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Sleep is one of the few truly ubiquitous animal behaviours, and though
many animals spend enormous periods of time asleep, we have only
begun to understand the consequences of sleep disturbances. In humans,
sleep is crucial for effective communication. Birds are classic models for
understanding the evolution and mechanisms of human language and
speech. Bird vocalizations are remarkably diverse, critical, fitness-related
behaviours, and the way sleep affects vocalizations is likely similarly
varied. However, research on the effects of sleep disturbances on avian voca-
lizations is shockingly scarce. Consequently, there is a critical gap in our
understanding of the extent to which sleep disturbances disrupt communi-
cation. Here, we argue that sleep disturbances are likely to affect all birds’
vocal performance by interfering with motivation, memory consolidation
and vocal maintenance. Further, we suggest that quality sleep is likely essen-
tial when learning new vocalizations and that sleep disturbances will have
especially strong effects on learned vocalizations. Finally, we advocate
for future research to address gaps in our understanding of how sleep
influences vocal learning and performance in birds.
1. Introduction
Sleep-like behaviour is ubiquitous, found in every animal studied to date,
from jellyfish and flatworms to birds and mammals [1–4]. Given that sleeping
animals cannot perform fundamental activities (e.g. eating, reproducing, vigi-
lance), sleep likely provides essential functions, and selection pressure must
be high to maintain the behaviour [5,6]. Though the function of sleep is still
unclear [1–3], we do know that sleep deprivation can have profound effects
on many behaviours. In mammals, lack of sleep can affect the development
of the brain, alertness, learning, memory consolidation and communication
[7–11]. In birds, sleep disturbance has been shown to impair filial imprinting,
cognitive performance and motivation [12,13].

The importance of sleep for vocal communication has primarily been
demonstrated in humans. Sleep deprivation affects adults’ speech perform-
ance components, such as word generation and intonation, impairing the
ability to express thoughts and concepts [10]. Sleep also consolidates new
language during learning, protecting it from subsequent interference and
restoring decayed memory [14]. Children with more consolidated sleep
during the first 2 years of their life have better language skills when they
are 5 years old [15].

Vocal communication is essential in many animals’ social interactions and
is especially important in most birds, who use vocalizations for species recog-
nition, mate attraction and resource defence (food sources, territories, mates)
[16]. Most bird taxa use innate calls, but a few groups learn their vocalizations.
Close-ended vocal learners (some oscine songbirds) learn only during a narrow
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window in development. However, other oscine songbirds,
hummingbirds and parrots are open-ended learners, learning
songs and calls throughout their lives [17]. Learning and
maintaining vocalizations is a cognitive ability; it requires
acquiring, processing and storing information [18]. Whether
learned or not, many vocalizations require complex coordi-
nation of multiple systems (e.g. respiratory, muscle) [19].

Bird vocalizations are extraordinarily diverse, ranging
from simple, monotone calls to incredibly complex mimicry
of other birds, anthropogenic sounds or human voices [20].
Because vocalizations can be complex and coordinated beha-
viours, they are vulnerable to degradation, and poor vocal
performance can have detrimental effects on fitness [19].
Research on daytime disturbances has shown that vocal
learning and performance can be negatively affected by veg-
etation density [21], noise and light pollution [22,23], stress
[24] and parasites [25], with associated negative effects on
reproductive success and survival [16]. However, though
sleep has strong effects on communication in other taxa, the
effect of sleep, or the lack of it, on bird vocalizations is largely
unknown.

Here, we argue that sleep disruptions likely have important
and underappreciated consequences for bird vocal learning
and performance. We highlight the extensive gaps in our cur-
rent knowledge, make predictions about how bird taxa might
be affected by sleep disturbances, and provide suggestions
for future research in the field.
2. Bird vocalizations and sleep
(a) Vocal performance and sleep
To emit even a simple vocalization, birds must coordinate
their bill, syrinx, respiratory system and brain. Any interference
with the regulation of these mechanisms can affect their
ability to perform vocalizations [19]. Specific vocal features
(e.g. duration, rate, frequency, amplitude) are crucial for species
recognition and effective intraspecific interactions, as well
as effective measures of individual quality or condition
[18,20,26,27]. Some vocal features also depend on motivation;
e.g. birds spend more energy and sing higher quality songs
in more intense social interactions [28].

