
1.1 Features of the ventricular myocyte ultrastructure that affect EC coupling
1.1.1 Overview of ultrastructure and expression of key macromolecular complexes
1.1.2 The contractile apparatus and costameres
1.1.3 Ultrastructure of the transverse-axial tubular system
1.1.4 Caveolae and lipid rafts
1.1.5 Junctions and terminal sarcoplasmic reticulum
1.1.6 Molecular assembly of junctions that establishes local control of Ca\(^{2+}\) release
1.2 Excitation-contraction coupling
1.2.1 Overview of events in EC coupling at steady state
1.2.2 Physiology of L-type Ca\(^{2+}\) channels
1.2.3 Physiology of the Na\(^{+}\)-Ca\(^{2+}\) exchanger
1.2.4 Local control models of EC coupling
1.2.5 The role of the Na\(^{+}\)-Ca\(^{2+}\) exchanger as a means of Ca\(^{2+}\) entry
1.2.6 Ca\(^{2+}\) waves
1.3 Structural basis of EC coupling
1.3.1 The localization of L-type Ca\(^{2+}\) channels and Na\(^{+}\)-Ca\(^{2+}\) exchanger
1.3.2 T-system remodelling and altered EC coupling
1.4 Aims for this study
2 General Methods
2.1 Preparation and fixation of rat ventricular cells for immunocytochemistry
Contents

2.2 Immunolabelling and sample preparation for imaging 31
 2.2.0.1 Immunocytochemistry for confocal microscopy 31
 2.2.0.2 Immunohistochemistry for confocal microscopy 32
 2.2.0.3 Immunocytochemistry for localization microscopy 32
2.3 Confocal imaging and image processing .. 33
2.4 Total internal reflection fluorescence microscopy 36
2.5 Single-molecule localization microscopy ... 37
 2.5.1 Visualization and spatial analysis of single-fluorophore localization data ... 41
2.6 Solutions and materials .. 43
3 Analysis of RyR, NCX and DHPR with diffraction-limited microscopy 45
 3.1 Background ... 45
 3.2 Experimental and Analysis Method .. 47
 3.2.1 Centroid detection of diffraction-limited protein clusters 47
 3.2.2 Co-localization analysis for characterizing extended labelling 49
 3.3 Validation of co-localization analyses .. 50
 3.4 Visualization of the t-tubular system ... 52
 3.5 Organization of t-tubules and RyR clusters in relation to SR geometry 55
 3.6 T-system architecture in relation to clusters of RyR 56
 3.7 NCX distribution on the t-system and its relationship to RyR clusters 58
 3.8 Distribution of DHPR on the t-system and its relationship to RyR clusters.. 61
 3.9 Visualizing the distributions of RyR and NCX on the surface sarcolemma at diffraction-limited resolution ... 63
 3.10 Localization of Caveolin-3 in cell interior and their relationship to RyR clusters ... 65
 3.11 Discussion .. 67
 3.11.1 Imaging t-tubules, SR and RyR clusters .. 67
 3.11.2 Distribution of peripheral couplons ... 69
 3.11.3 Distribution of NCX on the t-system and surface sarcolemma 70
 3.11.4 Localization of CAV3 relative to NCX and RyR clusters 71
 3.11.5 Distribution of DHPR within the t-system in relation to RyR clusters.. 72
 3.11.6 Consequences to EC coupling ... 74
 3.11.7 Co-localization analysis ... 75
 3.11.8 Concluding remarks ... 77
4 Helicoid arrangement of myofibrillar z-disks, t-tubules and calcium release sites 79
 4.1 Background ... 79
 4.2 Experimental Technique .. 81
 4.3 Quantitative image analysis of RyR clusters and t-tubules 81
 4.4 Reconstructing central planes of myofibrillar z-disks from α-actinin staining ... 82
 4.5 Visualizing the longitudinal registration of myofibrillar z-disks 82
 4.6 Three dimensional visualization of the z-disk helicoids and dislocations 85
 4.7 Development of misregistrations between myofibrils 86
 4.8 Comparative study of z-disk topology and t-tubule arrangements in mammalian ventricular muscle .. 88
 4.9 Organization of Ca²⁺ release sites at dislocated z-disks 89
4.10 Discussion ... 91
 4.10.1 Geometric considerations on helicoidal sarcomere arrangement ... 91
 4.10.2 Potential origins of dislocations between myofibrils 92
 4.10.3 Implications for cardiac EC coupling 94

