

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

In vivo confocal microscopy of the cornea in health and disease

Dipika Vandravanbhai Patel

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Ophthalmology, University of Auckland 2005

DECLARATION

I hereby declare that I am currently registered as a candidate for the degree of Doctor of Philosophy in Ophthalmology, University of Auckland. I am the sole author of this thesis: all references cited have been consulted by me; all studies were conceived and designed by myself. I performed the majority of data acquisition and entry and performed all analysis. This thesis and any research within has not been, is being, or will be submitted for any other higher degree at the University of Auckland or other education centre.

I, Dipika Patel, declare that the information is complete and accurate, that no relevant information has been withheld that I am aware of and believe that I have complied with all of the University requirements in the regulations associated with my degree.

Signed......Date.....

Before me.....Designation....

Signed......Date.....

ABSTRACT

The cornea is the transparent structure forming the anterior eye. Principal functions include: transmitting and focusing light onto the retina, containing intraocular pressure, and providing a protective interface with the environment. The specialized microstructural organization of the cornea is key to these functions and maintenance of corneal integrity.

In vivo confocal microscopy enables examination of the living human cornea at the microstructural level. This technique, in combination with computerized topography, corneal aesthesiometry and other clinical assessments has been utilized in a series of inter-related studies of the human cornea.

Both slit scanning and laser scanning *in vivo* confocal microscopes were used and the attributes and performance of the two types of microscope were compared, demonstrating marked differences.

Quantitative analysis of the sub-basal nerve plexus in the normal cornea and the inherited ectatic condition of keratoconus was correlated with central corneal sensitivity, revealing that nerve density does not change with increasing age and that nerve density is positively correlated with corneal sensitivity. However, in keratoconus, central corneal sensation, sub-basal nerve density, and basal epithelial density are all significantly lower than normal.

A novel technique developed to map the corneal sub-basal nerve plexus enabled elucidation of the previously enigmatic architecture, revealing an overall radial pattern with a clockwise whorl at the area of convergence, inferior to the corneal apex. Keratoconic corneas demonstrated gross abnormalities of the nerve plexus even in mild cases. A two-dimensional reconstruction of the inferior limbus was also produced using this method.

Ш

Analysis of the corneal endothelium in posterior polymorphous dystrophy revealed that endothelial density does not correlate with the clinical severity of this dystrophy. Key observations included hyper-reflective endothelial nuclei and apparent aggregation of keratocytes around the endothelial lesions. Investigation of hyper-reflective corneal endothelial nuclei *per se*, revealed that these are not seen in the normal cornea but are associated with endothelial trauma, intraocular surgery or disease states that primarily affect the endothelium.

In conclusion, using *in vivo* confocal microscopy, these studies have provided important qualitative and quantitative data that add to our knowledge of the human cornea, at the microstructural level, in health and disease states.

ACKNOWLEDGEMENTS

It is with a great sense of pride and relief that I come to the end of what has been a challenging and exciting project. The completion of this thesis could, however, not have been possible without the support, encouragement, and input of so many.

Foremost, I would like to thank Auckland Healthcare Services Ltd and the Maurice and Phyllis Paykel Trust for providing my salary as a Corneal Research Fellow over the past 3 years, as well as providing travel grants that have enabled me to present my work at national and international conferences. This thesis would not have been possible without these generous contributions. I am grateful for, and humbled by, their vision and philanthropy.

In acknowledging the assistance of various individuals who have contributed towards this project, one person towers above all others. Professor Charles McGhee has been the finest guide, mentor and supervisor that one could wish to have. His relentless pursuit of excellence and unfailing support in conceiving the PhD project, accessing funding, and his attention to detail when editing my manuscripts have been instrumental in seeing this work come to fruition. The great privilege about working with Professor McGhee was his astute encouragement of investigative creativity without compromising his insistence on the highest standards of scientific integrity. I have an intense admiration for his expertise, energy and enthusiasm, and am ever grateful for his kind yet firm direction. He has given unstintingly his valuable time in facilitating every aspect of this thesis.

There are several other individuals who have provided me with significant support over the course of this project. In particular would like to thank for Dr Trevor Sherwin and Dr Jennifer Craig for their invaluable advice and wisdom, particularly during the early stages of this project and Dr Christina Grupcheva for providing practical instruction and advice upon *in vivo* confocal microscopy techniques.

