
Membrane computing:
The computational power of cP and water

systems.

by

Alec S. Henderson

under the supervision of:

Dr. Radu Nicolescu and Dr. Michael J. Dinneen

Advised by:

Mr TN Chan

A Thesis Submitted in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in
Computer Science

The University of Auckland, 2021

University of Auckland

Copyright © 2021 by Alec S. Henderson



ABSTRACT

P systems/membrane computing is a parallel and distributed model of computation.
This thesis focuses on two recently proposed P system variants: P systems with
complex objects (cP systems) and water-based P system (wP system).

This thesis first investigates what can be computed utilising a single cP system cell.
We show for the first time that cP systems can solve PSPACE complete problems in
polynomial time (linear). We will also, demonstrate the advantages of our solution
compared to other P system variants. Following this positive result, we demonstrate
efficient solutions to NP-complete problems surpassing previous results.

The thesis then looks at a P system model of water computing. We prove that this
model is Turing complete via the construction of μ recursive functions. Following this
construction, we demonstrate how this model can be viewed as a restricted cP system.
We then prove that this model can construct a PRAM machine. This construction
proves that the model can be used as an efficient parallel machine.

Finally, the thesis looks at using cP systems for solving distributed computing prob-
lems. We first solve the Byzantine agreement problem using newly proposed actor
based controls on the messages. We show that this new solution surpasses the previ-
ous solutions in terms of: number of cells, number of steps, rule set size, and many
more. We then solve the Santa Claus problem demonstrating the usefulness of cP
systems as a concurrency specification language. We demonstrate the reduction of
program size of our cP solution compared to similar solutions implemented in modern
programming languages.
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Chapter 1

Introduction

1.1 P systems

Whether P equals NP is unquestionably the most important unsolved problem in
computational complexity theory. The problem has been studied extensively, with
many practical problems found to be NP-complete. However, the currently best-
known general solutions to NP-complete problems take prohibitively large amounts
of time for large instances.

P systems are a parallel and distributed model of computing, first proposed by Ghe-
orghe Păun in [54]. P systems are an abstract model of membrane systems, with
many variants being proposed such as: P systems with active membranes [55], spik-
ing neural P systems [32], tissue P systems [43], and P systems with compound terms
(cP systems) [50]. These systems have been found to have efficient solutions to hard
problems. However, as far as we know, these efficient solutions are still in theory and
have not yet been practically realised.

As discussed in [68] P system research is largely broken into three domains:

• Theory: This area mainly focuses on computability and computational com-
plexity theory of the different P system variants.

• Tools: simulations and verification of different P system variants.

• Applications: Investigating the different applications in which P systems may
be advantageous compared to the current systems.

This thesis is mainly centred around theory, with Chapter 3 on computational com-
plexity and Chapter 4 computability. Chapter 5 is based on applications.

1
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1.2 Motivation

cP systems developed in [51] are a variant of P systems that use high level generic
rewriting rules. cP systems usually have smaller alphabets and rule sets than other
P systems; however, the rules are more complex. cP systems have previously been
shown to solve NP-hard problems (NP-complete for the decision version) such as
the travelling salesman [14], the subset sum [39] and the 3-colouring problem [13].
However, harder problems had not been solved by cP systems. In this work (Chapter
3), we present, to the best of our knowledge, the first proof that cP systems can solve
PSPACE complete problems.

Although cP systems had solved NP-hard problems, each problem solved was a new
algorithm not utilising the previous results. Reductions are a well-known technique
of using one solution to solve multiple problems with a simple procedure to transfer
an instance of the new problem into the old one. As far as we know, we are the
first to utilise reductions in cP systems. Not only that, but we constructively give a
constant cP reduction from k-colouring to k-sat. Using the reduced problem instance,
we find, as far as we know, the fastest k-colouring cP solution even outperforming
the previous algorithm specifically designed for k-colouring.

Although we have shown in theory what cP systems can solve efficiently, these have
not been practically realised. Another area of research is utilising cP systems as a
distributed specification language. Previously, other P system researchers have looked
at this, such as [68, 36]. In this work, we further this direction of research in which we
present an improved solution to the Byzantine agreement. As well as the byzantine
agreement, we look at the Santa Claus problem and demonstrate the usefulness of cP
systems as a parallel computing specification language.

1.3 Thesis outline

Chapter 2: Background This chapter introduces the concepts which are used in
the later sections of the thesis. We first give definitions of the different computation
models used in the thesis (mainly utilised in Chapter 4). We then discuss the different
complexity classes which play an essential role in the constructions in Chapter 3. We
finally discuss P and cP systems which are utilised throughout the thesis.

Chapter 3: Computational power of a single cell This chapter is dedicated
to demonstrating constructively that polynomial-time cP systems can solve ‘hard’
problems. This chapter is broken into two parts :

1) We solve QSAT, which is a well-known PSPACE-complete problem. Compared
to other extant confluent P systems solutions, our deterministic cP solution only
uses a small constant number of custom alphabet symbols (19), a small constant
number of rules (10), and a small constant upper-limit of membrane nesting depth
(6), independent of the problem size. This is based on our work presented in [26].
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2) We present a sublinear solution to k-SAT and demonstrate that k-colouring can be
reduced to k-SAT in constant time. This work not only demonstrates that traditional
reductions are efficient in cP systems, but also that they can produce more efficient
solutions than the previous problem-specific solutions. This work is based on our
work presented in [27].

Chapter 4: Computing with water This chapter is dedicated to a new P system
originally proposed in [30]. The P system is a water-based computing device with no
central control. This chapter is broken into two parts :

1) We further develop water computing as a variant of P systems. We propose an im-
proved modular design, which duplicates the main water flows by associated control
flows. We first solve the three open problems of the previous design by demonstrating:
how functions can be stacked without a combinatorial explosion of valves; how ter-
mination of the system can be detected; and how to reset the system. We then prove
that the system is Turing complete by modelling the construction of μ-recursive func-
tions. The new system is based on directed acyclic graphs, where tanks are nodes
and pipes are arc; there are no loops anymore, water falls strictly in a ‘top down’
direction. Finally, we demonstrate how our water tank system can be viewed as a
restricted version of cP systems. This is based on our work presented in [28].

2) We further the work on a recently proposed membrane computing model which
utilises decentralised water tanks interconnected by pipes with water flow controlled
by valves. We demonstrate that such systems can construct ‘efficiently’: 1) A pro-
grammable sequential, random-access machine (RAM), which we then extend to con-
struct: 2) a programmable exclusive read exclusive write (EREW) parallel random-
access machine (PRAM).

Chapter 5: Applications in distributed computing This chapter is dedicated
to multi-cell cP systems. This chapter is broken into two parts :

1) We propose a revised version of the previous best models for the Byzantine agree-
ment problem—a famous problem in distributed algorithms, with non-trivial data
structures and algorithms. The new actor-based solution uses a substantially shorter
fixed-sized alphabet and ruleset, independent of the problem size. Moreover, in con-
trast to the previous models, additional helper/firewall cells are not anymore needed
to ensure protection against Sybil attacks. Also, as with any standard distributed
algorithm, the novel actor-based cP model uses exactly one top-level cell for each
process in Byzantine agreement, thus solving another open problem. This is based
on our work presented in [25].

2) We discuss the Santa Claus Problem, a classic and challenging concurrency prob-
lem, and propose a slightly tighter specification, that precludes a few odd scenarios.
We provide an elegant solution to this refined problem using cP systems. Previously,
cP systems have been successfully used as a specification language for a wide variety
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of problems, such as NP-hard problems, graph algorithms, image processing, dis-
tributed algorithms (e.g. Byzantine agreement). We now evaluate, for the first time,
our cP systems as a concurrency specification language. We compare our cP spec-
ification and similar solutions implemented in several modern languages (e.g. Go,
C#, F#), with respect to program-size complexity and (where available) runtime
performance. This is based on our work presented in [29].

Chapter 6: Conclusions In this chapter, we critically discuss the results and
suggest some possible future directions.



Chapter 2

Background

In this chapter we introduce some of the necessary material for the rest of the thesis.
We start with defining the models of computation which we use in Chapter 4. We
then discuss the computational complexity classes used in Chapter 3. Finally we
discuss cP systems which are used throughout the thesis. For readers familiar with
the topics covered, this chapter can be skipped.

Saturation arithmetic. As discussed in [69], saturation arithmetic restricts opera-
tions to a fixed range. If an operation results in a number exceeding the upper bound,
the upper bound is the result. Conversely, if the result of the operation goes below
0, then the result is 0. If the upper and lower bounds are +∞ and −∞ respectively,
then saturation arithmetic is standard arithmetic. For example, in the range [0,100],
5 × 30 = 100 and 20 − 30 = 0. We further denote saturating addition as ⊕, and
saturating subtraction as �.

2.1 Traditional computing models

In this section, we describe three traditional computational models: Random access
machine (RAM), Parallel random access machine (PRAM), and general recursive
functions (μ-recursive functions). The Church–Turing thesis states that a function
on the natural numbers can be calculated effectively if and only if it is computable by
a Turing machine. This means that if another computational model of computation
can simulate a Turing machine, it can calculate all effectively calculable functions.
RAM and μ-recursive functions have both been shown to be able to simulate TMs.

2.1.1 RAM

There have been many models of computation proposed, with the ’sequential ma-
chines’ typically being the deterministic Turing machine and the random access ma-
chine [53](RAM). We focus on the RAM in this work as they usually have more

5
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practical uses than the traditional Turing model. For example, implementing the
GCD algorithm using a RAM as seen in Table 2.2 is straightforward whereas, for a
Turing machine it is not.

A RAM consists of a finite program of m lines and a potentially infinite sequence of
registers r1, r2, ...rn. The program of the RAM will consist of a sequence of operation
codes and parameters. Based on the definition in [12], a RAM has the following
operations:

1. ri ← C: assign a constant value C to register i.

2. ri ← rj ⊕ rk: add the value of two registers j and k and assign to register i.

3. ri ← rj�rk: subtract from register j the value stored in k and assign to register
i.

4. ri ← rrj : get the value y from register j, then get the value from register y and
assign to register i

5. rri ← rj: get the value y from register j, then get the value x from register i
and assign y to register x.

6. TRA m ri > 0: go to program line m (control transferred to line m of the
program) if ri greater than 0, otherwise go to the next line.

Where we use the item number as the op code as seen in Table 2.1.

We assume that the output will be the values stored in the registers once the program
has halted. A program halts when it has gone to a line number in the program which
is not defined. For example, consider the following Euclidean algorithm pseudocode
for positive integers:

1 function gcd (a ,b)
2 while (a = b)
3 i f (a > b) then
4 a← a� b
5 else
6 b← b� a
7 return a

Table 2.1: Operations and there corresponding opcodes.

Operation Opcode
ri ← C 1 i C

ri ← rj ⊕ rk 2 i j k
ri ← rj � rk 3 i j k
ri ← rrj 4 i j
rri ← rj 5 i j

TRA m ri > 0 6 m i
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This pseudocode translates into the RAM code presented in Table 2.2.

We note that our RAM model has a fixed size program with m lines. This can
implement RAM programs of length less or equal m. Noting that the machine halts
when it gets to line m+ 1. Hence, if a program had less than m lines, an additional
line could be added to jump to line m+ 1.

2.1.2 PRAM

As the RAM model we have discussed is inherently sequential, one can extend it to
be parallel. A parallel RAM machine (PRAM) is one of the most well-known parallel
computing models. As defined in [22, 23] a PRAM consists of a set of processors
p1, p2, ... and a set of shared registers r1, r2, ....Each processor can be viewed as an
individual RAM with its own program and sequence of registers.

Processors can only communicate via the shared memory using read or write oper-
ations. The processors execute in a synchronous manner, with each step taking the
same amount of time. Typically there are three models of PRAM discussed in the
literature to model the read and write of the shared memory they are:

• Exclusive read exclusive write (EREW): only one processor can read or write
to each shared register at a time.

• Concurrent read exclusive write (CREW): Any number of processors can read
from the same shared register simultaneously, but only one can write to each
shared memory location.

• Concurrent read concurrent write (CRCW): Any number of processors can read
and write the same shared register simultaneously.

The CRCW PRAM is typically further defined based on different ways of handling
concurrent writes; these include [20]:

Table 2.2: Euclidean algorithm implemented for RAM machine.

Line number Operation Opcode Comment
1 r3 ← r1 � r2 3 3 1 2
2 TRA 6 r3 > 0 6 6 3 Go to line 6 if a > b
3 r3 ← r2 � r1 3 3 2 1
4 TRA 8 r3 > 0 6 8 3 Go to line 8 if b > a
5 TRA 10 r1 > 0 6 10 1 Halt a = b result is in r1
6 r1 ← r1 � r2 3 1 1 2 a← a� b
7 TRA 1 r1 > 0 6 1 1 Start the loop again
8 r2 ← r2 � r1 3 2 2 1 b← b� a
9 TRA 1 r2 > 0 6 2 1 Start the loop again



8

• Collision: A collision symbol is written. This does not give details about which
processors caused the collision or what they were attempting to write.

• Common: Successful write only if all processors writing to the same location
are writing the same value.

• Arbitrary: Only one arbitrary attempt is successful, but only if all choices are
confluent(end with the same final result).

• Priority: The processor with the lowest ID’s write is successful.

2.1.3 μ Recursion

Although machine models of computation are closely related to the everyday computer
we all use, it is not the only way to define a model of computation. One of the
other popular models is μ recursion in which computation is defined via functions.
In [9, 57, 60, 8] it was shown that the following base functions and closure operators
are sufficient to construct the unary primitive recursive functions:

• Successor function: S(x) = x+ 1

• Subtraction function: B(x, y) = x− y

• Composition operator: C(h, g)(x) = h(g(x))

• Difference operator: D(f, g)(x) = g(x)− f(x)

• Primitive recursion operator: P (f) = p, p(0) = 0, p(x+ 1) = f(p(x))

• Addition function: A(x, y) = x+ y

• μ operator: μy(f)(x) = miny{f(x, y) = 0}

2.2 Computational complexity

In this section, we define and discuss the computational complexity classes which
appear later in this thesis. This section will only briefly touch on these classes but
give sufficient knowledge to understand our constructions later. We direct interested
readers to the well-known texts [3, 61] for more information.

2.2.1 Polynomial time

The first complexity class we discuss is polynomial time (P). The class P is all lan-
guages that can be decided by a polynomial-time Turing machine. Of course, we have
not discussed Turing machines in detail and so can utilise the sequential thesis, which
states:

Thesis 2.2.1. All reasonable sequential computational models are polynomially equiv-
alent.
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Therefore, we can think of P as the class decided in polynomial time by the sequential
RAM model previously discussed. Where polynomial time for a RAM means all
computational paths on input x will are of length O(|x|y) where y is a fixed constant.
One example of a polynomial computation is our algorithm for the GCD. We do
note that we compute the GCD, so we are solving a function problem rather than a
decision problem, however.

In this thesis, we are not focused on class P. We are focused on what can be computed
by certain models in polynomial time. We do emphasise that although we prove our
systems can compute hard problems, they are not sequential machines. This means
that they do not show that these problems are in P.

2.2.2 NP-complete

NP-complete languages have been studied for decades, and knowing whether the
complexity class is within P is one of the most important questions in theoretical
computer science. The typical definition for a language to be NP-complete is that
it is NP-hard and an element of NP. NP-hardness means that all languages in NP
polynomially time reduce to it. A great deal of these problems have significant prac-
tical importance. There are practicality hundreds, if not thousands, of problems that
have been found to be NP-complete. Of course, NP-completeness deals with decision
problems; however, all NP-complete languages being self-reducible means we do not
need to study optimisation versions as much [3].

SAT

The Boolean satisfiability problem (SAT) is one of the most famous NP-complete
problems and also the first problem shown to be NP-complete [11]: given a Boolean
formula, does there exists a satisfying assignment? Typically the problem considers
formulas in conjunctive normal form (CNF). A Boolean formula is in CNF if it is
expressed as a conjunction (∧) of clauses. A clause is a disjunction (∨) of literals.
A literal is a variable or its negation (here indicated by overbars). For example, the
following Boolean formula is in CNF:

(x1 ∨ x2) ∧ (x̄1 ∨ x̄2)

The k-SAT problem is a restricted version of SAT, where each clause contains at most
k variables. This restricted version is also NP-complete for k ≥ 3.

Polynomial time reductions

As defined in [61], given two languages A,B ⊆ Σ∗, A is polynomial time mapping
reducible (also known as Karp reducible) to a language B (A ≤p B) if a polynomially
computable function f : Σ∗ → Σ∗ exists where for every w:
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w ∈ A⇐⇒ f(w) ∈ B

The function f is called the polynomial-time reduction. The well-known proof by
Cook [11] shows how all languages in NP have a polynomial-time reduction to SAT.
Here, we describe the reduction from k-colouring to k-SAT [62].

Useful Boolean formulas As discussed in [62], we can make some useful formulas
in CNF, which simplify the reductions to SAT. at most one is a formula which defines
the property only one literal of the arguments is true:

at most one(l1, l2, . . . , ln) =
∧

1≤i<j≤n

(l̄i ∨ l̄j)

Similarly we can define at least one meaning at least one variable is true:

at least one(l1, l2, . . . , ln) = (l1 ∨ l2 ∨ . . . ∨ ln)

Combining these, we can also define exactly one where exactly one of the variables
will be true:

exactly one(l1, l2, . . . , ln) = at most one(l1, l2, . . . , ln) ∧ at least one(l1, l2, . . . , ln)

The formula given for at most one is not the most efficient and can be implemented
in O(n) rather than the O(n2) version we defined, as discussed in [62]. This more
efficient implementation does, however, introduce n− 2 more variables. Throughout
the rest of this thesis we assume the inefficient encoding is used.

k-colouring As defined in [62], given a graph G with vertices V and edges E, G is
k-colourable if there exists a function f :

f : V → {1, 2, . . . , k} such that for all {u, v} ∈ E, f(u) = f(v),

Here we show the reduction from an instance of k-colouring to SAT given in [62]. The
set of variables is denoted X, formula as F , and a set K as {1, 2, . . . , k}.

X = {xv,i : v ∈ V, i ∈ K}

F =
∧

v∈V
exactly one(xv,i : i ∈ K) ∧

∧

{u,v}∈E

∧

i∈K
(x̄u,i ∨ x̄v,i) (2.1)
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Each vertex in the graph is represented in the formula by k variables. Where, each
variable in the formula represents a vertex assigned to the colour i.

The first part of the formula (
∧

v∈V exactly one(xv,i : i ∈ K)) represents the require-

ment that a vertex must take exactly one colour. This will create |V |(k
2

)
+|V |k clauses,

i.e. O(|V |k2).

The second part of the formula (
∧

{u,v}∈E
∧

i∈κ(x̄u,i∨ x̄v,i)) ensures that each pair of

vertices connected by an edge will have a different colour. This will create O(|E|k)
clauses, with each clause containing two variables.

Theorem 2.2.1. The clause set for k-colourable is linear in the input size.

Based on the previous analysis, we know that we create O(|V |k2) clauses for the first
part of the formula. We also know that we create O(|E|k) clauses for the second
part, each being two variable length. Therefore the entire formula is O(|V |k2 + |E|k)
characters. Due to k being a fixed constant, we know the length will be O(|V |+|E|),
which is linear in the input size.

2.2.3 PSPACE

QSAT

The SAT formulae discussed previously assumed implicit existential quantifiers on
all variables. The existential quantifier (∃) results are true if one of the possible
assignments of the variables allows the formula to be true. Thus, the above formula
is interpreted as:

∃x1 ∃x2 (x1 ∨ x2) ∧ (x̄1 ∨ x̄2).

A quantified Boolean formula is a Boolean formula where variables can be explicitly
and independently quantified, with existential or universal quantifiers. The universal
quantifier (∀) results true if every possible assignment of the variables results in the
formula being true.

Without loss of generality, we use a restricted version of quantified Boolean formulae,
that is assumed to be in fully quantified prenex normal form. Prenex normal form
(PNF) means that the quantified variables are all factored out before the Boolean
formula. Fully quantified means that every variable in the Boolean formula has a
quantifier. This leads to the problem TQBF, as presented in [61]:

TQBF = {φ | φ is a true fully quantified Boolean formula in PNF}.

As shown in [10] TQBF is a PSPACE-complete problem. Without loss of generality,
here we only use Boolean formulae, which are also in CNF form, a further restricted
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version which is still PSPACE-complete. This problem is usually referred to as QSAT,
where [33, 38, 24, 2] also make the same assumptions.

For example, the following two formulae are fully quantified Boolean formulae in CNF
and PNF:

∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2). (2.2)

∃x1 ∀x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2). (2.3)

2.3 cP systems

Similar to many other P systems variants, cP systems (i) assume access to un-
bounded resources, such as space and computing power; (ii) organise top-level cells
into digraph-like structures (Figure 2.1); and (iii) evolve by applying formal multiset
rewriting rules, with additional messaging primitives between top-cells.

cP top-cells contain multisets of atoms and labelled sub-cells, which are compound
objects similar to ground terms used in logic programming (Prolog). However, unlike
Prolog terms, cP terms are strictly multiset based, thus totally unordered and allow-
ing repetitions. Collectively, cP cells (top-cells and sub-cells) correspond to cells or
membranes used by other P system variants.

cP rules are high-level, supporting one-way first-order syntactic unification (similar
to pattern matching in functional programming). Unlike other P systems variants,
only cP top-cells have rewriting rules. Sub-cells in cP systems do NOT have their
own rules and are only used to represent local data.

We now present a brief overview of cP systems, only focusing on the details needed
here.

Using a BNF-like notation, Tables 2.3 and 2.4 describe basic structures of cP systems.
The grammar presented in Table 2.3 describes the contents for top-cells and sub-cells,
i.e., how data is stored in cP multisets. The grammar presented in Table 2.4 describes
the high-level rewriting rules for cP systems.

2

1
1

3

3 2

ι1

ι2 ι3

Figure 2.1: Bird’s eye view of a sample cP system, with top-level cells and subcells.
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Table 2.3: BNF grammar for cP top-cells.

