

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

� Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

� Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

� You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain corrections made by hand, which have been
requested by the supervisor.

A STUDY OF HYBRID TRANSACTIONAL MEMORY

Fu’ad W. F. Al Tabba’

A thesis submitted in partial fulfillment of the requirements of
Doctor of Philosophy in Computer Science,

The University of Auckland, 2011.

Abstract

The rise of multicore processors is driving programmers towards parallel programming. Tra-
ditional lock-based parallel programming, however, breaks abstraction, hinders composition,
and is further complicated by issues such as deadlock, priority inversion, and lack of scala-
bility. Transactional memory, a promising programming model inspired by database transac-
tions, is gaining popularity as a way to overcome the drawbacks of lock-based programming
and make it easier to write parallel programs.

Different methods have been proposed for supporting transactional memory. Hardware
proposals, which modify a processor’s existing hardware to support transactions, are either
too complex, or cannot handle all types of workload. Software proposals, which do not
require any hardware support beyond what is already present for parallel programming, are
too slow. This thesis argues that transactional memory should be supported by a hybrid
combination of hardware and software. By combining the two, transactional memory can
offer the best of both hardware and software. To support this argument, this thesis presents
my work on transactional memory, which spans the areas of hardware, software, and hybrid
support.

This thesis presents NZSTM, the first nonblocking, object-based, software transactional
memory that does not require indirection to access data in the common case. It also presents
NZTM, a hybrid transactional memory that uses NZSTM as its software component. The
evaluation presented shows that nonblocking support introduces little overhead compared
with blocking algorithms, and that NZTM is competitive with pure hardware transactional
memory.

Furthermore, this thesis investigates how to improve the performance of hardware trans-
actional memory by using data speculation in transactions, and how to reduce transactional
conflicts by decoupling them from cache coherence conflicts. Most hardware proposals do
not distinguish between transactional conflicts and coherence conflicts, leading to false trans-
actional conflicts. This thesis explains how to mitigate the effects of coherence conflicts by
using value prediction in transactions. It also shows that coherence decoupling and value pre-
diction in transactions complement each other, because they both speculate on data in ways
that are infeasible in the absence of hardware transactional memory support.

iii

Dedication

To my parents, Samar and Wael, and to my partner in life, Anna,

I couldn’t have done it without you!

v

Acknowledgements

They say that no man is an island, and good things come to those who wait.

— Jon Bon Jovi

The wait is almost over; to that I am indebted to many people, whom without this thesis
would not have been possible. I was very lucky to have three great advisors, formidable
collaborators, and a patient wife, all of whom have contributed directly to this thesis.

First and foremost, I thank my advisor, Jim Goodman, for all his guidance and support
throughout the years. Jim contributed to all levels of the work presented in this thesis, whether
it is the high level discussion sessions where we would develop an idea (or shoot it down),
debugging a model (Jim’s ability to identify a bug in my code based only on my description

of it is uncanny), and helping me write this thesis (I will never forget what the subjunctive

mood is).
I am also very grateful to Mark Moir, my unofficial co-advisor. Mark’s contributions were

instrumental to the ideas presented in this thesis, particularly to NZSTM and NZTM. Without
Mark, NZTM would not have had its snazzy name! I learned a lot from Mark on how to write
and publish a research paper. I am also grateful for Mark’s comments on this thesis.

I thank Gill Dobbie, my co-advisor, for her help and advice, for the thought-provoking
discussions we have had, and for her comments on this thesis.

James Wang, my first friend in the trenches, I thank him for showing me the ropes when
I started out. James set up the original simulation environment, which I continued using
throughout my work. The (often heated) discussions James and I have had were very helpful
in developing many of the topics presented in this thesis.

To Andrew Hay, I am grateful for our collaboration, which resulted in the work on value
prediction in transactions. I am not sure if either of us will miss those long hours of working
on (banging our heads against) the simulator, or the waiting for and graphing all the results
— only to discover that we need to redo the whole thing! I am also grateful to Andrew for
his comments on this thesis.

I am very grateful to the awesome team at Sun Labs at Oracle for their valuable comments
and for their help on the ATMTP simulator and the Rock machine: Kevin Moore, Dave Dice,
Marek Olszewski, and especially to Dan Nussbaum for his help and patience in answering
every one of my missives.

vii

I thank Doug Burger, Guri Sohi, and Kevin Moore for their feedback on the work on value
prediction. I especially thank Doug for his suggestions on how to extend that work to enable
eager conflict detection.

I am grateful to Virtutech for the Simics simulator license, and to Sun Labs at Oracle
for access to the Rock machine and for the Niagara machine donated to the University of
Auckland. I am also very grateful to Education New Zealand and the University of Auckland
for funding my research.

Last but not least, I thank my lovely wife, Anna Ogenblad, for actually reading and com-
menting on my whole thesis. Anna does not have a computer science background, so I can
only imagine how boring it must have been — she would always read it right before sleep-
ing... Jag älskar dig Anna!

viii

Contents

Abstract iii

Dedication v

Acknowledgements vii

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1
1.1 Motivation: Transactions in the Multicore Age 2

1.2 Thesis Organization and Summary of Contributions 4

2 The Challenges of Parallelism and the Transactional Promise 7
2.1 The Rise of Multicores . 7

2.2 The Cache Coherence Problem . 9

2.3 Synchronization, Mutual Exclusion, and Locks 11

2.4 What is Transactional Memory? . 14

2.5 Transactional Memory Design Space . 16

2.6 Evaluating Transactional Memory . 21

2.7 The Current State of Transactional Memory 22

2.8 The Rock Processor and the ATMTP Simulator 23

2.9 Other Challenges in Parallel Programming 28

3 A Case for Hybrid Transactional Memory 33
3.1 A Case for Transactional Memory . 34

3.2 Making a Case for Hybrid Transactional Memory 39

3.3 Concluding Remarks . 50

ix

4 Nonblocking Zero-indirection Software Transactional Memory 53
4.1 The NZSTM Algorithm . 57
4.2 Correctness Evaluation . 72
4.3 Performance Evaluation . 75
4.4 Concluding Remarks . 79

5 Hybrid Nonblocking Zero-indirection Transactional Memory 81
5.1 The Design of NZTM . 82
5.2 Performance Evaluation . 88
5.3 Concluding Remarks . 99

6 Parallel Python 101
6.1 Concurrent CPython . 103
6.2 Evaluation . 106
6.3 Design Alternatives . 109
6.4 Related Work . 110
6.5 Concluding Remarks . 111

7 Transactional Conflict Decoupling and Value Prediction 113
7.1 The False Sharing Problem . 114
7.2 Coherence Decoupling and Value Prediction in Transactions 116
7.3 DPTM Description . 118
7.4 Evaluation . 125
7.5 Related Work . 136
7.6 Concluding Remarks . 137

8 Conclusion 139

A Dynamic Software Transactional Memory 143
A.1 DSTM Data Structures . 143
A.2 DSTM Algorithm . 145

B NZSTM Promela Model 147

Bibliography 181

x

List of Figures

1.1 Intel processor trends . 3

2.1 An example of cache coherence at work . 10

2.2 Rock processor organization . 24

2.3 Wisconsin GEMS Architecture . 26

2.4 ATMTP processor organization model . 28

3.1 University of Texas Study Screenshot . 38

4.1 The structure of DSTM’s main transactional object 54

4.2 The structure of RSTM’s main transactional object 54

4.3 The structure of the DSTM2 Shadow Factory main transactional object 55

4.4 The structure of NZSTM’s main transactional object 58

4.5 The structure of an inflated NZSTM object 63

4.6 A successfully deflated NZObject immediately after deflation 65

4.7 An NZObject using the proposed visible readers scheme 69

4.8 The results of running the NZSTM benchmarks on Rock 78

5.1 The structure of NZTM’s main transactional object 83

5.2 An NZObject using the proposed visible readers scheme 85

5.3 Results of running the NZTM benchmarks on the simulator 91

5.4 Results of running the NZTM benchmarks on the Rock machine 96

6.1 An example of running two concurrent threads in CPython 102

6.2 Results of running the CPython benchmarks on the Rock machine 108

7.1 The effect of a single instance of false sharing in transactional memory. . . . 115

7.2 Results of running the SharingPatterns benchmarks 129

7.3 Results of running the DPTM benchmarks, padded and unpadded 130

7.4 The speedup of the DPTM design alternatives 133

7.5 DPTM performance breakdown . 135

A.1 The structure of DSTM’s main transactional object 144

xi

A.2 A DSTM transaction acquiring an object . 145

xii

List of Tables

3.1 Sources of overhead in NZSTM . 44

4.1 STAMP parameters used in the NZSTM evaluation 76
4.2 Qualitative summary of the NZSTM benchmarks’ characteristics 76

5.1 Course of action when a hardware NZTM transaction aborts 88
5.2 Simulated machine configuration for NZTM 88
5.3 STAMP parameters used in the NZTM evaluation 89
5.4 Qualitative summary of the NZTM benchmarks’ characteristics 89
5.5 Hardware transaction commit rate on Rock in the absence of contention . . . 95

6.1 Concurrent CPython slowdown relative to a single unmodified CPython thread 107

7.1 DPTM Simulated machine configuration . 126
7.2 STAMP parameters used in the DPTM evaluation 126
7.3 Qualitative summary of the DPTM benchmarks’ characteristics 127
7.4 Breakdown of DPTM abort causes . 131

xiii

Glossary

ATMTP: Adaptive Transactional Memory Test Platform, a simulator that models Rock-like
hardware transactional memory (page 23)

Compare&Swap: An atomic processor instruction that reads a memory location, and if the
value at that location matches the value the instruction expects to find, it replaces it
with a new value, indicating whether the operation was successful (page 13)

CPS: Checkpoint Status register, a register in Rock that provides feedback on what caused a
hardware transaction to abort (page 23)

DPTM: Decoupling and Prediction Transactional Memory, a best-effort hardware trans-
actional memory proposal that mitigates the effects of false conflicts in transactions
(page 118)

DSTM: Dynamic Software Transactional Memory, an early software transactional memory
proposal (page 143)

GEMS: General Execution-driven Multiprocessor Simulator, an extension to the Simics
simulator that allows detailed architectural timing simulation, as well as the model-
ing of different hardware transactional memory proposals (page 26)

GIL: Global Interpreter Lock, a mutual exclusion lock used in the de-facto standard Python
interpreter implementation (page 101)

HTM: Hardware Transactional Memory (page 17)

NZSTM: Nonblocking Zero-indirection Software Transactional Memory (page 53)

NZTM: A hybrid Nonblocking Zero-indirection Transactional Memory (page 81)

Promela: A C-like language that describes models to check using Spin (page 73)

Rock: A multithreaded, multicore, SPARC processor developed at Sun Microsystems, and
the first commercial processor designed with hardware transactional memory support
(page 23)

xv

SCSS: Single-Compare Single-Store, an atomic operation that modifies a location with a
new given value only if another location’s value matches an expected value (page 67)

Simics: A full-system functional simulator that allows for detailed timing simulation using
extensions (page 26)

Spin: A mechanical verification system designed for the formal verification of high-level
models for systems of concurrently executing processes (page 73)

STM: Software Transactional Memory (page 19)

TLB: Translation Lookaside Buffer, a cache for page table entries that speeds up virtual
address translation (page 45)

xvi

Chapter 1

Introduction

The distant threat has come to pass. For 30 years or more, pundits have claimed
that parallel computers are the inexorable next step in the evolution of computers
and have warned us to learn to program these machines.

— Larus and Rajwar [2007]

The age of parallel computing is finally here. Although Moore’s law is still driving the
number of transistors higher, the actual improvement in processor design is slowing down.
Processor manufacturers find themselves with the easier option of using these additional tran-
sistors to add more cores to a microprocessor, rather than build a bigger, more powerful,
processor. This trend is pushing programmers towards an unfamiliar, parallel, programming
paradigm.

Parallel programming is more complex than sequential programming. Parallel program-
ming requires programmers to be able to manage all the available computing resources, and
reason carefully about possible interactions of their programs when running concurrently. If
programmers do not carefully consider these interactions, their programs’ performance —
and even correctness — could suffer.

Transactional memory [Herlihy and Moss, 1993] is one proposal that promises to make
it easier to reason about parallel programs. Transactional memory is a programming model
that provides a level of abstraction on top of critical sections by using transactions, a concept
borrowed from the database community. Transactions promise to make it easier to reason
about each critical section individually, without having to worry about the possible interac-
tions between critical sections.

Support for transactional memory has been proposed in software, hardware, and as a
hybrid combination of the two. Software support is more flexible than hardware support,
but is significantly slower so far. Hardware support is fast; however, implementing a flexible
hardware solution that can support the same workloads as software is expensive, or altogether
infeasible.

1

Chapter 1

This thesis argues that the hybrid approach is the most appropriate for the transactional
model to succeed as a programming model. By combining both software and hardware sup-
port, the hybrid approach can overcome their individual weaknesses.

This chapter introduces the problems that led to the development of transactional memory
as a programming model, and presents my contributions and the outline of this thesis.

1.1 Motivation: Transactions in the Multicore Age

To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic ox.

— Gropp, Lusk, and Skjellum [1999]

In 1965, Gordon Moore published his article introducing what is now known as Moore’s law.
Moore’s law predicted that the amount of complexity, or number of transistors, that can be
used inexpensively in a chip will double every two years. Because this would double the
number of transistors processor designers have at their disposal, Moore’s law implies that
processor performance would also improve at an exponential rate [Joy, 1995].

For the forty years following Moore’s initial prediction, performance has indeed kept up
with the increase in the number of transistors on a chip [Hennessy and Patterson, 2006]. More
recently, however, improvements in performance seem to be slowing down [Sutter, 2005].

Figure 1.1 presents a history of the trends in Intel processors. It shows the trends in the
number of transistors, the clock speed, power consumption, and performance as measured
by the number of instruction running per clock cycle. The figure shows that, since 2003, the
exponential growth in single-core performance has all but stopped; the same is true for the
increase in clock speed — despite the number of transistor still growing exponentially.

Power consumption is one factor that accounts for the change in the performance trend:
as the clock speed increases, power consumption also increases, making processors that op-
erate at high frequencies difficult to cool down and more expensive to operate [Hennessy and
Patterson, 2006]. Another problem is that as the field of processor design matures, processor
designers find it increasingly difficult to use the additional transistors to improve the perfor-
mance of a single processor. The economics of replication make it more appealing to use
these additional transistors to create multiple processors, e.g., by adding more cores to the
same chip. Assuming programmers use these additional cores efficiently, adding cores would
be an easy solution that improves performance without increasing the processor clock speed.

Processor manufacturers have embraced the concept of adding multiple cores [Geer,
2005; Koch, 2005]. Today, virtually all desktop and laptop computers have at least two
cores, gaming consoles have up to eight cores on each processor [Chen, Raghavan, Dale, and
Iwata, 2007], and Intel is warning us that future processors would have thousands of cores on
a single chip [Ghuloum, 2008]!

2

Introduction

Year Transistors
(x1000)

Clock Speed
(MHz)

Power (W) Performance
(ILP)

1972
1975
1980
1985
1990
1995
2000
2003
2005
2010

3 1
8 1

25 3
100 9 1 0.3981071705535
501 25 4 1 2005 10

2,818 89 16 3 2010 100
14,125 562 50 4
79,433 1,995 79 5

398,107 2,818 126 5
3,162,278 3,162 158 5

0.1

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1972 1975 1980 1985 1990 1995 2000 2003 2005 2010

Transistors (x1000) Clock Speed (MHz)
Power (Watt) Performance (Instsuction-level Parallelism)

Figure 1.1: Intel processor trends [adapted from Sutter, 2005]

Using multiple cores, however, does not automatically improve a program’s performance.
Fred Brooks [1995], who managed the development of IBM’s OS/360, noted that “the bearing
of a child takes nine months, no matter how many women are assigned”, similarly, certain
programs are inherently incapable of running in parallel. Even for programs that can run in
parallel, exploiting the underlying parallelism is not easy: there are issues with scheduling the
program’s tasks, removing the bottlenecks that slow down a parallel program, and protecting
a program’s critical sections and shared data.

Transactional memory [Herlihy and Moss, 1993] is a programming model that promises
to make it easier to reason about accesses to shared memory by creating an abstraction sim-
ilar to database transactions. A transaction is defined as a “sequence of actions that appears
indivisible and instantaneous to an outside observer” [Larus and Rajwar, 2007]. With trans-
actional memory, programmers do not need to worry about how to synchronize accesses to
shared data, they only need to protect their shared data and critical sections using transactions,
leaving the details to the underlying implementation.

There are many different proposals for supporting transactional memory. These proposals
can be broadly classified into three categories: hardware transactional memory [Herlihy and
Moss, 1993], software transactional memory [Shavit and Touitou, 1995], and hybrid trans-
actional memory, which combines both hardware and software support [Lie, 2004; Moir,
2005].

3

Chapter 1

Hardware transactional memory has the advantage of speed, because hardware is particu-
larly suited for performing tasks in parallel, as well as hiding the latency of operations using
speculation. On the other hand, hardware support is expensive and more risky to implement:
this new hardware must be designed with consideration to how it might interact with exist-
ing processor components, and transistors that could have been used for a different purpose,
such as adding more cores, must now be dedicated to transactional memory. Moreover, if
the transactional model is supported only by hardware, it means that transactional memory
cannot be used on existing systems today, and all its benefits would be limited to those using
the new hardware.

Software transactional memory resolves most of these issues, because software can be
designed to work on existing systems without requiring special hardware support — and
is therefore less expensive. However, software proposals, so far, are significantly slower
than their hardware counterpart, slower by at least an integer factor or even by an order of
magnitude.

Hybrid transactional memory aims to be the best of both: hybrid proposals use simple
hardware support for speed, when available, while relying on software for cases that would
complicate hardware design, or when hardware support is not available altogether. With the
hybrid approach, transactional memory implementations can run on existing systems today,
and improve incrementally as their underlying hardware or software components improve.

1.2 Thesis Organization and Summary of Contributions

This thesis argues for hybrid transactional memory by drawing on work by various
researchers as well as my own experiences. These experiences span three different levels
of support for transactional memory: hardware, software, and putting the two together in a
hybrid system. In the course of working on this thesis, I have developed novel software and
hybrid transactional memory proposals. I have experimented with using a prototype of Sun’s
Rock processor, one of the few existing hardware transactional memory implementations. I
have also investigated possible enhancements to Rock’s hardware support by modeling them
on a simulator. This thesis reports on these experiences.

Chapter 2 presents some of the history and background of transactional memory. It also
introduces most of the terms and concepts used throughout this thesis.

Chapter 3 makes a case for hybrid transactional memory by discussing some of the re-
lated work in this area. It starts by making the case for the transactional model in general,
then it discusses the benefits and drawbacks of hardware and software support, and explains
how hybrid support can leverage both hardware and software to make transactional memory
feasible today.

4

Introduction

Chapters 4 to 7 present a topdown discussion of my work in the area of transactional
memory, starting with software, moving to hybrid, then the use of an actual hardware imple-
mentation, and finally, by suggesting modifications to improve the hardware implementation.

Chapter 4 introduces NZSTM, the first non-blocking, zero-indirection, object-based soft-
ware transactional memory. It explains the design philosophy of NZSTM, discusses the algo-
rithm, and shows how to exploit hardware support, if present, to greatly simplify the NZSTM
algorithm. This chapter presents a correctness and performance evaluation of NZSTM, and
shows that NZSTM’s performance is competitive with algorithms designed to be blocking.

Chapter 5 introduces NZTM, a nonblocking hybrid transactional memory that can exploit
hardware support, when available, and fall back gracefully on NZSTM when hardware sup-
port is not available or sufficient. This chapter presents a performance evaluation of NZTM
using a simulator and using Sun’s Rock processor, which offers limited hardware transac-
tional memory support. The evaluation shows that NZTM performs significantly better than
pure software proposals, and that it is competitive with pure hardware proposals.

Chapter 6 reports on my experiences of using Sun’s Rock processor to parallelize Python
using hardware transactional memory. This chapter explains how to make some workloads
in Python, which by default is not concurrent, scale with additional cores. It also discusses
the problems encountered in the process.

Chapter 7 investigates how to mitigate the effects of false conflicts in hardware transac-
tional memory by using data speculation, focusing on false conflicts caused by false sharing
at the cache line level. It explains why false conflicts are particularly detrimental in a trans-
actional memory environment, and presents a solution that mitigates most of their effects.

Finally, Chapter 8 concludes the thesis.

5

Chapter 2

The Challenges of Parallelism and the
Transactional Promise

This chapter presents some of the background relevant to this thesis. It discusses some of
the challenges in the move towards concurrency, both at the hardware and software level.
It also introduces the concept of transactional memory, and discusses some of the problems
transactional memory addresses and the promises transactional memory makes.

2.1 The Rise of Multicores

Multiprocessing, and specifically shared memory multiprocessing, where two or more pro-
cessors are connected to a single shared memory, has existed at least since the early 1960s,
with the introduction of the Burroughs mainframe computers [McCullough, Speierman, and
Zurcher, 1965]. The main motivator then was the economics of replication: to boost perfor-
mance, it costs less to create multiple copies of the same processor and connect them than it
costs to design a single fast processor. Multiprocessing works well for applications that lend
themselves to being divided into subsections and having their workload distributed over mul-
tiple processors [Hennessy and Patterson, 2006], such as many scientific applications. For
other types of applications, it is not obvious how their workloads can be divided to run in
parallel on multiple processors.

For general purpose computing, particularly for desktop computers, there has not been
a pressing need to exploit parallelism. Because of Moore’s law and the ingenuity of pro-
cessor designers, processor manufacturers had the designs and the transistors they needed to
produce processors that are exponentially faster every year. Therefore, the advancements in
single processor computers have, until recently, inhibited research and investment in multi-
processing.

Moore’s law still drives processor manufacturing today; however, processor designers are
having difficulties exploiting Moore’s law to make a single processor faster. This is mainly

7

Chapter 2

because of issues such as the increase in power consumption, and the lack of new ideas that
could use additional transistors to speed up a single processor [Sutter, 2005; Hennessy and
Patterson, 2006]. Therefore, processor manufacturers use these transistors to create multiple
processors on a single chip, which are known as multicores. IBM started this trend with
the release of the dual-core POWER4 processor in 2001 [Hennessy and Patterson, 2006]. In
2005, AMD and Intel both released their first dual core processor, an important milestone,
because it is these companies’ processors that dominate the ubiquitous personal computing
market.

Today, Intel’s Core i7, a processor meant for desktop and laptop computers, can have up to
six cores [Smith, 2009]. The Sony Playstation 3, a gaming console, has an eight core STI Cell
processor [Chen et al., 2007]. According to Intel, this trend will continue and programmers
should start considering programming for many more cores in the near future [Ghuloum,
2008].

Even though parallel programming has been studied for over 40 years, writing parallel
programs is still difficult. There are many factors that complicate writing parallel programs,
such as finding algorithms that can be separated into parallel tasks, and balancing the work-
load among the available processors. The focus of my research, however, is on the difficulties
involved in communicating and managing shared data between different processors.

When a program runs in parallel on different processors, the different threads running the
same program need to communicate — even if it is just to inform each other that a certain job
is completed. Threads can communicate by sending messages, this is known as the message

passing model; or they can communicate by accessing and modifying the same shared mem-
ory, this is known as the shared memory model [Hennessy and Patterson, 2006]. The shared
memory model has the advantage of using the same interface that programs running on sin-
gle processors already use; therefore, programs require fewer modifications to use this model.
The alternative, message passing, requires a different programming paradigm; programs need
to be rewritten, and programmers must learn this new programming paradigm.

To complicate things further, shared memory is often supported, at the hardware level, by
a cache coherence protocol that operates by sending messages, whereas the message passing
model is sometimes implemented using shared memory. I do not make any judgements on
which model is better; but because the shared memory model is the prevalent model today
[Hennessy and Patterson, 2006], it is the focus of this thesis.

Maintaining the shared memory model poses certain challenges. At the hardware level,
one such challenge is cache coherence, which is responsible for ensuring that each proces-
sor’s local cache memory contains a faithful representation of what is in memory across all
processors. At the software level, the challenge is that accesses to shared resources, and
shared memory in particular, must be protected and synchronized. This is necessary to pre-
vent concurrent accesses to these shared resources from interfering with each other, slowing
each other down, or corrupting data altogether.

8

The Challenges of Parallelism and the Transactional Promise

The next two sections discuss some of the challenges, at the hardware and the software
levels, that are particularly relevant to this thesis.

2.2 The Cache Coherence Problem

Cache memory is a small, fast, memory that reduces the average memory access time and
bandwidth requirements by taking advantage of locality in memory accesses. Cache memory
works by storing a local copy of locations that the processor is likely to access soon — thereby
saving the processor from having to access main memory directly. Accessing main memory
can be a few orders of magnitude slower than accessing the local cache, and having to go
to main memory for every access increases the bandwidth requirements on the interconnect
between processors and memory [Goodman, 1983].

When there are multiple processors, each with its own local cache and sharing the same
main memory, the problem is how does the system guarantee that each processor’s local copy
is consistent with copies in other processors as well as with main memory?

The solution to this problem is the domain of cache coherence protocols. Coherence
protocols are responsible for ensuring that all processors see a consistent view of memory in
a manner transparent to the higher levels of the system. For processors’ local cache data to
be consistent, coherence protocols must detect and resolve potentially conflicting accesses to
the same cache line. A cache line is a block of memory, typically ranging in size from 64 to
256 bytes.

A conflict occurs when one processor tries to modify a cache line that is being read by
one or more other processors. Coherence protocols typically allow more than one processor
to read the same cache line, but only one processor can access a cache line at a time if it
intends to modify it.

To illustrate how cache coherence works, the following describes a cache coherence pro-
tocol by example of a typical MESI coherence protocol [Goodman, 1983; Papamarcos and
Patel, 1984; Sweazey and Smith, 1986] — named after the states that a cache line can be in.
This type of protocol assigns a state to each cache line, which can be one of the following.

Modified (M): The cache line data has been modified and memory must (eventually) be
updated with the new value. No other processor has the current data value of this line
— or more accurately, no other processor has permission to access the data.

Exclusive (E): The cache line data is valid and has not been modified. The processor has
permission to either modify it at any time, or to share it with any other processor. No
other processor has permission to access the data value of this line.

Shared (S): The cache line data is valid and has not been modified. Other processors may
also have a valid (Shared) copy of the same cache line, but no processor has permission
to modify the line.

9

Chapter 2

Invalid (I): The cache line data is no longer valid, i.e., it is stale. The processor must request
the data (and implicitly, permission) before it can read or modify it.

Not Present (NP): This is not an explicit state, but is implied by the absence of the cache
line address in any state. In practice, most cache coherence protocols treat this state the
same way as an invalid state.

In such a protocol, processors, at least conceptually, share a common bus to access main
memory, and issue their requests by broadcasting them on the bus. The protocol maintains
the correct state by snooping the bus to intercept any requests made by other processors,
hence why this is known as a snooping protocol [Goodman, 1983; Frank and Inselberg, 1984;
Thacker and Stewart, 1987]. Figure 2.1 shows an example of this protocol in action.

bus

Main Memory
X (valid)

Processor 1

Cache

Processor 2

Cache

Processor 3

Cache

(a)

bus

Main Memory
X (valid)

Processor 1

Cache
X (E)

Processor 2

Cache

Processor 3

Cache

(b)

bus

Main Memory
X (valid)

Processor 1

Cache
X (S)

Processor 2

Cache
X (S)

Processor 3

Cache

(c)

bus

Main Memory
X (stale)

Processor 1

Cache
X (I)

Processor 2

Cache
X (I)

Processor 3

Cache
X (M)

(d)

Figure 2.1: An example of cache coherence at work

In the example in Figure 2.1, initially (a), none of the processors have the line associated
with cache line X in their cache; therefore, it is in the implicit Not Present state. Processor 1
requests to read cache line X, and acquires the cache line in an Exclusive state, because no
other processor has a copy of the line (b). Next, processor 2 requests a copy for reading, and

10

The Challenges of Parallelism and the Transactional Promise

obtains it in a Shared state; processor 1, seeing processor 2’s request for reading, downgrades
the state of its cache line to Shared (c). Processor 3 decides to write to X; it requests to
modify the line. Processors 1 and 2 detect the conflict with processor 3, and invalidate their
own copies of cache line X upon seeing processor 3’s request. When processor 3 receives
its exclusive copy, it applies its modifications, and therefore has the cache line in a Modified

state (d).

Cache coherence protocols do not necessarily require a shared common bus, as in the
example above. Coherence protocols can also be implemented as directory-based protocols
[Tang, 1976; Censier and Feautrier, 1978], where the sharing state of a cache line is main-
tained at a common location, the directory. Processors request permission to access cache
lines from the directory; in turn, the directory is responsible for informing processors about
potential conflicts [Hennessy and Patterson, 2006].

Although cache coherence is not the only challenge at the hardware level in designing
multiprocessors, it is particularly important because cache coherence is directly responsible
for maintaining the shared memory abstraction. Any compromises in cache coherence would
lead to leaks in the shared memory model abstraction, and could corrupt the data in memory.

Cache coherence is essentially about managing a shared resource at the hardware level,
the resource being memory. With the shared memory abstraction in place, it is the operating
system’s and programmers’ responsibility to manage the sharing of objects at the software
level.

2.3 Synchronization, Mutual Exclusion, and Locks

When using the shared memory model, programmers are responsible for ensuring that, when
their programs share data, concurrent accesses to the shared data are correct. Correctness
depends on the program, but typically means that a shared data structure, or a group of related
shared structures, must not be accessed in a conflicting manner by more than one thread at a
time: multiple threads can simultaneously read the same data, but only one thread at a time
can access the data to modify it.

The part of the program that accesses shared resources where conflicts might occur is
known as a critical section. To ensure that the shared resources in critical sections are pro-
tected from conflicts, programmers often rely on mutual exclusion mechanisms [Dijkstra,
1965; Hoare, 1974; Lamport, 1974; Peterson, 1981]. Mutual exclusion mechanisms protect
against conflicts by ensuring that no more than one thread can simultaneously enter the same
critical section and access the same shared data.

One common method of ensuring mutual exclusion is by using locks. A lock is a data
structure typically associated with a certain critical section or a specific shared data structure.
A thread must acquire a lock before it can execute the critical section, or before it can access
the shared data the lock protects. Each lock may not be owned by more than one thread at

11

Chapter 2

a time; if a thread wants to acquire a lock owned by another thread, it must block, i.e., wait,
until the lock is released.

Locks, and methods of protecting critical sections by mutual exclusion in general, have
existed for over four decades. In a sense, they are tried-and-true methods. However, there are
many problems associated with using locks that could compromise correctness, performance,
and reliability.

One of the problems with locks, in terms of correctness, is the possibility of deadlock.
Deadlock occurs when different threads try to acquire the same locks (or resources in general)
in a different order, so each thread is waiting for another thread to release its lock before any
one can proceed [Coffman, Elphick, and Shoshani, 1971]. This results in none of the threads
making any progress, and often leads to the whole program — or even the whole system if
the operating system is involved — coming to a halt.

Programmers can avoid deadlock by ensuring that different threads always acquire locks
in the same order. This, however, adds complexity to a program, and requires programmers
to be aware of instances of where locks might be used and the correct order of acquiring them
— all of which makes parallel programming even more difficult. Alternatively, programmers
can try to detect a deadlock, and try to recover from a deadlock once detected, which also
adds complexity.

Programmers can reduce the likelihood of deadlock by using fewer locks with coarser

granularity, where each lock is responsible for protecting bigger or more critical sections. At
one extreme, programmers could use a single global lock that protects all critical sections;
this would ensure that deadlock cannot occur and simplifies reasoning about the program.
However, because locks are mutually exclusive, critical sections protected by the same lock
cannot run in parallel, which could negate the benefits of multiprocessing.

Another problem with locks is that they are blocking: once a thread acquires a lock, it
cannot be forced to release the lock, and there is no guarantee that the thread will release the
lock within a bounded period of time. This leads to two more problems: priority inversion

and lack of fault tolerance.

Priority inversion is when a low priority thread acquires a lock, and then a higher priority
thread needs to acquire the same lock, but is unable to do so. If the low priority thread releases
the lock as soon as it is aware of the higher priority thread, the problem is not severe. If the
low priority thread is oblivious to the higher priority thread, and delays the release of the
lock, the problem could manifest in the form of the system becoming unresponsive.

A blocking system is also less fault-tolerant. If a thread acquires a lock, modifies data,
and crashes before it completes its modifications, then there is no reliable way of releasing
the lock and ensuring that the modifications are consistent, unless the system tracks the mod-
ifications every thread makes in a critical section. In practice, what often happens is that
the faulty thread corrupts critical data and causes the whole program to crash, instead of just
crashing silently and dying alone.

12

The Challenges of Parallelism and the Transactional Promise

Moreover, locks are typically implemented as advisory locks, where threads must coop-
erate to obey the locking protocol. A buggy thread can ignore locks altogether and corrupt
the lock-protected data. This makes systems that use locks less tolerant to such bugs.

Because of these problems, programming with locks goes against some of the principles
of software engineering. Two of the principles that software engineers rely on are abstrac-

tion and composition [Larus and Rajwar, 2007], principles that help reason about large and
complex programs.

Abstraction enables software engineers to manage the complexity of their designs by re-
ducing them to modular components; whereas composition enables them to combine these
components into a bigger, more complex, application. These principles allow software en-
gineers to reason about each component separately, without worrying about any adverse in-
teractions these components might have when composed together. Engineers in other fields
handle complexity in a similar way. For example, automobile designers do not need to know
every single detail about car design, such as how tires are made or the inner workings of
a particular engine model. Automobile engineers handle different components individually,
abstracting away the details of every component, and then put them together, or compose
them, into a car.

Programming with locks breaks abstraction because software engineers need to be aware
whether a particular module they are using acquires any locks. If it does acquire a lock,
they must ensure that by using it, their program still observes the locking order that prevents
deadlock. Otherwise the engineer, by composing two individually correct modules together,
could inadvertently cause deadlock, thus breaking composition.

In addition to the software engineering concerns, blocking makes locks unacceptable for
use in certain tasks, such as interrupt handlers in an operating system [Ramadan, Rossbach,
Porter, Hofmann, Bhandari, and Witchel, 2007]. Interrupt handlers must not be blocked by
the thread they have interrupted, otherwise the whole system would deadlock. This require-
ment significantly complicates the design of interrupt handlers in an operating system.

Lock-free Programming

It is possible, in theory at least, to write correct parallel code without using locks or any
other method of mutual exclusion — this is the area of nonblocking synchronization [Herlihy
and Shavit, 2008]. Nonblocking synchronization promises that, with a minimum amount of
hardware support, it is possible to write parallel algorithms that are guaranteed to complete
within a bounded period of time.

The minimum hardware support for nonblocking synchronization is satisfied by a
Compare&Swap instruction [Herlihy, 1991]. Compare&Swap is an atomic instruction that
reads a memory location, and if the value at that location matches the value the instruction
expects to find, it replaces it with a new value, indicating whether the operation was

13

Chapter 2

successful. Compare&Swap, or similar instructions, are available on most modern parallel
processors, such as x86 [int, 2010b] and SPARC [Weaver and Germond, 2000]. The code
listing below demonstrates the effects of a typical implementation of a Compare&Swap

instruction.

bool CompareAndSwap (i n t ∗ l o c a t i o n , i n t expec t ed , i n t u p d a t e)
{

atomic {
/∗ appears t o t h e programmer as a s i n g l e i n s t r u c t i o n ∗ /
i f (∗ l o c a t i o n == e x p e c t e d) {

∗ l o c a t i o n = u p d a t e ;
re turn true ;

} e l s e {
re turn f a l s e ;

}
}

}

Nonblocking algorithms resolve most of the problems inherent in locks: nonblocking al-
gorithms do not deadlock and are always guaranteed, by definition, to make forward progress.
Nonblocking algorithms are fault-tolerant: if a thread executing a non-blocking algorithm
crashes or hangs, only that thread is affected, and the rest of the system can continue running.
Nonblocking algorithms do not break abstraction or composition; programmers can call any
nonblocking algorithms within their critical sections, without having to reason about possible
interactions with other parts of their programs. Moreover, nonblocking algorithms are suit-
able for use in interrupt handlers, because interrupt handlers in a nonblocking system will not
be blocked by other threads, including threads they have interrupted.

Unfortunately, nonblocking algorithms that perform well are very difficult to write —
more so than writing parallel algorithms with locks [Herlihy and Shavit, 2008]. Writing a
nonblocking version of even simple blocking algorithms is often considered to be a publish-
able result [Larus and Rajwar, 2007].

It is this research into nonblocking algorithms that was the prime motivator for trans-
actional memory. Herlihy and Moss [1993], who coined the term “transactional memory”,
originally proposed the transactional model specifically to make it easier to write efficient
nonblocking algorithms.

2.4 What is Transactional Memory?

Transactional memory is a programming model that provides an abstraction on top of crit-
ical sections for managing accesses to shared data, making it easier to reason about critical
sections and allowing them to be composable. Transactional memory uses the concept of
a transaction [Eswaran, Gray, Lorie, and Traiger, 1976; Gray, 1981], borrowed from the
database community [Codd, 1970]. A transaction is defined as “a sequence of actions that
appears indivisible and instantaneous to an outside observer” [Larus and Rajwar, 2007].

14

The Challenges of Parallelism and the Transactional Promise

Using transactional memory, the programmer designates certain critical section code as
being transactional, and it is the underlying transactional memory implementation’s respon-
sibility to ensure that the code runs correctly and efficiently. The programmer, ideally, does
not need to consider the ordering of transactions, the size of the transactions, or how differ-
ent transactions might interact with each other. Instead, programmers merely need to ensure
that their code is correct, assuming the transactional component truly appears indivisible and
instantaneous.

Towards that end, transactional memory provides atomicity, consistency, and isolation for
its component transactions — concepts also borrowed from the database community [Haerder
and Reuter, 1983].

Atomicity means that a transaction is indivisible — it is all or nothing. If a transaction
succeeds in running to completion, it makes its changes visible only once it commits. If
for some reason the transaction cannot commit, it aborts, and it appears as if nothing has
happened, i.e., as if the transaction was never executed in the first place.

Consistency ensures that a transaction must leave the system in a consistent state; it must
obey all legal protocols, invariants, and constraints set by the system.

Isolation ensures that the changes made by a transaction are observable only once a trans-
action commits. It is isolation that is responsible for transactions appearing to be instanta-
neous; intermediate changes performed by the transaction cannot be observed by any thread
outside of the transaction, regardless of whether the other threads are transactional or not. If
other threads could view partial modifications, then they might observe an inconsistent state
of the system.

Below is a simple example of how the transactional model can be used. To protect a criti-
cal section that increments a variable x using locks, a programmer would write the following
code.

l o c k a c q u i r e (x l o c k) ;
x = x + 1 ;
l o c k r e l e a s e (x l o c k) ;

Using the transactional model, a programmer would write the following code.

t r a n s a c t i o n {
x = x + 1 ;

}

In other words, with transactional memory, programmers specify what should be pro-
tected when running in parallel, and the underlying system deals with the how.

A transactional memory system should, for performance reasons, allow multiple transac-
tions to run concurrently as long as they do not conflict. A conflict occurs when concurrent
transactions access shared data and at least one of them modifies the data [Larus and Rajwar,
2007]. When transactions conflict, the transactional memory system arbitrates and serializes
access to the conflicting location, either by stalling or aborting one or more of the conflicting

15

Chapter 2

transactions. Aborting a transaction reverts any changes the transaction has made, and it ap-
pears as if the transaction never happened. Once a transaction aborts, then depending on the
implementation, the system would either try it again — which is the more common approach,
or inform the program that the transaction aborted, e.g., by throwing an exception.

2.5 Transactional Memory Design Space

The design space of transactional memory covers various areas such as the type of language
support necessary for its programming interface, to the different ways of supporting transac-
tions through hardware or software. This section presents some of the points in the design
space that are relevant to this thesis.

At the highest level, there is the issue of how to expose the transactional memory abstrac-
tion to the programmer. Some researchers have proposed additions and extensions to existing
languages to support transactional memory, such as adding the transaction keyword to
the C++ programming language [Adl-Tabatabai, Lewis, Menon, Murphy, Saha, and Shpeis-
man, 2006a]. Others argue that, because programmers are familiar with the locking model,
systems should retain that model at the high level and elide those locks using transactional
support; a technique known as speculative lock elision [Rajwar and Goodman, 2001]. The
work presented in this thesis is mainly concerned with the underlying implementation of a
transactional system, and is independent of its programming interface.

Another aspect of transactional design is related to conflict detection between transac-
tions. First, there is the issue of the level of granularity of conflict detection. This can range
from being a single word, a cache line, or a whole (high-level) object. Granularity is typ-
ically governed by the type of support the system is using. Hardware proposals typically
have a granularity level of a cache line, because, as will be explained later, hardware propos-
als often leverage the underlying cache coherence protocol for conflict detection. Software
transactional memory proposals typically detect conflicts at a granularity level of a word or
an object. Bigger granularity makes it easier to amortize some of a transaction’s overhead,
but increases the chance of false conflicts due to different transactions accessing disjoint parts
of the same granularity unit.

Another issue with conflict detection is when to detect and when to try to resolve a con-
flict between transactions. Some systems eagerly detect conflicts as soon as two or more
transactions appear to access the same data in a conflicting manner, whereas other systems
lazily delay conflict detection until one of the transactions is ready to commit.1 As with many
design alternatives, the better design choice is not obvious. For example, a transaction using
eager conflict detection could abort a conflicting transaction, only to discover later that it is
itself doomed and cannot commit because of conflicts with other transactions. On the other

1Eager conflict detection is analogous to pessimistic concurrency control in database management systems,
whereas lazy conflict detection is analogous to optimistic concurrency control [Larus and Rajwar, 2007].

16

The Challenges of Parallelism and the Transactional Promise

hand, lazy conflict detection could allow a doomed transaction, which is going to eventually
have to abort because of other conflicts, to continue running wasting work and resources,
when eager conflict detection would already have aborted it.

Once a transactional system detects a conflict, there is the issue of conflict management
and resolution. When transactions conflict with each other, there is a winner, who gains
access to the data. There is also a loser, who must wait for the winner to either commit or
abort. The loser waits either by stalling or aborting. Conflict management deals with the
heuristics that determine a transaction’s priority to decide which transaction wins when there
is a conflict.

Versioning is another issue in transactional memory system design, and is concerned with
maintaining information so the system can undo any modifications an aborted transaction has
made. One option is for a transaction to update objects in-place, and keep a backup copy of
the old data. An alternative is for a transaction to buffer its updates, applying them only when
it knows that it will commit successfully.

One of the most important design issues, an issue that could directly affect other design
decisions, is the type of underlying support for a transactional system. Following is a discus-
sion of the different proposed methods to support transactional memory: hardware, software,
and a hybrid combination of the two.

Hardware Transactional Memory

Hardware transactional memory proposals are classified as best-effort [Moir, 2005], bounded,
and unbounded [Larus and Rajwar, 2007].

Best-effort hardware transactional memory [e.g., Herlihy and Moss, 1993; Rajwar and
Goodman, 2001; Chaudhry, Cypher, Ekman, Karlsson, Landin, Yip, Zeffer, and Tremblay,
2009a] does not guarantee that all transactions will eventually commit successfully using
hardware support alone. One of the main limitations of best-effort proposals is the size and
associativity of a processor’s local cache memory.

Best-effort hardware proposals rely on the underlying cache memory and cache coherence
protocol. Cache memory can, with little or no adjustment, perform automatic versioning of
data modified in a transaction. Write-back cache memory keeps the modified copy of a cache
line in a processor’s local cache, until the processor writes it back to memory or shares it
with other processors; therefore, the original copy is still intact either in main memory, or in
another processor’s cache [Larus and Rajwar, 2007]. This simplifies aborting a transaction:
to undo a transaction’s modifications, a processor discards all cache lines modified during the
transaction.

17

Chapter 2

Cache coherence also facilitates conflict detection between transactions. Coherence pro-
tocols, by design, notify a processor of conflicting accesses to memory locations in its cache
by other processors. To support conflict detection in transactional memory, each processor
tracks which cache lines it has accessed as part of a transaction, and infers transactional con-
flicts from coherence conflicts for cache lines accessed as part of the transaction.

Best-effort proposals typically add a bit to each cache line in a processor’s local cache
to track the lines accessed as part of a transaction. Best-effort proposals maintain atomicity
and isolation by ensuring that modifications to those cache lines are not exposed, through the
coherence protocol, until the transaction commits. If a transaction aborts, the processor dis-
cards all lines modified inside the transaction — implicitly rolling back these modifications.
If a transaction commits, the processor ensures that all modified lines are instantly visible to
others by immediately exposing those lines through the cache coherence protocol.

Because best-effort hardware transactional memory relies on the processor’s local cache
to maintain its transactional state, any event that invalidates or evicts a cache line that has been
accessed as part of the current transaction also results in aborting the transaction. Without
additional hardware support, a transaction cannot track the state of an evicted cache line, and
therefore cannot observe if other transactions access the evicted line in a conflicting manner.

Bounded hardware transactional memory proposals [e.g., Hammond, Wong, Chen,
Carlstrom, Davis, Hertzberg, Prabhu, Wijaya, Kozyrakis, and Olukotun, 2004; Ananian,
Asanovic, Kuszmaul, Leiserson, and Lie, 2005; Moore, Bobba, Moravan, Hill, and Wood,
2006] guarantee that certain transactions will eventually commit successfully using hardware
support alone. Bounded proposals typically behave in the same way as best-effort ones, as
long as cache memory resources are sufficient. When the resources are not sufficient, e.g., a
transaction encounters an event that invalidates or evicts a transactional cache line, bounded
proposals rely on additional hardware mechanisms and data structures that reside in main
memory to continue tracking the transactional state.

Bounded proposals are not restricted by the size and associativity of cache memory; how-
ever, they cannot commit transactions that encounter events that are too complicated to handle
in hardware — events that best-effort proposals cannot handle either. Whether an event is too
complicated to handle in hardware depends on the particular proposal. Examples of such
events include context switches, thread migration, virtual memory paging, I/O, exceptions,
and interrupts [Hofmann, Porter, Rossbach, Ramadan, and Witchel, 2007]. When a transac-
tion encounters such an event, it aborts.

Unbounded hardware transactional memory proposals [e.g., Ananian et al., 2005; Rajwar,
Herlihy, and Lai, 2005] guarantee that all transactions would eventually commit, regardless
of their size or the events they may encounter. Therefore, unbounded proposals must be able
to handle any event without indefinitely aborting the same transaction. Having to handle all
types of events adds more complexity to the hardware than in bounded proposals.

18

The Challenges of Parallelism and the Transactional Promise

Software Transactional Memory

Software transactional memory does not use any hardware support beyond what is already
available for concurrent programming. Software transactional memory proposals, therefore,
must rely on software structures for versioning and conflict management.

A simple software transactional memory could be implemented using a single global lock
that serializes all transactions. Such an implementation requires no additional data structures
for versioning, because every transaction, once it has acquired the single lock, is guaranteed
to succeed. Without additional hardware support, using a single global lock does not scale;
however, such a system has low overhead, which might be acceptable if there are not many
transactions.

Practical software proposals usually allow concurrency between transactions. Such pro-
posals use more elaborate methods for conflict detection and resolution than a single global
lock, and rely on a variety of versioning schemes to rollback aborted transactions.

For versioning, a software system could maintain a write set, where it stores all tenta-
tive writes of a particular transaction, committing those writes to memory once it knows the
transaction is guaranteed to commit. Another option would be to maintain an undo log, or a
backup copy, of the modified locations. If a transaction aborts, then the aborted transaction,
or other transactions, can access the undo logs to restore the original data.

For conflict detection, software proposals often create and associate ownership records

with each location, or group of locations, that could be accessed inside a transaction. An
ownership record can refer to a single word in memory and reside in a hash table, or it can
refer to a whole object and reside in its header. Therefore, before a transaction can commit, it
must check the ownership record of every location it has accessed and resolve any conflicts.
Moreover, a transaction must acquire a location’s ownership record before it can commit its
modifications of that location’s data to ensure that only one transaction can modify the data
at the same time.

If a transaction discovers that a location is acquired by another transaction, there is a
conflict. A transaction can wait until the competing transaction has either committed or
aborted, and has thereby relinquished ownership of the location. Otherwise, the transaction
can abort the competing transaction and forcibly acquire ownership of the location.

The decision on whether to wait for or to abort the competing transaction is typically not
hardwired into the software transactional memory algorithm, but determined by consulting
a contention manager module [Herlihy, Luchangco, Moir, and Scherer, 2003b], which may
apply different conflict resolution policies. The contention manager is often implemented as
an out-of-band module [Herlihy et al., 2003b], where its policy and logic are independent
from the underlying algorithm. Therefore, an out-of-band contention manager can imple-
ment various policies and conflict resolution schemes without affecting the correctness of the
software transactional memory.

19

Chapter 2

Transactions that only read a location do not necessarily need to acquire ownership of
that location. Using invisible reads, a transaction can detect conflicts by validating, before a
transaction commits, that a location has not been modified since the transaction has read it.

A transaction can validate by checking that the location’s ownership record has not
changed since it last read it, because for another transaction to modify the data it must also
have modified the location’s ownership record. A transaction can also validate by comparing
the current data value of the location with the value it has used previously. If the value has
not changed, then as far as the transaction is concerned, no other transactions have modified
this location in the interim, and no conflicts have occurred. This is known as value-based

conflict detection [Ding, Shen, Kelsey, Tice, Huang, and Zhang, 2007; Olszewski, Cutler,
and Steffan, 2007].

As an alternative to invisible reads, transactions could use read ownership records, or
visible reads, for conflict detection. A transaction that reads a location adds itself to a readers
list associated with that location. Any transaction that wants to modify the location must
check this readers list and resolve all conflicts before it can commit.

Software transactional memory algorithms can be either blocking or nonblocking. Non-
blocking software transactional memory, like nonblocking algorithms in general, are more
complex and challenging to write. Some have even argued that nonblocking software trans-
actional memory algorithms are inherently slow and should not even be considered [Ennals,
2006]. Chapter 4 presents my response to this argument.

Because software transactional memory proposals must perform these additional tasks in
software, compared with hardware transactional memory, the overhead of software transac-
tional memory is quite high, as explained in the next chapter. Software proposals can be
an order of magnitude slower than hardware for some workloads. Software transactional
memory can be designed with low overhead; the simple system based on a single global lock
described earlier is an example of that. However, such systems do not scale without additional
hardware support.

Hybrid Transactional Memory

Hybrid transactional memory uses both hardware and software for its underlying implemen-
tation. The goal of hybrid transactional memory is the flexibility of software and the perfor-
mance of hardware, while requiring hardware support that is considered to be realistic and
feasible to implement.

Hybrid transactional memory design can begin with a software transactional memory,
and use hardware support to optimize its bottlenecks. Hybrid design could also begin with a
hardware transactional memory, and use software to handle the corner cases and complicated
aspects that hardware cannot feasibly handle. A special case of this approach, highlighted
because of its relevance to this thesis, is when a hybrid system attempts a transaction using

20

The Challenges of Parallelism and the Transactional Promise

best-effort hardware transactional memory, and falls back on a software transaction when the
hardware transaction (repeatedly) aborts [Lie, 2004; Moir, 2005].

For performance, it is important that a hybrid system run as many transactions as possible
using the fast hardware path, and avoid using the slower software path. For correctness, a
hybrid system must detect and correctly handle conflicts between transactions that could be
running using hardware or software support.

In a hybrid system that uses best-effort hardware and falls back on software, hardware
transactions automatically detect conflicts with any software accesses that follow hardware
accesses. This is a direct result of hardware transactions relying on the cache coherence
protocol for conflict detection. However, software transactions do not automatically detect
conflicts with hardware transactions when a hardware transaction accesses an object after the
software transaction does, because hardware transactions, by design, are a low level system
abstraction whose effects are isolated from software until the hardware transaction commits.
Therefore, the burden is on hardware transactions to ensure that the data they access is not
being accessed by a concurrent software transaction in a conflicting way. This checking could
be instrumented as part of the hardware transaction’s code, but adds overhead to hardware
transactions in this type of hybrid system.

2.6 Evaluating Transactional Memory

One of the challenges in transactional memory pertains not to the design of a transactional
system, but to evaluating how well it performs. The problem with evaluating transactional
systems is that the transactional model is new, so there are few existing applications that use
this model.

Many of the first transactional systems evaluated their proposals using a set of synthetic
and microbenchmarks created specifically for the purpose of testing transactional memory
proposals [Herlihy et al., 2003b; Marathe, Spear, Heriot, Acharya, Eisenstat, Scherer, and
Scott, 2006]. These benchmarks, as with any synthetic benchmark, do not represent realistic
workloads.

Later transactional proposals used some of the older and well-established benchmarks,
such as the SPLASH-2 benchmark suit [Woo, Ohara, Torrie, Singh, and Gupta, 1995], for
their evaluation, by converting the benchmarks’ critical sections to use transactions instead
of locks [Moore et al., 2006]. The problem with this approach is that critical sections written
for the mutually-exclusive locking model are optimized by experts to be small and have as
little shared data as possible. This type of workload is not necessarily representative of how
transactions might be used by the average programmer.

A few research groups proposed new benchmarks to fill the gap. One of the most com-
prehensive benchmark suite designed for evaluating transactional memory is the STAMP
benchmark suite [Minh, Chung, Kozyrakis, and Olukotun, 2008]. The STAMP benchmarks

21

Chapter 2

use different types of algorithms and exhibit different transactional characteristics in terms of
transaction length, conflict rates, and size of the read and write sets. Because of STAMP’s
broad coverage, it is the most widely used benchmark suit for evaluating transactional sys-
tems. STAMP, however, is written by experts on parallel programming. Although some of
its workloads represent realistic applications, the programming style is not necessarily repre-
sentative of how the average programmer might use the transactional model.

To cover a wider variety of workloads, the evaluations presented in this thesis use a com-
bination of synthetic benchmarks I have developed, microbenchmarks, SPLASH-2 bench-
marks, and STAMP benchmarks. Benchmarks are seldom comprehensive or conclusive, but
using a variety of benchmarks helps develop better intuition of the performance of the evalu-
ated systems.

2.7 The Current State of Transactional Memory

This section explores the current state of transactional memory and the progress it has made
towards becoming a mainstream model. It looks at transactional memory in production sys-
tems and in systems that are being tested for production use.

