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Abstract. Together with domain and entity integrity, referential integrity em-
bodies the integrity principles of information systems. While relational databases
address applications for data that is certain, modern applications require the han-
dling of uncertain data. In particular, the veracity of big data and the complex inte-
gration of data from heterogeneous sources leave referential integrity vulnerable.
We apply possibility theory to introduce the class of possibilistic inclusion de-
pendencies. We show that our class inherits good computational properties from
relational inclusion dependencies. In particular, we show that the associated im-
plication problem is PSPACE-complete, but fixed-parameter tractable in the input
arity. Combined with possibilistic keys and functional dependencies, our frame-
work makes it possible to quantify the degree of trust in entities and relationships.

Keywords: Computational complexity- Inclusion dependency- Possibility theory- Rea-
soning- Referential integrity

1 Introduction

Big data has given our community big opportunities and challenges. One of these chal-
lenges is to build information systems that accommodate different dimensions of big
data, including its veracity. According to an IBM study, one in three managers distrust
the data that they use to make decisions'. The ability to quantify the degree of uncer-
tainty in data would enable us to found decision making on data that is perceived to be
sufficiently trustworthy.

In [15, 17] the authors presented a design framework for relational databases with
uncertain data. Based on possibility theory [10], records are assigned a discrete degree
of possibility (p-degree) with which they occur in a relation. Intuitively, the p-degree
quantifies the level of trust an organization is prepared to assign to a record. The assign-
ment of p-degrees can be based on many factors, specific to applications and irrelevant
for developing the framework. In addition, an integrity constraint is assigned a degree
of certainty (c-degree) that quantifies to which records it applies. Intuitively, the higher
the c-degree of a constraint the lower the minimum p-degree of records to which the
constraint applies. For example, a constraint is assigned the highest c-degree to affect
all records, and the lowest c-degree to affect only records with the highest p-degree.

"http://www-01.ibm.comn/software/data/bigdata/
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The design frameworks of [17] were developed for possibilistic functional dependen-
cies (pFDs) and possibilistic multivalued dependencies (pMVDs) [28].

The work from [17,28] has therefore shown one way of extending Codd’s prin-
ciple of entity integrity from certain to uncertain data. The other principle is that of
referential integrity, which ensures that references between data across tables are main-
tained soundly. So far, referential integrity has not been investigated for applications
that accommodate uncertain data. Hence, we currently lack the ability to guarantee that
uncertain data are appropriately referenced across tables. While it would be possible
to record all data in one table, this would violate other principles of data management,
such as the minimization of data redundancy and sources of inconsistency. This strongly
motivates research on possibilistic variants of referential integrity constraints. The most
expressive class of referential integrity constraints are inclusion dependencies (INDs),
which subsume the important special case of foreign keys. It is therefore the main goal
of this paper to introduce the class of possibilistic inclusion dependencies (pINDs) as
a fundamental notion that extends the principle of referential integrity to the verac-
ity dimension of big data. Previous classes of constraints that have been extended to
the possibilistic setting were downward-closed. Here, a class of integrity constraints is
downward-closed whenever every constraint in the class that is satisfied by a database
instance will also be satisfied by every subset of that instance. Unfortunately, the class
of inclusion dependencies is not downward-closed, which raises the challenge of intro-
ducing a suitable notion. In addition, we would like pINDs to cover traditional INDs as
a special case, but inherit the computational properties of this special case. Hence, we
are aiming for a notion that is adequate for uncertain data, while still being computa-
tionally attractive.

From a perspective of information systems engineering, the main contribution of our
framework is quantifying the degree of trust in entities and relationships. Technically,
we can summarize the contributions of the current work as follows.

— We introduce the class of possibilistic inclusion dependencies as a notion funda-
mental to extending the principle of referential integrity to the veracity of big data,
and quantifying the degree of trust in relationships between data elements.

— While pINDs capture traditional inclusion dependencies as the special case where
only one degree of uncertainty is permitted, we show that pINDs still inherit the
good computational behavior of this special case. More specifically, we establish
an algorithm that decides the implication problem in deterministic quadratic space.
While we show that the implication problem is PSPACE-complete, it is also fixed-
parameter tractable in the arity.

Organization. Section 2 introduces our running application scenario. We discuss re-
lated work in Section 3. We define a possibilistic data model in Section 4. We propose
the class of pINDs in Section 5. Section 6 establishes the computational properties for
our new class of pINDs. Section 7 concludes and comments briefly on future work.

