Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
COMPARISON OF A HEATED HUMIDIFIER WITH A HEAT AND MOISTURE EXCHANGER FOR CONDITIONING THE GASES INSPIRED BY CHILDREN WITH TRACHEOSTOMIES.

DAVID MCNAMARA

Abstract

Background: Children with chronic tracheostomies should have the gases they inspire conditioned through warming and humidifying. The degree and most appropriate method of conditioning is debated.

Methods: Two randomised cross-over studies with partial observer-blinding were conducted comparing the use of a heated humidifier (HH) to a heat and moisture exchanger (HME) during sleep: a short-term study involving 20 hours of each treatment and a long-term study involving ten weeks of each treatment. The short-term study was conducted to investigate immediate treatment difference and the long-term study to investigate whether short-term differences translated into long-term differences in major clinical outcomes. At the time of assessment children in the short-term study were wearing the assigned treatment whereas in the long-term study all children were wearing the HME. Children were assessed in both studies for changes on clinical examination, airway secretion characteristics, airway inflammatory cytokine levels and occurrence of clinical events. Children in the long-term study also underwent mucociliary clearance (MCC) scans via inhaled radioaerosol. A parallel qualitative interview study was incorporated into the long-term study as well as assessment of parental and child quality of life.

Results: Fifteen children were enrolled in the short-term study. In this study children had improved clinical examination findings when treated with HH compared to HME for respiratory rate (p = 0.038), oxygen saturations (p = 0.012), retractions (p= 0.011), wheeze (p = 0.020) and summary examination score (p < 0.001). However, there was no difference in airway secretion characteristics, inflammatory cytokines or the frequency of required suctioning. Fourteen children were enrolled in the long-term study with two withdrawing prior to assessment. Fewer children in the long-term study had major clinical events (5 vs. 12, p =
0.005) when treated with HH compared to HME with trends toward fewer experiencing acute respiratory admissions (1 vs. 5, \(p = 0.069 \)) and chest infections (4 vs. 9, \(p = 0.061 \)). No significant differences between treatments were observed for MCC scans, clinical examination, airway secretion characteristics, inflammatory cytokines or quality of life questionnaires. Interviews revealed how parents managed their child’s health and balanced the difficulties of using technology against the benefits of treatment.

Conclusion: The use of a HH compared to a HME resulted in short-term improvements in clinical examination findings and long-term improvements in the incidence of major clinical events.
Acknowledgements

I would like to thank my principal supervisor, Dr Cass Byrnes (Department of Paediatrics, The University of Auckland) who was involved with the planning, design, conduct and write-up of the research. She provided constant enthusiasm even when my own enthusiasm faltered and valuable editing and revisions for a stream of ethics applications and manuscripts. I would also like to thank Professor Innes Asher (Department of Paediatrics, The University of Auckland) who has been supportive throughout the design and conduct of the research and provided insightful comments on my writing. Mr Alistair Stewart (Biostatistician, School of Population Health, The University of Auckland) has also acted as a supervisor and provided much needed advice on the complexities of analysing cross-over studies. I am grateful for his patience in answering my repeated questions.

I am grateful to Cathy Douglas, Sheri Biscaldi and Shelley Broome (Respiratory Physiology, Starship Children’s Hospital) for setting up the heated humidification circuits for the children and training parents in their use. Melody Trueman (previously Ward 26B nurse educator, Starship Children’s Hospital) also provided ongoing training to staff and parents on tracheostomy cares and taught me how to perform tracheostomy suctioning. I am grateful to Mr Murali Mahadevan, Mr Colin Barber and Debby Sandow (Paediatric ENT Department, Starship Children’s Hospital) for allowing me access for the research to their patients.

Special mentions to:

- Dr Annette Dickinson, formerly Auckland University of Technology and now Auckland City Hospital, kindly got me started on the path of qualitative research and guided me along the way.
• Dr Jo Perry, Liggin’s Institute, The University of Auckland, for answering my call for help and arranging the analysis of inflammatory cytokines.

• Gail Gillies, Nurse Manager, Children's Research Centre, Starship Children's Hospital for performing clinical examinations for the long-term study.

• The Children's Research Centre, Starship Foundation, Starship Children's Hospital for allowing the use of their facilities for the long-term study assessments.

• Dr Evangeline Daviskas, the Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, NSW, Australia, for advice on performing mucociliary clearance scans and on the collection of airway secretion samples.

The research would not have been possible without generous financial support:

• The Joan Mary Reynolds Fellowship via Starship children's Hospital funded my salary for the first year of research.

