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Abstract

Stone artifacts are often the most abundant class of objects found in archaeological sites

but their consistent identification is limited by the number of experienced analysts available.

We report a machine learning based technology for stone artifact identification as part of a

solution to the lack of such experts directed at distinguishing worked stone objects from nat-

urally occurring lithic clasts. Three case study locations from Egypt, Australia, and New Zea-

land provide a data set of 6769 2D images, 3868 flaked artifact and 2901 rock images used

to train and test a machine learning model based on an openly available PyTorch implemen-

tation of Faster R-CNN ResNet 50. Results indicate 100% agreement between the model

and original human derived classifications, a better performance than the results achieved

independently by two human analysts who reassessed the 2D images available to the

machine learning model. Machine learning neural networks provide the potential to consis-

tently assess the composition of large archaeological assemblages composed of objects

modified in a variety of ways.

Introduction

The ability to distinguish natural from human manufactured stone artifacts has a long history

in archaeology. It formed the basis for resolving the eolith controversy last century [1] and it

continues to feature in discussions around the veracity of claims for pre-terminal Pleistocene

human occupation in South America [2]. It also features in the identification of very early Afri-

can stone artifacts, for example those from Lomekwi 3 [3,4]. Most recently, the situation has

become more complicated with the well documented creation of unintentionally flaked stone

artifacts by wild bearded capuchins in Brazil, suggesting that the definition of what constitutes

“naturally flaked” objects needs careful consideration [5–7]. Which types of organisms created

flaked stone artifacts and what types of behaviors they imply is now the topic of much research

[8], as is the use of rock clasts in a variety of forms that were not flaked [9]. Indeed, there are
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suggestions that intentionality need not account for the manufacture of a number of recog-

nized artifact forms created by hominins [10].

Despite this flurry of activity, methods intended to differentiate unmodified from modified

objects have not developed significantly since those identified in the twentieth century. A vari-

ety of attribute based approaches are described but despite these there is a continued reliance

on the opinion of experts who are able to identify the attributes of conchoidal fracture, and

therefore make determinations about the anthropogenic origin of flaked objects (or indeed in

the case of the Capuchins, an anthropoid origin) (e.g., [5]). This raises issues around access to

such experts and of course consistency in the identifications. Another set of issues concern the

volume of material that needs to be identified. In many instances gravel sized rock clasts

including those potentially showing anthropogenic or anthropoid modification are abundant,

so separating classes of modified from unmodified material may involve large numbers of indi-

vidual identifications. Such decisions are important not only for identifying the extent of past

activity but indeed for determining whether rock fracture is likely to reflect anthropogenic

activity or not, since one criterion discussed in the literature on early occupation sites refers to

the abundance and proportion of modified versus unmodified objects (e.g., [3,4]).

Our interest in stone artifacts and naturally occurring rocks relates to the issues that arise

when confronted by their abundance in some archaeological sites versus the limited number

of archaeologists with experience in their identification, a particular problem in some com-

mercial archaeological resource management projects. Here we report work intended to create

a machine learning based technology for stone artifact identification as part of a solution to the

lack of experts available to distinguish large quantities of worked stone objects from naturally

occurring clasts. In developing this technology we address two sets of questions: first, what do

we mean when we talk about categories of modified and unmodified stone objects, and second,

how does machine learning provide a solution to the task of classifying stone objects? The data

sets we use come from three separate regions, stone artifact records from surface deposits in

the Fayum region of Egypt, similar records obtained from western New South Wales, Austra-

lia, and stone artifact records excavated from Ahuahu, a small offshore island in New Zealand

(Fig 1). Although these regions are geographically and culturally distinct, stone artifact identi-

fication in all three used similar recording protocols. In all three projects data recording also

involved taking two dimensional photographs for artifacts providing over 3868 stone images

for machine learning model development and testing.

Machine learning for object identification finds a diverse range of applications, from

robotic vision and autonomous driving to security systems [17]. Scientific examples include

applications like the automatic identification of species in ecological studies (e.g., [18–20]).