1 <top−c e l l> : := <s ta te> <term> . . .
2 <s ta te> : := <atom>
3 <term> : := <atom> | <sub−c e l l>
4 <sub−c e l l> : := <compound−term> . . .
5 <compound−term> : := <functor> <args> . . .
6 <functor> : := <atom>
7 <args> : := ‘ ( ’ <term> . . . ‘ ) ’

Table 2.4: BNF grammar for cP rules, omitting features not used here.

1 <ru le> : := <lhs> →a <rhs> (<promoters> | < i n h i b i t o r s >) . . .
2 <lhs> : := <s ta te> (<term> | ?δ ‘{ ’ <term> ‘} ’ ) . . .
3 <rhs> : := <s ta te> (<term> | !δ ‘{ ’ <term> ‘} ’ ) . . .
4 <promoters> : := ( ‘ | ’ <vterm−eq>) . . .
5 < i n h i b i t o r s> : := ( ‘¬ ’ <vterm−eq>). . .
6 <vterm> : := <var i ab l e> | <atom> | <compound−vterm>
7 <compound−vterm> : := <functor> <vargs> . . .
8 <vterm−eq> : := <vterm> | ’( ’<vterm> ’= ’ <vterm> ’) ’
9 <vargs> : := ‘( ’<vterm> . . . ‘ ) ’ | ‘{ ’ <vterm> . . . ‘ } ’

We use standard conventions: the symbol λ denotes the empty multiset; dots (‘. . .’)
represent zero or more repetitions; atoms are denoted by lower case characters (letters
or other symbols); and variables are denoted by uppercase letters, with the exception
of the special discard variable, denoted by an underscore ( ).

Top-cells have states and contain multisets of literal atoms and recursively nested
compound terms called sub-cells. Functors are sub-cell labels, and their multiset
arguments are enclosed in parentheses ‘()’. Top-cell contents are all ground, i.e.
cannot contain variables.

A cP system evolves through a sequence of configurations by changing its state and
contents. These changes are driven by the high-level rewriting rules associated to its
top-cell, which are constructed according to the grammar presented Table 2.4. Unlike
similar cells in cell-like P systems, cP sub-cells are more restricted, by not having their
own rules. Thus, sub-cells are just data storage facilities, and are acted upon by the
top-cell’s rules only. Unlike other P systems variants, rules in cP systems are generic
templates, i.e., their var-objects may contain variables that must be instantiated
before the rule application. Before a rule can apply:

• Its left hand side (lhs) state must match the current top-cell state.

• Its right hand side (rhs) state must match the already committed next state, if
any, as further detailed below, in the section on weak priority order.

• The rule must be must match, by way of unification, all conditions specified
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by its left-hand-side, and its promoter and inhibitor constraints. There are two
cases: (i) vterm arguments enclosed in round parentheses ’()’ require complete
match; (i) vterm arguments enclosed in curly braces ’{}’ require partial match,
of only the specified contents. The second feature is not frequently needed,
but enables partial sub-cell transformations similar to those of other P system
variants, without locking the whole sub-cell; this is further described under the
title microsurgery.

Rules are applied in state-based weak priority order (see example 5 Section 2.3) with
rules considered in the given top-down. The first lhs state is the state of the initial
configuration. Once an applicable rule has been found, this commits to the next
state, with subsequent rules committing to different states disabled. Rules going to
the same state as the applicable rule, which can also be applied, will be applied in the
same step. This state-based weak priority order supports a straightforward emulation
of basic control flow (e.g. conditional, or loop structures).

Essentially, applying a rule:

• Commits to the next state (which may be the current state).

• Consumes (deletes) extant top-cell objects matching its lhs. Promoters must
match and inhibitors not match extant top-cell objects, with both not being
consumed by the rule.

• Creates new objects as indicated by its instantiated rhs. Newly created objects
are temporary unavailable and become available after the end of the current
step only, as in traditional P systems.

There are two rule application modes: exactly-once (→1) and max-parallel (→+). An
exactly-once rule will apply for one single matching (non-deterministically chosen).
A max-parallel rule will apply it as many times as possible, conceptually all in the
same step, but following a serialisation semantics, i.e., its effects must be identical
to a sequential repetition of the same rule in the exactly-once mode (sequence non-
deterministically chosen). Although, as just mentioned, the cP semantics allow non-
deterministic computations, most of our work has focused on confluent evolutions,
often deterministic; the solution proposed in this paper is deterministic.

We emphasise that cP terms and vterms are strictly based on multisets. However,
we can straightforwardly emulate other structures, such as numbers and even ordered
lists. Essentially, numbers can be represented as multisets solely consisting of repeated
occurrences of a designated unary digit, typically 1. We do not use lists here, so this
topic is not discussed.

Terms with repeated arguments seem to require an ordering concept. However, we
consider that these are just convenient shorthands to nested multiset-based labelled
terms. For example, the term a(bc)(de) is actually a shorthand for a(bc · (de)), where
the dot functor (·) is system provided. Thus, if a is a sub-cell at nesting depth 1,
then b and d are at nesting depths 2 and 3, respectively.



15

We conclude this subsection by noting that, unlike most other P system variants,
cP terms and rules allow crisp algorithm descriptions, with constant-size alphabets,
constant-size rulesets, and bounded membrane nesting, independent of the size of the
problem and the number of cells in the system. The cP semantics will be further
clarified in the following subsection, by way of examples.

2.3.1 Examples of cP rules

We now present a few simple but typical rules for cP systems.

1. Change state from s0 to s1 and rewrite one pair of a and b into one c, provided
that at least one p is present (and will stay unchanged in the cell):

1 s0 a b →1 s1 c | p

2. Change state from s0 to s1 and rewrite all a, b pairs into c’s, in the max-parallel
mode, provided that at least one p is present:

1 s0 a b →+ s1 c | p

3. Change state from s0 to s1 and rewrite all a, b pairs into c’s, in the max-parallel
mode, provided that no p is present:

1 s0 a b →1 s1 c ¬ p

4. Change state from s0 to s1, rewrite one compound term a() by adding one 1 to
its contents; variable X is unified to the actual contents of a.

1 s0 a(X) →1 s1 a(X1)

If the current a already has two copies of 1, i.e. a(11), then the result will be
an updated copy with three 1’s, i.e. a(111)—thereby incrementing its base 1
contents.

5. Conditionally change state from s0 to s1, rewrite one compound term a() by
removing one 1 from its contents, if there is at least one 1 among its contents.

1 s0 a(Y 1) →1 s1 a(Y )

For example, if the current a already has three copies of 1, i.e. a(111), the result
will be an updated copy with two 1’s, i.e. a(11)—thereby decrementing its base
1 contents. The rule does NOT apply if the cell does not contain at least one 1.

6. A complex operation, highlighting the weak priority order, with resulting state
depending on the current cell contents.

1 s0 a →1 s1 e (1 )
2 s0 b →1 s2 f (2 )
3 s0 c →1 s1 g (3 )
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(a) If the cell contains a and c, then rules (1) and (3) apply; new state: s1,
new contents: e and g.

(b) If the cell contains b and c, then only rule (2) applies; new state: s2, new
contents: f and c. Rule (3) is NOT applicable, because rule (2) has already
set the target state to s2.

(c) If the cell contains a, b and c, then only rules (1) and (3) apply; new state:
s1, new contents: e, b, and g. Rule (2) is NOT applicable, because rule (1)
has already set the target state to s1.

7. Microsurgery is denoted by curly braces { } instead of round parentheses
( ) and enables processing of parts of the inner contents, without locking the
rest [48]. Microsurgery allows us to use sub-cells in the same style as we use
our top-cells, and also independent cells in other P systems variants. Without
microsurgery, this will NOT be possible, because sub-cells do NOT have their
own rules – instead, their contents need to be manipulated solely by the rules
of their containing top-cells.

For example, the rules:

1 s0 x{a} →+ x{b}
2 s0 x{c} →+ x{d}

applied to the term x(a a c c c e) will in one single step result in x(b b d d d e).
Without microsurgery, this requires more steps and more complex rules.

Note that microsurgical applications are already the default for top-cells, where
we do apply partial matching, without locking all the contents. However, for
simplicity, we do not use explicit curly braces for the outermost top-cell. For
example, these two rules would in fact be equivalent:

1 s0 a → s0 b ≡ s0 {a} → s0 {b} ,

2.3.2 Multi Cell

Here we utilise our revised version of cP systems, which includes a new Actor-like
facility for controlling the message flow. Essentially, we have now two communication
primitives:

• ’ !’ : a send primitive, which can only appear on the the rhs of the rules, and
sends messages over outgoing arcs;

• ’ ?’ : a receive primitive, which can only appear on the the lhs of the rules, and
receives (accepts) messages from incoming arcs.

Sent messages which arrive at the target cell are NOT immediately inserted among
the target’s contents; instead, these messages are conceptually “enqueued” and there
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is one message “queue” – in our case, read “multiset” – for each incoming arc. Then,
these messages may be accepted by the receive primitive, ’?’, only at appropriate
target steps. Moreover – like the send primitive ’ !’ – the receive primitive ’?’ can
also be associated with any term (including compound), which enables it to filter
only queued messages meeting a specific pattern. Depending on the runtime, the
designated receive and/or send location may be a cell id or an arc id. Throughout
this thesis, we assume that they are cell ids.

For example, consider two top-level cells, ι1 and ι2, connected by a communication
channel symbolised by the (directed) arc (ι1, ι2), which is labelled by 2 at its source
and 1 at its target. Consider that cell ι1 sends one a and then one b, via two steps,
as shown by the following two rules:

S0 →1 S1 !2 {a} ι1 sends a to ι2
S1 →1 S2 !2 {b} ι1 sends b to ι2

The sent items, a and b, are not automatically inserted into the contents of ι2. Con-
sider that target cell ι2 is in state S0 and has the following rule:

S0 ?1 {b} →1 S1 c c ι2 expects b from ι1

Then, cell ι2 does not accept the first sent item, a, which remains in the inbox
multiset (and may be accepted later). Thus, ι2 idles one step, until it receives the
second item, b, which is transformed by the rule into two c’s. More complex (and
interesting) scenarios can be designed using compound terms and variables.

For simplicity, we include a send to all neighbours(broadcast) !∀.

2.4 Computing with water

Water has been used for information processing for over 2000 years [41]. Although
water computers are not commonly used today, they have had many successful uses
in the past. In 1901, water was used to calculate the nth root of a polynomial [19].
In the 1930s, water integrators were made to solve ordinary differential equations
and were not surpassed by digital computers until the 1980s [65]. In the late 1940s,
the first Phillips machine was built [56]. The Phillips machine was used to model
macroeconomic theory. It was used in lectures for many years after the original
prototype of the 1940s [58]. In the 1960s, water was used to implement logic gates
such as AND, OR and NOT [45]. In the early 2000s, a fluid-based bilateral system was
proposed and used to solve the satisfiability problem [4]. Recent work has investigated
the possibility of using a microfluidic biochip as a way of implementing spiking neural
P systems [34]. For a more detailed history see [1]. As our work is theoretical, we
note that physical implementations of water-based machines are still being developed,
such as in [64].

In [30] a new model of water computing was proposed. The model worked by having
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a set of tanks interconnected using pipes. Each pipe is controlled by a set of valves
that allow water to pass through it if and only if all valves on the pipe are open.
The system would terminate after an arbitrary given amount of time, making it
undecidable to determine if the system had completed its computation. Further work
was also required to reset the system for the subsequent evaluation or combine a set
of functions into a directed acyclic graph without an exponential explosion of valves.

The tank system presented in [30], as well as our system, both use saturation arith-
metic where the lower bound value is 0 (no water), and the upper bound is the
capacity of the result tank (sometimes unbounded). Saturation arithmetic produces
more ‘natural’ results than the usual modular arithmetic used by current computers.

Water tank system. Tanks are displayed as open rectangles, the pipes as lines
between the tanks and valves as lines crossing the pipe it belongs to. We denote
water going to the infinite sink by a black arrow at the end of the pipe. If the pipe
starts with an empty rectangle, then the water comes from the infinite source.

Figure 2.2 and Figure 2.3 illustrate two tank systems that only contain value tanks
(and no control tanks).

1. Subtraction(�): Basic saturated subtraction can be achieved using three
tanks, input tanks x and y, and the output tank z as shown in Figure 2.2.
The system drains from both x and y until y is empty. Once y is empty, x
corresponds to the result to be stored in z.

2. Addition(⊕): Basic saturated addition is achieved using three tanks: the two
inputs and the output total as shown in Figure 2.3. The system does not contain
valves, and the values of x and y go directly to the result. Once x and y are
empty, z contains the final result.

As discussed in [30], although we can intuitively model simple stand-alone gates –
such as basic addition and subtraction - several essential open problems remain:

• Termination detection: a tank system that self-determines when it has com-
pleted, with a control tank becoming full when the system has finished.

• System reset: a way to re-evaluate the system, possibly on other data.

z

y = 0

y �= 0

x y

Figure 2.2: A diagram representing basic subtraction z = x� y.
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x y

z

Figure 2.3: A diagram representing basic addition z = x⊕ y.

• Simplifying the control valves, to avoid a combinatorial explosion in the number
of tanks – essential for building more complex systems.

• Limiting the system structure to be a directed acyclic graph – the previous
paper [30] used loops for implementing more complex arithmetic, such as mul-
tiplication and division. Where a loop requires a ‘pump’ to move the water
against the natural flow (gravitational gradient).

In Chapter 4 we solve all these problems, by extending the basic approach with a
parallel support network of control tanks. It, also proves that this extended water
system is Turing complete (by way of μ-recursive functions).



Chapter 3

Efficient single cell cP solutions to
hard problems.

In this chapter, we investigate the power of a single cell cP system. In the first
part of this chapter, we constructively prove that cP systems can compute PSPACE
hard problems in polynomial time. In the second part, we show that cP systems can
solve NP-hard problems in sublinear time. With this sublinear solution to K-SAT,
we show how reductions can be applied to produce very efficient solutions surpassing
the problem-specific solutions presented in the literature.

3.1 Solving PSPACE complete problem

In this section, we demonstrate that cP systems can solve not only NP-hard problems
in linear time, but also PSPACE-complete problems in polynomial time, with QSAT
(i.e. TQBF) being solvable in linear time.

Our solution is – as far as we know – the first using cP systems; it uses 10 rules and
a constant custom alphabet of size 19. Our solution is deterministic, so we do not
compare it here with non-confluent solutions, such as [37] (this could be the topic of
further investigations). We note that our solution is not the first confluent solution
to PSPACE-complete problems using P systems. Previous solutions exist that follow
similar ideas, such as [33, 38, 24, 2]. Our solution utilises partial evaluation when
generating the possible candidate solutions to the problem. Allowing our solution
to minimise the number of clauses being used. As shown in Table 3.1, our solution
substantially improves the extant results, on several criteria: alphabet size, number
of rules, and membrane nesting depth – all small constants, independent of the
problem size.

Rule templates are groupings of similar rules, only differing by symbol indices. We did
not consider the number of repeated copies placed in different membranes/neurons
when counting rule templates and rules. If we were to include such occurrence counts,

20
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Table 3.1: Comparison of our solution with pre-existing confluent P system solutions,
where n is the number of variables and m the number of clauses.

Solution (year) # Rule
templates

# Rules # Custom
alphabet
symbols

Membrane
nesting
depth

Linear solution for
QSAT (2006) [24]

40 O(m) O(nm) O(n)

Uniform solution of
QSAT (2007) [2]

33 O(mn) O(nm) O(n)

Deterministic so-
lution to QSAT
(2010) [33]

20 O(n) O(n) O(n)

Solving QSAT in
sublinear nesting
depth (2018) [38]

27 O(mn) O(n log n) O(n/log n)

QSAT cP system
(2020)

10 10 19 (also 6
states)

6

the number of rules would increase drastically, for the other extant solutions. For
example, the solution to QSAT in [33] would have O(22n) rules, if we count the rules
in every neuron. cP systems do not have such an exponential blow-up, all these
characteristics are small constants.

In subsection 2, we discuss the background of this specific problem and how cP sys-
tems work. In subsection 3, we present and discuss our ruleset to solve the QSAT
problem.

QSAT

Solving QSAT for a given formula φ can be done, as shown in [61], with the recursive
algorithm (pseudocode) presented here in Table 3.2, slightly adapted, where we sep-
arate φ in three components: q – the stack of quantifiers ; p – the stack of variables ;
f – the Boolean expression itself (the unquantified matrix).

The given algorithm systematically explores all possible combinations of variable as-
signments and evaluates the formula according to the given quantifiers. In the top-
down pass, expressions f [x := 0], f [x := 1] indicate substitutions in f of x by 0 (i.e.
false), respectively by 1 (i.e. true). In the bottom-up pass, (∃) is associated with
(∨), and (∀) with (∧), as straightforward arguments indicate.

The candidate solutions of Formulae (2.2, 2.3) can be visualised on the trees shown
in Figures 3.1, 3.2: (a) lists the quantified variables, top-down, one per tree layer; (b)
is the top-down construction of the tree, showing variable assignments; and (c) is the
bottom-up evaluation of the tree, applying ∨ for ∃ and ∧ for ∀.
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Table 3.2: Recursive algorithm for QSAT: q = quantifiers; p = variables;
f = unquantified Boolean expression.

1 let rec QSAT q p f =
2 i f q = () then
3 eval f // no more quantifiers in prefix, all variables assigned
4
5 else
6 let y , x = pop q , pop p
7 let v′ = QSAT q p f [x := 0]
8 let v′′ = QSAT q p f [x := 1]
9 let v = i f y = ∀ then v′ ∧ v′′ else v′ ∨ v′′

10 v
11
12 // sample calls, for Formulae (2.2, 2.3)
13 let v = QSAT (∀, ∃) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // fa l se
14 let v = QSAT (∃, ∀) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // true

Sequential execution of the recursive solution makes a preorder traversal of the com-
plete tree, using O(n) space and O(2n) runtime steps, where n is the number of
quantifiers (or variables) in the prefix and the number of tree levels below the root.

Note that Formulae (2.2, 2.3) only differ in quantifiers. Thus Figures 3.1, 3.2 differ
only in their quantifiers lists (a) and evaluation results in otherwise isomorphic tress
(c); while trees (b) are identical.

The recursion of the algorithm in Table 3.2 can be unrolled by straightforward tech-
niques. The non-recursive solution in Table 3.3 creates each layer of the tree succes-
sively, whilst implicitly discarding the previous layer. Variables in p are processed
during the top-down pass, so p is simply successively popped. Quantifiers in q are
required during the bottom-up pass, so, during the top-down pass, q is successively
reversed into q′.

F is an ordered list of Boolean expressions, corresponding to the nodes of the cor-
responding layer in the underlying virtual tree. Initially, F = (f), a singleton list
containing the formula given by the problem. F changes 2n+ 1 times, by way of the

0 1

0 101

0

0 1

0 110

∀x1

∃x2

(a) (b) (c)

∨

∧

∨

Figure 3.1: QSAT tree for Formula (2.2): ∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).



23

0 1

0 101

1

0 1

0 110

∃x1

∀x2

(a) (b) (c)

∧

∨

∧

Figure 3.2: QSAT tree for Formula (2.3): ∃x1 ∀x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

higher-order function map: (i) During the n top-down steps, each expression f ∈ F
is replaced by the substitutions pair f [x := 0], f [x := 1]; (ii) At the leaves level, when
all variables have been assigned, each f is replaced by its evaluated Boolean value;
(iii) During the n bottom-up steps, each consecutive pair of Boolean values is replaced
by either an ∧ or ∨ result, depending on the corresponding quantifier, ∀ or ∃ (this
quantifier was saved in q′ during the top-down pass).

Assuming that enough processing elements are available, parallel execution of this
non-recursive solution trades space for time, running in O(n) time and using O(2n)
space. Our cP solution follows the same process as the non-recursive solution in Table
3.3.

3.1.1 cP Solution and Examples

In this subsection we discuss our cP system for solving QSAT for n ≥ 1, and we
illustrate its evolution on Formulae (2.2, 2.3), recalled here:

1 ∀x1 ∃ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (1)
2 ∃x1 ∀ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (2)

We only use one single top-level cell, and we closely follow the parallel pseudocode
algorithm listed in Table 3.3: a layer-by-layer sweep over a virtual tree, in two passes
– first top-down, then bottom-up.

We use six states, {s1, s2, ..., s6}, where s1 is the initial state, and s6 is the final. The
rule set is shown in two listings: the top-down pass in Table 3.7, and the bottom-
up pass in Table 3.9. The evolution corresponding to Formula (2.2) is illustrated
in the following tables: Table 3.6 shows the initial cell contents and state; then Ta-
ble 3.8 traces the top-down evolution; and Table 3.10 traces the bottom-up evolution.
Table 3.11 traces the bottom-up evolution of the slightly different Formula (2.3).

Lookup tables

For efficiency, our cP solution uses two read-only “tables”. Four sub-cells y()()() form
a lookup table for Boolean identity and negation operations. Table 3.4 shows their
contents and their interpretation.
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Table 3.3: Non-recursive pseudocode – layer-by-layer in both sequential and parallel
mode: q = quantifiers; p = variables; F = list of unquantified Boolean expressions.

1 let QSAT q p F =
2 let q′ = ( )
3 while q = ( ) do // top-down pass
4 let x = pop p
5 push q′ (pop q ) // reverse q onto q′

6 let F = flatmap F (f → (f [x := 0], f [x := 1]))
7
8 // e.g. F = (0 ∨ 0) ∧ (0 ∨ 0̄), (0 ∨ 1) ∧ (0 ∨ 1̄), (1 ∨ 0) ∧ (1 ∨ 0̄), (1 ∨ 1) ∧ (1 ∨ 1̄)
9

10 let F = map F (f → ∣∣f)
11
12 // e.g. F = 0, 0, 1, 1
13
14 while q′ = ( ) do // bottom-up pass
15 let y = pop q′

16 let P = pairwise F
17 // e.g. P = (0, 0), (1, 1)
18 let F = map P ((v, v′)→ i f y = ∀ then v′ ∧ v′′ else v′ ∨ v′′)
19 // e.g. F = 0, 1
20
21 singleton F // returned value
22
23 // sample calls, for Formulae (2.2, 2.3)
24 let v = QSAT (∀, ∃) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // fa l se
25 let v = QSAT (∃, ∀) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // true
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Eight sub-cells w()()()() form a lookup table for Boolean ∧ and ∨ operations, the
actual operation being selected on the corresponding quantifier. Table 3.5 shows
their contents and their interpretation.