2 Application Scenario

As arunning example consider the following database schema that catalogs which parts
are available from which supplier at what price.
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Fig. 1: Entity-relationship diagram for application scenario

— PART={p-no,p_desc,p_color} with key {p-no}

— SUPPLIER={s_id,s_name,s_address} with key {s_id}

— CATALOG={p_no,s_id,price} with key {p_no,s_id} and foreign keys
e [p_no] C PART[p_no] and
e [s_id] € SUPPLIER[s-id] .

The corresponding Entity-Relationship diagram is shown in Figure 1. Table 1 shows
the result of integrating data from three legacy systems of the organization.

Table 1: Data integrated from legacy systems

PART CATALOG SUPPLIER
pno p-desc p-color p-no s_id price s_id s_name s_address
pl lever red pl sl 2 frogs sl Rumpel Witchery
p2  knob yellow pl s2 1bat s2  Pumpel Wizyard
p3  disc green p2 sl 2toads

p3  s3  2snails

As we can see, the database satisfies the keys and foreign keys defined by the
schema. However, the integrated database does not contain any information about the
level of trust associated with the records, based on the sources they have been integrated
from. As an example use case of the framework we are proposing, we will now illus-
trate how the integration process can embed information about the different degrees of
uncertainty that might be associated with the records. Note that this is just one specific
way of using our framework.

The data shown in Table 1 is the result of integrating three different legacy systems
as given in Table 2. While entity integrity in the form of the keys on the schemata is
valid on all tables, there are issues with referential integrity.

These issues are simply hidden away in the integrated data set, which lacks a rep-
resentation of the degrees of trust we should associate with the data. In an attempt to
overcome this challenge, we assign possibility degrees (p-degrees) to records. In this
example, we do this in the following intuitive way: we assign the highest degree univer-
sal when a record appears in all three relations of the same relation schema, the second
highest degree common when a record appears in two of the three relations of the same
relation schema, the third highest degree isolated when a record only appears in one
of the three relations of the same relation schema, and the bottom degree impossible
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Table 2: Legacy databases

PART CATALOG SUPPLIER
p-no p_desc p_color p-no s_id price s_id s_.name s_address
pl lever red pl sl 2frogs sl Rumpel Witchery
p2 knob yellow pl s2 1bat s2  Pumpel Wizyard
p2 sl 2toads
Legacy database 1
PART CATALOG SUPPLIER
p-no p_desc p_color p-no s_id price s_id s_name s_address
pl lever red pl sl 2frogs sl Rumpel Witchery
p3 disc green pl s2 1bat s2 Pumpel Wizyard
p3 s3 2 snails
Legacy database 2
PART CATALOG SUPPLIER
p-no p_desc p_color p-no s_id price s_id s_name s_address
pl lever red pl sl 2frogs sl Rumpel Witchery
p3 disc green p2 sl 2toads
Legacy database 3

Table 3: Data integrated from legacy systems with information about uncertainty

PART CATALOG SUPPLIER
p-no p_desc p_color|trust p-no s_id price |trust s_id s_name s_address|trust
pl lever red universal pl sl 2 frogs |universal sl Rumpel Witchery |universal
p2 knob yellow [common pl s2 Ibat |common s2  Pumpel Wizyard |common
p3 disc green |isolated p2 sl 2 toads |[common
p3 s3 2 snails|isolated

when the record does not occur in any relation. In relational databases, the closed world
assumption states that any record that is not explicitly listed in a relation is not part of
it. The bottom p-degree impossible extends the closed world assumption to possibilistic
databases, since it is assigned to every record that does not occur in the possibilistic
database instance. Table 3 shows the integrated database instance inclusive of the levels
of trust associated with the various records.

P-degrees quantify the level of trust we associate with records. There are different
methods to assign such degrees. For example, each of the legacy systems may have
some associated level of trust, and we simply assign the highest degree of trust among
the systems in which the tuple occurs. Another method may assign p-degrees according
to the recency of tuples.

Apart from quantifying uncertainty, p-degrees enable us to assign degrees of cer-
tainty to integrity constraints. For example, we can assign the highest degree of cer-
tainty to a constraint when it holds on the set of all records that are higher than the
bottom p-degree, and the bottom degree of certainty when the constraint does not even
hold on the set of records that have the highest p-degree. For instance, the key {p_no}
holds with the highest degree of certainty on PART, and the key {s_id} holds with the
highest degree of certainty on SUPPLIER. Similarly, the key {p-no,s_id} holds with the
highest degree of certainty on CATALOG.
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The foreign key [p-no] C PART[p_no] on CATALOG holds on the database that
only considers records with the universal degree of trust, but not on the database that
considers records with the universal or common degree of trust. Hence, it can only be
assigned the second lowest degree of certainty.