This increase in applications is due both to the availability and accuracy of machine learning

algorithms such as YOLO [21], R-CNN [22], and Faster R-CNN [23]. Two-stage detectors first

identify regions of interest in an image and then classify them, greatly increasing the accuracy

of objects identified [17]. Machine learning implemented in archaeological research most

often involves the identification of features from remote sensing data (e.g., [24–26]) but while

its application to object identification is less common it has proved useful for the classification

of objects within typological sequences (e.g., [27]). Here we build on previous applications of

machine learning in archaeology and explore its use for rapidly and accurately identifying

large numbers of fractured and non-fractured rocks.

Differentiating modified from natural stone objects

People in the past flaked stone to form artifacts using percussive force initiating conchoidal

fracture and through this creating modified objects with distinctive flake scars, the
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morphology of which are well understood [28]. Most expert stone artifact analysts focus on the

production of stone artifacts, recording attributes associated with conchoidal fracture and dif-

ferent flaking strategies. However, if the goal is to understand human behavior in all forms,

not simply that related to the production of specific artifact types, then consideration is needed

of the widest range of possible artifacts. Conchoidal fracture often indicates intentional manu-

facture, but not always, as there are circumstances when environmental processes will produce

such fractures. Studies conducted in different parts of the world have proposed artifact attribu-

tion based on the frequency and proportion of technological attributes of conchoidal fracture,

as well as a consideration of the contexts in which objects were subject to modification (e.g.,

[29–33]). However, conchoidal fracture initiated via percussion is of course not the only

means by which rocks are modified. Fracture also occurs through actions like trampling

reflecting a different form of human activity than manufacture [8,34–36]. The composition of

Fig 1. Locations of the three case studies. a. Fayum north shore showing the X1, L1, and K1 study areas [11,12]; b. western New South Wales

Archaeological project areas with the town of Broken Hill shown for reference [13–15]; c. Te Mataku archaeological site Ahuahu, New Zealand [16].

Produced from ESA remote sensing data. Contains Copernicus Sentinel data [2022]. Satellite imagery from Sentinel-2 data available at https://scihub.

copernicus.eu/; Country outlines from https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0271582.g001
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artifact assemblages created through percussive initiated conchoidal fracture and rock clasts

subject to trampling will be different, but identifying one group as artifactual and the other as

natural relates to the assumed intentionality of the modification rather than the ability to draw

inferences about behavior more generally.

Heat fracture of rocks produces another class of modification [37]. Rocks were used as heat

retainers connected with particular pyro technologies developed in many places and times in

the past. Concentrations of heat retainers found frequently in archaeological contexts indicate

the locations of hearths or earth ovens. However, fire cracked rocks are also found distributed

across some archaeological sites not associated with fire features. In many cases, fire cracked

rocks show heat induced fractures but at times flaked and ground stone artifacts were also

used as heat retainers. These objects are sometimes associated with fire features, but also might

occur in more dispersed scatters. There are also examples of heat modification to facilitate flak-

ing [38]. As with the products of trampling, fractures from heating may indicate human activi-

ties suggesting that fire cracked rocks be considered as artifacts (although heat fracture may

also occur without human activity in a variety of situations).

Rocks were also modified in ways that did not leave flake scars. Rocks might be moved

from one location to another for example, with the most visible examples involving those with

a geological origin foreign to the location in which they are found [39]. Such rocks might be

identified as artifacts if concentrated through human action (or indeed the actions of non-

human primates).

In sum, stone artifacts preserve in many contexts and following the ‘man the tool maker’

trope, it is understandable why the distinction between flaked stone artifacts and unmodified

rocks has drawn attention. However, quite apart from the removal of the gender prescription,

archaeologists now recognize a much broader range of behaviors associated with stone arti-

facts including those discussed above. This raises questions about the range of materials to be

recorded during archaeological investigations consistent with ideas about what might consti-

tute modified stone artifacts following from a broader understanding of intentional human

behavior. It remains important to identify flaked stone artifacts but it may also be important to

understand levels of fragmentation in both flaked and non-flaked rock clasts, including clasts

that are heat fractured. It may also be necessary to compare the quantities of such modified

stone objects with the quantities of rock clasts that are not modified in these ways. This obvi-

ously increases the number of objects that must be observed and categorized, with these quan-

tities potentially reaching into the tens to hundreds of thousands of objects.

At issue here is not only the time that such identification might take but also the expertise

to undertake such identification. Consistent identification requires skill, and even if basic

knowledge is acquired identification may be difficult due to raw material type, or the fragmen-

tation of the object. Most practitioners, even the most inexperienced are able to record some

metric information, but the ability to classify artifacts is more challenging. Moreover, there is

also the question of agreement among such experts on how objects should be classified and

how the certainty of object identification is measured.