For hardware transactional memory, as far as I am aware, the only two attempts of sup-
porting hardware transactional memory in a commercial processor are by Sun Microsystems
and Azul Systems.

In 2007, Sun Microsystems announced a new processor, codenamed Rock, which as of yet
has not been released to the public [Chaudhry et al., 2009a].2 Rock’s design was a departure
from Sun’s Niagara family of processor. The Niagara family of processors comprises a group
of simple cores designed for high throughput applications such as web servers. Rock was
designed as a high-performing floating-point intensive processor. Each Rock processor has
16 cores, each core capable of running two threads. One of the new features in Rock is
that it performs aggressive speculation, which Sun leveraged to support best-effort hardware
transactional memory. I used a Rock prototype for part of the evaluation presented in this
thesis. Rock’s best-effort hardware, and the particulars of the prototype used, are discussed
in the next section.

Azul Systems is a privately-held company that manufactures specialized computer appli-

ances that run Java-based applications [Click, 2009c]. Their Vega 3 series computer has 864
cores, and is designed for high throughput and scalability. Azul’s processor implements a
best-effort hardware transactional memory, which they use to elide locks in the Java Virtual
Machine [Click, 2009a,b]. Because Azul’s hardware is best-effort, when a hardware transac-
tion aborts a certain number of times, the system falls back on acquiring the Java lock it had
attempted to elide.

2It is likely that Rock has been cancelled [Vance, 2009], although Sun has neither confirmed nor denied this
yet.

22

The Challenges of Parallelism and the Transactional Promise

Azul’s hardware transactional memory uses the first level (L1) cache as its transactional
cache, adding two bits per cache line to track the lines that have been read or modified as part
of a transaction. Therefore, hardware transactions are limited by the size and associativity of
the L1 cache. A transaction aborts if a cache line it has accessed speculatively is invalidated
or evicted from the cache, either because of a conflict with another processor, or if the L1
cache is not large enough to hold all the transactional data.

Even though hardware transactional memory was first proposed in 1993 [Herlihy and
Moss, 1993], only two actual implementations exist today, Sun’s and Azul’s. Neither are
on a commercially-available general purpose computer, and both are best-effort. This shows
that implementing hardware support for transaction — and unbounded support in particular
— is difficult, at least in the sense that processor manufacturers believe that the cost/benefit
tradeoff does not yet justify any hardware implementation that goes beyond best-effort.

When it comes to software transactional memory, the only production-quality compiler
that supports it is the Glasgow Haskell Compiler, the main compiler for the Haskell pro-
gramming language [Perfumo, Sönmez, Stipic, Unsal, Cristal, Harris, and Valero, 2008; ghc,
2010]. Haskell is a pure functional programming language, which by default does not allow
mutable variables. Therefore, it can more easily accommodate transactional memory: the
language is defined so mutable variables can be accessed only inside transactions [Harris,
Marlow, Peyton-Jones, and Herlihy, 2005].

As for more mainstream programming languages, there are still no production-quality
compilers or runtime environments, that I am aware of, with transactional memory support.
However, Microsoft has released STM.NET, an experimental version of the .NET framework
that supports transactional memory [stm, 2009]. Intel has also an experimental C++ compiler
with transactional memory support [int, 2010a]. Sun has recently developed a C++ compiler
that supports software and hybrid transactional memory, and takes advantage of Rock’s best-
effort hardware support [Lev, Luchangco, Marathe, and Moir, 2009]. The GNU Compiler
Collection (GCC) project [Stallman, 2004] is working on incorporating software transactional
memory support into the collection [gcc, 2010], but has not released it yet.

2.8 The Rock Processor and the ATMTP Simulator

Sun Microsystems developed a new processor, codenamed Rock, which supports best-effort
hardware transactional memory [Chaudhry et al., 2009a]. Rock is not commercially avail-
able; however, Sun granted me access to a prototype. Sun has also released a simulator,
the Adaptive Transactional Memory Test Platform (ATMTP) [Moir, Moore, and Nussbaum,
2008]. ATMTP is binary-compatible with Rock, and is a first-order approximation of the
behavior of transactions on Rock. Both Rock and ATMTP are used for the evaluation in later
chapters. This section presents a background of both, focusing on the aspects relevant to
transactional memory.

23

Chapter 2

Rock is a 64-bit multicore SPARC microprocessor. The prototype I had access to ran a
single Rock processor, with 16 cores, each core configured to run at 1.5 GHz, and to support
only one thread (i.e., SSE mode).3 Rock’s 16 cores are arranged in clusters of four: each
cluster shares a 32 KiB L1 instruction cache and a 64 entry instruction translation lookaside

buffer (TLB), and each two cores within a cluster share a 32 KiB L1 data cache and a 32 entry
data TLB. Both the L1 instruction and the L1 data caches are 4-way set-associative. All cores
share a 2 MiB unified L2 cache, which consists of four 8-way set-associative banks. Rock
uses a directory-based MESI cache coherence protocol. Figure 2.2 shows the organization of
a single Rock chip.

Crossbar Interconnect

Core 0 Core 1

Core 2 Core 3

Instruction
Cache (L1)

Data
Cache (L1)

Data
Cache (L1)

Unified
Cache

(L2)

Unified
Cache

(L2)

Unified
Cache

(L2)

Unified
Cache

(L2)

Core 0 Core 1

Core 2 Core 3

Instruction
Cache (L1)

Data
Cache (L1)

Data
Cache (L1)

Core 0 Core 1

Core 2 Core 3

Instruction
Cache (L1)

Data
Cache (L1)

Data
Cache (L1)

Core 0 Core 1

Core 2 Core 3

Instruction
Cache (L1)

Data
Cache (L1)

Data
Cache (L1)

Figure 2.2: The Rock processor organization [based on the description in Chaudhry et al.,
2009a]

In addition to best-effort hardware transactional memory, Rock supports other forms of
aggressive speculation, such as the use of a hardware scout when a thread is stalled because
of a cache miss [Chaudhry, Cypher, Ekman, Karlsson, Landin, Yip, Zeffer, and Tremblay,

3It is the same Rock prototype that Dice, Lev, Moir, and Nussbaum [2009a] refer to as “R2” in their work.

24

The Challenges of Parallelism and the Transactional Promise

2009b]. A hardware scout is a speculative hardware thread that runs ahead of the main thread
it is supporting, prefetching cache lines and speculatively retiring instructions out-of-order.

To support speculation in general, Rock tracks speculatively accessed cache lines at the
L1 data cache. Rock uses a 32 entry write buffer, per core, to hold speculative stores, in-
stead of storing them in the L1 cache. Rock introduces two new instructions specifically for
transactional memory support: chkpt and commit. The chkpt instruction begins a transac-
tion, and specifies a fail address, which it branches to if the hardware transaction aborts. The
commit instruction attempts to commit the current hardware transaction. Rock does not have
an instruction explicitly designed to abort a hardware transaction. However, there are many
instructions that Rock does not support inside a transaction; such instructions can be used to
explicitly abort a transaction.

When a transaction aborts, Rock provides feedback on the cause of the abort using the
Checkpoint Status (CPS) register. The contents of the CPS register is typically read by the
logic at the fail address of the chkpt instruction. Depending on the cause of the abort, the
program could either attempt the transaction again in hardware, or use a software fallback
mechanism, such as a software transaction or a lock.

Rock’s hardware support is best-effort, and many events cause transactions in Rock to
abort. Some of the events that could abort a Rock transaction are the following [Dice, Lev,
Moir, Nussbaum, and Olszewski, 2009b].

• Running out of resources in the L1 data cache, caused by too many reads or too many
writes.

• Running out of space in the write buffer, caused by too many writes.

• Cache line invalidation, caused by a coherence conflict with another thread. Whenever
there is a conflict over a cache line, the requester of the line always wins, which in-
validates all other copies of the line, in turn aborting any active transactions that have
accessed that line.

• Unsupported instructions. Some instructions, such as the divide instruction, always
abort transactions.

• Function calls inside a transaction. This is a subset of unsupported instructions,
because Rock aborts transactions that execute a save instruction and a subsequent
restore instruction. The save/restore combination is a SPARC assembly idiom
that allocates and deallocates register sets, and is typically used in function calls
[Weaver and Germond, 2000].

• Mis-speculation. As mentioned, Rock uses aggressive speculation to improve perfor-
mance. If Rock speculates inside a transaction, and the speculations turns out to have
taken the wrong path, the transaction aborts.

25

Chapter 2

• Exceptions, TLB misses, page faults, and interrupts.

Because Rock does not guarantee that any transaction will eventually succeed, the trans-
action fail address should always provide a software mechanism for the transaction to fall
back on, even for simple transactions.

To test some design alternatives that model a Rock-like processor, I used and extended
Sun’s ATMTP simulator [Moir et al., 2008]. ATMTP is part of the University of Wiscon-
sin’s General Execution-driven Multiprocessor Simulator (GEMS) [Martin, Sorin, Beck-
mann, Marty, Xu, Alameldeen, Moore, Hill, and Wood, 2005], which in turn is a Simics

extension module [Magnusson, Christensson, Eskilson, Forsgren, Hallberg, Hogberg, Lars-
son, Moestedt, and Werner, 2002].

Simics is a full-system simulator capable of simulating a complete SPARC system run-
ning Solaris with complete binary compatibility. Simics, however, does not perform any low-
level hardware or memory system modeling, and, by default, assumes that every instruction,
including memory instructions, takes one clock cycle to complete. Simics provides hooks
that can adjust the timing and control flow of instructions.

The Wisconsin GEMS toolset uses the hooks Simics provides to model different memory
systems, cache coherence protocols, and transactional memory proposals. GEMS relies on
Simics to perform the functional aspect of the simulation, and uses its own timing models.
Therefore, Simics determines what the result of executing a certain instruction is, whereas
GEMS determines when that instruction should execute, and how long it should take. GEMS
comprises two main modules, Ruby and Opal (Figure 2.3).

Detailed
Processor

 Model

OpalSimics

Figure 2.3: Overview of the architecture of Wisconsin GEMS [reproduced from Martin et al.,
2005, with modifications]

26

The Challenges of Parallelism and the Transactional Promise

Ruby models a multiprocessor’s memory system in detail, including caches, cache con-
trollers, interconnects, and memory banks. Ruby is written in C++, and communicates with
Simics using hooks that Simics triggers when memory operations are invoked. Simics also
provides hooks for altering the contents of memory, and the outcome of load and store in-
structions. Ruby uses these hooks to model transactional memory proposals.

Opal models a dynamically scheduled superscalar multiprocessor in detail. Opal, how-
ever, is not supported by the ATMTP simulator, because of the complexity involved in modi-
fying its detailed architectural model to support transactional memory. With each additional
module in Simics, the total simulation time increases by an order of magnitude [Marty, Beck-
mann, Yen, Alameldeen, Xu, and Moore, 2005]. The sets of experiments I run typically take
over a week to complete, running on a dedicated cluster; therefore, increasing their running
time by an order of magnitude is not feasible. For these reasons, Opal is not used.

Not using Opal, and not modeling the processor in detail, means that the simulation results
may be less accurate. Most of the evaluation in this thesis is concerned with the memory
system, which Ruby models in detail. Although the simulation results might be less accurate,
I believe they are suited for evaluating transactional memory proposals, so do others who
have used the same simulation environment [Moore et al., 2006; Yen, Bobba, Marty, Moore,
Volos, Hill, Swift, and Wood, 2007; Bobba, Goyal, Hill, Swift, and Wood, 2008; Moir et al.,
2008; Shriraman, Dwarkadas, and Scott, 2008]. Comparing the experiments on the simulator
with the ones on Rock corroborates this (Sections 4.3 and 5.2.4).

ATMTP is itself a Ruby component. The system ATMTP models is quite different from
Rock. Because ATMTP uses only Ruby and not Opal, it models a single-issue, in-order,
processor. ATMTP does not accurately model instruction-level execution; each instruction,
apart from those that access memory, takes one clock cycle to complete. Although ATMTP is
binary-compatible with Rock, some of its transactions might commit successfully when they
would have otherwise aborted on Rock, and vice-versa. Sun has not released any detailed
documentation describing the details of these scenarios.

ATMTP’s processor organization differs significantly from Rock’s organization. ATMTP
models a multicore chip, where each core has its own L1 instruction and data caches, and
all cores share a unified L2 cache, which consists of sixteen banks. The size and associativ-
ity of the caches are adjustable parameters. ATMTP models a directory-based MESI cache
coherence protocol; however, it is not known how similar the details of ATMTP’s coherence
protocol are to Rock’s. Figure 2.4 shows the organization of the system ATMTP models.

ATMTP models Rock’s transactional instructions, chkpt and commit. ATMTP can also
be configured to allow some of Rock’s unsupported instructions inside transactions, and by
extension, to allow function calls in transactions. ATMTP can apply different policies for
handling conflicts between hardware transactions, such as Rock’s requester-wins [Moir et al.,
2008], and priority-based timestamp policies [Bobba, Moore, Volos, Yen, Hill, Swift, and

27

Chapter 2

Core 0

Instruction
Cache (L1)

Data
Cache (L1)

Core 1

Instruction
Cache (L1)

Data
Cache (L1)

Core 15

Instruction
Cache (L1)

Data
Cache (L1)

Unified Cache (L2)

Point-to-Point Interconnect

Unified Cache (L2) Unified Cache (L2)

Figure 2.4: ATMTP processor organization model

Wood, 2007]. However, exceptions and interrupts are still difficult to handle in ATMTP and
cause its transactions to abort.

2.9 Other Challenges in Parallel Programming

Even though the main focus of this thesis is on transactional memory, I emphasize that trans-
actional memory is not a panacea. Transactional memory does not solve all problems related
to parallel programming and does not promise to do so. Transactional memory provides a
level of abstraction that makes it easier to reason about accessing shared data between dif-
ferent threads. This abstraction does not make an incorrect algorithm, or a buggy program,
correct. It does, however, reduce the chances of concurrency bugs by making it easier to
reason about the program.

Transactional memory makes no promises regarding performance either. Although many
transactional memory implementations try to achieve good performance, it is possible to write
efficient code by hand using traditional methods. As with many other abstractions, such as
using a high level language instead of a low level language, performance is a cost/benefit
tradeoff between the time programmers spend writing and debugging their programs and the
time it takes to run those programs.

Below is an overview of some of the challenges that transactional memory, as a model,
does not address.

Amdahl’s Law

Gene Amdahl [1967] formulated what is now known as Amdahl’s law, which implies that
there was a fundamental limit to the speedup possible from parallelism. Assuming a pro-
gram has a serial component and a parallel component, and assuming that all the available
processors can be used perfectly without any overhead, the best speedup possible from using
additional processors is represented by the following equation.

28

The Challenges of Parallelism and the Transactional Promise

speedup = (s + p)/(s + p/N)

where s is a program’s sequential component, p is its parallel component, and N is the total
number of processors running the program.

For example, assume that a program starts by loading data from a drive and initializing
the data, an operation which takes 10 seconds. The program then performs computations
that can run concurrently, which take 90 seconds to run on a single processor. Amdahl’s law
shows that, depending on the workload, there is less gain from adding more processors. With
infinite processors, the program in this example cannot run in less than 10 seconds — the
time it takes to run the serial component. Therefore, the best possible speedup is a factor of
10 in this example.

The implication of Amdahl’s law is that programmers cannot expect to take any program
and automatically get improvement with additional cores, even if the program is written for a
parallel system. To benefit from the additional cores, programmers must increase the parallel
portion of the program, either by using workloads with a bigger parallel component, or by
using a different algorithm that has a smaller sequential component. Otherwise, even a small
serial component becomes a bottleneck as the number of processors increases.

Managing and Coordinating Multiple Threads

Another difficulty that programmers face is how to manage all the threads in an application.
The first problem is deciding on how many threads a program should spawn to run its

workload. Spawning too many threads, more than the underlying hardware can handle, could
result in contention among the threads, and waste resources by having the hardware swap
between the different threads. Even if there is no contention between the threads, the act
of creating a new thread can incur significant overhead. For example, in Apple’s OS X,
each thread has a space overhead of 512 KiB and takes several hundred instructions to create
[Siracusa, 2009].

Programmers might be tempted to create as many threads as the hardware allows. This
might be a good solution if that program is the only one running on the system; but if multiple
programs are running, this would create contention over the available resources between the
different programs. This becomes more complicated if the workload of individual programs is
variable. This problem is tangential to transactional memory, and is the domain of solutions
such as Cilk [Blumofe, Joerg, Kuszmaul, Leiserson, Randall, and Zhou, 1995], OpenMP
[ope, 2008], and Grand Central Dispatch [gcd, 2010], all of which abstract away the process
of creating and managing multiple threads.

Leaky Abstractions and the False Sharing Problem

The notion of abstraction is one of the cornerstones of software engineering, and is particu-
larly important on systems as complex as today’s processors. However, abstractions are not

29

Chapter 2

always perfect and often leak [Spolsky, 2004]. That is, an abstraction can break, or become
partially exposed, when it is used in certain workloads that the abstraction designers might
not have anticipated.

For example, virtual memory abstracts away the limitations of physical memory, and,
among other things, provides the illusion of infinite memory. If users were to load programs
that use more than the physical memory available on a computer, the operating system resorts
to paging to the hard drive, users notice that the hard drive is spinning and thrashing, and the
computer slows down significantly. The system would technically still work, but it might be
too slow to do anything useful with.

Another example of leaky abstractions is the problem of false sharing, at the cache line
level, in cache coherent multiprocessors [Goodman and Woest, 1988]. Cache memory allows
each processor to keep a local copy of memory locations it is accessing, allowing it to read
and modify its own cached copy for better performance, while coherence protocols guarantee
that, despite the memory system potentially having multiple copies of the same memory
location, each processor has a consistent view of memory. As long as processors access
different memory locations, there are no conflicts, and coherence should ideally allow these
accesses to proceed without impacting performance.

In practice, processors do not maintain coherence at the granularity level of a single ad-
dress byte, or even a single word. For simplicity, processors maintain coherence at the gran-
ularity level of a cache line, which typically ranges from 64 bytes to 256 bytes. Therefore,
if two processors access different parts of the same cache line, coherence protocols consider
that as a coherence conflict, and serialize accesses to that cache line.

For example, consider the code segment below, where two threads concurrently increment
two logically distinct values.

/∗
∗ Two g l o b a l v a r i a b l e s
∗ /

i n t x = 0 ;
i n t y = 0 ;

/∗
∗ c a l l e d by t h r e a d 1
∗ /

whi le (x < 1000000) x ++;

/∗
∗ c a l l e d by t h r e a d 2 r u n n i n g i n p a r a l l e l w i t h t h r e a d 1
∗ /

whi le (y < 1000000) y ++;

If thread 1 and thread 2 run concurrently, then because the threads are accessing different
data, programmers would expect this program to run twice as fast on a dual core system as it
would on a system using a single processor.

However, a typical compiler might allocate the variables x and y consecutively, to ad-
dresses that fall on the same cache line. Every time thread 1 increments x, it exclusively
acquires the line containing x. Because that line is shared with y, by acquiring the line con-

30

The Challenges of Parallelism and the Transactional Promise

taining x exclusively, thread 1 also acquires y exclusively even though it is not interested in
it. The performance of running a program that suffers from this type of false sharing could
be equivalent to running the threads sequentially rather than in parallel. It could even result
in worse performance than sequential execution because of the thrashing of the cache lines
between the two processors.

For this particular example, one possible solution is to pad the variables to ensure they
fall on different cache lines. This could be done by adding a dummy variable, as big as the
cache line size, between x and y, as the code segment below demonstrates.

d e f i n e CACHE LINE SIZE 64

i n t x = 0 ;
char padd ing [CACHE LINE SIZE] ;
i n t y = 0 ;

Padding increases the memory footprint of the program and reduces locality. What if, in
a different part of the program, the same thread needs to access both x and y? Instead of
having to request only one cache line, the processor now needs to request two cache lines.

Padding is also difficult when programming in a high level environment, such as the
Java Virtual Machine or the Microsoft .NET Framework. High-level environments provide
yet another level of abstraction and make it difficult for programmers to specify the data
layout at the lower levels. The Sun Java Virtual Machine, for example, does not lay out the
variables of a class in the order they are declared, as C typically does for its structs (structured
records). Instead, it orders them by type, and adds headers to each object [Neto, 2008]. In this
case, padding might have the effect of separating an object’s data from its header, impacting
performance even more.

In this example, identifying the variables that suffer from false sharing is simple; however,
this can be significantly more challenging in more complex programs. Furthermore, the
programmer needs to know an architectural detail, namely the cache line size, and possess
a basic understanding of cache coherence to be able to resolve this problem. All of these
architectural details should ideally be abstracted away.

31

Chapter 3

A Case for Hybrid Transactional Memory

This chapter makes a case for hybrid transactional memory. It argues that, if transactional
memory as a programming model is going to be successful, and go beyond being a niche
tool, it would be with the help of hybrid transactional memory. This argument is based on
the observations of many experts in the field, and on my own experiences, which the coming
chapters elaborate on.

The argument in this chapter can be summarized as follows.

With the rise of multicores, parallel programming is becoming a necessity if programmers
want to take advantage of the additional processing power; however, parallel programming
is difficult. To make parallel programming feasible, programmers need a new programming
model, or abstraction, that helps them reason about parallel programs. In my opinion, trans-
actional memory is one of the most promising models that could make parallel programming
manageable.

Best-effort hardware transactional memory has been implemented on at least two proces-
sors; however, it is not capable of handling all transactions, and therefore cannot provide a
complete solution. Bounded transactional memory is more complex than best-effort, yet is
also not capable of handling all transactions, and therefore does not provide a complete so-
lution either. Unbounded hardware transactional memory is fast and promises to handle all
transactions in hardware; however, it is impractical to implement.

Software transactional memory can be — and has been — implemented to run on cur-
rent systems at no additional hardware cost; however, software transactional memory adds
too much overhead for it to become a viable alternative to locks. Therefore, hybrid transac-
tional memory is the best — and currently the only — practical approach that addresses the
shortcomings of both hardware and software proposals.

This chapter starts by making a case for transactional memory as a model in general, and
then focuses on hybrid transactional memory in particular.

33

Chapter 3

3.1 A Case for Transactional Memory

To make a case for hybrid transactional memory, it should be established that transactional
memory itself has a compelling case. Although a detailed argument for transactional memory
is outside the scope of this thesis, an argument for hybrid transactional memory would be
incomplete without a brief discussion.

First, I reemphasize that transactional memory is not a panacea, it will not solve all prob-
lems related to parallel programming, and it does not promise to do so. The main promise of
transactional memory is that it provides a level of abstraction over critical sections that helps
make code that uses transactions modular and composable, which is difficult to achieve with
a lock-based model.

By promising abstraction, transactional memory implicitly promises to make it easier to
write code that performs well. Performance, in and of itself, is not the main goal of transac-
tional memory. Transactional memory promises to make the programmer’s time versus the
program’s performance tradeoff in favor of the programmer, as many other abstractions do
[Spolsky, 2004]. For the same amount of time a programmer spends writing, optimizing, and
maintaining code, transactional code would be faster than traditional lock-based code.

The question becomes, is there evidence that the transactional model could deliver on its
promise to make it easier to write and reason about parallel programs?

Below are some of the arguments and evidence in the literature that make the case for
the transactional model. Some arguments show that transactional memory simplifies writing
concurrent algorithms. Other arguments show that it can improve the performance of complex
real-world applications without adding additional complexity to the code. Furthermore, there
are empirical user studies of non-expert programmers using transactional memory, which
demonstrate how non-expert programmers might benefit from using the transactional model
in practice.

3.1.1 Simplifying Concurrent Algorithms

The first argument is that transactional memory simplifies reasoning about concurrent algo-
rithms. An intuitive example of this argument, observed by Professor Maurice Herlihy, is
writing a concurrent first-in first-out (FIFO) queue [Larus and Rajwar, 2007]. A sequen-
tial FIFO queue is a simple data structure typically taught in introductory computer science
courses. An example of writing such a queue, just with the enqueue operation, in (simplified)
C would be as follows.

s t r u c t Node {
i n t v a l u e ;
Node ∗ n e x t ;

} ;

34

A Case for Hybrid Transactional Memory

s t r u c t Queue {
Node ∗head ;
Node ∗ t a i l ;

} ;

void enqueue (Queue ∗queue , i n t v a l u e)
{

Node ∗newNode ;

newNode = m a l lo c (s i z e o f (Node)) ;
newNode−>v a l u e = v a l u e ;
newNode−>n e x t = NULL;
queue−>t a i l −>n e x t = newNode ;
queue−> t a i l = newNode ;

}

However, writing a correct and concurrent queue that performs well is a difficult task.
As a testimony of its difficulty, Michael and Scott published a solution to the concurrent
queue problem in the 1996 Symposium on Principles of Distributed Computing, a leading
conference in the field of concurrent algorithms.

By contrast, with transactional memory, the solution of this problem is as simple as the
code that follows.

void enqueue (Queue ∗queue , i n t v a l u e)
{

Node ∗newNode ;

t r a n s a c t i o n {
newNode = ma l lo c (s i z e o f (Node)) ;
newNode−>v a l u e = v a l u e ;
newNode−>n e x t = NULL;
queue−>t a i l −>n e x t = newNode ;
queue−> t a i l = newNode ;

}
}

On a more practical level, Dice, Lev, Marathe, Moir, Olszewski, and Nussbaum [2010]
explored the use of Rock’s best-effort hardware transactional memory to simplify writing
concurrent algorithms. They experimented with a range of complex concurrent algorithms,
such as double-ended queues, work-stealing queues, and memory allocators — all more com-
plex than a FIFO queue. They reported that, not only was it easier to make these algorithms
concurrent using transactions, but also that these algorithms’ throughput was almost as good,
if not better than other concurrent versions of the same algorithms written by experts.

3.1.2 Improving the Performance of Real-World Applications

Another argument for transactional memory is based on the experiences of experts applying
transactional memory to real-world applications, with the result being simpler code, improved
performance, and better reliability.

One such application is the Linux kernel, the most popular open source operating system
kernel, which has been the focus of two studies. Operating system kernels are attractive tar-
gets for transactional memory because the whole computer system relies on them; therefore,

35

Chapter 3

any improvement in the kernel could improve the user experience as a whole. Kernels are
also complex programs that must handle multiprocessing before any user application running
on top of the kernel could.

Kernel concurrency is complicated because of the nature of interrupts and their handlers.
An interrupt handler could be invoked in the middle of executing a variety of different ap-
plications. This complicates the handlers’ design and makes it more difficult to use locks
because an interrupt handler cannot share any locks with the application its interrupting, oth-
erwise it might deadlock with that application [Ramadan et al., 2007].

Hofmann, Rossbach, and Witchel [2009a; 2009b] evaluated using transactions in
Linux 2.4 and compared the result with Linux 2.6. Linux 2.4, released early 2001, uses
about 8,000 locks for its synchronization needs. It also relies heavily on the Big Kernel

Lock, a coarse-grained lock it uses to protect different, possibly unrelated, kernel operations.
Linux 2.6, released late 2003, was better optimized for multiprocessing: it uses at least
640,000 locks and restricts the use of the Big Kernel Lock more so than Linux 2.4. This
finer locking granularity results in a three-fold speedup for Linux 2.6 in some cases. This
improvement comes at the cost of having to reason about two-orders of magnitude more
locks.

Hofmann et al. modeled a best-effort hardware transactional memory to elide locks in
Linux 2.4, falling back on locks when transactions repeatedly abort. They then compared the
results with an unmodified Linux 2.6. For the benchmarks they used, transactional Linux’s
performance closed half the performance gap between Linux 2.4 and 2.6, and in some cases, it
closed almost 70% of the gap — without adding much programming complexity to Linux 2.4.

Another example of using transactional memory in Linux is the work of Ramadan, Ross-
bach, Porter, Hofmann, Bhandari, and Witchel [2007] on using transactions in Linux 2.6.
As mentioned, Linux 2.6 is already optimized for multiprocessing, and therefore has less
potential for performance improvement — at least compared with Linux 2.4.

Instead of using best-effort hardware transactional memory, Ramadan et al. modeled un-

bounded hardware transactional memory, converting lock-protected critical sections in Linux
to transactions, without requiring a fallback mechanism. In addition to the other advantages
of using transactions instead of locks, such as better fault tolerance, deadlock prevention, and
no priority inversion, in one benchmark, they obtained an improvement in execution time of
80% compared with the regular Linux 2.6.

Other applications that could also benefit from transactional memory are runtime envi-
ronments and byte-code interpreters. In particular, researchers have investigated the use of
transactional memory to improve concurrency in the Python byte-code interpreter.

Python is a high level programming language introduced in 1991 [van Rossum, 2009a].
There are many different implementations of Python, but the de facto standard is CPython, a
byte-code interpreter written in C. CPython was not initially concerned with performance on
multiprocessors, a reasonable approach given the systems Python ran on and the workloads

36

A Case for Hybrid Transactional Memory

it was expected to handle at the time. To protect its critical sections when running multiple
threads, CPython uses a single global lock, known as the Global Interpreter Lock (GIL). This
lock serializes all accesses to CPython’s internal structures; therefore, it cannot fully take
advantage of multiple processors except when performing certain tasks not protected by the
GIL, such as I/O and running external modules.

CPython developers tried to decompose the coarse-grained GIL into multiple fine-grained
locks; however, the resulting overhead in the single-threaded case — the common case for
most Python programs — was a slowdown by a factor of two; so they abandoned the attempt
[Stein, 2001].

Riley and Zilles [2006] proposed substituting GIL-protected critical sections with with
transactions, and present an evaluation of the viability of this approach. Blundell, Raghavan,
and Martin [2010] evaluated using transactional memory to improve Python’s scalability us-
ing a simulator. I also investigated a similar approach using Sun’s Rock machine.

Chapter 6 presents a more detailed discussion of using transactions in Python. In sum-
mary, with a certain level hardware support for transactions, Python interpreters can go from
not scaling to scaling almost linearly. Even with limited best-effort hardware support, such
as Rock’s, some workloads benefit from transactions and scale with the number of threads.

3.1.3 Empirical User Studies

One of transactional memory’s main appeal is that it should make it easier even for non-

experts to reason about concurrent programs. Recent empirical studies investigated whether
it is, in fact, easier for non-experts to program using transactional memory compared with
traditional synchronization mechanisms. Those studies came to the same broad conclusions:
transactional memory does make it easier to program.

The first study, by Rossbach, Hofmann, and Witchel [2009, 2010], involved 237 under-
graduate students taking an operating systems course at the University of Texas at Austin.
Each student was required to implement the same concurrent program, in Java, using coarse-
grained locks, fine-grained locks, and software transactional memory. The program the stu-
dents implemented simulates and displays a shooting gallery, where different randomized
shooter threads shoot red or blue paint balls — so the lane changes color when a shooter
shoots. Shooters are allowed to shoot a lane only if it is white, and only one shooter may
shoot the same lane at the same time. There are also cleaner threads that clean the gallery
only once all the lanes have been shot. The program graphically displays the simulated shoot-
ing range, which enables the students to visually identify some of the possible race conditions
and bugs (Figure 3.1).

In terms of development time, the study reports that programming with transactional
memory took more time than using coarse-grained locks, but less time than using fine-grained
locks. The authors attribute this to the familiarity students already have with locks and the

37

Chapter 3

Figure 1. A screen-shot of sync-gallery, the program undergraduate OS students were asked to implement. In the figure the colored boxes
represent 16 shooting lanes in a gallery populated by shooters, or rogues. A red or blue box represents a box in which a rogue has shot either
a red or blue paint ball. A white box represents a box in which no shooting has yet taken place. A purple box indicates a line in which both
a red and blue shot have occurred, indicating a race condition in the program. Sliders control the rate at which shooting and cleaning threads
perform their work.

tems course. The project is designed to familiarize students with
concurrent programming in general, and with techniques and id-
ioms for using a variety of synchronization primitives to manage
data structure consistency. Figure 1 shows a screen shot from the
sync-gallery program.
The project asks students to consider the metaphor of a shooting

gallery, with a fixed number of lanes in which rogues (shooters) can
shoot in individual lanes. Being pacifists, we insist that shooters in
this gallery use red or blue paint balls rather than bullets. Targets
are white, so that lanes will change color when a rogue has shot in
one. Paint is messy, necessitating cleaners to clean the gallery when
all lanes have been shot. Rogues and cleaners are implemented
as threads that must check the state of one or more lanes in the
gallery to decide whether it is safe to carry out their work. For
rogues, this work amounts to shooting at some number of randomly
chosen lanes. Cleaners must return the gallery to its initial state
with all lanes white. The students must use various synchronization
primitives to enforce a number of program invariants:
1. Only one rogue may shoot in a given lane at a time.
2. Rogues may only shoot in a lane if it is white.
3. Cleaners should only clean when all lanes have been shot
(are non-white).

4. Only one thread can be engaged in the process of cleaning
at any given time.
If a student writes code for a rogue that fails to respect the first

two invariants, the lane can be shot with both red and blue, and will
therefore turn purple, giving the student instant visual feedback that
a race condition exists in the program. If the code fails to respect
to the second two invariants, no visual feedback is given (indeed
these invariants can only be checked by inspection of the code in
the current implementation).
We ask the students to implement 9 different versions of rogues

(Java classes) that are instructive for different approaches to syn-
chronization. Table 1 summarizes the rogue variations. Gaining ex-
clusive access to one or two lanes of the gallery in order to test
the lane’s state and then modify it corresponds directly to the real-
world programming task of locking some number of resources in
order to test and modify them safely in the presence of concurrent
threads.

2.1 Locking
We ask the students to synchronize rogue and cleaner threads in the
sync-gallery using locks to teach them about coarse and fine-grain
locking. To ensure that students write code that explicitly performs
locking and unlocking operations, we require them to use the Java
ReentrantLock class and do not allow use of the synchronized
keyword. In locking rogue variations, cleaners do not use dedicated
threads; the rogue that colors the last white lane in the gallery
is responsible for becoming a cleaner and subsequently cleaning
all lanes. There are four variations on this rogue type: Coarse,
Fine, Coarse2 and Fine2. In the coarse implementation, students
are allowed to use a single global lock which is acquired before
attempting to shoot or clean. In the fine-grain implementation, we
require the students to implement individual locks for each lane.
The Coarse2 and Fine2 variations require the same mapping of
locks to objects in the gallery as their counterparts above, but
introduce the additional stipulation that rogues must acquire access
to and shoot at two random lanes rather than one. The variation
illustrates that fine-grain locking requires a lock-ordering discipline
to avoid deadlock, while a single coarse lock does not. Naturally,
the use of fine grain lane locks complicates the enforcement of
invariants 3 and 4 above.

2.2 Monitor implementations
Two variations of the program require the students to use condition
variables along with signal/wait implement both fine and coarse
locking versions of the rogue programs. The monitor variations in-
troduce dedicated threads for cleaners: shooters and cleaners must
use condition variables to coordinate shooting and cleaning phases.
In the coarse version (CoarseCleaner), students use a single global
lock, while the fine-grain version (FineCleaner) requires per-lane
locks.

2.3 Transactions
Finally, the students are asked to implement 3 TM-based variants
of the rogues that implement the same specification as their cor-
responding locking variations, but use transactional memory for
synchronization instead of locks. The most basic TM-based rogue,
TM, is analogous to the Coarse and Fine versions: rogue and
cleaner threads are not distinct, and shooters need shoot only one
lane, while the TM2 variation requires that rogues shoot at two
lanes rather than one. In the TMCleaner, rogues and cleaners have

48

Figure 3.1: A screenshot of the program the students were asked to implement. In the figure,
the colored boxes represent 16 shooting lanes in a gallery populated by shooters. A red or
blue box represents a box in which a shooter has shot either a red or blue paint ball. A white
box represents a box in which no shooting has yet taken place. A purple box indicates a line
in which both a red and blue shot have occurred, indicating a race condition in the program.
Sliders control the rate at which shooting and cleaning threads perform their work. [figure
and caption reproduced from Rossbach et al., 2010, with modifications]

novelty of the transactional model. These results also correlate with the students’ own re-
ported experiences: the students thought that coarse-grained locks were easier to reason about
than transactions, and that transactions were easier to reason about than fine-grained locks.

Perhaps the most significant observation was that over 70% of the students made pro-
gramming errors when using fine-grained locks, whereas fewer than 10% made errors when
using transactions.

The second study, by Pankratius, Adl-Tabatabai, and Otto [2009] at the University of
Karlsruhe in Germany, involved 12 graduate students working in teams of two. The teams
competed against each other to develop the fastest desktop search engine, according to pre-
defined criteria, using either C or C++. Three teams were randomly assigned to use locks for
their search engine, and three to use software transactional memory.

The first team to complete the assignment was one of the three transactional memory
teams; moreover, that same team was the winning team according to the competition’s crite-
ria. On average, the transactional memory teams spent less time working on their projects,
and less time debugging their code.

This study is limited in size, with only 12 students, and its findings are not statistically
significant. Despite the differences between this study and the Texas study, its results are
consistent with the Texas study, and strengthens the argument that transactional memory
makes parallel programs easier to write and to debug.

Finally, there is a study by Lu, Park, Seo, and Zhou [2008], in which the authors examine
105 randomly selected concurrency bugs from four server and client applications: MySQL
(database server), Apache (web server), Mozilla (web browser), and OpenOffice (office pro-
ductivity suit).

38

A Case for Hybrid Transactional Memory

Lu et al. concluded that using transactions instead of locks could have avoided about
one third (41/105) of the examined concurrency bugs, specifically bugs related to atomic-
ity violation of critical sections and deadlocks. The authors also believe that transactional
memory could help avoid over a third more bugs (for a total of 85/105) if certain concerns
are addressed by the underlying transactional implementation. These concerns include the
ability to handle operations such as I/O inside transactions, and the ability to handle long-
running transactions. The authors also found that the remaining bugs (20/105) cannot benefit
from transactions, because these bugs violate programmer intentions, which the transactional
model is not aware of — confirming that transactional memory is not a panacea.

I do not suggest that the evidence presented is conclusive — such an endeavor is beyond
the scope of this thesis. I do believe, however, that this evidence makes a strong case for trans-
actional memory. Therefore, the rest of the chapter argues that, for transactional memory to
become a successful programming model, the best approach for implementing transactional
memory is the hybrid approach.

3.2 Making a Case for Hybrid Transactional Memory

This section attempts to make a case for hybrid transactional memory; specifically, it ar-
gues that if transactional memory is to become successful, then it should adopt the hybrid
approach. This argument can be summarized as follows.

Neither best-effort nor bounded hardware transactional memory, even when the bounds
are big, are a complete transactional memory solution. Best-effort and bounded proposals
do not guarantee that all transactions will eventually commit. Therefore, programmers using
this type of hardware support must understand the limitations of this support, and write their
programs around these limitations — this breaks the abstraction and goes against the trans-
actional memory ideal. The alternative would be to use a software fallback mechanism when
transactions cannot commit in hardware, which would result in a hybrid system.

Unbounded hardware transactional memory has two problems. It goes against the com-
puter architecture design principle of providing primitives, and not solutions [Wulf, 1981],
by requiring the complete design and policy of the transactional memory system to be hard-
coded in the hardware. As described in current proposals, unbounded hardware transactional
memory is also expensive and too costly for processor manufacturers to consider in practice,
at least for the time being.

Software transactional memory is flexible and can run on existing systems today; how-
ever, its main problem is performance. All software transactional memory proposals I have
investigated incur, at best, a 100% overhead compared with sequential execution, and for
some workloads can be an order of magnitude slower than sequential execution. In the fu-
ture, a software transactional memory with very low overhead might emerge, but that future
does not appear imminent.

39

Chapter 3

Hybrid transactional memory, which combines hardware and software, is in my opinion
the best solution given the tools available. Hybrid transactional memory can run as fast as the
underlying hardware in the common case, and is as flexible as its software component. Some
hybrid proposals, such as NZTM (Chapter 5), can also run on existing systems today, bene-
fiting from any enhancements to either of their underlying hardware or software components.

3.2.1 The Problem with Hardware Transactional Memory

Some architectures have provided direct implementations of high-level concepts.
In many cases these turn out to be more trouble than they are worth.

— William Allan Wulf [1981]

Hardware transactional memory can be bounded or best-effort, which restricts the type of
transactions it can run. These systems cannot handle many events that the hardware designer
of that particular system deem too difficult to handle inside transactions, such as context
switches, interrupts, I/O, or cache line evictions. Therefore, a bounded or best-effort hardware
transactional memory, by itself, cannot provide a complete transactional memory solution.

Unbounded hardware transactional memory, on the other hand, is designed to handle any

transaction in hardware — at least in theory. The size of the transaction does not matter, nor
do events such as context switches and exceptions, no matter how difficult designers might
consider them to be.

One problem with unbounded proposals is that policy, such as whether to use eager or lazy
conflict detection or how to determine priority, is hardcoded in the hardware. This makes un-
bounded proposals less flexible and less than ideal for certain workloads, particularly because
different workloads perform better under different policies [Ceze, Tuck, Torrellas, and Cas-
caval, 2006; Bobba et al., 2007; Shriraman et al., 2008; Minh et al., 2008; Tomić, Perfumo,
Kulkarni, Armejach, Cristal, Unsal, Harris, and Valero, 2009]. Unbounded hardware trans-
actional memory could be designed to accommodate more than one policy, but that would
further complicate the design.

Moreover, because unbounded hardware transactional memory is a direct implementation
of a high-level solution directly in hardware, it adds complexity to the hardware that possibly
serves no purpose other than supporting this particular high-level abstraction. Applications
that do not use this abstraction still have to pay for this additional complexity, unless the same
hardware can be leveraged for other purposes as well. Wulf [1981] made a similar observation
regarding other proposed solutions in hardware, and this observation is now known as the
design principle that hardware should provide primitives and not solutions [Hennessy and
Patterson, 2006].

Another problem is that unbounded proposals are complex, too complex for processor
manufacturers to practically consider [Chung, Minh, McDonald, Skare, Chafi, Carlstrom,

40

A Case for Hybrid Transactional Memory

Kozyrakis, and Olukotun, 2006b; Damron, Fedorova, Lev, Luchangco, Moir, and Nussbaum,
2006; Lev, Moir, and Nussbaum, 2007; Larus and Rajwar, 2007; Cascaval, Blundell, Michael,
Cain, Wu, Chiras, and Chatterjee, 2008]. Much of this additional complexity in unbounded
proposals is dedicated for cases that are expected to be rare, and for cases that are not critical
for performance [Baugh, Neelakantam, and Zilles, 2008].

One example that demonstrates how complex unbounded proposals are is Unbounded

Transactional Memory (UTM) [Ananian et al., 2005]. UTM is the first unbounded proposal,
and it requires extensive modifications to the memory interface. UTM is so complex that even
its authors acknowledge that it is not feasible, and instead propose a simplified and bounded

approximation in the same work.

TokenTM [Bobba et al., 2008] is a more recent unbounded proposal that uses the abstrac-
tion of tokens to track transactional sharing states. For TokenTM to be unbounded, it must
track its tokens in all of memory, which includes cache memory, main memory, and virtual
memory. To track its tokens, TokenTM adds at least 16 bits per cache line, where cost is
a major design constraint [Jafri, Thottethodi, and Vijaykumar, 2010]. TokenTM also adds
16 bits per 64 byte memory block, both to main and virtual memory, incurring a 3% space
overhead. Because it is difficult to add bits to memory and be able to retrieve the data bits and
the token bits in one access [Jafri et al., 2010], the authors suggest stealing those 16 bits from
the 64 error control coding (ECC) bits. However, reducing the number of ECC bits available
by 25% weakens error protection, which is becoming a bigger concern as memory density
increases [Jafri et al., 2010].

Furthermore, unbounded proposals leave certain difficult problems aside without propos-
ing a specific solution, suggesting them as topics for future work. For example, UTM and
VTM [Rajwar et al., 2005] — another early unbounded proposal — cannot handle I/O in-
side transactions, and VTM does not define how it handles exceptions inside transactions.
TokenTM can handle many different events, such as context switching and paging, but leaves
unspecified “richer workloads” as a topic for future research. The problem remains, however,
that there are always going to be different types of I/O and unexpected corner cases; handling
them all in hardware, especially when new issues arise, is expensive or altogether infeasible.

3.2.2 The Problem with Software Transactional Memory

Software transactional memory is flexible: its policy can change, even dynamically at run-
time, without additional cost in hardware. Moreover, software transactional memory does
not require hardware support beyond what is already available for parallel programming.
Programmers can use software transactional memory today on almost any platform, albeit
mainly with experimental compilers.

The main problem with software transactional memory is performance. For example, in
Dynamic Software Transactional Memory (DSTM) [Herlihy et al., 2003b], one of the earliest

41

Chapter 3

software proposals, performance at a single thread is an order of magnitude slower than
using a single global lock. Although DSTM scales whereas a single global lock does not,
DSTM’s throughput running on 72 processors does not even approach that of a single global
lock running on a single processor. DSTM, however, was a proof-of-concept system not
optimized for performance.

Transactional Locking 2 (TL2) [Dice, Shalev, and Shavit, 2006] is a more recent proposal
that uses readers-writer locks as its underlying implementation, and was designed with perfor-
mance as a goal. In the original evaluation of TL2, the performance of a single thread running
TL2 is about a factor of two to three slower than a single thread using a single global lock.
In a later evaluation of TL2 by the authors of the STAMP benchmarks [Minh et al., 2008],
TL2 is about twice as slow as hardware implementations for STAMP benchmarks dominated
by transactions, and is an order of magnitude slower in some cases. Furthermore, hardware
transactional memory scales for all STAMP benchmarks, whereas TL2 scales poorly or not
at all.

Even though TL2 was originally published in 2006, it is still considered a “state-of-the-
art” software transactional memory [Dice et al., 2009a; Ramadan, Roy, Herlihy, and Witchel,
2009; Gottschlich, Vachharajani, and Siek, 2010; Harmanci, Gramoli, Felber, and Fetzer,
2010]. Many recent software proposals use TL2 as the only software transactional memory
to evaluate their work against [Lev et al., 2009; Ramadan et al., 2009; Dice and Shavit, 2010].

Recently, Dalessandro, Spear, and Scott [2010] and Dice and Shavit [2010] investigated
designing software transactional memory optimized for performance when running a small
number of threads. The rationale being that, in the near future, a typical multicore computer
will not have a large number of cores, and would benefit from software transactional memory
proposals designed specifically for a small number of cores, such as 64 cores.

As evaluated by their authors, in the single threaded case, both proposals are about three
times slower than using a single global lock when running on a single thread, or about four
times slower compared with a single thread that does not incur any synchronization overhead.
In other words, assuming perfect scalability, the workload for these proposals must run on
at least four processors just to break even with running on a single thread. Contrast this
with hardware transactional memory, which depending on the implementation, does not incur
more overhead than a single global lock would in the single-threaded case, and scales when
running additional threads.

Cascaval, Blundell, Michael, Cain, Wu, Chiras, and Chatterjee [2008], in their provoca-
tively titled work, “Software Transactional Memory: why is it only a research toy?”, evaluate
different software algorithms and conclude that it is inherently difficult to lower the overhead
of software implementations to what they consider to be an acceptable level. One cannot
generalize to all software transactional memory proposals based on their results; however,

42

A Case for Hybrid Transactional Memory

the overhead in software transactional memory does appear to be insurmountable, at least for
the time being.

* * *

To understand why software transactional memory performs poorly, even relative to using
a single global lock, we need to understand the overheads involved in each.

When using a single global lock, in the single-threaded case, the overhead is that of
acquiring the lock, which typically involves expensive synchronization instructions, such as
Compare&Swap and a memory barrier; and of releasing the lock, which is typically a normal
store instruction and possibly another memory barrier. This overhead is not proportional to
the length of the critical section: the bigger the critical section, the more this overhead is
amortized. There is also a space overhead involved, that of storing the lock, which typically
does not exceed a single cache line.

Conversely, there are two types of overhead for a typical software transactional memory
proposal: instrumentation overhead of the additional instructions the particular algorithm
needs, and space overhead, used by the data structures required to maintain the transactional
metadata. Both these overheads are typically proportional to the size of the transaction.

The sources of overhead vary between different software transactional memory imple-
mentations. As an example from my work on NZSTM, which is presented in the next chapter,
below are the sources of overhead for a transaction running on a single thread, i.e., without
contention.

Beginning and committing a transaction: requires allocating a transaction descriptor for
beginning a transaction, and uses a synchronization instruction, Compare&Swap, for
committing a transaction. It is a constant overhead, relative to the length of the trans-
action.

Opening an object for writing: includes using a synchronization instruction for setting the
object’s owner to the transaction, and allocating and taking a backup copy of the ob-
ject’s data. It is proportional to the number of objects modified inside the transaction.

Opening an object for reading: includes using a synchronization instruction for adding the
reader into a visible readers’ slot. It is proportional to the number of objects read inside
the transaction.

Memory allocation and management: NZSTM allocates objects to track the transactional
metadata. This additional allocation and memory management adds to system over-
head, which is proportional to the number of objects accessed inside a transaction.

Other metadata management: includes operations such as keeping statistics for contention
management.

43

Chapter 3

The effect of each of the above items is workload-dependent. To gain a better intuition
on the effect of these overheads, Table 3.1 presents a breakdown of the time the redblack
benchmark, a microbenchmark described in the next chapter, spends on the different sources
of overhead when running NZSTM on a single thread.

Table 3.1: Execution time share of different overhead sources in NZSTM for the redblack
benchmark

Overhead Source Share of Execution Time
opening objects for reading 50%
opening objects for writing 10%

memory management 5%
other metadata management 5%

useful work (not an overhead) 30%

Others who have reported on a breakdown of their results of the same benchmark show
similar overheads [Shriraman, Marathe, Dwarkadas, Scott, Eisenstat, Heriot, Scherer, and
Spear, 2006].

The area of software transactional memory is in active research, and in the future re-
searchers might develop an implementation with low overhead. However, until that happens,
I do not believe that software alone will make the transactional model a viable programming
model.

3.2.3 The Promise of Hybrid Transactional Memory

Hybrid transactional memory promises that, by using both hardware and software, it can
deliver the best of both worlds: performance that matches that of the underlying hardware,
and the flexibility of software for the cases hardware cannot support. Hybrid transactional
memory that has a pure software fallback mechanism can also work on existing systems,
albeit in software speed. Such a system would allow developers to start programming with
transactions today, while benefiting from improvements in hardware as they are developed.

Primitives Not Solutions

Hybrid transactional memory embodies Wulf’s principle of “provide primitives, not solu-
tions” [Baugh et al., 2008]. Hybrid transactional memory proposes that certain primitives be
implemented in hardware, primitives such as best-effort hardware transactional memory, and
that software leverage those primitives for performance. Depending on the hybrid system,
some of the primitives could also be used for applications that do not use the transactional
model. For example, best-effort hardware transactional memory and its underlying hardware
can be used to implement lock elision [Rajwar and Goodman, 2001; Dice et al., 2009a],
speed up existing concurrent algorithms [Dice et al., 2010], and for thread-level specula-
tion [Chaudhry et al., 2009b]. Moreover, hybrid transactional memory does not specify any

44

A Case for Hybrid Transactional Memory

hardcoded policies in hardware, nor does it require complex hardware to deal with every
conceivable case a transaction might encounter.

There is precedent in the history of processor design of adding hardware primitives to
support new models. Two examples are virtual memory and hardware virtualization.

Virtual memory is an abstraction that gives programmers the illusion of an unlimited
and contiguous memory, or address space, while guaranteeing that concurrent processes that
share the same physical memory do not violate each other’s space. For virtual memory to
work efficiently, it needs additional hardware support in the memory management unit to en-
sure that memory protection restrictions are respected, to perform virtual to physical address
translation, and to optimize address translation using a translation lookaside buffer (TLB).
It is worth noting that virtual memory, which is used on most desktop and server machines
today, was controversial at first [Tucker, 2004], until Sayre [1969] demonstrated that virtual
memory consistently performs better than manual memory management.

Hardware virtualization allows users to run a virtual machine on top of a different plat-
form. Virtual machines comprise complete hardware platforms and appear to the users as
self-contained units. Hardware virtualization is used on servers where isolation and security
of the different running components is important. It also used on desktop machines so users
could run different operating systems on top of the main operating system, for example, to
run Windows on an Apple OS X computer.

Hardware virtualization is possible without dedicated hardware support; however,
hardware-assisted virtualization reduces the overhead of running a virtual machine,
improving its performance. Even though hardware-assisted virtualization has existed since it
was introduced by the IBM System/370 in 1972 [Hennessy and Patterson, 2006], it arguably
did not become a mainstream concept until Intel and AMD added virtualization support to
their processors in 2005 and 2006.

These examples demonstrate that, when a new idea gains enough momentum, and there
is enough demand for it, processor designers add the necessary primitives to support them.

Can Hybrid Transactional Memory Deliver on Its Promises?

Hybrid transactional memory aims to run as fast as its underlying hardware, in the common
case, while being as flexible as its underlying software in the sizes and the types of workloads
it can handle.

This section demonstrates that hybrid transactional memory can deliver on its promises;
this is based on my own experiences in designing a hybrid system (Chapter 5), and on the
findings of other research groups in this area. The following presents some the work that
evaluates different types of hybrid systems. This work shows that hybrid transactional mem-
ory performs significantly better than software transactional memory, and that with sufficient
hardware support, hybrid transactional memory can be practically as fast as the underlying
hardware allows.

45

Chapter 3

One of the early hybrid proposals, HyTM [Moir, 2005; Damron et al., 2006], describes a
hybrid system that first attempts transactions using best-effort hardware support. If a hard-
ware transaction aborts repeatedly, for a number of times determined by the system’s policy,
it falls back on using software transactions. The results Damron et al. present, when running
on a single thread, show that HyTM is about four times faster than using the underlying soft-
ware component by itself. However, HyTM adds overhead to hardware transactions, and is
60% slower than using a single global lock also running on a single thread.

HyTM incurs overhead because hardware transactions must explicitly check for conflicts
with software transactions. The overheads are aggravated because the software component
HyTM uses does not locate the ownership records of data locations with the data itself; in-
stead, the ownership records are on a separate table. Therefore, a hardware transaction could
incur two cache misses when accessing a location: the first to check that an object is not
owned by a competing software transaction, and the second to access the data. By contrast, a
pure hardware transaction would incur a single cache miss for a similar access because it can
access the data directly.