Similarly, the foreign key [s_id] C SUPPLIER[s_id] on CATALOG holds on the
database that considers only records with the universal degree of trust, and on the
database that considers records with the universal or common degree of trust, but not
on the database that considers records with the universal, common or isolated degree of
trust. Hence, it can be assigned the second highest degree of certainty.

Denoting the degrees of certainty in this example by 81 > 2 > 83 > (4, we can
revise our classical database schema as follows:

— PART={p_no,p_desc,p_color} with p-key ({p_no}, 1)

— SUPPLIER={s_id,s_name,s_address} with p-key ({s-id}, 81)

— CATALOG={p-no,s-id,price} with p-key ({p-no, s_id}, 1) and foreign keys
e ([p-no] C PART[p-nol, B3) and
e ([s-id] C SUPPLIER[s_id], B2) .

Figure 2 shows a corresponding Entity-Relationship diagram. Here, we augment
some of the edges with indices of certainty degrees that apply to either attributes that
form a key or directed edges that represent a foreign key. For example, we have at-
tached the index 1 to attributes p_no of PART and s_id of SUPPLIER to indicate that
they form a p-key for these entity types of c-degree [3;. Similarly, the label 2 of the
edge from CATALOG to SUPPLIER represents the possibilistic foreign key ([s_id] C
SUPPLIER|[s_id], 32), and the label 3 of the edge from CATALOG to PART represents
the possibilistic foreign key ([p-no] C PART[p_nol, 53).

p_no p_desc price s_id s_name
K | K |
PART 2 2 = SUPPLIER
| |
p_color s_address

Fig. 2: Entity-relationship diagram representing information about uncertainty

The main aim of this paper is to define possibilistic inclusion dependencies, and to
establish axiomatic and algorithmics solutions for their associated implication problem.
These provide a foundation for quantifying the levels of trust in data, and hence also for
resilience of decision-making in the presence of uncertain data.

3 Related Work

We review results on inclusion dependencies in relational databases, work on relaxed
notions of inclusion dependencies, and their impact on data quality in general.
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3.1 Classical Inclusion Dependencies

The implication problem is one of the core reasoning problems that is associated with
any class of data dependencies [2, 25]. Solutions to this problem provide us with a
complete understanding of how the data dependencies in this class interact, but also
allow us to minimize the overhead spent on enforcing those dependencies that business
analysts and data stewards have selected for modeling the integrity of their database.
Indeed, if some dependency is implied by a set of dependencies that is valid on a given
database instance, then we know that this dependency is also valid - which means we
have already validated it implicitly. Vice versa, if a meaningful dependency is not im-
plied, then we do need to validate it after an update occurs. Typically, solutions to the
implication problem also allow us to exhaust all possibilities for optimizing the per-
formance of operations on our data. For example, in order to apply some dependency
during query optimization it may suffice to check whether it is implied by a given set of
dependencies. Similarly, if we observe some inconsistencies with respect to an implied
data dependency, we can conclude that there must be an inconsistency with respect to
some data dependency that we are meant to enforce.

For these and other reasons, the implication problem for inclusion dependencies
has been studied in many data models, in particular first for the relational model of
data. Indeed, Casanova et al. [5] showed that finite and unrestricted implication problem
coincide for the class of inclusion dependencies, the problem is PSPACE-complete, and
enjoys a binary axiomatization. We will extend these results to the possibilistic case in
this article. Here, the extension refers to an arbitrary finite scale of possibility degrees
where the relational model occurs as the special case where only two possibility degrees
are given, namely a top and a bottom degree. In fact, tuples in the current database
instance are assigned the top degree, and tuples that are not in the current database
instance are assigned the bottom degree.