V

Thanks are also due to Yun Shan Phua and Dr Judy Ku for their valuable contributions to parts of this thesis, and to Nigel Brookes for his invaluable computing and technical support.

I am grateful to Dr. Trevor Gray and Dr. Peter Ring for referring many interesting patients with unusual corneal conditions from the Eye Institute, Auckland. The administrative support from Alison O'Connor, Renae Paul, Sereh Newman, Joan Ready and Hutokshi Chinoy has been much appreciated.

Finally, I must take this opportunity to acknowledge my parents and family who have always been a positive source of encouragement and who have never flagged in their support of my aspirations.

TABLE OF CONTENTS

		Pages
Title page Declaration Abstract Acknowledgements Table of contents List of tables, figure List of abbreviation	es and formulae	 - V V-V V -X X -X X XX-XX
SECTION I	INTRODUCTION AND METHODS	1
Chapter 1	Normal corneal anatomy and physiology	2
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Macroscopic corneal anatomy Corneal epithelium Bowman's layer Corneal stroma Descemet's membrane Corneal endothelium The limbus	3 4-5 6 6-7 7-8 8-9 9
Chapter 2	References for chapter 1 Methods used in relation to corneal evaluation	10-12 13
Chapter 2	methods used in relation to cornear evaluation	15
2.1 2.2 2.3 2.4 2.5 2.6	Visual acuity Slit lamp biomicroscopy Corneal aesthesiometry Corneal topography Specular microscopy Corneal pachymetry	14 15-17 17-20 21-24 24-26 26-30
Chanter 2	References for chapter 2	31-35
Chapter 3	In vivo confocal microscopy of the cornea	36
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Introduction Historical overview Principles of confocal microscopy <i>In vivo</i> confocal microscopy images Clinical application The normal healthy human cornea Infective keratitis Corneal refractive surgery Corneal dystrophies and ectasias Other clinical studies	37-38 38-39 39-41 41-42 42 42-48 48-50 51-55 55-56 57-59
	References for chapter 3	60-67

SECTION II	COMPARING IN VIVO CONFOCAL MICROSCOPES	68
Chapter 4	A comparison of the known attributes of laser scanning and slit scanning <i>in vivo</i> confocal microscopes	69
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Introduction Light source Principles Objective lenses Image acquisition modes and settings Clinical examination methodology The living human cornea: layer by layer Artifacts Quantitative image analysis using proprietary software Conclusions	70 70 71 71-72 72-74 74-77 78 79-80 81-82 82-83
Chapter 5	Pilot studies assessing differences between laser scanning and slit scanning <i>in vivo</i> confocal microscopes	84
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Introduction Study 1: Image contrast Study 2: Illumination intensity Study 3: Calibration Study 4: <i>In vitro</i> imaging Study 5: <i>Ex vivo</i> imaging Conclusions	85 85-87 88-89 89-93 93-94 94-96 97-98
	References for chapters 4 and 5	99
SECTION III	References for chapters 4 and 5 SUB-BASAL NERVE PLEXUS STUDIES	99 100
SECTION III Chapter 6		
	SUB-BASAL NERVE PLEXUS STUDIES The sub-basal plexus nerve density of the normal living cornea imaged by slit scanning <i>in vivo</i> confocal microscopy and correlated with corneal sensitivity Introduction Methods Results Discussion Conclusions	100 101 102 102-104 104-106 106-107 108
Chapter 6 6.1 6.2 6.3 6.4 6.5	SUB-BASAL NERVE PLEXUS STUDIES The sub-basal plexus nerve density of the normal living cornea imaged by slit scanning <i>in vivo</i> confocal microscopy and correlated with corneal sensitivity Introduction Methods Results Discussion Conclusions References for chapter 6	100 101 102 102-104 104-106 106-107 108 109
Chapter 6 6.1 6.2 6.3 6.4	SUB-BASAL NERVE PLEXUS STUDIES The sub-basal plexus nerve density of the normal living cornea imaged by slit scanning <i>in vivo</i> confocal microscopy and correlated with corneal sensitivity Introduction Methods Results Discussion Conclusions	100 101 102 102-104 104-106 106-107 108
Chapter 6 6.1 6.2 6.3 6.4 6.5	SUB-BASAL NERVE PLEXUS STUDIES The sub-basal plexus nerve density of the normal living cornea imaged by slit scanning <i>in vivo</i> confocal microscopy and correlated with corneal sensitivity Introduction Methods Results Discussion Conclusions References for chapter 6 Mapping of the normal human corneal sub-basal nerve	100 101 102 102-104 104-106 106-107 108 109