If archaeologists are interested in understanding the processes that led to the accumulation

of rock clasts of different types in archaeological sites then methods are needed that extend

those currently available for stone artifact identification. One approach is to automate object

identification through the application of machine learning technologies.

Materials

Two dimensional photographs of stone artifacts recorded in the three case study archaeolog-

ical projects from Egypt, Australia, and New Zealand provided a large data set with which to
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train and test the machine learning model described below. In the following we briefly describe

the case study areas before providing details of the photographs.

Case study 1, Egypt: Photographs come from artifact data recorded during the URU Fayum

project, a collaboration between the University of California Los Angeles, the Rijksuniversiteit

Groningen, and the University of Auckland. Permission to work in the Fayum, Egypt was

granted by the Supreme Council of Antiquities (now the Ministry of Tourism and Antiquities).

A large scale surface survey was undertaken across the northern shoreline of Lake Qarun,

Fayum, Egypt between 2008 and 2012 [12] recording surface scatters of flaked stone artifacts,

almost exclusively flint [40]. A quality assurance protocol included photographing a random

sample of artifacts with duplicate attributes recorded by independent analysts. All stone arti-

fact attributes and measurements followed definitions in Holdaway and Stern [41] supple-

mented by information relating to North African tool typology. A small sample of un-

modified cobbles from the Fayum (n = 36) were also photographed and recorded.

Case study 2, Australia: Data recording as part of the Western New South Wales Archaeo-

logical Program (WNSWAP) involving Macquarie University, the Australian National Univer-

sity, and the University of Auckland also involved a quality assurance protocol involving

photographs of a random sample of artifacts and their double recording by an independent

observer [42]. The stone artifact attributes and measurements taken also used the definitions

provided in Holdaway and Stern [41]. The data records and photographs used in this study

come from three WNSWAP projects: Stud Creek [13], Fowlers Gap [14], and Rutherfords

Creek [43]. Silcrete and quartz are the most common raw materials used for artifact manufac-

ture. Data collection occurred during the 1990s and into the 2000s with permissions provided

by the Broken Hill Local Aboriginal Land Council, New South Wales National Parks and

Wildlife Service, and the University of New South Wales Fowlers Gap Arid Zone Research Sta-

tion Management Committee.

Case study 3, New Zealand: Data from the New Zealand case study comes from the analysis

of material from the site of Te Makatu, a site excavated as part of The Ahuahu Great Mercury

Island Archaeological Project, a collaboration between the University of Auckland, landown-

ers, and tangata whenua Ngati Hei ki Wharekaho (the Māori tribe with ancestral connection

and authority) [16,44–48]. In addition to flaked stone artifacts, a sample of rocks were also

excavated. Permits to conduct the archaeological work on Ahuahu were obtained from Heri-

tage New Zealand.

The photographs of artifacts and rocks from Egypt and Australia are from legacy data

derived from completed projects, whereas those from the New Zealand case study are from an

ongoing project with access to photographs as well as the physical objects. The three projects

ran sequentially with the Australian project beginning in the 1990s, the Egyptian project begin-

ning in 2008, and the New Zealand project in 2012. As a consequence, camera technology

changed considerably. At Stud Creek, Australia photographs from the 1990s were taken on a

Kodak digital camera producing a kdc file format. Those at Fowlers Gap used a Nikon Coolpix

900 (E900S) compact digital camera producing jpg files while those at Rutherfords Creek used

Canon SLR digital cameras also producing jpg files. Canon cameras were also used in the

Egyptian and New Zealand projects producing jpg files.

Since photographs were taken in the field in Egypt and Australia, backgrounds included

natural surfaces (e.g., sand). This potentially influenced the identification of objects versus

rocks since most of the later examples came from the New Zealand case study and were photo-

graphed in laboratory conditions with white backgrounds, as was the entire New Zealand

flaked artifact sample. This difference in backgrounds raises the issue of model overfitting,

where features specific to the dataset are learnt instead of features that generalize well to

unseen examples. In this study for example, the model could have associated the white
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backgrounds used in laboratory conditions as a strong indicator of rocks instead of surface

patterns indicative of worked material. This would reduce instances of misclassification simply

based on the background present in the image. To mitigate against this unwanted bias, 1442

photos of rocks from New Zealand were photographed on a tray of sand as a means to reduce

the influence of image backgrounds on feature learning.