3.2 Approximate Inclusion Dependencies

In practice it is often difficult to avoid integrity issues completely. For that purpose,
more robust notions of constraints are often useful. These permit violations of the con-
straints up to some degree. For inclusion dependencies, in particular, different kinds
of relaxed notions have been considered. An intuitive approximation is given by up-
per bounds on the proportion of tuples that need removal from the referencing table to
satisfy the given inclusion dependency [18]. In addition, sets of (approximate) inclu-
sion dependencies can also be approximated. Intuitively this makes sense for large sets
of constraints that can often not be maintained efficiently, or where some of the con-
straints are not meaningful [20]. Missing values, often represented in the form of null
markers, also cause uncertainty in databases. In fact, SQL supports simple and partial
semantics for foreign keys on databases with null markers [12]. Under simple semantics
tuples with null markers on some foreign key attributes do not require a match in the
referenced table, while partial semantics still requires partial matches. Similarly, possi-
bilistic inclusion dependencies also relax the requirement to hold on the entire instance.
However, the scope where they need to hold is precisely given by the dual relationship
of their associated possibility and certainty degrees.
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3.3 Data Quality and Inclusion Dependencies

More generally, inclusion dependencies and their relaxed notions control referential in-
tegrity, with important consequences for the quality of data [22, 24, 29] and schema
evolution [8,26]. For example, data quality problems can be controlled by the use of
conditional inclusion dependencies [19] that enable users to customize referential in-
tegrity to specific patterns of data. Similarly, the use of smart data samples that show
the violation of constraints can draw the attention of human experts to data quality prob-
lems [21]. The combination of sampling with the discovery of constraints [11] makes
it possible to discover meaningful constraints and data quality problems in unison [27].
These approaches offer opportunities for the application of possibilistic inclusion de-
pendencies in the future. Interestingly, our framework of possibility theory has been
used to approach the problem of cleaning data from a different perspective [13]. In that
perspective, it is not the data that is viewed to be dirty, but it is the degree of trust in the
data that is viewed dirty instead. The problem then is to minimally change the p-degrees
associated with tuples in order to satisfy the given possibilistic constraints [13].

3.4 Other Classes of Possibilistic Constraints and Approaches to Uncertainty

Our possibilistic framework has been applied to advance entity integrity for uncertain
data using classes of constraints such as keys [3], cardinality constraints [23], functional
dependencies [15, 16], and multivalued dependencies [28]. the current article is thus the
first to extend the framework towards advancing referential integrity for uncertain data.

Recently, primitive data types in OCL/UML have been extended to model the un-
certainty of physical measurements or user estimates [4], and also proposed an algebra
of operations to propagate them to complex types.

4 Possibilistic Databases

Previous work introduced the model of uncertain data for single relations [15, 17,28].
Since our primary interest in the current article is on referential integrity, we will ex-
tend the model to actual database schemata and instances, since referential integrity
constraints express relationships across different tables.

A relation schema, usually denoted by R, is a finite non-empty set of attributes.
Each attribute A € R has a domain dom(A) of values. A tuple t over R is an element of
the Cartesian product [, , dom(A) of the attributes’ domains. For X C R we denote
by t(X) the projection of t on X. A relation over R is a finite set r of tuples over R. A
database schema, usually denoted by D, is a finite non-empty set of relation schemata.
A database over D, usually denoted by db, assigns to each relation schema R € D a
relation r over R.

Our running example uses the database schema SUPPLY={PART, SUPPLIER, CATA-
LOG} with relation schemata PART={p_no, p_desc, p_color}, SUPPLIER={s_id, s_name,
s-address}, and CATALOG={p-no, s_id, price}.

We define possibilistic relations as relations where each tuple is associated with
some confidence. The confidence of a tuple expresses up to which degree of possibility
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a tuple occurs in a relation. Formally, we model the confidence as a scale of possibility,
that is, a finite, strictly linear order S = (.5, <j) with k£ + 1 elements where k is some
positive integer, which we denote by a; > - -+ >, ar >k agy1, and whose elements
a; € S we call possibility degrees (p-degrees). We sometimes simply write <j, to refer
to S = (59, <k), and omit the subscript k from < when it is fixed. The top p-degree
aq is reserved for tuples that are “fully possible’ to occur in a relation, while the bottom
p-degree avi11 is reserved for tuples that are ‘impossible’ to occur in the relation at
the moment. The use of the bottom p-degree a1 in our model is the counterpart of
the classical closed world assumption. Humans like to use simple scales in everyday
life, for instance to communicate, compare, or rank. Simple usually means to classify
items qualitatively, rather than quantitatively by putting a precise value on it. Note that
classical relations use a scale with two elements, that is, where k = 1.

In our running example, we use four different p-degrees that we label oy = universal
for the top degree, as = common, ag = isolated, and oy = absent for the bottom de-
gree. A tuple is assigned p-degree «; when it occurs in 4 — ¢ legacy instances. For
simplicity, we will use the same linear order on all relation schemata. We can also use
different orders, but these can either be fused or more involved definitions can be given
for our possibilistic referential constraints.