Prefixes and tree levels

During the top-down pass, sub-cell ν() is a counter that indicates the tree level depth;
initially ν(n), where n is the actual number of quantifiers (or variables).

Sub-cells p()(), q()() form 1-based associative arrays, that encode the given prefix:
p()() contains variables, q()() contains quantifiers. These sub-cells are used as “hori-
zontal” (not nested) stacks, where the top is indicated by the current value of counter
ν(). During the top-down pass, the top elements of p()() are temporarily popped
into h(), and q()() is reversed into a similar “horizontal” stack, q′()(), whose top is
indicated by counter μ() – stack q′()() will be used in the bottom-up pass.

Stacks p()(), q()(), q′()() closely match their namesake variables used in the Table 3.3.
Together with their associated counters, ν() and μ(), these play the role of global
variables controlling the two passes.

Literals encoding and formula sub-cells

Formula literals, i.e. variables and their negations, are given via sub-cells x()(). We
use shorthand notations, that closely match the mathematical expression and keep
our expression crisp:

1 x1 ≡ x(1)(+)
2 x̄2 ≡ x(11)(−)

This is just a notation convenience; our rules assume the longer version when being
matched.

Clauses are given via sub-cells c(), having literals as contents, with implicitly assumed
Boolean or’s. For example:

1 (x1 ∨ x̄2) ≡ c(x1x̄2) ≡ c(x(1)(+) x(11)(−))

Table 3.4: Cells y form a lookup table for Boolean identity and negation operations:
V = if S=+ then K else K̄.

K S V y cells contents
0 + 0 y(0)(+)(0)
0 − 1 y(0)(−)(1)
1 + 1 y(1)(+)(1)
1 − 0 y(1)(−)(0)
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Table 3.5: Cells w form a lookup table for Boolean ∨ and ∧ operations:
V = if Q=∀ then V ′ ∧ V ′′ else V ′ ∨ V ′′.

Q V ′ V ′′ V w cells contents
∀ 0 0 0 w(∀)(0)(0)(0)
∀ 0 1 0 w(∀)(0)(1)(0)
∀ 1 0 0 w(∀)(1)(0)(0)
∀ 1 1 1 w(∀)(1)(1)(1)
∃ 0 0 0 w(∃)(0)(0)(0)
∃ 0 1 1 w(∃)(0)(1)(1)
∃ 1 0 1 w(∃)(1)(0)(1)
∃ 1 1 1 w(∃)(1)(1)(1)

The contents of c()’s are multisets, thus the order of literals is irrelevant, but we
usually keep it in our listings, for more readability.

Unquantified formulae are given via sub-cells f(). Initially, sub-cells f() contain just
multisets of clauses. For example, at the root of the virtual tree, the unquantified
part of Formula (2.2) is encoded as:

1 f(c(x1 x2) c(x1 x̄2))

The contained clauses are partially evaluated during the top-down pass, and new
contents appear in f(), that indicate the path to the root and the final value.

Sub-cells a()() form a 1-based associative array that indicates a complete path to the
root, and are used as “horizontal” (not nested) stacks, with the top indicated by the
contents of counter ν() – similar to the above mentioned global q′()() sub-cells. For
example, ignoring its other contents, a formula associated to the node on left-most
path 01 looks like this:

1 f(... a(11)(1) a(1)(0))

The contents inside the first parentheses indicate the depths (here 2 and 1), while the
content inside the second parentheses indicates the assigned values (here 1 and 0).

Note that the layers are processed in the order of variables given by the prefix –
this will be discussed shortly. This need not be in increasing order, although usu-
ally is. Thus, the above a()’s may indicate the tree node for x1 = 0, x2 = 1, (Cf.
Figures 3.1, 3.2).

The a()()’s are created during the top-down pass and effectively used during the
bottom-up pass, to properly match sibling nodes.

At the tree leaves level, the formulae are completely evaluated and their values are
stored in v() sub-cells. For example, under the above mentioned sample assumptions:



27

1 f(v(0)... a(11)(1) a(1)(0))
2 ⇐⇒ (x1 ∨ x2) ∧ (x1 ∨ x̄2)[x1 := 0, x2 := 1] ≡ (0 ∨ 1) ∧ (0 ∨ 1̄) ≡ 0

To help an efficient top-down formula substitution split, such as [xi = 0] vs [xi := 1],
we also use temporary variants of f with two distinct arguments, f()().

Cells f() closely match their namesake variables used in the Table 3.3.

Top-down pass

The rules for the top-down pass are listed in Table 3.7. Essentially, we have a loop
consisting of three steps (s1 → s2 → s3 → s1) that is repeated n times and a
subsequent one step evaluation (s1 → s4). These steps closely follow the top-down
pass of the parallel algorithm presented in Table 3.3.

Rules (1, 2, 3) form an if then else construct. If we haven’t yet processed all
quantifiers and variables, condition detected by a non-empty ν() counter, then rule (1)
applies, resetting our global control variables and starting one more loop iteration
(s1 → s2). Sub-cell h() is updated to the current variable to be substituted, say
h(xi), and its associated quantifier is popped into stack q′()(), to be used in the
bottom-up pass.

Otherwise, if the quantifiers and variables stacks are empty, we exit the loop via
rules (2,3), applied in max parallel mode. Formulae f() that after partial evaluations
are false, detected by at least one empty c() clause, are tagged by one v(0) sub-cell.
The other formulae, which are true, are tagged by one v(1) sub-cell.

Together, rules (4,5,6) form the main body of the top-down loop (s2 → s3 → s1).
They run in max parallel mode and create the next level down the tree, discard-
ing the current level. Each formula f() is split into two children formulae, by two
substitutions, xi := 0, xi := 1, and new a()() sub-cells are created, to record the
corresponding tree paths. These paths tags a()(), will be essentially used during the

Table 3.6: Contents of our top-level cell, as initialised for Formula (2.2):
∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

1 s1 ν(11) μ()
2 p(11)(x1) p(1)(x2) h()
3 q(11)(∀) q(1)(∃)
4 f(c(x1 x2) c(x1 x̄2))
5
6 y(0)(+)(0) y(0)(−)(1) y(1)(+)(1) y(1)(−)(0) // y lookup table
7
8 w(∀)(0)(0)(0) w(∀)(0)(1)(0) w(∀)(1)(0)(0) w(∀)(1)(1)(1) // w lookup table
9 w(∃)(0)(0)(0) w(∃)(0)(1)(1) w(∃)(1)(0)(1) w(∃)(1)(1)(1)
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bottom-up pass, when these two children will be recognised as siblings and merged
together (despite being here thrown into an unordered multiset).

Using the lookup table y()()(), rules (5,6) also perform straightforward partial eval-
uations, based on the values that are assigned to variable xi.

Table 3.8 illustrates this top-down pass by traces for Formula (2.2), starting from the
initial state shown in Table 3.6.

Bottom-up evaluation

The rules for the top-down traversal pass are listed in Table 3.9. Essentially, we have
a one step transition from the top-down pass (s4 → s5), followed by a one step loop
(s5 → s5) that is repeated n times, and a one step exit to the final state (s5 → s6).
These steps closely follow the bottom-up pass of the parallel algorithm presented in
Table 3.3.

Rule (7) runs in max parallel mode and performs a clean up step (s4 → s5), removing
unwanted material from all sub-cells f().

Rules (8,9,10) form a repeat until bottom-up loop, with the exit condition checked
by rules (9,10). This works, as we assume that n ≥ 1.

Rule (8) forms the main body of this bottom-up loop, s5 → s5, that is repeated n
times, and runs in max parallel mode. This rule creates the next level up the tree,
discarding the current level.

Each pair of sibling formulae f() are merged and evaluated, using the corresponding
quantifier from stack q′()() (which was saved during the top-down pass). Because we
use multisets we cannot a sequence based pairing, as in Table 3.3. From all f()()’s in
the current multiset content, siblings are grouped together according to their path to
root records, given by their contained a()()’s. The evaluation is performed with help
from the look-up table w()()()().

Rules (9,10) form an if then else loop end check. If we are not yet at the root
level, a condition detected by a non-empty counter μ, then rule (9) resumes the loop,
s5 → s5. Otherwise, rule (10) applies and exits, cleaning all remaining stuff, and
recording the final value in v().

Table 3.10 illustrates this bottom-up pass by traces for Formula (2.2, ∀ ∃), starting
from the end state shown in Table 3.10. The evolution for the related Formula (2.3,
∃ ∀) are only marginally different, but still significant in the bottom-up pass, when
we actually use quantifiers; its bottom-up traces are shown in Table 3.11.
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Table 3.7: Top-down rules. The three steps loop s1 → s2 → s3 → s1 is repeated n
times, followed by the exit s1 → s4.

s1 ν(1N) h( ) p(1N)(X) →1 s2 ν(N) h(X) μ(1M) q′(1M)(Q) (1)
q(1N)(Q) μ(M)

s1 f(c() Z) →+ s4 f(v(0) Z) (2)

s1 f(c(1) Z) →+ s4 f(v(1) Z) (3)

s2 f(Z) →+ s3 f(0)(Z a(M)(0)) (4)
f(1)(Z a(M)(1))

| μ(M)

s3 f(K) {c(x(I)(S) Y )} →+ s1 f{c(Y )} (5)
| h(x(I)(+))
| y(K)(S)(0)

s3 f( ) {c(x(I)(S) Y )} →+ s1 f{c(1)} (6)
| h(x(I)(+))
| y(K)(S)(1)
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Table 3.8: Top-down traces for Formula (2.2, ∀ ∃). Continued from Table 3.6.
(Cf. tree (b) in Figure 3.1).

1 s1
2 ν(11) h( ) p(11)(x1) p(1)(x2) q(11)(∀) q(1)(∃) μ()
3 f(c(x1 x2) c(x1 x̄2))
4
5 (1)⇒ s2
6 ν(1) h(x1) p(1)(x2) q(1)(∃) μ(1) q′(1)(∀)
7
8 (4)⇒ s3
9 f(0)(c(x1 x2) c(x1 x̄2) a(1)(0)) f(1)(c(x1 x2) c(x1 x̄2) a(1)(1))

10
11 (5)⇒ s1
12 f(c(x2) c(x̄2) a(1)(0)) f(c(1) c(1) a(1)(1))
13
14 (1)⇒ s2
15 ν() h(x2) μ(11) q′(11)(∃) q′(1)(∀)
16
17 (4)⇒ s3
18 f(0)(c(x2) c(x̄2) a(11)(0) a(1)(0)) f(1)(c(x2) c(x̄2) a(11)(1) a(1)(0))
19 f(0)(c(x2) c(x̄2) a(11)(0) a(1)(1)) f(1)(c(x2) c(x̄2) a(11)(1) a(1)(1))
20
21 (5)⇒ s1
22 f(c() c(1) a(11)(0) a(1)(0)) f(c(1) c() a(11)(1) a(1)(0))
23 f(c(1) c(1) a(11)(0) a(1)(1)) f(c(1) c(1) a(11)(1) a(1)(1))
24
25 (2, 3)⇒ s4
26 f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
27 f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))

Table 3.9: Bottom-up rules. One step loop s5 → s5 repeated n times.

s4 f{ c( ) } →+ s5 f{ } (7)

s5 f(v(V ′) a(M)(0) A) →+ s5 f(v(V ) A) (8)
f(v(V ′′) a(M)(1) A) | μ(M)

| q′(M)(Q)
| w(Q)(V ′)(V ′′)(V )

s5 μ(1M) q(1M)( ) →1 s5 μ(M) (9)

s5 f(v(V )) μ() ν() h( ) →1 s6 v(V ) (10)
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Table 3.10: Bottom-up traces for Formula (2.2, ∀ ∃). Continued from Table 3.8. Final
result is false. (Cf. tree (c) in Figure 3.1).

1 s4
2 μ(11) q′(11)(∃) q′(1)(∀) // ν() h(x2)
3 f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
4 f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))
5
6 (7)⇒ s5
7 f(v(0) a(11)(0) a(1)(0)) f(v(0) a(11)(1) a(1)(0))
8 f(v(1) a(11)(0) a(1)(1)) f(v(1) a(11)(1) a(1)(1))
9

10 (8, 9)⇒ s5
11 f(v(0) a(1)(0))
12 f(v(1) a(1)(1))
13 μ(1) q′(1)(∀) // ν() h(x2)
14
15 (8, 9)⇒ s5
16 f(v(0))
17 // μ() ν() h(x2)
18
19 (10)⇒ s6
20 v(0) // false
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Table 3.11: Bottom-up traces for Formula (2.3, ∃ ∀). Continued from Table 3.8, with
different q′()()’s. Final result is true. (Cf. tree (c) in Figure 3.2).

1 s4
2 μ(11) q′(11)(∀) q′(1)(∃) // ν() h(x2)
3 f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
4 f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))
5
6 (7)⇒ s5
7 f(v(0) a(11)(0) a(1)(0)) f(v(0) a(11)(1) a(1)(0))
8 f(v(1) a(11)(0) a(1)(1)) f(v(1) a(11)(1) a(1)(1))
9

10 (8, 9)⇒ s5
11 f(v(0) a(1)(0))
12 f(v(1) a(1)(1))
13 μ(1) q′(1)(∃) // ν() h(x2)
14
15 (8, 9)⇒ s5
16 f(v(1))
17 // μ() ν() h(x2)
18
19 (10)⇒ s6
20 v(1) // true
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Analysis

Proposition 3.1.1. Our solution uses a alphabet size of 25.

The state alphabet is {s1, s2, s3, s4, s5, s6}.
Our custom alphabet is {∃, ∀,+,−, 0, 1, f, c, q, q′, p, x, h, y, w, ν, μ, a, v}.
Proposition 3.1.2. Our solution uses a ruleset containing 10 rules.

Top-down pass uses 6 rules (Table 3.7) and bottom-up pass uses 4 (Table 3.9), making
a total of 10 rules.

Proposition 3.1.3. Total runtime is 4n+ 3.

Top-down runtime (Table 3.7): The top-down loop s1 → s2 → s3 → s1 runs n times.
The transition s1 → s4 runs once, making this pass take 3n+ 1 steps.

Bottom-up runtime (Table 3.9): The transitions s4 → s5 and s5 → s6 run once. The
bottom-up loop s5 → s5 runs n times, making this pass take n+ 2 steps.

Thus, the total runtime is O(n) = 4n+ 3.

Proposition 3.1.4. The evolution of our ruleset is totally deterministic.

Rules applicable exactly once (→1) use singleton terms and do not allow any possible
choice. Rules applicable in the max parallel mode (→+) make the same multiset
transformations, regardless of any hypothetical application order.

Proposition 3.1.5. The maximum membrane nesting depth is 6.

The largest nesting depth in Table 3.8 occurs in:

f(0)(c(x2) c(x̄2) a(11)(0) a(1)(0)) ≡ f(0)(c(x(11)(+)) c(x(11)(−)) a(11)(0) a(1)(0))
and other similar cells. Denoting nesting depth by δ, we have: δ(f) = 1, δ(c) = 3,
δ(x) = 4, δ(+) = 6. This example is for n = 2; however, for larger n, the nesting
depth will NOT increase, but rather the “horizontal” number of cells at existing
levels.

Theorem 3.1.6. Single cell cP systems can deterministically solve QSAT in time
O(n) with 10 rules and an alphabet size of 25.

The proof for this is contained in propositions 3.1.1-3.1.5.

3.1.2 Conclusions

We have presented an efficient deterministic cP solution to QSAT, that runs in
4n + 3 = O(n) steps, the same order of magnitude as the other P system solu-
tions. However, in contrast to other confluent P system solutions, our cP solution
uses a small constant alphabet size (19), a small constant number of rules (10), and
very small constant membrane nesting depth (6), independent on the problem size.
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3.2 Sublinear solutions to NP complete problems

In this section we demonstrate that cP systems can solve k-SAT in sublinear time
(
√
n). We also show that a polynomial reduction from k-colouring to k-SAT can be

done in a constant number of steps. This shows that our reduced solution as far as
we know is the fastest P system solution for k-colouring.

3.2.1 Rule set

Here we assume k-SAT to be a formula in CNF with variables x0, ..., xn−1 where each
clause contains at most k variables. To solve k-SAT in square root time, we break it
up into three steps: first step is generating assignment templates, second is generating
the assignments, and finally evaluating the entire formula. Figure 3.3 shows a state
diagram of the entire system broken down into the three main parts.

Initial configuration

During the execution of the algorithm subcell m() is used to determine when loops
have finished; initially set to m(1). Subcell j() is used to store the branch number
of allocations of variables where, the branch number is a index of the paths from
root to leaf starting at 0 for the left-most leaf (see Figure 3.4b); initially we have
j(0) j(1) j(2) j(3) because we assume that we have already allocated x0 and have
the next level of branches ready to assign.(no matter what the value of n we assume
that we have only allocated the first variable).

Another way of looking at branch numbers is a bijection between integers and allo-
cations. Algorithms to go between these representations are given in the appendix.

Subcell a(i)(v)(j) states that xi has been assigned the value v and is of the allocation
for branch number j. Subcells a initially have x0 assigned (a(0)(0)(0) a(0)(1)(1)).

As described in [26] we can simplify the rules to evaluate a variable using lookup
tables. The lookup table y has three parts: the assigned value of the variable; the
‘sign’ of the variable (whether negated or not) in a clause; and the value when you
apply this sign to the value of the assigned variable.

The subcell k() contains the value k for k-SAT. The subcell l contains
√
n where n

is the number of variables. The formula that is being tested is encoded as subcells
c(x(i)(s), ...), where i denotes which xi is being referred to and s whether it is negated
in the clause.

For example, consider the following formula (n = 4, k = 2, and ρ =
√
n = 2):

(x0 ∨ x1) ∧ (x2 ∨ x̄3) ∧ (x̄2 ∨ x1). (3.1)

Table 3.12 contains the fixed values, and Figure 3.4a the variables that change during
the evolution of the system.
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r(7)

r(15)
s8 s9

r(17-18)
s10 s11 s12

r(16) r(19-20) r(21-22)

Allocating first
√
n Allocating the rest of the variables

Solving SAT

s4 s7
r(8)

s5s6

r(9-11)

r(12)

r(13-14)

r(15)

s1 s3
r(1)

s2

r(2-4)r(5-6)

Figure 3.3: State diagram broken up into the three parts of the algorithm.

Table 3.12: Initial state of the variables that do not change for Formula 3.1

Table representation cP system representation
y

0 + 0 y(0)(+)(0)
1 + 1 y(1)(+)(1)
0 − 1 y(0)(−)(1)
1 − 0 y(1)(−)(0)

c
x0 x1 c(x(0)(+) x(1)(+))
x2 x̄3 c(x(2)(+) x(3)(−))
x̄2 x1 c(x(2)(−) x(1)(+))

k(2)
l(2)
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i xi j cP representation
0 0 0 a(0)(0)(0)
0 1 1 a(0)(1)(1)

m(1)
j(0) j(1) j(2) j(3)

(a) Table representation.

0 1 2 3j

(b) Graph representation

Figure 3.4: cP (a table) and binary tree representation of initial branch numbers.

Allocating first
√
n variables

First, we allocate the first
√
n variables, which is then used as a lookup table. A

traditional programming approach to creating these allocations can be seen in Table
3.13. The outer loop is used to reference the next variable being assigned and the
first inner loop creating two new allocations from the previous ones. The second inner
loop allocates the next variable for these newly created allocations (a 0 if the branch
is even and a 1 if odd).

Our cP system closely models that of the sequential algorithm presented in Table
3.13 with the ruleset presented in Table 3.14. Rules 1 and 6 form the outer loop, with
rule 6 being the increment and rule 1 being the termination condition. Rule 2 creates
the copies and changes their branch numbers. Rules 3 and 4 add the next variable
to the allocations. The outer loop formed by rules 1 and 6 run

√
n times. The inner

loop runs in parallel for all allocations at once. Rules 2-4 run in parallel, taking 1
step total for each loop. Rules 5 and 6 also run in parallel making the total running
time 2

√
n+ 1 alternatively O(

√
n).

As an example, the values in Figure 3.4a will change to the values in Table 3.15 after
the execution of rules 2-6.
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1 a = {(0, 0, 0), (0, 1, 1)}
2 j = {0, 1, 2, 3}
3 for m = 1 ; m <

√
n ; m++

4 p = {}
5 for (i, v, j) in a
6 p = p ∪ (i, v, j ∗ 2) ∪ (i, v, j ∗ 2 + 1)
7 t = {}
8 for z in j
9 i f z%2 == 0 :

10 p = p ∪ (m, 0, z)
11 else :
12 p = p ∪ (m, 1, z)
13 t = t ∪ 2 ∗ z ∪ 2 ∗ z + 1
14 a = p
15 j = t

Table 3.13: Sequential algorithm for creating first
√
n allocations.

Table 3.14: Rules to allocate first
√
n variables.

s1 m(I) →1 s3 m(I) (1)
| l(I)

s1 a(X)(Y )(Z) →+ s2 a(X)(Y )(ZZ) (2)
a(X)(Y )(ZZ1)

s1 j(ZZ) →+ s2 j(ZZ) a(Y )(0)(ZZ) (3)
| m(Y )

s1 j(ZZ1) →+ s2 j(ZZ1) a(Y )(1)(ZZ1) (4)
| m(Y )

s2 j(Z) →+ s1 j(ZZ) (5)
j(ZZ1)

s2 m(I) →1 s1 m(I1) (6)
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Table 3.15: First step of the algorithm for solving Formula 3.1.