5 Super-resolution imaging of cardiac muscle ultrastructure 95
 5.1 Background .. 95
 5.2 Experimental and analysis approach 98
 5.2.1 Image acquisition .. 98
 5.2.2 Image rendering and co-localization analysis using binary masks
 of labelled regions .. 99
 5.3 Resolving the fine ultrastructure of ventricular myocytes using localization
 microscopy .. 102
 5.3.1 Fine-structure of labelled regions and improvements in co-localization
 analysis .. 106
 5.4 Characterization of peripheral RyR clusters using super-resolution localization
 microscopy .. 109
 5.5 Organization of JPH2 and RyR clusters near the cell surface 111
 5.6 Co-localization between RyR and CAV3 115
 5.7 Re-examination of co-localization of NCX in relation to peripheral junctions
 using localization microscopy 118
 5.8 Analysis of SERCA distribution and relationship of network SR to junctional SR and CAV3 patches 121
 5.9 Discussion ... 122
 5.9.1 Architecture of RyR clusters and junctional structure 122
 5.9.2 Detection of JPH within RyR clusters 128
 5.9.3 CAV3 labelling reporting possible caveolar structures and lipid
 rafts compartmentalizing key sarcolemmal proteins 130
 5.9.4 Visualization of sarcoplasmic reticulum and SR Ca\(^{2+}\) ATPase ... 132
 5.9.5 Re-examination of the junctional localization of NCX 133
 5.10 Super-resolution localization microscopy as a technique for examining fine
 ultrastructure of cardiac muscle 136
 5.10.1 Consideration of sample preparation 136
 5.10.2 Image visualization and co-localization analysis 137
 5.11 Summary .. 139

6 Multiscale parameters in cardiac EC-coupling 141
 6.1 Structure and function of Ca\(^{2+}\) release units, junctions and network SR ... 142
 6.2 Localization of NCX and DHPR in relation to junctions 147
 6.3 Inter-couplon Ca\(^{2+}\) signalling 150
 6.4 Mechanical and architectural features of the ultrastructure 152
 6.5 Ultrastructural changes in pathological conditions 153
 6.6 High-resolution imaging as a method of studying cardiac EC coupling ... 154

A Characterization of rabbit anti-Ca\(_{v}1.2\) \(\alpha1C\) antibody 155
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>157</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Ultrastructural components of a ventricular myocyte .. 3
1.2 The t-system of a living rat ventricular myocyte visualized by Soeller Cannell. 6
1.3 Reverseal of Na\(^+\)-Ca\(^{2+}\) exchange during ventricular action potential 15
1.4 A dyadic junction between terminal SR and a t-tubule 16
1.5 Spatio-temporal modelling of local Ca\(^{2+}\) within a dyadic cleft 17
1.6 Changes in the t-tubule geometry observed in ventricles of failing human hearts ... 25

2.1 Confocal imaging agar-embedded cardiomyocytes ... 34
2.2 Fluorescence optical system for localization microscopy and dual-colour detection ... 39
2.3 Single-fluorophore ‘blink’ events ... 40
2.4 Single-fluorophore positions corresponding to RyR labelling and negative control ... 40
2.5 Visualization of localization data ... 42

3.1 Deconvolution and spatial analysis of proteins ... 48
3.2 Dual colour labelling of ryanodine receptor using differentially labelled secondary antibodies ... 51
3.3 Dual colour labelling of Caveolin-3 with independent primary antibodies 53
3.4 Using Caveolin-3 as a marker for visualizing t-tubular architecture in fixed myocytes ... 54
3.5 Transverse view of t-tubules, SR and RyR clusters 55
3.6 Arrangement of RyR clusters in relation to the t-tubular network 57
3.7 T-Tubular localization of NCX ... 59
3.8 Analysis of co-localization between NCX and RyR in the interior of ventricular myocytes ... 60
3.9 Distribution of DHPR in the t-system and co-localization with RyR clusters 62
3.10 RyR and NCX labelling at the surface sarcolemma imaged using TIRF microscopy ... 64
3.11 Analysis of CAV3 and RyR labelling in the cell interior 66