Formally, a possibilistic relation schema (p-schema) (R, <j;) consists of a relation
schema R and a possibility scale <. A possibilistic relation (p-relation) over (R, <j)
consists of a relation r over R, together with a function Poss, that maps each tuple
t € r to a p-degree Poss,(t) in the possibility scale <j. Sometimes, we simply refer to
a p-relation (r, Poss,.) by r, assuming that Poss, has been fixed. For example, Table 3
shows p-relations (r, Poss,) over (PART, <3), (SUPPLIER, <3), and (CATALOG, <3)
where <3= universal >3 common >3 isolated >3 absent.

A possibilistic database schema (pdb-schema) (D, <j) consists of a set D of re-
lation schemata R, each of which forms a p-schema (R, <p). A possibilistic database
(pdb) over (D, <), usually denoted by pdb = (db, Poss), assigns to each p-schema
(R,<y) of (D, <y) a p-relation (r,Poss,). Again, Table 3 shows a pdb over pdb-
schema (SUPPLY, <3) with <3= universal >3 common >3 isolated >3 absent.

Possibilistic databases enjoy a well-founded semantics in terms of possible worlds.
In fact, every possible world is itself a classical database. For ¢ = 1,...,k let db; =
{ri | » € db} denote the database that consists of all tuples in db that have a p-degree
of at least «;, that is, 7; = {t € r | Poss.(t) > «a;} for all p-relations (r, Poss,).
Indeed, we have r; C ro C -+ C 7y, for all of the p-relations (r, Poss,.) that constitute
pdb. Hence, the p-degree associated with the world db; is «;. In particular, dby 1 is not
a possible world since it includes tuples that are impossible to occur. Vice versa, the
possibility Poss,(t) of a tuple ¢t € r is the possibility of the smallest possible world
in which ¢ occurs. If ¢ ¢ dby, then Poss,(t) = ax1. The top p-degree «; takes on a
distinguished role: every tuple that is ‘fully possible’ occurs in every possible world -
and is thus - ‘fully certain’. This confirms our intuition that pdbs subsume databases (of
fully certain tuples) as a special case. Table 4 shows the possible worlds of databases
dby, dby, and dbz of our running example.
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Table 4: Chain of Possible Database Worlds

PART

p-no p_desc p_color

pl lever red

CATALOG

p-no s_id price
pl sl 2frogs

SUPPLIER

s_id s_name s_address

sl  Rumpel Witchery

Possible World db1

PART CATALOG SUPPLIER
p-no p_desc p_color p-no s_id price s_id s_name s_address
pl lever red pl sl 2frogs sl Rumpel Witchery

p3 disc green pl s2 1bat s2  Pumpel Wizyard
p2 sl 2toads
- Possible World db2
PART CATALOG
SUPPLIER

p-no p-desc p_color p-no s_id price

pl lever red pl sl 2frogs

p3 disc green pl s2 1bat
p2 sl 2toads
p3 s3 2 snails

s_id s_name s_address
sl Rumpel Witchery
s2 Pumpel Wizyard

Possible World db3

5 Possibilistic Inclusion Dependencies

We recall the concepts of possibilistic keys and possibilistic functional dependencies
from previous work [3, 15]. These form primary mechanisms to address entity integrity
for uncertain data. We then introduce the new concept of possibilistic inclusion depen-
dencies as the primary mechanism to address referential integrity for uncertain data.

An FD X — Y is satisfied by a relation  whenever every pair of tuples in r that
have matching values on all the attributes in X have also matching values on all the
attributes in Y [2,25]. If X UY = R, we call X a key because this case entails that
there are no different tuples that match on X. For example, the FD p_no, s_id — price
is satisfied by all the relations over CATALOG in Table 2, but the FD s_id — price is
only satisfied by the relations over CATALOG in the second legacy database of Table 2.
In particular, {p_no, s_id} is a key but {s_id} is not a key.

For a given FD o, the marginal certainty with which ¢ holds in a p-relation corre-
sponds to the p-degree of the smallest possible world in which ¢ is violated. Therefore,
dually to a scale S of p-degrees for tuples we use a scale S” of certainty degrees (c-
degrees) for constraints. We use positive integers as indices of the Greek letter /3 to
denote c-degrees. Formally, the duality between p-degrees in S and c-degrees in S7 is
defined by the mapping «; — Sk42_;, fori =1,..., k+ 1. Since the impossible world
k41 violates every FD, the marginal certainty C(;. pyss, (o) with which the FD o holds
on the p-relation (r, Poss,) is the c-degree 52— for the smallest world r; in which o
is violated. In particular, if rj, satisfies o, then C(,. pygs,) (o) = Bi.