As for scalability, HyTM is at least twice as fast as its underlying software component,
and up to four times faster in some benchmarks. However, at 32 threads, HyTM is about
half the speed of pure hardware transactions, particularly in benchmarks that exhibit high
contention.

HyTM shows that, under the right circumstances, hybrid transactional memory can bridge
a significant portion of the gap between software and hardware transactional memory. It
also shows that hybrid systems are significantly faster than just using software, while requir-
ing much less complicated hardware than unbounded proposals. Moreover, these results of
an early hybrid system are significantly better than any software transactional memory can
achieve today, to the best of my knowledge.

As part of my research, I created a hybrid transactional memory, NZTM, which is dis-
cussed in more detail in Chapter 5. NZTM uses the same method as HyTM of attempting a
transaction in hardware first, then falling back on software. NZTM is optimized for hardware
transactions by collocating an object’s data with its metadata, i.e., its ownership record, in the
common case. Therefore, a hardware transaction running in NZTM typically incurs only one
cache miss, instead of two, to check for conflicts with a software transaction and access the
data.

I evaluated NZTM using microbenchmarks and STAMP benchmarks. The evaluation
shows that NZTM performs significantly better than its underlying software component. It
also significantly reduces the overhead transactions incur relative to a pure hardware scheme.
Depending on the workload, this overhead is about 20–50%.

Hybrid systems such as HyTM and NZTM demonstrate the potential of using best-effort
hardware transactions as the basic primitive for a hybrid system, while using software trans-
actions as a fallback mechanisms. These, and other similar systems [e.g., Lie, 2004; Ana-

46

A Case for Hybrid Transactional Memory

nian and Rinard, 2005; Kumar, Chu, Hughes, Kundu, and Nguyen, 2006], offer a significant
improvement over using pure software transactions. However, they do not close the perfor-
mance gap between software and hardware transactional memory, because of the overhead
the hardware path incurs of checking for conflicts with software transactions. Even if soft-
ware transactions are rare, these checks always add overhead in the common case.

Lev, Moir, and Nussbaum [2007], in their work on Phased Transactional Memory

(PhTM), present one approach to eliminating this overhead for workloads that run almost
completely in hardware, and for workloads that do not have many transactions or critical
sections. Lev et al. suggest that the system should automatically move between different
phases, depending on the workload, with each phase optimized for its current workload.

For example, if the system decides that the current workload can run successfully using
hardware support alone, it can attempt to run all transactions in hardware, and dispense with
the overhead of checking for conflicts with software transactions. Conversely, if the system
decides that many transactions need software support, it would run in the same manner as
the hybrid proposals described earlier, where hardware transactions must check for conflicts
with software transactions. PhTM dynamically switches between the different phases, at
runtime, based on certain heuristics such as the level of contention or abort ratio of the current
workload.

Some of the phases Lev et al. propose are the following.

Hardware: Hardware support is sufficient to commit all transactions, and there is no need
to check for conflicts with software transactions.

Hybrid: Hardware support is available but might not be sufficient to commit all transactions;
therefore, the system runs using best-effort hardware, falling back on software when
needed.

Software: Hardware support is not available, or not sufficient for the current workload. The
system runs all its transactions in software, without attempting to run them in hardware
first — which in this case would be wasted attempts.

Sequential: A single global lock is used to protect transactions. This phase is suitable for
workloads that are not dominated by transactions, such as when there are few threads
running in the system and their transactions are infrequent and short.

PhTM does not eliminate all overhead, because transactions must at least check to see
which phase they are in, an unnecessary check in a system that supports only one type of
transactions. This check, however, is amortized across the whole transaction, and could
be negligible for longer transactions. Furthermore, PhTM requires additional logic for the
heuristics that decide whether and when to change phases; if the system does not change
phases often, this overhead could be negligible.

47

Chapter 3

The results Lev et al. present show that, for workloads the underlying system can commit
successfully in hardware most of the time, PhTM bridges most of the gap with pure hard-
ware for long running transactions, and significantly reduces the gap for smaller transactions,
without sacrificing scalability as the number of threads increases.

Baugh, Neelakantam, and Zilles [2008] presented an evaluation of another implementa-
tion of PhTM, which assumes best-effort hardware transactional memory support capable of
committing most transactions. Their evaluation shows that PhTM is capable of performance
comparable to pure hardware transaction even when running a single thread, and that it scales
as well as pure hardware transactions in most workloads.

In the same work, Baugh et al. presented another approach to eliminate the performance
gap between hybrid transactional memory and pure hardware transactions, by introducing
a new hardware primitive that aids in conflicts detection between hardware and software
transactions.

Baugh et al. recognized that the main source of overhead when running a hardware trans-
action in a hybrid system, such as HyTM, is that of ensuring that hardware detects conflicts
with concurrent software transactions. Rather than burden the fast hardware transactions with
explicitly checking for conflicts with software transactions, Baugh et al. suggest that it should
be the responsibility of the slow software transactions to ensure hardware transactions cannot
access data in a conflicting manner.

To that end, Baugh et al. proposed a hardware-supported system of fine-grained memory
protection. This system adds two tag bits to memory, a read bit and a write bit, which are set
by software transactions when they acquire locations for reading or for writing, and are reset
when a software transaction commits or aborts. When a thread accesses a location whose
corresponding tag bit is set in a conflicting manner, e.g., it writes to a location whose read
tag bit is set, the system triggers a fault, which runs a conflict management routine. This
allows transactions, hardware and software, to run without explicitly checking for conflicts
with other software transactions, reducing the overhead of conflict detection for both.

Baugh et al. presented an evaluation of a hybrid transactional memory that uses fine-
grained memory protection, and attempts transactions using hardware support falling back
on software when needed. They found that single-threaded performance is virtually the same
whether using unbounded hardware support or their hybrid system, and that their hybrid sys-
tem scales as well as pure hardware transactional memory for most workloads. These results
show that using certain hardware primitives can close the performance gap between hybrid
and pure hardware transactional memory, assuming most transactions commit successfully in
hardware.

Another approach to hybrid transactional memory is to run transactions in software, and
use hardware support to optimize the bottlenecks of the software implementation.

48

A Case for Hybrid Transactional Memory

An example of this approach is a hybrid proposals by Shriraman et al. [2008]1, who
identified four sources of overhead in a typical software transactional memory implementa-
tion: read-set validation, maintaining a copy of modified data, conflict detection, and conflict
managements. Shriraman et al. proposed hardware primitives, fully visible and accessible in
software, to eliminate these overheads. These primitives provide hardware support to per-
form conflict detection and conflict tracking between transactions, and allow transactions to
leverage a processor’s inherent buffering to relieve thread from explicitly maintaining two
copies of data modified inside a transaction.

The functionality of the primitives Shriraman et al. propose is not new; it is present in
many unbounded hardware proposals. In my opinion, one of their main contributions is the
separation of the different aspects of unbounded hardware system into software-visible hard-
ware primitives, which transactions could use to improve performance. Moreover, optimized
software transactions do not require all these primitives, and can benefit even from a subset,
which allows processor manufacturers to support these primitives incrementally. By sepa-
rating the hardware support into clearly defined primitives, the transactional system also has
flexibility in conflict management and other policies not present in an unbounded system.

The results Shriraman et al. present show that their proposal imposes little overhead in
the single-threaded case compared with a single global lock, about 10–20%. Their proposal
also scales as the number of threads increases. Shriraman et al. do not present an evaluation
of their proposal against an unbounded hardware transactional memory.

The final approach to hybrid systems presented herein is one that takes the opposite ap-
proach: instead of using hardware to optimize a software implementation, a hybrid system
can use software to handle the difficult cases in a hardware system. This approach takes ad-
vantage of the observation that much of the complexity in unbounded proposals is dedicated
for cases expected to be rare, and cases not critical for performance [Baugh et al., 2008]. This
is the approach Jafri, Thottethodi, and Vijaykumar [2010] use in their work.

Jafri et al. observed that, even after an unbounded hardware transactional memory has
overflowed, typically by exceeding the resources available in the L1 cache, most of a transac-
tion’s active data remains in the L1 cache. They suggest that, instead of aborting the hardware
transaction and falling back on software, transactions should track the overflowed data in a
software structure, and rely on software to detect and resolve conflicts involving overflowed
data. Unlike unbounded hardware transactional memory proposals, which rely on hardware
to manage both overflowed data and the data that remains in the cache, they use software
to manage the overflowed data and hardware to manage the data that remains in the cache.
Because a transaction’s active data remains in the cache, software is not invoked often, and
fast hardware is used for the common case.

1Shriraman et al. [2008] extend the proposal by Shriraman, Spear, Hossain, Marathe, Dwarkadas, and Scott
[2007].

49

Chapter 3

As an example of applying these observations to a transactional implementation, Jafri
et al. propose LiteTM, where they apply these observations by modifying TokenTM [Bobba
et al., 2008] to reduce its complexity. To track its tokens, TokenTM adds 16 bits to each
memory block in cache memory, main memory, and virtual memory. Instead, LiteTM adds
two bits to each memory block. LiteTM uses these bits to mark memory blocks that transac-
tions read or modify, similarly to Baugh et al. [2008]. As long as the memory blocks remain
in the L1 cache, LiteTM relies on hardware, in the same manner as best-effort hardware, to
detect and resolve conflicts. Once a cache line is evicted from the L1 cache, LiteTM uses
software for detecting and resolving conflicts only with the evicted blocks, continuing to rely
on hardware for the blocks that are in its cache.

Jafri et al. evaluate LiteTM, and compare it against TokenTM. They find that LiteTM
performs within 4% of TokenTM on average, and within 10% of TokenTM in the worst case.

In my opinion, however, LiteTM has two drawbacks. The first one is that it implements
the solution in hardware, rather than expose the primitive to the software. This hardcodes the
policy in the hardware, and makes the solution less applicable to contexts outside transac-
tional memory. The second one is that LiteTM does not address the issues that the TokenTM
authors left for future work, namely investigating their proposal using “richer workloads”.

3.3 Concluding Remarks

This chapter made a case for transactional memory as a programming model, focusing on its
promise of simplifying the task of writing parallel programs that perform well. This chapter
argued that, if transactional memory is going to be successful, it should adopt the hybrid
approach. The argument is summarized as follows.

Best-effort and bounded hardware support are not sufficient, because even if the bounds
are big, programmers must handle the corner cases of that particular implementation, which
would, at least partially, negate the advantages of abstraction. Unbounded hardware trans-
actional memory is too complex to implement in practice, leaves some difficult issues unre-
solved, and is contrary to the principle of designing hardware primitives and not solutions.
Software transactional memory, although flexible, is too slow: for current software propos-
als, it takes at least four threads to break even with a single thread that does not use any
synchronization mechanisms.

Therefore, hybrid transactional memory presents the best of the hardware and the soft-
ware worlds. It can run as fast as the underlying hardware, in the common case, and is flexible
because it has the option of falling back on software for any difficult or corner case the hard-
ware designer might not have anticipated. Some hybrid proposals can also run on existing
systems today, benefiting transparently from any improvements to their underlying hardware
or software components. More important, hybrid systems can be designed to leverage hard-

50

A Case for Hybrid Transactional Memory

ware primitives, without requiring a whole transactional memory solution to be hardcoded in
hardware.

This thesis focuses on hybrid systems that first attempt a transaction using best-effort
hardware transactional memory, and fall back on software for the cases which best-effort is
not sufficient. I do not believe that this is necessarily the best way of implementing a hybrid
system. Other hardware primitives may be better suited for supporting hybrid transactional
memory. I chose this path, in part, because best-effort hardware transactional memory is
the only primitive capable of supporting a hybrid system that has been implemented on real
processors to date; therefore, it is the most logical starting point when researching hybrid
transactional memory. This issue is further discussed in the concluding chapter of this thesis
(Chapter 8).

51

Chapter 4

Nonblocking Zero-indirection Software
Transactional Memory

All problems in computer science can be solved by another level of indirection ...
except for the problem of too many levels of indirection.

— Various attributions1

This chapter describes Nonblocking Zero-indirection Software Transactional Memory

(NZSTM). NZSTM is a nonblocking object-based software transactional memory, where
data objects have headers that can be easily located whenever the application accesses
an object. NZSTM is also designed to perform well when used in a hybrid transactional
memory system, which is the topic of the next chapter.

The first object-based dynamic software transactional memory system was DSTM [Her-
lihy et al., 2003b], a nonblocking algorithm that requires two levels of indirection to access
the data. The additional levels of indirection make it easier for the algorithm to be non-
blocking, because with indirection, an object can be changed atomically just by changing a
single-word value, that of the pointer to the object. Instructions that can change single-word
values atomically, such as Compare&Swap, are available on most modern processors.

The problem with indirection, however, is that each level of indirection points to a sep-
arate object, which is typically located on a different cache line. Therefore, each level of
indirection is a potential cache miss, which can have an adverse effect on performance (Fig-
ure 4.1).

Realizing the negative aspects of indirection, later software transactional memory propos-
als, such as OSTM and RSTM [Fraser, 2004; Marathe et al., 2006], reduce indirection to one
level in the common case, while remaining nonblocking (Figure 4.2).

Others have proposed blocking implementations that store object data in-place, avoiding
cache misses caused by indirection to reach the data [e.g., Dice et al., 2006; Ennals, 2006;

1The first part of the quote has been attributed to David Wheeler and to Butler Lampson. The second part of
the quote has been attributed to Kevlin Henney.

53

Chapter 4

cache
miss

start

Data
(Backup Copy)

Transaction

Status

Data

Owner

old data

new data

Locator

cache
miss

Figure 4.1: The structure of DSTM’s main transactional object. To access the data, a trans-
action follows the start pointer, and then follows either the new or the old data pointers,
depending on the state of the transaction associated with the object. These objects are typ-
ically located on different cache lines, which could result in a cache miss for each object
accessed. [adapted from Herlihy et al., 2003b]

start Transaction

Status

Data
(Backup Copy)

Owner

Data
(Current Copy)

old data
cache
miss

Figure 4.2: The (simplified) structure of RSTM’s main transactional object. To access the
data, a transaction follows the start pointer to the object where the actual data is located
in the common case. [adapted from Marathe et al., 2006]

Saha, Adl-Tabatabai, Hudson, Minh, and Hertzberg, 2006; Herlihy, Luchangco, and Moir,
2006]. One such proposal is the DSTM2 Shadow Factory (DSTM2-SF) [Herlihy, Luchangco,
and Moir, 2006], which allocates a backup field for every data field in the object. This backup
field holds a backup copy of its corresponding data field when an object is being modified
inside a transaction (Figure 4.3).

The performance experiments of proposals that store object data in-place confirm the
intuition that this approach results in significantly better performance than those involving
indirection in all cases. However, all of these proposals sacrifice the nonblocking progress
properties provided by the earlier ones, and most of their proponents have implied, or argued

54

Nonblocking Zero-indirection Software Transactional Memory

Transaction

StatusOwner

backup field 1

data field 1

backup field 2

data field 2

backup field n

data field n

...

Figure 4.3: The structure of the DSTM2 Shadow Factory main transactional object. The
object data and metadata are located on the same object, and are likely to be on the same
cache line as long as they fit. [adapted from Herlihy et al., 2006]

directly, that this is fundamentally necessary in order to store object data in-place and collo-
cate metadata with object data. For example, the DSTM2-SF algorithm is blocking because
it acquires a lock when it copies data to or from the backup fields.

Proponents of blocking software transactional memory also argue that, in some cases, it is
possible to avoid the disadvantages of blocking algorithms [Dice et al., 2006; Ennals, 2006].
For example, the Solaris schedctl function can discourage (not prevent) the scheduler from
preempting a thread during the blocking part of a transaction. Nonetheless, without an im-
plementation that is truly nonblocking, a program can still experience the disadvantages of
blocking. For example, if a transaction experiences a long delay because of a page fault or
being preempted, this can lead to many other transactions having to also wait for a long time.

Blocking is more than merely a performance concern, as some have implied. As ex-
plained in Chapter 2, it is unacceptable for an interrupt handler to be blocked by the thread
it has interrupted; the design of interrupt handlers is often significantly complicated by this
restriction. Transactional memory can help, but only if it is nonblocking. It is therefore
important to continue research on nonblocking transactional memory, despite the appeal of
simpler blocking implementations.

NZSTM shows that it is not necessary to sacrifice nonblocking progress guarantees in
order to store data in-place in the common case. To that end, NZSTM stores object data in-
place in the common case, and resorts to indirection only when a thread encounters a conflict
with an unresponsive thread. By contrast, blocking proposals must block in such cases.

Spear, Shriraman, Dalessandro, Dwarkadas, and Scott [2007] have had similar insights
about the importance of eliminating indirection to improve the performance of nonblocking
software transactional memory. Their work was concurrent with and independent of this
work, and concentrates on a different design point, namely the use of special Alert On Update

55

Chapter 4

hardware to make nonblocking progress properties possible. Although NZSTM is explicitly
designed to be able to take advantage of hardware support to achieve similar benefits, this
proposal also includes an algorithm that can run on existing systems today, without additional
hardware support.

Ananian and Rinard [2005] propose a nonblocking software transactional memory that
eliminates indirection only when reading an object; however, transactions that perform
writes still require indirection. Their algorithm employs a variant of the LoadLinked-

StoreConditional atomic hardware primitives that is not supported in any modern system.
NZSTM, by contrast, requires only Compare&Swap.

Marathe and Moir [2007] present a nonblocking word-based software transactional mem-
ory that eliminates much of the overhead of previous nonblocking word-based proposals by
storing data in-place in the common case, and resorting to more complicated and expensive
techniques to displace data only when necessary because of a conflict with an unresponsive
transaction. The design philosophy for NZSTM was inspired in part by their work, but the
details are quite different because they address word-based implementations, which cannot
employ object headers and cannot collocate metadata with data.

The main contributions presented in this chapter are the following.

• I describe NZSTM, the first nonblocking object-based software transactional memory
that does not require indirection to access data in the common case, and does not rely
on special hardware support.

• I show how NZSTM can be substantially simplified using simple hardware transac-
tions, if available. The effectiveness of this technique is evaluated on a Rock system,
which supports best-effort hardware transactions.

• I present a correctness evaluation for NZSTM with model checking using Spin, a tool
that mechanically verifies the correctness of distributed system models.

• I present a performance evaluation for NZSTM using a variety of benchmarks, and
compare NZSTM with DSTM2-SF, a blocking software transactional memory that
never requires indirection to access data. The results show that NZSTM’s performance
closely tracks DSTM2-SF’s.

The remainder of this chapter is organized as follows. Section 4.1 describes the design of
NZSTM. Section 4.2 discusses using model checking and runtime stress tests to evaluate the
correctness of NZSTM. Section 4.3 presents a performance evaluation of NZSTM. Finally,
Section 4.4 concludes this chapter.

56

Nonblocking Zero-indirection Software Transactional Memory

4.1 The NZSTM Algorithm

The main goal in the design of NZSTM is a nonblocking object-based software transactional
memory that provides performance competitive with object-based blocking designs, and that
also performs well when used in a hybrid system. Towards that end, NZSTM’s approach
is to store data in-place, in the common case, to eliminate the costly indirection in previous
nonblocking proposals.

A key difficulty in designing a nonblocking software transactional memory that stores
object data in-place is the uncertainty that arises when one transaction, T1, is updating an
object, and another transaction, T2, wishes to access the same object. T2 cannot simply wait
for T1 to complete, because this would be blocking. T2 can attempt to inform T1 that it should
stop modifying the object, but until T2 can determine that T1 has become aware that it should
stop, it is not safe for T2 or other transactions to update the object data in-place, because T1

may still overwrite the data. Therefore, it is hard to see an alternative to storing the object
data somewhere other than its natural home in this case. This leads to indirection and its
associated overhead during the period that T1 is unresponsive.

NZSTM differs from previous nonblocking software transactional memory proposals
(e.g., DSTM and RSTM) in that, rather than actively abort a conflicting transaction, an
NZSTM transaction can request that another transaction abort itself, and wait a short time
until it does. If the transaction does abort, the uncertainty is resolved, and the transaction can
continue to access the data in-place. Thus, NZSTM can generally avoid the overhead of intro-
ducing indirection, except when the conflicting transaction is unresponsive. By eliminating
indirection, this approach largely eliminates the performance gap between previous blocking
and nonblocking object-based transactional memory implementations.

This section describes the NZSTM algorithm. It starts by describing NZSTM’s program-
ming interface. It then describes a blocking object-based algorithm that stores object data
in-place and collocates metadata with objects, which is extended to the nonblocking NZSTM.

To simplify the discussion, this section first describes a nonblocking algorithm that ac-
quires objects exclusively and does not support read sharing, and then describes the read
sharing algorithm used.

4.1.1 The NZSTM Programming Model

NZSTM is written in the C programming language as a statically-linked library, and uses a
programming model derived from the Java-based DSTM [Herlihy et al., 2003b]. The NZSTM
model requires programmers to explicitly identify all objects that transactions might access.
It also requires transactions to explicitly acquire permissions for objects they will read or
modify before they access those objects’ data. The NZSTM interface is defined using the
following C macros.

57

Chapter 4

OBJECT INIT(object, clone): Marks an object that could be accessed inside a transaction
and initializes its data structures. The clone parameter identifies the object’s Clone
function, which creates a copy of the object’s data.

BEGIN TXN(): Begins a new transaction.

COMMIT TXN(): Attempts to commit a transaction, and tries the transaction again if it
aborts.

OPEN WRITE(object): Attempts to acquire exclusive (write) permissions to the object.

OPEN READ(object): Attempts to acquire non-exclusive (read) permissions to the object.
The transaction can request to upgrade its permission later using OPEN WRITE().

The DSTM programming model was designed to facilitate experimentation, and is not
intended for production use. Rather, it is envisaged that future language and compiler sup-
port might target such an interface, with programmers writing to a higher-level programming
interface [Dalessandro, Marathe, Spear, and Scott, 2007]. Developing programming models,
however, is outside the scope of my research. For this thesis, the DSTM interface, and the
variant used, is sufficient for experimenting with alternative implementations.

4.1.2 NZSTM Data Structures

The basic data structures NZSTM uses are shown in Figure 4.4.

Owner

Clone()

Backup Data

Data

NZObject

Data
(Backup)

Transaction

Status
 {Active, Committed,

Aborted}
AbortNowPlease

{true, false}

one word

Figure 4.4: The structure of an NZObject and a Transaction. The Data field is the actual
data and can have any size or structure.

The NZObject structure encapsulates a program object that NZSTM transactions can
access, and serves as a container for its data and metadata. It is analogous to other containers,

58

Nonblocking Zero-indirection Software Transactional Memory

such as DSTM’s and RSTM’s object headers. The NZObject structure contains the following
fields. The Owner field, which if non-NULL, points to the last transaction to acquire this
object. The Clone field points to the function that copies the object. The Backup Data

field points to a backup copy of the object kept while a transaction that modifies the object is
in progress. Finally, the Data field contains the actual object data. Because the object data is
stored at a fixed offset from the start of the object, no indirection is required to access it.

NZSTM’s Transaction is similar to the transaction descriptors used by previous non-
blocking software transactional memory proposals (e.g., DSTM and RSTM). NZSTM creates
a new Transaction object for every new transaction, and does not reuse these objects re-
gardless of whether a transaction commits or aborts. Even when NZSTM attempts an aborted
transaction again, it creates a new Transaction object. Having the transaction descriptor as
a separate object facilitates making the changes to all objects modified by a transaction appear
atomic; this will become clearer once the detailed description of the algorithm is presented.

Each Transaction object contains the transaction’s Status field, which can be in one
of the following states: Active, which indicates that the transaction is currently running;
Committed, which indicates that the transaction has committed successfully; and Aborted,
which indicates that the transaction has aborted and is no longer running.

In contrast to previous nonblocking proposals, NZSTM’s Transaction has an addi-
tional flag, the AbortNowPlease flag. When this flag is set, the transaction interprets it as
a request to abort itself. This flag is stored together on the same word as the Status field,
so both may be accessed atomically using a single Compare&Swap, or similar atomic single-
word instructions. This operation must be atomic to allow NZSTM transactions to request
that other transactions abort, while simultaneously ensuring that the transaction being asked
to abort has not committed in the interim.

At initialization, the Data field of an NZObject contains the initial value of the object
data, Clone points to a function that creates a copy of the data, and the remaining fields are
NULL.

The Clone function should ideally be created automatically by the compiler or the run-
time environment. Alternatively, it could be modeled after the concept of a copy constructor

in C++ [Stroustrup, 2000]. Because this prototype of NZSTM does not assume compiler sup-
port, it is the programmers’ responsibility to write the Clone function for all transactional
objects.

4.1.3 A Blocking Algorithm

In this blocking software transactional memory, a thread begins a transaction by creating a
new Transaction object, with its status set to Active and its AbortNowPlease flag not
set. The thread then executes its transaction, acquiring each object it accesses, by open-
ing it for reading (shared), or writing (exclusive). When it completes the execution of its

59

Chapter 4

transaction, the thread attempts to atomically change its transaction’s status from Active to
Committed, while ensuring that AbortNowPlease is not set. During execution, another
transaction that detects a conflict with this one may either wait or attempt to abort it; this
decision is made by an out-of-band contention manager, which may apply different policies.

Unlike DSTM and similar nonblocking proposals, a transaction, T1, does not explicitly
abort a conflicting transaction, T2. Instead, T1 requests that T2 abort itself; this request is
made by atomically setting T2’s AbortNowPlease, and confirming afterwards that T1 itself
has not been asked to abort, i.e., that T1’s AbortNowPlease is not set. When a transaction
observes that its own AbortNowPlease flag is set, it must abort and set its own Status

field to Aborted as an acknowledgement. The requesting transaction waits for this acknowl-
edgement before proceeding to acquire the object on which the conflict occurred; because of
this waiting, this algorithm is blocking.

Normally, the Data field of an NZObject contains the object’s current data. A transaction
that wishes to access the object acquires ownership by atomically placing a pointer to its
Transaction in the object’s Owner field. Before modifying the Data field, the acquiring
transaction creates a copy of the data (using the object’s Clone function), and points the
object’s Backup Data field to that copy. If the transaction aborts, the backup copy can be
lazily restored by another transaction, undoing the aborted transaction’s effects.

NZSTM does not store the backup copy in-place with the NZObject, unlike DSTM2-SF,
which incurs 100% space overhead as a result. Instead, NZSTM allocates the memory for
the backup copy from a thread-local memory pool. Unless a transaction aborts, this backup
is not accessed by other threads. Thus, a thread can achieve good cache locality by reusing
its thread-local memory for these backups.

To acquire an object, a transaction, T , first determines if it has already acquired the object
by examining its Owner field. If it has not, T must ensure that there are no conflicts with
other transactions before acquiring ownership of the object. If the Owner field is NULL or
points to a committed or an aborted transaction, there is no conflict, and T can atomically
change the Owner field to point to its Transaction. If the Owner field points to an active
transaction, then a contention manager is consulted, and depending on the outcome, T either
waits or requests that the active transaction abort itself.

Once all conflicts have been resolved and T has pointed the Owner field to its own
Transaction, if the previous owner of the object was an aborted transaction, T restores
the backup copy (indicated by the Backup Data field) if there is one. Otherwise, T creates
a new backup copy. Finally, T validates by checking that its own AbortNowPlease flag is
not set — if it is set, T must abort and set its own Status field to Aborted as an acknowl-
edgement. If AbortNowPlease is not set, then T has successfully acquired the object, and
can now access the data.

Validating at other times, by checking that the AbortNowPlease flag is not set, is not
necessary. However, it may be desirable for performance reasons; for example, validating

60

Nonblocking Zero-indirection Software Transactional Memory

before asking another transaction to abort, or before waiting for another transaction to abort,
may avoid unnecessary aborts and waiting.

The following simplified code summarizes the basic blocking algorithm. For the inter-
ested reader, Appendix B contains a more precise description.

To begin a new transaction

BEGIN TXN ()
{

T r a n s a c t i o n ∗ t x n = new T r a n s a c t i o n ;
txn−>S t a t u s = A c t i v e ;
txn−>AbortNowPlease = f a l s e ;
myThread−>Cur ren tTxn = t x n ;

}

To commit a transaction

COMMIT TXN ()
{

T r a n s a c t i o n ∗ t x n = myThread−>Cur ren tTxn ;

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (txn−>S t a t u s == A c t i v e && txn−>AbortNowPlease = f a l s e) {

txn−>S t a t u s = Committed ;
} e l s e {

txn−>S t a t u s = Abor ted ;
}

}

i f (txn−>S t a t u s == Abor ted) {
/∗ Use C ’ s long jmp t o t r a n s f e r c o n t r o l and r e s t a r t . ∗ /
r e s t a r t t r a n s a c t i o n () ;

}
}

To acquire an object (exclusively)

OPEN WRITE(o b j e c t)
{

whi le (t rue) {
T r a n s a c t i o n ∗ c u r r e n t O w n e r = o b j e c t−>Owner ;

i f (c u r r e n t O w n e r == myThread−>Cur ren tTxn) {
/∗ t h e o b j e c t i s a l r e a d y a c q u i r e d by t h i s t h r e a d ’ s c u r r e n t t r a n s a c t i o n ∗ /
break ;

} e l s e i f (c u r r e n t O w n e r == NULL | | cur ren tOwner−>S t a t u s != A c t i v e) {
/∗ t h e o b j e c t i s n o t c u r r e n t l y a c q u i r e d by an a c t i v e t r a n s a c t i o n ∗ /
atomic {

/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (o b j e c t−>Owner == c u r r e n t O w n e r) {

o b j e c t−>Owner = myThread−>Cur ren tTxn ;
} e l s e {

c o n t in u e ;
}

}

i f (cu r ren tOwner−>S t a t u s == Abor ted && o b j e c t−>BackupData != NULL) {
/∗ R e s t o r e t h e backup copy . ∗ /
o b j e c t−>Clone (o b j e c t−>BackupData , o b j e c t−>Data) ;

} e l s e {

61

Chapter 4

/∗ Cr ea t e a new backup copy . ∗ /
o b j e c t−>Clone (o b j e c t−>Data , o b j e c t−>BackupData) ;

}

break ;
} e l s e i f (cu r ren tOwner−>AbortNowPlease) {

/∗ The t r a n s a c t i o n has been asked t o abor t , w a i t f o r i t t o a b o r t . ∗ /
whi le (cu r ren tOwner−>S t a t u s != Abor ted) ;

} e l s e {
/∗ The t r a n s a c t i o n i s a c t i v e , c o n s u l t t h e c o n t e n t i o n manager . ∗ /
i f (c o n t e n t i o n M a n a g e r−>s h o u l d A b o r t (c u r r e n t O w n e r)) {

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (cu r ren tOwner−>S t a t u s == A c t i v e) {

cur ren tOwner−>AbortNowPlease = t rue ;
}

}
}

}
}

/∗ v a l i d a t e ∗ /
i f (myThread−>Curren tTxn−>AbortNowPlease) {

myThread−>Curren tTxn−>S t a t u s = Abor ted ;

/∗ Use C ’ s long jmp t o t r a n s f e r c o n t r o l and r e s t a r t . ∗ /
r e s t a r t t r a n s a c t i o n () ;

}
}

4.1.4 NZSTM: Making the Algorithm Nonblocking

This section describes two ways to make the software transactional memory algorithm de-
scribed above nonblocking, thereby ensuring that a transaction can always make progress
even in the face of conflicts with unresponsive transactions.

Inflating the Object and Displacing Data

NZSTM can inflate an object, and use techniques similar to existing nonblocking object-
based software transactional memory proposals, to temporarily displace the logical data into
a different location than the Data field of the NZObject. NZSTM resorts to this approach
only when an aborted transaction is unresponsive, which my evaluation shows to be rare.
By contrast, previous nonblocking object-based software transactional memory proposals
involve at least one level of indirection in all cases.

When an object needs to be inflated, NZSTM inflates it into an object similar to DSTM’s
transactional object (Figure 4.5). Once an object is inflated, transactions use the DSTM algo-
rithm to acquire the object (Appendix A). This inflation introduces two levels of indirection;
however, it is applied only when needed, and can be reversed once the unresponsive transac-
tion becomes responsive again.

In the inflated object (Figure 4.5), the pointer to the first level is analogous to DSTM’s
start pointer. This pointer is integrated into the NZObject by overloading the Owner field.
NZSTM indicates that the Owner field should be treated as an inflated object by setting its

62

Nonblocking Zero-indirection Software Transactional Memory

low order bit, effectively changing the meaning of the Owner field to an Inflated Object

field.

Owner
Inflated Object

Clone()

Backup Data

Data
(Invalid)

NZObject

Data
(Valid)

Current Transaction

Status
AbortNowPlease

Aborted Transaction

Status
AbortNowPlease

Data
(Valid Copy)

Owner

Aborted
Transaction

old data

new data

Locator

Figure 4.5: An NZObject immediately after being inflated. The Owner field’s low order bit
indicates how the object is interpreted.

Because of the indirection and additional logic, accessing an inflated object costs con-
siderably more than accessing a non-inflated one. However, I expect that the need to inflate
objects is rare. Moreover, NZSTM inflates objects only in cases in which blocking algo-
rithms would have no choice but to wait for an unresponsive transaction, which is likely to be
considerably more expensive.

This approach is now described in more detail. When a transaction, T , has requested the
current owner of an object to abort, and the owner has not responded, T may decide not to
wait any longer, and to inflate the object into a DSTM-like object. To do so, (1) T creates
a DSTM-like Locator, a data structure used to track the object’s metadata; (2) T points
the Owner field of the Locator to T ’s Transaction; (3) T points the locator’s old data

field to the backup copy created by the unresponsive transaction, or to a new copy of the data
if there is no backup2; (4) T points the locator’s new data field to a copy of this backup
which it creates using the Clone function. NZSTM’s Locator object also has an Aborted

Transaction field, which points to the unresponsive thread’s Transaction (Figure 4.5).
After creating a new Locator, T checks that T itself does not have any pending abort

requests by checking its own AbortNowPlease flag (aborting if it does), that the unrespon-
sive transaction is still unresponsive, and that the object has not been acquired or inflated by
another transaction. If any of these assumptions do not hold, T tries to acquire the object

2This can happen only if the unresponsive transaction became unresponsive in the process of acquiring the
object, in which case it has not yet modified the object.

63

Chapter 4

again. In the absence of interference from other threads, this is guaranteed to eventually suc-
ceed; hence it is nonblocking, or more specifically, obstruction free [Herlihy, Luchangco, and
Moir, 2003a].

If these checks succeed, T attempts to atomically swap the Owner field from pointing to
the unresponsive transaction’s Transaction object to the newly created Locator, in the
process setting the Owner field’s low order bit to indicate that the object now points to a
DSTM-like Locator rather than an NZSTM Transaction. This results in a state like the
one in Figure 4.5. Henceforth, the object is treated as a DSTM object and the nonblocking
DSTM algorithm applies (Appendix A), with the addition that each new Locator introduced
contains the Aborted Transaction field from the replaced Locator to preserve the iden-
tity of the unresponsive transaction.

Once an unresponsive transaction finally aborts itself, NZSTM knows it is no longer
modifying the Data field of the object. It is then desirable to deflate the object, by restoring it
to a normal NZObject, so subsequent transactions can again enjoy the performance benefits
of accessing the object data in-place. A transaction, T , can do this as follows.

T acquires the object exclusively according to the normal DSTM method (Appendix A).
T then verifies that the unresponsive transaction has indeed aborted, and that T itself has
no pending abort requests. If that is the case, T atomically swaps the Backup Data field
of the NZObject to point to the valid data. If this swap is successful, T atomically swaps
the Transaction field to point to itself, and copies the backup data back to the Data field
(Figure 4.6.). This ensures that, if T were to abort at any time, the valid data is readily
accessible through the Backup Data field. If any of the preceding steps fail, T abandons the
deflation.

Once the object is deflated, T , and any subsequent transactions, can again access this
object as a normal NZObject.

If an unresponsive thread crashes, then objects its transaction has acquired cannot be de-
flated. This means that these objects’ inflation, and the slowdown associated with it, becomes
permanent. Nevertheless, this slowdown is still preferable to the alternative in blocking sys-
tems, where a crashed thread could cause data corruption, or bring the whole system to a
halt.

When using this nonblocking algorithm, an NZSTM transaction must check if an object it
tries to acquire is inflated to determine whether the transaction can access the data in-place or
whether it should apply the DSTM algorithm. This additional check might incur additional
overhead compared with the blocking algorithm.

64

Nonblocking Zero-indirection Software Transactional Memory

Owner
Inflated Object

Clone()

Backup Data

Data
(Invalid)

NZObject

Data
(Valid)

Current Transaction

Status
AbortNowPlease

Aborted Transaction

Status: Aborted
AbortNowPlease

Owner

Aborted
Transaction

old data

new data

Data
(Stale)

Figure 4.6: A successfully deflated NZObject immediately after deflation

The following simplified code summarizes the nonblocking algorithm. For the interested
reader, Appendix A contains a detailed description of the DSTM algorithm, and Appendix B
contains a more precise description of NZSTM.

To acquire an object (exclusively)

OPEN WRITE(o b j e c t)
{

whi le (t rue) {
T r a n s a c t i o n ∗ c u r r e n t O w n e r = o b j e c t−>Owner ;

i f (cu r ren tOwner−>I n f l a t e d) {
/∗
∗ I f t h e o b j e c t i s i n f l a t e d , t r e a t i t as a DSTM o b j e c t .
∗ A d e s c r i p t i o n o f t h e DSTM a l g o r i t h m i s a v a i l a b l e i n Appendix A .
∗ /

i f (open ds tm (o b j e c t)) {
break ;

}
} e l s e i f (c u r r e n t O w n e r == myThread−>Cur ren tTxn) {

/∗ The o b j e c t i s a l r e a d y a c q u i r e d by t h i s t h r e a d ’ s c u r r e n t t r a n s a c t i o n . ∗ /
break ;

} e l s e i f (c u r r e n t O w n e r == NULL | | cur ren tOwner−>S t a t u s != A c t i v e) {
/∗ The o b j e c t i s n o t c u r r e n t l y a c q u i r e d by an a c t i v e t r a n s a c t i o n . ∗ /
atomic {

/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (o b j e c t−>Owner == c u r r e n t O w n e r) {

o b j e c t−>Owner = myThread−>Cur ren tTxn ;
} e l s e {

c o n t in u e ;
}

}

i f (cu r ren tOwner−>S t a t u s == Abor ted && o b j e c t−>BackupData != NULL) {

65

Chapter 4

/∗ R e s t o r e t h e backup copy . ∗ /
o b j e c t−>Clone (o b j e c t−>BackupData , o b j e c t−>Data) ;

} e l s e {
/∗ Cr ea t e a new backup copy . ∗ /
o b j e c t−>Clone (o b j e c t−>Data , o b j e c t−>BackupData) ;

}

break ;
} e l s e i f (cu r ren tOwner−>AbortNowPlease) {

/∗
∗ The t r a n s a c t i o n has been asked t o abor t , w a i t f o r i t t o a b o r t or t i m e o u t
∗ and i n f l a t e t h e o b j e c t .
∗ /

whi le (cu r ren tOwner−>S t a t u s != Abor ted && ! t i m e o u t ()) ;

i f (cu r ren tOwner−>S t a t u s != Abor ted && i n f l a t e o b j e c t (o b j e c t)) {
break ;

}
} e l s e {

/∗ The t r a n s a c t i o n i s a c t i v e , c o n s u l t t h e c o n t e n t i o n manager . ∗ /
i f (c o n t e n t i o n M a n a g e r−>s h o u l d A b o r t (c u r r e n t O w n e r)) {

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (cu r ren tOwner−>S t a t u s == A c t i v e) {

cur ren tOwner−>AbortNowPlease = t rue ;
}

}
}

}
}

/∗ v a l i d a t e ∗ /
i f (myThread−>Curren tTxn−>AbortNowPlease) {

myThread−>Curren tTxn−>S t a t u s = Abor ted ;

/∗ Use C ’ s long jmp t o t r a n s f e r c o n t r o l and r e s t a r t . ∗ /
r e s t a r t t r a n s a c t i o n () ;

}
}

To inflate an object owned by a unresponsive transaction

bool i n f l a t e o b j e c t (o b j e c t)
{

L o c a t o r ∗ l o c a t o r = new L o c a t o r ;
T r a n s a c t i o n ∗ c u r r e n t O w n e r = o b j e c t−>Owner ;

l o c a t o r−>Owner = myThread−>Cur ren tTxn ;
i f (o b j e c t−>BackupData == NULL) {

o b j e c t−>Clone (o b j e c t−>Data , l o c a t o r−>Old) ;
}
i f (o b j e c t−>BackupData != NULL) {

l o c a t o r−>Old = o b j e c t−>BackupData ;
}
o b j e c t−>Clone (l o c a t o r−>Old , l o c a t o r−>New) ;
l o c a t o r−>AbortedTxn = o b j e c t−>Owner ;

i f (myThread−>Curren tTxn−>AbortNowPlease) {
myThread−>Curren tTxn−>S t a t u s = Abor ted ;

/∗ Use C ’ s long jmp t o t r a n s f e r c o n t r o l and r e s t a r t . ∗ /
r e s t a r t t r a n s a c t i o n () ;

/∗ u n r e a c h a b l e ∗ /
}

i f (cu r ren tOwner−>S t a t u s != A c t i v e | |
! cu r ren tOwner−>AbortNowPlease | |
o b j e c t−>Owner != c u r r e n t O w n e r) {
re turn f a l s e ;

66

Nonblocking Zero-indirection Software Transactional Memory

}

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (o b j e c t−>Owner == c u r r e n t O w n e r) {

o b j e c t−>Owner = l o c a t o r ;
o b j e c t−>I n f l a t e d = t rue ;
re turn true ;

} e l s e {
re turn f a l s e ;

}
}

}

To deflate an object back into a normal NZSTM object

d e f l a t e o b j e c t (o b j e c t , l o c a t o r)
{

/∗ c a l l e d by open ds tm () a f t e r t h e DSTM a l g o r i t h m has a c q u i r e d t h e o b j e c t ∗ /

void ∗ c u r r e n t B a c k u p = o b j e c t−>BackupData ;

i f (l o c a t o r−>AbortedTxn−>S t a t u s == Abor ted) {
i f (myThread−>Curren tTxn−>AbortNowPlease) {

myThread−>Curren tTxn−>S t a t u s = Abor ted ;

/∗ Use C ’ s long jmp t o t r a n s f e r c o n t r o l and r e s t a r t . ∗ /
r e s t a r t t r a n s a c t i o n () ;

/∗ u n r e a c h a b l e ∗ /
}

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (c u r r e n t B a c k u p == o b j e c t−>BackupData) {

o b j e c t−>BackupData = l o c a t o r−>New ;
} e l s e {

re turn ;
}

}

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (o b j e c t−>Owner == l o c a t o r) {

o b j e c t−>Owner = myThread−>Cur ren tTxn ;
o b j e c t−>I n f l a t e d = f a l s e ;

} e l s e {
re turn ;

}
}

o b j e c t−>Clone (o b j e c t−>BackupData , o b j e c t−>Data) ;
}

}

Using an Atomic Single-Compare Single-Store

The need to wait for an unresponsive transaction in the blocking algorithm presented arises
because it is not safe to restore the backup to the Data field and continue to access the object
in-place: the aborting transaction might write to the Data field. A transaction can avoid such
late writes by atomically pairing each write with a check of the AbortNowPlease flag, using
an operation called Single-Compare Single-Store (SCSS) [Moir, 2005]. This ensures that the
write can only happen if the writing transaction has not been asked to abort.

67

Chapter 4

SCSS can be implemented using a short hardware transaction that modifies a location
with a new given value only if another location’s value matches an expected value. The code
listing below demonstrates applying SCSS to atomically pair a write with a check of the
AbortNowPlease flag.

bool SCSS (T r a n s a c t i o n ∗ txn , i n t ∗ d a t a f i e l d , i n t v a l u e)
{

atomic {
/∗
∗ r e q u i r e s hardware s u p p o r t beyond Compare&Swap
∗ b e s t−e f f o r t hardware t r a n s a c t i o n s w i t h c e r t a i n g u a r a n t e e s may s u f f i c e
∗ /

i f (txn−>AbortNowPlease) {
re turn f a l s e ;

} e l s e {
∗ d a t a f i e l d = v a l u e ;
re turn true ;

}
}

}

A conservative SCSS implementation that sometimes fails, even if the expected value is in
the second location, is acceptable; however, if it could fail indefinitely, a software alternative
would be needed [Goodman, Moir, Tabba, and Wang, 2009b], which would re-introduce
much of the complexity I aim to eliminate by using SCSS. Therefore, this approach assumes
an SCSS implementation that makes sufficient guarantees so that a software alternative is
not necessary. Rock does not explicitly provide such a guarantee. In practice, all SCSS
experiments running on Rock were successful (Section 4.3), despite the lack of a software
alternative for the hardware transactions used to implement SCSS.

This simple operation eliminates a great amount of complexity from NZSTM. NZSTM
no longer needs code that implements the complete DSTM algorithm (Appendix A) to access
inflated objects, no longer needs code for inflating and deflating objects to switch between
the two styles, and no longer needs to check whether an object is inflated or not.

Depending on the hardware support, using short hardware transactions, instead of simple
writes, could result in at least a small slowdown in the common case. However, the dramatic
code simplification this technique offers will often justify a small performance overhead. This
observation demonstrates the value of hardware transactional memory supporting even very
small and simple low-latency transactions.

4.1.5 Read Sharing in NZSTM

The issue of read sharing is largely independent of the NZSTM algorithm; different read
sharing algorithms could work with NZSTM [e.g., Marathe et al., 2006; Herlihy et al., 2003b;
Lev and Moir, 2004; Olszewski et al., 2007]. This section describes the read sharing algo-
rithm used in the evaluation. This read sharing method is not necessarily the best to use
with NZSTM; but because this issue is tangential, a full investigation of this topic is outside

68

Nonblocking Zero-indirection Software Transactional Memory

the scope of this thesis. This read sharing algorithm is inspired by the one used in RSTM
[Marathe et al., 2006].

NZSTM uses visible reads, where reader and writer transactions accessing the same ob-
ject can detect and resolve conflicts with each other. A visible reads algorithm is used be-
cause it makes it easier to integrate hardware and software transactions. With visible reads,
hardware transactions that need to access an object exclusively can easily identify potential
conflicts with software transactions [Damron et al., 2006]. The next chapter elaborates more
on this aspect.

This proposed read sharing implementation restructures the NZObject as shown in Fig-
ure 4.7.

Writer

Readers List

Readers Saturation
Counter

In-Object Reader[0]
...

In-Object Reader[r-1]

Clone()

Backup Data

Data

NZObject

Reader[0]

Reader[1]

...

Reader[P-1]

Readers List

one cache line

Data
(Backup)

Transaction

Status
AbortNowPlease

Figure 4.7: An NZObject using the proposed visible readers scheme. For performance
reasons, the size of each reader slot in the Readers List is one cache line.

The restructured NZObject contains, in-place, r slots for readers, and a saturation counter
that counts the number of occupied slots. When all slots are occupied, the next reader to
acquire the object allocates a readers list consisting of P cache lines, where P is the total
number of processors in the system. The reader then adds a pointer to its transaction to the
cache line whose offset matches the processor number the transaction is running on.

The algorithm for opening an object for read is as follows. When a transaction, Tr, wants
to open an object for reading, it checks for active writers that might currently own the object.
If an active writer exists, then depending on the contention management policy, Tr either
waits for the writer, asks it to abort, or inflates the object if the writer is unresponsive.

Assuming there are no active writers, or that all potential conflicts have been resolved,
Tr checks the Readers Saturation Counter to determine whether all in-place reader
slots have been occupied; this is indicated by the value of the counter being one more than

69

Chapter 4

the number of available slots. If the counter is not saturated, Tr briefly acquires the object
exclusively, by atomically swapping the Writer field to point to its own transaction, adds
itself to the first slot not occupied by an active reader, and increments the saturation counter.
Before Tr releases the object, it restores the backup data if the previous writer is an aborted
transaction and Backup Data points to valid data (rather than NULL).

If the counter is saturated, Tr creates a new readers list, if one does not already exist,
by allocating memory for it and atomically setting the Readers List field to point to the
newly created list. Tr then adds a pointer to its transaction to the appropriate cache line on
the readers list, and checks again for conflicts with active writers. If no active writers exist,
Tr has succeeded in acquiring the object for read and can now access the data. If there is an
active writer, Tr refers to the contention manager to decide how to resolve the conflict.

Before Tr finishes acquiring the object, it validates by checking its own
AbortNowPlease flag, and aborts itself if the flag is set, relinquishing ownership of
the object if necessary. This validation is done to ensure that the set of objects the transaction
has opened for read are consistent: if Tr must abort because of a conflict with another
transaction on a different object while attempting to open this object for read, then the reads
may not be consistent, in which case it is not safe to return to the user code [Larus and
Rajwar, 2007; Guerraoui and Kapalka, 2008].

If a transaction, Tw, is opening the object for writing, the procedure is not very different
from what it would be assuming there were no read sharing. First, Tw checks and resolves
conflicts with any writer transactions. Then it acquires the object by using the Writer field
in an analogous way to the Owner field in the exclusive version. Having acquired the object,
Tw cannot proceed until it ensures that no active readers are currently accessing the object.
If the Readers Saturation Counter indicates that the in-place slots are not saturated,
then the writer needs to resolve conflicts only with those readers using the in-place slots. If
the slots are saturated, then the writer needs to resolve conflicts with the in-place readers and

with the whole readers list.

Should a writer transaction decide to abort a reader transaction, then the writer only asks
the reader to abort by setting its AbortNowPlease flag, and need not wait for the reader
to acknowledge the abort. The writer can immediately access the object having ensured
that all readers are either not active, or have been asked to abort. The reason being that, in
this algorithm, every time a reader reads a value from an object, it validates by checking its
own transaction status field to ensure it has not been asked to abort before using the read
data. This ensures that the reader will use only consistent data without the need to inflate for
unresponsive readers, reducing the chances of inflating an object.

Once a writer has resolved all potential conflicts with existing readers, and there are
no more active readers accessing the object, the writer resets the Readers Saturation

Counter to zero. This ensures that future writer transactions do not need to traverse the
readers list unless the counter saturates again. This is the only method for resetting the satu-

70

Nonblocking Zero-indirection Software Transactional Memory

ration counter in software transactions, because readers do not locally track objects they have
acquired for reading, and therefore cannot decrement the counter once they commit or abort.

Displacing data for unresponsive writers is the same as the algorithm described earlier in
Section 4.1.4. For simplicity, and because I believe that this scenario is rare, once an object is
inflated, it can be accessed only exclusively until it is deflated — no read sharing is allowed
for inflated objects.

This treatment of read sharing favors readers over writers, which might be desirable as-
suming readers significantly outnumber writers. If the number of readers is below the satura-
tion threshold then the overhead writers incur is low. This is because, to resolve all conflicts,
writers need to access only the cache lines that contain the object itself and its metadata, and
do not need to traverse a readers list that resides on other cache lines.

4.1.6 Contention Management in NZSTM

NZSTM uses an out-of-band contention manager in the same manner as other software trans-
actional memory proposals (e.g., DSTM and RSTM). NZSTM invokes the contention man-
ager when a transaction tries to acquire an object in a manner that conflicts with the current
object’s readers or writer. The contention manager decides which transaction has priority,
and based on that, it instructs the transaction that invoked it either to wait or to ask the other
transaction to abort.

Having the contention manager as a separate out-of-band module makes it easier to apply
different policies to a transactional system. It also makes the system more robust, because
the contention manager’s decision affects only the system’s performance, not its correctness.
Even if a transaction were to ignore the contention manager’s decision, the system would still
be correct.

Contention management, and how priority is determined, has been widely covered in
other work [e.g., Herlihy et al., 2003b; Scherer and Scott, 2005; Spear, Dalessandro, Marathe,
and Scott, 2009]. Two contention management policies, relevant to the work presented in this
thesis, are the following [Scherer and Scott, 2005].

Karma: This is a priority-based policy, where transactions abort only lower priority transac-
tions they conflict with; otherwise, they wait. Each transaction’s priority is proportional
to the number of objects it has opened in the transaction so far. A transaction resets its
priority to zero when it commits, but keeps the priority it has accumulated if it aborts.

Timestamp: This is also a priority-based policy. Each transaction’s priority is proportional
to the age of the transaction. A transaction’s age can be determined using different
methods, such as the system time at the start of a transaction, a Lamport clock [Lam-
port, 1978], or the total number of transactions the thread has executed so far. Vari-
ations to the policy can also be achieved by giving threads the right to modify their
timestamps in controlled ways.

71

Chapter 4

I also developed a new contention management policy, KarmaDD, which is a variant
of Karma combined with deadlock detection. In KarmaDD, each transaction’s priority is
proportional to the number of objects it has already acquired in this transaction attempt;
priority does not accumulate and is reset every time a transaction commits or aborts. When a
conflict is detected, a transaction is not aborted, even if it is a low priority transaction, unless
a deadlock has been detected or a timeout is triggered (to ensure progress).

KarmaDD’s deadlock detection is modeled on the scheme Moore et al. [2006] use for
their hardware transactional memory proposal. Whenever a transaction, TL, detects a conflict
with a higher priority transaction, TH , TL raises a flag and waits until TH commits or aborts.
When a transaction, TH , detects a conflict with a lower priority transaction, TL, whose flag is
raised, TH infers that there is a potential cycle and requests that TL abort.

In my experiments, KarmaDD’s performance was consistently better than the other poli-
cies. Therefore, it is the default policy used for the evaluation.

4.1.7 Memory Management in NZSTM

The NZSTM algorithm allocates new memory at runtime to manage its metadata. Manual
memory management is difficult in parallel algorithms that allocate and share new memory
dynamically at runtime with an undetermined number of threads [Marathe et al., 2006; Hud-
son, Saha, Adl-Tabatabai, and Hertzberg, 2006]. Without additional communication between
threads, each individual thread cannot determine when it is safe to deallocate an object, be-
cause it cannot be certain whether other threads might still be accessing that object. This
is why many parallel programs and algorithms rely on reference counting and automatic
garbage collection.

NZSTM is written in C, a language that does not support garbage collection by default.
The issue of memory management is outside the scope of my research, and ideally, should not
affect the design. Therefore, this work uses the Boehm-Demers-Weiser conservative garbage

collector [Boehm, Demers, and Weiser, 2010].