Table representation Graph representation

i xi j cP system representation
0 0 0 a(0)(0)(0)
1 0 0 a(1)(0)(0)
0 0 1 a(0)(0)(1)
1 1 1 a(1)(1)(1)
0 1 2 a(0)(1)(2)
1 0 2 a(1)(0)(2)
0 1 3 a(0)(1)(3)
1 1 3 a(1)(1)(3)

m(2)
j(0) j(1) j(2) j(3)
j(4) j(5) j(6) j(7)

0 1

0 1 0 1

0 1 2 3j

x0

x1

√
n

Allocating all other variables

To allocate the rest of the variables, we use the templates that were previously cre-
ated for the first

√
n variables. Using the templates, we loop

√
n times, where on

each loop we do a Cartesian product between the previously allocated variables and
the template (the templates variables get incremented by

√
n before each Cartesian

product). Alternatively, this operation can be viewed as taking the allocation tree in
Table 3.15, copying it and placing the tree at all of the leaves, as shown in Figure 3.5.

A sequential version of this algorithm can be seen in Table 3.16. First, we make a copy
of the template a with all variables incremented by

√
n. Then we do an outer loop

from
√
n to n incrementing by

√
n. Inside this loop, a Cartesian product is made

looping over each allocation in b and in a. The branch number for the combined
allocation is denoted recursively as α(j)(i), with j being the branch number from a,
and i being the branch number from b. For example, for 9 variables, one of the branch
numbers created is α(α(0)(1))(2).

The rules to allocate the remaining variables are in Table 3.17. The state diagram
giving the state transitions of allocating the variables is shown in Figure 3.3.

Rule 7 acts as allocating the original b value. Rules 8 and 11 form the outer loop
presented in the sequential algorithm, with rule 8 the termination condition and rule
11 the increment. Rules 9 and 10 apply the Cartesian product. Rule 13 increments b
(last line of the sequential algorithm), and rules 12 and 14 reassign a (line 15 of the
sequential algorithm).

The rules 9-14 form a loop which runs
√
n times, with rules 9-11 running in parallel

as well as 13 and 14. The loop takes 3
√
n steps and rules 7 and 8 each take one step,



39

1 a = {(0, 0, 0), ...}
2 b = map (i, v, j) => (i+

√
n, v, j), a

3 p = {}
4 for m =

√
n ; m < n ; m+ =

√
n

5 d = {}
6 for (i, v, j) in a :
7 for (y, q, x) in b
8 i f i + m == y
9 d = d ∪ (i, v, (j, x))

10 d = d ∪ (y, v, (j, x))
11 for z in p
12 i f i + z == y
13 d = d ∪ (i, v, (j, x))
14 p = p ∪m
15 a = d
16 b = map (i, v, j) => (i+

√
n, v, j), b

Table 3.16: Sequential algorithm for creating the rest of the allocations

0 1

0 1 0 1

0 1 2 3

x0

x1

√
n

Allocation a

0 1

0 1 0 1

0 1 2 3

x3

x4

√
n

Allocation b

0 1

0 1 0 1

0 1 2 3

x0

x1

2
√
n

Allocation d

0 1

0 1 0 1

α(0)(0)

1 2 3

x3

x4

α(0)(1) α(0)(2) α(0)(3)

Figure 3.5: Diagram representing the Cartesian product showing for α = 0 and n = 4.
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making the running time for the rules presented in Table 3.17 3
√
n+ 2 steps.

For example, rule 7 will create the b subcells displayed in Table 3.17. Where we note
the only difference between the a and b is the first parameter with b subcells have√
n added. Rules 9 and 10 will create subcells d, which, as seen in Table 3.18 can be

viewed as taking a Cartesian product of a and b. The d cells will become the a cells
and loop until all allocations have been completed.
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Table 3.17: Rules to create allocations

s3 a(X)(Y )(Z) →+ s4 a(X)(Y )(Z) (7)
b(XQ)(Y )(Z)

| l(Q)
| n(XQI)

s4 m(QX) →1 s7 m(1) (8)
| n(Q)

s4 →+ s5 d(X)(Y )(α(Z)(W )) (9)
d(XP )(V )(α(Z)(W ))

| a(X)(Y )(Z)
| b(XP )(V )(W )
| m(P )

s4 →+ s5 d(X)(Y )(α(Z)(W )) (9)
| a(X)(Y )(Z)
| b(XP )(V )(W )
| p(P )

s4 m(I) →1 s5 p(I) m(IQ) (11)
| l(Q)

s5 a(X) →+ s6 (12)

s6 b(X)(Y )(Z) →+ s4 b(XQ)(Y )(Z) (13)
| L(Q)
| n(XQI)

s6 d(X) →+ s4 a(X) (14)
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Table 3.18: Creating the next
√
n variables for Formula 3.1

a
i xi j cP representation
0 0 0 a(0)(0)(0)
1 0 0 a(1)(0)(0)
0 0 1 a(0)(0)(1)
1 1 1 a(1)(1)(1)
0 1 2 a(0)(1)(2)
1 0 2 a(1)(0)(2)
0 1 3 a(0)(1)(3)
1 1 3 a(1)(1)(3)

b
i xi j cP representation
2 0 0 b(2)(0)(0)
3 0 0 b(3)(0)(0)
2 0 1 b(2)(0)(1)
3 1 1 b(3)(1)(1)
2 1 2 b(2)(1)(2)
3 0 2 b(3)(0)(2)
2 1 3 b(2)(1)(3)
3 1 3 b(3)(1)(3)

d
i xi j cP representaion
0 0 α(0)(0) d(0)(0)(α(0)(0))
1 0 α(0)(0) d(1)(0)(α(0)(0))
2 0 α(0)(0) d(2)(0)(α(0)(0))
3 0 α(0)(0) d(3)(0)(α(0)(0))

Solving SAT

The rules discussed previously are just a way of allocating all of the variables. For
each allocation, the formula is evaluated and checked whether an allocation exists
that satisfies the formula. A sequential algorithm describing the steps taken by our
cP system can be found in Table 3.19. A state diagram of this final part of the
algorithm is shown in Figure 3.3.

The rule set presented in Table 3.20 is the cP system equivalent of the algorithm
presented in Table 3.19. Rules 15 and 16 are used to copy the formula for each of
the different allocations. Rule 17 checks if any of the allocated variables makes the
clause true if none exist, rule 18 sets the clause to false (they apply the or operation
∨). Rules 19 and 20 apply the and operation (∧) between the clauses. Rules 21 and
22 determine if there exists a satisfying assignment, outputting r(1) if one existed,
and r(0) otherwise.

Rules 15 and 16 run once and are independent of each other(2 steps). The pairs of
rules (17, 18) (19, 20), and (21, 22) each run once, with each pair taking 1 step (total
is 3 steps). Making the running time of the rule set presented in Table 3.20 5 steps.

For example, if we have the allocation displayed in Table 3.21 rule 16 will create
a clause for each of the allocations resulting in subcells denoted κ with a branch
number as seen in Table 3.22. Once created, these clauses are evaluated, using rules
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1 a = {(0, 0, (α(...)(0))), ...}
2 c = {((i, s), (j, t), ...), ...}
3 // a s e t o f k t u p l e s wi th each k t u p l e item be ing a pa i r .
4 γ = {}
5 for (i, v, j) in a
6 γ = γ ∪ j
7 κ = {}
8 for d in c
9 for j in γ

10 κ = κ ∪ (d, j)
11 //(d, j)(((i, s), (j, t), ...), (α(...)(0)))
12 t = {}
13 for (d , j ) in κ
14 p = 0
15 for (i, s) in d
16 for (x, v, y) in a
17 i f x == i and j == y and y(v, s) == 1
18 p = 1
19 t = t ∪ (p, j)
20 κ = t
21 f = {}
22 for y in γ
23 v = 1
24 for (p, j) in κ
25 i f p == 0 and j = y
26 v = 0
27 f = f ∪ v
28 r = 0
29 for v in f
30 i f v == 1
31 r = 1

Table 3.19: Sequential algorithm for solving sat given all the allocations
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Table 3.20: Rules to solve using the allocations.

s7 a(0)(Y )(Z) →+ s8 a(0)(Y )(Z) γ(Z) (15)

s8 →+ s9 κ(X j(Y )) (16)
| c(X)
| γ(Y )

s9 κ(x(I)(S) j(Y )) →+ s10 κ(1)(Y ) (17)
| a(I)(V )(Y )
| y(V )(S)(1)

s9 κ( j(Y )) →+ s10 κ(0)(Y ) (18)

s10 κ(0)(Y ) γ(Y ) →+ s11 f(0)(Y ) (19)

s10 κ(1)(Y ) γ(Y ) →+ s11 f(1)(Y ) (20)

s11 f(1)( ) m(1) →+ s12 r(1) (21)

s11 f(0)( ) m(1) →+ s12 r(0) (22)
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17 and 18 as shown in Table 3.23. After the evaluation the clauses with matching
j are combined using an and operation ∧ (rules 22 and 23) as shown in Table 3.24.
Finally, the system checks if there is any f subcell containing a one; if there is, then
there exists a satisfying assignment.

Theorem 3.2.1. k-SAT is solvable in O(
√
n) using 22 rules and alphabet of size 26.

The rule sets presented in Tables 3.14, 3.17 and 3.20 solve k-SAT with the run-
ning times being

√
n + 1, 3

√
n + 2 and 5 making the total time 4

√
n + 8 there-

fore, O(
√
n). The alphabet symbols are s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, κ,

γ, y, n, f, r,m, a, b, j, d, α, l, p

Table 3.21: Allocating variables for solving Formula 3.1 where we only list α(0) and
β(0) for brevity.

Table representation cP system representation
i xi j
0 0 α(0)(0) a(0)(0)(α(0)(0))
1 0 α(0)(0) a(1)(0)(α(0)(0))
2 0 α(0)(0) a(2)(0)(α(0)(0))
3 0 α(0)(0) a(3)(0)(α(0)(0))
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Table 3.22: The clauses for each allocation of Formula 3.1 where we only list α(0)
and β(0) for brevity.

Table representation cP system representation
x : i, s x : i, s j
0,+ 1,+ α(0) β(0) κ(x(0)(+) x(1)(+) j(α(0)(0)))
2,+ 3,− α(0) β(0) κ(x(0)(+) x(1)(−) j(α(0)(0)))
2,− 1,+ α(0) β(0) κ(x(0)(−) x(1)(+) j(α(0)(0)))

Table 3.23: The clause with all variables assigned for Formula 3.1 where we only list
α(0) and β(0) for brevity.

Table representation cP system representation
v j
0 α(0)(0) κ(0)(α(0)(0))
1 α(0)(0) κ(1)(α(0)(0))
1 α(0)(0) κ(1)(α(0)(0))

Table 3.24: The clause with all variables assigned for Formula 3.1 where we only list
α(0) and β(0) for brevity.

Table representation cP system representation
v j
0 α(0) β(0) f(0)(α(0)(0))
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3.2.2 cP reductions for k-colouring

To make reductions simpler we first demonstrate how to use cP rules to make the
formulas at most one and at least one following the encoding we used for our solution
to k-SAT. Assuming we are given x(0), ..., x(i) and a number i we make the formulae
using the rule :

s1 →+ s2 c(x(X)(−) x(XY 1)(−)) (1)
| x(X)
| x(XY 1)

At least one requires a loop in which we create the clause:

s1 i(0) →+ s2 (1)
s1 c(Y ) →+ s1 c(Y x(X)(+)) (2)

| x(X)
| i(X)

s1 i(X) →+ s2 i(1X) (3)

k-colouring

As discussed in subsection 2, the k-colouring problem is given a graph G determine
if we can assign one of the k colours to each vertex such that no neighbours have the
same colour. We saw that this can be solved using the formula:

F =
∧

v∈V
exactly one(xv,i : i ∈ κ)

∧
∧

{u,v}∈E

∧

i∈κ
at most one(xu,i, xv,i)

(3.2)

cP encoding To encode the problem k-colouring we shall use the following:

• Vertices of the graph: v1, ..., vn encoded as v(1)...v(n)

• Edges of the graph: eα,β, ..., ei,j encoded as e(α)(β)...e(i)(j)

• The number k encoded as κ(k)

• The number n encoded as η(n)

•
√
n encoded as l(

√
n)

To construct the group of new variables x0, ..., xk(n−1) we use the following rules:
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s1 →1 s2 | i(X) k(X) (1)

s1 j(X) i(Y ) →+ s1 j(NX) m(X) i(1Y ) | η(N) (2)

s2 v(I) →+ s3 v(I) x(IX) | m(X) (3)

The rules are a loop where on the ith iteration, a set of variables is created which
encodes the vertices with the ith colour. To encode the ith vertex with the jth colour
it is encoded as xn×j+i. The running time is k + 2 as it loops k times on rule 2 and
runs rules 1 and 3 once.

To ensure that the colours of vertices joined by an edge are not the same the following
rules are used(creating a at most one):

s3 →+ s4 c(x(XY )(−) x(XY 1Z)s(−)) (4)
| e(X)(X1Z)
| m(Y )

The rule uses the m to denote the gap between the different colours (multiples of n)
and constructs the clauses such that at most, one of the variables in an edge contain
that colour. The running time is 1 step.

The rules to ensure that exactly one colour is chosen for each vertex can be broken
into two steps. The first being that each vertex must take at most one of the colours
which is given by:

s3 →+ s4 c((XY )(−) x(XY 1Z)s(−)) (5)
| m(Y )
| m(1Y Z)

This rule is practically the same as that given for at most one edge being the same
colour. In fact the two rules can work in parallel so this has running time 1 (when
totalling rules 4 and 5 is total 1 step). The second step being that at least one colour
is taken by each vertex which is given by:
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s3 v(X) x(X) i(1Y ) →+ s4 c(x(X)s(+)) i(Y ) (6)

s4 i(0) →+ s5 (7)

s4 c(Y x(X)(+)) x(XZ) →+ s4 c(Y x(X)(+) x(XZ)(+)) (8)
| m(Z)

s4 i(1Y ) →+ s4 i(Y ) (9)

These rules work in a loop over the colours. Whereat the ith iteration, the ith colour
is added to the clause. The looping rules, 8 and 9, run k times (they run in parallel
with each other) and rules 6 and 7 once. Hence, the time taken is k + 2.

Theorem 3.2.2. k-colouring ≤p k-SAT in constant time.

As demonstrated, our rules to change an instance of k-colouring to k-SAT took a time
of 2k + 5. Due to k being a fixed constant and not part of the problems input.

Corollary 3.2.3. 3-colouring is solvable in O(
√
n) steps.

As 3-colouring is the instance of k-colouring for k = 3. We know the Karp reduction
from 3-colouring takes 11 steps and solving the instance of 3-SAT takes 4

√
n+8 steps

hence the total number of steps is O(
√
n).

3.2.3 Discussion

SAT is one of the most famous problems to be known to be NP-complete, with many
study’s using theoretical molecular computing devices to solve it [42]. As discussed in
[46], many solutions to SAT have been found running in linear time using P systems.
A previous solution using cP systems also was found running in linear time [52].
However, as far as we know, our solution is the first P system solution to run in
sublinear time.

We note that as discussed in [52], many of these solutions use a variable number of
rules and alphabet symbols. Our solution uses a constant sized alphabet and ruleset.
We do, however, note that our solution uses more rules than presented in [52].

As with SAT the 3-colouring problem has been the subject of many studies using P
system variants including: cP systems [13], tissue P systems [15, 67], and kernel P
systems [67] . However, as far as we know, no other solution using P systems runs in
sublinear time.
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3.2.4 Conclusions

We have presented a sublinear solution to the k-SAT and k-colouring problems and,
as far as we know, the most efficient P system solution. Our solution to 3-colouring
demonstrates that at least some of the traditional polynomial reductions can be done
in a constant number of steps using cP systems. We also note that the strategies used
to generate our allocations can be utilised to extend our solution to k-SAT to solving
QSAT (a PSPACE complete problem).

3.3 Conclusions and Future Work

In this chapter we have shown how cP systems are able to solve a PSPACE hard
problem. As shown in Table 3.1 our solution compared to other extant confluent
P systems solutions, only uses a small constant number of custom alphabet symbols
(19), a small constant number of rules (10), and a small constant upper-limit of
membrane nesting depth (6), independent of the problem size.

We then showed how we can develop efficient solutions to NP complete problems.
With our solution, as far as we know, the most efficient P system solution to both
k-SAT and k-colouring. Our solution used a fixed sized alphabet and fixed number
of rules. We showed that at least the reduction from k-colouring to k-SAT can be
done in a constant number of steps.

Future work includes model checking these solutions. We note that although cP
systems have been used for model checking in the past [39] they have had the issue
of memory explosion. However, if we are just model checking a reduction this should
not occur and may enable much larger instances to be model checked.

Another problem is how many other problems can be efficiently reduced. The over-
arching problem being, can we find a significantly more efficient reduction using cP
systems than the traditional Turing machine reduction.



Chapter 4

Computing with water

In this chapter we further develop water computing as a variant of P systems. We
propose an improved modular design, which duplicates the main water flows by asso-
ciated control flows. We first solve the three open problems of the previous design by
demonstrating: how functions can be stacked without a combinatorial explosion of
valves, how termination of the system can be detected and how to reset the system.
We then prove that the system is Turing complete by modelling the construction of μ-
recursive functions. The new system is based on directed acyclic graphs, where tanks
are nodes and pipes are arcs; there are no loops anymore, water falls strictly in a ‘top
down’ direction. We then demonstrate how our water tank system can be viewed as a
restricted version of cP systems. Finally, we demonstrate that such systems can con-
struct ‘efficiently’: 1) A programmable sequential, random-access machine (RAM),
which we then extend to construct: 2) a programmable exclusive read exclusive write
(EREW) parallel random-access machine (PRAM).

4.1 Turing completeness of water computing

In this section, we present an alternative definition for the water tank system based
on rules, which more closely aligns with cP systems [50] (but also other P system
variants). Our definition removes the timed termination of the previous model by
replacing it with a set of control tanks that tightly control the execution of the actual
operation. Our model also removes pipes having different flows as we assume that
each pipe will move one unit of water at each time step. Our model specifies a
separate infinite source and infinite sink. Together the source and sink form a two-
compartment ‘environment’: a read-only source and write only sink. However, joining
them takes away from the water moving in one direction, which is likely important for
physical realisations, where our source is inspired by the beauty of naturally occurring
waterfalls.

Our system has two types of tanks: value tanks, which correspond to the tanks
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presented in [30]; and control tanks, which are essentially Boolean values. Each input
and output value tank of the system has a corresponding control tank. If a control
tank is full, then the corresponding value tank has been filled. This means that an
operation has terminated if and only if all of its output control tanks are full. Value
tanks have capacities in N+∪{∞}: infinite (∞) for unbounded tanks, and finite (N+)
for bounded tanks. We assume that all bounded tanks have overflow pipes, which
cleanly drain any possible overflow down to an infinite sink; but, while still there,
overflow pipes are not represented in our diagrams (to keep these simple). Most
theoretical results, such as μ-recursivity, assume that all value tanks are unbounded
(similar to how a RAM has an unbounded number of registers); while, obviously, all
practical implementations need bounded tanks.

In subsection 2, we briefly describe the basics of water computing systems. In sub-
section 3, we describe how a control tank can be constructed and how to reset a
system. In subsection 4, we define formally our new model. In subsection 5, we prove
that the system is Turing complete and that the tank system can be viewed as a
directed acyclic graph. In subsection 6, we describe how the valves are viewed as a
set of membrane computing rules and establish the water tank system as a restricted
version of cP systems.

4.1.1 Modularisation and control tanks

In this subsection, we describe the use of control tanks for termination detection. We
also discuss how these allow for modularisation and composition of functions.

Constructing complex expression such as h(x, y, u, v) = (x ⊕ y) � (u � v), from the
functions in Figures 2.2 and 2.3 requires additional valves to be added. If one combines
these without the addition of valves, then the result may be unexpected because of
the synchronisation requirements of the subtraction operator. To overcome this issue,
we use modularisation to allow for easier composition of operations.

Thus, the following restrictions are placed on all functions. A function f(x1, ..., xn) =
(y1, . . . , ym) has n and m accompanying controls on the inputs (x′

1, . . . , x
′
n) and out-

puts (y′1, . . . , y
′
m) respectively . The function executes when all input control tanks

are filled. Each output of the function has finished being computed, when its corre-
sponding control tank has been filled. For example, a function f with n inputs and
m outputs is presented in Figure 4.1. We note that inner control tanks initially are
empty, for example, q′ in Figure 4.2.

Saturating subtraction following these conventions becomes the system presented in
Figure 4.2. Although the system looks more complicated, it is much easier to combine
the system into a complex system. Any function relying on the results from another
function only needs a relationship with its result and control tanks. Thus a function
can be viewed as a black box, cf. Figure 4.1, where the inputs are passed to the
function and the outputs are a control and result tank. The inner workings can be
ignored as before, and after execution, they are the same. The Appendix presents
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x1 x′
1

xn x′
n... ...

y1, ..., ym = f(x1, ..., xn)

y1 ym... y′
1

y′
m...

Figure 4.1: A diagram representing a function f following the conventions y1, ..., ym =
f(x1, ..., xn).

x y′

z
z′

q′ = 1

q′ = 1

y = 0

y �= 0

q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

x′

q′ = 1

y

q′ = 1

Figure 4.2: A diagram representing the controlled saturating subtraction operator
z = x� y.

an example trace of the controlled subtraction via images and cell contents of a cP
representation.