Chapter 8	Corneal sensation and laser scanning <i>in vivo</i> microstructural analysis of the corneal epithelium and sub-basal nerve plexus in keratoconus	124
8.1 8.2 8.3 8.4 8.5	Introduction Methods Results Discussion Conclusions	125 126-128 128-131 132-134 134
	References for chapter 8	135-136
Chapter 9	Mapping the corneal sub-basal nerve plexus in keratoconus by <i>in vivo</i> laser scanning confocal microscopy	137
9.1 9.2 9.3 9.4 9.5	Introduction Methods Results Discussion Conclusions	138 139-140 140-144 144-147 147
	References for chapter 9	148-149
SECTION IV	STUDIES OF THE LIMBUS, ENDOTHELIUM, AND ILLUSTRATIVE CASE REPORTS	150
Chapter 10	Laser scanning <i>in vivo</i> confocal microscopy of the normal human limbus.	151
10.1 10.2 10.3 10.4 10.5	Introduction Methods Results Discussion Conclusions	152 152-154 154-159 159-161 161
	References for chapter 10	162-163
Chapter 11	<i>In vivo</i> confocal microscopy of posterior polymorphous dystrophy	164
11.1 11.2 11.3 11.4 11.5 11.6	Introduction Subjects Methods Results Discussion Conclusions References for chapter 11	165 165-168 168 169-172 172-175 175 176-177

Chapter 12	Clinical and microstructural analysis of patients with hyper-reflective corneal endothelial nuclei imaged by <i>in vivo</i> confocal microscopy	178
12.1 12.2 12.3 12.4 12.5	Introduction Methods Results Discussion Conclusions	179 180-181 182-186 186-188 189
	References for chapter 12	190
Chapter 13	Clinical case reports	191
13.1 13.2	Introduction <i>In vivo</i> microstructural analysis of the cornea in Maroteaux-Lamy syndrome	192 192
13.3 13.4 13.5 13.6 13.7	Introduction Case report Discussion Conclusions Surgical detachment of Descemet's membrane and endothelium imaged over time by <i>in vivo</i> confocal microscopy	192-193 193-196 196-198 198 199
13.8 13.9 13.10 13.11 13.12	Introduction Case report Discussion Conclusions In vivo confocal microstructural analysis of corneal endothelial	199 199-203 203-205 205 206
13.13 13.14 13.15 13.16	changes in a patient on long term chlorpromazine therapy Introduction Case report Discussion Conclusions	206 206-208 208-209 209
	References for chapter 13	210-212
SECTION V	CONCLUSIONS	213
Chapter 14	Conclusions	214
14.1 14.2 14.3 14.4	Introduction Comparing <i>in vivo</i> confocal microscopes Studies of the normal sub-basal nerve plexus Studies of the sub-basal nerve plexus and epithelium in keratoconus	215 215-216 216-217 217-218
14.5 14.6 14.7 14.8	Corneo-scleral limbus study Studies of the corneal endothelium Clinical case reports Conclusions	218-219 219-220 220-221 221-222

SECTION VI	APPENDICES	223
Appendix 1	Publications and presentations related to this thesis	224-227
Appendix 2	Consent form for in vivo confocal microscopy	228
Appendix 3	Copies of scientific papers published or in press	