The Boehm-Demers-Weiser garbage collector is available as a multi-platform open-
source library for C and C++. It is competitive with manual memory management
for single-threaded workloads. It is also scalable, and outperforms manual memory
management, at least for some multithreaded workloads [Boehm et al., 2010].

4.2 Correctness Evaluation

In developing NZSTM, I have used model checking to increase confidence in the correctness
of the NZSTM algorithm. I have also used stress tests, forced inflations in NZSTM, which
rarely occurred in the performance evaluation, coupled with assertions and sanity checks.
This section discusses these aspects of the correctness evaluation.

72

Nonblocking Zero-indirection Software Transactional Memory

4.2.1 Formal Verification and Model Checking

One can never guarantee that a proof is correct, the best one can say is “I have
not discovered any mistakes.”

— Edsger W. Dijkstra

I created a model of the NZSTM algorithm in Promela, and mechanically checked various
useful properties of it using Spin 5.2.5 [Holzmann, 2003]. Model checking was helpful in
developing the algorithm, resolving some subtle bugs that did not manifest in normal testing,
and increasing confidence.

Promela is a C-like language that can describe models to check using Spin. Spin is an
open-source mechanical verification system developed at Bell Labs and designed for the for-
mal verification of high-level models for systems of concurrently executing processes. Spin
can perform exhaustive searches of all possible executions of a given model while apply-
ing sanity checks and assertions. Spin can also find unreachable code, deadlock, and cycles
(livelock) in a model.

If Spin finds an error in the model, it generates a trace file that shows the exact steps
needed to reproduce the error. Spin can also find the minimum number of steps to reach an
error. This aspect is very helpful in debugging non-deterministic concurrent systems, where
concurrency errors are hard to reproduce, and where attaching a debugger often hides such
errors.

Because of the complexity of transactional memory algorithms and the amount of state
they require to model, it is not generally feasible to establish their correctness using model
checking. Any additional complexity in a model, such as modeling additional variables or
threads, expands the state-space that needs to be checked exponentially. Therefore, these tools
only check the correctness of limited cases in order to increase confidence in the algorithms.
Ananian and Rinard [2005] and O’Leary, Saha, and Tuttle [2009] have also used Spin for
model checking different properties of transactional memory proposals.

Using Spin, I performed complete state-space searches for up to three concurrent threads,
each thread accessing up to three objects for either writing or reading using the read sharing
algorithm described. Increasing the number of thread to four increases the search space so
that complete searches were not possible because of memory limitations. Instead, verification
using the non-exhaustive bitstate hashing [Holzmann, 2003] was performed for up to four
threads.

Spin’s unreachable code reporting, deadlock detection, and cycle detection were used.
For the models tested, all code paths were taken at least once, no deadlock occurred, and
no cycles (livelock) occurred. NZSTM is only obstruction-free and not lock-free, and thus
livelock is possible; it is the role of the contention manager to ensure this does not happen in
practice. Spin reports that the model is livelock-free because a retried transaction allocates a
new Transaction object, so even when the algorithm exhibits livelock, no state is repeated.

73

Chapter 4

I verified the models with Spin running on an eight core Niagara UltraSPARC machine,
each core running at 1167 MHz, with 32 GiB of memory for the whole machine. Below
is a description of one of the simpler tests, along with a representative sample of its model
checking cost.

This particular test models a memory with two integer objects initialized to zero. Each
transactional thread increments then decrements an integer object by one, followed by read-
ing the other integer and asserting that it is zero. Spin exhaustively checks every possible
interleaving of these operations and every possible combination of which integer to read and
which one to modify. In addition to checking invariants related to the transactional model,
Spin also checks that, at the end of a transaction, the value of all integer objects remains zero.

Model checking NZSTM with read sharing required 49,835 states for two threads,
and 60,664,348 states for three threads. On the other hand, checking the blocking version
of NZSTM, with read sharing, required 13,412 (74% fewer) states for two threads, and
1,624,991 (97% fewer) states for three threads.

Model checking NZSTM using SCSS requires virtually the same number of states as the
blocking algorithm. SCSS is an atomic operation, which Spin models as a single-step opera-
tion, and therefore does not expand the state-space. This highlights the amount of complexity
in a nonblocking algorithm that even short hardware transactions could reduce.

For the interested reader, the Promela model for NZSTM is available in Appendix B.

4.2.2 Runtime Correctness Evaluation

Program testing can be used to show the presence of bugs, but never to show
their absence!

— Edsger W. Dijkstra

To increase confidence in the correctness of NZSTM, I used stress tests and runtime asser-
tion checking [Hoare, 1969, 2002]. Because the performance evaluation shows that object
inflation rarely occurs in NZSTM, I also created tests that induce object inflation.

The stress tests involve running all the available benchmarks, described in the next sec-
tion, multiple times. The version of NZSTM in the stress tests includes assertions that ensure
NZSTM’s data structures maintain the algorithm’s invariants at different points of its execu-
tion. For example, every time a transaction accesses object data, it asserts that the transac-
tion’s status field is Active. If any of the assertions fail, the program halts with an error
message outlining which assertion failure was the cause.

In addition to assertions, most of the benchmarks have an integrity test associated with
them that runs after the benchmark has finished. This test ensures that a benchmark’s data
structures maintain the invariants of that particular benchmark. For example, the integrity
test for a benchmark based on a sorted linked list of integers, whose values must be from 0

74

Nonblocking Zero-indirection Software Transactional Memory

to 255, would traverse the list, checking that the value of each node is greater than that of its
preceding node, that the smallest node’s value is 0 or more, and that the largest node’s value
is 255 or less.

All performance evaluations and stress tests run these integrity tests at the end. Because
the integrity test runs after the benchmark time has been measured, it does not affect the
reported performance of the benchmark, and helps gain confidence in the correctness of the
algorithm and of the running benchmark code. However, performance evaluation disables all
assertions and sanity checks that occur during the runtime of the benchmark, because these
assertions affect the reported performance.

To test the nonblocking algorithm, object inflation was induced by modifying NZSTM
so each thread would pick a random transaction, on average one in every one hundred trans-
actions, and force it to sleep for a duration long enough for other threads to assume it is
unresponsive. I ran these tests, with the assertions mentioned above and with the integrity
checks at the end, using different benchmarks.

The techniques used to evaluate the correctness of NZSTM are neither definitive nor
conclusive. They were, however, very useful in designing and debugging the algorithms.

4.3 Performance Evaluation

This section reports on NZSTM’s performance evaluation using a prototype of Sun’s Rock
processor (Section 2.8).

4.3.1 Benchmarks

This evaluation uses microbenchmarks and STAMP benchmarks with varying workloads.

The microbenchmarks, adapted from the Java-based DSTM, are the following. The
linkedlist benchmark is a concurrent set implemented using a single sorted linked list.
Each thread randomly chooses to insert, delete, or look up a value in the range of 0 to 255,
with the high contention distribution of operations being 1:1:1 (insert:delete:lookup) and
the low contention distribution of operations being 1:1:8. The redblack and hashtable

benchmarks are also concurrent sets, implemented using a red-black tree and a chained hash-
table.

I also use the kmeans, vacation, and genome STAMP benchmarks, with the same
parameters used by their authors [Minh, Trautmann, Chung, McDonald, Bronson, Casper,
Kozyrakis, and Olukotun, 2007]. These parameters are shown in Table 4.1.

Table 4.2 presents a qualitative summary, relative to the STAMP benchmarks, of the
benchmarks’ runtime transactional characteristics: length of transactions (number of instruc-
tions), time spent in transactions (relative to the total benchmark runtime), size of the trans-
actions’ read and write sets, and amount of contention.

75

Chapter 4

Table 4.1: STAMP parameters used in the evaluation

Benchmark Parameters
kmeans-high -m15 -n15 -t0.05 -i random1000 12

kmeans-low -m40 -n40 -t0.05 -i random1000 12

vacation-high -n8 -q10 -u80 -r65536 -t4096

vacation-low -n4 -q90 -u80 -r65536 -t4096

genome -g256 -s16 -n16384

Table 4.2: Qualitative summary, relative to STAMP, of the benchmarks’ runtime transac-
tional characteristics. [cf. Minh et al., 2008]

Benchmark Transaction Length Transaction Time Read/Write Set Size Contention
linkedlist medium high medium high
redblack short high medium low
hashtable very short high small low
kmeans short low small low

vacation medium high medium low/medium
genome medium high medium low

4.3.2 Experiments

The benchmarks are tested using 1, 2, 4, 8, and 16 threads on the Rock machine, each thread
running on a separate core. The benchmarks are compiled using GCC 3.4.6, with optimiza-
tion set to level 3. The benchmarks begin by initializing the relevant data structures, and
then start taking measurements, recording the elapsed wall clock time to complete. Each
benchmark is run three times, and the average time of the three runs is recorded.

I evaluate the following proposals for executing transactions.

NZSTM: The system assumes no special hardware support and runs using NZSTM software
transactions with visible reads. Visible reads have one reader’s slot in-place in the
object (r = 1), and allocate as many cache lines (P) for the reader’s list as the number
of running threads.

BZSTM: The system assumes no special hardware support, and runs using blocking NZSTM
software transactions. Objects never get inflated, so it is not necessary to check if
the objects are inflated. I compare against this system to evaluate the overhead that
checking for inflated objects incurs.

DSTM2-SF: The system assumes no special hardware support and runs using DSTM2-SF
software transactions. I compare against this system because it is a blocking object-
based software transactional memory designed from the ground up as a blocking algo-
rithm. In addition, Herlihy et al. [2006] show that DSTM2-SF significantly outperforms
the nonblocking DSTM. This DSTM2-SF implementation is a good-faith reproduction,
which uses the same visible reads and contention management policy as NZSTM.

76

Nonblocking Zero-indirection Software Transactional Memory

SCSS: The system runs using NZSTM software transactions, and assumes hardware with
sufficient guarantees to support an SCSS implementation, which obviates the need for
inflating objects.

4.3.3 Results

Because of the careful attention to cache performance in NZSTM, and because I believe that
unresponsive transactions — and thereby inflation — are rare, I expect NZSTM’s perfor-
mance to be similar to the other proposals evaluated. This includes DSTM2-SF, which was
designed to be blocking specifically for performance reasons. However, I expect that NZSTM
would incur some overhead, because of the additional checking to ensure that an object is not
inflated. This overhead should be small, especially because Rock’s aggressive speculation
would hide much of the checking latency.

Figure 4.8 shows the speedup of running the benchmarks using the different proposals,
relative to a single global lock (not shown) running on a single processor. The data is normal-
ized to a single global lock because it demonstrates the performance achievable on systems
that have no transactional memory support with a similar level of programming complexity
as using transactions.

The different proposals performed mostly within 10% of each other, except in the write-
dominated kmeans. In most cases, NZSTM lags slightly behind BZSTM, by about 2–5%.
This is due to overhead for checking for inflated objects; it is not due to any actual object
inflation, which did not occur in these experiments.

SCSS was virtually identical with NZSTM in all benchmarks, except for kmeans. Be-
cause kmeans is a write-dominated benchmark, the overhead of wrapping every store with a
short hardware transaction significantly impacts its performance.

The nonblocking NZSTM is competitive with the blocking DSTM2-SF, sometimes lag-
ging behind it slightly, and at other times outperforming it slightly. In kmeans, NZSTM sig-
nificantly outperforms DSTM2-SF. This is likely because of the additional space overhead
in DSTM-SF. The size of the main transactional object in kmeans, not including metadata, is
100 bytes. This requires two cache lines on Rock, whose cache line size is 64 bytes. By con-
trast, objects in the other benchmarks easily fit on a single cache line. Because DSTM2-SF
allocates space for backup data in-place with an object, it requires four cache lines to store a
kmeans transactional object; whereas NZSTM requires only two cache lines for the same ob-
ject. Therefore, DSTM2-SF can incur twice as many cache misses when accessing a kmeans
object. NZSTM uses thread-local memory for backups, which it reuses after successful trans-
actions, thus improving cache locality.

Compared with using a single global lock, all proposals in this evaluation are significantly
slower when running on a single thread, ranging from being twice as slow to being ten times
as slow. The benchmark with the smallest gap is kmeans, where NZSTM is slower only by

77

Chapter 4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8 16

linkedlist-high

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 2 4 8 16

redblack-high

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1 2 4 8 16

hashtable-high

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 4 8 16

linkedlist-low

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16

redblack-low

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 4 8 16

hashtable-low

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 4 8 16

kmeans-high

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16

vacation-high

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 2 4 8 16

genome

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16

kmeans-low

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1 2 4 8 16

vacation-low

 2

 1 3 7 15

Th
ro

ug
hp

ut

Threads

TITLE
 DSTM2-SF
 BZSTM
 SCSS
 NZSTM

Figure 4.8: Results of running the benchmarks on the Rock machine. The x-axis represents
the number of threads, and the y-axis represents the speedup relative to a single thread using
a single global lock (not shown).

about 20% in the single-threaded case. The gap is small in the kmeans benchmark because
its transactional component is small; it spends less than 10% of its time inside a transaction.

4.3.4 Discussion

The results show that nonblocking software transactional memory algorithms are not inher-
ently slower than their blocking counterpart. In particular, when comparing a blocking ver-
sion against a nonblocking version of the same base algorithm (BZSTM against NZSTM),

78

Nonblocking Zero-indirection Software Transactional Memory

the difference is barely noticeable in most cases. This might be because Rock’s aggressive
speculation hides much of the latency of NZSTM’s checking if objects are inflated.

Furthermore, when comparing an algorithm designed as a blocking algorithm
(DSTM2-SF) against a nonblocking algorithm (NZSTM), other considerations, namely how
the algorithm handles backup copies of objects acquired exclusively, can have a bigger
impact on performance than whether the algorithm is blocking or nonblocking.

The results also show that, for a small number of threads, none of these proposals are
competitive with using a single global lock. For most benchmarks, software transactional
memory performance breaks even with using a single global lock on a single thread after
running on four threads. For the linkedlist benchmark, which has high contention, these
proposals break even with a single global lock when running on sixteen threads. However,
the performance of all proposals tested scales as the number of threads increases, unlike a
single global lock, which does not scale without hardware support.

Finally, the results demonstrate the value of hardware support for transactions — even
if those transactions are small. The SCSS-based NZSTM algorithm performed mostly as
well as the blocking algorithms, while providing nonblocking progress guarantees and being
almost as simple as its blocking counterpart.

4.4 Concluding Remarks

Blocking is unacceptable in some cases, but previous nonblocking object-based software
transactional memory proposals use expensive indirection, resulting in worse performance
than their blocking counterpart. This chapter introduced NZSTM, a nonblocking object-
based software transactional memory that eliminates indirection, in the common case, result-
ing in performance competitive with blocking proposals.

NZSTM demonstrates that nonblocking software transactional memory proposals are not
inherently slower than blocking ones. Moreover, with the support of only small, simple, hard-
ware transactions, nonblocking proposals do not need to be significantly more complicated
than blocking ones either.

The next chapter demonstrates how NZSTM is used in a hybrid transactional memory
context, which exploits best-effort hardware transactional memory.

79

Chapter 5

Hybrid Nonblocking Zero-indirection
Transactional Memory

This chapter presents Nonblocking Zero-indirection Transactional Memory (NZTM). NZTM
is a nonblocking hybrid transactional memory, which comprises a software component based
on NZSTM, and can exploit best-effort hardware support to improve performance, when
available. The purpose of using NZSTM as the software component for NZTM is to make
the hardware case fast, by not requiring it to go through indirection to access the data in the
common case.

The earliest hybrid proposals are based on software transactional memory proposals that,
unlike NZSTM, do not collocate the object data with its transactional metadata. For example,
HyTM [Damron et al., 2006] uses a word-based software transactional memory that has a
separate ownership record table. Both hardware and software transactions must consult this
table before they access the data. Another early hybrid proposal is the one by Kumar et al.
[2006], which uses DSTM as its software component. As explained in the previous chapter,
DSTM requires two level of indirection to access the data.

This method of data organization means that the object data and its metadata could be
located on two or more different cache lines, possibly causing a transaction to incur a cache
miss for every location it accesses. This additional overhead is one of the reasons why soft-
ware transactional memory is significantly slower than hardware transactional memory. If a
hybrid transactional memory uses a software component that does not collocate an object’s
metadata with its data, then hardware transactions, which hybrid proposals target as the com-
mon case, incur this additional overhead as well.

A possible solution to this problem is to use a blocking software component that col-
locates an object’s metadata with its data. As mentioned previously, blocking algorithms
introduce a different set of problems and are undesirable in certain contexts.

Consequently, the main motivation in designing NZTM is to ensure that hardware trans-
actions incur as little overhead as possible. NZTM should also be nonblocking, particularly

81

Chapter 5

because I do not believe that nonblocking algorithms are inherently slower than blocking
ones, nor are they more complex in the presence of hardware support.

In NZTM, transactions can run using best-effort hardware support, and fall back on
NZSTM software transactions when they abort. NZTM is optimized for the case in which
hardware support is available and able to commit most transactions. An object’s metadata
is collocated with the object data in the common case, and therefore, NZTM achieves near-
optimal cache behavior in the common case.

Ananian and Rinard [2005] also propose a nonblocking hybrid transactional memory that
eliminates indirection for hardware transactions in the common case. However, software
transactions that perform writes require indirection in all cases, which hardware transaction
that follow have to check for and handle.

The main contributions presented in this chapter are the following.

• I describe NZTM, a hybrid transactional memory based on NZSTM. NZSTM is partic-
ularly suited for a hybrid system because it requires no indirection to access an object’s
data in the common case.

• I present a performance evaluation of NZTM with best-effort hardware support using
Sun’s ATMTP simulator. NZTM is compared against LogTM-SE [Yen et al., 2007], an
unbounded hardware transactional memory. The results show that NZTM is competi-
tive with LogTM-SE.

• I also present a performance evaluation of NZTM on Rock using Rock’s best-effort
hardware support. The results show that NZTM running on Rock performs well on
smaller workloads. However, because of the limitations on the type of transactional
load Rock can run, some of the larger workloads do not benefit from Rock’s hardware
support.

The remainder of this chapter is organized as follows. Section 5.1 describes the design of
NZTM. Section 5.2 presents a performance evaluation of NZTM using a simulator and the
Rock machine. Finally, Section 5.3 concludes this chapter.

5.1 The Design of NZTM

The main goal in the design of NZTM is a nonblocking object-based hybrid transactional
memory that is fast and competitive with unbounded hardware transactional memory. NZTM
is designed to eliminate the costly indirection, and to commit as many transactions as possible
using the fast hardware path.

NZTM is written in the C programming language, and uses the same NZSTM program-
ming model and data structures described in the previous chapter. To simplify the discussion,

82

Hybrid Nonblocking Zero-indirection Transactional Memory

this section first describes NZTM based on the NZSTM algorithm that does not allow read
sharing between software transactions. NZTM can work with different software read sharing
algorithms with little modification; therefore, this section then describes the modifications
made so NZTM can support the visible read sharing algorithm used in the previous chapter.

5.1.1 The Basic NZTM Algorithm

In a similar manner to HyTM [Damron et al., 2006], NZTM attempts transactions using
hardware support and if (repeatedly) unsuccessful, runs transactions using NZSTM software
support. The decision of when to give up on attempting a transaction in hardware is a matter
of policy, which could be determined by the type of workload that is running, the limitations
of the underlying hardware, and the reason the transaction aborted.

When an NZTM hardware transaction acquires an object, it checks for conflicts with
software transactions, and explicitly aborts itself if it discovers any; it can then try again either
in hardware or in software, depending on the policy. If the transaction does not discover any
conflicts, it can safely proceed, because a subsequent conflict with a software transaction
will modify data that the hardware transaction has accessed, thereby automatically aborting
the hardware transaction. Hardware transactions automatically abort in this case because
NZTM’s best-effort hardware leverages the underlying cache coherence protocol for conflict
detection (Section 2.5).

A variety of approaches of checking for conflicts with software transactions are possible.
Conservative approaches are simpler, but more likely to revert to software, which hurts per-
formance. In the simplest and most conservative scheme, a hardware transaction accessing an
NZObject (Figure 5.1) aborts itself if the Owner field is non-NULL, and proceeds otherwise.
This scheme is conservative because if the Owner field is non-NULL, but points to an aborted
or a committed transaction, there is no conflict.

Owner

Clone()

Backup Data

Data

NZObject

Data
(Backup)

Transaction

Status
 {Active, Committed,

Aborted}
AbortNowPlease

{true, false}

one word

Figure 5.1: The structure of NZTM’s main transactional object

83

Chapter 5

In NZTM, hardware transactions check in more detail to determine if there is a conflict, by
inspecting the status of the previous software owner transaction, identified by the Owner field.
If the previous software owner is a committed transaction, the hardware transaction accesses
the data directly. If the previous software owner is an aborted transaction, the hardware
transaction first restores the backup data, and then accesses the data in-place. If the object is
inflated, i.e., the Owner field’s low-order bit is set, the hardware transaction first deflates the
object, and then accesses the data in-place.

Once a hardware transaction has ensured that there are no conflicts and that the object data
is in-place, it sets the object’s Owner field to NULL. This eliminates the need for subsequent
hardware transactions to perform similar checks.

Although it is possible for hardware transactions to access the backup data or even the
inflated data directly, NZTM attempts to restore the object to its original in-place state. This
eliminates indirection for data accesses by future hardware transactions, and also by the cur-
rent transaction if it accesses the same object later.

Hardware transactions abort themselves if they discover a conflict with a software trans-
action. Without hardware support beyond best-effort, hardware transactions are unable to
communicate with software transactions or a software contention manager to try to resolve
the conflict. Such communication typically involves modifying shared memory; however,
hardware transactions are designed to preserve isolation, and are unable to make such modi-
fications visible inside a transaction. In a hybrid system such as NZTM, software transactions
are likely to be transactions that were attempted in hardware first, and used software as a fall-
back mechanism after aborting. Therefore, software transactions are likely to have higher
priority than hardware transactions, which makes aborting hardware transactions in favor of
software a good policy anyway.

It is important to note that NZTM performs these checks by controlling what code is
executed within a hardware transaction, not by assuming any special support in the hardware
beyond best-effort.

The algorithm described so far does not support read sharing between hardware and soft-
ware transactions. Because software transactions must acquire the Owner field of an object,
regardless of whether they are modifying the object or only reading it, neither hardware nor
software transactions can differentiate between software readers and software writers. How-
ever, this algorithm does allow read sharing between hardware transactions, because hard-
ware transactions do not modify any data structures to acquire an object, but rely instead on
the underlying coherence protocol to detect and resolve conflicts. Cache coherence protocols
typically allow read sharing, and so do best-effort hardware transactional memory proposals
that leverage them.

84

Hybrid Nonblocking Zero-indirection Transactional Memory

5.1.2 Read Sharing between Hardware and Software Transactions

For many workloads, accessing objects only for reading is more common than accessing them
for writing inside a transaction [Minh et al., 2008]. It is therefore desirable that hardware
and software readers are able to coexist without conflicts. Otherwise, even a few software
transactions could trigger many conflicts with hardware transactions causing the system to
constantly fall back on software.

This section now describes how NZTM allows read sharing between hardware transac-
tions and software transactions that use the visible read sharing algorithm described in Sec-
tion 4.1.5.

A hardware transaction opening an NZObject (Figure 5.2) for reading needs to check
only for conflicts with a software writer, because hardware and software readers are not in
conflict. When a hardware reader acquires an object, it checks that the object’s Writer field
does not point to an active software transaction, in which case the hardware transaction has
to abort and try again. If the Writer field points to a committed or an aborted transaction,
the hardware transaction can proceed, first restoring any backup data in case of an aborted
software transaction, and setting the Writer field to NULL, which eliminates the need for
subsequent hardware transactions to check the state of the Writer.

Writer

Readers List

Readers Saturation
Counter

In-Object Reader[0]
...

In-Object Reader[r-1]

Clone()

Backup Data

Data

NZObject

Reader[0]

Reader[1]

...

Reader[P-1]

Readers List

one cache line

Data
(Backup)

Transaction

Status
AbortNowPlease

Figure 5.2: An NZObject using the proposed visible readers scheme

A hardware transaction opening an object for writing must check for conflicts with both
software readers and writers. When a hardware writer acquires an object, it performs the
same check on the Writer as above. If successful, it first ensures there are no conflicts with
software readers by checking the Readers Saturation Counter. If the counter is zero,
the hardware writer can proceed because it knows that there are no software readers. If the

85

Chapter 5

counter is greater than zero, the hardware transaction must check for the existence of soft-
ware readers in the in-place reader’s slots. The hardware transaction also checks the reader’s
list if the Readers Saturation Counter is saturated. Once the hardware transaction
has ensured that there are no active software readers, it resets the Readers Saturation

Counter to zero, which eliminates the need for subsequent hardware transactions to perform
similar checks.

5.1.3 Policy on Retrying Hardware Transactions

One of the design decisions that affect the performance of a hybrid system is whether to try a
transaction again in hardware, if it aborts, or whether to fall back on software.

If the transaction tries again in hardware, then it might still commit successfully in hard-
ware, benefiting from the speed of hardware transactions. On the other hand, if the transaction
aborts because of a limitation in the hardware, then another attempt is wasted work. In that
case, it is desirable that the transaction should fall back on software immediately.

If the transaction falls back on software, it is more likely to commit successfully, partic-
ularly if the hardware transaction aborted because of a hardware limitation. Software trans-
actions are slower than hardware transactions, and the goal of NZTM it to improve perfor-
mance by using the hardware path as often as possible. Therefore, falling back on software
prematurely could result in a system that runs mainly in software, wasting the opportunities
hardware support provides.

As with many other policy decisions, there is no policy that perfectly suits all workloads.
The best policy depends on the current workload the system is running, as well as the lim-
itations of the underlying hardware. Different best-effort hardware transactional memory
implementations might have different types of limitations. However, because best-effort pro-
posals typically leverage the cache coherence protocol, they are likely to share many of those
limitations.

In their evaluation of the Rock processor, Dice et al. [2009b] presented a detailed analysis
of the different reasons that might abort a hardware transaction in Rock. They also presented
different recommendations on what to do based on each reason for aborting, which the CPS
register indicates (Section 2.8). Below is a summary of the reasons why a hardware transac-
tion might abort, and what the best course of action might be. This summary is mainly based
on the findings of Dice et al., as well as my experiences using ATMTP and Rock.

Fundamental limitations: Some limitations in Rock are fundamental; unless the aborted
transaction that runs again takes a different code path, it will never succeed in hardware.
These limitations include running out of space in the write buffer or cache memory, at-
tempting to execute an unsupported instruction, and generating an exception. NZTM’s
policy in this case is to fall back on software immediately.

86

Hybrid Nonblocking Zero-indirection Transactional Memory

Coherence conflicts: When a cache line that has been accessed by a Rock transaction is
invalidated, the transaction aborts. This invalidation could be caused by a conflict
with another hardware transaction or with software (transactional or non-transactional).
NZTM’s policy in this case is to try again in hardware a few more times, and then fall
back on software.

Conflicts with software transactions: When an NZTM hardware transaction acquires an
object, it aborts itself if it finds that the object is owned by a software transaction.
Rock’s CPS register does not distinguish between aborts caused by unsupported in-
structions and deliberate aborts, because the mechanism NZTM uses to explicitly abort
a hardware transaction is by attempting to execute an unsupported instruction. The
code I run does not use unsupported instructions unless it is explicitly aborting a trans-
action; therefore, aborts caused by an unsupported instruction imply a conflict with a
software transaction. NZTM’s policy in this case is to try again in hardware a few more
times, and then fall back on software.

Transient limitations: Some events that abort a hardware transaction will not necessarily
reoccur if the transaction is retried. These events include mis-speculation, interrupts,
and TLB misses. NZTM’s policy in this case is to try again in hardware a few more
times, and then fall back on software.

In the Rock-like ATMTP simulator, unlike the actual Rock processor, all transient lim-
itations are fundamental. Because ATMTP completely rolls back the state of the aborted
processor, events such as TLB misses will always reoccur if the hardware transaction ac-
cesses the same memory location again when retried. Therefore, when running on ATMTP,
NZTM immediately falls back on software if the transaction was aborted by such events. On
the other hand, because ATMTP does not perform aggressive speculation, aborts caused by
mis-speculation do not happen.

Based on my experiences using ATMTP and Rock, unless a hardware transaction aborts
because of a fundamental limitation, the number of hardware transaction attempts should
be proportional to the number of threads running in the system. Specifically, if a hardware
transaction aborts because of a conflict with another transaction, it tries again a number of
times equal to the number of threads running in the system. If it aborts because of a transient
limitation, such as an interrupt, it tries again three more times when running on Rock, but
falls back on software immediately when running on ATMTP.

Table 5.1 summarizes how NZTM behaves when a hardware transaction aborts, both on
Rock and on ATMTP.

87

Chapter 5

Table 5.1: Course of action when a hardware NZTM transaction aborts on Rock and on
ATMTP

Cause Rock ATMTP
Transient limitation try again three times fall back on software
Fundamental limitation fall back on software
Conflict (coherence or software) try again a number of times equal to the

number of running threads

5.2 Performance Evaluation

This section reports on the performance evaluation of NZTM.

5.2.1 Experiment Environments

I evaluate NZTM using Sun’s Rock processor and the ATMTP simulation framework, both
described in Section 2.8.

The simulation framework is based on Virtutech Simics 3.0.30, in conjunction with the
University of Wisconsin GEMS 2.1 memory models. The simulator models processors that
have best-effort hardware support, using Sun’s Rock-like ATMTP simulator. It can also
model LogTM-SE [Yen et al., 2007], an unbounded hardware transactional memory.

The simulation parameters are shown in Table 5.2.

Table 5.2: Simulated machine configuration

Item Model
Processor in-order, single-issue, single-threaded, multicore
Cache line size 64 bytes
L1 cache 256 KiB, 4-way set-associative, 1 cycle latency
L2 cache 4 MiB, 8-way set-associative, 20 cycle latency
Physical Memory 8 GiB, 450 cycle latency
Processor Network Topology point to point
ATMTP Specific
Transactional cache L1 cache
Transactional write buffer size 256 entries
Conflict resolution policy requester-wins
Function calls in transactions allowed
LogTM-SE Specific
Conflict resolution policy timestamp with deadlock detection

The ATMTP parameters are set to be bigger and more tolerant to certain events than Rock,
e.g., by allowing function calls inside transactions. When using the simulator, the goal is to
evaluate how well NZTM could perform using best-effort support in general, rather than how
the limitations of a particular implementation of best-effort hardware (e.g., Rock) could affect
it.

88

Hybrid Nonblocking Zero-indirection Transactional Memory

5.2.2 Benchmarks

This evaluation uses microbenchmarks and STAMP benchmarks with varying workloads.
These are the same workloads used for evaluating NZSTM (Section 4.3).

The microbenchmarks, adapted from the Java-based DSTM, are the following. The
linkedlist benchmark is a concurrent set implemented using a single sorted linked list.
Each thread randomly chooses to insert, delete, or look up a value in the range of 0 to 255,
with the high contention distribution of operations being 1:1:1 (insert:delete:lookup) and
the low contention distribution of operations being 1:1:8. The redblack and hashtable

benchmarks are also concurrent sets, implemented using a red-black tree and a chained hash-
table.

I also use the kmeans, vacation, and genome STAMP benchmarks, with the same pa-
rameters used by their authors [Minh et al., 2007]. These parameters are shown in Table 5.3.

Table 5.3: STAMP parameters used in the evaluation

Benchmark Parameters
kmeans-high -m15 -n15 -t0.05 -i random1000 12

kmeans-low -m40 -n40 -t0.05 -i random1000 12

vacation-high -n8 -q10 -u80 -r65536 -t4096

vacation-low -n4 -q90 -u80 -r65536 -t4096

genome -g256 -s16 -n16384

Table 5.4 presents a qualitative summary, relative to the STAMP benchmarks, of the
benchmarks’ runtime transactional characteristics: length of transactions (number of instruc-
tions), time spent in transactions (relative to the total benchmark runtime), size of the trans-
actions’ read and write sets, and amount of contention.

Table 5.4: Qualitative summary, relative to STAMP, of the benchmarks’ runtime transac-
tional characteristics. [cf. Minh et al., 2008]

Benchmark Transaction Length Transaction Time Read/Write Set Size Contention
linkedlist medium high medium high
redblack short high medium low
hashtable very short high small low
kmeans short low small low

vacation medium high medium low/medium
genome medium high medium low

5.2.3 Experiments

I evaluate the following proposals for executing transactions.

NZSTM: The system assumes no special hardware support, and runs using NZSTM soft-
ware transactions with visible reads. Visible reads have one reader’s slot in-place in the
object (r = 1), and allocate as many cache lines (P) for the reader’s list as the number
of running threads.

89

Chapter 5

NZTM/ATMTP: The system runs NZTM, taking advantage of best-effort hardware support
using the Rock-like ATMTP.

NZTM/Rock: The system runs NZTM, taking advantage of Rock’s best-effort hardware
support.

LogTM-SE: The system takes advantage of unbounded hardware support using LogTM-SE
with perfect filters. LogTM-SE’s perfect filters ensure that all transactional conflicts,
at the cache line level, are true conflicts. Such filters are unimplementable in real
hardware [Yen et al., 2007]; I use them because they represent an upper bound of
how well LogTM-SE can perform. In contrast to ATMTP and Rock, transactions in
LogTM-SE are not limited by the available hardware resources such as caches and
store buffers. Moreover, LogTM-SE transactions do not impose software overheads
unless they abort, in which case, LogTM-SE invokes a blocking software abort han-
dler. Therefore, simulating LogTM-SE with these settings is a good-faith attempt at
modeling the best unbounded hardware this simulation environment allows.

By default, both ATMTP and Rock use a requester-wins policy [Moir et al., 2008;
Chaudhry et al., 2009a]: if there is a conflict between transactions, the transaction that issued
the cache request always wins, aborting the other transaction. On the other hand, LogTM-SE
uses a deadlock detection conflict resolution mechanism: it does not abort a transaction
unless it detects potential deadlock, in which case the youngest transaction is aborted.

This section includes an evaluation of the software-only NZSTM, running on both the
simulator and the Rock machine, for two reasons: to provide intuition on the accuracy of
the simulation, and to evaluate the improvement the hybrid NZTM gains over the software
NZSTM.

5.2.4 Results

This section first presents the results of the evaluation using the simulated environment, and
then presents the results of the evaluation on the Rock machine.

Simulator Evaluation

The benchmarks are tested using 1, 3, 7, and 15 threads, each running on its own processor.
Because of limitations of the simulator environment, one free processor is left to handle inter-
rupts (based on advice from the GEMS developers [personal communication]). The bench-
marks are compiled using GCC 3.4.6, with optimization set to level 3. The benchmarks begin
by initializing the relevant data structures, and then start taking measurements, recording the
simulated machine’s elapsed clock cycles to complete.

Because of the careful attention to cache performance in NZTM, it should perform sim-
ilarly to LogTM-SE as long as its best-effort hardware transactions commit successfully. I

90

Hybrid Nonblocking Zero-indirection Transactional Memory

expect some overhead, because NZTM must check each data object it accesses to ensure
there are no conflicts with software transactions, whereas the unbounded LogTM-SE does
not need such checks. If hardware transactions abort repeatedly, which is more likely to
happen in high contention workloads, then NZTM’s performance would be noticeably worse
than that of LogTM-SE, because more of NZTM’s transactions would run in software.

Figure 5.3 shows the speedup of running the benchmarks using the different transactional
memory proposals, relative to LogTM-SE running on a single processor.

 2

 4

 1 3 7 15

linkedlist-high

 2

 4

 6

 8

 10

 1 3 7 15

redblack-high

 2
 4
 6
 8

 10
 12
 14

 1 3 7 15

hashtable-high

 2

 4

 6

 8

 1 3 7 15

linkedlist-low

 2

 4

 6

 8

 10

 1 3 7 15

redblack-low

 2
 4
 6
 8

 10
 12
 14

 1 3 7 15

hashtable-low

 2

 4

 6

 1 3 7 15

kmeans-high

 2

 4

 6

 8

 1 3 7 15

vacation-high

 2

 4

 6

 8

 10

 1 3 7 15

genome

 2

 4

 6

 8

 1 3 7 15

kmeans-low

 2
 4
 6
 8

 10
 12
 14

 1 3 7 15

vacation-low

 2

 1 3 7 15

T
h

ro
u

g
h

p
u

t

Threads

TITLE

 LogTM-SE

 NZTM/ATMTP

 NZSTM

Figure 5.3: Results of running the benchmarks on the simulator. The x-axis represents
the number of threads, and the y-axis represents the speedup relative to a single thread of
LogTM-SE.

91

Chapter 5

For the software NZSTM, the simulator results are consistent with the Rock machine
results, as presented in the previous chapter. This increases confidence in the accuracy of the
simulation.

Most of the benchmarks do not push the resource limits of ATMTP; those that abort
because of resource limitations do so only occasionally. The main reason transactions abort
is because of conflicts with other transactions.

The results show that LogTM-SE has the best performance of all the systems evaluated.
This is not surprising, because LogTM-SE is unbounded, uses perfect filters, which are unim-
plementable in hardware, and has a better contention management policy than ATMTP’s
requester-wins. Moreover, NZTM hardware transactions have additional instrumentation to
detect conflicts with software transactions, which is not necessary in an unbounded system
such as LogTM-SE.

From these results, the following general observations can be made. In experiments with
an overall low number of conflicts, as in hashtable, genome and kmeans, NZTM’s perfor-
mance is within 10–15% of LogTM-SE’s. This gap is due to the additional instrumentation
overhead NZTM’s hardware transaction need to check for conflicts with software transac-
tions.

NZTM is not as competitive with LogTM-SE in experiments with higher conflict rates.
This is because of LogTM-SE’s better contention management, which aborts conflicting
transactions only on potential deadlock, and because LogTM-SE transactions do not need
to fall back on a slower software mechanism when they abort. ATMTP’s contention man-
agement, on the other hand, uses a simple requester-wins policy: when ATMTP detects a
conflict between two transactions, one transaction always aborts. This could lead to many
transactions falling back on software. Improvements to the underlying hardware’s contention
management should therefore reflect positively on NZTM.

NZTM significantly outperforms NZSTM in all cases. For most workloads, NZTM is at
least twice as fast as NZSTM, and is three times as fast for some workloads.

Looking more specifically at the individual benchmarks, hashtable has a small number
of conflicts; the results show that at 15 processors, less than 1% of NZTM transactions abort,
and most of its transactions succeed in hardware. Therefore, this benchmark is a good indica-
tor of the inherent overhead imposed by NZTM to detect conflicts with software transactions.

The linkedlist and redblack benchmarks have a higher number of conflicts than
hashtable, leading to a larger performance gap between NZTM and LogTM-SE. The
linkedlist benchmark has more conflicts than redblack; at 15 processors, about 19%
of transactions in linkedlist abort, compared with 14% for redblack. The number of
conflicts is proportional to the number of running threads, which is why the performance
gap grows bigger in linkedlist, compared with redblack, as the number of threads in-
creases. I expect a better hardware contention management policy would improve NZTM’s
performance for such benchmarks.

92

Hybrid Nonblocking Zero-indirection Transactional Memory

In the kmeans benchmark, less than 10% of the workload is transactional, and there
are few conflicts. This results in the performance of NZTM and LogTM-SE being closer
than in most other benchmarks. An important observation is that the additional metadata
and instrumentation overhead attached to transactional objects does not noticeably impact
performance outside transactions.

The vacation benchmark uses linked list and red-black tree data structures, and its per-
formance is therefore similar to the two microbenchmarks that are based on these structures.
In addition, its transactions are significantly larger, in terms of runtime and size of the read
and write sets, than all the other evaluated benchmarks. At 15 processors, about 25% of all
NZTM hardware transactions abort because of resource limitations.

The genome benchmark does not have many conflicting transactions; therefore, its per-
formance is similar to hashtable under the different proposals.

Rock Evaluation

I experimented with running NZTM on Rock, and encountered a few challenges using Rock’s
best-effort hardware support. The main challenge being that transactions abort for many
more reasons than they do when running on the simulator. The ones I found to be particularly
challenging were aborts caused by mis-speculation, and aborts caused by function calls inside
transactions.

Dice et al. [2009b] present a detailed discussion of working around some of the causes
of aborts in Rock, specifically aborts caused by mis-speculation and by function calls in-
side transactions. In these two cases, hardware transactions abort because there are limited
resources available for checkpointing register state. When Rock executes a hardware trans-
action, it is already using these limited checkpointing resources; therefore, if it performs
additional speculation to that of being in a transaction, and this speculation fails, Rock’s
only recourse is to abort the transaction. If NZTM were able to stop Rock from performing
additional speculation inside transactions, fewer transactions would abort.

To address this problem, a new branch instruction is introduced in Rock, branch if not

ready (brnr). This instruction specifies a register; if the contents of that register are not
ready, i.e., cannot be accessed without speculation, the branch is taken. This instruction can
be used to stall program execution until the contents of the specified register are ready and
can be accessed without speculation.

For example, assume code that loads a value into a register, o0, and then increments the
contents of that register. To ensure that the increment operation does not use a speculative
value of the register, the brnr instruction could apply a speculation barrier in the manner
illustrated by the following assembly code.

93

Chapter 5

ld <a d d r e s s> , %o0 ! Load a memory l o c a t i o n i n t o r e g i s t e r o0 .
w a i t :

brnr %o0 , w a i t ! Sp in u n t i l t h e load o f r e g i s t e r o0 has c o m p l e t e d .
nop ! SPARC c o n t r o l t r a n s f e r i n s t r u c t i o n s have a d e l a y s l o t .
add %o0 , 1 ,%o0 ! I n c r e m e n t t h e r e g i s t e r ’ s v a l u e .

This new instruction can also allow function calls to be made inside a transaction without
aborting it. In this case, brnr is used to stall program execution until the contents of any

register are ready immediately following a restore instruction. The restore instruction is
part of the SPARC assembly function call idiom, and is used to pop the calling function’s reg-
ister set from the register window before returning from the function [Weaver and Germond,
2000]. The only explanation given to why a brnr speculation barrier prevents restore in-
structions from aborting a transaction is “for technical reasons related to the resources Rock
has available for checkpointing register state” [Dice et al., 2009b].

To illustrate, a typical function return sequence in SPARC assembly is as follows.

r e t ! Re tu rn from t h e f u n c t i o n .
r e s t o r e ! R e s t o r e t h e c a l l i n g f u n c t i o n ’ s r e g i s t e r s e t .

! Note : A l t h o u g h t h i s r e s t o r e appears a f t e r t h e r e t i n s t r u c t i o n ,
! i t i s i n f a c t e x e c u t e d d u r i n g t h e r e t i n s t r u c t i o n ’ s d e l a y s l o t .

Care must be taken when transforming the code segment above, because the restore

instruction is executed inside the ret instruction’s delay slot [Weaver and Germond, 2000].
A valid transformation of that code, using the brnr speculation barrier, is as follows.

r e s t o r e ! R e s t o r e t h e c a l l i n g f u n c t i o n ’ s r e g i s t e r s e t .
w a i t :

brnr %g0 , w a i t ! Sp in u n t i l t h e load o f any r e g i s t e r has c o m p l e t e d .
nop ! F i l l t h e brnr d e l a y s l o t .
r e t l ! Re tu rn from t h e f u n c t i o n .
nop ! F i l l t h e r e t l d e l a y s l o t .

Instrumenting code with the brnr instruction imposes additional overhead. This instru-
mentation prevents speculation, speculation that could improve performance when success-
ful, by overlapping instructions with stalls. This instrumentation also incurs the overhead of
executing the brnr instruction itself.

NZTM shares the same workload code path between hardware and software transactions.
Therefore, using brnr adds overhead to the software path as well, where brnr serves no use-
ful purpose. Generating separate code paths for hardware and software transactions would
solve this problem, but at the cost of bigger code, less locality in the instruction cache, and
therefore a higher probability of TLB misses, which abort hardware transactions. Moreover,
this instrumentation does not guarantee that transactions will commit successfully in hard-
ware; it only makes it more likely.

Another challenge on Rock is debugging transactions and determining the cause of their
aborts. The simulator has perfect knowledge of the state of the system, and it is possible
to trace the exact causes of an aborted transaction. On Rock, the only method of getting
information on the cause of an aborted transaction is by using the CPS register, which does
not provide detailed information. Typical methods, such as logging inside a transaction,

94

Hybrid Nonblocking Zero-indirection Transactional Memory

do not work, because when a transaction aborts, all logging is rolled back. Attaching a
debugger to observe a transaction as it runs does not work either. By trying to observe a
transaction’s transient modifications, the debugger conflicts with the transaction, causing it to
abort. In addition, debuggers typically use interrupts to communicate with the threads they
are debugging, which also abort hardware transactions.

To evaluate NZTM on Rock, I wrote a Python script that instruments the benchmarks
using the brnr speculation barrier. Initial tests showed that instrumenting every load from
a register by adding a brnr imposes a big penalty, making hardware transactions run slower
than non-instrumented NZSTM software transactions. Therefore, the script instruments only
restore instructions, to allow function calls inside transactions.

The linkedlist, hashtable, and kmeans benchmarks did not require any instru-
mentation, because they do not make any function calls inside transactions. The remaining
benchmarks were instrumented.

In the tests, a significant number of the microbenchmarks’ transactions committed suc-
cessfully using hardware in the absence of contention, i.e., when running on a single thread.
As for the STAMP benchmarks, only the kmeans benchmark’s transactions committed suc-
cessfully using hardware. Both the genome and vacation benchmarks exceed the resources
available for Rock’s best-effort hardware support, and virtually all of their transactions fall
back on software.

Table 5.5 presents the benchmarks and the percentage of transactions that successfully
commit in hardware, when running on a single thread, using Rock’s hardware support.

Table 5.5: Benchmark hardware transaction commit rate on Rock in the absence of con-
tention

Benchmark Hardware Commit
linkedlist-high 30%
linkedlist-low 50%
redblack-high 90%
redblack-low 95%
hashtable-high 100%
hashtable-low 100%
kmeans-high 100%
kmeans-low 100%
vacation-high 0%
vacation-low 0%
genome 0%

The benchmarks are tested using 1, 2, 4, 8, and 16 threads, each thread running on a sep-
arate core. The benchmarks are compiled using GCC 3.4.6, with optimization set to level 3.
The benchmarks begin by initializing the relevant data structures, and then start taking mea-
surements, recording the elapsed wall clock time to complete. Each benchmark is run three
times, and the average time of the three runs is recorded.

NZTM is optimized for the case in which hardware support is available and able to com-
mit most transactions. Rock’s hardware transactional support is limited and not capable of

95

Chapter 5

committing most transactions; therefore, many transactions would fall back on software. I do
not expect that the results of evaluating NZTM using Rock would be comparable to the results
using ATMTP, which was capable of committing most transactions in hardware. However,
workloads that succeed in hardware most of the time should benefit from Rock’s hardware
support.

Figure 5.4 shows the speedup of running the benchmarks using the different schemes,
relative to a single global lock (not shown) running on a single processor. The data is normal-
ized to a single global lock because it demonstrates the performance achievable on systems
that have no transactional memory support, with a similar level of programming complexity
as using transactions.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1 2 4 8 16

linkedlist-high

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 1 2 4 8 16

redblack-high

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8 16

hashtable-high

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 4 8 16

linkedlist-low

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16

redblack-low

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8 16

hashtable-low

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 4 8 16

kmeans-high

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16

kmeans-low

 2

 1 3 7 15

Th
ro

ug
hp

ut

Threads

TITLE

 NZTM/Rock
 NZSTM

Figure 5.4: Results of running the benchmarks on the Rock machine. The x-axis represents
the number of threads, and the y-axis represents the speedup relative to a single thread using
a single global lock.

NZTM is not performing as well as it did in the simulator, because of the limitations of
Rock’s hardware support. This is causing many of NZTM’s hardware transactions to abort
and fall back on software. Trying to run a transaction in hardware first, and then aborting,
incurs more overhead compared with immediately running a transaction in software, which
is why NZSTM performs slightly better than NZTM in some of these tests.

96

Hybrid Nonblocking Zero-indirection Transactional Memory

I investigated the cause of aborts, and found the main reason was mis-speculation. This
is indicated by the CPS register’s Unresolved Control Transfer (UCTI) bit being set for more
than 80% of aborted transactions. Moreover, the ratio of aborted transactions increases as
the number of threads increases, which would not typically be surprising; however, most
of the increase in the number of aborted transactions is caused by mis-speculation rather
than conflicts between transactions. This could be because Rock shares its branch predictor
between its cores [Chaudhry et al., 2009a], rendering its speculation less accurate as the
number of running cores increases.

As mentioned earlier, I tried instrumenting load and store instructions using brnr to re-
duce these aborts. This instrumentation added overhead to the transactions without producing
any significant reduction in the number of aborted transactions: with every load and store in-
struction instrumented, more transactions abort because of TLB misses.

The only benchmarks whose performance benefits from Rock’s hardware support
were hashtable and kmeans, benchmarks characterized by short transactions and low
contention. For the kmeans benchmark, the improvement does not appear as pronounced as
hashtable, because most of the workload in kmeans is non-transactional. However, the
transactional component of kmeans runs twice as fast using NZTM as it does using NZSTM.

5.2.5 Discussion

The evaluation using the simulator and using Rock shows that NZTM’s performance depends
on the underlying hardware support. This is not surprising, considering NZTM is a hybrid
transactional memory that aims to speed up its transactions by running as many of them in
hardware as possible.

When NZTM’s underlying hardware is sufficient to commit most transactions, it per-
forms significantly better than the software NZSTM, and is also competitive with unbounded
hardware transactional memory. If the underlying hardware is less capable of successfully
committing transactions, the performance of NZTM suffers proportionally with the number
of aborted hardware transactions.

As long as most of its transactions commit successfully in hardware, the biggest overhead
in NZTM is the instrumentation hardware transactions need to check for conflicts with soft-
ware transactions. Hardware support that puts the burden of checking for conflicts between
hardware and software on software transactions, rather than on hardware transactions, would
mitigate these overheads. Such hardware was proposed by Baugh et al. [2008], and if present,
NZTM needs little modification to be able to take advantage of that support.

The evaluation of NZTM on Rock shows that the level of hardware support currently
available is not sufficient for running anything but short transactions, at least in a hybrid
context. This is to be expected, particularly because longer code is more likely to make func-
tion calls, trigger exceptions, and mis-speculate — all of which cause hardware transactions

97

Chapter 5

to abort. This is not to dismiss the usefulness of Rock’s hardware support; as this evalua-
tion shows, Rock is capable of running and improving the performance of short transactions.
Moreover, as explained in the previous chapter, Rock’s hardware support — assuming it pro-
vides certain guarantees — could also simplify the NZSTM algorithm.

In my opinion, the main improvement that could be made to Rock, at least as far as NZTM
is concerned, would be to prevent mis-speculation from aborting transactions. As mentioned,
more than 80% of the aborts in Rock are caused by mis-speculation. This problem could
be solved by adding more checkpointing resources in hardware that allow Rock transactions
to rollback to the instruction that caused the mis-speculation, rather than abort the transac-
tion. A simpler solution would be to disallow speculation entirely inside transactions; this
would deny transactions the benefits of speculation, but because the cost of mis-speculation
in transactions is so high, this solution might be justified. My later work on value prediction
in transactions supports this argument (page 132).

Other issues that also affect performance are aborts caused by TLB misses. It is not clear,
based on the available documentation, why TLB misses cause transactions to abort; therefore,
it is difficult to comment on how such aborts could be prevented. Nevertheless, if the number
of TLB misses were reduced, then aborts caused by TLB misses should also be reduced.
Therefore, increasing the size of Rock’s TLBs could be an adequate solution.

Another aspect that would help in developing programs that use Rock’s transactional
memory support is detailed information on what caused a transaction to abort. The main
source of information is the CPS register, which sets flags that indicate what caused a trans-
action to abort (Section 2.8); however, these flags do not provide sufficient information. For
example, if a transaction aborts because of a TLB miss, it is not known which instruction or
data access triggered the TLB miss. If Rock were to provide the value of the program counter
of the instruction that caused the abort, that would narrow down its cause and help in opti-
mizing the program. Hardware support for debugger integration would also be very helpful;
this would entail adding a hardware/software interface to expose the transactional state.

I was expecting that Rock’s requester-wins conflict resolution policy would affect per-
formance, but it did not. As mentioned, transactions were mainly aborting for reasons other
than conflicts between transactions. However, if the other aspects of Rock improve, then
its conflict resolution policy could become a bottleneck. Therefore, it might be beneficial if
Rock were to apply a more fair policy, such as the timestamp with deadlock detection policy
LogTM-SE uses.

When discussing best-effort hardware transactional memory, one of the first limitations
mentioned is the size restriction on transactions. For the benchmarks in this evaluation, most
transactions’ read sets and write sets are within Rock’s size limitations. It is the other causes
for abort that proved to be more problematic.

Despite Rock’s limited best-effort transactional memory support, I believe that this eval-
uation demonstrates the usefulness of hybrid transactional memory. NZTM can run on exist-

98

Hybrid Nonblocking Zero-indirection Transactional Memory

ing systems today; it has been compiled successfully on Intel x86 and on SPARC machines.
NZTM also runs on Rock and takes advantage of its hardware support to improve perfor-
mance. For now, this improvement is limited to short transactions; however, NZTM improves
as the underlying hardware does.

5.3 Concluding Remarks

This chapter introduced NZTM, which demonstrates that it is possible to design a nonblock-
ing hybrid transactional memory competitive with unbounded hardware transactional mem-
ory. NZTM shows that the hybrid approach is a viable one for using transactional memory
today, in particular because the benefits from using NZTM increase as its underlying hard-
ware support improves.

NZTM was evaluated using both a simulator and a real machine with hardware transac-
tional memory support. The evaluation shows that NZTM does not eliminate all overhead,
compared with unbounded hardware transactional memory, mainly because hardware trans-
actions in NZTM must check for conflicts with software transactions. However, with little
modification, NZTM can take advantage of hardware techniques that promise to eliminate
this overhead, such as the techniques proposed by Baugh et al. [2008].