• Following this my salary was partly supported by a fellowship from the Foundation for Research, Science and Technology.

• Fisher and Paykel Healthcare provided most of the remaining funding for my salary and the costs of the research. They also supplied heated humidifiers and hosing for use in the research.

I am particularly grateful to the children and families who have taken part in the research. They have generously supplied their time and energy and allowed me insights into their lives.
Most of all I would like to thank my wife, Liz, who provided support throughout the research process and tolerated the impact on our family-life. She also provided much needed stern encouragement to enter the final phase of writing and completion without which the thesis would still be uncompleted.
Table of Contents

Abstract ... ii
Acknowledgements .. iv
Table of Contents .. vii
List of Tables .. xi
List of Figures ... xiv
List of Abbreviations .. xvii

Chapter 1 Introduction .. 1
1.1 Background to the Research .. 1
1.2 Terminology .. 7
1.3 Aims of the Study .. 8
1.4 Layout of Thesis .. 10
1.5 Author’s Contribution ... 11
1.6 Ethics Approval ... 12

Chapter 2 Background and Review of the Literature .. 13
2.1 History of Tracheostomy .. 13
2.2 Indications for Tracheostomy in Children .. 16
2.3 Complications of Tracheostomy .. 17
2.4 The Airway and Respiratory Mucosa .. 22
 2.4.1 Structure and Function of the Airway ... 22
 2.4.2 Structure and Function of the Airway Mucosa: .. 23
 2.4.3 The Airway Surface Liquid ... 24
 2.4.4 The Mucus Layer ... 25
 2.4.5 The Periciliary Layer ... 31
 2.4.6 The Ciliated Epithelium .. 34
2.5 Relative and Absolute Humidity .. 36
2.6 The Energy of Air and Moisture ... 37
2.7 Physiology of Heat and Moisture Exchange in the Airway .. 38
 2.7.1 Changes in the Isothermic Saturation Boundary (ISB) with Inhalation of Cold or
 Dry Air ... 41
 2.7.2 Effects of Cold or Dry Air on Airway Blood Flow .. 42
 2.7.3 Effects of Cold or Dry Air on Surface Liquid Osmolarity 44
2.8 Respiratory Energy Exchange and Total Body Balance ... 48
2.9 The Effects of Artificial Airways on the Respiratory Mucosa .. 49
 2.9.1 Histopathologic Effects of an Artificial Airway .. 49
 2.9.2 Risk of Infection ... 53
 2.9.3 Increased Airways Resistance Due to Artificial Airways 58

2.10 The Effects of Inspired Gas with Low Moisture and/or Temperature 59
 2.10.1 Animal Studies of the Effects of Inhaling Dry and Cold Gases 61
 2.10.2 Histologic Injury ... 61
 2.10.3 Cilia Activity .. 62
 2.10.4 Tracheal Mucus Flow .. 63
 2.10.5 Airways Resistance and Lung Volumes ... 65
 2.10.6 Anaesthetic Studies with Dry Gases in Adults .. 65
 2.10.7 Anaesthetic Studies with Dry Gases in Infants and Children 66

2.11 The Effects of Excess Moisture (aerosols) .. 67

2.12 The Effects of Hot Air .. 70

2.13 Humidification Devices ... 70
 2.13.1 Heated Humidifiers ... 70
 2.13.2 Heat And Moisture Exchangers ... 73
 2.13.3 Nebulisers .. 77

2.14 Clinical Studies Comparing Humidification Techniques .. 78
 2.14.1 Work Of Breathing ... 79
 2.14.2 Effects On Mucus And Requirement For Suctioning 81
 2.14.3 ETT Blockages ... 82
 2.14.4 Pneumonia .. 84
 2.14.5 Comparative Studies in Infants and Children .. 87

2.15 Clinical Studies In Spontaneously Breathing Tracheostomised Patients 88

2.17 Conclusion ... 89

Chapter 3 Study Design and Statistical Methods ... 93

3.1 The cross-over study design .. 93

3.2 Treatment concealment ... 96

3.3 Description of the Short-term study .. 97
 3.3.1 Inclusion and Exclusion Criteria Short-term Study .. 99
 3.3.2 Statistical Methods Short-term Study .. 100
 3.3.3 Sample Size Calculation for Short-term Study ... 100

3.4 Description of Long-Term Study .. 101
 3.4.1 Inclusion and Exclusion Criteria for Long-term Study 103
 3.4.2 Statistical Analysis for Long-term Study ... 104
 3.4.3 Sample Size Calculation for Long-term Study ... 105