Complex expressions can be built using a high level design. For example, if we have
the addition function f(x, y) = x ⊕ y as seen in Figure 4.3, then we can create the
complex expression h(x, y, u, v) = (x⊕ y)� (u� v) by simply using the outputs and
output controls as the inputs to the subtraction, as seen in Figure 4.4.

x y′

z z′

x′ y

q′ = 1 q′ = 1

q′ = 1 q′ = 1

q′

x′ = 1

y′ = 1

y = 0

x = 0

x′ = 0

y′ = 0

Figure 4.3: A diagram representing the controlled saturating addition operator z =
x⊕ y.
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x y′

z z′

x′ y

z = x⊕ y

u v′

w w′

v u′

w = u� v

t = z � w

t t′

Figure 4.4: A diagram showing how complex expressions can be created.
t = (x⊕ y)� (u� v).

4.1.2 New model

With the addition of control tanks, we formalise our model based on the work pre-
sented in [30]. Our water-based system:

Π = (T, T ′, F, e, r, L, C, V, S, P )

With its components:

• T finite set of tank identifiers.

• T ′ ⊂ T finite set of control tank identifiers.

• F ⊂ T ′ set of control tanks that when full indicate termination of the system.

• e ∈ T \ T ′ the unique infinite sink of the system.

• r ∈ T \ T ′ the unique infinite source in the system.

• L : T → N+ The level at which the tanks are built, the lower the number, the
conceptually higher the tank. Water can only flow from a tank with a lower
number to one with a higher number. L(r) = 0 and L(e) =∞.

• C : T → N+ ∪ {∞} capacity of the tanks. Where we assume that value tanks
can be unbounded. Of course, for practical cases, all value tanks will need to
have finite capacity. Control tanks all have capacity 1 (they act as Boolean
values).

• V finite set of valve identifiers.

• S : V → {t = n | t ∈ T, n ∈ N+} ∪ {t = n | t ∈ T, n ∈ N+} An expression from
a valve identifier to check whether or not a tank has a certain volume.

• P ⊂ T × T × P(V ) (P(V ) denotes the power set over V ) finite set of pipes
where water flows from the first element to the second. A pipe (i, j, v) must
have L(i) < L(j), meaning water only flows in one direction (‘down’). Where all
valves must be open for water to flow through (a binary and of the conditions).

The system evolves in discrete time steps with the time denoted t where, at each step,
a unit of water flows down each pipe if all valves on the pipe are open. If a tank has



55

less water than the number of outgoing pipes with all valves open at any step, the
result will depend on the particular run time. Examples of runtimes include:

• The result is undefined.

• Non-deterministically decides which pipes get a unit of water.

• A priority-based ordering of pipes.

In this work, we do not specify the runtime as this problem never occurs in our
construction. To clarify the model we present controlled subtraction:

• T = {x, y, x′, y′, q′, z, z′, r, e}
• T ′ = {x′, y′, z′}
• F = {z′}
• e

• r

• L = {(x, 1), (y, 1), (x′, 1), (y′, 1), (q′, 2), (z, 3), (z′, 3), (r, 0), (e,∞)}
• C = {(x,∞), (y,∞), (x′, 1), (y′, 1), (q′, 1), (z,∞), (z′, 1), (r,∞), (e,∞)}
• V = {1, 2, 3, 4, 5, 6, 7, 8}
• S = {(1, q′ = 1), (2, y = 0), (3, y = 0), (4, x = 0), (5, y′ = 1), (6, y′ = 0), (7, x′ =
0), (8, x′ = 1)}

• P = {(x, e, {1, 2}), (x, z, {1, 3}), (y, e, {1}), (x′, e, {1}), (y′, e, {1}),
(r, q′, {5, 8}), (q′, z′, {3, 4, 5, 7})}

Throughout the remainder of the paper, we present, where appropriate, a pictorial
view of our functions and a set of equations that both describe the system. The
equations define the next step for the time value t. These alternate descriptions
seem more intuitive, and can be straightforwardly transformed into the above formal
definition.

We note that one can view the valves as a group of conditions combined with a
binary and. We do not specify them as such, as physical realisations of these more
complicated valves may be difficult. However, in principle, they are the same.

4.1.3 Turing completeness

We first prove that our system can construct all unary primitive recursive functions.
We assume that our value tanks are unbounded for this proof. In [9, 57, 60, 8] it was
shown that these base functions and closure operators are sufficient to construct the
unary primitive recursive functions:

• Successor function: S(x) = x+ 1 (cf. Figure 4.8)
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• Subtraction function: B(x, y) = x− y (cf. Figure 4.2)

• Composition operator: C(h, g)(x) = h(g(x)) (cf. Figure 4.9)

• Difference operator: D(f, g)(x) = g(x)− f(x) (cf. Figure 4.10)

• Primitive recursion operator: P (f) = p, p(0) = 0, p(x + 1) = f(p(x))
(cf. Figure 4.11)

To construct these functions we make two copy functions: a repeatable fetch (inplace
copy) and a destructive copy. Essentially, repeatable fetch as seen in Figure 4.5 takes
input x and outputs it to x1, then refills x to its original content, recreated in tank a.
The destructive copy as seen in Figure 4.6 takes an input x and outputs two copy’s
of x1 and x2, emptying x.

Successor function S(x) = x + 1: The successor function S(x) adds one to the
given input x. Using similar ideas to the addition displayed in Figure 4.3, we arrive
at the function displayed in Figure 4.8, where instead of draining from y, we drain
from the input control (the control would always contain a unit amount of water).

Composition operator C(h, g)(x) = h(g(x)): The composition operator as seen in
Figure 4.9 is started by filling the control tank x′. Once the composition is started it
runs the function g(x), where g(x)’s output y is the input for f(y), and f(y)’s output
z is the output for the composition.

Difference operator D(f, g)(x) = g(x)−f(x): The difference operator works similar
to that of the composition, where the input to the difference is the input to the
destructive copy function (Figure 4.6). The output of the destructive copy is then
passed to f and g. The output of f and g is then passed to the subtraction function
(Figure 4.2). Finally, the output of the subtraction is the output of the difference
function D.

Primitive recursion operator P (f) = p, p(0) = 0, p(x + 1) = f(p(x)): The
primitive recursion operator P as seen in Figure 4.11 can be explained by the program
in Figure 4.7. If the counter is 0, then the result is 0. Otherwise, function f is
repeatedly executed while decrementing x, until x becomes 0. Once x is zero, the
function returns the result and fills the control tank .

Theorem 4.1.1. Our water system can construct all unary primitive recursive func-
tions.
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x2

x′

q′

x′ = 1

a

x1 x′
1

x = 0

x2 = 0

x′ = 0

x2 �= 0

q′ = 1

x′ = 1

q′ = 1

a = 0

x′ = 0

x

x′ = 1

q′ = 1

x′ = 1

x2

x′

q′

x′ = 1

a

x1 x′
1

x = 0

x2 = 0

x′ = 0

x2 �= 0

q′ = 1

x′ = 1

q′ = 1

a = 0

x′ = 0

x

x′ = 1

q′ = 1

x′ = 1

Figure 4.5: A diagram representing the repeatable fetch copy function i(x) = x. We
have denoted inputs that contain water as a bold line and tanks that, after execution
contain water as light grey. The image on the left is first execution of repeatable fetch
where x sets the persistent storage and the image on the right the subsequent calls.

x x′

x1

q′ = 1

q′ = 1

x2

q′

x′ = 1

x′
1

x = 0

q′ = 1

x �= 0

x′
2

q′ �= 0

x = 0

x1 = x2 = x

Figure 4.6: A diagram representing the destructive copy function c(x) = x, x.
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Table 4.1: Equations for inplace copy.

a(t+ 1) = if x(t) = 0 & q′(t) = 1 then a(t)⊕ 1
else if x′(t) = 0 then a(t)� 1
else a(t)

x(t+ 1) = if x′(t) = 0 & a(t) > 0 then x(t)⊕ 1
else if x′(t) = 1 & q′(t) = 1 then x(t)� 1
else x(t)

x′(t+ 1) = if x(t) = 0 & q′(t) = 1 then x(t)� 1 else x(t)

q′(t+ 1) = if x′(t) = 1 then q′(t) + 1
else if a(t) = 0 & x′(t) = 0 then q′(t)� 1
else q′(t)

x1(t+ 1) = if x′(t) = 1 & q′(t) = 1 & x(t) > 0 then x1(t)⊕ 1 else x1(t)

x′
1(t+ 1) = if a(t) = 0 & x′(t) = 0 & q′(t) > 0 then x′

1(t)⊕ 1 else x′
1(t)

Table 4.2: Equations for destructive copy.

x(t+ 1) = if q′(t) = 1 then x(t)� 1 else x(t)

x′(t+ 1) = if q′(t) = 1 then x′(t)� 1 else x′(t)

q′(t+ 1) = if x′(t) = 1 then q′(t)⊕ 1
else if x(t) = 0 then q′(t)� 1
else q′(t)

x1(t+ 1) = if q′(t) = 1 & x(t) > 0 then x1(t)⊕ 1 else x1(t)

x2(t+ 1) = if q′(t) = 1 & x(t) = 0 then x2(t)⊕ 1 else x2(t)

x′
1(t+ 1) = if x(t) = 0 & q′(t) > 0 then x′

1(t)⊕ 1 else x′
1(t)

x′
2(t+ 1) = if x(t) = 0 & q′(t) = 0 then x′

2(t)⊕ 1 else x′
2(t)
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1 i f x ’ = 1 then
2 i f x = 0 then
3 y ’ ← 1 ; y ← 0 ;
4 return
5 else
6 u ← 0 ;
7 loop :
8 v ← f (u ) ;
9 i f x = 0 then

10 y ← v ; y ’ ← 1 ;
11 return
12 else
13 x ← x − 1 ;
14 u ← v ;
15 goto loop

Figure 4.7: Code to describe the execution of the primitive recursion operator
p = P (f), p(0) = 0, p(x+ 1) = f(p(x)).

x x′

q′ = 1

x′ = 1

x = 0

x′ = 0

q′ = 1

z = x+ 1 q′

z′z

Figure 4.8: A diagram representing the successor function S(x) = x⊕ 1.

Table 4.3: Equations for the successor function.

x(t+ 1) = if q′(t) = 1 then x(t)� 1 else x(t)

x′(t+ 1) = if q′(t) = 1 then x′(t)� 1 else x′(t)

q′(t+ 1) = if x′(t) = 1 then q′(t)⊕ 1
else if x(t) = 0 then q′(t)� 1
else q′(t)

z(t+ 1) = if q′(t) = 1 & x(t) > 0 & x′(t) > 0 then z(t)⊕ 2
else if q′ = 1 & (x(t) > 0 or x′(t) > 0) then z(t)⊕ 1
else z(t)

z′(t+ 1) = if x′(t) = 0 & x(t) = 0 & q′(t) > 0 then z′(t)⊕ 1 else z′(t)
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x x′

y = g(x)

y y′

z = f(y)

z z′

Figure 4.9: A diagram representing the composition of functions C(x) = f(g(x)).

x1 x′
1

u = g(x)

u u′

z = B(u, v) = u− v

x x′

z z′

x2 x′
2

v = f(x)

v v′

c(x) : x1 = x2 = x

Figure 4.10: A diagram representing the difference of functions D(x) = g(x)− f(x).

x x′

q′ = 1

u

v = f(u)

v v′

x′ �= 0

q′ = 1

u′

x = 0

x = 0

v = 0

y y′

x �= 0

x �= 0

v′ = 1

v �= 0

d′

x �= 0

v = 0

v′ = 0

d′ �= 0

v′ = 0

x′ = 0

x = 0

u′ = 0

q′

x′ = 1

u′ �= 0

Figure 4.11: A diagram representing the primitive recursion operator
P (f) = p, p(0) = 0, p(x+ 1) = f(p(x)).
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To prove Turing completeness, we require that our system can construct the unary
primitive recursive functions as well as [57]:

• Addition function: A(x, y) = x+ y (see Figure 4.3)

• μ operator: μy(f)(x) = miny{f(x, y) = 0}
We note that the μ operator currently takes two arguments and all other functions
take one (except addition and subtraction). To overcome this issue, we apply the
Cantor pairing function [57]:

Π(x, y) =
(x+ y)(x+ y + 1)

2
+ y =

((x+ y)2 + 3y + x)

2

As squaring, multiplying by a constant, and division of one variable are primitive
recursive, the only two variable function required to construct the Cantor pairing
function is addition (see Figure 4.3). μ operator μy(f)(x) = miny{f(x, y) = 0}: The
μ operator as seen in Figure 4.12 first transfers the data from x to x′. It then utilises
the inplace copy function (Figure 4.5) i on both x′ and y (y is initially 0). It uses
these copies to run f(x, y). If f(x, y) results in 0, then y is copied into the result z
and the control tank is filled. If the result was not 0, then y is incremented and starts
the copying process again until the result becomes 0 (which may or may not occur).

Theorem 4.1.2. Our water system is Turing complete.

Theorem 4.1.3. Our water system can be viewed as a directed acyclic graph.

Our construction of μ recursive functions (all base functions and the operators) re-
quired the pipes to only go in one direction (‘down’). Hence, if the pipes are viewed
as arcs and tanks as nodes, the digraph contains no cycles. This is in contrast to
the system presented in [30], where loops were used to achieve operations such as
multiplication and division.

4.1.4 High Level Rules

P systems

The system described in [30] contains a set of tanks that contain a fixed volume of
water at any time step. Each tank is a data storage device working similarly to that
of a cP system sub-cell. cP systems, however, can create or delete sub-cells during
execution, whereas water tanks must be created before and cannot be removed. A
rule in a cP system may cause a change to the number of sub-cells or the sub-cells
content. Similarly, the pipes and valves of a water tank change the volume of water
contained in the tanks. These similarities allow us to define the tank system as a
restricted version of cP systems.

Our tank systems evolution can be defined by the grammar in Table 2.4. As the
grammar makes no reference to the maximum value in a tank, it is described by a
rule that subtracts any water that goes above the maximum allowed value from the
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x x′

y′

q′ = 1

u u′ v v′

w w′

w = f(u, v)

x1

q′ = 1

x′
1

x = 0

u = i(x) = x1

y y′

v = i(y) = y

q′

x′ = 1

w′ = 1

w = 0

y

w′ = 1

w = 0

y �= 0

w = 0

y = 0

d′

w �= 0d′ �= 0

w = 0

d′ �= 0

w = 0

d′ �= 0

w = 0

d′ �= 0

w = 0

q′ = 1

x = 0

x′ �= 0

w′ �= 0

w′ = 1

w = 0

x1 = 0

Figure 4.12: A diagram representing the μ operator μy(f)(x) = miny{f(x, y) = 0}.
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tank. For example, if we have a tank vx which has a maximum value of 2, then we
add the rule in Table 4.4. This rule removes any water above the maximum and
ensures the tank returns to its maximum value. We ignore this technical detail when
describing our rule sets. We assume the maximum value rules are implicitly defined.

Table 4.4: Rule to ensure tank vx does not exceed 2 units of water.

s1 vx(111 ) → s2 vx(11) (1)

Examples

We now present a few examples of rules for some of the gates presented earlier(ignoring
the overflow for brevity):

1. Addition: Figure 2.3 shows a tank system for the saturated addition y1 =
x1 ⊕ x2. This tank system can be faithfully emulated by the following cP
ruleset:

Table 4.5: Rules to describe y1 = x1 ⊕ x2.

s1 x1(1X) x2(1X) y1(Y ) → s1 x1(X) x2(X) y1(Y 11) (1)
s1 x1(1X) y1(Y ) → s1 x1(X) y1(Y 1) (2)
s1 x2(1X) y1(Y ) → s1 x2(X) y1(Y 1) (3)

2. Subtraction: Figure 2.2 shows a tank system for the saturated subtraction
y1 = x1 � x2. This tank system can be faithfully emulated by the following cP
ruleset:

Table 4.6: Rules to describe y1 = x1 � x2.

s1 x1(X1) → s1 x1(X) | x2( 1) (1)
s1 x2(Y 1) → s1 x2(Y ) (2)
s1 x1(X1) y1(Y ) → s1 x1(X) y1(Y 1) | x2() (3)

3. Controlled subtraction: The controlled subtraction presented in Figure 4.2
has the rules:

with a trace of the ruleset and tank system shown in the appendix.
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Table 4.7: A ruleset for the controlled saturating subtraction operator z = x� y.

s1 q() → s2 q(1) | cx(1) cy(1) (1)
s2 cx(1) → s2 cx() | q(1) (2)
s2 cy(1) → s2 cy() | q(1) (3)
s2 vx(X1) → s2 vx(X) | q(1) vy( 1) (4)
s2 vy(Y 1) → s2 vy(Y ) | q(1) (5)
s2 vx(X1) vz(Z) → s2 vx(X) vz(Z1) | q(1) vy() (6)
s2 q(1) cz() → s3 q() cz(1) | cx() cy() (7)

We note that utilising the full power of cP systems we can simplify the rule sets
further. For example, a traditional cP solution to subtraction (x � y) is achieved
using the rules in Table 4.8. Noting that the full cP system solution takes only 1 step
whereas, the water-based system will take a linear number of steps.

Table 4.8: Rules to describe z = x� y.

s1 x(Y Z) y(Y ) → s2 z(Z) (1)
s1 x( ) y( ) → s2 z() (2)

4.1.5 Conclusions

We have proven that our water tank system based on the system proposed in [30] is
Turing complete, via the construction of μ recursive functions. We have demonstrated
how termination can be detected, and how to combine different functions without an
exponential explosion of the number of valves. Furthermore, we have shown that the
water tank system only requires water to flow in one direction (no loops are required).

4.2 Parallel computing with water

In this section we discuss using our new water system to construct more practical
theoretical computing models. We first construct a programmable RAM and then
extend this construction to a EREW PRAM.

4.2.1 Constructing a programmable RAM

Constructing a programmable RAM using water can be broken into phases. The first
phase is to read the line number that we are up to. Using the opcode for that line,
run a function that executes that opcode. After that has been done, check whether
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the line number exceeds the program line count; if it does, then the RAM halts;
otherwise, it will do the process again. To make it easier to follow, we shall also
break up the construction into modules which can then be pieced together to form
the entire RAM.

Execute line L of the program

Here we assume that the program being executed will be stored in water tanks
p1,1, p1,2, p1,3, p1,4, p2,1, p2,2, p2,3, p2,4, ..., pm,1, pm,2, pm,3, pm,4. Where pi,j denotes the ith
line with parameter j, noting that we assume that each line of code will have one
op code followed by three parameters; the third tank contents will be ignored for
operations of two parameters.

To start the program at line L and continue executing until we reach line m + 1,
we utilise the tank system presented in Figure 4.14. For brevity we have presented
an arbitrary program line po,j but this can be expanded for all program lines by
changing the valve for pi,k to L = i for the ith line. For example, the tanks presented in
Figure 4.14 for the Euclidean algorithm would initially contain the volumes presented
in Table 4.9.

Noting that to run a function we use the tank system presented in Figure 4.15. The
tank system presented in Figure 4.15 is not repeated, only one instance exists for a
RAM. The line inputs pi,j all drain into the inputs p1, p2, p3, p4. Using traditional
programming the operation can be explained to be the function RAM presented in
Figure 4.13.

1 func t i on RAM(p , L) //p = [p1,1 , p1,2 , p1,3 , p1,4 , p2,1 , p2,2 , . . . , pm,4 ]
2 i1 ← pL−1,1 ; i2 ← pL−1,2

3 i3 ← pL−1,3 ; i4 ← pL−1,4

4 s ← run op ( i1 , i2 , i3 , i4 , L)
5 i f s = m+ 1 then
6 RAM(p , s)
7 halt

Figure 4.13: Code to describe the outer loop of our RAM system.
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Table 4.9: Initial volumes of water for tanks presented in Figure 4.14 for Euclidean
algorithm.

i pi,1 p′i,1 pi,2 p′i,2 pi,3 p′i,3 pi,4 p′i,4
1 3 1 3 1 0 1 2 1
2 6 1 6 1 3 1 0 0
3 3 1 3 1 2 1 1 1
4 6 1 8 1 3 1 0 0
5 6 1 10 1 1 1 0 0
6 3 1 1 1 1 1 2 1
7 6 1 1 1 1 1 0 0
8 3 1 2 1 2 1 1 1
9 6 1 2 1 1 1 0 0
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Run function based on op code p1 as presented in Figure 4.15.
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c′ = 1

s = 0

L = 0
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s = 0
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f ′

f = 1

d′ = 0
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inplace copy inplace copy inplace copy

ipo,1 i′po,1
ipo,2 i′po,2

ipo,3 i′po,3
ipo,4 i′po,4

iL i′L

ipo,1 = o ipo,2 = o ipo,3 = o ipo,4 = o iL = o

Figure 4.14: A diagram representing the an outer loop of a RAM. Where the input L
is the line to start the program’s execution (typically line 1). After the operation has
completed tank s will contain the next line to execute. Tank s will then be drained
and L filled with that contents. Once the program has ended tank h′ will be full.
Noting that we have shown only for one arbitrary program line o.
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Executing an operation code (run op)

Once the line number is read and the operation number selected, it is passed into the
inner function presented in Figure 4.15. This will utilise the opcode stored in p1 and
decide which operation to execute. For simplicity, we have presented an arbitrary
operation X; this can be expanded for all operations by taking X = 1, 2, 3, 4, 5, 6.
This operation can alternatively be summarised by the function run op presented in
Figure 4.16.

As described earlier, a RAM can be constructed using six basic operations. However,
to simplify these operations, we utilise the fact that these operations can be viewed
as a sequence of read and writes from registers.

Utilising read and write operators, we construct the base operations. For brevity, we
only show functions 1, 2, 4, and 6; functions 3 and 5 can be straightforwardly derived
from functions 2 and 4, respectively.

Although operation one is near identical to the write operation, it is important to
note that the operations need to also return the new line number after completing,
hence we use the increment function. Operation 1 can be viewed in Figure 4.18. A
programmatic view of operation one is presented in Figure 4.19

Operation 2 can be viewed in Figure 4.20 where we have left out the line number
increment. The line increment can be done just as we did in the first operation.
Operation 4 can be viewed in Figure 4.21. Operation 6 can be viewed in Figure 4.22.