The hybrid approach of Damron et al. [2006], which is optimized for best-effort hard-
ware capable of committing most transactions in hardware, might not be the most suitable
approach on Rock. This evaluation, and the evaluation of other groups [Dice et al., 2009a,
2010], shows that Rock’s limited transactional support seems to be better suited for small
transactions with low contention. Therefore, unless Rock’s hardware support for transactions
improves, research into different ways of leveraging limited transactional support in a hybrid
system is needed.

In my opinion, the NZTM algorithm itself presents a compelling argument for trans-
actional memory. As the reader might have noticed, the NZTM algorithm is significantly
simpler than the NZSTM algorithm, because NZTM relies on transactional memory in its
design.

99

Chapter 6

Parallel Python

Just Say No to the combined evils of locking, deadlocks, lock granularity, live-
locks, nondeterminism and race conditions.

— Guido van Rossum, author of the Python programming language, defending
the use of a single global lock in CPython [van Rossum, 2007]

This chapter reports on my experiences of using Rock’s best-effort hardware transactional
memory to improve concurrency in Python [van Rossum, 2009a]. Python is a high level
programming language with a design philosophy that emphasizes code readability. Since its
release in 1991, Python has become one of the most popular programming languages1, and is
now a standard component of many operating systems such as Apple’s OS X, Sun’s Solaris,
and various Linux distributions.

There are many different implementations of Python; the reference implementation is
CPython [van Rossum, 2009a], a byte-code interpreter written in C. CPython was developed
before the multicore era, and therefore not designed with parallelism in mind. CPython sup-
ports multiple threading; however, CPython protects its critical sections using a single global
lock, known as the Global Interpreter Lock (GIL) [van Rossum, 2009b]. The GIL protects
all accesses to CPython’s data structures; therefore, the GIL serializes all parallel threads
that access CPython’s data structures. In practice, multiple threads can run in parallel only
when executing external modules that do not acquire the GIL, or when performing blocking
operations such as I/O, in which case the thread releases the GIL before the operation begins,
and attempts to reacquire the GIL once the operation is over.

A thread typically acquires the GIL to execute a number of byte-code instructions. This
number is an adjustable runtime parameter, and can be as small as a single instruction. Be-
cause there is overhead involved in acquiring and releasing the GIL, the longer a thread holds
the GIL the more it can amortize this overhead, which is why this number is set to one hundred

1According to the TIOBE Programming Community Index for May 2010 [TIO, 2010], Python ranks as the
seventh most popular programming language.

101

Chapter 6

byte-code instructions by default. Figure 6.1 shows an example of two concurrent threads in
CPython.

 blocked

Thread 1

Thread 2

I/O

100 bytecode
instructions

acquire GIL release GIL

Figure 6.1: An example of running two concurrent threads in CPython

CPython creates and starts using the GIL only after the interpreter spawns more than one
thread. Therefore, a single thread does not incur any locking overhead.

Neither the GIL, nor any aspect of its implementation, are part of the Python programming
language specification. The GIL is an implementation detail used in the language’s reference
implementation, CPython, and others such as PyPy [Rigo and Pedroni, 2006]. For example,
Jython [Juneau, Baker, Wierzbicki, Munoz, and Ng, 2010], a Python implementation that
runs on the Java Virtual Machine, does not use global locks, but relies on the Java Virtual
Machine’s native concurrency mechanisms instead.

The GIL has often been a contentious issue within the Python community, with many
criticisms of the Python language stemming from its use of the GIL [Beazley, 2009]. Expert
CPython developers tried to decompose the GIL into multiple fine-grained locks; however,
the resulting overhead in the single-threaded case — which is the common case for most
Python programs — was a slowdown of a factor of two; so the attempt was abandoned [Stein,
2001]. This is yet another testament to the difficulties involved in parallel programming.

This chapter investigates whether Rock’s transactional support could improve concur-
rency in CPython. The CPython interpreter was modified to use best-effort hardware transac-
tions, and fall back on the GIL when unable to commit in hardware. The modifications were
minimal; however, some of CPython’s shared data structures were altered to handle false
conflicts arising from CPython’s management of the shared data. The modified CPython
interpreter can run small, simple, workloads and scale almost linearly, while improving the
concurrency of more complex workloads.

The main contributions presented in this chapter are the following.

• I describe the changes to make CPython more concurrent and scalable, as well as the
obstacles encountered in the process.

• I present a preliminary performance evaluation of the modified CPython interpreter on
Rock. Others have investigated the use of transactions to improve Python’s perfor-

102

Parallel Python

mance [Riley and Zilles, 2006; Blundell et al., 2010]; to the best of my knowledge, this
work is the first to evaluate using transactions with Python on a real machine, rather
than on a simulator.

The remainder of this chapter is organized as follows. Section 6.1 describes the modi-
fications to the CPython interpreter and the challenges encountered. Section 6.2 presents a
preliminary performance evaluation of the concurrent CPython on Rock. In light of the eval-
uation, Section 6.3 discusses some of the possible design alternatives. Section 6.4 discusses
some of the related work in using transactional memory to improve concurrency in Python.
Finally, Section 6.5 concludes this chapter.

6.1 Concurrent CPython

The target implementation was CPython 2.6.4 [Pyt, 2009], the most recent stable version at
the time of the evaluation.

Because a best-effort hardware transactional memory is used, my approach was to apply
lock elision to the GIL [Rajwar and Goodman, 2001; Dice et al., 2009a]. The modified
CPython first attempts to run a GIL critical section in hardware, and acquires the GIL only if
the hardware transaction repeatedly aborts.

The modified CPython does not use software transactions as a fallback mechanism. This
is because the transactional memory libraries that can be applied to the CPython codebase
either require manual instrumentation of the code (e.g., NZTM), or impose certain restric-
tions on what type of code can run inside transactions (e.g., Sun’s transactional memory
compiler). The CPython codebase is large, with over 300,000 lines of C code; given the re-
sources available, restructuring such a codebase was impractical. Therefore, lock elision was
the only viable approach, because it requires modification only to the code involved in lock
acquisition and release.

The granularity of the GIL was reduced to one byte-code instruction instead of the default
one hundred, because Rock’s best-effort hardware is not likely to be able to commit large
transactions. This change was hardcoded to remove the overhead of checking the number of
byte-code instructions the current critical section has run so far.

The code for acquiring and releasing the GIL was replaced with code that attempts the
transaction in hardware, and falls back on the GIL if it repeatedly aborts. The hardware trans-
action first checks that the GIL is not acquired, and then proceeds with the critical section.
This check is necessary to detect conflicts with other threads that acquire the GIL; if an-
other thread acquires the GIL, this would immediately abort concurrently running hardware
transactions. The code listing below presents a simplified version of the modifications.

103

Chapter 6

void a c q u i r e g i l ()
{

/∗ A t t e m p t t h e t r a n s a c t i o n i n hardware , f a l l back on t h e GIL i f i t a b o r t s . ∗ /
i f (c h k p t ()) {

i f (g i l i s l o c k e d ()) {
/∗
∗ I f t h e GIL i s h e l d by a n o t h e r th read , a b o r t t h e t r a n s a c t i o n .
∗ T h i s r e s u l t s i n t h i s t h r e a d f a l l i n g back on s o f t w a r e ,
∗ and a t t e m p t i n g t o a c q u i r e t h e GIL .
∗ /

a b o r t () ;
}

} e l s e {
/∗ A c q u i r e t h e GIL because t h e hardware t r a n s a c t i o n a b o r t e d . ∗ /
g i l a c q u i r e () ;

}
}

void r e l e a s e g i l ()
{

i f (g i l i s l o c k e d ()) {
/∗
∗ I f t h e GIL i s a c q u i r e d and t h i s t h r e a d i s i n a c r i t i c a l s e c t i o n , i t means t h a t
∗ t h i s t h r e a d i s t h e one who has t h e GIL , t h e r e f o r e , r e l e a s e t h e GIL .
∗ /

g i l r e l e a s e () ;
} e l s e {

/∗
∗ I f t h e GIL i s n o t a c q u i r e d by anyone , and t h e t h r e a d r e a c h e s t h i s p o i n t ,
∗ t h e n i t i s r u n n i n g a hardware t r a n s a c t i o n and i t i s s a f e t o t r y t o commit .
∗ /

commit () ;
}

}

When a hardware transaction aborts, it either tries the transaction again or acquires the
GIL. The policy for deciding whether to fall back on the GIL when a hardware transaction
aborts is the same one NZTM uses (Section 5.1.3). If the transaction aborts because of a
fundamental limitation then it does not try again in hardware; otherwise, it tries again in
hardware a few more times.

CPython releases the GIL when performing operations such as I/O, or when running
external modules that do not access CPython’s internal data structures. Because many of
these operations are difficult to handle in hardware transactions, this eases the process of
using transactions in CPython, and makes it more likely they will commit successfully in
hardware.

When running in single-threaded mode, CPython does not check or acquire the GIL,
because the overhead of acquiring the GIL is not necessary. The modified CPython maintains
this aspect: when running in single-threaded mode, the modified CPython does not run any
hardware transactions. CPython enters multi-threaded mode when the first additional thread
is spawned, which initializes and acquires the GIL. There is no mechanism in CPython to exit
multi-threaded mode, even after all spawned threads are destroyed.

Eliding the GIL was not by itself enough to make CPython run concurrently. The first tests
just after eliding the GIL resulted in no additional scalability or concurrency. Most transac-
tions were aborting because of conflicts with other transactions, even though the Python code
of the tests does not logically share any data.

104

Parallel Python

The cause of this problem was conflicts over global data structures, such as the ones used
for memory management and for maintaining the current thread’s state. Because CPython
was not designed for concurrency, it defines many variables as global variables when they are
conceptually thread-local. I annotated these variables with the thread keyword to make
them thread-local [Stallman, 2004].

Not all global variables can be marked as thread-local without breaking some of the
CPython invariants. For example, take the object Py TrueStruct, which designates the
value representing True. This object is shared among all threads. Because CPython knows
that there is only one instance of this object in the system, it often uses the value of pointers

to this object to test whether a certain object is True, rather than dereference the pointer
to check the actual value it contains. If Py TrueStruct becomes a thread-local object,
then all code that uses this shortcut must also be modified. This is because changing the
Py TrueStruct into a thread-local object creates multiple instances of this object, all of

which are a True object. Therefore, checking if an object is True just by checking whether
it points to Py TrueStruct would no longer be sufficient. The same problem applies to
other CPython objects, such as the Python singletons False and None.

Another difficulty in parallelizing CPython is its use of reference counting for memory
management. With reference counting, every time an object is referenced a reference counter
is incremented. When an object is no longer referenced, the counter is decremented. When
the reference counter reaches zero, CPython knows that the object is not needed any more
and deallocates it.

When used with transactions, the problem with reference counting is that every transac-
tion that accesses an object also modifies its reference counter. Transactions that access an
object, even just for reading, modify the object. If the object is shared, then transactions that
conceptually have no conflicts are conflicting, as far as the underlying transactional memory
system is concerned.

This problem is exacerbated by false sharing, at the cache line level, between CPython
objects. Some objects, such as the Python True and False objects, are sometimes allocated
on the same cache line. Because Rock’s hardware transactional memory detects conflicts at
cache line granularity, a change to one object’s reference counter is construed as a conflict
with the other.

I solved the problem by creating a new DoNotDeallocate flag associated with every
Python object. The flag is set for objects that exist for the whole lifetime of a CPython
runtime instance. This flag indicates that there is no need to dynamically deallocate these
objects and no need to track or update their reference counter. This eliminates false conflicts
when accessing these objects in a transaction. It also obviates the need for declaring Python
singletons, such as True, as thread-local variables. Instead, all singletons are flagged as
objects that should not be deallocated.

105

Chapter 6

Adding this flag could incur additional overhead, because every time a thread accesses
an object, it must check its DoNotDeallocate flag before deciding whether to adjust the
object’s reference counter. In practice, such checks can be eliminated, as well as all calls to try
to increment or decrement an object’s reference counter, in code where it can be determined
that the object is one of these lifetime objects.

This solution is not suitable for all shared CPython objects, only for objects that have
the lifetime of the interpreter. CPython also creates temporary shared objects, which need to
be deallocated to prevent memory leaks. For example, CPython dynamically creates objects
that represent Python code, functions, metadata such as variable names, and constants used
in Python functions. The same solution of using the DoNotDeallocate flag was applied
to these objects even though it results in a memory leak. In my experiments, the memory
leak was small, allowing me to proceed with the evaluation. Section 6.3 discusses possible
solutions to this problem.

6.2 Evaluation

I evaluated the modified CPython on Rock. I did not use the ATMTP simulator because the
main goal was to evaluate how a real hardware transactional memory implementation could
improve the concurrency of a real application.

To increase the likelihood of transactions committing successfully in the presence of func-
tion calls, I instrumented restore instructions in the modified CPython interpreter using the
brnr speculation barrier (Section 5.2.4). CPython was compiled using GCC 3.4.6, with op-
timization set to level 3.

I used two simple benchmarks that repeatedly modify a local variable in a loop: iterate
and count [Beazley, 2009]. Although both benchmarks accomplish the same general goal,
each uses a different set of CPython byte-code instructions. The code listing below is for
these two benchmarks.

def i t e r a t e (i t e r a t i o n s) :
f o r x in x ra ng e (0 , i t e r a t i o n s) :

pass

def c o u n t (i t e r a t i o n s) :
whi le i t e r a t i o n s > 0 :

i t e r a t i o n s −= 1

These simple benchmarks are not representative of realistic workloads. I use them as a
litmus test for whether CPython could run concurrently, and to evaluate eliding the GIL for a
few simple CPython byte-code instructions.

106

Parallel Python

For a more complex benchmark, I used pystone, a synthetic benchmark included in the
CPython distribution. The pystone benchmark is a translation of the Dhrystone benchmark
[Weicker, 1984], a computationally-intensive integer benchmark.2

When multiple threads are spawned, each CPython thread runs its own instance of these
benchmarks. The iterate and count benchmarks perform 2,000,000 iterations each, and
the pystone benchmark performs 10,000 iterations. The number of hardware transaction
attempts is set to four, before falling back on the GIL.

I first evaluate the effects of the modifications on the single-threaded case, relative to
the unmodified CPython. Before any threads are spawned, the modifications do not incur
any overhead. CPython does not check or attempt to acquire the GIL in the single-threaded
case, and the modifications do not attempt to run the code using hardware transactions in
the single-threaded case either. The other modifications do not incur any overhead in the
single-threaded case.

To observe the overhead the modifications incur on a single thread once the interpreter
goes into multithreaded mode and starts using transactions, the benchmarks force CPython to
go into the multithreaded mode by spawning and immediately destroying a thread. Table 6.1
presents the slowdown the modifications incur when using hardware transactions on a single
thread, compared with running a single unmodified CPython thread, which incurs neither
GIL nor transactional overhead.

Table 6.1: Concurrent CPython slowdown relative to a single unmodified CPython thread

Benchmark Slowdown
iterate 2.8
count 3.9
pystone 2.1
average 2.9

The modified CPython incurs a slowdown of about a factor of three. This slowdown is
mainly because Rock hardware transactional memory instructions and the code that attempts
to elide the GIL add significant overhead. Although this overhead is high, the modified
CPython incurs this overhead only when running multiple threads, whereas the original im-
plementation would serialize those threads.

Figure 6.2 presents the results for the performance and scalability of the benchmarks
going from 1 to 16 threads, relative to running a single unmodified CPython thread, which
does not incur any synchronization overhead. These tests force the modified CPython to go
into the multithreaded mode, by spawning and immediately destroying a thread, even when
running only 1 thread.

Because these benchmarks do not conceptually share any data, ideally, they would scale
linearly with the number of threads. Rock’s hardware support is best-effort; if a transaction

2In turn, Dhrystone is inspired by Whetstone [Curnow and Wichman, 1976], a computationally-intensive
floating-point benchmark.

107

Chapter 6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16

 iterate
 count
 pystone

Figure 6.2: Results of running the benchmarks using the modified CPython on the Rock
machine. The x-axis represents the number of threads, and the y-axis represents the speedup
relative to a single unmodified CPython thread that does not acquire the GIL.

aborts, it acquires the GIL, which serializes other threads. Although I expect to see improve-
ment in performance, I do not expect it to be linear with the number of threads.

The two simple benchmarks, iterate and count, scale well. Most of their hardware
transactions commit, and from three threads onwards, they perform better than the unmod-
ified single-threaded CPython. This is consistent with the initial observation that the mod-
ified CPython incurs a slowdown of a factor of three in the single-threaded case. I note
that iterate scales better than count. The iterate benchmark uses CPython’s built-in
xrange function. The xrange function is optimized to be fast, and has a smaller memory
footprint [van Rossum, 2009d]; therefore, transactions involving this function are more likely
to commit successfully on their first attempt.

The pystone benchmark is able to take advantage of some of the parallelism, but its
performance does not improve much beyond four threads. The reason this benchmark does
not perform as well as the other two is the high number of aborted transactions: about half
of its transactions repeatedly abort and eventually fall back on the GIL. These transactions
are aborting because of mis-speculation, TLB misses, and function calls in transactions. The
aborts caused by mis-speculation have similar behavior to what was experienced with NZTM
(Section 5.2.4). To reduce the number of aborts due to mis-speculation, I tried to instrument
load instructions as well with a brnr speculation barrier; however, the additional overhead
hurt performance more than it helped.

In these experiments, I noticed that there are more TLB misses in CPython than the bench-
marks used for evaluating NZTM, and therefore, more transactions aborting because of TLB
misses. This might be because CPython is a bigger program that accesses more data, which in
turn causes it to miss in the TLB more often than the smaller benchmarks used in the NZTM
evaluation.

108

Parallel Python

Finally, even though all restore instructions are instrumented with a brnr speculation
barrier, the modified CPython still experienced aborts caused by function calls. I was unable
to explain why the speculation barrier was not preventing these aborts as it did for NZTM;
however, the nature of Rock’s hardware support means that no transaction is guaranteed to
commit, regardless of the safeguards.

Applying Amdahl’s law, if half of the transactions fall back on the GIL, then the best
speedup to expect is a factor of 2, assuming an infinite number of processors. This is con-
sistent with my findings: the relative performance of pystone running on 16 threads to 1
thread is about 1.9.

These experiments, and Amdahl’s law, highlight the potential problems of falling back on
a mutually exclusive solution when transactions abort. As long as most hardware transactions
commit, and the serial component remains small, then lock elision works well. However, even
a small serial component has a big impact on scalability. A big serial component, such as the
one in the pystone experiments, is devastating to scalability.

These experiments also highlight that, with little modification and some hardware sup-
port, existing programs can benefit immensely from transactional support — even from lim-
ited best-effort support such as the one in Rock. I expect that the modified CPython would
improve as its underlying hardware support improves, without additional modifications to the
software.

6.3 Design Alternatives

The main challenge in parallelizing CPython was handling the operations that are treated as
conflicts by the underlying system, even though they are conceptually nonconflicting. The
two main causes of this problem in CPython are its use of global variables instead of thread-
local variables, and its use of reference counting for memory management.

The solution to the problem of global variables did not require much effort. The solution
I use instructs the compiler to create a thread-local copy of these global variables, which I
believe is a satisfactory solution. On the other hand, the memory management problem is a
more complex one.

CPython uses reference counting, instead of other methods of garbage collection, be-
cause it is more portable than the alternatives [van Rossum, 2009c]. Although portable, the
Boehm-Demers-Weiser conservative garbage collector does not run on all systems CPython
supports. Nevertheless, using the Boehm-Demers-Weiser conservative garbage collector in-
stead of reference counting would solve the problem reference counting causes [Riley and
Zilles, 2006].

The reference counting implementation CPython uses does not scale because CPython
was not designed with scalability in mind. However, many research groups have proposed
different techniques of making reference counting scalable. One possibility is to use the

109

Chapter 6

Scalable Non-Zero Indicator (SNZI) [Ellen, Lev, Luchangco, and Moir, 2007] to represent
reference counts. SNZI uses a hierarchal algorithm, and is typically implemented as a tree
data structure distributed across several memory locations. Ellen et al. show that, because
of SNZI’s hierarchical nature, it scales well when used as a reference counter, and works
particularly well in the context of transactional memory.

Another alternative is to modify the underlying hardware so that it is aware of depen-
dences and can forward the values of modified data, such as modified reference counts, be-
tween transactions. Ramadan, Rossbach, and Witchel [2008] propose a dependence-aware
hardware transactional memory, which could mitigate the reference counting problem. Blun-
dell et al. [2010] have encountered the same problem and also propose a hardware solution,
which is discussed in the next section. However, such support requires extensive changes to
the underlying hardware, and does not solve the problem for existing systems.

In my opinion, given the resources available, the best solution to this problem is to use
the Boehm-Demers-Weiser garbage collector. I did not investigate this solution, primarily
because it was unclear if continued access to the Rock machine would be possible.

Another obstacle in the scalability of the modified CPython is caused by using the GIL
as a fallback mechanism. As long as most transactions commit in hardware, the GIL is
successfully elided, and the system scales. As the abort rate increases, the GIL becomes a
serious bottleneck. Using a hybrid solution that falls back on a software transactional mem-
ory could mitigate this bottleneck, because most software transactional memory proposals
allow software transactions to run concurrently. It is important, however, that the software
component does not introduce much overhead, especially in the single-threaded case. Other-
wise, the software transactional memory’s overhead might negate most of the benefits from
parallelism.

6.4 Related Work

Riley and Zilles [2006] proposed substituting GIL critical sections with hardware transac-
tions. Instead of CPython, they targeted the PyPy Python implementation, which supports
using the Boehm-Demers-Weisser garbage collector, thus eliminating conflicts caused by up-
dating reference counts.

Riley and Zilles evaluated their proposal on a simulated unbounded hardware transac-
tional memory that does not model instruction latency and cache behavior, and therefore
does not accurately measure performance. Their goal was to examine the feasibility of us-
ing transactions as a substitute for the GIL. For the workloads they evaluate, all transactions
commit successfully. Based on the average memory footprint of their transactions, they con-
cluded that best-effort hardware support is sufficient: the average number of bytes read in the
biggest benchmark they used was less than 1 KiB, and the average number of bytes written
by that benchmark was less than 640 bytes.

110

Parallel Python

Rock’s transactional write buffer holds only 32 entries. Therefore, assuming a 64 bit write
buffer entry, the write buffer would be able to hold a maximum of 256 bytes, which is not
sufficient for most transactions to commit in hardware for the workloads Riley and Zilles
evaluated.

Concurrently with and independently of the work in this chapter, Blundell, Raghavan, and
Martin [2010] proposed a transactional hardware mechanism that symbolically tracks modi-
fications and constraints that a transaction applies to variables, and transparently applies the
modifications and checks if the constraints still hold before a transaction commits. For ex-
ample, if a transaction increments a reference counter, then the system applies the increment
operation at commit time, regardless of the current value of the reference counter. Moreover,
if a transaction checks that the value of a reference counter is greater than zero, then the trans-
action can commit as long as that constraint holds at commit time, i.e., the reference counter
is still greater than zero.

The work of Blundell et al. targets conflicts on auxiliary data, which often cause bottle-
necks in transactions with otherwise nonconflicting operations — exactly the type of conflicts
CPython’s reference counting creates. Blundell et al. also modify CPython to use transactions
to protect its critical sections, and present a simulator evaluation of applying their hardware
scheme to the modified CPython. Their results show that, with their proposed modifications,
CPython can scale almost linearly, at least up to 32 threads.

6.5 Concluding Remarks

This chapter demonstrates that, with little modification, programs not designed for concur-
rency can leverage transactional memory support to scale as the number of available cores
increases. Towards that end, this chapter presented an evaluation of using hardware transac-
tions in CPython on a real machine that supports hardware transactional memory. Although
the results are not conclusive, they demonstrate the potential even limited best-effort hard-
ware transactional memory has for improving performance.

I did not investigate this topic further or pursue other directions, primarily because it was
unclear if continued access to the Rock machine would be possible. These preliminary results
are included in this thesis because I believe they help make the case for best-effort hardware
transactional memory, and hybrid transactional memory by extension, a stronger one.

111

Chapter 7

Transactional Conflict Decoupling and
Value Prediction

This thesis argues that, if transactional memory is going to be a viable programming model,
then hybrid transactional memory is the best approach to adopt. Most of the hybrid trans-
actional memory proposals discussed in this thesis rely on underlying hardware that infers
transactional conflicts from coherence conflicts. This inference could lead to false transac-
tional conflicts that adversely affect the performance of the system as a whole.

Drawing inspiration from Huh, Chang, Burger, and Sohi [2004], this chapter demonstrates
that, by decoupling transactional conflicts from coherence conflicts, hardware transactional
memory can reduce false conflicts between transactions; and that by speculating on data val-
ues, it can reduce the delays coherence conflicts incur. Specifically, this chapter explains how
decoupling and data speculation can improve performance in the presence of false sharing
and silent stores (including temporally silent stores) [Lepak and Lipasti, 2000, 2002]. The
cost of these added mechanisms is justified by showing that, because transactions are already
in speculative mode, hardware transactional memory can speculate on data in ways that are
infeasible in the absence of transactional support.

False sharing, in particular, can be difficult to mitigate, and its effects are especially pro-
nounced in hardware transactional memory. Typical methods for mitigating false sharing
require data restructuring, which goes against the transactional memory promises of abstrac-
tion and composition. Restructuring requires low level knowledge of the system, thereby
breaking abstraction. It is also difficult to restructure external library code that suffers from
false sharing, which hinders composition. In my opinion, for transactional memory to be-
come viable for parallel programming, it should avoid the worst effects of false sharing.

The main contributions presented in this chapter are the following.

• I describe how decoupling transactional conflicts from coherence conflicts in hard-
ware transactional memory reduces apparent transactional conflicts, and how value

113

Chapter 7

prediction complements the decoupling by reducing the delays of coherence conflicts
in transactions.

• To mitigate the effects of false sharing in transactions, I present DPTM, an enhanced
best-effort hardware transactional memory that relies on a conventional coherence pro-
tocol, and adds only minor, processor-local, modifications.

• I present an evaluation of various design points for DPTM, and compare them with
data restructuring by padding, a commonly used method to avoid false sharing. The
evaluation shows that DPTM significantly improves performance in benchmarks that
exhibit false sharing, even more than restructuring by padding does, without having
adverse effects on benchmarks that do not exhibit false sharing.

The remainder of this chapter is organized as follows. Section 7.1 discusses the false
sharing problem, and why it is particularly troublesome in hardware transactional memory.
Section 7.2 explores how decoupling transactional conflicts from coherence conflicts, as well
as value prediction, could reduce transactional conflicts and mitigate their effects. Section 7.3
presents DPTM, an example of using these ideas to mitigate the effects of false sharing.
Section 7.4 presents an evaluation of different design points for DPTM. Section 7.5 discusses
some of the related work. Finally, Section 7.6 concludes this chapter.

7.1 The False Sharing Problem

False sharing at the cache line level can have a big impact on the performance of parallel
programs [Goodman and Woest, 1988; Bolosky and Scott, 1993; Kadiyala and Bhuyan, 1995;
Hennessy and Patterson, 2006; Herlihy and Shavit, 2008]. It occurs when different processors
access distinct data objects that share the same cache line, and at least one processor modifies
one of the objects. Because the cache line is the unit of granularity for coherence, such
logically nonconflicting accesses are serialized.

The effects of false sharing are not easy to mitigate. Most methods of mitigating false
sharing are oriented towards the restructuring and padding of data objects, so that logically
nonconflicting accesses to different objects are also nonconflicting as far as the coherence
protocol is concerned [e.g., Torrellas, Lam, and Hennessy, 1994; Jeremiassen and Eggers,
1995; Harris, Fraser, and Pratt, 2002; Huh et al., 2004; Moore et al., 2006].

Restructuring data to mitigate false sharing can be difficult to apply in practice. First,
the programmer needs to identify the data objects that cause false sharing. Once the ob-
jects are identified, they are aligned to cache line boundaries, which requires knowledge of
machine-specific details such as the cache line size. Then, typically, each object is padded so
it occupies a whole cache line by itself, which increases memory use and fragmentation, and
adversely impacts locality. These changes are often machine-specific, so the benefits of code

114

Transactional Conflict Decoupling and Value Prediction

modified in such ways might not be portable. Moreover, using high-level languages, such as
Java, where the underlying virtual machine does not lay out the data structure the way it is
specified in the program [Neto, 2008], can make data restructuring impractical.

False sharing may also be introduced to a program by the use of external libraries that
suffer from it. Modifying external code is often difficult or infeasible, and also goes against
the principles of abstraction and composition in software engineering.

False Sharing in Transactions

False sharing is a bigger problem when it occurs in conjunction with hardware transactions,
because it leads to the aborting or serialization of whole transactions that could have other-
wise executed concurrently [Herlihy and Moss, 1995; Moore et al., 2006]. It is a problem
that has often been observed by experts on transactional memory and parallel programming.1

The example in Figure 7.1 shows the timeline of two concurrent transactions. These
transactions access different data on the same cache line at one point during their execution,
i.e., they exhibit false sharing. The transactions in this example at no point have any true
conflicts, and so any order of their component operations is allowable.

Begin Commit

False Sharing
T1

T2
(a)

stall

cache message delay

(b)

(d)

(c)

(e)

cache message delay

Figure 7.1: The effect of a single instance of false sharing in transactional memory. (a) the
ideal case (b) hardware transactional memory stalling (c) hardware transactional memory
aborting (d) a solution that mitigates the problem of false sharing (e) false sharing in software
transactions

1Some of the experts who have encountered false sharing are Herlihy and Moss [1995]; Harris et al. [2002];
Cintra and Torrellas [2002]; Ananian and Rinard [2005]; Scherer and Scott [2005]; Moore et al. [2006]; Ra-
madan et al. [2007]; Grossman [2007]; Bobba et al. [2008]; Yoo, Ni, Welc, Saha, Adl-Tabatabai, and Lee
[2008]; Adl-Tabatabai et al. [2006a]; Gajinov, Zyulkyarov, Unsal, Cristal, Ayguade, Harris, and Valero [2009].

115

Chapter 7

Ideally, these transactions should be able to run completely in parallel, as shown in (a).
However, because most hardware transactional memory proposals infer transactional con-
flicts from coherence conflicts [Baugh et al., 2008], such implementations do not distinguish
between true and false sharing, which leads to stalling transactions (b), or aborting them
altogether (c).

I expect a solution to the problem of false sharing to result in an execution similar to
the one shown in (d). Such a solution would likely not eliminate all the false sharing delays
because some cache data still needs to be communicated. However, it should be able to
mitigate their effects by overlapping the delays with other speculative operations.

Although false sharing can impact performance negatively outside the context of hard-
ware transactional memory, its impact is not as severe. The two concurrent software transac-
tions, shown in (e), also suffer from one instance of false sharing. Because software transac-
tional memory implementations do not associate transactional conflicts with coherence con-
flicts, the only impact this instance of false sharing has is that of the delay associated with the
coherence protocol’s handling of this conflict.

The typical solution to the problem of false sharing by restructuring and padding, in
addition to the difficulties it poses in non-transactional systems, also goes against some of the
promises of transactional memory, that of abstraction and composition.

Composition is the ability to combine and use different code in transactions. Using exter-
nal code that is not optimized for false sharing, or that is optimized for a different machine,
undermines the usefulness of composition in transactional memory. If programmers have to
worry about external modules causing false sharing, they would be reluctant to use external
modules in their programs.

Abstraction aims to hide irrelevant complexity and detail, but restructuring requires ex-
posure to architectural and other low level details, knowledge a typical programmer may not
have, and should not need. Therefore, transactional memory should abstract away the adverse
effects of false sharing.

7.2 Coherence Decoupling and Value Prediction in Trans-
actions

From the first hardware transactional memory proposal [Herlihy and Moss, 1993], the means
used by most transactional memory proposals to detect cache coherence conflicts has also
been employed and extended to detect transactional conflicts. Coherence conflict detection,
however, is implementation dependent, usually classifying certain patterns as a coherence
conflict even in some cases where no conflict exists.

One pattern is false sharing. While logically no sharing — and no conflict — occurs,
this widely recognized problem is nevertheless treated as a coherence conflict. Likewise

116

Transactional Conflict Decoupling and Value Prediction

with silent stores (including temporally silent stores) [Lepak and Lipasti, 2000, 2002], where
two or more threads truly share data, and at least one of them writes to the data, ultimately
leaving its value unchanged: no conflict occurs, yet virtually all coherence implementations
treat them as a coherence conflict.

None of these patterns constitute a transactional conflict, but are characteristically treated
as such because the coherence detection mechanism treats all addresses within a cache line
as one. Yet these patterns may result in significant performance degradation, because their
occurrence during transactional speculation can cause a transaction to stall or even to abort.
Aborting may result in much more serious degradation and could, for example, be the cause
of livelock.

To mitigate the effects of false conflicts in transactions, I argue that hardware transactional
memory should decouple transactional conflicts from coherence conflicts. Because transac-
tions are already in speculative execution mode, this makes it easier to use value prediction
in transactions.

Hardware transactional memory proposals that associate transactional conflicts with co-
herence conflicts also associate cache line states with transactional states, i.e., modified data
resides on exclusive cache lines, and read data resides on valid cache lines. These associations
enable transactions to detect potential conflicts using the coherence protocol, as explained in
Section 2.5, but could result in false transactional conflicts in the presence of false sharing
and silent stores.

One alternative is to speculate inside a transaction without this association, then restore
it before the transaction tries to commit. This could be done by ensuring that cache lines
representing the read and write sets are in their expected state at commit time, and that the
read set data matches the current data values.

Therefore, when a cache line containing read data is invalidated, instead of aborting, a
transaction continues without triggering a transactional conflict, speculating that the data it
has read will still be valid. The transaction tracks which parts of the cache line contains read
data; and before it can commit, the transaction must validate by re-acquiring the cache line to
ensure that the read data is unchanged. If it has changed, only then is a transactional conflict
triggered, thereby associating transactional conflicts with modifications to the shared data.

This same mechanism can also be used for value prediction in transactions: a transaction
could speculate on any value as long as it ensures that the read cache line is valid and holds
the predicted value at the time it commits.

For example, in many hardware transactional memory proposals, when a thread attempts
to read data that is not in a valid state in its cache, it requests the cache line with the data
and stalls waiting for the request. Rather than stall, a transaction could predict the data
value because it already is in speculative execution and does not have to take an additional
checkpoint. When it predicts accurately, the transaction mitigates the effects of the stall.

117

Chapter 7

One method of prediction would use the data value in a stale cache line, i.e., an invalid
cache line still containing the data it held when it was last invalidated, as suggested by Huh
et al. [2004]. If the cache line is stale, a transaction could predict that the particular part
it wants to read has not changed, and speculate using that value. Such predictions would
be accurate in the cases of false sharing and silent stores because the data the transaction is
interested in has not changed.

When a transaction speculates on the value of a cache line, it must ensure that the specu-
lation was correct before it is able to commit. A transaction must track the parts of the cache
lines on which it is speculating, and validate those cache lines by commit time. It validates the
cache line by acquiring the line, and ensuring that the value it predicted matches the current
data value in the cache line.

7.3 DPTM Description

7.3.1 Overview

This section demonstrates how data speculation could mitigate the effects of false conflicts by
example of Decoupling and Prediction Transactional Memory (DPTM), an enhanced best-
effort hardware transactional memory proposal.

As a baseline, I assume a conventional best-effort hardware transactional memory, similar
to the one in Rock. That is, one that uses eager conflict detection and lazy version manage-
ment, tracks its read and write sets in a transactional cache (such as the L1 cache), and keeps
transactional writes in a write buffer until the transaction commits. I also assume a cache
coherence protocol that distinguishes stale cache lines from other invalid states. The baseline
hardware transactional memory associates transactional conflicts with coherence conflicts;
therefore, when a cache line containing transactional data receives an invalidation request
(due to a coherence conflict), this triggers a transactional conflict.

DPTM modifies this baseline as follows.

DPTM decouples transactional conflicts from coherence conflicts by using value-based
conflict detection [Ding et al., 2007; Olszewski et al., 2007]. The values in a transaction’s
read set are monitored for change, and a transactional conflict is triggered only if a value
changes. This reduces the effects of false sharing, because transactional conflicts are now
restricted to changes only to the data used inside a transaction, rather than coherence conflicts
over whole cache lines.

Furthermore, because transactional states are no longer associated with coherence states,
DPTM does not require cache lines that are part of a transaction’s read set to be in a valid state
or its write set to be in an exclusive state, until commit time. This could improve performance
by reducing the window in which conflicts might occur — something DPTM has in common

118

Transactional Conflict Decoupling and Value Prediction

with other lazy conflict detection transactional memory proposals [e.g., Hammond et al.,
2004; Ceze et al., 2006].

DPTM can speculate when attempting a load from a stale cache line by using the value
of the stale data and validating it later. When speculating, it assumes that the cache line
became stale because of a coherence conflict caused by false sharing. When this prediction
is accurate, it could eliminate some of the stalling caused by false sharing.

In addition to mitigating the effects of false sharing, DPTM also mitigates the effects
of silent stores. In value-based conflict detection, which DPTM uses, silent stores do not
trigger transactional conflicts because the actual data values do not change [Ding et al., 2007;
Olszewski et al., 2007]. Furthermore, DPTM’s speculation on a stale cache line that became
stale because of a silent store would likely be accurate also because the actual data values do
not change.

Below is a more detailed description of DPTM. Section 7.3.3, which follows, also
presents a description of DPTM using simplified C-like code adapted from the simulated
model.

7.3.2 Detailed Description

DPTM does not alter how the baseline begins its transaction. It alters the loading and storing
of values inside a transaction, the handling of coherence conflicts and how a transactional
conflict is interpreted, and the process of committing a transaction.

Loading a Value

When a transaction in DPTM attempts to load data not present in its transactional cache, it
proceeds, as in the baseline, by issuing a request for the cache line and stalling for the request.
Otherwise, if the cache line is present and in a valid state, the load is a cache hit.

If the cache line is stale, and DPTM predicts that the value has not changed, then it may
serve the load using the stale data while simultaneously issuing a cache request for the data.
The load proceeds as if it were a cache hit. On the other hand, if DPTM predicts that the
value has changed, it behaves conventionally, as if the line were not present.

By default, DPTM speculates only on stale data that is already part of a transaction’s read
set. This is conservative, because the transaction has already read that data, and if it has
changed, the transactions must abort anyway. Therefore, DPTM has little to lose in the case
of a mis-prediction.

Associated with all cache lines in the transactional cache are read mark bits that indicate
which parts of each line have been read [McDonald, Chung, Chafi, Minh, Carlstrom, Ham-
mond, Kozyrakis, and Olukotun, 2005]. Each bit monitors reads from a subset of its cache
line, i.e., the bit is set when its associated subset is read inside a transaction. These bits are

119

Chapter 7

used for validation, because only the parts of stale cache lines with their associated bits set
need to be validated before the transaction is able to commit.

The number of read mark bits added per cache line determines the granularity level of
DPTM’s transactional conflict detection; the greater the number of bits the finer the granu-
larity, and the more cases of false sharing that can be detected. For example, for a 64 byte
cache line and a conflict detection granularity level of 4 bytes, DPTM requires an additional
16 bits for each cache line. The conflict detection granularity could conceivably go down to
the individual bit level.

When a processor receives a response to a cache request, the data in the cache whose read
mark bits are set is validated against the returned data. If the data is unchanged, validation
succeeds and the transaction proceeds as normal. If the data has changed, validation fails, the
transaction aborts, and all read mark bits are cleared. In all cases, the old cache line data is
replaced with the returned data.

Storing a Value

When a transaction performs a store, the baseline requests exclusive permissions for the cache
line and stalls while it obtains these permissions, after which it stores the data in the trans-
actional write buffer. Stores in DPTM do not request exclusive permissions at the time of
the store; instead, a transaction stores the data in the write buffer immediately and does not
stall. However, the transaction must obtain exclusive permissions for all cache lines in the
write buffer before it can commit. DPTM, as a starting point in its design, requests exclusive
permissions only at commit time.

As an extension, DPTM can choose to request exclusive permissions immediately, and
does not need to stall for the request. If it postpones the request until commit time, it cannot
overlap the stalling for the request with other operations.

In both cases, the time taken for the store instruction is equivalent to the time taken for a
cache hit.

Conflict Management

When a transaction in the baseline hardware transactional memory receives an invalidation
request for a cache line that is a part of its read or write sets, it invokes a conflict resolution
mechanism. If the mechanism decides to acknowledge the request, the receiver’s cache line
is invalidated, aborting its transaction.

Using DPTM, a transaction that receives an invalidation request acknowledges the request
and does not abort, anticipating that the invalidation might be due to a coherence conflict
caused by false sharing, a silent store, or that the sender of the invalidation is a doomed
transaction, i.e., a transaction that will eventually abort. Therefore, the transaction schedules
a request for the now invalidated cache line and continues execution.

120

Transactional Conflict Decoupling and Value Prediction

When the transaction’s request is finally served and it receives the current cache line data,
the transaction validates that the read data on that cache line, as specified by the read mark
bits, is unchanged. If it has changed, the transaction aborts, and the read mark bits are cleared.

Cache Line Evictions

In the baseline hardware transactional memory, if a cache line that is part of a transaction’s
read set is evicted from its transactional (L1) cache, the transaction aborts. DPTM relies on
the values in its transactional cache for validation; it can no longer track the original value
that it has read after the value’s cache line has been evicted. Therefore, DPTM also aborts
the transaction on such evictions, because it cannot validate the evicted line.

Evictions in the non-transactional (L2) cache, unlike in the baseline, do not abort a DPTM
transaction. The baseline’s coherence model maintains strict inclusion; therefore, an L2 cache
eviction triggers an L1 cache invalidation, not an eviction, if the evicted line is also in the L1
cache. If the invalidated L1 cache line is part of a transaction’s read set in the baseline, the
transaction aborts.

By contrast, when an L1 cache line that is part of a transaction’s read set is invalidated in
DPTM (whether caused by an L2 eviction or a coherence conflict), DPTM does not abort the
transaction, but instead schedules a request for the cache line. The cache line is then validated
when the request completes and its data arrives.

Committing a Transaction

At commit time, the baseline hardware transactional memory flushes its write buffer by writ-
ing all the values in its write buffer to memory. Because it already has all its cache lines in
their correct commit states, whereby the coherence states are associated with their transac-
tional states, this is sufficient to complete the transaction.

In DPTM, when a transaction is ready to commit, parts of its read set might not be in a
valid state, and parts of its write set might not be in an exclusive state. Therefore, it employs
a two stage commit.

In the first stage, DPTM attempts ensure that all its cache lines are in their correct commit
states. It first issues shared cache requests of all stale lines in the cache that are part of the
transaction’s read set but not its write set. All the while, it validates each incoming cache
line, aborting the transaction if data that is part of its read set has changed. DPTM then issues
exclusive cache requests to all cache lines that are part of the transaction’s write set but are
not already in an exclusive state.

Once all the cache lines have been validated and are in their correct commit states, DPTM
moves to the second commit phase, which is the same as the baseline hardware transactional
memory’s commit. When it finally commits, DPTM clears all the read mark bits.

121

Chapter 7

During the second commit phase, as in the baseline, DPTM must keep all read lines in
a valid state, and all written lines in an exclusive state. This results in DPTM serializing
transactions’ commit phases in the presence of false conflicts, whereas the baseline system
serializes whole transactions in the presence of false conflicts.

The contention management policy during DPTM’s commit phases is different from the
one during a transaction. Invalidation requests for cache lines that are part of a transaction’s
read or write sets are denied. To prevent deadlock, the simplest policy is for the committing
transaction to abort if a cache request it has sent was denied.

A more elaborate policy, which DPTM uses during its first commit phase, is as follows:
if a cache line invalidation request arrives during the first commit phase, the transaction ac-
knowledges it only if the requester is also committing and has higher priority; otherwise, it
denies the request. Therefore, deadlock cannot occur, assuming each transaction’s priority is
unique. Invalidation requests during the second commit phase, as in the baseline, are always
denied: at that point the transaction is guaranteed to commit and there is no fear of deadlock.

7.3.3 Description by Code

The simplified C-like code listing below is loosely adapted from the simulated model. This
code illustrates DPTM events whose handling differs significantly from the baseline.

Loading an address in DPTM

i n t l o a d A d d r e s s (i n t ∗ a d d r e s s)
{

i n t ∗ l i n e a d d r e s s = g e t L i n e A d d r e s s (a d d r e s s) ;

f o r (; ;) {
i f (i s L i n e V a l i d (l i n e A d d r e s s)) {

/∗ t h e l i n e i s p r e s e n t and i n a v a l i d s t a t e (S , E , or M) ∗ /
s e t M a r k B i t s (a d d r e s s) ;
re turn ∗ a d d r e s s ;

} e l s e i f (i s L i n e S t a l e (l i n e A d d r e s s) && i s M a r k B i t s S e t (a d d r e s s)) {
/∗
∗ t h e l i n e i s p r e s e n t i n a s t a l e s t a t e (I) ,
∗ t h e l i n e was a l s o read b e f o r e i n t h i s t r a n s a c t i o n
∗ /

i s s u e S h a r e d R e q u e s t (l i n e A d d r e s s) ;
re turn ∗ a d d r e s s ;

} e l s e {
i s s u e S h a r e d R e q u e s t (l i n e A d d r e s s) ;

/∗ b l o c k s u n t i l t h e cache l i n e da ta a r r i v e s ∗ /
s t a l l P r o c e s s o r () ;

}
}

}

Receiving a cache line in DPTM

void incomingCacheLine (i n t ∗ l i n e a d d r e s s , i n t i n c o m i n g d a t a [CACHE LINE SIZE])
{

f o r (i n t i = 0 ; i < CACHE LINE SIZE ; i += s i z e o f (i n t)){

122

Transactional Conflict Decoupling and Value Prediction

i n t ∗ a d d r e s s = l i n e a d d r e s s + i ;

/∗ v a l i d a t e s , assuming a g r a n u l a r i t y o f s i z e o f (i n t) b y t e s ∗ /
i f (∗ a d d r e s s != i n c o m i n g d a t a [i]) {

c l e a r A l l R e a d M a r k B i t s () ;
a b o r t T r a n s a c t i o n () ;

}
}

u p d a t e c a c h e (i n c o m i n g d a t a , l i n e a d d r e s s) ;

i f (i s P r o c e s s o r S t a l l e d ()) {
u n s t a l l P r o c e s s o r () ;

}
}

Handling a cache line invalidation request in DPTM

void i n v a l i d a t e C a c h e L i n e (i n t ∗ l i n e a d d r e s s)
{

i f (i s L i n e R e a d s e t (l i n e a d d r e s s)) {
/∗ s c h e d u l e a r e q u e s t f o r t h e cache l i n e ∗ /
i s s u e S h a r e d R e q u e s t (l i n e A d d r e s s) ;

}

acknowledge () ;
}

Committing a transaction in DPTM

void c o m m i t T r a n s a c t i o n ()
{

i n t ∗ l i n e a d d r e s s ;

/∗ DPTM’ s f i r s t commit phase ∗ /

foreach (l i n e a d d r e s s in ge tReadOn lyAddre s se s ()) {
i f (! i s L i n e V a l i d (l i n e a d d r e s s) && i s T r a n s a c t i o n A c t i v e ()) {

i s s u e S h a r e d R e q u e s t (l i n e A d d r e s s) ;
s t a l l P r o c e s s o r () ;

}
}

foreach (l i n e a d d r e s s in g e t W r i t e A d d r e s s e s ()) {
i f (! i s L i n e E x c l u s i v e (l i n e a d d r e s s) && i s T r a n s a c t i o n A c t i v e ()) {

i s s u e E x c l u s i v e R e q u e s t (l i n e A d d r e s s) ;
s t a l l P r o c e s s o r () ;

}
}

whi le (g e t P e n d i n g R e q u e s t s () > 0) {} /∗ w a i t f o r any pend ing cache r e q u e s t s ∗ /

b a s e l i n e C o m m i t T r a n s a c t i o n () ;

c l e a r A l l R e a d M a r k B i t s () ;
}

7.3.4 Additions and Design Alternatives

This section discusses some of the design alternatives for DPTM.

123

Chapter 7

Eager or Lazy Conflict Detection

DPTM detects transactional conflicts on changed values rather than on coherence conflicts.
Because value changes are observable only once a transaction commits, DPTM’s conflict
detection is lazy, unlike the baseline which uses eager conflict detection. Because both eager
and lazy conflict detection have been shown to be superior under different conditions [Ceze
et al., 2006; Bobba et al., 2007; Minh et al., 2008; Shriraman et al., 2008; Tomić et al., 2009],
I introduce SendSets, an optional addition to DPTM that allows eager conflict detection while
retaining the benefits of lazy conflict detection.

SendSets leverages the information in a transaction’s read and write sets, as represented
by the read mark bits and the write buffer. When a transaction in DPTM issues a cache
request using SendSets, it includes with the request this information as a bit map.

The transaction receiving the request determines whether there could be a transactional
conflict by using the read and write set information in the bit map. If it determines that there
may be a conflict, it decides whether to deny the request or acknowledge it based on the
transactions’ priorities.

Even if the transaction acknowledges the request, it does not abort, anticipating that the
request is due to a silent store, or that the sender of the invalidation request might be a doomed
transaction. This allows the transaction to eagerly detect conflicts and prioritize requests
accordingly, while benefiting from the laziness of value-based conflict detection.

Improving Prediction Accuracy by Sending Updates

Because DPTM speculates using stale cache line data, the accuracy of such predictions can
increase if the values in the stale cache lines are kept up to date. When a processor requests
exclusive permissions to write to a cache line, it could send the value it intends to write along
with its request [Huh et al., 2004]. The receiver, upon receiving this request, would update
the value of its now stale cache line.

Other alternatives might go even further; for example, processors could keep track of
other processors they have invalidated, and broadcast any subsequent updates of the cache
line to those processors [Huh et al., 2004].

7.3.5 DPTM Architecture

DPTM is compatible with existing best-effort hardware transactional memory proposals that
associate transactional conflicts with coherence conflicts. DPTM is also compatible with any
cache coherence protocol with states denoting cache lines that are not present, present but
invalid, and valid (e.g., the protocol described in Section 2.2).

124

Transactional Conflict Decoupling and Value Prediction

DPTM does not require modifications of the coherence protocol typically used in hard-
ware transactional memory proposals, and adds only minor, processor-local, hardware. The
additional hardware requirements are as follows.

DPTM requires additional bits per transactional cache line for the read mark bits, and
assumes the ability of instantaneously flash-clearing all the read mark bits. Flash-clearing
is desirable for performance, but not required for correctness. If these bits cannot be flash-
cleared, they could be cleared sequentially, at the cost of either stalling while the bits are
cleared, or potential false conflicts in future transactions for the locations whose bits are still
set.

DPTM also requires the ability to validate cache lines that are part of a transaction’s read
set against incoming data. The incoming data could be buffered in a miss status handling

register (MSHR) [Kroft, 1983] while the validation takes place. DPTM also requires logic
to compare the values being validated, but could be designed to leverage existing logic in a
processor.

As for some of the design alternatives, SendSets requires the ability to include the read
and write sets as a payload with cache requests. Sending updates requires the ability to
add the value being stored as an extra payload to exclusive cache requests and invalidations.
Including additional payload with cache messages does not change the coherence protocol,
at least not as far as the protocol’s states or transitions are concerned [Bobba et al., 2008].

7.4 Evaluation

This section reports on the analysis of DPTM. It presents an evaluation of different design
alternatives for DPTM and compares them with a best-effort hardware transactional memory
proposal, focusing on false sharing.

7.4.1 Experiment Environments

I use the simulation framework described in Section 2.8. The simulation framework is based
on Virtutech Simics 2.2.19, in conjunction with the University of Wisconsin GEMS 2.1 mem-
ory models. The simulator can model processors that have best-effort hardware support, using
Sun’s Rock-like ATMTP simulator.

The parameters used in the simulation are shown in Table 7.1.
ATMTP is used to simulate the baseline hardware transactional memory proposal. The

simulator parameters are set so that most transactions commit successfully in hardware in
the absence of contention.2 ATMTP’s conflict resolution policy is set to a timestamp-based
priority policy, where the requester wins only if its transaction is older, instead of the default

2For example, the size of Rock’s transactional write buffer is 32 entries, which is also the ATMTP default.
This is sufficient for all transactions in all benchmarks, except for labyrinth, which requires a 256 entry write
buffer.

125

Chapter 7

Table 7.1: Simulated machine configuration

Item Model
Processor in-order, single-issue, single-threaded, multicore
Cache line size 64 bytes
L1 cache 128 KiB, 4-way set-associative, 1 cycle latency
L2 cache 2 MiB, 8-way set-associative, 20 cycle latency
Physical Memory 8 GiB, 450 cycle latency
Processor Network Topology point to point
ATMTP Specific
Transactional write buffer size 32 entries, 256 for labyrinth
Conflict resolution policy timestamp
Function calls in transactions allowed

requester-wins. This reduces the number of transactions that abort in the presence of conflicts.
The goal of this evaluation is not to study how the limitations of a Rock-like system might
affect transactions, but to see how a good best-effort hardware transactional memory, which
can commit most of its transactions in hardware, behaves in the presence of false sharing.

To simulate DPTM, I extended ATMTP without modifying its cache coherence protocol.
Because ATMTP models a best-effort hardware transactional memory, a single global lock is
used as a fallback mechanism when unable to complete a transaction in hardware. Neither
NZSTM nor any other software transactional memory are used as a fallback mechanism;
the metadata such systems add to each object’s header acts as cache line padding, thereby
mitigating the effects of false sharing. Although this might be a welcome side effect when
using NZSTM, the goal of this evaluation is to analyze how well DPTM itself mitigates the
effects of false sharing in the absence of other mitigating factors.

7.4.2 Benchmarks

This evaluation uses STAMP, SPLASH-2, microbenchmarks, and my own SharingPatterns

benchmarks.

I test the STAMP benchmarks presented in Table 7.2 using the parameters suggested by
their authors [Minh et al., 2008].

Table 7.2: STAMP parameters used in the evaluation

Benchmark Parameters
genome -g256 -s16 -n16384

intruder -a10 -l4 -n2048 -s1

labyrinth -i random-x32-y32-z3-n96

ssca2 -s13 -i1.0 -u1.0 -l3 -p3

vacation-high -n4 -q60 -u90 -r16384 -t4096

vacation-low -n2 -q90 -u98 -r16384 -t4096

kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16

kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16

126

Transactional Conflict Decoupling and Value Prediction

STAMP was written by transactional memory experts; its benchmarks exhibit no false
sharing inside transactions. Although code written by non-experts is unlikely to be optimized
for false sharing, I use these benchmarks, anyway, to investigate how DPTM behaves in the
absence of false sharing.