We can now define the syntax and semantics of pFDs. A pFD over a p-schema
(R,S) is an expression (X — Y,3) where X, Y C R and 8 € ST. A p-relation
(7, Poss,.) over (R, S) satisfies the pFD (o, 3) if and only if C(;. pyss,y(0) > . In our
running example we use 3; >5 B2 >5 B3 >5 4, with the interpretations of certain for
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b1, quite certain for B, kind of certain for 83 and not certain at all for 34. The marginal
certainty of the FD p_no, s_id — price for the p-relation over CATALOG in Table 3 is
certain, since the FD holds even in the largest possible world having p-degree as. The
FD s_id — price is kind of certain since the smallest possible world that violates it
(db2) has p-degree as.

We denote by R, S € D relation schemata in a database schema D and by X =
[A1,...,A,)and Y = [By,..., B,] sequences of distinct attributes in R and S, respec-
tively, such that for all m = 1,...,n, dom(A,,) = dom(B,,) holds. The expression
R[X] C S[Y] a called an inclusion dependency (IND) over D. A database db over D
with relations r over R and s over S is said to satisfy the IND R[X] C S[Y] over
D if and only if for every tuple ¢, € r there is some tuple ¢5 € s such that ¢,.[X]| =
ts[Y]. In our running example, the expressions CATALOG[p-no] C PART[p-no|] and
CATALOG[s_id] C SUPPLIER[s_id] denote INDs over SUPPLY. According to Table 4,
the first IND is satisfied by dbl and db3 but not by db2 , while the second IND is
satisfied by dbl and db2 but not by db3.

We will now introduce the new concept of possibilistic inclusion dependencies.

Definition 1. Let (D, <j) denote a pdb-schema and let R[X] C S[Y] denote an IND
over D. Fori € {1,...,k + 1}, we call the expression (R[X]| C S[Y], 5;) a possi-
bilistic inclusion dependency (pIND) over (D, <y). Let pdb = (db, Poss) denote a pdb
over (D, <y) such that (r, Poss,) and (s, Posss) denote p-relations over (R, <j,) and
(S, <), respectively. The marginal certainty Cpap(R[X] C S[Y]) with which the IND
R[X] C S[Y] holds on pdb = (db, Poss) is the c-degree Pj4a—; for the smallest world
db; in which R[X| C S[Y] is violated. In particular, if dby, satisfies R X] C S[Y], then
Cpav(R[X] C S[Y]) = Bi1. We say that pdb satisfies the pIND (R[X] C S[Y], 5;),
denoted by |=pap (R[X] C S[Y), 8:), if and only if Cpap(R[X] C S[Y]) >7 Bi.

The pdb from Table 3 shows that the smallest possible world that violates the
IND CATALOG[p_-no] C PART[p_no] is db2. Consequently, the marginal certainty of
CATALOG[p-no] C PART[p_no] is B3. Similarly, the smallest possible world that vio-
lates the IND CATALOG[s_id] C SUPPLIER[s-id] is db3. Hence, the marginal certainty
of CATALOG([s_id] C SUPPLIER|[s_id] is 3. We conclude that pdb satisfies the pINDs

— (CATALOG[p_no] C PART[p-no]), B3) and
— (CATALOG[s-id] C SUPPLIER[s_id], 32),

but satisfies none of the pINDs

— (CATALOG[p-no] C PART[p_nol), f2)
— (CATALOG]s-id] C SUPPLIER|[s_id], (7).

Following Definition 1, pINDs enjoy a possible world semantics. Indeed, for every
pdb pdb over every pdb-schema (D, <j), and forevery ¢ = 1,. .., k, we have that =pqp
(R[X] C S[Y], B;) if and only if =4, R[X] C S[Y]holds forall j =1,...,k+1—i.

An important difference to pFDs is that the equivalence requires us to check all pos-
sible worlds from j = 1, ...,k + 1 — 4, while pFDs only require us to check the largest
possible world dby1—;. The reason for the latter is that FDs are closed downwards in
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the sense that every FD that is satisfied by a relation will also be satisfied by any sub-
relation of the relation. This is not true for inclusion dependencies, which is why we
specifically need to require that property in our semantics. This requirement, however,
is very natural since values of tuples associated with some p-degree « should never ref-
erence tuples that are associated with a p-degree lower than «.. Hence, this requirement
is a natural extension of Codd’s principle of referential integrity to uncertain data.