We implement the read and write functions in Figure 4.23 and Figure 4.24 respectively.
We note that these two functions are reading and writing to the same set of registers,
so the registers r1, ..., rn are shared between the figures.
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p2 = 0
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Operation X.

kX k′X
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p3 = 0

p3 = 0

p2 = 0

p1 = 0

l = 0

p4 = 0

bX = 0

p3 = 0

p2 = 0

p1 = 0

l = 0
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bX = 0

Figure 4.15: A diagram representing which of the 6 functions will be executed. Where
for simplicity we have shown for an arbitrary opcode X where X ∈ {1, 2, 3, 4, 5, 6}.
Selected operations are presented: Operation 1 in Figure 4.18, Operation 2 in Fig-
ure 4.20, Operation 4 in Figure4.21 and Operation 6 in Figure 4.22. Noting that
∃ibi = 1 is a shorthand to describe six pipes from q′p each with one valve as shown in
Figure 4.17.



70

1 func t i on run op (p1 , p2 , p3 , p4 , l )
2 switch p1
3 case 1
4 return const (p2 , p3 , l )
5 case 2
6 return add(p2 , p3 , p4 , l )
7 case 3
8 return sub (p2 , p3 , p4 , l )
9 case 4

10 return indr (p2 , p3 , l )
11 case 5
12 return indw(p2 , p3 , l )
13 case 6
14 return tra (p2 , p3 , l )

Figure 4.16: Code to describe the outer loop of our RAM system.

q′p

b1 = 1 b2 = 1 b3 = 1 b4 = 1 b5 = 1 b6 = 1

Figure 4.17: Diagram to show the expanded version of the shorthand ∃ibi = 1 for
tank q′p.
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i1 i′1 c1 c′1 l1 l′1

d1 d′1

Write to register presented
in Figure 4.24

r′ n1 n′
1

q′1
n′
1 = 1

r′ = 1

q′ = 1 q′ = 1

n′
1 = 0

r′ = 0

Increment operator
presented in Figure 4.8

Figure 4.18: A diagram representing operation 1: ri ← C. Returns l ⊕ 1 where l is
the program line number.

f unc t i on const ( i , c , l )
ri ← c
return l + 1

Figure 4.19: Code to describe the constant function.
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Figure 4.20: A diagram representing operation 2: ri ← rj ⊕ rk.
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Figure 4.21: A diagram representing operation 4: ri ← rrj .
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Figure 4.22: A diagram representing operation 6: TRA m ri > 0.
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i = 0
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i = n
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Figure 4.5
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Figure 4.23: A diagram representing read from register i.
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r1 rn...
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i = n
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z′ = 1

i = n
q′ = 1
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i′ = 1

Figure 4.24: A diagram representing write to register i the value c : ri ← c. Where
the ∀ is a shorthand to mean n valves with each valve being ri = 0.
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4.2.2 Extending to PRAM

Extending to an EREW PRAM, we note the following:

1. The only way for processors to communicate is via read/writes to the shared
memory.

2. The output of the PRAM will be the content stored on the shared memory once
all processors halt.

3. At each time step, if any two processors try to read and or write from the same
shared memory location, the result will be undefined.

4. Each operation will be run synchronously, i.e. at every time step, each processor
fully completes one program line.

5. We assume that each processor has its own finite program and a set of local
registers.

In this subsection, we extend our previously constructed RAM model to be a single
processor. We note that currently, our RAM model defined earlier does not have
operations to read/write to shared memory. However, more importantly, it does not
satisfy the synchronous behaviour required for operations. In this subsection, we first
describe adding shared reads and writes to our previously discussed model. We then
describe adding a synchronous lock to ensure each processor evaluates each line of its
program simultaneously.

Denoting shared registers ρ we define the following additional operators:

• ri ← ρj: Read from shared memory and store in a local register.

• ρi ← ri Read from a local register and write to a shared register.

To define these new functions, we note that they are a simpler version of the indirect
operation presented in Figure 4.21. With only one read but, instead of the read from
a local register r, we define a read from shared memory ρ.

We extend the reading and writing of the local registers presented in Figure 4.23
and Figure 4.24. To extend it, we have each processor 1, 2, ..., p have its own input,
output, and control tanks for the shared reads and writes. The diagram presented in
Figure 4.25 shows how an arbitrary register X reads from shared memory.

The extension to the read can similarly be used for the write, which we omit for
brevity. It is important to note that for an EREW PRAM, at any one time step,
only one of the processors may read or write to a register. If multiple reads, writes,
or a combination are done on the same shared memory, the computation will have an
undefined result.

To ensure that each line of code is run synchronously each processor must wait until all
other processors have completed their current line. To achieve this, we alter the outer
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Figure 4.25: Parallel read for arbitrary processor X.

program presented in Figure 4.14 to that presented in Figure 4.26 and Figure 4.27.
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Figure 4.26: Parallel outer program that will only loop based on the synchronisation
presented in Figure 4.27
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Figure 4.27: The synchronisation scheme which ensures that only after all other
processors have done an operation may they go to the next line. Noting that we use
the shorthand ∀it′i = 1 which expands to the valves presented in Figure 4.28

o′

t′1 = 1
t′2 = 1
...
t′p = 1

Figure 4.28: Expanded version of ∀it′i = 1.

4.2.3 Conclusions

Using the previously defined water system [28] we have constructed: 1) a programmable
RAM and 2) a programmable EREW PRAM. This demonstrates that the non-
centrally controlled model is inherently parallel and can model one of the most well-
known parallel computing models.

4.3 Conclusions and Future Work

We have proven that our water tank system based on the system proposed in [30] is
Turing complete, via the construction of μ recursive functions. We have solved the
open problems of: how termination can be detected, and how to combine different
functions without an exponential explosion of the number of valves. Furthermore, we
have shown that the water tank system only requires water to flow in one direction
(no loops are required). With our new system we then showed that it can ‘efficiently’
construct a programmable EREW PRAM.

This demonstrates the non-centrally controlled model is inherently parallel and can
model one of the most well known parallel computing models. However, we have
only modelled the least powerful of the PRAM models, leaving future work to look
at allowing concurrent reads and/or writes.
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Future work also includes exploring asynchronous circuits which do not require all
inputs to be filled before processing starts. For example, a logical ‘or’ gate could
proceed as soon as one of the inputs is full. Another open problem is the cost-based
minimisation of the number of valves and pipes. Future work could look at physical
realisations of this system and determining which is more ‘expensive’ based on a well
defined measurement of cost. Physical realisations of the system could also have many
other benefits such as for education.



Chapter 5

Applications in distributed
computing

In this chapter we look at distributed cP systems (multiple top level cells) for solving
different practical problems. In the first section we look at solving the Byzantine
agreement problem and show that our actor based cP system model is able to model
a solution efficiently surpassing previous P system solutions. In the second section
we look at the Santa Claus problem and show how cP systems are able to model the
problem efficiently.

5.1 Byzantine agreement

In this section, we provide a novel Actor-based cP solution for the Byzantine agree-
ment problem, based on Exponential Information Gathering (EIG) trees, for N pro-
cesses connected in a complete graph. Each Byzantine process is modelled by exactly
one cell, which is a considerable improvement over previous solutions: Dinneen et
al. [17] uses 3N + 1 cells per Byzantine process, and Nicolescu [49] still uses N cells
per Byzantine process. In fact, our novel cP model is a substantial improvement on
all other criteria, such as: vocabulary size, ruleset size, and runtime performance.

Subsections 5.1.1 and 5.1.2 discuss the Byzantine algorithm and its classical imple-
mentation based on EIG trees; this material is based on [17, 18]. Subsection 5.1.3
gives a bird’s eye view of the complex artefacts required for the previous P system
solutions. Subsection 5.1.4 presents our new solution, based on our new actor-like
input control. Subsection 5.1.5 evaluates the merits of the new version against the
previous versions and presents conclusions.

80
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5.1.1 EIG Trees

We assume that the reader is familiar with the basic terminology and notations: func-
tions, relations, graphs, nodes (vertices), arcs, directed graphs, dags, trees, alphabets,
strings and multisets. Given two sets, A, B, a subset f of their cartesian product,
f ⊆ A× B, is a functional relation if ∀(x, y1), (x, y2) ∈ f ⇒ y1 = y2. Obviously, any
function f : A → B can be viewed a functional relation, {(x, f(x)) | x ∈ A}, and,
vice-versa, any functional relation can be viewed as a function.

The set of permutations of n of length m is denoted by P (n,m), i.e. P (n,m) = {π :
[1,m] → [1, n] | π is injective}. A permutation π is represented by the sequence of
its values, i.e. π = (π1, π2, . . . , πm), and we will often abbreviate this further as the
sequence π = π1.π2 . . . πm. The sole element of P (n, 0) is denoted by (), or by λ,
if the context removes any possible ambiguity. Given a subrange [p, q] of [1,m], we
define a subpermutation π(p : q) ∈ P (n, q − p + 1) by π(p : q) = (πp, πp+1, . . . , πq).
The image of a permutation π, denoted by Im(π), is the set of its values, i.e. Im(π) =
{π1, π2, . . . , πm}. The concatenation of two permutations is denoted by �, i.e. given
π ∈ P (n,m) and τ ∈ P (n, k), such that Im(π)∩Im(τ) = ∅, π�τ = (π1, π2, . . . , πm, τ1,
τ2, . . . , τk) ∈ P (n,m+ k).

An EIG tree TN,L, N ≥ L ≥ 0, is a labelled rooted tree of height L that is defined
recursively as follows. The tree TN,0 is a rooted tree with just one node, its root,
labelled λ. For L ≥ 1, TN,L is a rooted tree with 1 + N |TN−1,L−1| nodes (where |T |
is the size of tree T ), root λ, having N subtrees, where each subtree is isomorphic
with TN−1,L−1 and each node, except the root, is labelled by an element of [1, N ] that
is different from any ancestor node (and also different from any left sibling node,
if we want to display it like an ordered tree). Note that, TN,L−1 is isomorphic and
identically labelled with the tree obtained from TN,L by deleting all its leaves.

It is straightforward to see that there is a bijective correspondence between the per-
mutations of P (N,L) and the sequences (concatenations) of labels on all paths from
the root to the leaves of TN,L. Thus, each node σ in an EIG tree TN,L is uniquely
identified by a permutation πσ ∈ P (N, l), where l ∈ [0, L] is also σ’s depth, and,
vice-versa, each such permutation π has a corresponding node σπ. We will further
use this node-permutation identification, while referring to nodes.

Given EIG tree TN,L, an attribute is a function ℵ : TN,L → V , for some value set V ;
alternatively, ℵ can be given as a functional subset of {π ∈ P (N, t) | t ∈ [0, L]} × V .
The classical EIG-based Byzantine algorithm uses two attributes: (i) a top-down
attribute val, here called α; and (ii) a bottom-up attribute newval, here called β.

Figure 5.1 illustrates three isomorphic EIG trees, (a) T 2
4,2, (b) T

3
4,2, (c) T

4
4,2. As we will

see next, these are the EIG trees built by non-faulty processes 2, 3, 4 (respectively) in
our sample scenario, where process 1 is Byzantine-faulty (so its own internal structure
is irrelevant).

Consider EIG tree 5.1.b, for process 3, T 3
4,2. Level 0 corresponds to permutation set
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{λ}. Level 1 corresponds to permutation set {(1), (2), (3), (4)}. Level 2 corresponds
to permutation set {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1),
(4, 2), (4, 3)}. This tree is decorated with two attributes, α and β. Using the alternate
notation for permutations (to avoid embedded parentheses), attribute α corresponds
to the functional relation {(λ, 1), (1, 0), (2, 0), (3, 1), (4, 1), (1.2, 0), (1.3, 0), (1.4, 1),
(2.1, 0), (2.3, 0), (2.4, 0), (3.1, 0), (3.2, 1), (3.4, 1), (4.1, 1), (4.2, 1), (4.3, 1)}.

5.1.2 The EIG Algorithm

Each process starts with its own initial decision choice. At the end, all non-faulty
processes must take the same final decision, even if the faulty processes attempt to
disrupt the agreement, accidentally or intentionally.

A Byzantine faulty process is the most powerful consensus adversary. It can do
anything, except changing or stopping messages sent by non-faulty processes: (i) it
can read (but not change) other messages; (ii) it can stop sending its own expected
messages; (iii) it can send conflicting messages; (iv) it can send malformed messages
(including unexpected, out-of-round); (v) it can send forged messages, pretending to
come from other processes – aka Sybil attack.

The classical EIG-based algorithm solves the Byzantine agreement problem in the
binary decision case (true = 1, false = 0), for N processes, connected in a complete
graph (where edges indicate reliable duplex communication lines), provided that N ≥
3F + 1, where F is the maximum number of faulty processes. This is a synchronous
algorithm; celebrated results (see for example [40]) show that the Byzantine agreement
is not possible if N ≤ 3F , in the asynchronous case or when the communication links
are not reliable.

Without providing a complete description, we provide a sketch of the classical al-
gorithm, reformulated based on the theoretical framework introduced in subsec-
tion 5.1.1. For a more complete and verbose description of this algorithm, including
correctness and complexity proofs, we refer the reader to Lynch [40].

Each non-faulty process, h, has its own copy of an EIG tree, T h
N,L, where L = F + 1.

This tree is decorated with two attributes, αh, βh : {π ∈ P (N, t) | t ∈ [0, L]} →
{0, 1, null}, where null designates undefined items (not yet evaluated). Attributes
αh and βh are also known as valh and newvalh [40], or top-down and bottom-up [17].
As their alternative names suggest, αh is first evaluated, in a top-down tree traversal,
in increasing level order; next, βh is evaluated, in a bottom-up traversal, in decreasing
level order.

The algorithm works in two phases. Its first phase is a messaging phase which com-
pletes the evaluation of the top-down attribute αh. Initially, αh(λ) = vh, the initial
choice of process h; all the other αh and βh values are still undefined. Next, there
are L messaging rounds. At round t ∈ [1, L], h broadcasts to all processes (includ-
ing self), a reversibly encoded message which identifies its αh values at level t − 1
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Figure 5.1: Three sample EIG trees, T h
4,2, h ∈ {2, 3, 4}, completed with two attributes,

α and β. The node labels appear besides the node blob. Each node blob contains its
two attribute values: the top-down α value at the top, and the bottom-up β value at
the bottom.
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and their EIG destinations. Here, we encode all these via the set {(π � h, αh(π)) |
π ∈ P (N, t − 1), h /∈ Im(π)}. All other non-faulty processes broadcast messages, in
a similar way. More compact encodings are possible, but we don’t follow this issue
here.

Process h decodes and processes the messages that it receives. From process f ,
f ∈ [1, N ], process h receives the set {(π � f, αf (π)) | π ∈ P (N, t − 1)}. Each item
(π�f, αf (π)) is used to assign further αh values, to the next level down the EIG tree,
by setting αh(π � f) = αf (π).

As this formula suggests, it is indeed critical that h “knows” the origin f of each
received message and that this origin mark cannot be faked by faulty processes that
may use so-called Sybil attacks. Wrong or missing values are replaced by the value
of a predefined default parameter, v0 ∈ {0, 1}. Thus, there are L messaging rounds,
and, after the last round, all nodes are decorated with values of attribute α. In fact,
only the last level α values are actually needed, to start the next phase, a practical
implementation can choose to discard the other α values.

Then, the algorithm switches to its second phase, the evaluation of the bottom-up
attribute βh. First, for leaves, βh(π) = αh(π), π ∈ P (N,L).

Next, given βh values for level t ∈ [1, L], each βh value for the next level up, βh(π), π ∈
P (N, t − 1), is evaluated on the basis of the βh values of node π’s children, i.e. on
the multiset {βh(π � f) | f ∈ [1, N ] \ Im(π)}, using a local majority voting scheme:
βh(π) = 0, if a strict majority of the above multiset values are 0; or, βh(π) = 1, if a
strict majority of the above multiset values are 1; or, βh(π) = v0 (the same default
parameter mentioned above), if there is a tie.

At the end, the βh value for the EIG root, βh(λ), is process h’s final decision. All
non-faulty processes will simultaneously reach the same final decision; any decision
taken by faulty nodes is not relevant.

Consider a Byzantine scenario with N = 4 and F = 1, thus L = 2. Assume that
processes 1, 2, 3 and 4 start with initial choices 0, 0, 1, and 1, respectively. Further,
assume that process 1 is faulty. Figure 5.2 shows sample messages which could be
exchanged in this scenario and Figure 5.1 shows the corresponding EIG trees, for
non-faulty processes 2,3,4.

Each of the non-faulty processes, 2, 3 and 4, broadcasts identical messages to each of
the four processes. The faulty process 1 sends conflicting messages. In our scenario,
x = 0, in the message sent to 1, 2 and 3, but x = 1, in the message sent to 4. Also,
y = 1, in the message sent to 1, 2 and 4, but y = 0, in the message sent to 3. White
spaces are placeholders indicating potential messages which are not created, because
they would have contained duplicated process numbers (1.1, 2.2, 3.3, 4.4). The second
phase is not detailed here, except for the common final decisions (the question mark
indicates an irrelevant value).

The second phase is illustrated in Figure 5.1, for all non-faulty processes 2, 3, 4. All
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Process

(2.3, 0) (2.4, 0)

(4.1, 1) (4.2, 1)

Figure 5.2: A sample Byzantine scenario, N = 4, F = 1, where process 1 is Byzantine
faulty. Process 1 sends out syntactically correct but different messages to the non-
faulty processes: x = 0, y = 1 to process 2; x = 0, y = 0 to process 3; x = 1, y = 1
to process 4. As shown in Figure 5.1, non-faulty processes 2, 3, 4 build different EIG
trees, but they still reach the same final decision.

three EIG tress are shown completed all attribute values. Consider the EIG tree (b)
owned by process 3, T 3

4,2. The α3 values are filled from messages received in the two
messaging rounds, as indicated in Figure 5.2.

The β3 values are evaluated as required by the algorithm, by a local majority voting
scheme. The evaluation of β3(λ) reaches a tie, on multiset {0, 0, 1, 1}, which has two
0’s and two 1’s; this tie is broken using the default value, here we assume v0 = 0.
Thus, β3(λ) = 0 is the final decision of process 3, which is different from its initial
choice, α3(λ) = 1.

A similar argument shows that all other non-faulty processes, 2 and 4, end with the
same final decision, 0, thereby achieving the required agreement, despite starting
with different initial choices and the conflicting messages sent by faulty process 1.
Briefly, the Byzantine-faulty process may sometimes affect the outcome (between 0
and 1), but cannot affect the consensus: all non-faulty processes will take the same
final decision.

5.1.3 Previous Models

Without going into details, in this subsection, we take a bird’s eye view on the previous
best solutions, Dinneen et al. (2010) [17], and Nicolescu (2016/2017) [49], briefly
highlighting their merits and problems.

Dinneen et al. [17] was the first P system solution to the Byzantine agreement. In
fact, it is not one single solution, but (as usual in the classical model of P systems),
it is a family of related solutions, each one with its own variable number of symbols
and rules ; in this case, O(N ! ) symbols and rules (factorial!), where N is the number
of processes. Moreover, to ensure a correct solution, protected even against Sybil
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attacks, each process was modelled by a main cell surrounded by a constellation of 3N
“firewall” cells, reduced to 2N in a subsequent version. Figures 5.3 and 5.4 highlights
this network complexity, by illustrating the interconnections between processes #2
and #3 when N = 4.

Using the additional features offered by cP systems, Nicolescu (2016/2017) [49] was
the first unitary solution (no family), with a fixed number of symbols and rules, not
depending on N . However, without adequate control on the message input flow, it
still needed Sybil protection by “firewall cells”, this time only N per main top-cell.
Figure 5.5 highlights this reduced network complexity, by illustrating all interconnec-
tions between all processes, for N = 4.

The novel solution proposed in this paper removes any need for such firewall artefacts
and, in fact, improves the solution on all criteria. The new solution uses exactly N
top-level cells, as in the conceptual model, illustrated in Figure 5.2.

5.1.4 The Actor-like Model

In this subsection, we give a complete ruleset for a top-level cell that models a non-
faulty process in the EIG-based Byzantine algorithm of subsection 5.1.2. We illustrate
this ruleset by traces for Byzantine process #2, used in Figures 5.1, 5.2.

Initial top-cell configuration

Subcells δ̄(v), v ∈ {0, 1} define the two admissible decision values. Subcell v̄0(v)
contains v = v0 ∈ {0, 1}, the default value known by all processors. Subcell �̄(L)
represents the maximum number of levels of the EIG tree, precomputed as L =
F + 1 = 	(N + 2)/3
. Subcells π̄(i), i ∈ {1, 2, ...., N}, define the set of all process
ID’s.

Additionally, each cell i ∈ {1, 2, ...., N}, knows its own initial ID, given by subcell
μ̄(i). Subcell ᾱ(v) contains v = vi ∈ {0, 1}, the initial choice of process #i. Figure 5.6
shows the initial contents of top-level cell #2.

Sending Messages

The rules for sending messages are given in Figure 5.9. Rule (1) completes the initial-
isation, creating the root of the EIG tree, where: (i) subcell � represents the current
level in the EIG tree; and (ii) subcell θ represents a node in the EIG tree, containing
the following sub-subcells:

• �: the node level;

• α: the node value (attribute), α in the top-down phase and then β in the
bottom-up phase;
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δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)

Figure 5.6: Initial configuration of top-cell #2, in state S0.
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• π: the list of EIG node labels (Byzantine process IDs) from this node to the
root ;

• ρ: the set image of the above π list;

Note that the above order for π reverses the order used in subsection 5.1.2, e.g. EIG
node 3.2 is here represented via π[2, 3]. Also, � and ρ are not strictly needed, but
allows us to quickly check the node’s level and if a given ID is or is not in the list π.
Figure 5.7 shows the contents of top-level cell #2, after the EIG root is created.

Rule (2) is the rule which stops the message sending rounds when the current level
and the maximum number of levels are equal.