The SPLASH-2 suite was not originally meant for evaluating transactional memory. How-
ever, Moore et al. [2006], who adapted some of the SPLASH-2 benchmarks for evaluating
transactional memory, report that raytrace is particularly susceptible to false sharing; they
showed that the padded version of raytrace is faster than the original version almost by a
factor of two. Therefore, raytrace is included in this evaluation. A small image, teapot, is
used as an input — the same input Moore et al. use.

The microbenchmarks, which are adapted from the Java-based DSTM, are the following.
The linkedlist benchmark is a concurrent set implemented using a single sorted linked
list. Each thread randomly chooses to insert, delete, or look up a value in the range of 0 to
255, with the high contention distribution of operations being 1:1:0 (insert:delete:lookup) and
the low contention distribution of operations being 1:1:1. The redblack and hashtable

benchmarks are also concurrent sets, implemented using a red-black tree and a chained hash-
table.

Table 7.3 presents a qualitative summary, relative to the STAMP benchmarks, of each
benchmark’s runtime transactional characteristics: length of transactions (number of instruc-
tions), size of the transaction’s read and write sets, and amount of contention.

Table 7.3: Qualitative summary, relative to STAMP, of the benchmarks’ runtime transac-
tional characteristics [cf. Minh et al., 2008].

Benchmark Transaction Length Read/Write Set Size Contention
genome medium medium low

intruder short medium high
labyrinth long large high
ssca2 short small low

vacation medium medium low/medium
kmeans short small low

raytrace short small medium
linkedlist medium medium high
redblack short medium low
hashtable very short small low

I have also created a group of benchmarks, SharingPatterns, to cover a range of sharing
patterns. These benchmarks are not meant to represent realistic workloads, but to exaggerate
these sharing patterns to better observe the behavior of DPTM in the presence of false and
true sharing. The patterns SharingPatterns exhibits are the following.

Sharing followed by no sharing: All transactions start by incrementing a value residing on
the same cache line, followed by incrementing 19 different lines. Because sharing
occurs at the beginning of the transaction, eager conflict detection systems would detect

127

Chapter 7

potential conflicts early, which increases the chances of triggering conflicts between
transactions.

No sharing followed by sharing: All transactions start by incrementing values residing on
19 different cache lines, followed by incrementing the same line. Because sharing
occurs at the end of the transaction, eager conflict detection systems would detect po-
tential conflicts close to commit time, which reduces the chances of triggering conflicts
between transactions.

Write sharing: All transactions increment values residing on the same 20 cache lines.

The sharing part of each of the three patterns above is tested with false sharing, where
processors increment different values on the same cache line; and with true sharing, where
processors increment the same value on the same cache line.

7.4.3 Experiments and Results

The benchmarks are compiled using GCC 3.4.6, with optimization set to level 3. The exper-
iments in this section are performed by running 16 user threads on 16 cores. Because this
evaluation is concerned with the effects of false sharing only in transactions, I measure the
time spent in transactional workloads. The outcome of ten runs with pseudo-random per-
turbations is presented, where the physical memory latency is pseudo-randomly varied by
up to four cycles [Alameldeen and Wood, 2003]. The error bars in the graphs represent the
standard deviation.

The Effects of Different Sharing Patterns

Because DPTM is designed with the goal of mitigating the effects of false conflicts, the eval-
uation starts by looking at different patterns of false and true sharing. I expect DPTM to
improve performance over the baseline in the presence of false sharing, and that its perfor-
mance would be comparable in the case of true sharing. I also expect that as the amount of
false sharing increases, the gap between DPTM’s performance and the baseline would also
increase.

These experiments use the SharingPatterns benchmarks, which present an exaggerated
form of different sharing patterns. The benchmarks are run using the baseline hardware
transactional memory, and using DPTM with conflict detection granularity levels, in bytes,
of 4 (one word), 8, 16, 32, and 64 (one cache line, does not mitigate the effects of false
sharing). In the presence of false sharing, I expect performance to improve the finer the
granularity. Figure 7.2 presents the outcome of these experiments.

In the presence of false sharing, DPTM, with granularity of 4 to 32 bytes, always performs
significantly better than the baseline (Figure 7.2: a, c, e). DPTM also performs at least as

128

Transactional Conflict Decoupling and Value Prediction

(a) (b) (c) (d) (e) (f)
0

1

2

3

4

5
Sp

ee
du

p
Baseline HTM
DPTM–4
DPTM–8
DPTM–16
DPTM–32
DPTM–64

Figure 7.2: The speedup of the SharingPatterns benchmarks running at granularities of 4 to
64 bytes, relative to the baseline. (a/b) false/true sharing followed by no sharing (c/d) no
sharing followed by false/true sharing (e/f) false/true write sharing

well, if not better, for true sharing (b, d, f). The improvement in the case of true sharing is an
anomaly due to DPTM’s lazy conflict detection, where its transactions are not aborted, as in
the baseline, when a cache line is invalidated by a doomed transaction.

DPTM’s gains are comparable whether false sharing occurs at the beginning of a trans-
action (a), or at the end (c). Because contention in these benchmarks is high, false sharing
adversely affects performance in the baseline regardless of where it occurs inside a transac-
tion. This shows that even one instance of false sharing can be detrimental to performance.

The improvement gained by finer granularity is more pronounced for the false sharing
patterns that do not perform many shared stores (a, c), than where shared stores dominate (e).
Moreover, where shared stores — and false conflicts — dominate, DPTM is less effective in
mitigating their effects. This is due to DPTM’s serialization of commit phases in the presence
of false conflicts, which reduces the gains in such workloads.

The Effects of Restructuring

The previous experiments demonstrate that DPTM has potential for improving performance
in the presence of false sharing. In the next set of experiments, I investigate how DPTM
performs using a more diverse set of benchmarks. Figure 7.3 presents the outcome of these
experiments.

I investigate the amount of false sharing present in these benchmarks. Where it is present,
I try to mitigate it by padding, and where it is not, I try to instigate it by removing existing
padding. This helps study the efficacy of using padding to mitigate false sharing, particularly
when compared with using DPTM. I expect DPTM to be at least comparable to, if not better

129

Chapter 7

genome

intruder

labyrinth
ssc

a2

vacation-high

vacation-low
0

1

2

3

4

5

6

Sp
ee

du
p

Baseline HTM
DPTM
DPTM–64

kmeans-h
igh

kmeans-lo
w

raytrace

linkedlist
-high

linkedlist
-low

redblack-high

redblack-low

hashtable-high

hashtable-low
0

1

2

3

4

5

6

Baseline HTM (unpadded)
Baseline HTM (padded)
DPTM (unpadded)
DPTM (padded)
DPTM–64 (unpadded)

Figure 7.3: The speedup of running the benchmarks, padded and unpadded where applica-
ble, relative to the baseline. The benchmarks on the left do not exhibit false sharing inside
transactions.

than, padding in mitigating false sharing, because padding could have adverse effects on
locality.

The STAMP suite was developed by transactional memory experts for evaluating transac-
tional memory proposals, so I expect it would be optimized to mitigate false sharing. Analyz-
ing its code shows that some of its structures are padded and aligned to cache line boundaries.
The only padded data structures used inside transactions, as far as I could tell, are in kmeans.
I created a modified version of kmeans with this padding removed. Even though I do not
expect any significant performance gains, this evaluation still uses the remaining STAMP
benchmarks to study other effects DPTM’s changes might have in the absence of false con-
flicts.

Even though the SPLASH-2 suite was written for evaluating multiprocessors, raytrace
is known to suffer from false sharing in the context of hardware transactional memory [Moore
et al., 2006]. To compare against mitigating the effects of false sharing by restructuring, I
created a modified version of raytrace in the manner Moore et al. [2006] describe.

The microbenchmarks were originally written in Java, and therefore are not padded. In
porting them to C, I created two version: an unpadded version, and a version where each
object is padded and aligned to the cache line boundary.

The performance of the padded versions is compared with the unpadded ones (where
applicable), when running on the following: the baseline hardware transactional memory,
DPTM with conflict detection granularity of 4 bytes (one word — DPTM), and DPTM with

130

Transactional Conflict Decoupling and Value Prediction

conflict detection granularity of 64 bytes (one cache line — DPTM–64). DPTM–64 is used
to isolate the effects DPTM has on false sharing from other effects, such as DPTM’s lazy
conflict detection, because DPTM–64 detects conflicts at the granularity level of a whole
cache line and therefore does not mitigate the effects of false sharing.

To better understand the impact of false sharing on the benchmarks’ transactions, Ta-
ble 7.4 presents an analysis of the impact false sharing has on the abort rate of transactions
in DPTM–64. I present this analysis for DPTM–64 because it uses the same mechanisms
as DPTM–4, yet detects conflict at the granularity level of a whole cache line. Therefore,
DPTM–64 isolates the effects of false sharing in transactions from the effects of all the other
changes DPTM makes to the baseline hardware transactional memory.

Table 7.4: DPTM–64’s abort rates, relative to the number of committed transactions, broken
down by cause. The first column presents the percentage of aborting transactions that abort
because of false sharing. The second column presents the percentage of transaction that abort
because of true conflicts. These results are based on the unpadded version of the benchmarks
(where applicable).

Benchmark False Sharing Aborts True Conflict Aborts
genome 16% 18%
intruder 7% 104%
labyrinth 16% 300%
ssca2 1% 3%
vacation-high 19% 415%
vacation-low 15% 415%
kmeans-high 5% 18%
kmeans-low 5% 8%
raytrace 67% 28%
linkedlist-high 313% 251%
linkedlist-low 269% 156%
redblack-high 17% 9%
redblack-low 12% 6%
hashtable-high 2% 0%
hashtable-low 1% 0%

Table 7.4 shows that, to a certain extent, all benchmarks suffer from false sharing, even
the ones where code inspection did not reveal any obvious cases of false sharing. In terms
of effect on speedup, the two benchmarks that suffer the most from false sharing are the two
that suffer the most in terms of abort rate: linkedlist and raytrace. More transactions
in the linkedlist benchmark abort because of false sharing, but the raytrace benchmark
is affected more in terms of speedup (Figure 7.3), because the relative increase in the number
of aborted transactions is higher than in linkedlist.

The results of evaluating DPTM using STAMP show that DPTM is consistently faster than
the baseline, with the exception of the ssca2 benchmark, where DPTM and the baseline are
comparable. This improvement is not due to the mitigation of false sharing or silent stores,
but to DPTM’s lazy conflict detection.

131

Chapter 7

For the kmeans benchmark, padding improves performance only slightly. False sharing
in kmeans does not occur often, because its transactions are small with low contention, and
its transactional objects that suffer from false sharing are only slightly bigger than a cache
line.

As for the SPLASH-2 benchmark raytrace, false sharing has a significant impact.
Padding mitigates much of its effects. Furthermore, the cache miss statistics show that
padding does not adversely affect locality in this case.

DPTM significantly speeds up raytrace compared with the baseline when running ei-
ther the padded or the unpadded version. Most of this improvement is due to mitigating the
effects of false sharing.

DPTM is faster when running the padded version compared with the unpadded version of
raytrace. This shows that DPTM was able to mitigate most of the effects of false sharing,
but not eliminate them altogether. DPTM serializes the commit phases of transactions with
false conflicts, whereas the padded version has no false conflicts that cause commit phases to
serialize.

For the microbenchmarks running on the baseline hardware transactional memory, the
padded versions of the linkedlist and redblack benchmarks are significantly faster, be-
cause padding mitigates false sharing. As for hashtable, there is no significant difference
because contention is low and its transactions are too short for false sharing to have much of
an effect.

DPTM running the unpadded microbenchmarks is faster than the baseline running either
the unpadded or the padded versions. Interestingly, in the linkedlist benchmark, DPTM
performs better using the unpadded version whereas the opposite is true for the baseline:
DPTM was able to mitigate the effects of false sharing as well as take advantage of the
locality afforded by the use of the unpadded version.

An interesting observation regarding value prediction is that the results presented so far
use a conservative DPTM, which speculates only on the values already part of a transaction’s
read set. An investigation of the results shows that most of the gains so far, even in the
presence of false sharing, are due to the decoupling of transactional from coherence conflicts:
value prediction accounts for less than 5% of the additional gains presented.

I also experimented with an aggressive approach, which always speculates on the values
in a stale cache line, with the results (not shown) consistently slower. This is not surprising,
because mis-prediction has the high cost of aborting the whole transaction, something that
was also experienced in the Rock evaluation (Chapters 5 and 6). Others have also observed
that for data speculation to be effective, it should be throttled to avoid the high cost of mis-
prediction [Steffan, Colohan, Zhai, and Mowry, 2002].

132

Transactional Conflict Decoupling and Value Prediction

The Effects of Design Alternatives

Section 7.3 discussed some of DPTM’s design alternatives. This section evaluates these
alternatives against the basic DPTM with conflict detection granularity of 4 bytes. Figure 7.4
presents the outcome of these experiments.

genome

intruder

labyrinth
ssc

a2

vacation-high

vacation-low

kmeans-h
igh

kmeans-lo
w

raytrace

linkedlist
-high

linkedlist
-low

redblack-high

redblack-low

hashtable-high

hashtable-low
0

1

2

3

4

5

6

Sp
ee

du
p

DPTM (basic)
DPTM GetX
DPTM SendSets
DPTM Seer
DPTM SendUpdates

Figure 7.4: The speedup of design alternatives for DPTM relative to the baseline (not shown)

First, I evaluate issuing exclusive requests immediately on stores (GetX), rather than wait-
ing until commit time. Issuing the requests immediately can hide the latency for the request.
However, if contention is high, the transaction may lose exclusive permissions and need to
reissue the request later, further increasing contention.

The evaluation shows no significant differences except in the intruder, kmeans,
raytrace, and redblack-high benchmarks, where GetX is noticeably faster. These
benchmarks have short transactions, so the window for losing exclusive permissions is small.
On the other hand, hashtable is not benefiting much from GetX, because its transactions
are very short, so there is little time to hide any request latency.

Because GetX performs as well as, if not better than, the basic DPTM, the remaining
experiments also issue exclusive requests immediately on stores, and are compared against
GetX.

Next, I evaluate SendSets, which makes DPTM more eager by taking advantage of a
cache line’s read and write set information in detecting transactional conflicts. As mentioned
previously, eager and lazy conflict detection are superior under different conditions; therefore,
I expect SendSets’s performance to be in line with more eager conflict detection schemes.

133

Chapter 7

For the benchmarks used, SendSets’s performance is generally comparable with GetX,
except for the intruder, raytrace, and linkedlist-high benchmarks. There is more
improvement in linkedlist-high, a long benchmark with high contention, because ea-
ger conflict detection aids higher priority transactions (older transactions in this case). On
the other hand, intruder and raytrace are slower, because requests are often denied by
doomed transactions, leading to wasted work.

Finally, I investigate ways to improve the accuracy of value prediction in DPTM. I first
model the instantaneous and free broadcasting of all cache line updates to all processors that
have the cache line in a stale state (Seer). This unrealistic approach evaluates the effects
of such a broadcasting mechanism regardless of its cost, in order to gain intuition about
the benefits of sending updates in general. I then compare Seer against the more realistic
approach of sending updates only with invalidation requests (SendUpdates).

When using either Seer or SendUpdates, DPTM always speculates on stale cache line
data, unlike the conservative basic DPTM. Out of all experiments and all parameters, Seer

performs the best.

The gains from value prediction when using Seer are substantially higher than in the
basic DPTM. For example, in ssca2, value prediction now accounts for 50% of the ad-
ditional gains over the baseline, 40% in redblack, and 30% in kmeans and linklist.
This unrealistic approach demonstrates that broadcasting updates has potential for improving
performance gains from value prediction.

On the other hand, SendUpdates overall performs poorly; transactions frequently abort
because of mis-speculation, especially in redblack. This implies that although the sending
of updates seems promising, SendUpdates is not sufficient to capture this potential.

Finally, to better appreciate the effect the different aspects the design of DPTM has on
performance, Figure 7.5 presents a breakdown of the different speedup components in Seer.
I present the breakdown for Seer because its component parameters perform the best across
all workloads in these experiments. Therefore, a breakdown of its components is well suited
to examine the relative benefits of the different design options investigated.

7.4.4 Discussion

For the workloads in this evaluation, DPTM consistently outperforms the baseline system.
This is due to DPTM’s mitigation of the effects of false sharing and to DPTM’s lazy conflict
detection.

Because most of the workloads in the evaluation were developed by experts in paral-
lel programming, and therefore optimized to prevent false sharing, not many benefit from
DPTM’s mitigation of the effects of false sharing. Those that do, however, benefit immensely
— even more than they benefit from restructuring by padding. The evaluation demonstrated
that even a single instance of false sharing can be detrimental to performance. The evalua-

134

Transactional Conflict Decoupling and Value Prediction

time in txn genome intruder labyrinth ssca2 vacation-high vacation-low kmeans-high kmeans-low raytrace linkedlist-high linkedlist-low redblack-high redblack-low hashtable-
high

hashtable-low

atmtp

vpt64

vpt4-nogetx

vpt4-getx

oracle

additional
speedup

total

lazy

FALSE

getx

value pred

percentage

conflict
detection

false sharing

exclusive
requests

value
prediction

improvement

conflict
detection

false sharing

exclusive
requests

value
prediction

2,189,096 1,955,994 50,229,228 1,035,274 40,303,072 35,315,919 169,891 210,066 9,099,890 15,805,994 11,844,493 483,182 378,168 94,680 88,404
1,966,699 1,495,128 46,525,081 996,673 38,834,636 33,378,476 142,403 175,118 4,614,504 12,139,879 8,682,679 377,898 322,049 89,861 84,716
1,944,835 1,481,458 45,983,043 1,001,314 38,009,838 32,810,142 137,501 175,172 1,562,654 5,378,907 2,993,980 354,326 295,809 88,823 84,080
2,000,936 1,349,525 46,079,597 914,671 38,550,276 32,899,891 118,605 148,097 1,494,419 5,089,532 2,987,937 319,019 277,793 88,139 83,451
1,964,262 1,263,907 45,653,917 796,768 37,742,792 32,075,135 104,975 132,281 1,489,745 3,448,713 2,240,394 256,962 233,326 75,611 71,805

0.11 0.55 0.10 0.30 0.07 0.10 0.62 0.59 5.11 3.58 4.29 0.88 0.62 0.25 0.23
0.11 0.31 0.08 0.04 0.04 0.06 0.19 0.20 0.97 0.30 0.36 0.28 0.17 0.05 0.04
0.01 0.01 0.01 -0.00 0.02 0.02 0.04 -0.00 3.85 1.64 2.59 0.09 0.10 0.01 0.01
-0.03 0.13 -0.00 0.10 -0.01 -0.00 0.20 0.22 0.27 0.17 0.01 0.15 0.08 0.01 0.01
0.02 0.10 0.01 0.17 0.02 0.03 0.19 0.17 0.02 1.48 1.32 0.37 0.26 0.18 0.17

98% 56% 79% 13% 56% 57% 31% 34% 19% 8% 8% 32% 28% 21% 19%

1% 2% 13% 0% 33% 18% 7% 0% 75% 46% 60% 10% 17% 5% 3%
0% 24% 0% 31% 0% 0% 32% 37% 5% 5% 0% 17% 13% 3% 3%

1% 18% 8% 56% 11% 24% 30% 29% 0% 41% 31% 42% 42% 71% 74%

0.11 0.31 0.08 0.04 0.04 0.06 0.19 0.20 0.97 0.30 0.36 0.28 0.17 0.05 0.04

0.01 0.01 0.01 0.00 0.02 0.02 0.04 0.00 3.85 1.64 2.59 0.09 0.10 0.01 0.01
0.00 0.13 0.00 0.10 0.00 0.00 0.20 0.22 0.27 0.17 0.01 0.15 0.08 0.01 0.01

0.01 0.10 0.01 0.17 0.02 0.03 0.19 0.17 0.02 1.48 1.32 0.37 0.26 0.18 0.17

0%

20%

40%

60%

80%

100%

genome
intruder

labyrinth
ssca2

vacation-high

vacation-low

kmeans-high

kmeans-lo
w

raytrace

linkedlist-
high

linkedlist-
low

redblack-high

redblack-low

hashtable-high

hashtable-low

conflict detection
false sharing
exclusive requests
value prediction

Figure 7.5: A breakdown of the speedup components of Seer. The conflict detection compo-
nent is due to the difference in DPTM’s conflict detection from the baseline hardware. The
false sharing component is due to the transactions not aborting because of false sharing.
The exclusive requests component is due to issuing exclusive requests immediately on stores,
rather than waiting until commit time. The value prediction component is due to the reduction
in load latency when speculating on data values.

tion also demonstrated that restructuring by padding, in addition to the software engineering
challenges it poses, could also hurt performance by undermining data locality.

This evaluation assumes a 64 byte cache line, which is the cache line size for Sun’s Rock
processor. However, it seems that the current trend in cache line size favors larger cache
lines.3 Larger cache lines can fit more data and hold more distinct data objects; therefore, I
expect the problem of false sharing to be exacerbated by larger cache lines, and in turn, that
the benefits reaped from the techniques proposed in this chapter would be greater.

The other aspect of DPTM is its ability to reduce stalling by using value prediction. As
others have observed, taking advantage of value prediction can be difficult [Steffan et al.,
2002]. The difficulty lies in that mis-prediction is expensive because it leads to aborted trans-
actions, which could negate the benefits gained from many instances of successful prediction.
The unrealistic Seer design alternative demonstrated that value prediction can be very bene-
ficial. However, further work is needed to find better heuristics for deciding when to predict,
and for choosing the values to use for prediction.

3For example, Sun’s first Niagara processor’s cache line size was only 16 bytes [Kongetira, Aingaran, and
Olukotun, 2005].

135

Chapter 7

7.5 Related Work

Other hardware transactional memory proposals are also capable of fine-grained conflict de-
tection, e.g., TCC [Hammond, Wong, Chen, Carlstrom, Davis, Hertzberg, Prabhu, Wijaya,
Kozyrakis, and Olukotun, 2004; McDonald, Chung, Chafi, Minh, Carlstrom, Hammond,
Kozyrakis, and Olukotun, 2005], Bulk [Ceze, Tuck, Torrellas, and Cascaval, 2006], and RET-

CON [Blundell, Raghavan, and Martin, 2010]. TCC associates fine-grained read bits for
conflict detection with each cache line; however, TCC proposes an unconventional approach
for memory consistency and cache coherence, where transactions are the basic unit of par-
allel work. Bulk hashes a transaction’s access information, and uses this hash for conflict
detection. RETCON, which is concurrent with this work, symbolically tracks modifications
and constraints that a transaction applies to variables, and uses value-based conflict detection.
In contrast to these proposals, I directly address the problem of false sharing using best-effort
hardware with a conventional coherence protocol. I also propose using value prediction to
reduce latencies incurred with false sharing, by speculating on the values of stale cache line
data.

Concurrently with and independently of this work, Pant and Byrd [2009] proposed using
value prediction in hardware transactional memory, in a manner very different from mine
both in design and in purpose. Their proposal does not address false sharing in transactions,
but uses value prediction to reduce load latencies by predicting future updates. Their proposal
also requires extensive modifications to the underlying hardware: the value predictor is lo-
cated at the memory level, near the memory or directory controller; the directory must be able
to observe all stores, which could be a bottleneck; the number of transactions concurrently
involved in value prediction is limited; additional hardware modifications to the directory are
needed to keep prediction history and make further predictions; and a specific type of cache
coherence protocol is required (a nacking protocol, modeled on the one Moore et al. [2006]
use), as well as further changes to that protocol.

Outside the context of transactional memory, Huh, Chang, Burger, and Sohi [2004] de-
couple the use of a cache line’s data from obtaining permissions for that line to mitigate the
effects of false sharing. They propose speculating on the values of stale cache lines, as well
as mechanisms of sending write updates and forwarding modified data. In their work, latency
tolerance for the coherence permissions was low, effectively limited to the parallelism in the
existing reorder buffer. Hardware transactional memory naturally provides a larger scope,
and so is better suited for coherence decoupling. Moreover, the additions required for DPTM
can also be used to mitigate the effects of false sharing outside transactions, in the same
manner Huh et al. propose.

Value prediction has also been explored in the context of thread-level speculation in works
by Knight [1986], Akkary and Driscoll [1998], Martin, Sorin, Cain, Hill, and Lipasti [2001],
Cintra and Torrellas [2002], and Steffan, Colohan, Zhai, and Mowry [2002], among others.

136

Transactional Conflict Decoupling and Value Prediction

EazyHTM [Tomić, Perfumo, Kulkarni, Armejach, Cristal, Unsal, Harris, and Valero,
2009] is a hardware transactional memory that separates conflict detection from conflict res-
olution, allowing it to detect conflicts eagerly, but act on them lazily. The work on SendSets,
which was concurrent with EazyHTM, serves a similar purpose using a different technique.

On the software side, Torrellas, Lam, and Hennessy [1994] propose some solutions to the
false sharing problem using compiler modifications that optimize the layout of shared data in
cache lines to mitigate its effects. Olszewski, Cutler, and Steffan [2007] propose a software
transactional memory that uses value-based conflict detection, and is capable of improving
performance in the presence of silent stores.

7.6 Concluding Remarks

This chapter demonstrated how data speculation in hardware transactional memory, by ex-
ample of DPTM, has the potential for improving performance, particularly in the presence
of false conflicts. Benchmarks that exhibit false sharing show dramatic gains, whereas ones
that do not exhibit false conflicts are not harmed by the alternative designs — and some even
benefit from lazy conflict detection.

The evaluation showed that DPTM can mitigate the effects of false sharing inside trans-
actions. The modifications DPTM needs could also be applied to mitigate the effects of false
sharing outside transactions, in the same manner proposed by Huh et al. [2004], thus improv-
ing performance over a wider range of workloads.

Although DPTM can significantly mitigate the effects of false sharing, this mitigation is
not perfect, because it serializes the commit phases of transactions with false conflicts.

DPTM can also improve performance in the presence of silent stores. Others have noted
that silent stores are common in certain workloads [Steffan et al., 2002; Cintra and Torrellas,
2002]; however, they were not common in the workloads tested in this chapter. This might be
because most of the benchmarks used were developed by experts for evaluating transactional
memory, and who are aware that silent stores could adversely impact certain transactional
memory proposals.

On some of the more recent multicore processors, cache coherence costs are low as long
as the coherence traffic remains within the same chip [Dice and Shavit, 2010]. Moreover,
with the more recent and faster processor interconnects, such as Intel’s QPI [Maddox, Singh,
Safranek, and Colwell, 2009], coherence costs even between processors are decreasing. De-
creasing coherence costs means that the detrimental effects of false sharing and silent stores
are also reduced. However, even if the coherence cost of false conflicts is practically zero,
transactional memory that associates transactional conflicts with coherence conflicts still runs
the risk of serializing or aborting whole transactions in the presence of false conflicts.

137

Chapter 8

Conclusion

This thesis presented a case for hybrid transactional memory, arguing that if transactional
memory, as a programming model, is going to become a mainstream model, then it would
require both hardware and software support. This is because the alternatives, whether they
are purely in hardware or purely in software, do not appear to be viable in the near future.
A hardware transactional memory solution that can truly stand alone is too complex for pro-
cessor manufacturers to consider, whereas software transactional memory’s performance is
lacking. This leads to an impasse where programmers are not using the available (software)
transactional memory because it is too slow, and hardware manufacturers do not add hard-
ware support because they do not believe that transactional memory is a popular model.

To support the case for hybrid transactional memory, this thesis presented the results
of my research and contributions to this field. These contributions cover different areas of
transactional memory, from software to hardware to a hybrid combination of the two. This
thesis also presented a study of using transactional memory in real-world applications.

My research introduced the first nonblocking zero introduction software transactional
memory (NZSTM). NZSTM demonstrated that nonblocking algorithms are not inherently
slower than their blocking counterpart. With little transactional hardware support, nonblock-
ing algorithms can be almost as simple as blocking ones — true to the spirit of transactional
memory as originally envisioned by Herlihy and Moss.

My research also introduced a hybrid system, NZTM, which is based on NZSTM. NZTM
takes advantage of the lack of indirection in NZSTM to access the data directly in the common
case. This thesis presented an evaluation of NZTM using a simulator and using Rock, one
of the few processors that supports the hardware primitives that NZTM requires. Even with
the restrictions Rock imposes on its hardware transactions, the evaluation shows that some
workloads benefit significantly from hybrid support.

Because CPython uses a single global lock to protects its data structures, I thought it
would make an interesting case study on the capabilities of Rock’s transactional support for
improving the performance of a real-world platform. A preliminary evaluation showed that

139

Chapter 8

Rock’s hardware support has the potential to make CPython scale with the number of cores,
with only a few simple changes to its code.

The final contribution presented in this thesis relates to the hardware level of support
for transactional memory. False sharing, at the cache line level, in hardware transactions
can undermine the performance of the transaction abstraction. By leveraging the speculation
inherent in hardware transactions, my proposed system can mitigate most of the effects of
false sharing.

* * *

Transactional memory was first proposed in 1993, yet it is still not a mainstream pro-
gramming model. Many use this as an argument against the transactional model. However,
I do not believe that this undermines the transactional model: transactional memory presents
a paradigm shift in the way programmers think about their programs. In the past, other new
models have also faced resistance before being accepted.

For example, virtual memory, which is ubiquitous today, initially encountered some re-
sistance. Even though Sayre demonstrated that virtual memory’s performance is superior to
manual memory management back in the 1960s, many popular operating systems, such as
Microsoft DOS in the 1980s and the 1990s, still did not support virtual memory. Another
model met with resistance is object oriented programming, also first proposed in the 1960s.
Even the Turing Award winner, Edsger Dijkstra [1994], decried object oriented programming
as “snake oil” with a “most impressive name”. Object oriented programming did not become
mainstream until the 1990s, with the rising popularity of languages such as C++, Java, and
Python.

The field of software engineering is more mature now than it was in the last century.
Therefore, it is not surprising that a new, and arguably unproven, programming model would
encounter much resistance.

Even when, or if, transactional memory is accepted into the mainstream, I do not believe
it will be the last word on parallel programming models. It is also unlikely that it will sup-
plant the existing models — the almost forty year old C programming language has not been
supplanted by some of the newer, and arguably better, programming languages: C is still the
most popular programming language1.

In light of this, the contributions presented in this thesis might ease the adoption of this
new programming model. In particular, NZTM, which closes some of the performance gap
between software and hardware, might appeal to programmers who need the fault tolerance
and reliability of nonblocking algorithms. Furthermore, demonstrating the value of decou-
pling transactional conflicts from coherence conflict, and using data speculating inside trans-
actions, contributes to strengthening the transaction abstraction, thereby making it more ap-
pealing for software engineers.

* * *
1According to the TIOBE Programming Community Index for May 2010 [TIO, 2010].

140

Conclusion

In my opinion, one of the biggest challenges the transactional memory community faces
today is not a technical one, but a battle for the hearts and minds of programmers. Our com-
munity needs to demonstrate that transactional memory can help improve the design process
and performance of real programs, and not just an arbitrary set of benchmarks. Showing
that Rock’s best-effort transactional memory can benefit CPython is a step in that direction;
however, that effort is limited to one specific platform.

I believe that the challenge is to improve the performance of software transactional mem-
ory systems well enough so programmers would consider the performance impact to be a
worthwhile tradeoff with the ease of programming transactional memory promises. Once
programmers appreciate the value of the transactional model, then hardware manufacturers
might add support for transactions the same way they added support for machine virtualiza-
tion after it had gained popularity (Section 3.2.3).

This thesis has argued for hybrid transactional in general, but my research was focused
on an approach that uses best-effort hardware transactions, when available, and falls back on
software transactions when the underlying hardware is incapable of committing the transac-
tion. I do not believe that this approach to hybrid transactional memory is necessarily the
best approach, mainly because once a transaction aborts in hardware and falls back on soft-
ware, then the hardware transactional support is not being leveraged any longer (unless the
hardware is also used to simplify the software algorithm).

As explained in Chapter 3, there are other approaches to hybrid transactional memory.
Others have suggested using both hardware and software techniques simultaneously to sup-
port transactions. It is not clear, however, which one of these myriad of approaches might
be best, or if there might even be a better way of adding hardware support that has not been
proposed yet. Researching and evaluating different hardware primitives that could support
transactional memory is, in my opinion, one of the key remaining issues in hybrid transac-
tional memory.

Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

— Winston Churchill

141

Appendix A

Dynamic Software Transactional
Memory

This appendix describes the algorithm for Dynamic Software Transactional Memory (DSTM)
[Herlihy, Luchangco, Moir, and Scherer, 2003b]. NZSTM inflates objects owned by unre-
sponsive transactions into DSTM-like objects, and uses the DSTM algorithm to acquire these
inflated objects (Section 4.1.4). The DSTM algorithm described is the one used in my imple-
mentation of NZSTM, and is based on the description given by Herlihy et al. [2003b].

DSTM is a nonblocking software transactional memory proposal, and is the first dynamic

software transactional memory proposal. Earlier software proposals [e.g., Shavit and Touitou,
1995] required transactions to statically specify the data they are going to access before they
can run. This requirement limits the usability of such proposals for algorithms that cannot
determine this information in advance. For example, a non-dynamic transaction would be re-
stricted when attempting to traverse a tree structure, because it cannot determine the sequence
of nodes its going to access before the transaction. DSTM, on the other hand, makes no such
restrictions.

DSTM was initially implemented in the Java programming language. The DSTM code I
had access to, which was used as a reference when developing NZSTM, is the Java DSTM
code.

A.1 DSTM Data Structures

The basic data structures DSTM uses are shown in Figure A.1.

The TMObject data structure encapsulates a program object that DSTM transactions can
access, and serves as a container for its data and metadata. It contains a start pointer, which
points to a Locator object, and must be modified only atomically.

Each Locator object is composed of three fields. First, the Owner pointer, which points
to the transaction that created this Locator. The new data and the old data pointers

143

Appendix A

start

Data
(Backup Copy)

Transaction

Status
{Active, Committed,

Aborted}

Data
(Active Copy)

Owner

old data

new data

Locator

TMObject

Figure A.1: The structure of DSTM’s main transactional object

point to the actual object data. The old data pointer points to the backup copy of the
object data, which is interpreted as the object’s current data for aborted transactions. Initially,
new data points to a copy of the old data; then the current active transaction accesses and
modifies the data that new data points to. The data that new data points to is interpreted
as the object’s current data for committed transactions.

DSTM adds a level of indirection to access the Locator because, as will be explained
later, transactions that acquire objects must modify all three fields of an object’s Locator
atomically. Most modern hardware allows only one word to be modified atomically. There-
fore, by making the Locator accessible only through this (one word) start pointer, the al-
gorithm can atomically change the Locator just by atomically swapping the start pointer,
e.g., using Compare&Swap.

DSTM’s Transaction object is the model used for NZSTM’s Transaction. DSTM
creates a new Transaction object for every new transaction and does not reuse these objects
regardless of whether a transaction commits or aborts. Even when DSTM attempts an aborted
transaction again, it creates a new Transaction object for the new attempt.

Each Transaction object contains the transaction’s Status field, which must be mod-
ified only atomically, and can be in one of the following states: Active, which indicates that
the transaction is currently running; Committed, which indicates that the transaction has
committed successfully; and Aborted, which indicates that the transaction has been aborted.

144

Dynamic Software Transactional Memory

A.2 DSTM Algorithm

Inflated NZSTM objects are accessed exclusively, i.e., no read sharing is allowed. Therefore,
this appendix describes only the exclusive DSTM algorithm.

In DSTM, a thread begins a transaction by creating a new Transaction object with its
status set to Active. The thread then executes the transaction, acquiring each object it ac-
cesses. When the thread completes the execution of the transaction, it attempts to atomically
change its transaction’s status from Active to Committed.

To acquire an object, a DSTM transaction, T , first determines if it has already acquired
the object by following the object’s start pointer to its Locator, and examining it Owner
field. If the Owner points to the current Transaction, then it has already acquired the object
within the same transaction.

If T has not already acquired the object, then T must ensure that there are no conflicts
with other transactions before acquiring ownership of the object. If the Owner field points
to a committed or an aborted transaction, there is no conflict. Consequently, T creates a
new Locator. T sets the Owner of the new Locator to point to its transaction, sets the
old data field to point to the object’s current data, which is the new data of the current
Locator if the last owner is a committed transaction, or the old data of the current locator
if the last owner is an aborted transaction. T then attempts to atomically swap the start

pointer to point to its newly created Locator (Figure A.2). If the swap is successful, it means
it has successfully acquired the object. If not, it means that another transaction acquired the
object instead, and T tries again. Finally, T checks whether it has been aborted by checking
its own Transaction status. If it has been aborted, then it restarts the transaction. If T is
still active, then it has successfully acquired the object.

start

Data
(Stale)

Transaction
Committed

Data
(Current)

Owner

old data

new data

Current
Locator

TMObject

Transaction
Active

Data
(Current copy)

Owner

old data

new data

New
Locator

(a)

start

Data
(Current)

Transaction
Aborted

Data
(Invalid)

Owner

old data

new data

Current
Locator

TMObject

Transaction
Active

Data
(Current copy)

Owner

old data

new data

New
Locator

(b)

Figure A.2: A DSTM transaction acquiring an object most recently owned by (a) a committed
transaction, or (b) an aborted transaction.

145

Appendix A

However, if the Owner field points to an active transaction, there is a conflict. The trans-
action, T , consults an out-of-band contention manager, which may apply different policies.
Depending on the decision of the contention manager, T either waits and then tries to acquire
the object again, or it aborts.

Should a DSTM transaction decide to abort another transaction, it does so by atomically
attempting to change its Transaction status from Active to Aborted. In the case of the
original Java implementation, as well as the implementation used in NZSTM, this is done
using a Compare&Swap instruction. The code listing below demonstrates how DSTM aborts
a transaction.

void a b o r t T r a n s a c t i o n (T r a n s a c t i o n ∗ e n e m y T r a n s a c t i o n)
{

atomic {
/∗ can be per fo rmed u s i n g Compare&Swap ∗ /
i f (enemyTransac t i on−>s t a t u s == A c t i v e) {

enemyTransac t i on−>s t a t u s = Abor ted ;
}

}

/∗
∗ I f t h e swap f a i l s , i t means t h a t t h e t r a n s a c t i o n has e i t h e r commi t t ed or a b o r t e d .
∗ In e i t h e r case , no f u r t h e r a c t i o n i s n e c e s s a r y .
∗ /

}

To commit a transaction, a thread attempts to atomically change its Transaction status
from Active to Committed. If it fails, it means it has been aborted, and so it restarts the
transaction by creating a new Transaction object and runs the code again.

146

Appendix B

NZSTM Promela Model

This appendix contains the source code for the Promela model used for model checking
NZSTM (Section 4.2.1). A concise Promela primer can be found at the Spin website [Gerth,
1997]; alternatively, refer to Holzmann [2003] for a more complete reference.

I present NZSTM’s Promela source code instead of the code for the C implementa-
tion. The Promela model is a high-level description, which abstracts away much of the
architectural-dependent details and makes it easier to read than the C code.

The model presented covers the nonblocking and the blocking versions of NZSTM, using
both the exclusive algorithm and the read sharing algorithm. The model also covers the
DSTM2 Shadow Factory algorithm used in Chapter 4. Some of the techniques used in this
model were inspired by Ananian [2007].

147

Appendix B

/∗ ∗
∗ @ f i l e nzs tm . pml
∗ Promela model f o r NZSTM
∗
∗ @author Fuad Tabba (fuad a t c s . a u c k l a n d . ac . nz)
∗
∗ Some i d e a s t a k e n from C . S . Ananian ’ s Promela model :
∗
∗ C . S . Ananian . A r c h i t e c t u r a l and c o m p i l e r s u p p o r t f o r s t r o n g l y a to mi c
∗ t r a n s a c t i o n a l memory . Ph .D. t h e s i s , M a s s a c h u s e t t s I n s t i t u t e o f Technology ,
∗ 2007 .
∗ h t t p : / / f l e x−c o m p i l e r . c s a i l . m i t . edu / Harpoon / swx . pml
∗
∗ The i n t e r f a c e o f t h i s TM and t h e s t r u c t u r e o f t h e l o c a t o r i s based on DSTM:
∗
∗ M. H e r l i h y , V . Luchangco , M. Moir , and W. N . Scherer , I I I . S o f t w a r e
∗ t r a n s a c t i o n a l memory f o r dynamic−s i z e d da ta s t r u c t u r e s . In PODC 0 3 :
∗ P r o c e e d i n g s o f t h e twen ty−second annua l symposium on P r i n c i p l e s o f
∗ d i s t r i b u t e d comput ing . ACM, 2003 b .
∗
∗ The DSTM2 Shadow F a c t o r y model i s based on t h e d e s c r i p t i o n i n :
∗
∗ M. H e r l i h y , V . Luchangco , and M. Moir . A f l e x i b l e framework f o r i m p l e m e n t i n g
∗ s o f t w a r e t r a n s a c t i o n a l memory . In OOPSLA 0 6 : P r o c e e d i n g s o f t h e 21 s t annua l
∗ ACM SIGPLAN c o n f e r e n c e on Objec t−o r i e n t e d programming s y s t e m s , languages , and
∗ a p p l i c a t i o n s . ACM, 2006 .
∗
∗ Goals :
∗ − Only use a to mic s t a t e m e n t s (a tomic , d s t e p) i n s c e n a r i o s where t h e
∗ o p e r a t i o n can be made t o l o o k a to mi c i n C u s i n g n o t h i n g more than CAS
∗ (e x c e p t when mode l ing SCSS)
∗ − Only one p r o c e s s can m od i f y an o b j e c t a t a t i m e
∗ − M u l t i p l e p r o c e s s e s can read an o b j e c t a t a t i m e
∗ − C o n s i s t e n c y must be p r e s e r v e d
∗ − A l l t h r e a d s must reach t h e end o f t h e code (no d e a d l o c k s)
∗ − L i v e l o c k s w i t h i n t h e a l g o r i t h m i t s e l f are n o t a l l o w e d . Meaning each
∗ t r a n s a c t i o n must e v e n t u a l l y e i t h e r commit or a b o r t . L i v e l o c k s i n t h e
∗ l a r g e r s e n s e are p o s s i b l e though (i . e . e v e r y o n e a b o r t i n g) , and t h a t i s
∗ p r e v e n t e d u s i n g good c o n t e n t i o n management .
∗
∗ C u r r e n t I s s u e s and Bugs :
∗ − none known
∗ /

/∗
∗ ===
∗ Globa l C o n s t a n t s
∗ ===
∗ /

/∗
∗ I f d e f i n e d u s e s t h e DSTM2 Shadow f a c t o r y , o t h e r w i s e i t s NZSTM
∗ /

/∗ # d e f i n e SHADOW ∗ /

/∗
∗ I f d e f i n e d p e r f o r m s t h e i n c r e m e n t / dec remen t same o b j e c t t e s t .
∗
∗ T h i s n o n d e t e r m i n i s t i c a l l y open two d i f f e r e n t o b j e c t s and e i t h e r :−
∗ − i n c r e m e n t s and d e c r e m e n t s them , w i t h t h e s a n i t y check b e i n g t h a t a f t e r
∗ i n c r e m e n t i n g t h e v a l u e must be 1 g r e a t e r than t h e i n i t i a l v a l u e

(i n d i c a t i n g t h a t o n l y one t h r e a d was s u c c e s s f u l i n i n c r e m e n t i n g t h e o b j e c t) .
∗
∗ − r e a d s t h e v a l u e o f t h e o b j e c t t o check t h a t i t i s t h e i n i t i a l v a l u e . S i n c e
∗ a l l w r i t e r s i n c r e m e n t t h e n decremen t t h e o b j e c t , i t s v a l u e must s t a y a t
∗ t h e i n i t i a l v a l u e .
∗ /

/∗ # d e f i n e INCDEC TEST ∗ /

/∗
∗ I f d e f i n e d p e r f o r m s t h e b a l a n c i n g t e s t .
∗

148

NZSTM Promela Model

∗ T h i s t e s t d i v i d e s t h e t h r e a d s i n t o two groups , one group s u b t r a c t s from one
∗ o b j e c t and adds t h e same amount t o t h e o t h e r o b j e c t . The o t h e r group
∗ r e a d s bo th o b j e c t s and c h e c k s t h a t t h e i r combined v a l u e i s p r e s e r v e d .
∗ /

/∗ # d e f i n e BALANCE TEST ∗ /

/∗
∗ I f d e f i n e d p e r f o r m s t h e add around t e s t .
∗
∗ T h i s t e s t has t h r e e o b j e c t s . I t r e a d s t h e f i r s t v a l u e and t h e second va lue ,
∗ Adds t h i s t o t h e t h i r d va lue , t h e n adds t h i s t o t a l t o t h e f i r s t aga in . A l l
∗ t h e w h i l e comparing t h e v a l u e s w i t h what i t e x p e c t s them t o be .
∗
∗ The i d e a here i s t o go back and f o u r t h be tween v a l u e s , a l t e r n a t i n g be tween
∗ open ing f o r read and open ing f o r w r i t e . C re a t e some room f o r c o n c u r r e n c y
∗ and u n l i k e t h e o t h e r t e s t s , have i n v a r i a n t s t h a t change t h e s t a t e o f t h e
∗ s y s t e m .
∗
∗ NOTE: T h i s t e s t needs one more p r o c e s s t o be d e f i n e d s i n c e t h e r e ’ s an i n i t
∗ p r o c e s s t o s e t u p t h e s y s t e m . Not so good i n t e r m s o f s t a t e−space e f f i c i e n c y .
∗ /

/∗ # d e f i n e ADD AROUND TEST ∗ /

/∗ I f d e f i n e d t h e n v i s i b l e r e a d s are used , o t h e r w i s e i t ’ s e x c l u s i v e r e a d s ∗ /
d e f i n e READ VISIBLE

/∗ I f d e f i n e d t h e n t h e b l o c k i n g model i s used ∗ /
/∗ # d e f i n e BLOCKING∗ /

/∗
∗ I f d e f i n e d WITH b l o c k i n g , t h e n t h e b l o c k i n g a l g o r i t h m w i t h SCSS i s used , which models
∗ n o n b l o c k i n g by hardware s u p p o r t
∗ /

/∗ # d e f i n e SCSS ∗ /

/∗ ∗
∗ Number o f p r o c e s s e s r u n n i n g i n t h e s y s t e m .
∗ Remember t h e i n i t i a l i z i n g p r o c e s s i f any (e . g . , f o r AddAround) .
∗ /

d e f i n e PROCESSES 3

/∗ ∗
∗ Maximum number o f t r a n s a c t i o n s t h e s y s t e m can c r e a t e
∗
∗ Must have one e x t r a t r a n s a c t i o n s i n c e a t x n i d e n t i f i e r o f 0 i s l i k e
∗ a NULL p o i n t e r . In p r a c t i c e , 0 p o i n t s t o a commi t t ed t r a n s a c t i o n t h a t
∗ a l l newly c r e a t e d o b j e c t s p o i n t t o .
∗ /

d e f i n e TOTAL TXN 10

/∗ ∗
∗ Number o f o b j e c t s t o p r e a l l o c a t e .
∗ /

d e f i n e TOTAL OBJECTS 3

/∗ ∗
∗ Maximum number o f t r a n s a c t i o n s per t h r e a d
∗ /

d e f i n e TXN PER PROC ((TOTAL TXN − 1) / PROCESSES)

/∗
∗ S t u f f t o h e l p w i t h debugg ing and v a l i d a t i n g
∗ /

/∗ ∗
∗ A number t h a t r e p r e s e n t s an i n v a l i d s t a t e . i . e . u n i n i t i a l i z e d memory
∗
∗ To e n s u r e i t ’ s n e v e r used , must be b i g g e r than a l l a r r a y s . That way , any
∗ e r r o r s would be d e t e c t e d by sp in ’ s bound c h e c k i n g (i n d e x i n g e r r o r) .
∗ /

149

Appendix B

d e f i n e INVALID 77

/∗ ∗
∗ R e p r e s e n t s NULL p o i n t e r s . J u s t t o make i t c l e a r e r t h a t t h e v a l u e we ’ re
∗ a s s i g n i n g NULL t o r e p r e s e n t s a p o i n t e r r a t h e r than a p rop er v a l u e .
∗ /

d e f i n e NULL 0

/∗ ∗
∗ The v a l u e t h e da ta i n t h e o b j e c t s i s i n i t i a l i z e d t o .
∗ /

d e f i n e INITV 13

/∗
∗ ===
∗ S t r u c t u r e D e f i n i t i o n s
∗ ===
∗ /

/∗ ∗
∗ T h i s da ta s t r u c t u r e r e p r e s e n t s t h e p o i n t e r t o t h e o ldData .
∗ /

t y p e d e f OldData
{

/∗ ∗
∗ ID Number f o r t h i s v e r s i o n o f t h e backup .
∗
∗ T h i s i n f o r m a t i o n i s s t o r e d i m p l i c i t l y i n NZTM s i n c e t h e p o i n t e r i t s e l f
∗ a c t s as an ID number . To e n s u r e u n i q u e n e s s , and w i t h o u t making t h e s y s t e m
∗ s t a t e space exp lode , a lways s e t i t s v a l u e t o t h e c u r r e n t t x i d
∗
∗ I f i t ’ s s e t t o NULL i t means t h e r e ’ s no backup copy .
∗ /

byte i d = NULL;

/∗ ∗
∗ The backup copy (i f any)
∗ /

byte backup = INVALID ;
} ;

/∗ ∗
∗ Used t o keep t r a c k o f t h e da ta a f t e r t h e o b j e c t has been i n f l a t e d .
∗
∗ T h i s i s t h e mechanism t h a t e n a b l e d NZTM t o be n o n b l o c k i n g .
∗ /

t y p e d e f L o c a t o r
{

/∗ ∗
∗ P o i n t s t o t h e t r a n s a c t i o n t h a t owns t h i s l o c a t o r
∗ /

byte t x n = INVALID ;

/∗ ∗
∗ P o i n t s t o t h e u n r e s p o n s i v e t r a n s a c t i o n t h a t caused t h e o b j e c t t o be
∗ i n f l a t e d .
∗ A NULL (0) v a l u e i n d i c a t e s t h a t t h e o b j e c t was i n f l a t e d because o f a
∗ u n r e s p o n s i v e r e a d e r .
∗ /

byte a b o r t e d T x n = INVALID ;

/∗ ∗
∗ P o i n t s t o t h e a c t u a l v a l u e o f o b j e c t , i f t r a n s a c t i o n i s a b o r t e d ; and a
∗ backup copy o f t h e v a l u e when t h e t r a n s a c t i o n i s a c t i v e
∗ /

byte o l d = INVALID ;

/∗ ∗
∗ P o i n t s t o t h e a c t u a l o f o b j e c t i f t r a n s a c t i o n i s commi t t ed ;
∗ T e n t a t i v e va lue , i f t r a n s a c t i o n i s a c t i v e .
∗ /

byte new = INVALID ;
} ;

150

NZSTM Promela Model

/∗ ∗
∗ The main da ta s t r u c t u r e used i n NZTM .
∗
∗ T h i s m a i n t a i n s t h e da ta and t h e me tada ta r e q u i r e d f o r p ro pe r a c c e s s
∗ /

t y p e d e f NZObject
{

/∗ ∗
∗ A ” p o i n t e r ” t o t h e w r i t e r (or e x c l u s i v e) t r a n s a c t i o n (i f t h e o b j e c t i s
∗ n o t i n f l a t e d) , OR a p o i n t e r t o t h e l o c a t o r t h a t c o n t a i n s t h e o b j e c t (i f
∗ t h e o b j e c t i s i n f l a t e d)
∗
∗ A v a l u e o f z e r o i n d i c a t e s t h a t no one i s p o i n t i n g t o i t (assuming i t ’ s
∗ n o t i n f l a t e d)
∗ Must be changed a t o m i c a l l y .
∗ /

byte t x n = NULL;

/∗ ∗
∗ I n d i c a t e s whe ther t h i s o b j e c t has been i n f l a t e d , t h e r e b y t h e da ta i s
∗ r e a c h a b l e t h r o u g h t h e l o c a t o r .
∗
∗ I f t h i s v a l u e i s t r u e , t h e n t h e t x n f i e l d p o i n t s t o t h e l o c a t o r .
∗
∗ In C , t h i s v a l u e i s a c t u a l l y r e p r e s e n t e d by t h e l e a s t s i g n i f i c a n t b i t o f
∗ t h e t r a n s a c t i o n f i e l d . T h e r e f o r e i t can be m a n i p u l a t e d a t o m i c a l l y w i t h i t
∗ /

bool i s I n f l a t e d = f a l s e ;

/∗ ∗
∗ The a c t u a l da ta i n p l a c e
∗ /

byte d a t a = INITV ;

/∗ ∗
∗ A ” p o i n t e r ” t o t h e o l d a t a
∗ /

OldData o l d ;

/∗ ∗
∗ V i s i b l e l i s t o f r e a d e r s r e a d i n g t h i s o b j e c t .
∗
∗ In NZTM i t ’ s a d i f f e r e n t s t r u c t u r e , b u t s i n c e i t ’ s a l l o c a t e d a t t h e same
∗ t i m e as t h e o b j e c t we ’ l l c o n s i d e r i t as p a r t o f i t .
∗ /

byte r e a d e r s [PROCESSES] = NULL;

/∗ ∗
∗ P r e a l l o c a t e d L o c a t o r s .
∗
∗ A l o c a t o r i s p r e a l l o c a t e d f o r e v e r y p r o c e s s . I t ’ s done t h i s way s i n c e
∗ dynamic memory a l l o c a t i o n i s n o t s u p p o r t e d i n t h e s p i n models . Moreover ,
∗ t h e maximum number o f l o c a t o r s p o s s i b l e i s 1 per p r o c e s s per t r a n s a c t i o n .
∗ /

L o c a t o r l o c a t o r s [PROCESSES] ;
} ;