Different raw material types have different flaking properties leading to variability in the

visibility of the features of conchoidal fracture that archaeologists use to identify a stone arti-

fact and therefore also machine learning classifications. For example, a siliceous, fine grained

raw material (e.g., flint) may exhibit clearer landmark features of conchoidal fraction than a

coarse grained material (e.g., silcrete). Table 1 summarizes the frequency of artifacts manufac-

tured from different raw materials used as the training set and test for the machine learning

model (described below). While the majority are fine grained (chert and flint), just under 800

examples are coarser grained materials, quartzite and silcrete helping to mitigate the influence

of raw material types.

Methods and results

Stone artifacts have some advantages when seeking classification by either humans or

machines. The forms that manufactured artifacts take are constrained by the processes that

lead to fracture. This means that supervised learning based on prior classifications is possible

[49]. For example, using the approach advocated by Peacock [33], a human observer might

assess a series of artifact attributes. Peacock suggests such things as bulbs of percussion, radial

lines and bulbar scars, the number and concentration of these scars, and their orientation in

relation to the axis of the object as diagnostic attributes (cf. [41]). These attributes, Peacock

argues, are more reliable than a focus on the overall shape of the object when assessing whether

an object is manufactured or not.

In our study, initial identification and recording of manufactured stone artifacts used a

supervised classification following Peacock’s advice. Initial identification occurred in three

separate field contexts (Materials) with artifact attributes recorded by analysts and photo-

graphed. These photographs and associated artifact classification form both the training and

testing sets in the current machine learning experiment. In a separate, but related exercise, oth-

erwise unmodified rocks were selected from collections held at the University of Auckland

Archaeological Laboratories and similarly assessed and photographed.

Machine learning as applied here works in a different way to the attribute based classifica-

tion of rocks versus flaked artifacts proposed by scholars like Peacock [33]. Based on the results

of a training set of human classifications, machine learning analyzes images refining this

Table 1. Frequency of the stone artifact and rock raw material types used to train the machine learning data model, by case study location.

Basalt Bottle glass Chert Flint Limestone Petrified Wood Pumice Quartz Quartzite Rhyolite Sandstone Scoria Silcrete Total

Stone Artifacts
New Zealand 2033 2036

Australia 2 3 283 76 2 696 1067

Egypt 771 2 777

Total 2 2033 771 5 283 76 2 696 3868

Rocks
New Zealand 2342 57 53 8 148 197 28 33 2866

Egypt 35 35

Total 2342 57 35 53 8 148 197 28 33 2901

https://doi.org/10.1371/journal.pone.0271582.t001
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classification to match classification categories. The Sobel filter provides an illustration of how

this might be achieved. In image analysis, the filter uses a 3x3 matrix of numbers (called a ker-

nel) and applies this to each pixel in an image (convolved with the image). The result is a new

image that emphasizes edges. In machine learning, a convolution neural network does the

same thing, except that it learns the kernel itself and can learn and apply large numbers of such

filters (Fig 2). When a filter is applied to an image, it results in a ’feature map’, basically a heat-

map of where that feature is present. A neural network learns many of these in parallel. The

feature map is then treated as another image, creating what might be thought of as a hierarchy

of feature maps and filters. At the lowest level in this hierarchy, feature maps reflect things like

small inclusions in the rock, while at the highest level the feature maps learn things like artifact

and rock shapes, and includes the edges within these shapes. The name, deep neural network,

refers to the existence of a chain of kernels and feature maps. However, the successive images

in the filters do not represent attribute ‘features’ as Peacock [33] describes but are better

thought of as a series of increasingly refined object abstractions.

In our application of an object detection workflow based on deep neural networks to locate

and classify artifacts and rocks in images, the dataset consisted of 6769 images, 3868 artifacts

and 2901 rocks. Each image contained only one object of interest. Bounding boxes were

defined by human analysts viewing each image and drawing a box around the maximum

extent of the artifact in the image using the KITTI software [50]. Images and their annotations

were scaled to 300 x 300 pixels to keep processing requirements low. Aspect ratios were main-

tained, and black pixels were used to fill the remaining space.