Rule (3) sends out messages to every cell (process), which is then stored in their
corresponding input queues. The message contains an already incremented level,
meaning it contains the level on which it should be stored. Each message is a θ′ term,
containing only the essential parts of the corresponding θ term, i.e. without, the
redundant ρ subterm. The branch has also been indicated and the α value computed,
based on its source tree branch. The final part of the rule is an inhibitor, which
requires that the current process ID must not be present in the set of process ID’s.

Rule (4) creates the templates for the next level of EIG nodes. The nodes are ini-
tialised with the default value, v0. Rule (5) increments the level, so we are now at the
next level. Figure 5.8 shows the contents of top-level cell #2, after sending round #1
messages; note the prepared templates for receiving round #1 messages, initialised
with v0 = 0.

Receiving messages

Rule (6) receives well-formed messages. This rule will “consume” the next level
template EIG node that was created in Rule (4). Thus, the current templates match
the well-formed messages received; non well-formed messages are not accepted, and
the template remains with the default value, v0, created by Rule (4).

Rule (7) makes the level above the current level take the default value. This means
that all levels above the current level will contain the default value. Figure 5.10 shows
the contents of top-level cell #2, after receiving round #1 messages.

The previous send and receive steps are repeated L times, where L is given by the
contents of �̄(L). Figure 5.12 shows the contents of top-level cell #2, after sending
round #2 messages. Figure 5.13 shows the contents of top-level cell #2, after receiving
round #2 messages.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2)
ᾱ(0) 	(0) θ(	(0) π[ ] ρ() α(0))

Figure 5.7: Top-cell #2 in S1, after the initialisation of rule (1).
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δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(1) θ(	(0) π[ ] ρ() α(0))
θ(	(1) π[1] ρ(1) α(0)) θ(	(1) π[2] ρ(2) α(0))
θ(	(1) π[3] ρ(3) α(0)) θ(	(1) π[4] ρ(4) α(0))

Figure 5.8: Top-cell #2 in S2, after sending round #1 messages, i.e. broadcasting
copies of θ′(�(1) π[2] α(0)).

S0 →1 S1 �(0) θ(�(0) π[ ] ρ() α(V )) (1)
| ᾱ(V )

S1 →1 S3 (2)
| �̄(L)
| �(L)

S1 →+ S2 !∀ {θ′(�(L1) π[X|P ] α(V ))} (3)
| μ̄(X)
| �(L)
| θ(�(L) π[P ] α(V ) ρ(Z))
¬ (Z = XQ′)

S1 →+ S2 θ(�(L1) π[X|P ] α(V )) (4)
| �(L)
| π̄[X]
| v̄0(V )
| θ(�(L) π[P ] α( ) ρ(Z))
¬ (Z = XQ′)

S1 �(L) →1 S2 �(L1) (5)

Figure 5.9: Ruleset for sending messages.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(1) θ(	(0) π[ ] ρ() α(0))
θ(	(1) π[1] ρ(1) α(0)) θ(	(1) π[2] ρ(2) α(0))
θ(	(1) π[3] ρ(3) α(1)) θ(	(1) π[4] ρ(4) α(1))

Figure 5.10: Top-cell #2 in S1, after receiving round #1 messages: here
θ′(�(1) π[1] α(0)) from #1, θ′(�(1) π[2] α(0)) from #2 (self), θ′(�(1) π[3] α(1))
from #3, θ′(�(1) π[4] α(1)) from #4.
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S2 ?Y {θ′(�(L1) π[Y |P ] α(V ))} →+ S1 θ(�(L1) π[Y |P ] ρ(Y Q) α(V )) (6)
θ(�(L1) π[Y |P ] α( )) | θ(�(L) π[P ] ρ(Q) α( ))

| (Q = Y Q′)
| δ̄(V )

S2 θ(�(L) π[X|P ] α( )) →+ S1 θ(�(L) π[X|P ] α(V )) (7)
| �(L1)
| v̄0(V )

Figure 5.11: Ruleset for receiving messages.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(2) θ(	(0) π[ ] ρ() α(0))
θ(	(1) π[1] ρ(1) α(0)) θ(	(1) π[2] ρ(2) α(0))
θ(	(1) π[3] ρ(3) α(1)) θ(	(1) π[4] ρ(4) α(1))
θ(	(2) π[2, 1] ρ(2, 1) α(0)) θ(	(2) π[3, 1] ρ(3, 1) α(0))

θ(	(2) π[4, 1] ρ(4, 1) α(0))
θ(	(2) π[1, 2] ρ(1, 2) α(0)) θ(	(2) π[3, 2] ρ(3, 2) α(0))

θ(	(2) π[4, 2] ρ(4, 2) α(0))
θ(	(2) π[1, 3] ρ(1, 3) α(0)) θ(	(2) π[2, 3] ρ(2, 3) α(0))

θ(	(2) π[4, 3] ρ(4, 3) α(0))
θ(	(2) π[1, 4] ρ(1, 4) α(0)) θ(	(2) π[2, 4] ρ(2, 4) α(0))

θ(	(2) π[3, 4] ρ(3, 4) α(0))

Figure 5.12: Top-cell #2 in S2, after sending round #2 messages, i.e. broadcasting
copies of θ(�(2) π[2, 1] α(0)), θ(�(2) π[2, 3] α(1)), θ(�(2) π[2, 4] α(1)).

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(2) θ(	(0) π[ ] ρ() α(0))
θ(	(1) π[1] ρ(1) α(0)) θ(	(1) π[2] ρ(2) α(0))
θ(	(1) π[3] ρ(3) α(0)) θ(	(1) π[4] ρ(4) α(0))
θ(	(2) π[2, 1] ρ(2, 1) α(0)) θ(	(2) π[3, 1] ρ(3, 1) α(0))

θ(	(2) π[4, 1] ρ(4, 1) α(1))
θ(	(2) π[1, 2] ρ(1, 2) α(0)) θ(	(2) π[3, 2] ρ(3, 2) α(0))

θ(	(2) π[4, 2] ρ(4, 2) α(0))
θ(	(2) π[1, 3] ρ(1, 3) α(1)) θ(	(2) π[2, 3] ρ(2, 3) α(1))

θ(	(2) π[4, 3] ρ(4, 3) α(1))
θ(	(2) π[1, 4] ρ(1, 4) α(1)) θ(	(2) π[2, 4] ρ(2, 4) α(1))

θ(	(2) π[3, 4] ρ(3, 4) α(1))

Figure 5.13: Top-cell #2 in S1, after receiving round #2 messages.



91

Second Phase

The second phase corresponds to the bottom-up evaluation of the EIG tree. Rule (8)
corresponds to when the bottom-up evaluation has finished, in which case the final
value (which is shared by all non-faulty processors) will be stored in ω.

Rule (9) decrements the level, so moves up the evaluation tree. Rule (9) removes
all pairs of opposite values at the leaves. Rule (10) takes the value of the remaining
leaves ”after” (actually done in parallel, but can be simply viewed in this way, due
to the weak priority order.) Rule (9). Rule (11) removes the leaves of the bottom-up
evaluation. Rule (12) decrements the current level corresponding to moving up the
evaluation tree. Figures 5.15 and 5.16 show the contents of top-level cell #2, after
the first, respectively the second, bottom-up evaluation. Figure 5.17 shows the final
contents of top-level cell #2, with its final decision in ω.

5.1.5 Conclusions

To the best of our knowledge, the current model is the first P system model that
maps each Byzantine process to exactly one cell, thus solving the open problem
mentioned in [17, 49]. As Figures 5.3, 5.4 and 5.5 show, all our previous models
required additional helper/firewall cells around the main cells, as protection against
Sybil attacks. The new Actor-based model is much more robust and does not require
such additional external protection.

Table 5.1 compares the previous models [17] (2010), [49] (2016), and the current
model (2018), on several complexity measures: (i) several static complexity measures
(first rows); and (ii) the runtime steps (the last two rows).

As Table 5.1 highlights, the new Actor-based model substantially improves all con-
sidered measures. The raw size is the size of an ASCII text file containing the ruleset,
described in LaTeX, but without any layout indications. The compressed size is the
raw file size after compression with 7-Zip, with the LZMA2 compression method and
Ultra compression level. The firewall rulesets have been included only once, without
considering the code replication, 3N or N firewall cells per main Byzantine cell. As
the files are relatively small, the compressed size is biased by the included compression
dictionary, but nevertheless, the results could be interesting.

The size of the compressed ruleset is intuitively related to the information content of
the ruleset. Interestingly, all considered models have not very different information
contents, which is understandable, as they all model the same problem. The raw sizes
are, however, more different. The raw/compressed ratio is intuitively a measure of
the ruleset expressivity: the lower the ratio, the better: less noise/redundancy and

a2N + 1 in later versions.
bCf. Figures 5.9, 5.11, and 5.14.
cCan be reduced to 1.
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S3 �() θ(�() π[ ] α(V )) →1 S4 ω(V ) (8)

S3 θ(�(L1) π[ |P ] α(1)) →+ S3 (9)
θ(�(L1) π[ |P ] α(0)) | �(L1)

S3 θ(�(L1) π[ |P ] α(X)) →+ S3 θ(�(L) π[P ] α(X)) (10)
θ(�(L) π[P ] α( )) | �(L1)

S3 θ(�(L1) ) →+ S3 (11)
| �(L1)

S3 �(L1) →1 S3 �(L) (12)

Figure 5.14: Ruleset for evaluating the EIG tree.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(1) θ(	(0) π[ ] ρ() α(0))
θ(	(1) π[1] ρ(1) α(0)) θ(	(1) π[2] ρ(2) α(0))
θ(	(1) π[3] ρ(3) α(1)) θ(	(1) π[4] ρ(4) α(1))

Figure 5.15: Top-cell #2 in S3, after first bottom up evaluation.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(1) π̄(2) π̄(3) π̄(4) μ̄(2) ᾱ(0)
	(0) θ(	(0) π[ ] ρ() α(0))

Figure 5.16: Top-cell #2 in S3, after second bottom up evaluation.

δ̄(0) δ̄(1) v̄0(0) 	̄(2) π̄(ι1) π̄(ι2) π̄(ι3) π̄(ι4) μ̄(ι2)
ᾱ(0) ω(0)

Figure 5.17: Top-cell #2 in S4, with final value in ω.
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Table 5.1: Summary of complexity measures (where L = 	(N + 2)/3
).
Measure [17] (2010) [49] (2016) This model (2018)

Cells per process 3N + 1a N + 1 1

Atomic symbols O(N ! ) 18 14

States O(L) 14 5

Rules O(N ! ) 23 12b

Ruleset size – Raw 2338 2218 1481

Ruleset size – Compressed 624 591 526

Raw/Compressed ratio 3.75 3.75 2.81

Steps per top-down level 5 4 2

Steps per bottom-up level 1 3c 1

higher information density. The new Actor-based model seems the most expressive:
it has the highest information density with the least noise.

To the best of our knowledge, the new model also compares favourably with any
extant description – whether informal, pseudocode, or code – of the classical EIG
tree and algorithm: (i) it is fully formal; (ii) it is directly executable; and (iii) it is
crisper (without relying on any previously developed library). The reader is invited
to compare our formal description to other, even informal descriptions, such as given
in classical textbooks, e.g. Lynch [40], pages 108, 109, 120.

5.2 Santa Claus Problem

In this section we discuss the Santa Claus Problem, a classic and challenging concur-
rency problem, and propose a slightly tighter specification, that precludes a few odd
scenarios. We provide an elegant solution to this refined problem using cP systems.
We now evaluate, for the first time, our cP systems as a concurrency specification
language. We compare our cP specification and similar solutions implemented in sev-
eral modern languages (e.g. Go, C#, F#), with respect to program-size complexity
and (where available) runtime performance.

As it is now often repeated, the free lunch is over—we can no longer make our code
run faster by simply waiting for faster hardware. Modern high-performance systems
need to exploit concurrency, yet writing concurrent code can easily introduce bugs
and complexities, making people spend more time worrying about and satisfying the
computer rather than solving the domain problem.

The Santa Claus Problem is a classic concurrency challenge, introduced by Trono [66]
in 1994:
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Santa Claus sleeps at the North Pole until awakened by either all of the
nine reindeer, or by a group of three out of n elves. He then performs one
of two indivisible actions:
1. If awakened by the group of nine reindeer, Santa harnesses them to

the sleigh, delivers toys, and finally unharnesses the reindeer, who
then go on vacation.

2. If awakened by a group of three elves, Santa invites them into his
office, consults with them on toy R&D, and finally shows them out,
so they can return to work on constructing toys.

In our refined specification, we strengthen the rules by assuming that
each elf will ask one question and get one response from Santa.

As in the classical version, a waiting group of reindeer must be served
by Santa before a waiting group of elves. Since Santa’s time is precious,
marshalling the reindeer or elves into a group must not be done by Santa.

The problem seems simple at first sight; however, it has become a tough testbed for
the expressiveness of concurrency constructs. As noted by Benton [6], attempts to
solve this problem can easily introduce errors such as:

• Santa takes off to deliver toys, while one or more (possibly all nine) reindeer
are still be waiting to be harnessed.

• Santa takes off to deliver toys, after one or more (possibly all nine) reindeer
have already gone on vacation once again.

• Santa ends his consulting time and goes to sleep, while one or more (possibly
all three) elves are still waiting to ask their questions.

• Santa starts his consulting time, after one or more (possibly all three) elves have
already left the office.

• One or more additional elves sneak into the consultation room after Santa invites
the group of three who have initially registered for consultation.

• The priority rule is quite challenging to implement fully. There is frequently a
(possibly very narrow, but not null) opportunity for a group of three elves to
get Santa’s attention even when all reindeer have returned and are ready to be
harnessed.

Trono’s own first solution [66], based on semaphores, highlighted all the above prob-
lems. Subsequent solutions tried to remedy this, but even recent solutions may exhibit
some of the above problems, or else are excessively complex and fragile (qualifying
them as ‘messy’ would not be a great exaggeration). While primitive constructs such
as semaphores can successfully model simple scenarios, they seem less adequate for
high-level models of complex scenarios.

Therefore, the Santa Claus Problem has become a great testbed for testing the ex-
pressiveness of numerous concurrency constructs and models, such as: semaphores,
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monitors, locks, barriers, select-type constructs, guards, message passing (cf. MPI
[21]), software transactional memory (STM) [35], actors and actor extensions (mul-
tiple heads, multiple mailboxes [63]), communicating sequential processes (CSP, cf.
occam [44]), rendezvous (cf. Ada [5]), join calculus (cf. Polyphonic C# [6]), etc. The
next subsection offers a brief overview of some of these proposals.

Essentially, there are two distinct problems that must be properly solved, cf. Ben-
Ari [5]: (1) how to synchronise a set of processes (here elves or reindeer) and release
them as a group; (2) how one process (e.g. Santa) provides more than one distinct
service, with different priorities.

5.2.1 Overview

The shared memory model implemented in the form of threads is usually adopted
as the first attempt to solve any concurrency challenges, since the thread libraries
are conveniently available in many popular programming languages such as C/C++,
Java, and C#. In the shared memory model, the program is split into two or more
tasks running on different threads which operate on shared data, and the underlying
operating system is in charge of scheduling and dispatching these threads for exe-
cution. The first solution to the Santa Claus Problem given by Trono utilises such
construct with semaphores [66]. However, Trono’s solution is only partially correct,
mainly because it ‘assumes that a process released from waiting on a semaphore will
necessarily be scheduled for execution’ [5]. Hurt and Pedersen [31] implemented and
compared a few different solutions using barriers, locks, semaphores, mutexes, and
monitors. However, all these constructs may suffer from various problems such as
race conditions, deadlocks, and livelocks. Besides, it is a non-trivial task to prove the
correctness, as all possible interleavings of program execution have to be considered.

Message Passing Interface (MPI) [21] is a message-passing standard for a distributed
memory architecture e.g. a cluster. Most MPI implementations consist of a specific
set of API directly callable from C\C++, Fortran and many languages able to in-
terface with such libraries, including C#, Java or Python. In MPI, each program’s
task is separated onto a different process, mimicking a distributed memory model.
The MPI Barrier method can be used to synchronise a group of processes, and syn-
chronous receives replaces wait/notify to simplify the asynchronous logic. These tech-
niques can be used to synchronise the individual Santa, elf, and reindeer processes
[31]. Due to the lack of shared memory in MPI, a separate process for each reindeer
and elf waiting group is needed. When a process receives a piece of data, it processes
it and then passes it onto one or multiple processes. Therefore the same piece of data
is never operated on by more than one process at a time, eliminating the data race
problem plaguing the shared memory model [31].

Jones [35] proposed another solution using the Software Transactional Memory (STM)
model in Haskell. STM enables people to write programs in a more modular way;
for example, building large programs by gluing smaller programs together, without
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needing to expose their implementations [35]. The STM solution to the Santa Claus
Problem introduces the abstraction of a Gate and a Group for modularity and ease
of action coordination. Santa creates two groups, one for the elves and the other for
the reindeer. The elves and the reindeer try to join their group if needing to wake
Santa up. Santa controls the Gates for marshalling the elves, and the reindeer [35].
The shared memory model makes such modularity difficult: any newly added actions,
which operate on the shared data, need to be carefully coordinated by synchronising
constructs, such as locks and conditional variables, to avoid data races.

The actor model is gaining momentum in solving parallel and distributed problems,
including concurrency challenges. It provides high-level concurrency abstractions via
message passing. Each actor comes with an unbounded queue, called a mailbox,
for storing any incoming messages. Actors communicate by sending and receiving
messages. Sending is an asynchronous operation, meaning any actors can send any
number of messages at a time. Receiving is typically a synchronous operation, mean-
ing an actor can only process one message at a time, and it will logically block if the
mailbox is empty. Receiving of a message is usually implemented by pattern match-
ing. However, as noted by Sulzmann et al. [63], the classic actor model implemented
in languages such as Erlang is restricted to a single-headed message pattern – that
is, each receive operation only matches one message at a time, in the order of their
mailbox position. This restriction makes the priority in the Santa Claus Problem
a non-trivial task to implement, since the wake-up message coming from the nine
reindeer might be preceded, in the mailbox, by a wake-up message coming from the
three elves. To address this limitation, Sulzmann et al. [63] proposed and designed an
extension of Erlang style actors with receive clauses containing multi-headed message
patterns i.e. matching multiple messages at a time, extending the ability to easily
express complex synchronisation patterns.

Ben-Ari [5] highlighted the errors in the original Trono’s paper [66], discussed various
problems that low-level semaphore-based solutions may have, and proposed a high-
level solution in Ada. This solution uses Ada’s unique rendezvous construct, inspired
from join calculus. It also uses the more recent protected object construct, essentially
an extension of Hanson’s monitors. The solution is relatively neat and covers all
requirements well, except the last and tricky one, to ensure that reindeer have priority
over elves. This priority requires a subtle interaction between more sophisticated
concepts, such as requeuing tasks, using additional accept (i.e. select) guards, and
finally still needs a pragma requiring a textual order queuing policy.

Benton [6] proposed a neat solution, based on Polyphonic C#, a fairly direct imple-
mentation of join calculus ideas [7] in the C# programming language. It solves most
problems by extensively using the new chord concept, which allows one to associate
the header and body of one synchronous function with one or more asynchronous
function headers. Calls to a chord only succeed when all functions have been called,
i.e. the synchronous base and all additional asynchronous headers. Calling the syn-
chronous entry proceeds synchronously, as expected, possibly waiting for all associ-
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ated asynchronous calls. Calling an asynchronous entry does not block ; if needed,
the parameters of the call are implicitly queued in the system provided ‘message’
queue (like in actor systems). Space does not allow us to delve deeper into this topic
here, but we illustrate these concepts by the straightforward implementation of a
semaphore, cf. fig. 5.18. Still, unless the compiler and runtime ensure a textual order
for chord matching, implementing the required priority is not simple and requires a
few non-trivial additions.

5.2.2 Santa System

The cP system used to solve the Santa Claus Problem is described using five cell
types:

• One Santa cell, denoted κ.

• One Office cell, denoted ω, where elves request to consult Santa.

• One Sleigh cell, denoted σ, where reindeer report their return.

• Nine Reindeer cells, denoted ρ1, ρ2, ...ρ9.

• n Elf cells, denoted ε1, ε2, ...εn.

An example graph of the system for two reindeer, and two elves is shown in fig. 5.19.
A diagram of the message senders and receivers is shown in fig. 5.20. The system
messages can be interpreted as:

• εi
w−→ εi: Means that elf εi is working.

Due to the system being asynchronous, the message w can take any length for
the different elves. This is why all arbitrary length jobs are simulated using
self-addressed messages.

• ρi
v−→ ρi: Simulates the time reindeer ρi spends on vacation.

• κ
d−→ κ: Simulates the time that Santa spends delivering the presents.

• εi
p−→ ω: Puzzled elf εi requests the Office, to consult with Santa.

• ω
w−→ κ: The Office tells Santa to wake up, as a group of three elves, are ready

to consult.

• κ
ι−→ ω: Santa tells the Office to invite the group of elves for consultation.

• ω
ι−→ εi: The Office invites elf εi to consult with Santa.

public async S i gna l ( ) & public void Wait ( ) {}

Figure 5.18: Semaphore in Polyphonic C#.
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Figure 5.19: cP system graph, for two reindeer and two elves. The dashed lines
represent connections between the cells.
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Figure 5.20: An overview of the cP system and messages sent.
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• κ
f−→ ω: Santa tells the Office he is finished with the most recent group of elves.

• εi
q−→ κ: Elf εi asks Santa a question.

• κ
a−→ εi: Santa answers elf εi’s question.

• ρi
r−→ σ: Reindeer ρi tells the Sleigh they have returned from vacation.

• σ
w−→ κ: The Sleigh tells Santa to wake up, as all nine reindeer have returned

from vacation.

• κ
h−→ ρi: Santa harnessing reindeer ρi.

• ρi
h−→ κ: Reindeer ρi confirms it is harnessed and ready to pull.

• κ
u−→ ρi: Santa tells reindeer ρi to unharness and go on vacation once again.