LIST OF FIGURES, TABLES, AND FORMULAE

FIGURES

Number	Description	Page
SECTION I		
Chapter 1		
Figure 1.1	The gross anatomy of the human eye.	3
Figure 1.2	A histological cross section of the normal human cornea demonstrating the five layers.	4
Chapter 2		
Figure 2.1	The Cochet-Bonnet aesthesiometer kit with the manufacturers conversion table (a). The Cochet-Bonnet aesthesiometer consists of a nylon thread of adjustable length (b).	18
Figure 2.2	(a) The non-contact corneal aesthesiometer. (b) The stimulus jet is positioned 1cm from the central cornea.	20
Figure 2.3	An example of a normal Orbscan print out, displaying keratometric axial, anterior elevation, posterior elevation, and pachymetry maps.	23
Chapter 3		
Figure 3.1	The optical pathway used in TSCM (Adapted after Cavanagh et al).	40
Figure 3.2	The optical pathway used in SSCM.	41
Figure 3.3	SSCM images of the healthy living cornea demonstrating (a) basal epithelium, (b) sub-basal nerve plexus, (c) anterior stroma, (d) mid stroma, (e) posterior stroma, and (f) endothelium.	43
Figure 3.4	Acanthamoeba cysts (arrow) at the level of Bowman's layer imaged by SSCM.	49
Figure 3.5	SSCM image of hyper-reflective interface particles (arrow) following LASIK.	54
SECTION II		
Chapter 4		
Figure 4.1	The Confoscan 2 <i>in vivo</i> confocal microscope in clinical use (a). During examination, the objective lens tip is separated from the cornea by a layer of Viscotears (b).	75
Figure 4.2	The RCM in clinical use.	76
Figure 4.3	(a) The RCM head has a focal plane adjustment ring (arrow) and a sterile disposable cap (arrowhead) placed over the objective lens tip. (b) The objective lens used with the RCM.	77

Figure 4.4	A CCD camera "real time" or live image of the cornea from the temporal aspect demonstrating how the laser beam is aligned with the corneal apex (arrow) (original magnification 1x).	77
Figure 4.5	Layers of the normal human cornea imaged by SSCM and RCM <i>in vivo</i> confocal microscopy. All images are taken from the same subject.	78
Figure 4.6	Oblique optical sections of (a) the posterior stroma and endothelium imaged by SSCM and (b) the anterior stroma, sub-basal nerve plexus and basal epithelium imaged by RCM.	79
Figure 4.7	Images of the cornea during involuntary movements of the subject's eye demonstrating blurring and distortion of keratocyte nuclei (a) SSCM and (b) RCM.	79
Figure 4.8	RCM compression artifacts demonstrating dark bands observed in (a) Bowman's layer, (b) the anterior stroma, (c) the posterior stroma, and (d) the endothelium.	80
Figure 4.9	Navis Endothelial Analysis Software detects the dark cell borders of endothelial cells.	81
Figure 4.10	Manual analysis of endothelial cell density.	82
Chapter 5		
Figure 5.1	Surface plots of pixel intensities of <i>in vivo</i> confocal images of the sub-basal nerve plexus, anterior stroma, and posterior stroma taken from a single subject using SSCM and RCM. In all graphs, the vertical scale represents pixel intensity (Grayscale units).	87
Figure 5.2	RCM images of the same field of view at the level of the sub-basal nerve plexus using the automatic brightness setting (a) and manually reducing the brightness (b), making the nerve beadings (arrow) more prominent.	89
Figure 5.3	A micrometer scale etched onto a glass slide imaged by (a) SSCM and (b) RCM	91
Figure 5.4	Images of 10 μ m latex calibration beads taken using SSCM (a) and RCM (c). Three dimensional reconstruction of volume scans taken by SSCM (b) and RCM (d).	92
Figure 5.5	Images of the same keratocytes on a glass slide imaged using the (a) light microscope, (b) SSCM, and (c) RCM.	94
Figure 5.6	A CCD camera "real time" or live image of the corneo-scleral button (arrowhead) from the temporal aspect demonstrating the rim of silicon sealant (arrow) used for mounting the button.	95
Figure 5.7	Imaging of ex vivo corneal tissue using SSCM and RCM, layer by layer.	96
Figure 5.8	(a) Three dimensional reconstruction of RCM images of mid stromal keratocytes in <i>ex vivo</i> tissue.(b) A saggital view reveals the lamellar arrangement of keratocytes.	96

SECTION III

Chapter 6

Figure 6.1 Sub-basal nerve fibre bundles within the defined frame were traced to 104 determine sub-basal nerve density.