6 Reasoning about Possibilistic Inclusion Dependencies

The significance of (p)INDs results from their applicability to the most fundamental
processing tasks for (uncertain) data. For example, we need to validate that all INDs
that govern our data are still satisfied after updates are processed. This validation should
impose a minimum overhead in resources. Computing a minimal set of INDs that imply
all the INDs that govern the data makes it possible to minimize resources. For queries
we want to generate a query plan that is likely to return the answer set as efficiently as
possible. In attempting to find an optimal query plan, we may need to check whether
some candidate IND holds on the given database. Deciding whether this candidate is
implied by the set of INDs that are enforced on the data, the resources required to val-
idate the candidate are minimized. Hence, INDs are useful when they can be reasoned
about efficiently. We will show that our definition of pINDs cannot only express refer-
ential integrity for uncertain data, but also inherits the good computational behaviour
from the well-known special case where k = 1.

6.1 Correspondence to INDs

We establish a correspondence between instances of the implication problems for pINDs
and INDs. Let X' U {¢} denote a set of pINDs over a pdb-schema (D, <j). We say that
X implies , denoted by X' = ¢, if every pdb (db, Poss) over (D, <j) that satisfies
every pIND in X also satisfies ¢.

Example 1. Let X consist of the pINDs (CATALOG[p-no] C PART[p_no]),83) and
(CATALOG[s_id] C SUPPLIER[s_id], B2). Let 1 denote the pIND (CATALOG[p-no] C
PART[p_no)), B2) and let ¢, denote the pIND (CATALOG[s_id] C SUPPLIER[s_id], (7).
Then X implies neither ¢ nor ¢9. Indeed, the p-database from Table 3 satisfies the two
pINDs in X but satisfies neither 1 nor @s.

For a set X' of pINDs on some pdb-schema (D, <j) and c-degree 8 > [j41, let
Ys={o|(0,8') € ¥ and 8’ > S} be the B-cur of X. The strength of our framework
is engraved in the following result. It says that a pIND (o, 3) with c-degree 3 is implied
by a set X' of pINDs if and only if the IND ¢ is implied by the 5-cut Xg of .

Theorem 1. [(3-cuts] Let XU{ (¢, B)} denote a set of pINDs over p-db schema (D, <j,)
and let 8 > Biy1. Then X = (@, B) if and only if X5 = .

Proof. Let 8 = 3; forsome 1 < i < k.
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If X £~ (¢, ), then there is some p-db over (D, <) that satisfies all pINDs in X
but does not satisfy (¢, 8). By definition there must exist a smallest possible world that
satisfies all INDs in X5 but does not satisfy (.

Vice versa, let db denote a database instance over D such that db satisfies all INDs
in X5 but violates ¢. For ¢ = R[X] C S[Y] there must exist some tuple ¢, € r such
that for all tuples ¢; € s we have t,.[X| # t5[Y]. For 8 = 5; with 1 < i < k we assign
to ¢, € r the p-degree a;41—; and to all other tuples in db the p-degree a;. Then the
resulting pdb (db, Poss) will satisfy X' and violate (¢, 3). O

The following example illustrates Theorem 1.

Example 2. For X, ¢1, and o from Example 1 we know that X’ does neither imply
(1 nor s. This is evident from the pdb in Table 3. Indeed, the smallest possible world
which satisfies X'z, and violates CATALOG[p_no] C PART[p_no] is the possible world
db2. Vice versa, if we take the possible world db2 and assign the p-degree o to the tuple
(p2, s1, 2 toads) over CATALOG, and assign the p-degree o to all the other tuples, then
the resulting pdb will satisfy X' but violate ¢ .

A similar argument can be made for X' and o, with the only difference being that
the possible world db3 satisfies X, and violates CATALOG[s_id] C SUPPLIER[s_id]
due to the tuple (p3, s3, 2 snails). Vice versa, assigning p-degree a3 to this tuple in
db3 and assigning p-degree «; to any other tuple in this database, results in a pdb that
satisfies X’ and violates o.

6.2 Algorithmic Characterization

We would like an algorithm that can decide the implication problem for pINDs effi-
ciently. Using Theorem 1, we can extend the decision procedure for classical INDs
to decide the implication problem for pINDs. Algorithm 1 directly returns an affirma-
tive answer whenever the candidate pIND ¢ has bottom c-degree (1. Otherwise, it
uses the chase procedure for INDs applied to the 3-cut Xg. Algorithm 1 runs in non-
deterministic linear space. According to Savitch (PSPACE = NPSPACE) the algo-
rithm can be implemented to run in determinstic quadratic space.