The rulesets for each cell type are in figs. 5.21 to 5.25, respectively, where each rule
is numbered by the cell symbol followed by a dot (‘.’) and then the rule index. For
example, the reindeer’s second rule is listed as ρ.2.

s0 ?σ w →1 s1 (κ.1)

s1 →+ s2 !R h π(9) | ρ(R) (κ.2)

s2 ?R h π(X1) →1 s2 π(X) (κ.3)

s2 π() →1 s2 !κ d (κ.4)

s2 ?k d →1 s3 (κ.5)

s3 →+ s0 !R u | ρ(R) (κ.6)

s0 ?ω w →1 s4 !ω ι π(3) (κ.7)

s4 ?E q π(X1) →1 s4 !E a π(X) (κ.8)

s4 π() →1 s0 !ω f (κ.9)

Figure 5.21: Ruleset for the Santa cell, κ.

s0 r(9) →1 s0 !κ w r() (σ.1)

s0 ?R r r(X) →1 s0 r(X1) (σ.2)

Figure 5.22: Ruleset for the Sleigh, σ.
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s0 →1 s1 !I v | θ(I) (ρ.1)

s1 ?I v →1 s2 !σ r (ρ.2)

s2 ?κ h →1 s3 !κ h (ρ.3)

s3 ?κ u →1 s0 (ρ.4)

Figure 5.23: Ruleset for a generic reindeer cell, ρi (where i is it’s ID).

s0 →1 s1 !κ w | e(3) (ω.1)

s0 ?E p e(X) →1 s0 ω(E) e(X1) (ω.2)

s1 ?κ ι →1 s2 (ω.3)

s2 ω(E) →+ s3 !E ι (ω.4)

s3 ?κ f e(X) →1 s0 e() (ω.5)

Figure 5.24: Ruleset for the Office, ω.

s0 →1 s1 !I w | θ(I) (ε.1)

s1 ?I w →1 s2 !ω p (ε.2)

s2 ?ε ι →1 s3 !κ q (ε.3)

s3 ?κ a →1 s0 (ε.4)

Figure 5.25: Ruleset for generic elf cell, εi (where i is it’s ID).

Initial configuration We assume that each reindeer and elf cell contains one term
θ(x), where x is the unique identifier of the cell (in our case numbers). We also
assume that Santa contains terms ρ(x1), ρ(x2), ...ρ(x9), where xi’s are the unique
reindeer identifiers.

Example

We illustrate the system evolution with a simple scenario with two reindeer and two
elves. This does not fully describe all possible concurrency issues. However, it presents
an intuitive description of the ruleset. See fig. 5.19 for the cP graph and fig. 5.20 for
an overview of the message senders and receivers.
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Initially, the elves are working, and the reindeer are on vacation; this is denoted in
the rule set by rules ε.1 and ρ.1. The time working and on vacation is represented
by the time it takes for a self-addressed message to arrive. When an elf receives
this self-addressed message w, he knows that he needs to consult with Santa and
requests the Office cell to see Santa (rule ε.2). Similarly, when a reindeer receives
the self-addressed message v, the reindeer then know they are rested enough to start
delivering presents and so report to the Sleigh cell (rule ρ.2).

Once the two elves have all told the office cell that they are ready, the office cell asks
Santa to wake up and help (rule ω.1). Santa then tells the office that he is ready to
see the elves (rule κ.7). He also sets his question and answer counter to be three. The
office cell then tells each of the elves in the group that Santa is ready for questions
(rule ω.4).

When an elf receives the message that Santa is ready for questions, they send a
question to Santa (rule ε.3). Santa answers, in turn, each of the elf’s questions,
decrements his question and answer counter until it becomes zero (rule κ.8 ). When
an elf gets an answer, they then return to work (rules ε.4 and ε.2). When Santa’s
question and answer counter is zero, he tells the office that he is finished with the
current group, and returns to sleeping (rule κ.9).

When all the reindeer have informed the sleigh cell that they are ready to deliver
the presents, the sleigh tells Santa to wake up and deliver the presents (rule σ.1).
Santa wakes up and then harnesses all of the reindeer (rules κ.1 and κ.2). When a
reindeer is harnessed and ready, they confirm with Santa (rule ρ.3). When all of the
reindeer are harnessed and ready to deliver, Santa delivers all of the presents (rule
κ.4). Delivery time is represented by a self-addressed message. When Santa finishes
delivery, he tells the reindeer to go on vacation (rules κ.5 and κ.6) and returns to
sleep. When the reindeer receive the message to go on vacation, they do as advised
(rules ρ.4 and ρ.1).

Possible pitfalls

As mentioned previously, there are six common pitfalls in solutions to the Santa Claus
Problem.

• Santa takes off to deliver toys, while one or more (possibly all nine) reindeer
are still waiting to be harnessed.

• Santa takes off to deliver toys, after one or more (possibly all nine) reindeer
have already gone on vacation once again.

Our solution is that Santa sends a message (h) to all of the reindeer to get harnessed.
The reindeer, once harnessed, confirm with a message (h). Santa does not start to
deliver presents until he has received confirmation from all of the reindeer (i.e. has
counted nine confirmation h’s).
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• Santa ends his consulting time and goes to sleep, while one or more (possibly
all three) elves are still be waiting to ask their questions.

When Santa starts consulting with the elves, he starts a question and answer counter.
Santa will not finish consulting until he has received and answered questions from the
entire group (i.e. has counted three answers to elves’ questions, a’s).

• Santa starts his consulting time, after one or more (possibly all three) elves have
already left the office.

When the elves start consulting, they must receive a message a from Santa, before
they can return to work. Hence, each elf in the group will not return to work until
Santa has started consulting.

• One or more additional elves sneak into the consultation room after Santa invites
the group of three who have initially registered for a consultation.

Elves are invited into the consulting room by the Office cell (rule ω.4). The Office
cell is only able to add three elves to the set of elves before it changes state (rules ω.1
and ω.2), and no longer accepts more elves to the group.

• The priority rule is quite tough to fully implement. There is a frequent opportu-
nity (possibly very narrow, but not null) for a group of three elves to get Santa’s
attention even when all reindeer have returned and are ready to be harnessed.

Although complex in many programming languages, implementing the priority in cP
is achieved simply via the weak priority order of Santa’s rules.

5.2.3 Experiments

Scalability

To test the suitability of our model, we translated our rules into C# code. We used the
library Akka.Net to implement the required messaging between cells. We then tested
our code against four different solutions. A Go channels solution and a C semaphores
solution from [59] where the code was altered to fit our interpretation of the problem.
A C# semaphore slim solution in which we used asynchronous semaphores. We tested
the code on a computer that had 8GB of RAM and running on an Intel i5 7600. To
test the scalability of the code, we had three different parameters:

1. Number of consultations per year: The number of times a group of three elves
would consult with Santa before a year was allowed to end.

2. Number of elves.

3. Number of years: A year was defined as when the Sleigh woke up Santa. The
Sleigh could not wake Santa until the current year had, at least, the minimum
number of consultations for a year.
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The results of these experiments are presented in Subsection 5.2.5. The results demon-
strate that the traditional C semaphores are not as effective in this scenario as the
more modern approach of the async semaphore. We also note, that although our
simulation code is not as efficient as the other solutions, it does demonstrate the
effectiveness of cP systems to model inherently parallel problems.

Complexity of Code

To get an indication of the complexity of our solution compared to the existing solu-
tion, we used three different measures presented in Table 5.2.

1. Source lines of code (SLOC). SLOC is one of the major inputs into cost estima-
tion models as stated in [47], among various program-size complexity measures
(e.g. [16]). Hence, we use this as an estimation of the cost of the solutions.

2. Number of tokens can be taken roughly as the complexity of the solution. The
fewer tokens used means that the solution is more compressed and has fewer
irrelevant symbols.

3. The raw/compressed ratio is intuitively a measure of the expressiveness: the
lower the ratio, the better: less noise/redundancy and higher information den-
sity.

To measure the SLOC for the cP solution, we used the number of rules as this
roughly corresponds to the number of lines of code. For the other solutions, we took
the number of lines based on the number of semicolons and open curly braces and
subtracted when a for loop added more than necessary semicolons. This is to remove
ambiguity when a solution may place multiple operations on one line and try and
make fair comparisons. We can see that our cP solution uses around a third as many
lines as the next closest.

To measure the number of tokens of the cP solution, we counted them manually, to
give a rough estimate of the number of tokens required. We tokenised each of the
keywords variables and operations for the other solutions and removed any unneces-
sary spaces. When the solutions are tokenised, we can see that our solution compares
favourably to the others, with ours using around half as many.

We used the Latex code without formatting as the raw file to measure the raw/-
compressed ratio for the cP solution. For the other solutions, we used the source
code files. We compressed all of the files using 7-Zip, with the LZMA2 compression
method and Ultra compression level. We see that the cP solution has the lowest ratio
suggesting the higher information density. We also see that the C# simulation of the
cP solution has a high ratio. This difference is expected as Akka .Net is simply an
actor framework, not a cP system simulator; hence, making it simulate the cP system
adds redundancy.
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5.2.4 Conclusions

We think that our cP solution compares very favourably with other extant solu-
tions, in terms of elegance and conciseness. We should also stress that our system
is completely formal, directly executable (in principle), and—in contrast to all other
solutions—is self-contained (does not require specialised libraries). From [31] sum-
marises a simple but useful complexity measure using the number of lines of code. In
our case, we have a total of 24 rules, roughly corresponding to 24 SLOC.

Last but not least, this exercise suggests that complex concurrency problems should
be verified with formal methods or tools. The Santa Claus Problem highlights how
easily one (even experts) can make mistakes while modelling complex concurrency
scenarios; convincing intuitions and explanations are not enough. This is a theme for
further research.

5.2.5 Tables and Graphs

Table 5.2: A comparison of different complexity measures for a selection of solutions
to the Santa Claus problem.

SLOC Number of Raw size of file Size of compressed Raw/Compressed

tokens (bytes) (bytes) ratio

C# (semaphore slim) 210 1147 14,700 2,610 5.63

C (semaphore) 347 2552 12,725 2,612 4.87

C# (Akka.Net) 209 1470 7,696 1,584 4.85

C# (channels) 120 1015 5,297 1,232 4.3

Kotlin(channels) 121 729 5,020 1,184 4.24

F#(mailbox) 112 861 5,006 1,233 4.06

Go (channels) 114 717 3,941 1,035 3.81

F#(Hopac) 100 681 3,644 972 3.75

JS(channels) 114 717 3,861 1,034 3.73

Latex (cP system) ≈ 24 ≈ 317 1,078 467 2.26
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Figure 5.26: Number of consultations vs time taken (seconds).

Table 5.3: Number of consultations vs time taken (seconds).

Name 200 800 3200 12800

C semaphore 22.92 91.61 NA NA

Javascript channels 15.28 58.83 NA NA

Kotlin channels 8.53 27.41 103.18 NA

F# Mailbox 5.95 23.19 100.28 NA

C# AKKA 5.02 14.86 55.5 NA

C# Semaphore Slim 4.72 14.61 53.69 NA

C#-Channels 4.1 12.18 45.07 NA

Go Channels 2.41 9.39 38.08 NA

F# Hopac 3.2 6.86 23.5 91.36

Table 5.4: Number of consultations vs time taken (seconds).

Name 50 100 200

C semaphore 5.78 11.56 22.92

Javascript channels 9.09 7.76 15.28

Kotlin channels 3.99 5.07 8.53

F# Mailbox 1.58 3.02 5.95

C# AKKA 2.68 3.36 5.02

C# Semaphore Slim 2.33 3.09 4.72

C#-Channels 2.08 2.73 4.1

F# Hopac 1.89 2.27 3.2

Go Channels 1.81 1.23 2.41
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Figure 5.27: Number of consultations vs time taken.

Figure 5.28: Number of elves vs time taken (seconds).
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Table 5.5: Number of elves vs time taken.

Name 327680 1310720 5242880

C# AKKA NA NA NA

C semaphore NA NA NA

Javascript channels NA NA NA

Go Channels 1.95 24.06 NA

F# Mailbox 5.35 13.49 NA

Kotlin channels 6.66 10.95 NA

C#-Channels 3.62 6.5 30.53

C# Semaphore Slim 3.89 6.96 24.81

F# Hopac 2.61 4.46 11.0

Figure 5.29: Number of elves vs time taken (seconds).

Table 5.6: Number of elves vs time taken (seconds).

Name 20 80 320 1280 5120 20480 81920 327680

C semaphore 5.7 5.84 6.01 NA NA NA NA NA

Javascript channels 6.84 4.17 4.38 4.88 9.65 10.43 46.43 NA

Kotlin channels 3.72 3.66 3.8 3.68 3.9 3.89 3.89 6.66

C# AKKA 3.05 3.53 NA NA NA NA NA NA

F# Mailbox 1.68 2.88 2.12 2.19 2.82 2.77 3.28 5.35

C# Semaphore Slim 2.69 2.29 2.35 2.37 2.47 2.79 3.33 3.89

C#-Channels 2.13 2.07 2.1 2.1 2.15 2.45 2.73 3.62

F# Hopac 1.88 1.99 2.0 1.98 2.02 2.11 2.21 2.61

Go Channels 0.66 0.61 0.62 0.6 0.64 0.72 1.0 1.95
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Figure 5.30: Number of years vs time taken (seconds).

Table 5.7: Number of years vs time taken (seconds).

Name 8000 32000 128000 512000

C semaphore 24.43 91.76 NA NA

Javascript channels 17.59 63.5 NA NA

Kotlin channels 8.24 27.36 104.82 NA

F# Mailbox 7.31 26.21 98.11 NA

C# AKKA 5.79 19.37 55.64 NA

C# Semaphore Slim 4.74 14.4 53.01 NA

C#-Channels 4.14 12.34 45.95 NA

Go Channels 2.41 9.69 37.6 NA

F# Hopac 3.28 7.33 23.96 95.03

Table 5.8: Number of years vs time taken (seconds).

Name 2000 4000 8000

C semaphore 6.28 12.49 24.43

Javascript channels 27.05 8.08 17.59

Kotlin channels 4.52 5.47 8.24

F# Mailbox 5.26 4.7 7.31

C# AKKA 15.15 4.29 5.79

C# Semaphore Slim 2.59 3.25 4.74

C#-Channels 2.17 2.78 4.14

F# Hopac 3.39 2.36 3.28

Go Channels 8.39 1.11 2.41
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Figure 5.31: Number of years vs time taken (seconds).

5.3 Conclusions and Future work

In this chapter we have looked at how cP systems can efficiently model both dis-
tributed and parallel computing problems. We first showed using the recently pro-
posed actor like controls on messages that our cP system outperforms the previous
P system solutions to the Byzantine agreement problem on not only number of steps
but also number of cells and code complexity.

We then showed how cP systems could model the Santa Claus problem demonstrating
that cP systems can be used as a parallel computing specification language. We then
show how our new solution can be utilised and compared to extant solutions. We
see that our solution has far fewer lines of code than that of traditional programming
languages.

Future work in this direction includes: Looking at modelling more sophisticated con-
sensus algorithms (non EIG based), which offer better messaging performance and
are actually used in large scale critical applications, such as Blockchains, investigating
the uses of cP systems to more practical applications, and formal verification of cP
systems which will be very useful on tricky problems such as the Santa Claus problem.



Chapter 6

Conclusions

This thesis has looked at the computational power of both cP systems and our newly
proposed water-based system (as discussed, the constructions in the water section
can be used with cP systems).

We started by looking at what cP systems can achieve with a single top-level cell.
We showed for the first time that cP systems can solve PSPACE complete problems.
Furthermore, compared to other extant confluent P systems solutions, our determin-
istic cP solution only uses a small constant number of custom alphabet symbols (19),
a small constant number of rules (10), and a small constant upper-limit of membrane
nesting depth (6), independent of the problem size. Whereas, as shown in Table 3.1,
the previous confluent P system solutions use a variable number of rules, alphabet
symbols and membrane nesting depth.

After this, we then solved NP-complete problems in sublinear time. We showed that
the reduction from k-colouring to k-SAT can be made in constant time. This reduced
solution surpassed the already proposed problem-specific cP systems solution [13] (a
linear solution O(n)) with our solution running in sublinear time(O(

√
n)).

We then looked at water computing, in which we first proposed an improved modular
design, which duplicates the main water flows by associated control flows. We solved
the three open problems of the previous design [30] by demonstrating: how functions
can be stacked without a combinatorial explosion of valves; how the termination of
the system can be detected; and how to reset the system. We proved that the system
is Turing complete by modelling the construction of μ-recursive functions. Finally,
we demonstrated that this model can construct ‘efficiently’: 1) A programmable
sequential, random-access machine (RAM), which we then extend to construct: 2) a
programmable exclusive read exclusive write (EREW) parallel random-access machine
(PRAM).

We finally looked at multi-cell cP systems that can be used to model parallel or dis-
tributed algorithms. We started by solving the Byzantine agreement problem using
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the recently proposed actor controls on messages. To the best of our knowledge,
our new solution compares favourably to the previous P system solutions as seen in
Table 5.1. We then solved the Santa Claus problem using cP systems. Previously,
cP systems have been successfully used as a specification language for a wide vari-
ety of problems. We evaluated, for the first time, our cP systems as a concurrency
specification language. We compared our cP specification and similar solutions im-
plemented in several modern languages (e.g. Go, C#, F#). Our cP solution compares
very favourably with other extant solutions, in terms of elegance and conciseness (ap-
proximately a quarter of the SLOC of the solutions we compared against as seen in
Table 5.2).

Both our solutions for the Santa claus and Byzantine agreement problem compare
very favourably to the extant solutions whether informal, pseudocode, or code. Our
solutions (i) are fully formal; (ii) directly executable; and (iii) crisper (without relying
on any previously developed library).

Future work in this area could be focused on a variety of different directions. However,
here we suggest three directions.

• Investigating the upper limits of a single cP system cell. In this thesis, we have
shown that they can solve hard problems. However, we have not shown what
they cannot compute in a space or time limit.

• Physical implementations of these two systems. A physical implementation of
the two systems would allow these algorithms to be realised and utilised.

• cP systems for parallel and distributed algorithms. Here one could investigate
using it as a concurrency specification language for well-known problems and
investigate the usefulness for more implementations on standard hardware.
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Jesús Pérez-Jiménez on the Occasion of His 70th Birthday, volume 11270 of
Lecture Notes in Computer Science, pages 204–227. Springer, 2018.

[51] Radu Nicolescu, Florentin Ipate, and Huiling Wu. Towards high-level P systems
programming using complex objects. In International Conference on Membrane
Computing, pages 255–276, 2013.

[52] Radu Nicolescu and Huiling Wu. Complex objects for complex applications.
Romanian Journal of Information Science and Technology, 17(1):46–62, 2014.

[53] I Parberry. Parallel speedup of sequential machines: A defense of parallel com-
putation thesis. SIGACT News, 18(1):54–67, March 1986.
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Appendix A Distributed solution

Here we present an alternative ruleset to achieve the Cartesian product, cf. rules 9
and 10 from Table 3.17. This ruleset utilises synchronous communication between
cells (see [50] for more details about multi cell communication). One of the key
differences is that this ruleset always consumes something on the left hand side. This
seems to make single cell cP systems more difficult to design but also should remove
the ability to produce unreasonable amounts of data in 1 step.

Our solution utilises
√
n + 1 top level cells with cell 0 being the main cell and all

others using identical rule sets only communicating with cell 0 (cf Figure 6.1).

p(0)p(1)

p(2)

p(3)

p(4)

p(...)

p(
√
n)

Figure 6.1: Diagram showing the graph representation of the distributed system.

Our alternative ruleset can be broken up into two parts. The first ruleset is identical
for
√
n cells with a processor id p(i) where i ∈ {1, 2, . . .√n}. The rules:

s1 ? {X} →+ s2 X (1)

s2 a(X) →+ s3 a(X b(Y )) | p(Y ) (2)

s3 X p(Y ) →+ s1 !0 {X} (3)

describe the system. With each cell getting sent, a group of allocations which it then
sends back with after doing a Cartesian product with its processor id.

The main cell will simply send the allocations to all of the other cells using the
following rules:
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s4 a(X) →+ s5 !∀ {j(X)} (8.1)

s5 ? {X} →+ s6 X (8.2)

Once it has received the results from the other cells it then processes them using the
adjusted rules:

s6 →+ s7 (9’)

a(x(i(I) Z) j(Y ) b(X)) d(x(i(I) Z) j(α(Y ) β(X)))

d(x(i(IP ) Q) j(α(Y ) β(X)))

| b(x(i(IP ) Q) j(X))

| m(P )

s6 →+ s7 (10’)

a(x(i(I) Z) j(Y ) b(X)) d(x(i(I) Z) j(α(Y ) β(X)))

| b(x(i(IP ) Q) j(X))

| p(P )

We note that the states of the original ruleset will also need to be adjusted to incor-
porate the changes. However, this should be straightforward.

Appendix B Bijection between integers and branch

numbers

Given an allocation of variables {x0 = α0, x1 = α1, . . . , xn−1 = αn−1} we use the
following code to get branch number j:

j = 0
for i← 0 to n− 1 do

i f αi = 0 then
j ← j ∗ 2

else
j ← j ∗ 2 + 1

Given a branch number j we can retrieve an allocation a using the following code:

a← {}
for i← n− 1 ; to 0 do

i f j % 2 = 0 then
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a← a ∪ {xi ← 0}
j ← j/2

else
a← a ∪ {xi ← 1}
j ← (j − 1)/2

Appendix C Example trace of controlled subtrac-

tion

Here we present a trace of saturation subtraction for both the tank system presented
in Figure 4.2, and cP rules in Table 4.7.
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Figure 6.2: The initial state of controlled subtraction of 3� 2.
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Figure 6.3: The first step of controlled subtraction of 3− 2.
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Figure 6.4: The second step of controlled subtraction of 3� 2.
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Figure 6.5: The third step of controlled subtraction of 3� 2.
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Figure 6.6: The fourth step of controlled subtraction of 3� 2.
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Figure 6.7: The last step of controlled subtraction of 3� 2.