/∗ ∗
∗ The main da ta s t r u c t u r e used i n DSTM2 − Shadow .
∗
∗ T h i s m a i n t a i n s t h e da ta and t h e me tada ta r e q u i r e d f o r p ro pe r a c c e s s
∗ /

t y p e d e f SObjec t
{

/∗ ∗
∗ A ” p o i n t e r ” t o t h e w r i t e r (or e x c l u s i v e) t r a n s a c t i o n
∗
∗ A v a l u e o f z e r o i n d i c a t e s t h a t no one i s p o i n t i n g t o i t (assuming i t ’ s
∗ n o t i n f l a t e d)
∗ /

byte t x n = NULL;

151

Appendix B

/∗ ∗
∗ The a c t u a l da ta i n p l a c e
∗ /

byte d a t a = INITV ;

/∗ ∗
∗ The shadow backup f i e l d
∗ /

byte backup = INVALID ;

/∗ ∗
∗ The o b j e c t l o c k .
∗
∗ T h i s l o c k must be h e l d b e f o r e any m o d i f i c a t i o n i s made t o t h e o b j e c t ;
∗ e x c e p t f o r t h e r e a d e r s l i s t
∗ /

bool l o c k = f a l s e ;

/∗ ∗
∗ V i s i b l e l i s t o f r e a d e r s r e a d i n g t h i s o b j e c t .
∗
∗ I t s h o u l d be a d i f f e r e n t s t r u c t u r e , b u t s i n c e i t ’ s a l l o c a t e d a t t h e same
∗ t i m e as t h e o b j e c t we ’ l l c o n s i d e r i t as p a r t o f t h i s one .
∗ /

byte r e a d e r s [PROCESSES] = NULL;
} ;

/∗ ∗
∗ The d i f f e r e n t s t a t e s a t r a n s a c t i o n can be i n .
∗
∗ ACTIVE : The t r a n s a c t i o n i s r u n n i n g and hasn ’ t been asked t o a b o r t . I f i t
∗ t r i e s t o commit i t would succeed , and i t s s t a t u s would be COMMITTED .
∗ COMMITTED: The t r a n s a c t i o n has f i n i s h e d s u c c e s s f u l l y , i t ’ s changes are
∗ permanent .
∗ ABORTED: The t r a n s a c t i o n has f i n i s h e d b u t f a i l e d . I t s changes are r o l l e d
∗ back .
∗ ABORT NOW: The t r a n s a c t i o n i s s t i l l r u n n i n g b u t i t has been asked t o a b o r t .
∗ I f i t t r i e s t o commit i t would f a i l , and i t s s t a t u s would be ABORTED .
∗ /

mtype = {ACTIVE , COMMITTED, ABORTED, ABORT NOW} ;

/∗ ∗
∗ D e f i n i t i o n o f a t r a n s a c t i o n .
∗
∗ There must be one u n i que l o c a t i o n per t r a n s a c t i o n , do n o t r e c y c l e .
∗ /

t y p e d e f T r a n s a c t i o n
{

mtype s t a t u s = COMMITTED;
} ;

/∗
∗ ===
∗ F u n c t i o n D e f i n i t i o n s
∗ ===
∗ /

/∗
∗ T r a n s a c t i o n a l f u n c t i o n s
∗ /

/∗ ∗
∗ D e t e r m i n e s whe ther a t r a n s a c t i o n i s a c t i v e
∗ /

d e f i n e TXACTIVE(x) (t r a n s a c t i o n s [x] . s t a t u s == ACTIVE)

/∗ ∗
∗ D e t e r m i n e s whe ther a t r a n s a c t i o n f i n i s h e d s u c c e s s f u l l y
∗ /

d e f i n e TXCOMMITTED(x) (t r a n s a c t i o n s [x] . s t a t u s == COMMITTED)

152

NZSTM Promela Model

/∗ ∗
∗ D e t e r m i n e s whe ther a t r a n s a c t i o n i s f a i l e d t o commit (and knows t h a t)
∗ /

d e f i n e TXABORTED(x) (t r a n s a c t i o n s [x] . s t a t u s == ABORTED)

/∗ ∗
∗ D e t e r m i n e s whe ther a t r a n s a c t i o n has been asked t o a b o r t
∗ /

d e f i n e TXABORTING(x) (t r a n s a c t i o n s [x] . s t a t u s == ABORT NOW)

/∗ ∗
∗ T r a n s a c t i o n d e f i n i t i o n s : d e f i n e d l o c a l v a r i a b l e s t h a t are needed by a l l
∗ p r o c e s s e s , t o be d e f i n e d per p r o c e s s .
∗
∗ t x n : P o i n t s t o my t r a n s a c t i o n
∗ enemyid : P o i n t s t o t h e c u r r e n t enemy t r a n s a c t i o n
∗ oldData : s c r a t c h v a r i a b l e used t o compare v a l u e s o f backup da ta
∗ l i d : keep t r a c k o f t h e c u r r e n t l o c a t o r ’ s i d number
∗ i s I n f l a t e d : t r u e i f t h e l a s t o b j e c t opened i s i n f l a t e d
∗ s u c c e s s : r e s e m b l e s a r e t u r n v a l u e o f whe ther t h e f u n c t i o n was s u c c e s s f u l
∗ /

d e f i n e TXN DEFS () \
byte t x i d = NULL; \
byte enemyid = NULL; \
OldData o l d D a t a ; \
byte l i d = INVALID ; \
bool i s I n f l a t e d = f a l s e ; \
byte dummy ;

/∗ ∗
∗ Be g i ns a new t r a n s a c t i o n .
∗
∗ Each p r o c e s s can a l l o c a t e t r a n s a c t i o n s from p r e d e f i n e d s l o t s i n a p a r t i c u l a r
∗ o r d e r . T h i s i s a mode l ing r e s t r i c t i o n t o r ed uc e t h e s t a t e−space s i z e .
∗
∗ t x i d i s t h e v a r i a b l e t h a t m a i n t a i n s t h e v a l u e o f t h e p o i n t e r t o t h e
∗ t r a n s a c t i o n . Must a lways be t h e same v a r i a b l e f o r e v e r y p r o c e s s . I n i t i a l l y
∗ must be 0 .
∗ /

i n l i n e b e g i n T r a n s a c t i o n ()
{

/∗ Atomic s i n c e s e t t i n g p o i n t e r s i n C appear t h a t way ∗ /
d s t e p {

i f
: : (t x i d == NULL) −> t x i d = p i d ∗ TXN PER PROC + 1 ;
: : e l s e −> t x i d ++;
f i ;

/∗ Ensure t h a t we ’ re i n t h e c o r r e c t range ∗ /
a s s e r t (t x i d <= p i d ∗ TXN PER PROC + TXN PER PROC) ;

/∗ Redundant : S t r e s s t h a t t x i d ca nn o t be 0 , s i n c e i t ’ s r e s e r v e d ∗ /
a s s e r t (t x i d != 0) ;

/∗ Ensure t h a t we have enough t o h and l e a l l p r o c e s s e s ∗ /
a s s e r t (p i d < PROCESSES) ;

/∗ Ensure we ’ re a l l o c a t i n g from a f r e s h t r a n s a c t i o n ∗ /
a s s e r t (TXCOMMITTED(t x i d)) ;

t r a n s a c t i o n s [t x i d] . s t a t u s = ACTIVE ;
}

}

/∗ ∗
∗ A t t e m p t s t o commit a t r a n s a c t i o n .
∗
∗ /

i n l i n e c o m m i t T r a n s a c t i o n ()
{

d s t e p {
a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;

153

Appendix B

i f
: : TXACTIVE(t x i d) −> t r a n s a c t i o n s [t x i d] . s t a t u s = COMMITTED;
: : e l s e −> t r a n s a c t i o n s [t x i d] . s t a t u s = ABORTED;
f i ;

}
}

/∗ ∗
∗ V a l i d a t e s my c u r r e n t t r a n s a c t i o n , e n s u r e s t h a t I ’m s t i l l a c t i v e .
∗
∗ A b o r t s i f I ’ ve been asked t o a b o r t .
∗ /

i n l i n e v a l i d a t e T r a n s a c t i o n ()
{

atomic {
/∗
∗ Doesn ’ t need t o be a t om ic . Done t h a t way t o e n s u r e t h a t t h e a s s e r t i o n
∗ t a k e s p l a c e a t t h e c o r r e c t i n s t a n c e . Other than t h e a s s e r t i o n , b e i n g
∗ a t om ic does n o t a f f e c t b e h a v i o r .
∗ /

i f
: : TXABORTING(t x i d) −> goto a b o r t e d ;
: : e l s e −> a s s e r t (TXACTIVE(t x i d)) ;
f i ;

}

/∗
∗ NOTE: T h i s migh t t r i g g e r some dead code n o t i c e s . That ’ s ok i f t h e dead
∗ code i s r e l a t e d t o v a l i d a t i n g r e o p e n i n g f o r read / w r i t e i n t e s t s t h a t do
∗ n o t open f o r read / w r i t e t h e same o b j e c t aga in .
∗ /

}

/∗ ∗
∗ A b o r t s an enemy t r a n s a c t i o n a t o m i c a l l y .
∗
∗ A t o m i c a l l y changes t h e s t a t e o f t h e t r a n s a c t i o n from ACTIVE t o ABORT NOW .
∗ Do n o t use t o a b o r t s e l f .
∗ /

i n l i n e abortEnemy (enemyid)
{

d s t e p {
i f
: : TXACTIVE(enemyid) −> t r a n s a c t i o n s [enemyid] . s t a t u s = ABORT NOW;
: : e l s e ;
f i ;

a s s e r t (enemyid != t x i d) ;
a s s e r t (! TXACTIVE(enemyid)) ;

}
}

/∗ ∗
∗ B l o c k s u n t i l t h e enemy acknowledges an a b o r t i o n or t h a t I have been a b o r t e d
∗ m y s e l f .
∗
∗ T h i s i s t h e o n l y b l o c k i n g p o r t i o n i n t h e b l o c k i n g NZSTM
∗ /

i n l i n e b l o c k A b o r t e d (enemyid)
{

(! TXABORTING(enemyid) | | !TXACTIVE(t x i d)) ;
}

/∗ ∗
∗ Handles a c o n f l i c t w i t h a n o t h e r t r a n s a c t i o n .
∗
∗ @param e i d The i d o f t h e t r a n s a c t i o n t h e r e ’ s a c o n f l i c t w i t h
∗ /

i n l i n e r e s o l v e C o n f l i c t (e i d)
{

/∗
∗ C o n t e n t i o n managers w i l l e v e n t u a l l y a b o r t any enemy .
∗ The way s p i n o p e r a t e s , t h i s w i l l encompass a l l p o s s i b i l i t i e s , from w a i t i n g

154

NZSTM Promela Model

∗ f o r t h e enemy t o f i n i s h by i t s e l f , t o a c t u a l l y a b o r t i n g i t .
∗ /

abortEnemy (e i d) ;
}

/∗ ∗
∗ Loops t h r o u g h e v e r y r e a d e r i n t h e r e a d e r s l i s t , and p e r f o r m s an a c t i o n i f t h e
∗ r e a d e r i s n ’ t me on ALL t h e r e a d e r s .
∗
∗ Done i n t h i s awkward manner t o r ed uc e t h e s t a t e−space s i z e
∗ /

d e f i n e LOOP READERS(a c t i o n) \
i f \
: : (PROCESSES > 4 && p i d != 4) −> \

a c t i o n (o b j e c t s [o i d] . r e a d e r s [4]) ; \
: : e l s e ; \
f i ; \

\
i f \
: : (PROCESSES > 3 && p i d != 3) −> \

a c t i o n (o b j e c t s [o i d] . r e a d e r s [3]) ; \
: : e l s e ; \
f i ; \

\
i f \
: : (PROCESSES > 2 && p i d != 2) −> \

a c t i o n (o b j e c t s [o i d] . r e a d e r s [2]) ; \
: : e l s e ; \
f i ; \

\
i f \
: : (PROCESSES > 1 && p i d != 1) −> \

a c t i o n (o b j e c t s [o i d] . r e a d e r s [1]) ; \
: : e l s e ; \
f i ; \

\
i f \
: : (PROCESSES > 0 && p i d != 0) −> \

a c t i o n (o b j e c t s [o i d] . r e a d e r s [0]) ; \
: : e l s e ; \
f i ;

/∗ ∗
∗ Handles a c o n f l i c t w i t h t h e r e a d e r s l i s t (v i s i b l e r e a d s) .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t w i t h t h e r e a d e r s l i s t
∗ /

i n l i n e r e s o l v e R e a d e r s C o n f l i c t s (o i d)
{

/∗
∗ R e s o l v e c o n f l i c t s w i t h a l l r e a d e r s
∗ /

LOOP READERS(r e s o l v e C o n f l i c t) ;
}

/∗ ∗
∗ Models w a i t i n g f o r t h e whole r e a d e r s l i s t or b e i n g i m p a t i e n t and
∗ d e c i d i n g t o i n f l a t e i t .
∗ /

i n l i n e w a i t O r I n f l a t e R e a d e r s (o i d)
{
i f d e f BLOCKING

LOOP READERS(b l o c k A b o r t e d) ;
e l s e /∗ n o n b l o c k i n g ∗ /

i f
: : (PROCESSES > 4 && p i d != 4 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [4])) −>

i n f l a t e O b j e c t R e a d e r (o i d) ;

: : (PROCESSES > 3 && p i d != 3 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [3])) −>
i n f l a t e O b j e c t R e a d e r (o i d) ;

: : (PROCESSES > 2 && p i d != 2 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [2])) −>
i n f l a t e O b j e c t R e a d e r (o i d) ;

155

Appendix B

: : (PROCESSES > 1 && p i d != 1 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [1])) −>
i n f l a t e O b j e c t R e a d e r (o i d) ;

: : (PROCESSES > 0 && p i d != 0 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [0])) −>
i n f l a t e O b j e c t R e a d e r (o i d) ;

: : e l s e ; /∗ No i n f l a t i o n ∗ /
f i ;

e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Breaks o u t o f an o u t e r loop i f t h e r e are u n r e s p o n s i v e r e a d e r s .
∗
∗ Used when t r y i n g t o d e f l a t e an o b j e c t .
∗ /

i n l i n e b r e a k N o n r e s p o n s i v e R e a d e r s (o i d)
{

i f
: : (PROCESSES > 4 && p i d != 4 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [4])) −>

break ;

: : (PROCESSES > 3 && p i d != 3 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [3])) −>
break ;

: : (PROCESSES > 2 && p i d != 2 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [2])) −>
break ;

: : (PROCESSES > 1 && p i d != 1 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [1])) −>
break ;

: : (PROCESSES > 0 && p i d != 0 && TXABORTING(o b j e c t s [o i d] . r e a d e r s [0])) −>
break ;

: : e l s e ;
f i ;

}

/∗
∗ OldData F u n c t i o n s
∗ /

/∗ ∗
∗ T e s t s whe ther t h e r e ’ s a backup copy o f t h e da ta
∗ /

d e f i n e IS OLD (o i d) (o b j e c t s [o i d] . o l d . i d)

/∗
∗ I n f l a t e d l o c a t o r f u n c t i o n s
∗ /

/∗ ∗
∗ De−r e f e r e n c e s t h e l o c a t o r a s s o c i a t e d w i t h t h i s p a r t i c u l a r i d
∗
∗ @param l i d The l o c a t o r i d t h a t we want d e r e f e r e n c e d
∗ /

d e f i n e LOCATOR(oid , l i d) o b j e c t s [o i d] . l o c a t o r s [l i d]

/∗ ∗
∗ S e t s l i d t o t h e i d o f t h e l o c a t o r i f t h e o b j e c t i s i n f l a t e d . I f t h e o b j e c t
∗ i s n ’ t i n f l a t e d , s e t s t h e l o c a t o r i d t o an i n v a l i d v a l u e .
∗
∗ @param o i d The i d o f t h e p o s s i b l y i n f l a t e d o b j e c t
∗ @param l i d Where t o s t o r e t h e i d o f t h e l o c a t o r
∗ /

i n l i n e f i n d L o c a t o r (oid , l i d)
{

/∗ Atomic s i n c e t h e two f i e l d s are o v e r l o a d e d i n t o one f i e l d i n NZTM ∗ /
d s t e p {

i f
: : (o b j e c t s [o i d] . i s I n f l a t e d) −> l i d = o b j e c t s [o i d] . t x n ;
: : e l s e −> l i d = INVALID ;

156

NZSTM Promela Model

f i ;
}

}

/∗ ∗
∗ I n f l a t e d an o b j e c t owned by an u n r e s p o n s i v e t r a n s a c t i o n .
∗
∗ Only t o be used by a w r i t e r t o an u n r e s p o n s i v e r e a d e r t h a t wants t o i n f l a t e .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e NZObject I want t o i n f l a t e
∗ /

i n l i n e i n f l a t e O b j e c t (o i d)
{

v a l i d a t e T r a n s a c t i o n () ;

/∗ Find t h e p o s s i b l y u n r e s p o n s i v e t r a n s a c t i o n ∗ /
d s t e p {

enemyid = o b j e c t s [o i d] . t x n ;
i s I n f l a t e d = o b j e c t s [o i d] . i s I n f l a t e d ;

/∗ T h i s i s used f o r hung w r i t e r s , so t h e enemy c an no t be me ∗ /
a s s e r t (i s I n f l a t e d | | enemyid != t x i d) ;

}

/∗ Remember t h e v a l u e o f t h e o l d da ta p o i n t e r ∗ /
d s t e p {

o l d D a t a . backup = o b j e c t s [o i d] . o l d . backup ;
o l d D a t a . i d = o b j e c t s [o i d] . o l d . i d ;

} ;

/∗ I f t h e o l d da ta p o i n t e r doesn ’ t e x i s t , copy t h e in−p l a c e da ta ∗ /
i f
: : (o l d D a t a . i d == NULL) −> o l d D a t a . backup = o b j e c t s [o i d] . d a t a ;
: : e l s e ;
f i ;

/∗ Cr ea t e and i n i t i a l i z e t h e l o c a t o r ∗ /
d s t e p {

LOCATOR(oid , p i d) . o l d = o l d D a t a . backup ;
LOCATOR(oid , p i d) . new = o l d D a t a . backup ;
LOCATOR(oid , p i d) . t x n = t x i d ;
LOCATOR(oid , p i d) . a b o r t e d T x n = enemyid ;

}

/∗
∗ Check t h a t a l l t h e a s s u m p t i o n I ’ ve made s t i l l ho ld :−
∗ − There i s an u n r e s p o n s i v e t r a n s a c t i o n
∗ − The o b j e c t i s n o t i n f l a t e d
∗ − The v a l u e o f t h e o l d p o i n t e r i s t h e same as i t was b e f o r e
∗ − I am s t i l l a c t i v e
∗ /

i f
: : (! TXABORTING(enemyid) | | i s I n f l a t e d | |

o l d D a t a . i d != o b j e c t s [o i d] . o l d . i d | | !TXACTIVE(t x i d)) −>
enemyid = INVALID ; /∗ (r e t u r n f a i l) Read n o t e a t end o f f u n c t i o n ∗ /

: : e l s e −>
/∗ A t t e m p t t o i n s t a l l t h e newData l o c a t o r t o i n f l a t e t h e o b j e c t ∗ /
d s t e p {

i f
: : (o b j e c t s [o i d] . t x n == enemyid && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

o b j e c t s [o i d] . i s I n f l a t e d = t rue ;
o b j e c t s [o i d] . t x n = p i d ;
i s I n f l a t e d = t rue ;

: : e l s e ;
f i ;

}

/∗ Check i f I was s u c c e s s f u l i n i n f l a t i n g t h e o b j e c t ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

i f d e f READ VISIBLE

157

Appendix B

/∗ B e f o r e proceed in g , r e s o l v e a l l c o n f l i c t s w i t h r e a d e r s ∗ /
r e s o l v e R e a d e r s C o n f l i c t s (o i d) ;

e n d i f /∗ READ VISIBLE ∗ /
break ; /∗ Breaks o u t o f t h e open loop (i . e . r e t u r n s u c c e s s) ∗ /

: : e l s e −> enemyid = INVALID ; /∗ (i . e . r e t u r n f a i l) ∗ /
f i ;

/∗
∗ NOTE: I am o v e r l o a d i n g t h e enemyid f i e l d t o a l s o i n d i c a t e a f a i l e d
∗ i n f l a t i o n . T h i s i s done t o keep t h e s t a t e space s m a l l . In C , i t
∗ would r e t u r n e i t h e r TRUE or FALSE t o i n d i c a t e s u c c e s s or f a i l u r e .
∗ /

f i ;
} /∗ i n f l a t e O b j e c t (o i d) ∗ /

/∗ ∗
∗ I n f l a t e d an o b j e c t b e i n g v i s i b l y read by an u n r e s p o n s i v e t r a n s a c t i o n .
∗ Assumes t h a t I have a l r e a d y a c q u i r e d t h e o b j e c t e x c l u s i v e l y .
∗
∗ I can o n l y l e a v e t h i s i f I g o t a b o r t e d .
∗ Only used w i t h V i s i b l e Reads .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e NZObject I want t o i n f l a t e .
∗ /

i n l i n e i n f l a t e O b j e c t R e a d e r (o i d)
{

v a l i d a t e T r a n s a c t i o n () ;

o l d D a t a . backup = o b j e c t s [o i d] . d a t a ; /∗ A d i r e c t copy o f t h e da ta ∗ /

/∗ Cr ea t e and i n i t i a l i z e t h e l o c a t o r ∗ /
d s t e p {

/∗ S a n i t y Checks ∗ /
a s s e r t (! IS OLD (o i d)) ;
a s s e r t (o b j e c t s [o i d] . t x n == t x i d | | o b j e c t s [o i d] . i s I n f l a t e d) ;

LOCATOR(oid , p i d) . o l d = o l d D a t a . backup ;
LOCATOR(oid , p i d) . new = o l d D a t a . backup ;
LOCATOR(oid , p i d) . t x n = t x i d ;
LOCATOR(oid , p i d) . a b o r t e d T x n = NULL; /∗ Hung on a r e a d e r ∗ /

}

/∗ A t t e m p t t o i n s t a l l t h e newData l o c a t o r t o i n f l a t e t h e o b j e c t ∗ /
atomic {

i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

o b j e c t s [o i d] . i s I n f l a t e d = t rue ;
o b j e c t s [o i d] . t x n = p i d ;
i s I n f l a t e d = t rue ;

: : e l s e −> a s s e r t (TXABORTING(t x i d)) ;
f i ;

}

/∗ Check i f I was s u c c e s s f u l i n i n f l a t i n g t h e o b j e c t ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

/∗ B e f o r e proceed ing , r e s o l v e a l l c o n f l i c t s w i t h r e a d e r s ∗ /
r e s o l v e R e a d e r s C o n f l i c t s (o i d) ;
break ; /∗ Breaks o u t o f t h e open loop ∗ /

: : e l s e −> /∗ I must have been a b o r t e d ∗ /
a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

} /∗ i n f l a t e O b j e c t R e a d e r (o i d) ∗ /

/∗ ∗
∗ Opens an i n f l a t e d o b j e c t e x c l u s i v e l y (used f o r bo th read and w r i t e)
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open

158

NZSTM Promela Model

∗ /
i n l i n e i n f l a t e d O p e n E x c l u s i v e (o i d)
{
i f d e f READ VISIBLE

v a l i d a t e T r a n s a c t i o n () ;

/∗
∗ B e f o r e proceed ing , r e s o l v e a l l c o n f l i c t s w i t h r e a d e r s . T h i s i s i m p o r t a n t
∗ s i n c e t h e t r a n s a c t i o n t h a t s t a r t e d t h e i n f l a t i o n p r o c e s s migh t have n o t
∗ g o t t e n around t o do ing t h i s .
∗ /

r e s o l v e R e a d e r s C o n f l i c t s (o i d) ;
e n d i f /∗ READ VISIBLE ∗ /

do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been asked t o a b o r t ∗ /

: : e l s e −>
f i n d L o c a t o r (oid , l i d) ;

/∗ Check i f t h e o b j e c t i s i n f l a t e d ∗ /
i f
: : (l i d == INVALID) −> break ;
: : e l s e −> enemyid = LOCATOR(oid , l i d) . t x n ;
f i ;

/∗ See i f i t ’ s a l r e a d y open by me ∗ /
i f
: : (enemyid == t x i d) −> break ;
: : e l s e ;
f i ;

r e s o l v e C o n f l i c t (enemyid) ;
v a l i d a t e T r a n s a c t i o n () ;

/∗ Cr ea t e a new l o c a t o r ∗ /
d s t e p {

LOCATOR(oid , p i d) . t x n = t x i d ;
LOCATOR(oid , p i d) . a b o r t e d T x n = LOCATOR(oid , l i d) . a b o r t e d T x n ;

i f
: : TXCOMMITTED(o b j e c t s [o i d] . l o c a t o r s [l i d] . t x n) −>

LOCATOR(oid , p i d) . o l d = LOCATOR(oid , l i d) . new ;
: : e l s e −>

LOCATOR(oid , p i d) . o l d = LOCATOR(oid , l i d) . o l d ;
f i ;

LOCATOR(oid , p i d) . new = LOCATOR(oid , p i d) . o l d ;
} ;

/∗ Try t o i n s t a l l t h e new l o c a t o r ∗ /
d s t e p {

i f
: : (o b j e c t s [o i d] . t x n == l i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

o b j e c t s [o i d] . t x n = p i d ;
i s I n f l a t e d = t rue ;

: : e l s e ;
f i ;

}

/∗ I f I a c q u i r e d t h e o b j e c t , t r y t o d e f l a t e i t (s t e p 1 below) ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

d e f l a t e O b j e c t (o i d) ;
break ;

: : e l s e ;
f i ;

od ;
} /∗ i n f l a t e d O p e n E x c l u s i v e (o i d) ∗ /

/∗ ∗

159

Appendix B

∗ A t t e m p t s t o d e f l a t e an o b j e c t t h a t has been i n f l a t e d
∗
∗ 1 . A c q u i r e t h e o b j e c t t h e DSTM way .
∗
∗ 2 . Read and remember t h e v a l u e o f t h e NZObject ’ s o ldData p o i n t e r .
∗
∗ 3 . Check i f t h e t r a n s a c t i o n we ’ re w a i t i n g on t o a b o r t has f i n a l l y abor t ed , i f
∗ n o t t h e n j u s t p roceed w i t h t h e normal DSTM a c q u i s i t i o n s t u f f . Make s u r e t o
∗ check f o r r e a d e r s as w e l l .
∗
∗ (I f V i s i b l e Reads) a l s o check t h a t a l l t h e t r a n s a c t i o n s i n t h e read l i s t are
∗ r e s p o n s i v e , i f n o t t h e n j u s t p roceed w i t h t h e normal DSTM a c q u i s i t i o n s t u f f .
∗
∗ 4 . Check t h a t t h e c u r r e n t t r a n s a c t i o n i s s t i l l A c t i v e (meaning t h a t i t s t i l l
∗ has t h e o b j e c t a c q u i r e d) . I f not , t h e n proceed w i t h t h e normal I ’m a b o r t e d
∗ s t u f f .
∗
∗ 5 . CAS t h e NZObject ’ s o ldData p o i n t e r t o p o i n t t o t h e r e a l c u r r e n t da ta . I f
∗ i t f a i l s a b o r t .
∗
∗ 6 . CAS t h e NZObject ’ s t r a n s a c t i o n p o i n t e r t o p o i n t t o my t r a n s a c t i o n .
∗ I f t h e CAS was s u c c e s s f u l , t h e n copy t h e o l d da ta back t o t h e da ta .
∗ /

i n l i n e d e f l a t e O b j e c t (o i d)
{

do
: : t rue −> /∗ I n f i n i t e Loop ∗ /

enemyid = LOCATOR(oid , p i d) . a b o r t e d T x n ;

/∗ 2 ∗ /

/∗ Atomic s i n c e i n C i t ’ s one p o i n t e r f i e l d ∗ /
d s t e p {

o l d D a t a . i d = o b j e c t s [o i d] . o l d . i d ;
o l d D a t a . backup = o b j e c t s [o i d] . o l d . backup ;

}

/∗ 3 ∗ /
i f d e f READ VISIBLE

i f
: : TXABORTING(enemyid) −> break ;
: : e l s e −> b r e a k N o n r e s p o n s i v e R e a d e r s (o i d) ;
f i ;

e l s e /∗ E x c l u s i v e Reads ∗ /
i f
: : TXABORTING(enemyid) −> break ;
: : e l s e ;
f i ;

e n d i f /∗ READ VISIBLE ∗ /

/∗ 4 ∗ /
v a l i d a t e T r a n s a c t i o n () ;

/∗ 5 ∗ /
atomic {

a s s e r t (enemyid == NULL | | TXABORTED(enemyid)) ;

i f
: : (o b j e c t s [o i d] . o l d . i d == o l d D a t a . i d) −>

o b j e c t s [o i d] . o l d . i d = t x i d ;
o b j e c t s [o i d] . o l d . backup = LOCATOR(oid , p i d) . new ;

: : e l s e −>
/∗
∗ An u n r e s p o n s i v e t r a n s a c t i o n t h a t ’ s r e s p o n s i v e aga in migh t
∗ wake up and d e c i d e t o t a k e a backup copy . Doesn ’ t
∗ n e c e s s a r i l y mean I was a b o r t e d .
∗ /

break ;
f i ;

}

160

NZSTM Promela Model

/∗ 6 ∗ /
atomic {

i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

o b j e c t s [o i d] . t x n = t x i d ;
o b j e c t s [o i d] . i s I n f l a t e d = f a l s e ;
i s I n f l a t e d = f a l s e ;

: : e l s e−>
a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

o b j e c t s [o i d] . d a t a = o b j e c t s [o i d] . o l d . backup ;
break ;

od ;
} /∗ d e f l a t e O b j e c t (o i d) ∗ /

/∗
∗ NZObject f u n c t i o n s
∗ /

/∗ D e f i n e d open ing macros f o r d i f f e r e n t k i n d o f r e a d s ∗ /

/∗ Shadow DSTM2 ∗ /
i f d e f SHADOW

d e f i n e OPEN WRITE(o i d) openWriteShadow (o i d)
d e f i n e OPEN READ(o i d) openReadShadow (o i d)

e l s e /∗ NZSTM ∗ /
i f d e f READ VISIBLE
d e f i n e OPEN WRITE(o i d) o p e n W r i t e V i s i b l e (o i d)
d e f i n e OPEN READ(o i d) o p e n R e a d V i s i b l e (o i d)
e l s e /∗ E x c l u s i v e Reads ∗ /
d e f i n e OPEN WRITE(o i d) o p e n W r i t e E x c l u s i v e (o i d)
d e f i n e OPEN READ(o i d) o pen Re adE xc lu s iv e (o i d)
e n d i f /∗ READ VISIBLE ∗ /
e n d i f /∗ SHADOW ∗ /
/∗ ∗
∗ C r e a t e s a backup copy o f t h e da ta and p o i n t s t h e o l d p o i n t e r t o t h a t copy .
∗ /

i n l i n e c l o n e D a t a (o i d)
{

/∗ Done a t o m i c a l l y s i n c e s e t t i n g a p o i n t e r i n C appears t o be a t om ic ∗ /

d s t e p {
o b j e c t s [o i d] . o l d . i d = t x i d ;
o b j e c t s [o i d] . o l d . backup = o b j e c t s [o i d] . d a t a ;

}
}

/∗ ∗
∗ R e s t o r e s t h e da ta p o i n t e d t o by t h e o l d p o i n t e r . (as i t was t a k e n f o r backup)
∗ /

i n l i n e r e s t o r e O l d D a t a (o i d)
{

/∗ Shou ld n o t be a t om ic s i n c e i t doesn ’ t appear t h a t way i n C ∗ /

o b j e c t s [o i d] . d a t a = o b j e c t s [o i d] . o l d . backup ;
o b j e c t s [o i d] . o l d . i d = NULL;

}

/∗ ∗
∗ A t o m i c a l l y changes t h e t r a n s a c t i o n p o i n t e r t o p o i n t t o my t r a n s a c t i o n , i f
∗ t h e o b j e c t i s a c q u i r e d by who I t h i n k i t i s .
∗ /

i n l i n e c a s T r a n s a c t i o n (oid , e i d)
{

d s t e p {
i f
: : (o b j e c t s [o i d] . t x n == e i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

161

Appendix B

o b j e c t s [o i d] . t x n = t x i d ;
i s I n f l a t e d = f a l s e ;

: : e l s e ;
f i

}
}

/∗ ∗
∗ A c q u i r e s t h e o b j e c t e x c l u s i v e l y (as i f u s i n g CAS)
∗
∗ C l e a r s u n n e c e s s a r y o l d da ta p o i n t e r s as w e l l . . .
∗ /

i n l i n e a c q u i r e E x c l u s i v e (oid , e i d)
{

/∗
∗ Nonb lock ing
∗ Problem : I a c q u i r e t h e o b j e c t , which b e l o n g e d t o a commi t t ed txn ,
∗ and o l d p o i n t s t o s t a l e da ta . B e f o r e I c l e a r t h e o l d p o i n t e r , I
∗ g e t a b o r t e d . The t x n t h a t a b o r t e d me now t h i n k s t h a t t h e o l d p o i n t e r
∗ a c t u a l l y p o i n t s t o t h e r e a l da ta r a t h e r than t h e s t a t e one .
∗
∗ P o s s i b l e s o l u t i o n : b e f o r e a c q u i r i n g t h e o b j e c t , c l e a r t h e o l d da ta
∗ p o i n t e r u s i n g CAS .
∗
∗ Doesn ’ t a c q u i r e t h e o b j e c t i f c l e a r i n g t h e o l d p o i n t e r f a i l s .
∗ /

/∗ Atomic s i n c e i n C i t ’ s one p o i n t e r f i e l d ∗ /
d s t e p {

o l d D a t a . i d = o b j e c t s [o i d] . o l d . i d ;
o l d D a t a . backup = o b j e c t s [o i d] . o l d . backup ;

}

i f
: : (o l d D a t a . i d && o b j e c t s [o i d] . t x n == enemyid && TXCOMMITTED(enemyid)

&& ! o b j e c t s [o i d] . i s I n f l a t e d) −>
atomic {

i f
: : (o b j e c t s [o i d] . o l d . i d == o l d D a t a . i d) −>

o b j e c t s [o i d] . o l d . i d = NULL;
o b j e c t s [o i d] . o l d . backup = INVALID ;

: : e l s e ;
f i ;

}

i f
: : (! o b j e c t s [o i d] . o l d . i d) −> c a s T r a n s a c t i o n (oid , e i d) ;
: : e l s e ;
f i ;

: : e l s e −> c a s T r a n s a c t i o n (oid , e i d) ;
f i ;

}

/∗ ∗
∗ R e l e a s e s t h e o b j e c t from my t r a n s a c t i o n (a t o m i c a l l y , i f I have i t)
∗ /

i n l i n e r e l e a s e O b j e c t (o i d)
{

d s t e p {
i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

o b j e c t s [o i d] . t x n = NULL;
: : e l s e ;
f i

}
}

/∗ ∗
∗ Models w a i t i n g f o r an enemy t h e n i n f l a t i n g t h e o b j e c t i f i t ’ s n o t r e s p o n s i v e .
∗

162

NZSTM Promela Model

∗ @param e i d The enemy t r a n s a c t i o n I ’m w a i t i n g t o a b o r t .
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t t h a t migh t i n f l a t e
∗ /

i n l i n e w a i t O r I n f l a t e (e id , o i d)
{
i f d e f BLOCKING

/∗
∗ Wait u n t i l t h e enemy has f i n i s h e d (or I have been a b o r t e d)
∗ /

b l o c k A b o r t e d (e i d) ;
e l s e /∗ Nonb lock ing ∗ /

/∗
∗ I f t h e enemy i s n o t r e s p o n s i v e t h e n i n f l a t e . T h i s models bo th w a i t i n g f o r
∗ t h e o b j e c t t o a b o r t and b e i n g i m p a t i e n t s i n c e s p i n t r i e s a l l p o s s i b l e
∗ i n t e r l e a v i n g o f i n s t r u c t i o n s .
∗ /

i f
: : TXABORTING(e i d) −> i n f l a t e O b j e c t (o i d) ;
: : e l s e ;
f i ;

e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Opens t h e o b j e c t e x c l u s i v e l y f o r w r i t i n g . Goes t o Labe l a b o r t e d i f i t f a i l s .
∗
∗ Doesn ’ t check f o r r e a d e r s i n t h e r e a d e r s l i s t
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e o p e n W r i t e E x c l u s i v e (o i d)
{

i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

v a l i d a t e T r a n s a c t i o n () ;
i s I n f l a t e d = f a l s e ;

/∗
∗ Check where t h e r e ’ s a backup copy o f t h e da ta or not ,
∗ which would be t h e case i f I had t h e o b j e c t open f o r read .
∗ /

i f
: : (! IS OLD (o i d)) −> c l o n e D a t a (o i d) ; /∗ was open f o r read − upgraded ∗ /
: : e l s e ; /∗ A l r e a d y open f o r w r i t e ∗ /
f i ;

: : e l s e−>
do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been asked t o a b o r t ∗ /

: : e l s e −>
d s t e p {

enemyid = o b j e c t s [o i d] . t x n ;
i s I n f l a t e d = o b j e c t s [o i d] . i s I n f l a t e d ;

}

i f
i f n d e f BLOCKING /∗ n o n b l o c k i n g ∗ /

: : i s I n f l a t e d −>
i n f l a t e d O p e n E x c l u s i v e (o i d) ;

/∗ See i f i n f l a t i o n or d e f l a t i o n were s u c c e s s f u l ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

break ;

: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>
break ;

: : e l s e ;
f i ;

e n d i f /∗ BLOCKING ∗ /
: : e l s e −> /∗ Not i n f l a t e d ∗ /

163

Appendix B

r e s o l v e C o n f l i c t (enemyid) ;
w a i t O r I n f l a t e (enemyid , o i d) ;
v a l i d a t e T r a n s a c t i o n () ;

/∗ Now t r y t o a c q u i r e t h e o b j e c t ∗ /
a c q u i r e E x c l u s i v e (oid , enemyid) ;

/∗ Check i f I s u c c e s s f u l l y a c q u i r e d t h e o b j e c t ∗ /
i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

/∗ Cleanup i f n e c e s s a r y ∗ /
i f
: : (TXABORTED(enemyid) && IS OLD (o i d)) −>

r e s t o r e O l d D a t a (o i d) ;

: : e l s e ;
f i ;

/∗ Take a backup copy o f t h e da ta ∗ /
c l o n e D a t a (o i d) ;

/∗ O b j e c t a c q u i r e d (r e t u r n TRUE) ∗ /
break ;

: : e l s e ; /∗ F a i l e d t o a c q u i r e o b j e c t . . . ∗ /
f i ;

f i ;
od ;

f i ;
} /∗ o p e n W r i t e E x c l u s i v e ∗ /

/∗ ∗
∗ Opens t h e o b j e c t e x c l u s i v e l y f o r r e a d i n g . Goes t o Labe l a b o r t e d i f i t f a i l s .
∗
∗ Doesn ’ t backup any o f t h e o l d da ta
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e op en Rea dE xc l u s ive (o i d)
{

i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

v a l i d a t e T r a n s a c t i o n () ;
i s I n f l a t e d = f a l s e ;

: : e l s e −>
do
: : TXABORTING(t x i d) −> goto a b o r t e d ;

: : e l s e −>
d s t e p {

enemyid = o b j e c t s [o i d] . t x n ;
i s I n f l a t e d = o b j e c t s [o i d] . i s I n f l a t e d ;

}

i f
i f n d e f BLOCKING /∗ n o n b l o c k i n g ∗ /

: : i s I n f l a t e d −>
i n f l a t e d O p e n E x c l u s i v e (o i d) ;

/∗ See i f i n f l a t i o n or d e f l a t i o n were s u c c e s s f u l ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

break ;

: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>
break ;

: : e l s e ;
f i ;

e n d i f /∗ BLOCKING ∗ /
: : e l s e −> /∗ Not i n f l a t e d ∗ /

r e s o l v e C o n f l i c t (enemyid) ;

164

NZSTM Promela Model

w a i t O r I n f l a t e (enemyid , o i d) ;
v a l i d a t e T r a n s a c t i o n () ;

/∗ Now t r y t o a c q u i r e t h e o b j e c t ∗ /
a c q u i r e E x c l u s i v e (oid , enemyid) ;

/∗ Check i f I a c q u i r e d t h e o b j e c t ∗ /
i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

/∗ Cleanup i f n e c e s s a r y ∗ /
i f
: : (TXABORTED(enemyid) && IS OLD (o i d)) −>

r e s t o r e O l d D a t a (o i d) ;

: : e l s e ;
f i ;

/∗ O b j e c t a c q u i r e d (r e t u r n TRUE) ∗ /
break ;

: : e l s e ; /∗ F a i l e d t o a c q u i r e o b j e c t . . . ∗ /
f i ;

f i ;
od ;

f i ;
} /∗ o p e n R e a d E x c l u s i v e ∗ /

/∗ ∗
∗ Opens t h e o b j e c t e x c l u s i v e l y f o r w r i t i n g . Goes t o Labe l a b o r t e d i f i t f a i l s .
∗
∗ Checks f o r v i s i b l e r e a d s .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e o p e n W r i t e V i s i b l e (o i d)
{

i f
/∗ See i f I a l r e a d y have t h e o b j e c t open f o r w r i t i n g ∗ /
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

v a l i d a t e T r a n s a c t i o n () ;
i s I n f l a t e d = f a l s e ;

: : e l s e −>
do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been asked t o a b o r t ∗ /

: : e l s e −>
d s t e p {

enemyid = o b j e c t s [o i d] . t x n ;
i s I n f l a t e d = o b j e c t s [o i d] . i s I n f l a t e d ;

}

i f
i f n d e f BLOCKING /∗ n o n b l o c k i n g ∗ /

: : i s I n f l a t e d −>
i n f l a t e d O p e n E x c l u s i v e (o i d) ;

/∗ See i f i n f l a t i o n or d e f l a t i o n were s u c c e s s f u l ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

break ;

: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>
break ;

: : e l s e ;
f i ;

e n d i f /∗ BLOCKING ∗ /
: : e l s e −> /∗ Not i n f l a t e d ∗ /

r e s o l v e C o n f l i c t (enemyid) ;
w a i t O r I n f l a t e (enemyid , o i d) ;
v a l i d a t e T r a n s a c t i o n () ;

165

Appendix B

/∗ Now t r y t o a c q u i r e t h e o b j e c t ∗ /
a c q u i r e E x c l u s i v e (oid , enemyid) ;

/∗ Check i f I s u c c e s s f u l l y a c q u i r e d t h e o b j e c t ∗ /
i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

/∗ Cleanup i f n e c e s s a r y (s a f e b e f o r e c h e c k i n g r e a d s) ∗ /
i f
: : (TXABORTED(enemyid) && IS OLD (o i d)) −>

r e s t o r e O l d D a t a (o i d) ;

: : e l s e ;
f i ;

r e s o l v e R e a d e r s C o n f l i c t s (o i d) ;
w a i t O r I n f l a t e R e a d e r s (o i d) ;
v a l i d a t e T r a n s a c t i o n () ;

/∗ Take a backup copy o f t h e da ta ∗ /
c l o n e D a t a (o i d) ;

/∗ O b j e c t a c q u i r e d ∗ /
break ;

: : e l s e ; /∗ F a i l e d t o a c q u i r e o b j e c t , t r y aga in . . . ∗ /
f i ;

f i ;
od ;

f i ;
} /∗ o p e n W r i t e V i s i b l e ∗ /

/∗ ∗
∗ Opens t h e o b j e c t f o r r e a d i n g v i s i b l y . Goes t o Labe l a b o r t e d i f i t f a i l s .
∗
∗ Uses v i s i b l e r e a d s w i t h p r e d e f i n e d s l o t s per read .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e o p e n R e a d V i s i b l e (o i d)
{

i f
/∗ Check i f t h e o b j e c t i s a l r e a d y open f o r w r i t e or read ∗ /
: : ((o b j e c t s [o i d] . t x n == t x i d | | o b j e c t s [o i d] . r e a d e r s [p i d] == t x i d) &&

! o b j e c t s [o i d] . i s I n f l a t e d) −>
v a l i d a t e T r a n s a c t i o n () ;
i s I n f l a t e d = f a l s e ;

: : e l s e −>
/∗
∗ Add t h i s t r a n s a c t i o n t o t h e r e a d e r s l i s t .
∗ Must be done b e f o r e c h e c k i n g w r i t e r s t o e n s u r e t h a t r e a d e r s
∗ are v i s i b l e
∗ /

o b j e c t s [o i d] . r e a d e r s [p i d] = t x i d ;

do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been asked t o a b o r t ∗ /

: : e l s e −>
d s t e p {

enemyid = o b j e c t s [o i d] . t x n ;
i s I n f l a t e d = o b j e c t s [o i d] . i s I n f l a t e d ;

}

i f
i f n d e f BLOCKING /∗ n o n b l o c k i n g ∗ /

: : i s I n f l a t e d −>
i n f l a t e d O p e n E x c l u s i v e (o i d) ;

/∗ See i f i n f l a t i o n or d e f l a t i o n were s u c c e s s f u l ∗ /
i f
: : (o b j e c t s [o i d] . t x n == p i d && o b j e c t s [o i d] . i s I n f l a t e d) −>

166

NZSTM Promela Model

break ;

: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>
break ;

: : e l s e ;
f i ;

e n d i f /∗ BLOCKING ∗ /
: : e l s e −> /∗ Not i n f l a t e d ∗ /

r e s o l v e C o n f l i c t (enemyid) ;
w a i t O r I n f l a t e (enemyid , o i d) ;
v a l i d a t e T r a n s a c t i o n () ;

/∗ Cleanup i f n e c e s s a r y ∗ /

i f
: : enemyid == INVALID ; /∗ I n f l a t i o n f a i l e d , t r y t h e loop aga in ∗ /

/∗ I f I need t o c leanup , a c q u i r e , c l e a n t h e n r e l e a s e t o do so ∗ /
: : (enemyid != INVALID && TXABORTED(enemyid) && IS OLD (o i d)) −>

c a s T r a n s a c t i o n (oid , enemyid) ;

i f
: : (o b j e c t s [o i d] . t x n == t x i d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

r e s t o r e O l d D a t a (o i d) ;
r e l e a s e O b j e c t (o i d) ;
break ; /∗ O b j e c t a c q u i r e d f o r read ∗ /

: : e l s e ; /∗ F a i l e d t o a c q u i r e , redo loop ∗ /
f i ;

: : e l s e −> break ; /∗ O b j e c t a c q u i r e d f o r read ∗ /
f i ;

f i ;
od ;

f i ;
} /∗ o p e n R e a d V i s i b l e ∗ /

/∗ ∗
∗ A c q u i r e t h e shadow o b j e c t ’ s l o c k .
∗
∗ F a i l s t o l o c k i f I g e t a b o r t e d b e f o r e a c q u i r i n g t h e l o c k
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o l o c k
∗ /

i n l i n e lockShadow (o i d)
{

do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been a b o r t e d ∗ /

: : e l s e −>
(! o b j e c t s [o i d] . l o c k | | !TXACTIVE(t x i d)) ;

atomic {
i f
: : (! o b j e c t s [o i d] . l o c k && TXACTIVE(t x i d)) −>

o b j e c t s [o i d] . l o c k = t rue ;
break ;

: : e l s e ;
f i ;

}
od ;

}

/∗ ∗
∗ R e l e a s e t h e shadow o b j e c t ’ s l o c k .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o l o c k
∗ /

i n l i n e unlockShadow (o i d)

167

Appendix B

{
d s t e p {

a s s e r t (o b j e c t s [o i d] . l o c k) ;
o b j e c t s [o i d] . l o c k = f a l s e ;

}
}

/∗ ∗
∗ Takes a backup copy o f t h e da ta in−p l a c e t o t h e shadow f i e l d
∗ /

i n l i n e backupShadow (o i d)
{

d s t e p {
a s s e r t (o b j e c t s [o i d] . l o c k) ;
o b j e c t s [o i d] . backup = o b j e c t s [o i d] . d a t a ;

}
}

/∗ ∗
∗ R e s t o r e s backup copy o f t h e da ta in−p l a c e from t h e shadow f i e l d
∗ /

i n l i n e r e s t o r e S h a d o w (o i d)
{

d s t e p {
a s s e r t (o b j e c t s [o i d] . l o c k) ;
o b j e c t s [o i d] . d a t a = o b j e c t s [o i d] . backup ;

}
}

/∗ ∗
∗ Opens t h e o b j e c t f o r w r i t i n g u s i n g DSTM2 Shadow .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e openWriteShadow (o i d)
{

i f
/∗ See i f I a l r e a d y have t h e o b j e c t open f o r w r i t i n g ∗ /
: : (o b j e c t s [o i d] . t x n == t x i d) −>

v a l i d a t e T r a n s a c t i o n () ;

: : e l s e −>
do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been a b o r t e d ∗ /

: : e l s e −>
enemyid = o b j e c t s [o i d] . t x n ;
r e s o l v e C o n f l i c t (enemyid) ;

v a l i d a t e T r a n s a c t i o n () ;

/∗ Now t r y t o a c q u i r e t h e o b j e c t ∗ /
lockShadow (o i d) ;

/∗ Check t h a t t h e enemy i s s t i l l who I t h i n k i t i s ∗ /
i f
: : (o b j e c t s [o i d] . t x n == enemyid) −>

/∗ Claim ownersh ip o f t h e o b j e c t ∗ /
o b j e c t s [o i d] . t x n = t x i d ;

/∗ See i f we need t o c leanup , or j u s t backup ∗ /
i f
: : !TXCOMMITTED(enemyid) −>

r e s t o r e S h a d o w (o i d) ;

: : e l s e −>
backupShadow (o i d) ;

f i ;

: : e l s e ;
f i ;

/∗ R e l e a s e t h e o b j e c t l o c k ∗ /

168

NZSTM Promela Model

unlockShadow (o i d) ;

/∗
∗ I f I a c q u i r e d t h e o b j e c t f o r w r i t e s u c c e s s f u l l y , d e a l w i t h p o t e n t i a l
∗ r e a d e r s t h e n break o u t o f t h e loop .
∗
∗ Otherwise , redo t h e loop !
∗ /

i f
: : o b j e c t s [o i d] . t x n == t x i d −>

r e s o l v e R e a d e r s C o n f l i c t s (o i d) ;
break ;

: : e l s e ; /∗ Someone e l s e a c q u i r e d i t ; redo ∗ /
f i ;

od ;
f i ;

} /∗ openWri teShadow ∗ /

/∗ ∗
∗ Opens t h e o b j e c t f o r r e a d i n g u s i n g DSTM2 Shadow .
∗
∗ @param o i d The ’ p o i n t e r ’ t o t h e o b j e c t I want t o open
∗ /

i n l i n e openReadShadow (o i d)
{

i f
/∗ Check i f t h e o b j e c t i s a l r e a d y open f o r w r i t e or read ∗ /
: : (o b j e c t s [o i d] . t x n == t x i d | | o b j e c t s [o i d] . r e a d e r s [p i d] == t x i d) −>

v a l i d a t e T r a n s a c t i o n () ;

: : e l s e −>
/∗
∗ Add t h i s t r a n s a c t i o n t o t h e r e a d e r s l i s t .
∗ Must be done b e f o r e c h e c k i n g w r i t e r s t o e n s u r e t h a t r e a d e r s
∗ are v i s i b l e
∗ /

o b j e c t s [o i d] . r e a d e r s [p i d] = t x i d ;

do
: : TXABORTING(t x i d) −> goto a b o r t e d ; /∗ been asked t o a b o r t ∗ /

: : e l s e −>
enemyid = o b j e c t s [o i d] . t x n ;
r e s o l v e C o n f l i c t (enemyid) ;

v a l i d a t e T r a n s a c t i o n () ;

/∗ See i f we need t o c l e a n u p a f t e r an a b o r t e d enemy ∗ /
i f
: : !TXCOMMITTED(enemyid) −>

lockShadow (o i d) ;

i f
: : (o b j e c t s [o i d] . t x n == enemyid) −>

a s s e r t (!TXCOMMITTED(enemyid)) ;
r e s t o r e S h a d o w (o i d) ;
o b j e c t s [o i d] . t x n = NULL;
unlockShadow (o i d) ;
break ;

: : e l s e −>
unlockShadow (o i d) ;

f i ;

: : e l s e −>
break ;

f i ;
od ;

f i ;
} /∗ openReadShadow ∗ /

/∗ ∗

169

Appendix B

∗ Finds t h e c u r r e n t da ta v a l u e o f t h e o b j e c t and r e t u r n s i t i n v a l u e .
∗
∗ Assumes t h e o b j e c t i s open f o r read (or w r i t e) ! Doesn ’ t v a l i d a t e t h a t .
∗ /

i n l i n e g e t V a l u e (oid , v a l u e)
{

/∗ DSTM2 − Shadow ∗ /
i f d e f SHADOW

v a l u e = o b j e c t s [o i d] . d a t a ;
v a l i d a t e T r a n s a c t i o n () ;

e n d i f /∗ SHADOW ∗ /

/∗ NZSTM ∗ /
i f n d e f SHADOW
i f d e f BLOCKING

v a l u e = o b j e c t s [o i d] . d a t a ;
e l s e /∗ n o n b l o c k i n g ∗ /

i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (oid , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

v a l u e = LOCATOR(oid , p i d) . new ;

: : e l s e−>
v a l u e = o b j e c t s [o i d] . d a t a ;

f i ;

v a l i d a t e T r a n s a c t i o n () ;
e n d i f /∗ BLOCKING ∗ /
e n d i f /∗ n o t SHADOW ∗ /
}

/∗ ∗
∗ S e t s t h e c u r r e n t da ta v a l u e o f t h e o b j e c t t o v a l u e .
∗
∗ Assumes t h e o b j e c t i s open f o r w r i t e ! Doesn ’ t v a l i d a t e t h a t .
∗ /

i n l i n e s e t V a l u e (oid , v a l u e)
{

/∗ DSTM2 − Shadow ∗ /
i f d e f SHADOW

lockShadow (o i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . backup) ;
o b j e c t s [o i d] . d a t a = v a l u e ;
unlockShadow (o i d) ;

e n d i f /∗ SHADOW ∗ /

/∗ NZSTM ∗ /
i f n d e f SHADOW
i f d e f i n e d (BLOCKING) && ! d e f i n e d (SCSS)

o b j e c t s [o i d] . d a t a = v a l u e ;
e l i f d e f i n e d (BLOCKING) && d e f i n e d (SCSS)

atomic {
i f
: : TXACTIVE(t x i d) −> o b j e c t s [o i d] . d a t a = v a l u e ;
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

e l s e /∗ n o n b l o c k i n g ∗ /
i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (oid , l i d) ;

i f

170

NZSTM Promela Model

: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

LOCATOR(oid , p i d) . new = v a l u e ;