3.5 Devices Used in the Study ... 105

Chapter 4 Clinical Outcomes Short-term Study ... 107

4.1 Methods ... 107
 4.1.1 Clinical Examination .. 107
 4.1.2 Suctioning of Tracheostomy ... 109
 4.1.3 Overnight Oxygenation .. 110
Chapter 5 Clinical Outcomes Long-term Study ... 122

5.1 Methods .. 122
5.1.1 Clinical Events .. 122
5.1.2 Clinical Examination ... 124
5.1.3 Suctioning of Tracheostomy .. 124
5.1.4 Questionnaires and Health-Related Quality of Life .. 125
5.1.5 Compliance with heated humidifier ... 128
5.1.6 Compliance with heat and moisture exchanger ... 128

5.2 Results .. 128

Chapter 6 Measures of Mucociliary Clearance ... 160

6.1 Measurement of ciliary beat frequency ... 161
6.1.1 Pilot study of CBF measurement in adults with tracheostomies 161
6.1.2 CBF measurement in children with tracheostomies 161
6.1.3 Methodology for CBF measurement ... 161
6.1.4 Results of pilot study of CBF measurement in adults with tracheostomies 163
6.1.5 Results of CBF measurement in children with tracheostomies 165

6.2 Mucociliary clearance scans ... 167
6.2.1 Selection of Colloid ... 168
6.2.2 Nebuliser device ... 168
6.2.3 Flow Rate ... 170
6.2.4 Definition of Lung Regions and Calculation of Penetration Index 173

6.3 Description of mucociliary clearance scan technique .. 174

6.4 Trials in Adult Volunteers ... 177
6.5 Trials in Three Children ... 180
6.6 Repeatability Measurements ... 180
6.7 Results from long-term study ... 184

Chapter 7 Airway Secretion Cytokine Levels .. 192

7.1 Methodology .. 192
7.1.1 Sample Collection ... 192
7.1.2 Sample Preparation .. 193
7.1.3 Cytokine Analysis IL-8 ELISA ... 193
7.1.4 Cytokine Analysis IL-1β ELISA ... 194
7.1.5 Cytokine Analysis TNFα ELISA ... 195

7.2 Results .. 196

Chapter 8 Qualitative Interviews ... 208

8.1 Method .. 209
8.2 Results .. 214
8.2.1 Core Category ... 217
8.2.2 Problematic and Constraining States ... 218
List of Tables

Table 2.1: Change in mortality due to the practice of prolonged intubation.

Table 2.2: Indications for tracheostomy in children presented in order of decreasing frequency.

Table 2.3: Complications of tracheostomy.

Table 2.4: Absolute Humidity of Air at Various Temperatures and 100% Relative Humidity.

Table 2.5: Differences in temperature and humidity of inspired air during nasal and oral breathing as measured at the oropharynx and trachea.

Table 3.1: Timing of assessments for short-term study.

Table 3.2: Timing of assessments for long-term study.

Table 4.1 Scoring criteria for clinical examination findings.

Table 4.2 Scoring criteria for assessing airway secretions following suctioning of the tracheostomy.

Table 4.3: Individual participant demographic details at enrolment for short-term study.

Table 4.4: Summary table showing participant’s demographic details at enrolment for short-term study.

Table 4.5: Significance tests for continuous variable examination findings for short-term study.

Table 4.6: Significance tests for categorical clinical examination findings for short-term study.

Table 4.7: Significance tests for categorical airway secretion assessment findings for short-term study.

Table 4.8: Comparison of overnight events.

Table 5.1: Original and revised questions for health visits domain for the Pediatric Tracheostomy Health Survey Index.

Table 5.2: Individual participant demographics at enrolment to long-term study.

Table 5.3: Summary table showing participant’s demographic details at enrolment to long-term study.

Table 5.4: Participants experiencing major clinical events during overnight treatment with HH or HME.

Table 5.5: Time-to-event data for major clinical events during treatment with HH or HME.
Table 5.6: Clinical examination findings for continuous variables for long-term study.

Table 5.7: Significance tests for clinical examination ordinal categorical for long-term study.

Table 5.8: Significance tests for airway secretion ordinal categorical findings for long-term study.

Table 5.9: Parents' health-related quality of life (HRQOL) SF36v2 data.

Table 5.10: Child's and parents' health-related quality of life (HRQOL) data from Pediatric Tracheostomy Health Survey Index (PTHSI).

Table 5.11: Reliability statistics for Paediatric Tracheostomy Health Survey Index (PTHSI) measured from baseline results.

Table 5.12: Correlation between domains of Pediatric Tracheostomy Health Survey Index (PTHSI) and SF-36v2 t-scores measured from baseline results.