Corollary 1. Algorithm I decides pIND implication in deterministic quadratic space.

Proof. The correctness and complexity of Algorithm 1 follow from that of the algorithm
for deciding INDs in the special case k = 1, and Theorem 1. a

Example 3. Let X consist of the following two pINDs over the extended pdb-schema
SUPPLY that we have been using as a running example:

— (SALES[s_id] C CATALOG]|s id], 1)
— (CATALOG][s-id] C SUPPLIER[s_id], 32) .

We use ¢ to denote (SALES[s_id] C CATALOG[s_id], 32) and we use ¢’ to denote
(SALES[s_id] C CATALOG[s_id], 51) as two candidate pINDs for which we wonder
whether they are implied by X.

Let us apply Algorithm 1 to both inputs X' U {¢} and X U {’}. For neither of the
two inputs does [ represent the bottom c-degree 34. For ¢ we obtain the S5-cut X'z, of
2 that consists of the two INDs:
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Algorithm 1 pIND-chase

Require: Set X U {(R4[A1,...,An] € Ry[Bu,..., Bx], )} of pINDs over (D, <j)
Ensure: Yes, if X implies (Rq[A1, ..., An] C Ry[B, ..., By], 3), and No, otherwise
1: if 8 = [k41 then return (‘Yes’)

2: end if;

3: £:={R4[A1,..., Aul};

4: repeat

5: if R;[C1,...,Ch] € € and R;[C4,...,Cr] C R;[D1,..., Dy] can be inferred from
6: X5 by a single application of P’ then

7: gI:cgU{Rj[Dl,...,Dm}}};

8: end if

9: until Ry[Bu, ..., By] € £ or no change possible
10: if Ry[B1, ..., By] € £ then return ‘Yes’

11: else

12: return (‘No’);

13: end if

— 01 = SALES[s_id] C CATALOGs_id)
— 09 = CATALOG[s_id] C SUPPLIER([s_id)].

Starting with £ = {SALES[s_id]} and applying first o; and then o2 we obtain & =
{SALES[s_id], CATALOG(s_id], SUPPLIER[s_id] }, which means that Algorithm 1 re-
turns an affirmative answer. Starting with £’ = {SALES[s_id]} and $1-cut X, = {01},
we can only apply o7 to obtain & = {SALES[s_id], CATALOG[s_id] }. This means Al-
gorithm 1 returns a negative answer since SUPPLIER[s_id] ¢ &’.

6.3 PSPACE-completeness and Fixed-parameter Tractability

Corollary 1 shows that the implication problem of pINDs is in PSPACE. In the rela-
tional model the implication problem of INDs is also PSPACE-hard [5], and INDs form
the special case of pINDs for £ = 1. Hence, the implication problem of pINDs is also
PSPACE-complete. Following [12] the implication problem for INDs is even fixed-
parameter tractable (FPT) [9] in the arity of the input. That is, there is a deterministic
algorithm that runs in polynomial time when the arity of the input is fixed.

Corollary 2. The implication of pINDs is PSPACE-complete and FPT in their arity.

It also follows from a result about INDs [7] that the implication problem for pINDs
with bounded arity is NLOGSPACE-complete.

7 Conclusion and Future Work

Using possibility theory we have proposed a class of inclusion dependencies for uncer-
tain data. Our proposal can express different degrees of certainty by which INDs hold.
Since the degrees can be customized to the needs of data owners, our possibilistic INDs
are able to enforce referential integrity according to the requirements of applications.
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This should provide organizations with the ability to quantify the level of trust they have
in their data and the relationships between them. This trust will facilitate more confi-
dent decision-making under uncertainty. Our proposal inherits the good computational
behavior from its special case of certain data.

The research opens up several new questions. When studying the interaction of en-
tity and referential integrity for uncertain data, and their extension to other data models
with missing values, such as JSON. It will be important to extend conceptual, logical,
and physical design approaches from certain to uncertain data, such as [6, 14]. While a
headstart has been made [17], inclusion dependencies have not been taken into account
yet. Another core reasoning problem is the discovery of possibilistic constraints for a
given class that hold on a given possibilistic database. This problem has received much
attention in the relational model [1], but not yet for models of uncertain data.
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