An openly available PyTorch implementation of Faster R-CNN ResNet 50 was used as the

object detection model architecture [51,52]. Faster R-CNN [23] is a region proposal network

that learns to identify regions of interest in an image as well as classify them using a set of

shared convolutional neural network features. The convolutional neural network (CNN)

architecture has become the state-of-the-art in image processing methods [53]. The ResNet

component of the model is an implementation of residual networks [54], a method of improv-

ing CNN performance by allowing for much deeper, and thus more complex neural networks

to be trained effectively.

A set of 965 images were set aside as a benchmark to evaluate human and model perfor-

mance for single object detection. After training, the resulting deep neural network implemen-

tation was evaluated against the benchmark set of images to determine the accuracy of

differentiation compared to the original human classification (obtained either in the field for

the Egyptian and Australian case studies, or in the laboratory for the New Zealand case study).

A second evaluation asked two human analysts to reclassify the benchmark set of images with-

out access to the original classification (or the actual objects). Below the results of these two

Fig 2. Example of a convolution neural network (CNN) workflow.

https://doi.org/10.1371/journal.pone.0271582.g002
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classification exercises are compared. The benchmark set of images consisted of 268 rocks, 278

flakes, 249 tools, and 170 cores. This implementation of machine learning did not seek to dif-

ferentiate flakes, cores, and tools, but the inclusion of objects from all three categories ensured

variation in size and shape within the manufactured artifact category. For model evaluation,

the benchmark images underwent the same pre-processing described above (i.e., bound-

box creation and scaling). However, for the human benchmark set evaluation a different pro-

cess was followed where the bounding box of the object was used to crop it from its back-

ground at the original resolution leaving only images for the analysts to examine limited to the

same KITTI bounding boxes at 300 x 300 pixel resolution available to the machine. This

removed any advantage a human participant might have in classifying artifacts based on their

relative size as well as providing a measure of the upper bound of human accuracy on a full res-

olution image. This change is important because in effect it removed the availability of contex-

tual variable clues for the human participants. Whereas in the original field classification

where the analyst was able to hold and manipulate the stone artifact while recording attributes,

we now asked the analyst to classify the object based on a 2D image alone, in other words

using the same data form assessed in the machine learning experiment.

In our experiment, the machine learning model was trained on the remaining 5804 anno-

tated images (manufactured stone artifacts and rocks) using the Adam optimizer [55] with a

learning rate of 0.001 and a batch size of 16. To prevent exploding gradients, these were clipped

to 1. Training was conducted for 30 epochs using image augmentation via vertical and hori-

zontal flipping with probability set to 0.5 each. The number of training epochs were deter-

mined via 10 fold cross-validation over 100 epochs with validation after every epoch (Fig 3).

The final model was trained on all available training data and took 6.8 hours on an NVIDIA

P40 GPU.

The trained model generated multiple region proposals for an image, each with a classifica-

tion output score between 0 (low) and 1 (high) for each class label. For evaluation purposes,

the proposals were ranked by their associated classification scores, with the classification label

associated with the highest score used as the predicted class for the image. Since each image

only contained one object, this was considered sufficient to determine the object’s

classification.

The machine learning model correctly classified 100% of the benchmark set compared to

the original in field or in laboratory classification, with a mean intersection over union (IoU)

score of 0.82 and a standard deviation of 0.13 for the predicted bounding box. This ratio com-

pares the accuracy with which the model was able to identify the bounding box added manually

to the classification images. Ratio values greater than 0.70 are considered good. The two human

participants who independently reclassified the benchmark set achieved an accuracy of 99.4%,

and 94.8% respectively, that is close to but in both cases slightly lower than the machine learn-

ing model. Based on these results, using 2D images, it is possible to consistently classify con-

choidally flaked stone artifacts from rocks across a range of lithologies, where stone artifacts are

sourced from archaeological assemblages deposited in different places and time periods.