Table 5.13: Parents' retrospective recall of clinical events for treatment period or past eight weeks.

Table 6.1: Results from mucociliary clearance scans in three adult volunteers. Results expressed as a proportion of initial deposition.

Table 6.2: Results of mucociliary clearance scans in participants with repeated scans to assess repeatability performed during treatment with heated humidifier.

Table 6.3: Individual participant results for mucociliary clearance scans expressed as retention (proportion remaining of originally deposited activity).

Table 6.4: Results of mucociliary clearance scans expressed as retention (proportion remaining of originally deposited activity).

Table 7.1: Interleukin-8 (IL-8) levels in airway secretions for individual participants in short-term study.

Table 7.2: Interleukin-1beta (IL-1β) levels in airway secretions for individual participants in short-term study.

Table 7.3: Tumor necrosis factor-alpha (TNFα) levels in airway secretions for individual participants in short-term study.

Table 7.4: Inflammatory cytokines levels in airway secretions from children with tracheostomies in the short-term study.

Table 7.5: Inflammatory cytokine levels in airway secretions for individual participants in long-term study.

Table 7.6: Inflammatory cytokines levels in airway secretions from children with tracheostomies in the long-term study.
Table 7.7: Spearman correlation co-efficients for differing inflammatory cytokines from first period baseline values in short-term study.

Table 7.8: Spearman correlation co-efficients for inflammatory cytokines from baseline values in long-term study.

Table 8.1: Stages in grounded theory analysis as performed for this study.

Table 8.2: Original semi-structured interview questions which were subsequently progressively modified to sample incidents and concepts of interest (theoretical sampling).

Table 8.3: Participant demographics for qualitative interviews.
List of Figures

Figure 1.1: A – a tracheostomy tube. B – Child with tracheostomy tube in situ.

Figure 1.2: The heated humidifier set-up in one of the participant’s bedrooms.

Figure 1.3: Child with tracheostomy wearing the heated humidifier with tracheostomy mask over tracheostomy tube opening.

Figure 1.4: Portex Thermovent T heat and moisture exchanger (HME) partially disassembled to show roll of hydrophobic filter paper.

Figure 1.5: Heat and moisture exchanger (HME) attached to a tracheostomy tube.

Figure 1.6: Image of one of the study participants wearing the heat and moisture exchanger.

Figure 2.1: The structure of the airway mucosa.

Figure 2.2: Beating pattern of a cilium.

Figure 2.3: Cross-section of a cilium.

Figure 3.1: Study design for short-term study.

Figure 3.2: Study design for long-term study.

Figure 4.1: Mean treatment differences for summary respiratory examination score.

Figure 4.2: Mean treatment differences for summary secretion score.

Figure 5.1: Diagram showing numbers of children eligible, enrolled and withdrawn and final treatment preference as stated by parents.

Figure 5.2: Numbers of participants experiencing events during overnight treatment with HH or HME.

Figure 5.3: End of study parental perceived effectiveness, convenience, overall satisfaction and treatment preference.

Figure 5.4: Difference between parents’ health-related quality of life (HRQOL) SF36v2 data standardised t-scores and national New Zealand norms.

Figure 5.5: Mean treatment differences for parents’ health-related quality of life (HRQOL) SF36v2 data t-scores.

Figure 5.6: Mean treatment differences for children’s and parents’ health-related quality of life (HRQOL) data from Paediatric Tracheostomy Health Survey Index (PTHSI).

Figure 5.7: Kaplan-Meier plot for outcome of all main clinical events.
Figure 5.8: Time-to-event plot all major clinical events.

Figure 5.9: Time-to-event plot for outcome of acute admission.

Figure 5.10: Time-to-event plot for outcome of acute respiratory admissions.

Figure 5.11: Time-to-event plot for outcome of chest infections.

Figure 5.12: Time-to-event plot for combined outcome of tracheostomy tube occlusions or emergency tracheostomy change.

Figure 5.13: Time-to-event plot for combined outcome of treatment failure or study withdrawal.

Figure 6.1: Cilia beat frequency measurements separated by specimen quality in samples from the upper tracheas of adult participants with tracheostomies.

Figure 6.2: Cilia beat frequency measurements in samples from the mid to lower tracheas of children with tracheostomies participating in long-term study.

Figure 6.3: Child in position to inhale radioaerosol from nebuliser for mucociliary clearance scan while sitting on caregiver's lap.

Figure 6.4: Plot of measured aerosol mass median diameter (MMD) with dotted lines indicating 10th and 90th centiles of droplet size. Obscuration is also plotted demonstrating a significant fall below 10% at flow rates of less than 5 L/min.