4.1 Visualizing the topology of myofibrillar z-disks .. 83
4.2 3-D visualization of helicoids and dislocations between myofibrillar z-disks 85
4.3 Development of sarcomere misregistration .. 87
4.4 Z-disk arrangement and the t-tubular networks in rat, rabbit and human myocytes ... 89
4.5 Organization of RyR clusters near dislocated and helicoid z-disks 90
5.1 Intensity rendering and co-localization analysis of single molecule localization data ... 100
5.2 Comparison between confocal and super-resolution images of RyRs, CAV3 / SERCA labelling 103
5.3 Co-localization analysis of NCX and CAV3 distributions in super-resolution images .. 108
5.4 Visualization and measurements of RyR clusters with localization microscopy .. 110
5.5 Co-localization of JPH and peripheral RyR clusters .. 112
5.6 Analysis of shapes of JPH labelling and RyR clusters .. 114
5.7 Co-localization analysis between RyR and CAV3 .. 116
5.8 Co-localization of NCX at peripheral junction analyzed using localization super-resolution images 120
5.9 Visualization of SR architecture beneath the cell surface .. 123
5.10 Architecture of the SR network extending underneath the surface sarcolemma .. 124
6.1 Schematic representation of the ultrastructure of junctional and network SR ... 144
6.2 Schematic representation of the expected surface sarcolemmal distribution of DHPR and NCX 148
A.1 Western blot of rabbit anti-\(Ca_{v1.2} \alpha 1C \) IgG ... 156
List of Tables

2.1 List of primary antibodies and suppliers .. 44
3.1 Co-localization measurements ... 67
5.1 Co-localization measurements from super-resolution images 121
Abbreviations

3D three-dimensional
Ca$^{2+}$ calcium (ions)
Na$^+$ sodium (ions)
K$^+$ potassium (ions)
O$_2$ oxygen
NO nitric oxide
EC coupling Excitation-Contraction coupling
TATS Transverse Axial Tubular System
SR Sarcoplasmic Reticulum
ER Endoplasmic Reticulum
DHPR dihydropiridine receptor
NCX Na$^+$.Ca$^{2+}$ exchanger
CAV3 CAVeolin-3
TSR Terminal Sarcoplasmic Reticulum
NSR Network Sarcoplasmic Reticulum
JSR Junctional Sarcoplasmic Reticulum
RyR ryanodine receptor
WGA Wheat Germ Agglutinin
CICR Calcium-Induced Calcium Release
SERCA Sarcoplasmic Endoplasmic Reticular Ca$^{2+}$ ATPase
SHR Spontaneously Hypertensive Rats
JPH junctophilin
JnC junctin
Tr triadin
CSQ calsequestrin
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nNOS</td>
<td>neuronal Nitric Oxide Synthase</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial Nitric Oxide Synthase</td>
</tr>
<tr>
<td>PSF</td>
<td>Point Spread Function</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Micrograph</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Micrograph</td>
</tr>
<tr>
<td>TIRF</td>
<td>Total Internal Reflection Fluorescence microscopy</td>
</tr>
<tr>
<td>STED</td>
<td>STimulated Emission Depletion microscopy</td>
</tr>
<tr>
<td>PALM</td>
<td>Photo-Activated Localization Microscopy</td>
</tr>
<tr>
<td>fPALM</td>
<td>fluorescence PALM</td>
</tr>
<tr>
<td>STORM</td>
<td>Stochastic Optical Reconstruction Microscopy</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>DADs</td>
<td>Delayed After-Depolarizations</td>
</tr>
</tbody>
</table>
Symbols

I_{Ca} sarcolemmal voltage-dependent inward Ca^{2+} current
I_{Na} sarcolemmal voltage-dependent inward Na^{+} current
I_{NaCa} sarcolemmal NCX current
I_{SR} Ca^{2+} flux from the SR into the cytoplasm
$[Ca^{2+}]_{i}$ cytoplasmic Ca^{2+} concentration
$[Ca^{2+}]_{sm}$ Ca^{2+} concentration in restricted ‘submembrane’ spaces
$[Na^{+}]_{i}$ cytoplasmic Na^{+} concentration
$[Na^{+}]_{sm}$ Na^{+} concentration in restricted ‘submembrane’ spaces
V_m membrane potential
E_{Na} Nernst potential for sodium
E_{Ca} Nernst potential for calcium
E_{NaCa} reversal potential for NCX