Chapter 7

- Figure 7.1 Postulated schematics for the distribution of sub-basal corneal nerves 111 by Muller et al in (a) 1997, and (b) 2003.
- Figure 7.2 The fixation grid (a), consisted of 17 spot targets. Each spot is separated 113 by 6cm horizontally and 7cm vertically. This grid was viewed by the subject at a distance of 1.1m. A CCD camera "real time" or live image of the cornea from the temporal aspect (b) demonstrating how the laser beam is aligned with the corneal apex (arrow) (original magnification 1x).
- Figure 7.3 A montage of 315 images depicting the architecture of the sub-basal nerve 115 plexus of subject (i). (Scale bar 400µm).
- Figure 7.4 The vortex or whorl-like pattern of the sub-basal nerve plexus in the 116 infero-central cornea of subject (ii). This montage was constructed using 32 images. (Scale bar 200µm)
- Figure 7.5 Electronic tracings of nerve fibre bundles provide schematics devoid of 116 background data that highlight the infero-central whorl-like complex in three corneas of three subjects.
- Figure 7.6 (a) Probable sites of perforation of nerves through Bowman's layer 117 (arrow) in the infero-temporal mid-periphery of subject (iii). (b) Multiple non-epithelial cells, possibly Langerhans cells (arrow), observed anterior to Bowman's layer, as determined by dynamic imaging, in the nasal mid-periphery of subject (iii). (Scale bar 100μm)

Chapter 8

- Figure 8.1 *In vivo* confocal images of the sub-basal nerve plexus in the normal cornea (a), and in keratoconus associated with rigid gas permeable contact lens wear (b).
- Figure 8.2 *In vivo* confocal microscopy of the basal epithelium in normal cornea (a), 129 in keratoconus with no history of contact lens wear (b) and in keratoconus associated with rigid gas permeable contact lens wear (c).

Chapter 9

- Figure 9.1 A wide-field montage consisting of 428 images, depicting the 141 Architecture of the sub-basal nerve plexus in a case of moderate keratoconus (subject B).
- Figure 9.2 Electronic tracings of nerve fibre bundles provide schematics devoid of 142 background data in subjects A, B, C and D. These tracings are superimposed, to scale, onto the corresponding tangential, keratometric Orbscan II corneal topography maps.
- Figure 9.3 Focal areas of hyper-reflectivity at the level of Bowman's layer at the 143 topographic base of the cone in subject C (a) superiorly and

(b) infero-temporally.

Figure 9.4 Apparent abrupt terminations of sub-basal nerve fibre bundles within the 144 region of the cone in severe keratoconus (subject D).

SECTION IV

Chapter 10

Figure 10.1	A slit-lamp photograph of the inferior limbus, demonstrating pigmented borders outlining the rim of individual palisade ridges (original magnification 40x).	155
Figure 10.2	Laser scanning <i>in vivo</i> confocal images of (a) the central basal epithelium, the corneal limbal basal epithelium, and (c) the limbal palisades demonstrating palisade ridges (arrowhead) and basal epithelial cells (arrow).	155
Figure 10.3	A two-dimensional reconstruction of the corneo-scleral limbus. Three anatomical regions are discernable (a) the peripheral cornea, (b) the corneal limbus and (c) the scleral limbus.	156
Figure 10.4	Subjects exhibited a variety of limbal palisade morphologies on laser scanning <i>in vivo</i> confocal microscopy. Absent palisade ridges (a) and limbal palisades in a non pigmented subject (b). In subjects with moderate pigmentation, hyper-reflective cells were observed in palisade basal cells (c) while markedly pigmented subjects exhibited hyper-reflective cells within the rete pegs in addition to the palisade basal cells.	157
Chapter 11		
Figure 11.1	Slit lamp photograph of curvilinear rows of endothelial vesicular lesions (arrows) in the right eye of case 2 (Original magnification x40).	166
Figure 11.2	In vivo confocal microscopy of the endothelium in cases 1 (a) and 2 (b) revealed prominent, bright endothelial nuclei (arrows). Scale bar 50 μ m.	170
Figure 11.3	Focal vesicular endothelial lesions (arrows) observed on <i>in vivo</i> confocal microscopy in cases 4 (a) and 5 (b). Scale bar = $50 \mu m$.	
Figure 11.4	(a) <i>In vivo</i> confocal microscopy of endothelial lesions in case 1. Image (b) is at the level of the deep stroma adjacent to the lesion seen in (a) and demonstrates keratocyte aggregation around the lesion (arrows). Abnormal endothelial lesions observed in case 3 (c), case 5 (d), case 6 (e) and case 3 (f, g, h, i). Scale bar 50µm	172
Chapter 12		
Figure 12.1	(A) Using Navis Endothelial Analysis Software, a frame size of 0.06mm ² is selected. (B) Automatic cell analysis in the presence of bright endothelial nuclei often gives erroneous results. (C) Manual	181