Figure 6.5: Division of right lung into central, intermediate and peripheral regions for calculation of "penetration index" and clearance from central region.

Figure 6.6: Child in restraining cradle during image acquisition.

Figure 6.7: Results from mucociliary clearance scans for three adult volunteers.

Figure 6.8: Mucociliary clearance scan imaged from one of the children in the pilot study.

Figure 6.9: Results from mucociliary clearance scans from three children in pilot study.

Figure 6.10: Mucociliary clearance scans from one of the children in the long-term study demonstrating clearance over two hours, particularly from central region.

Figure 6.11: Mucociliary clearance scan images from one of the participants in the long-term study showing probable retrograde flow of signal from the trachea into the central lung regions between the baseline and 30 minute scan images.

Figure 6.12: Retention at 60 minutes right central region for mucociliary clearance scans showing relationship of clearance to penetration index.

Figure 6.13: Mucociliary clearance scans from right central lung regions of study two participants showing effect of penetration index (PI) on retention.
Figure 7.1: Mean treatment differences for inflammatory cytokines for children in the short-term study.

Figure 7.2: Mean treatment differences for inflammatory cytokines for children in the long-term study.

Figure 8.1: Grounded theory of parents managing the child’s care.

Figure 9.1: Graph of number of children having tracheostomies inserted per year under the care of Starship Children’s Hospital and number of children having tracheostomies decannulated, dying or turning 18 years old per year. Results derived from a database maintained by the Starship Children’s Hospital ENT team.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>ASL</td>
<td>Airway surface liquid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>Avidin-HRP</td>
<td>Avidin-Horseradish Peroxidase</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CBF</td>
<td>Cilia beat frequency</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic fibrosis transmembrane conductance regulator</td>
</tr>
<tr>
<td>Cl'</td>
<td>Chloride</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous positive airway pressure</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest radiograph (x-ray)</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ENT</td>
<td>Ear Nose and Throat</td>
</tr>
<tr>
<td>ETT</td>
<td>Endotracheal tube</td>
</tr>
<tr>
<td>GT</td>
<td>Grounded theory</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>HCH</td>
<td>Hygroscopic condenser humidifier</td>
</tr>
<tr>
<td>HCH-HME</td>
<td>Hygroscopic condenser humidifier heat and moisture exchanger</td>
</tr>
<tr>
<td>HH</td>
<td>Heated humidifier</td>
</tr>
<tr>
<td>HME</td>
<td>Heat and moisture exchanger</td>
</tr>
<tr>
<td>HRQOL</td>
<td>Health-related quality of life</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin e.g. IgA or IgG</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin e.g. IL-8</td>
</tr>
<tr>
<td>ISB</td>
<td>Isothermic saturation boundary</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>L/min</td>
<td>Litres per minute</td>
</tr>
<tr>
<td>LRTI</td>
<td>Lower respiratory tract infection</td>
</tr>
<tr>
<td>MCC</td>
<td>Mucociliary clearance</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>MMD</td>
<td>Mass median diameter</td>
</tr>
<tr>
<td>mSv</td>
<td>Millisieverts</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonatal intensive care unit</td>
</tr>
<tr>
<td>NIV</td>
<td>Non-invasive ventilation</td>
</tr>
<tr>
<td>Nm</td>
<td>Nanometres</td>
</tr>
<tr>
<td>PA</td>
<td>Posterior-anterior</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>Partial pressure of carbon dioxide in arterial blood</td>
</tr>
<tr>
<td>PaO₂</td>
<td>Partial pressure of oxygen in arterial blood</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PCD</td>
<td>Primary ciliary dyskinesia</td>
</tr>
<tr>
<td>PCL</td>
<td>Periciliary liquid</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive end-expiratory pressure</td>
</tr>
<tr>
<td>PI</td>
<td>Penetration index</td>
</tr>
<tr>
<td>PICU</td>
<td>Paediatric intensive care unit</td>
</tr>
<tr>
<td>PID</td>
<td>Primary immune deficiency</td>
</tr>
<tr>
<td>PTHSI</td>
<td>Pediatric Tracheostomy Health Survey Index</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
</tbody>
</table>
SF36v2 | Short Form-36 questionnaire version 2
---|---
TMV | Tracheal mucus velocity
TNFα | Tumor necrosis factor-alpha
μg | Microgram
μm | Micrometre
μL | Microlitre
UTP | Uridyl triphosphate
VAP | Ventilator associated pneumonia
vs. | Versus