: : e l s e−>
o b j e c t s [o i d] . d a t a = v a l u e ;

f i ;
e n d i f /∗ BLOCKING ∗ /
e n d i f /∗ n o t SHADOW ∗ /
}

/∗
∗ ===
∗ S a n i t y Checks and A s s e r t i o n s
∗ ===
∗ /

/∗ ∗
∗ Per forms s a n i t y c h e c k s r e l a t e d t o t h e o b j e c t b e i n g open f o r w r i t e .
∗
∗ Run b e f o r e t h e da ta i s m o d i f i e d .
∗ /

i n l i n e a s s e r t O p e n W r i t e (o i d)
{
i f d e f BLOCKING

d s t e p {
a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;
a s s e r t (o b j e c t s [o i d] . t x n == t x i d) ;
a s s e r t (o b j e c t s [o i d] . i s I n f l a t e d == f a l s e) ;
a s s e r t (o b j e c t s [o i d] . o l d . i d == t x i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . o l d . backup) ;

}
e l s e /∗ n o n b l o c k i n g ∗ /

d s t e p {
a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;

i f
/∗ Not i n f l a t e d and I know i t ∗ /
: : (! i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (o b j e c t s [o i d] . t x n == t x i d) ;
a s s e r t (o b j e c t s [o i d] . o l d . i d == t x i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . o l d . backup) ;

/∗ I t h i n k i t ’ s n o t i n f l a t e d b u t i t i s i n f l a t e d => I was a b o r t e d ∗ /
: : (! i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (TXABORTING(t x i d)) ;
a s s e r t (o b j e c t s [o i d] . o l d . i d == t x i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . o l d . backup) ;

/∗ I t h i n k i t ’ s i n f l a t e d b u t i t ’ s n o t => I was a b o r t e d ∗ /
: : (i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (TXABORTING(t x i d)) ;
a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

/∗ I t h i n k i t ’ s i n f l a t e d and i t i s ∗ /
: : (i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

f i ;
}

e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Per forms s a n i t y c h e c k s r e l a t e d t o t h e o b j e c t b e i n g open f o r read .
∗ /

i n l i n e a s s e r t O p e n R e a d (o i d)
{

171

Appendix B

i f d e f READ VISIBLE
i f d e f BLOCKING

/∗ v i s i b l e b l o c k i n g ∗ /
d s t e p {

a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;

i f
/∗ A c t u a l l y open f o r w r i t e ∗ /
: : (o b j e c t s [o i d] . t x n == t x i d) −>

a s s e r t (o b j e c t s [o i d] . i s I n f l a t e d == f a l s e) ;
a s s e r t (o b j e c t s [o i d] . o l d . i d == t x i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . o l d . backup) ;

: : e l s e −>
a s s e r t (o b j e c t s [o i d] . r e a d e r s [p i d] == t x i d) ;

f i ;
}

e l s e /∗ n o n b l o c k i n g ∗ /
/∗ v i s i b l e n o n b l o c k i n g ∗ /
d s t e p {

a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;

i f
/∗ Not i n f l a t e d and I know i t ∗ /
: : (! i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

i f
/∗ A c t u a l l y open f o r w r i t e ∗ /
: : (o b j e c t s [o i d] . t x n == t x i d) −>

a s s e r t (o b j e c t s [o i d] . o l d . i d == t x i d) ;
a s s e r t (o b j e c t s [o i d] . d a t a == o b j e c t s [o i d] . o l d . backup) ;

: : e l s e −>
a s s e r t (o b j e c t s [o i d] . r e a d e r s [p i d] == t x i d) ;

f i ;

/∗ I t h i n k i t ’ s n o t i n f l a t e d b u t i t i s i n f l a t e d ∗ /
: : (! i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>

sk ip ; /∗ Many d i f f e r e n t t h i n g s c o u l d have happened ∗ /

/∗ I t h i n k i t ’ s i n f l a t e d b u t i t ’ s n o t => I was a b o r t e d ∗ /
: : (i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (TXABORTING(t x i d)) ;
a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

/∗ I t h i n k i t ’ s i n f l a t e d and i t i s ∗ /
: : (i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

f i ;
}

e n d i f /∗ BLOCKING ∗ /

e l s e /∗ e x c l u s i v e r e a d s ∗ /

i f d e f BLOCKING
/∗ e x c l u s i v e b l o c k i n g ∗ /
d s t e p {

a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;
a s s e r t (o b j e c t s [o i d] . t x n == t x i d) ;
a s s e r t (o b j e c t s [o i d] . i s I n f l a t e d == f a l s e) ;

}
e l s e /∗ n o n b l o c k i n g ∗ /

/∗ e x c l u s i v e n o n b l o c k i n g ∗ /
d s t e p {

a s s e r t (TXACTIVE(t x i d) | | TXABORTING(t x i d)) ;

i f
/∗ Not i n f l a t e d and I know i t ∗ /
: : (! i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (o b j e c t s [o i d] . t x n == t x i d) ;

/∗ I t h i n k i t ’ s n o t i n f l a t e d b u t i t i s i n f l a t e d => I was a b o r t e d ∗ /

172

NZSTM Promela Model

: : (! i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>
a s s e r t (TXABORTING(t x i d)) ;

/∗ I t h i n k i t ’ s i n f l a t e d b u t i t ’ s n o t => I was a b o r t e d ∗ /
: : (i s I n f l a t e d && ! o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (TXABORTING(t x i d)) ;
a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

/∗ I t h i n k i t ’ s i n f l a t e d and i t i s ∗ /
: : (i s I n f l a t e d && o b j e c t s [o i d] . i s I n f l a t e d) −>

a s s e r t (LOCATOR(oid , p i d) . t x n == t x i d) ;
a s s e r t (LOCATOR(oid , p i d) . o l d == LOCATOR(oid , p i d) . new) ;

f i ;
}

e n d i f /∗ BLOCKING ∗ /

e n d i f /∗ READ VISIBLE ∗ /
}

/∗
∗ ===
∗ T e s t s
∗ ===
∗ /

/∗
∗ I my C code I would be u s i n g f u n c t i o n s / macros s i m i l a r t o g e t V a l u e / s e t V a l u e
∗ as d e f i n e d above . However , t o keep t h e s t a t e space as s m a l l as p o s s i b l e I
∗ have t o r e s o r t t o t h e u g l y code below .
∗
∗ An example o f p r op er g e t V a l u e and s e t V a l u e usage can be found below though i n
∗ addAround
∗ /

/∗ ∗
∗ I n c r e m e n t s and d e c r e m e n t s t h e same o b j e c t w h i l e p e r f o r m i n g s a n i t y c h e c k s .
∗ /

i n l i n e i n c D e c O b j e c t (o i d)
{

OPEN WRITE(o i d) ;
a s s e r t O p e n W r i t e (o i d) ;

i f d e f i n e d (BLOCKING) && ! d e f i n e d (SCSS)
o b j e c t s [o i d] . d a t a ++;

a s s e r t (o b j e c t s [o i d] . d a t a == 1 + INITV) ;

o b j e c t s [o i d] . da t a−−;
e l i f d e f i n e d (BLOCKING) && d e f i n e d (SCSS)

atomic {
i f
: : TXACTIVE(t x i d) −> o b j e c t s [o i d] . d a t a ++;
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

a s s e r t (o b j e c t s [o i d] . d a t a == 1 + INITV) ;

atomic {
i f
: : TXACTIVE(t x i d) −> o b j e c t s [o i d] . da t a−−;
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

e l s e /∗ n o n b l o c k i n g ∗ /
i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (oid , l i d) ;

173

Appendix B

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

LOCATOR(oid , p i d) . new ++;
a s s e r t (LOCATOR(oid , p i d) . new == 1 + INITV) ;
LOCATOR(oid , p i d) . new−−;

: : e l s e−>
o b j e c t s [o i d] . d a t a ++;
a s s e r t (o b j e c t s [o i d] . d a t a == 1 + INITV) ;
o b j e c t s [o i d] . da t a−−;

f i ;
e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Reads t h e da ta o f an o b j e c t t h a t i s e x p e c t e d t o be 0 .
∗ /

i n l i n e r e a d Z e r o O b j e c t (o i d)
{

/∗
∗ a s s e r t (o b j e c t s [o i d] . da ta == INITV) ;
∗ /

OPEN READ(o i d) ;
a s s e r t O p e n R e a d (o i d) ;

i f d e f BLOCKING
a s s e r t (o b j e c t s [o i d] . d a t a == INITV) ;

e l s e /∗ n o n b l o c k i n g ∗ /
i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (oid , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

atomic {
a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

}
f i ;

a s s e r t (LOCATOR(oid , p i d) . new == INITV) ;

: : e l s e−>
a s s e r t (o b j e c t s [o i d] . d a t a == INITV) ;

f i ;
e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Takes from o1 and d e p o s i t s i n t o o2 t h e amount i n v a l
∗ /

i n l i n e t r a n s f e r A m o u n t (o1 , o2 , v a l)
{

/∗
∗ o b j e c t s [o1] . da ta −= v a l ;
∗ o b j e c t s [o2] . da ta += v a l ;
∗ a s s e r t (o b j e c t s [o1] . da ta + o b j e c t s [o2] . da ta == 2 ∗ INITV) ;
∗ /

i f d e f d e f i n e d (BLOCKING) && ! d e f i n e d (SCSS)
OPEN WRITE(o1) ;
OPEN WRITE(o2) ;

o b j e c t s [o1] . d a t a = o b j e c t s [o1] . d a t a − v a l ;
o b j e c t s [o2] . d a t a = o b j e c t s [o2] . d a t a + v a l ;

174

NZSTM Promela Model

a s s e r t (o b j e c t s [o1] . d a t a + o b j e c t s [o2] . d a t a == 2 ∗ INITV) ;

e l i f d e f i n e d (BLOCKING) && d e f i n e d (SCSS)
OPEN WRITE(o1) ;
OPEN WRITE(o2) ;

atomic {
i f
: : TXACTIVE(t x i d) −> o b j e c t s [o1] . d a t a = o b j e c t s [o1] . d a t a − v a l ;
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

atomic {
i f
: : TXACTIVE(t x i d) −> o b j e c t s [o2] . d a t a = o b j e c t s [o2] . d a t a + v a l ;
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;
}

a s s e r t (o b j e c t s [o1] . d a t a + o b j e c t s [o2] . d a t a == 2 ∗ INITV) ;

e l s e /∗ n o n b l o c k i n g ∗ /
dummy = 0 ;

OPEN WRITE(o1) ;
a s s e r t O p e n W r i t e (o1) ;

i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (o1 , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

LOCATOR(o1 , p i d) . new = LOCATOR(o1 , p i d) . new − v a l ;
dummy = dummy + LOCATOR(o1 , p i d) . new ;

: : e l s e−>
o b j e c t s [o1] . d a t a = o b j e c t s [o1] . d a t a − v a l ;
dummy = dummy + o b j e c t s [o1] . d a t a ;

f i ;

OPEN WRITE(o2) ;
a s s e r t O p e n W r i t e (o2) ;

i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (o2 , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

LOCATOR(o2 , p i d) . new = LOCATOR(o2 , p i d) . new + v a l ;
dummy = dummy + LOCATOR(o2 , p i d) . new ;

: : e l s e−>
o b j e c t s [o2] . d a t a = o b j e c t s [o2] . d a t a + v a l ;
dummy = dummy + o b j e c t s [o2] . d a t a ;

175

Appendix B

f i ;

a s s e r t (dummy == 2 ∗ INITV) ;
e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Checks t h a t o1 and o2 balance , t h e sum o f t h e i r v a l u e s i s t w i c e o f t h e i r
∗ i n i t i a l v a l u e
∗ /

i n l i n e c h e c k B a l a n c e (o1 , o2)
{

/∗
∗ a s s e r t (o b j e c t s [o1] . da ta + o b j e c t s [o2] . da ta == 2 ∗ INITV) ;
∗ /

i f d e f BLOCKING
OPEN READ(o1) ;
OPEN READ(o2) ;
a s s e r t (o b j e c t s [o1] . d a t a + o b j e c t s [o2] . d a t a == 2 ∗ INITV) ;

e l s e /∗ n o n b l o c k i n g ∗ /
dummy = 0 ;

OPEN READ(o1) ;
a s s e r t O p e n R e a d (o1) ;

i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (o1 , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

dummy = dummy + LOCATOR(o1 , p i d) . new ;

: : e l s e−>
dummy = dummy + o b j e c t s [o1] . d a t a ;

f i ;

OPEN READ(o2) ;
a s s e r t O p e n R e a d (o2) ;

i f
: : i s I n f l a t e d −>

f i n d L o c a t o r (o2 , l i d) ;

i f
: : (l i d == p i d) ; /∗ Ensure t h a t i t ’ s my l o c a t o r ∗ /
: : e l s e −>

a s s e r t (TXABORTING(t x i d)) ;
goto a b o r t e d ;

f i ;

dummy = dummy + LOCATOR(o2 , p i d) . new ;

: : e l s e−>
dummy = dummy + o b j e c t s [o2] . d a t a ;

f i ;

a s s e r t (dummy == 2 ∗ INITV) ;
e n d i f /∗ BLOCKING ∗ /
}

/∗ ∗
∗ Per forms t h e add around t e s t which r e a d s t h e f i r s t va lue , t h e n t h e second
∗ va lue , add ing t h e i r sum t o t h e t h i r d . Then add ing t h e t h i r d back t o t h e
∗ f i r s t .
∗ /

i n l i n e addAround (o1 , o2 , o3)

176

NZSTM Promela Model

{
/∗
∗ o b j e c t s [o3] . da ta += o b j e c t s [o1] . da ta + o b j e c t s [o2] . da ta ;
∗ o b j e c t s [o1] . da ta += o b j e c t s [o3] . da ta ;
∗ A s s e r t i n g a l l t h e w h i l e t h a t t h e v a r i a b l e s match what ’ s e x p e c t e d , OR
∗ t h a t I have been a b o r t e d .
∗ /

byte a , b , c ;

OPEN READ(o1) ;
g e t V a l u e (o1 , a) ;
a s s e r t (a == e x p e c t e d [o1] | | TXABORTING(t x i d)) ;

OPEN READ(o2) ;
g e t V a l u e (o2 , b) ;
a s s e r t (b == e x p e c t e d [o2] | | TXABORTING(t x i d)) ;

OPEN WRITE(o3) ;
g e t V a l u e (o3 , c) ;
a s s e r t (c == e x p e c t e d [o3] | | TXABORTING(t x i d)) ;
c = a + b + c ;
s e t V a l u e (o3 , c) ;

OPEN WRITE(o1) ;
a = a + c ;
s e t V a l u e (o1 , a) ;

}

/∗
∗ ===
∗ P r e a l l o c a t i n g Memory
∗ ===
∗ /

/∗ ∗
∗ P r e a l l o c a t e d t r a n s a c t i o n s .
∗
∗ (remember t h a t t x n #0 i s an u n u s a b l e commi t t ed t x n)
∗ /

T r a n s a c t i o n t r a n s a c t i o n s [TOTAL TXN] ;

i f d e f SHADOW
/∗ ∗
∗ P r e a l l o c a t e d o b j e c t s f o r DSTM2 Shadow
∗ /

SObjec t o b j e c t s [TOTAL OBJECTS] ;
e l s e /∗ NZSTM ∗ /
/∗ ∗
∗ P r e a l l o c a t e d o b j e c t s f o r NZSTM
∗ /

NZObject o b j e c t s [TOTAL OBJECTS] ;
e n d i f /∗ SHADOW ∗ /

/∗ ∗
∗ E x p e c t e d V a l ue s
∗
∗ Used f o r some t e s t s t o s t o r e what t h e e x p e c t e d v a l u e s o f o b j e c t s are
∗ /

byte e x p e c t e d [TOTAL OBJECTS] = INITV ;

/∗
∗ ===
∗ Running P r o c e s s e s
∗ ===
∗ /

i f d e f INCDEC TEST
/∗ ∗
∗ The main body o f t h e program r e p r e s e n t i n g t h e i n c r e m e n t / decremen t t e s t .
∗ /

a c t i v e [PROCESSES] proctype I n c D e c T e s t ()

177

Appendix B

{
TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

/∗ Do a w r i t e t e s t and a read t e s t n o n d e t e r m i n i s t i c a l l y ∗ /
i f
: : t rue −>

i n c D e c O b j e c t (0) ;

: : t rue −>
r e a d Z e r o O b j e c t (1) ;

f i ;

i f
: : t rue −>

r e a d Z e r o O b j e c t (0) ;

: : t rue −>
i n c D e c O b j e c t (1) ;

f i ;

/∗ A l l t r a n s a c t i o n must e i t h e r commit or a b o r t ∗ /
p r o g r e s s :

a b o r t e d :
c o m m i t T r a n s a c t i o n () ;

}
e n d i f /∗ INCDEC TEST ∗ /

i f d e f BALANCE TEST
/∗ ∗
∗ The main body o f t h e program r e p r e s e n t i n g t h e b a l a n c e t e s t .
∗ /

a c t i v e proctype B a l a n c e T e s t 0 ()
{

TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

t r a n s f e r A m o u n t (0 , 1 , 2) ;

p r o g r e s s 0 :
a b o r t e d :

c o m m i t T r a n s a c t i o n () ;
}

a c t i v e proctype B a l a n c e T e s t 1 ()
{

TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

c h e c k B a l a n c e (0 , 1) ;

p r o g r e s s 1 :
a b o r t e d :

c o m m i t T r a n s a c t i o n () ;
}

a c t i v e proctype B a l a n c e T e s t 2 ()
{

TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

t r a n s f e r A m o u n t (1 , 0 , 3) ;

p r o g r e s s 2 :
a b o r t e d :

c o m m i t T r a n s a c t i o n () ;
}

178

NZSTM Promela Model

/∗
a c t i v e p r o c t y p e B a l a n c e T e s t 3 ()
{

TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

c h e c k B a l a n c e (1 , 0) ;

p r o g r e s s 3 :
a b o r t e d :

c o m m i t T r a n s a c t i o n () ;
}
∗ /

e n d i f /∗ BALANCE TEST ∗ /

i f d e f ADD AROUND TEST

/∗ ∗
∗ A p r o c e s s t h a t a t t e m p t s t o per form t h e f o l l o w i n g t r a n s a c t i o n , w h i l e u p d a t i n g
∗ t h e e x p e c t e d s t a t e f o r f u t u r e p r o c e s s e s .
∗
∗ Read x
∗ Read y
∗ z += x + y
∗ x += z
∗ /

proctype a d d r P r o c (byte x , y , z)
{

TXN DEFS () ;

b e g i n T r a n s a c t i o n () ;

addAround (x , y , z) ;

p r o g r e s s :
a b o r t e d :

/∗ I f I commit , a t o m i c a l l y change t h e sys tem ’ s e x p e c t e d s t a t e ∗ /
atomic {

c o m m i t T r a n s a c t i o n () ;

i f
: : TXCOMMITTED(t x i d) −>

e x p e c t e d [z] = e x p e c t e d [x] + e x p e c t e d [y] + e x p e c t e d [z] ;
e x p e c t e d [x] = e x p e c t e d [x] + e x p e c t e d [z] ;

: : e l s e ;
f i ;

}
}

/∗ ∗
∗ S e t t h e i n i t i a l v a l u e s o f t h e o b j e c t s and s t a r t t h e p r o c e s s e s
∗ /

i n i t {
i f d e f SHADOW

d s t e p {
o b j e c t s [0] . d a t a = 3 ;
e x p e c t e d [0] = o b j e c t s [0] . d a t a ;

o b j e c t s [1] . d a t a = 5 ;
e x p e c t e d [1] = o b j e c t s [1] . d a t a ;

o b j e c t s [2] . d a t a = 7 ;
e x p e c t e d [2] = o b j e c t s [2] . d a t a ;

}
e l s e /∗ NZSTM ∗ /

d s t e p {
o b j e c t s [0] . d a t a = 3 ;
e x p e c t e d [0] = o b j e c t s [0] . d a t a ;

o b j e c t s [1] . d a t a = 5 ;

179

Appendix B

e x p e c t e d [1] = o b j e c t s [1] . d a t a ;

o b j e c t s [2] . d a t a = 7 ;
e x p e c t e d [2] = o b j e c t s [2] . d a t a ;

}
e n d i f /∗ SHADOW ∗ /

atomic {
run a d d r P r o c (0 , 1 , 2) ;
run a d d r P r o c (1 , 2 , 0) ;
run a d d r P r o c (2 , 0 , 1) ;
/∗ run addrProc (2 , 1 , 0) ; ∗ /

}
}

e n d i f /∗ ADD AROUND TEST ∗ /

/∗ End o f F i l e (EOF) ∗ /

180

Bibliography

OpenMP Application Program Interface, Version 3.0. OpenMP Architecture Review Board,
2008.

Python 2.6.4 release. Python Software Foundation, 2009.
http://www.python.org/download/releases/2.6.4/.

.NET framework 4 beta 1 enabled to use software transactional memory (STM.NET
version 1.0): Programmers’ guide. Microsoft, 2009.
http://download.microsoft.com/download/9/5/6/9560741A-EEFC-4C02-822C-
BB0AFE860E31/STM User Guide.pdf.

TIOBE programming community index for May. TIOBE Software BV, 2010.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

Transactional memory in GCC. GNU Project, 2010.
http://gcc.gnu.org/wiki/TransactionalMemory.

Grand Central Dispatch (GCD) Reference. Apple Inc., 2010.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version 6.10.4. The GHC
Team, 2010.
http://www.haskell.org/ghc/docs/6.10-latest/html/users guide/index.html.

Intel C++ STM compiler, prototype edition 3.0. Intel Corporation, 2010a.
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/.

Intel 64 and IA-32 Architectures Software Developer’s Manual, volume 1: Basic Architec-
ture. Intel Corporation, 2010b.

A. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman. Com-
piler and runtime support for efficient software transactional memory. In PLDI ’06: Pro-
ceedings of the 2006 ACM SIGPLAN conference on Programming language design and
implementation. ACM, 2006a.

A. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman. Com-
piler and runtime support for efficient software transactional memory. In PLDI ’06: Pro-
ceedings of the 2006 ACM SIGPLAN conference on Programming language design and
implementation. ACM, 2006b.

H. Akkary and M. A. Driscoll. A dynamic multithreading processor. In MICRO 31: Proceed-
ings of the 31st annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society Press, 1998.

181

http://www.python.org/download/releases/2.6.4/
http://download.microsoft.com/download/9/5/6/9560741A-EEFC-4C02-822C-BB0AFE860E31/STM_User_Guide.pdf
http://download.microsoft.com/download/9/5/6/9560741A-EEFC-4C02-822C-BB0AFE860E31/STM_User_Guide.pdf
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://gcc.gnu.org/wiki/TransactionalMemory
http://www.haskell.org/ghc/docs/6.10-latest/html/users_guide/index.html
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition-20/

Bibliography

A. R. Alameldeen and D. A. Wood. Variability in architectural simulations of multi-threaded
workloads. In HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture. IEEE Computer Society, 2003.

G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS ’67 (Spring): Proceedings of the April 18-20, 1967, spring joint
computer conference. ACM, 1967.

C. S. Ananian. Architectural and compiler support for strongly atomic transactional memory.
Ph.D. thesis, Massachusetts Institute of Technology, 2007.

C. S. Ananian and M. Rinard. Efficient object-based software transactions. In SCOOL ’05:
Synchronization and Concurrency in Object-Oriented Languages, 2005.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded
transactional memory. In HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture. IEEE Computer Society, 2005.

L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory protection to build a high-
performance, strongly-atomic hybrid transactional memory. In ISCA ’08: Proceedings
of the 35th Annual International Symposium on Computer Architecture. IEEE Computer
Society, 2008.

D. Beazley. Inside the Python GIL (slides). Presented at the Python Concurrency Workshop,
2009.
http://www.dabeaz.com/python/GIL.pdf.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: an efficient multithreaded runtime system. In PPOPP ’95: Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of parallel programming. ACM,
1995.

C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making the fast case common and
the uncommon case simple in unbounded transactional memory. In ISCA ’07: Proceedings
of the 34th annual international symposium on Computer architecture. ACM, 2007.

C. Blundell, A. Raghavan, and M. M. K. Martin. RETCON: Transactional repair without
replay. In ISCA ’10: Proceedings of the 37th annual international symposium on Computer
architecture. ACM, 2010.

J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A. Wood. Per-
formance pathologies in hardware transactional memory. In ISCA ’07: Proceedings of the
34th annual international symposium on Computer architecture. ACM, 2007.

J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. TokenTM: Efficient execution
of large transactions with hardware transactional memory. In ISCA ’08: Proceedings of the
35th Annual International Symposium on Computer Architecture. IEEE Computer Society,
2008.

H. J. Boehm. Transactional memory should be an implementation technique, not a program-
ming interface. In HOTPAR ’09: 1st USENIX Workshop on Hot Topics in Parallelism.
USENIX, 2009.

182

http://www.dabeaz.com/python/GIL.pdf

Bibliography

H. J. Boehm, A. Demers, and M. Weiser. A garbage collector for C and C++. 2010.
http://www.hpl.hp.com/personal/Hans Boehm/gc/.

W. J. Bolosky and M. L. Scott. False sharing and its effect on shared memory performance. In
Sedms’93: USENIX Systems on USENIX Experiences with Distributed and Multiprocessor
Systems. USENIX Association, 1993.

F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley
Professional, 2nd edition, 1995.

C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.
Software transactional memory: why is it only a research toy? Queue. 2008.

L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.
IEEE Transactions on Computers. 1978.

L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of speculative threads
in multiprocessors. In ISCA ’06: Proceedings of the 33rd annual international symposium
on Computer Architecture. IEEE Computer Society, 2006.

S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Trem-
blay. Rock: A high-performance SPARC CMT processor. IEEE Micro. IEEE Computer
Society, 2009a.

S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Trem-
blay. Simultaneous speculative threading: a novel pipeline architecture implemented in
Sun’s Rock processor. In ISCA ’09: Proceedings of the 36th annual international sympo-
sium on Computer architecture. ACM, 2009b.

T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine architecture and its
first implementation: a performance view. IBM Journal of Research and Development.
IBM Corporation, 2007.

S.-E. Choi and E. C. Lewis. A study of common pitfalls in simple multi-threaded programs.
In SIGCSE ’00: Proceedings of the thirty-first SIGCSE technical symposium on Computer
science education. ACM, 2000.

W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. Van Biesbrouck, G. Pokam,
B. Calder, and O. Colavin. Unbounded page-based transactional memory. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for pro-
gramming languages and operating systems. ACM, 2006.

J. Chung, H. Chafi, A. McDonald, C. C. Minh, B. D. Carlstrom, C. Kozyrakis, , and K. Oluko-
tun. The common case transactional behavior of multithreaded programs. In HPCA ’06:
Proceedings of the 12th International Symposium on High-Performance Computer Archi-
tecture, 2006a.

J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom, C. Kozyrakis,
and K. Olukotun. Tradeoffs in transactional memory virtualization. In ASPLOS-XII: Pro-
ceedings of the 12th international conference on Architectural support for programming
languages and operating systems. ACM, 2006b.

183

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Bibliography

M. Cintra and J. Torrellas. Eliminating squashes through learning cross-thread violations
in speculative parallelization for multiprocessors. In HPCA ’02: Proceedings of the 8th
International Symposium on High-Performance Computer Architecture. IEEE Computer
Society, 2002.

C. Click. And now some hardware transactional memory comments. Azul Systems, 2009a.
http://blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-
memory-comments.html.

C. Click. Azul’s experiences with hardware transactional memory (slides). Azul Systems,
Presented at the Bay Area Workshop on Transactional Memory, 2009b.
https://vsci.hpl.hp.com/marcs/tm workshop.html.

C. Click. Java on 1000 cores: Tales of hardware/software co-design. In Genoa: Proceed-
ings of the 23rd European Conference on ECOOP 2009 — Object-Oriented Programming.
Springer-Verlag, 2009c.

E. F. Codd. A relational model of data for large shared data banks. Communications of the
ACM. ACM, 1970.

E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM Computing Surveys.
ACM, 1971.

H. Curnow and B. Wichman. A synthetic benchmark. Computer Journal. Oxford University
Press, 1976.

L. Dalessandro, V. Marathe, M. Spear, and M. L. Scott. Capabilities and limitations of library-
based software transactional memory in C++. In TRANSACT ’07: 2nd ACM SIGPLAN
Workshop on Transactional Computing, 2007.

L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing
ownership records. In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN symposium on
Principles and practice of parallel programming. ACM, 2010.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid trans-
actional memory. In ASPLOS-XII: Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems. ACM, 2006.

D. Dice and N. Shavit. TLRW: Return of the read-write lock. In SPAA ’10: Proceedings of
the 22nd ACM Symposium on Parallelism in Algorithms and Architectures. ACM, 2010.

D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC ’06: Proceedings of the
20th International Symposium on Distributed Computing. Springer-Verlag, 2006.

D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hardware
transactional memory implementation. In ASPLOS ’09: Proceeding of the 14th inter-
national conference on Architectural support for programming languages and operating
systems. ACM, 2009a.

D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early experience with a com-
mercial hardware transactional memory implementation. Technical Report TR-2009-180,
Sun Microsystems Laboratories, 2009b.
http://labs.oracle.com/techrep/2009/smli tr-2009-180.pdf.

184

http://blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html
http://blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html
https://vsci.hpl.hp.com/marcs/tm_workshop.html
http://labs.oracle.com/techrep/2009/smli_tr-2009-180.pdf

Bibliography

D. Dice, Y. Lev, V. Marathe, M. Moir, M. Olszewski, and D. Nussbaum. Simplifying concur-
rent algorithms by exploiting hardware TM. In SPAA ’10: Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures. ACM, 2010.

E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD 123, Technological
University, Eindhoven, 1965.
http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html.

E. W. Dijkstra. The strengths of the academic enterprise. Technical Report EWD 1175, The
University of Texas at Austin, 1994.
http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD11xx/EWD1175.html.

C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior oriented
parallelization. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation. ACM, 2007.

F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: scalable nonzero indicators. In
PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of dis-
tributed computing. ACM, 2007.

R. Ennals. Software transactional memory should not be obstruction-free. Technical Report
IRC-TR-06-052, Intel Corporation, 2006.
http://berkeley.intel-research.net/rennals/pubs/052RobEnnals.pdf.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and
predicate locks in a database system. Communications of the ACM. ACM, 1976.

W. Feng. Making a case for efficient supercomputing. Queue. ACM, 2003.

S. Frank and A. Inselberg. Synapse tightly coupled multiprocessors: a new approach to
solve old problems. In AFIPS ’84: Proceedings of the July 9-12, 1984, national computer
conference and exposition. ACM, 1984.

K. Fraser. Practical Lock-Freedom. Ph.D. thesis, Cambridge University, 2004.

V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Harris, and M. Valero.
QuakeTM: parallelizing a complex sequential application using transactional memory. In
ICS ’09: Proceedings of the 23rd international conference on Supercomputing. ACM,
2009.

D. Geer. Chip makers turn to multicore processors. IEEE Computer. 2005.

R. Gerth. Concise Promela reference. 1997.
http://spinroot.com/spin/Man/Quick.html.

A. Ghuloum. Unwelcome advice. Intel Corporation, 2008.
http://blogs.intel.com/research/2008/06/unwelcome advice.php.

J. R. Goodman. Using cache memory to reduce processor-memory traffic. In ISCA ’83:
Proceedings of the 10th annual international symposium on Computer architecture. ACM,
1983.

185

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD11xx/EWD1175.html
http://berkeley.intel-research.net/rennals/pubs/052RobEnnals.pdf
http://spinroot.com/spin/Man/Quick.html
http://blogs.intel.com/research/2008/06/unwelcome_advice.php

Bibliography

J. R. Goodman and P. J. Woest. The Wisconsin Multicube: a new large-scale cache-coherent
multiprocessor. In ISCA ’88: Proceedings of the 15th Annual International Symposium on
Computer architecture. IEEE Computer Society Press, 1988.

J. R. Goodman, M. Moir, F. Tabba, and C. Wang. System and method for implement-
ing nonblocking zero-indirection transactional memory. United States Patent Application
20090171962. 2009a.

J. R. Goodman, M. Moir, F. Tabba, and C. Wang. System and method for implement-
ing hybrid single-compare-single-store operations. United States Patent Application
20090172299. 2009b.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification. Addison Wesley,
3rd edition, 2005.

J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An efficient software transactional memory
using commit-time invalidation. In CGO ’10: Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. ACM, 2010.

J. Gray. The transaction concept: virtues and limitations (invited paper). In VLDB ’81:
Proceedings of the seventh international conference on Very Large Data Bases. VLDB
Endowment, 1981.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. The Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann, 1993.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface. The MIT Press, 2nd edition edition, 1999.

D. Grossman. The transactional memory / garbage collection analogy. In OOPSLA ’07: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented programming
systems and applications. ACM, 2007.

R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming. ACM, 2008.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Com-
puting Surveys. ACM, 1983.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence and consis-
tency. In ISCA ’04: Proceedings of the 31st annual international symposium on Computer
architecture. IEEE Computer Society, 2004.

D. Harmanci, V. Gramoli, P. Felber, and C. Fetzer. Extensible transactional memory testbed.
Journal of Parallel and Distributed Computing. Elsevier, 2010.

T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap operation. In
DISC ’02: Proceedings of the 16th International Conference on Distributed Computing.
Springer-Verlag, 2002.

186

Bibliography

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.
In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 2005.

T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory. Synthesis Lectures on Com-
puter Architecture. Morgan and Claypool Publishers, 2nd edition, 2010.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 4th edition, 2006.

M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems. ACM, 1991.

M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free
data structures. In ISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture. ACM, 1993.

M. Herlihy and J. E. B. Moss. System for achieving atomic non-sequential multi-word oper-
ations in shared memory. US Patent 5,428,761. 1995.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In ICDCS ’03: Proceedings of the 23rd International Conference
on Distributed Computing Systems. IEEE Computer Society, 2003a.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory
for dynamic-sized data structures. In PODC ’03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing. ACM, 2003b.

M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software
transactional memory. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications. ACM,
2006.

M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer. IEEE Computer
Society Press, 2008.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM. ACM, 1969.

C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of the
ACM. ACM, 1974.

C. A. R. Hoare. Assertions: a personal perspective. Springer-Verlag New York, Inc., 2002.

O. S. Hofmann, D. E. Porter, C. J. Rossbach, H. E. Ramadan, and E. Witchel. Solving
difficult htm problems without difficult hardware. In TRANSACT ’07: 2nd ACM SIGPLAN
Workshop on Transactional Computing, 2007.

187

Bibliography

O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum benefit from a minimal HTM
(slides). University of Texas at Austin, Presented at ASPLOS ’09: The 14th international
conference on Architectural support for programming languages and operating systems,
2009a.
http://www.cs.utexas.edu/users/witchel/pubs/asplos09 slides.pptx.

O. S. Hofmann, C. J. Rossbach, and E. Witchel. Maximum benefit from a minimal HTM.
In ASPLOS ’09: Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems. ACM, 2009b.

G. J. Holzmann. The SPIN Model Checker. Addison-Wesley Professional, 2003.

R. L. Hudson, B. Saha, A. Adl-Tabatabai, and B. C. Hertzberg. McRT-Malloc: a scalable
transactional memory allocator. In ISMM ’06: Proceedings of the 2006 international sym-
posium on Memory management, 2006.

J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence decoupling: making use of incoher-
ence. In ASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems. ACM, 2004.

S. A. R. Jafri, M. Thottethodi, and T. N. Vijaykumar. LiteTM: Reducing transactional state
overhead. In HPCA ’10: Proceedings of the 16th International Symposium on High-
Performance Computer Architecture, 2010.

E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A new approch to exclusive data access
in shared memory multiprocessors. Technical Report UCRL-97663, Lawrence Livermore
National Lab, 1987.

T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on shared memory multiprocessors
through compile time data transformations. In PPOPP ’95: Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice of parallel programming. ACM, 1995.

W. N. Joy. Reduced instruction set computers (RISC): Academic/industrial interplay drives
computer performance forward. Sun Microsystems, Inc., 1995.
http://www.cs.washington.edu/homes/lazowska/cra/risc.html.

J. Juneau, J. Baker, F. Wierzbicki, L. S. Munoz, and V. Ng. The Definitive Guide to Jython:
Python for the Java Platform. Apress, 2010.

M. Kadiyala and L. N. Bhuyan. A dynamic cache sub-block design to reduce false sharing. In
ICCD ’95: Proceedings of the 1995 International Conference on Computer Design. IEEE
Computer Society, 1995.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 2nd
edition, 1988.

T. Knight. An architecture for mostly functional languages. In LFP ’86: Proceedings of the
1986 ACM conference on LISP and functional programming. ACM, 1986.

G. Koch. Discovering multi-core: Extending the benefits of Moore’s law. Technology@Intel.
2005.
http://www-us-east.intel.com/technology/magazine/computing/multi-core-0705.pdf.

188

http://www.cs.utexas.edu/users/witchel/pubs/asplos09_slides.pptx
http://www.cs.washington.edu/homes/lazowska/cra/risc.html
http://www-us-east.intel.com/technology/magazine/computing/multi-core-0705.pdf

Bibliography

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded SPARC
processor. IEEE Micro. IEEE Computer Society Press, 2005.

D. Kroft. Cache memory organization utilizing miss information holding registers to prevent
lockup from cache misses. US Patent 4,370,710. 1983.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional memory.
In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 2006.

L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM. ACM, 1974.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM. ACM, 1978.

J. R. Larus and R. Rajwar. Transactional Memory. Synthesis Lectures on Computer Archi-
tecture. Morgan and Claypool Publishers, 1st edition, 2007.

K. M. Lepak and M. H. Lipasti. Silent stores for free. In MICRO 33: Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture. ACM, 2000.

K. M. Lepak and M. H. Lipasti. Temporally silent stores. In ASPLOS-X: Proceedings of the
10th international conference on Architectural support for programming languages and
operating systems. ACM, 2002.

Y. Lev and M. Moir. Fast read sharing mechanism for software transactional memory (poster
paper). In PODC ’04: Proceedings of the 23rd annual symposium on Principles of dis-
tributed computing. ACM, 2004.

Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional memory. In TRANSACT ’07:
2nd ACM SIGPLAN Workshop on Transactional Computing, 2007.

Y. Lev, V. Luchangco, V. Marathe, and M. Moir. Anatomy of a scalable software transac-
tional memory. In TRANSACT ’09: The 4th annual SIGPLAN Workshop on Transactional
Memory, 2009.

S. Lie. Hardware Support for Unbounded Transactional Memory. Ph.D. thesis, Mas-
sachusetts Institute of Technology Department of Electrical Engineering and Computer
Science, May 2004.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In ASPLOS XIII: Proceedings of the 13th inter-
national conference on Architectural support for programming languages and operating
systems. ACM, 2008.

V. Luchangco. Against lock-based semantics for transactional memory. In SPAA ’08: Pro-
ceedings of the twentieth annual symposium on Parallelism in algorithms and architec-
tures. ACM, 2008.

R. Maddox, G. Singh, R. Safranek, and R. Colwell. Weaving High Performance Multiproces-
sor Fabric: Architectural Insights to the Intel QuickPath Interconnect. Intel Press, 2009.

189

Bibliography

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Lars-
son, A. Moestedt, and B. Werner. Simics: A full system simulation platform. IEEE Com-
puter. 2002.

V. Marathe and M. Moir. Efficient nonblocking software transactional memory (poster paper).
In PPoPP ’07: Proceedings of the ACM SIGPLAN symposium on Principles and practice
of parallel programming. ACM, 2007.

V. Marathe, W. N. Scherer, III, and M. L. Scott. Adaptive software transactional memory. In
DISC ’05: Proceedings of the 19th International Symposium on Distributed Computing.
Springer-Verlag, 2005.

V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer, III, and
M. L. Scott. Lowering the overhead of nonblocking software transactional memory. In
TRANSACT ’06: 1st ACM SIGPLAN Workshop on Transactional Computing, 2006.

M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore, M. Hill, and
D. Wood. Multifacet’s general execution-driven multiprocessor simulator (GEMS) toolset.
SIGARCH Computer Architecture News (CAN). ACM, 2005.

M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H. Lipasti. Correctly imple-
menting value prediction in microprocessors that support multithreading or multiprocess-
ing. In MICRO 34: Proceedings of the 34th annual ACM/IEEE international symposium
on Microarchitecture. IEEE Computer Society, 2001.

M. Marty, B. Beckmann, L. Yen, A. Alameldeen, M. Xu, and K. Moore. Multifacet gems:
ISCA tutorial (slides). Univeristy of Wisconsin, Tutorial at ISCA ’05: The 32nd annual
international symposium on Computer Architecture, 2005.
http://www.cs.wisc.edu/gems/isca tutorial.ppt.

J. D. McCullough, K. H. Speierman, and F. W. Zurcher. A design for a multiple user multipro-
cessing system. In AFIPS ’65 (Fall, part I): Proceedings of the November 30–December 1,
1965, fall joint computer conference, part I. ACM, 1965.

A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom, L. Hammond, C. Kozyrakis,
and K. Olukotun. Characterization of TCC on chip-multiprocessors. In PACT ’05: Pro-
ceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society, 2005.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems. ACM, 1991.

M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In PODC ’96: Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing. ACM, 1996.

C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper, C. Kozyrakis,
and K. Olukotun. An effective hybrid transactional memory system with strong isolation
guarantees. In ISCA ’07: Proceedings of the 34th annual international symposium on
Computer architecture. ACM, 2007.

190

http://www.cs.wisc.edu/gems/isca_tutorial.ppt

Bibliography

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional appli-
cations for multi-processing. In IISWC ’08: IEEE International Symposium on Workload
Characterization, 2008.

M. Moir. Hybrid transactional memory. Sun Microsystems Laboratories, 2005.
http://web.archive.org/web/20060315094623/http://research.sun.com/scalable/pubs/Moir-
Hybrid-2005.pdf.

M. Moir, K. E. Moore, and D. Nussbaum. The adaptive transactional memory test platform:
A tool for experimenting with transactional code for Rock. In TRANSACT ’08: The 3rd
annual SIGPLAN Workshop on Transactional Memory, 2008.

G. E. Moore. Cramming more components onto integrated circuits. Electronics Magazine.
1965.

K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: log-based transactional
memory. In HPCA ’06: Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, 2006.

D. Neto. Java objects memory structure. 2008.
http://www.codeinstructions.com/2008/12/java-objects-memory-structure.html.

J. O’Leary, B. Saha, and M. R. Tuttle. Model checking transactional memory with Spin. In
ICDCS ’09: Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems. IEEE Computer Society, 2009.

M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A dynamic binary-rewriting approach
to software transactional memory. In PACT ’07: Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques. IEEE Computer Society,
2007.

V. Pankratius, A. Adl-Tabatabai, and F. Otto. Does transactional memory keep its promises?
results from an empirical study. Technical Report 2009-12, University of Karlsruhe, Ger-
many, 2009.
http://www.rz.uni-karlsruhe.de/∼kb95/papers/pankratius-TMStudy.pdf.

S. M. Pant and G. T. Byrd. Extending concurrency of transactional memory programs by
using value prediction. In CF ’09: Proceedings of the 6th ACM conference on Computing
frontiers. ACM, 2009.

M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multiprocessors
with private cache memories. In ISCA ’84: Proceedings of the 11th annual international
symposium on Computer architecture. ACM, 1984.

C. Perfumo, N. Sönmez, S. Stipic, O. Unsal, A. Cristal, T. Harris, and M. Valero. The limits
of software transactional memory (STM): dissecting Haskell STM applications on a many-
core environment. In CF ’08: Proceedings of the 5th conference on Computing frontiers.
ACM, 2008.

G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters.
1981.

191

http://web.archive.org/web/20060315094623/http://research.sun.com/scalable/pubs/Moir-Hybrid-2005.pdf
http://web.archive.org/web/20060315094623/http://research.sun.com/scalable/pubs/Moir-Hybrid-2005.pdf
http://www.codeinstructions.com/2008/12/java-objects-memory-structure.html
http://www.rz.uni-karlsruhe.de/~kb95/papers/pankratius-TMStudy.pdf

Bibliography

R. Rajwar and J. R. Goodman. Speculative lock elision: enabling highly concurrent multi-
threaded execution. In MICRO 34: Proceedings of the 34th annual ACM/IEEE interna-
tional symposium on Microarchitecture. IEEE Computer Society, 2001.

R. Rajwar and J. R. Goodman. Transactional lock-free execution of lock-based programs. In
ASPLOS-X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems. ACM, 2002.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In ISCA ’05: Pro-
ceedings of the 32nd annual international symposium on Computer Architecture. IEEE
Computer Society, 2005.

H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhandari, and E. Witchel.
MetaTM/TxLinux: transactional memory for an operating system. In ISCA ’07: Proceed-
ings of the 34th annual international symposium on Computer architecture. ACM, 2007.

H. E. Ramadan, C. J. Rossbach, and E. Witchel. Dependence-aware transactional memory
for increased concurrency. In MICRO 41: Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 2008.

H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting transactions in
an STM. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming. ACM, 2009.

A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construction. In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming sys-
tems, languages, and applications. ACM, 2006.

N. Riley and C. Zilles. Hardware tansactional memory support for lightweight dynamic
language evolution. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications. ACM, 2006.

C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional programming actually easier?
In WDDD ’09: Proceedings of the 8th Annual Workshop on Duplicating, Deconstructing,
and Debunking, 2009.

C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional programming actually easier?
In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 2010.

B. Saha, A. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: a
high performance software transactional memory system for a multi-core runtime. In
PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2006.

D. Sayre. Is automatic “folding” of programs efficient enough to displace manual? Commu-
nications of the ACM. ACM, 1969.

W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic soft-
ware transactional memory. In PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing. ACM, 2005.

192

Bibliography

N. Shavit and D. Touitou. Software transactional memory. In PODC ’95: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing. ACM, 1995.

A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat, C. Heriot, W. N.
Scherer, III, and M. F. Spear. Hardware acceleration of software transactional memory. In
TRANSACT ’06: 1st ACM SIGPLAN Workshop on Transactional Computing, 2006.

A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe, S. Dwarkadas, and M. L. Scott. An
integrated hardware-software approach to flexible transactional memory. In ISCA ’07:
Proceedings of the 34th annual international symposium on Computer architecture. ACM,
2007.

A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled transactional memory sup-
port. In ISCA ’08: Proceedings of the 35th Annual International Symposium on Computer
Architecture. IEEE Computer Society, 2008.

J. Siracusa. Mac OS X 10.6 Snow Leopard: the Ars Technica review. Ars Technica. 2009.
http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12.

S. L. Smith. 32nm Westmere family of processors. Intel Corporation, 2009.
http://download.intel.com/pressroom/kits/32nm/westmere/32nm WSM Press.pdf.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA ’95: Pro-
ceedings of the 22nd annual international symposium on Computer architecture. ACM,
1995.

M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L. Scott. Nonblocking
transactions without indirection using alert-on-update. In SPAA ’07: Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures. ACM, 2007.

M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. A comprehensive strategy for
contention management in software transactional memory. In PPoPP ’09: Proceedings of
the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming.
ACM, 2009.

J. Spolsky. Joel on Software: And on Diverse and Occasionally Related Matters That Will
Prove of Interest to Software Developers, Designers, and Managers, and to Those Who,
Whether by Good Fortune or Ill Luck, Work with Them in Some Capacity. Apress, 2004.

R. M. Stallman. Using The GNU Compiler Collection: A GNU Manual for GCC Version
3.4.6. GNU Press, 2004.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving value communication for
thread-level speculation. In HPCA ’02: Proceedings of the 8th International Symposium
on High-Performance Computer Architecture. IEEE Computer Society, 2002.

G. Stein. Free threading. Python Software Foundation, 2001.
http://mail.python.org/pipermail/python-dev/2001-August/017099.html.

J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple reservations and the Okla-
homa update. IEEE Parallel Distrib. Technol. IEEE Computer Society Press, 1993.

193

http://arstechnica.com/apple/reviews/2009/08/mac-os-x-10-6.ars/12
http://download.intel.com/pressroom/kits/32nm/westmere/32nm_WSM_Press.pdf
http://mail.python.org/pipermail/python-dev/2001-August/017099.html

Bibliography

B. Stroustrup. The C++ Programming Language: Special Edition. Addison-Wesley Profes-
sional, 2000.

H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal. 2005.
http://www.gotw.ca/publications/concurrency-ddj.htm.

P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and their
support by the IEEE Futurebus. In ISCA ’86: Proceedings of the 13th annual international
symposium on Computer architecture. IEEE Computer Society Press, 1986.

F. Tabba. Adding concurrency in Python using a commercial processor’s hardware trans-
actional memory support. To appear in SIGARCH Computer Architecture News (CAN).
ACM, 2011.

F. Tabba, C. Wang, J. R. Goodman, and M. Moir. NZTM: nonblocking zero-indirection
transactional memory. In TRANSACT ’07: 2nd ACM SIGPLAN Workshop on Transactional
Computing. ACM, 2007.

F. Tabba, A. W. Hay, and J. R. Goodman. Transactional value prediction. In TRANSACT ’09:
The 4th annual SIGPLAN Workshop on Transactional Memory. ACM, 2009a.

F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. NZTM: nonblocking zero-
indirection transactional memory. In SPAA ’09: Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. ACM, 2009b.

F. Tabba, A. W. Hay, and J. R. Goodman. Transactional conflict decoupling and value pre-
diction. Under submission, 2011.

C. K. Tang. Cache system design in the tightly coupled multiprocessor system. In AFIPS ’76:
Proceedings of the June 7-10, 1976, national computer conference and exposition. ACM,
1976.

C. P. Thacker and L. C. Stewart. Firefly: a multiprocessor workstation. In ASPLOS-II: Pro-
ceedings of the second international conference on Architectual support for programming
languages and operating systems. IEEE Computer Society Press, 1987.

S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and
M. Valero. EazyHTM: eager-lazy hardware transactional memory. In MICRO 42: Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009.

J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing and spatial locality in multiproces-
sor caches. IEEE Transactions on Computers. 1994.

M. Tremblay and S. Chaudhry. A third-generation 65nm 16-core 32-thread plus 32-scout-
thread CMT SPARC processor. In Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International, 2008.

A. B. Tucker. Computer Science Handbook, Second Edition. Chapman & Hall/CRC, 2004.

E. Vallejo, T. Harris, A. Cristal, O. S. Unsal, and M. Valero. Hybrid transactional memory
to accelerate safe lock-based transactions. In TRANSACT ’08: The 3rd annual SIGPLAN
Workshop on Transactional Memory, 2008.

194

http://www.gotw.ca/publications/concurrency-ddj.htm

Bibliography

G. van Rossum. [Python-3000] the future of the GIL. Python Software Foundation, 2007.
http://mail.python.org/pipermail/python-3000/2007-May/007414.html.

G. van Rossum. The Python Language Reference: Release 2.6.4. Python Software Founda-
tion, 2009a.

G. van Rossum. The Python/C API: Release 2.6.4. Python Software Foundation, 2009b.

G. van Rossum. Extending and Embedding Python: Release 2.6.4. Python Software Foun-
dation, 2009c.

G. van Rossum. The Python Standard Library: Release 2.6.4. Python Software Foundation,
2009d.

A. Vance. Sun is said to cancel big chip project. The New York Times (Bits Blog), 2009.
http://bits.blogs.nytimes.com/2009/06/15/sun-is-said-to-cancel-big-chip-project/.

D. L. Weaver and T. Germond, editors. The SPARC Architecture Manual, Version 9. PTR
Prentice Hall, 2000.

R. P. Weicker. Dhrystone: a synthetic systems programming benchmark. Communications of
the ACM. ACM, 1984.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In ISCA ’95: Proceedings of the 22nd
annual international symposium on Computer architecture. ACM, 1995.

W. A. Wulf. Compilers and computer architecture. IEEE Computer. IEEE Computer Society,
1981.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and
D. A. Wood. LogTM-SE: Decoupling hardware transactional memory from caches. In
HPCA ’07: Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture. IEEE Computer Society, 2007.

R. M. Yoo, Y. Ni, A. Welc, B. Saha, A. Adl-Tabatabai, and H.-H. S. Lee. Kicking the tires
of software transactional memory: why the going gets tough. In SPAA ’08: Proceedings
of the twentieth annual symposium on Parallelism in algorithms and architectures. ACM,
2008.

195

http://mail.python.org/pipermail/python-3000/2007-May/007414.html
http://bits.blogs.nytimes.com/2009/06/15/sun-is-said-to-cancel-big-chip-project/

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation: Transactions in the Multicore Age
	Thesis Organization and Summary of Contributions

	The Challenges of Parallelism and the Transactional Promise
	The Rise of Multicores
	The Cache Coherence Problem
	Synchronization, Mutual Exclusion, and Locks
	What is Transactional Memory?
	Transactional Memory Design Space
	Evaluating Transactional Memory
	The Current State of Transactional Memory
	The Rock Processor and the ATMTP Simulator
	Other Challenges in Parallel Programming

	A Case for Hybrid Transactional Memory
	A Case for Transactional Memory
	Making a Case for Hybrid Transactional Memory
	Concluding Remarks

	Nonblocking Zero-indirection Software Transactional Memory
	The NZSTM Algorithm
	Correctness Evaluation
	Performance Evaluation
	Concluding Remarks

	Hybrid Nonblocking Zero-indirection Transactional Memory
	The Design of NZTM
	Performance Evaluation
	Concluding Remarks

	Parallel Python
	Concurrent CPython
	Evaluation
	Design Alternatives
	Related Work
	Concluding Remarks

	Transactional Conflict Decoupling and Value Prediction
	The False Sharing Problem
	Coherence Decoupling and Value Prediction in Transactions
	DPTM Description
	Evaluation
	Related Work
	Concluding Remarks

	Conclusion
	Dynamic Software Transactional Memory
	DSTM Data Structures
	DSTM Algorithm

	NZSTM Promela Model
	Bibliography