Figure 12.2 *In vivo* confocal microscopy of the endothelium in a normal cornea (a). 183 Bright endothelial nuclei (arrows) are visible following penetrating keratoplasty (b) and in Brown-McLean syndrome (c). A PMMA contact lens wearer with a low endothelial density does not exhibit bright nuclei (d). (Scale bar 50µm)

adjustment of cell borders gives greater accuracy.

Figure 12.3	Multinucleated cells (arrows) were seen in a case of PPD (a) and in an eye with corneal guttata (b). (Scale bar 50µm)	185
Chapter 13		
Figure 13.1	(a) Slit lamp biomicroscopy highlighting mild stromal haze predominantly involving the posterior stroma (arrows) and a right fundus photograph(b) showing fine macular retinal folds (arrow).	194
Figure 13.2	In vivo confocal microscopy of the cornea demonstrating a normal sub-basal nerve appearance (a), the anterior stroma (b), the posterior stroma (c,d) with vacuolated keratocytes (arrows). Posterior stromal keratocytes from a normal subject are shown for comparison (e). The reported subject had normal endothelial cell morphology and density (f). (scale bar 50 μ m)	196
Figure 13.3	Slit lamp photography of the right eye showing a curvilinear break in Descemet's membrane (a) temporally and (b) nasally.	201
Figure 13.4	<i>In vivo</i> confocal microscopy of the right temporal cornea on initial presentation (9 months post-surgery) revealed reduced endothelial density with cellular pleomorphism and polymegathism (a). Descemet's folds (arrow were prominent (b).	202 /)
Figure 13.5	Three years after initial assessment (9 months post surgery), <i>in vivo</i> confocal microscopy of the right temporal cornea demonstrated that the endothelial density remained unchanged during the 3-year period, however, there was less cellular pleomorphism and polymegathism (a). Folds and breaks in Descemet's membrane were present (arrows) and there was increased reflectivity at the level of Descemet's membrane (b,c,d)	203).
Figure 13.6	Slit-lamp photographs highlighting multiple fine creamy-white deposits (arrows) on the corneal endothelium (a) and anterior lens capsule (b) of the left eye.	207
Figure 13.7	 (a) <i>In vivo</i> confocal microscopy of the left cornea demonstrating multiple hyper-reflective (arrows) deposits on the posterior endothelial surface and sparse bright deposits within the (c) anterior stroma and (e) posterior stroma. Endothelial cells (b), anterior stroma (d) and posterior stroma (f) from a normal subject are shown for comparison. (Scale bar 50 μm) 	208
	TABLES	
Number	Description	Page
SECTION I		
Chapter 2		
Table 2.1	The proportion of light reflected at interfaces of media with differing refractive indices.	24
Chapter 3		

Table 3.1A summary of objective lenses available for tandem scanning42

(TSCM) and slit scanning (SSCM) *in vivo* confocal microscopes and their properties.

Table 3.2 A summary of the results of quantitative studies of the normal central 44 human corneal epithelium. Table 3.3 A summary of the results of quantitative studies of the normal central 45 human corneal sub-basal nerve plexus. Table 3.4 A summary of the results of quantitative studies of normal central 46 human stromal keratocytes. Table 3.5 A summary of the results of quantitative studies of the normal central 48 human corneal endothelium. Table 3.6 A summary of the results of quantitative *in vivo* confocal microscopy 59 studies of the cornea, layer by layer in disease states and following surgery.

SECTION II

Chapter 4

Table 4.1A summary of objective lenses available for *in vivo* confocal microscopes72and their properties.