Discussion

This initial application used a machine learning model to distinguish between only two classes

of rock clast, those with evidence of conchoidal fracture and those without. The machine learn-

ing algorithm determined the classification based on previous human identifications and did

not take the context of the objects into account. This means the machine learning algorithm

on its own could not definitively tell us that an object was an artifact. Unworked objects from

the three test cases might still be artifactual in the sense that they were accumulated by human
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or non-human primates, and conchiodal fracture may have occurred under natural circum-

stances. However, the machine learning experiment does overcome the issue that Peacock [33]

raised about the use of experts. In effect, machine learning model iterated human expertise by

modelling this expertise and allowing the result to be applied in multiple contexts, including

those where the original human experts were not present. Moreover, the model applied this

expertise in a uniform manner to large numbers of objects. With the need for the physical

presence of experts removed, and the ability to duplicate the instantiations of the software, it

becomes possible to analyze very large assemblages rapidly in a variety of settings including for

example, museums.

The initial classifications of the objects used in this experiment were created by humans

who examined the physical objects. This means that the whole object could be considered, as

opposed to a single side of an object as is the case with a 2D photographic image. The results of

the two human participant identifiers assessed against the machine learning model suggested

that the model was more accurate. However, the way objects were identified differed between

humans and the model across the stages of the experiment. Humans initially considered the

objects as a whole in the field or in the laboratory and classified these based on their previous

experience and observations, including an understanding of the context in which they were

found. The machine learning model used the results of these observations to develop an image

based classification scheme. Therefore, it also used previous experience but without the aid of

context and size. Subsequently, human participants were tested against the machine but only

Fig 3. Training (train) and validation (val) mean accuracy and IoU scores for 10 fold cross-validation over the set

of 5804 training images. Results suggest minimal overfitting to the training data however additional improvements to

accuracy and IoU were limited after 30 epochs.

https://doi.org/10.1371/journal.pone.0271582.g003
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by giving them access to the 2D photographs, with context and size removed, which explains

their inability to better the machine learning model. The advantage machine learning provides

compared to the human analysts is that its identifications were learnt and determined statisti-

cally, whereas those by humans potentially incorporated elements of doubt or second-guesses.

Essentially the model is more consistently objective than the humans.

The obvious next step is to develop the training sets further with the goal of increasing the

machine learning classification beyond the two classes identified in the current work. However,

this involves not only additional training sets but also improvements to object images, moving

to 3D images that provide the complexity needed to classify fractured objects from conchoidal

cores to fire fractured rock. Improvements are also needed in the software to enable more com-

plex machine learning model development. With three dimensional models comes the ability

to not only classify objects, but to derive data on size and geometric measures of shape.

The 2D images from the Egyptian and Australian case studies were taken in the field. The

human analysts used in the machine learning experiment noticed variability in terms of image

quality, with some images out of focus making the objects hard to identify. Differences in

image quality illustrate another advantage of the machine learning model. Where humans

look for platforms, dorsal scars, and bulbs of percussion (amongst other features, following

Peacock [33]), the model builds an image based classification system. This may be extremely

useful when dealing with raw materials like quartz where the features associated with conchoi-

dal fracture are not obvious. It also has potential for dealing with already extant photographic

collections where the quality of the images may be variable.

Finally, there are several additional avenues for future research with this methodology. In

the case of stone artifacts the aim would be to expand the analysis to the classification of types

of stone artifacts such as flakes, cores, and tools, and differences therein. One of the challenges

in doing this is not just to identify such objects but to identify when a stone artifact may meet

the criteria for several classification types and therefore not belong to a single class, following

for example, the reuse of artefacts previously discarded. Artifact classification is not straight-

forward as many scholars have pointed out, with objects manufactured, used, and modified

many times over prior to discard changing their function (e.g. [56,57]). The ability to identify

features that relate to these changes would permit life histories of the objects to be recorded.

Conclusions

Using stone artifact images recorded from archaeological sites in Egypt, Australia, and New

Zealand, and a sample of unmodified rocks, a machine learning classification model was devel-

oped. The training data derived from object identifications undertaken in the field and in a lab-

oratory setting together with 2D photographs. The machine learning model performed well

when tested against two human analysts given access to the same 2D photographic data sets as

the machine. Machine learning is a promising technology for classifying large numbers of rock

clasts present in archaeological sites and helping to determine their behavioral significance.

While the artifactual status of objects depends on context as well as object form, machine learn-

ing models provide the ability to rapidly and objectively classify objects based on previous iden-

tifications. Developments in this technology and future applications offer the potential to

greatly enhance the ability to analyze all the rock casts that make up archaeological assemblages.
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