Chapter 5

Table 5.1	Mean contrast values for each <i>in vivo</i> confocal micoscope according to corneal layer.	86
Table 5.2	Comparison of measurements of images taken using SSCM and RCM with the manufacturer's quoted size.	93

SECTION III

Chapter 6

Table 6.1	A summary of the three subject groups.	104
Table 6.2	Comparison of sub-basal nerve density and corneal sensitivity for each of five corneal locations.	105
Table 6.3	Summary of data for all parameters according to age.	105
Table 6.4	Spearman's rho correlation for all parameters in the whole data set. Significant correlations are highlighted in yellow.	106
Chapter 8		
Table 8 1	Comparison of corneal sensitivity threshold, sub-basal nerve density	130

Table 8.1Comparison of corneal sensitivity threshold, sub-basal nerve density,
and basal epithelial parameters (diameter, area, and density) for each
of three groups (normal, non-contact lens wearing keratoconics (KNCL),
and contact lens wearing keratoconics (KCL)).130

Table 8.2	Comparison of corneal sensitivity threshold, sub-basal nerve density, and basal epithelial parameters (diameter, area, and density) for different severities of keratoconus.	131
Table 8.3	Spearmann's rho correlations for corneal sensitivity threshold, sub-basal nerve density, and basal epithelial parameters (diameter, area, and density).	131
Chapter 9		
Table 9.1	A summary of the age, steepest simK keratometry, severity of keratoconus and images obtained and used for each subject and eye examined.	140
SECTION IV		
Chapter 10		
Table 10.1	Comparison of three basal epithelial parameters (diameter, area and density) for each of three corneal regions (central, limbus-cornea and limbus-palisade) between a younger and older age group (N=50).	158
Table 10.2	Comparison of three basal epithelial parameters (diameter, area and density) for each of three corneal regions (central, limbus-cornea and limbus-palisade) (N=50 eyes).	159
Chapter 11		
Table 11.1	Results of endothelial cell analysis.	169
Chapter 12		
Table 12.1	Endothelial morphology and corneal thickness in eyes exhibiting bright nuclei according to diagnosis. (PPD=posterior polymorphous dystrophy, PK=penetrating keratoplasty, ICE= iridocorneal endothelial syndrome, N=number of patients, NA=not available).	182
Table 12.2	Endothelial morphology and corneal thickness in eyes with and without bright endothelial nuclei.	184
Table 12.3	Comparison of age, time from surgery and diagnoses between groups. No statistical difference was identified in relation to mean time from surgery (P=0.744 Kruskal-Wallis test). (PPD=posterior polymorphous dystrophy, ICE= iridocorneal endothelial syndrome)	185
Table 12.4	The proportions of subjects (eyes) exhibiting bright nuclei according to diagnosis (PPD=posterior polymorphous dystrophy, PK=penetrating keratoplasty, ICE= iridocorneal endothelial syndrome).	186

FORMULAE

Number	Description	Page
SECTION I		
Chapter 2		
Formula 2.1	Calculation of the magnifying power of a Galilean telescope.	15
Formula 2.2	2 Calculation of instantaneous or axial power.	22
Formula 2.3	Calculation of the fraction of incident light reflected by the cornea.	25
SECTION II	<u>l</u>	
Chapter 4		
Formula 4.1	Calculation of the distance between in vivo confocal images.	73
Chapter 5		
Formula 5.1	Calculation of contrast.	85

LIST OF ABBREVIATIONS USED IN THIS THESIS

BSCVA	best spectacle corrected visual acuity
CCD	charge-coupled device
CMTF	confocal microscopy through focusing
ECCE	extracapsular cataract extraction
HRT	Heidelberg Retina Tomograph
HSV	herpes simplex virus
ICE	iridocorneal endothelial syndrome
IOL	intraocular lens
LASIK	laser in situ keratomileusis
MPS	mucopolysaccharidoses
NAVIS	Nidek Advanced Vision Information System
NCCA	Non-contact corneal aesthesiometer
ОСТ	optical coherence tomography
OD	oculus dexter (right eye)
OS	oculus sinister (left eye)
OU	oculus uterque (both eyes)
РК	penetrating keratoplasty
PMMA	polymethyl methacrylate
PPD	posterior polymorphous dystrophy
PRK	photorefractive keratectomy
RCM	Rostock corneal module
SSCM	slit scanning in vivo confocal microscope
TSCM	tandem scanning in vivo confocal microscope
UAVA	unaided visual acuity
v	volts
W	watts

nm	nanometers
μm	micrometers
mm	millimeters
mbar	millibars
m/s	meters per second

XXI