Sleep deprivation has vast consequences for animal
physiology (altering body mass, temperature, hormone
levels) and behaviour (hindering attentiveness, motivation,
reaction times, coordination, emotional stability and increas-
ing stress behaviour) [29]. Low motivation can hamper
vocal output, altering vocal quantity, quality and timing
[19,28]. Support for this possibility stems from recent research
on the effects of artificial light on bird vocalization. Birds in
areas with higher artificial light intensity tend to start singing
earlier and stop singing later in the day [30,31]. In a labora-
tory setting, adult Japanese quails (Coturnix japonica, innate
vocalizer) and adult zebra finches (Taeniopygia guttata,
close-ended learners) in a constant light environment show
decreased crow and song length [32]. Similar consequences
are likely in all bird taxa, though to different degrees. These
correlational studies are strongly suggestive, but to date,
there has been only one study explicitly investigating the
effects of direct sleep deprivation on bird vocal performance.
Captive Australian magpies (Cracticus tibicen, open-ended
song-learners) sing fewer but longer songs after sleep depri-
vation [13].
During sleep, old and new memories are enhanced,
stabilized and replayed via memory consolidation and recon-
solidation [33,34]. Many vocal learners crystallize some or all
vocalizations by the time they reach sexual maturity, yet
crystallized songs’ stability depends on constant auditory,
neurological and motor maintenance [17,35,36]. In adult
zebra finches, the same neurons that activate when singing
during the day are also activated during sleep, suggesting
replay occurs [37–43]. Motor replay has also been observed
via movement of the vocal organ muscles of zebra finches
and some suboscine species (innate vocalizer) while asleep
[43,44]. These pieces of evidence suggest that sleep plays a
role in maintaining vocalizations, even when the vocalization
is innate or already crystallized. If auditory, neurological and
motor maintenance is disrupted due to poor sleep, vocal per-
formance will likely degrade.

(b) Vocal learning and sleep
Song learning consists of a developmental period followed
by the crystallization of new songs [16]. Close-ended vocal
learners only learn during a narrow developmental
window, and those vocalizations are retained for life [45].
Open-ended vocal learners go through a similar vocal devel-
opment phase but maintain varying degrees of plasticity,
allowing them to continue learning new vocalizations or
modify existing ones throughout their lives [45]. There is tre-
mendous variation in the timing and length of learning
stages; some close-ended learners crystalize within three
months, while others take up to a year [46]. The ‘end goal’
of vocal learning also varies depending on the species. For
some birds, having songs similar to their neighbouring con-
specifics or tutors is advantageous, while for others,
complex and unique songs are highly preferred for mate
selection [47,48].

There is extensive evidence that sleep is critical for
learning, memory and neuronal plasticity [49]. Nevertheless,
little is known about how sleep affects vocal learning in
birds. Both young zebra finches and varied tits (Poecile
varia) learn songs during the day, and during sleep, these
songs deteriorate [50,51]. Individual zebra finches that
showed the greatest daily deterioration better matched their
tutors after crystallization. In varied tits, sleep influenced
their songs’ maximum frequency. This indicates that deterio-
ration during sleep is essential and may allow young birds to
better match their tutors and prevent them from prematurely
crystallizing inaccurate songs [34].

Open-ended birds continue learning and modifying
songs throughout their lives; thus, sleep is likely to have
similar effects on song learning in adulthood for these species
(figure 1). There are no studies testing this possibility; how-
ever, adult starlings are better at discriminating between
two similar songs after a sleeping period than after a compar-
able period of wakefulness [52,53], demonstrating the
importance of sleep consolidation for learning auditory
discrimination.

(c) Predicting the effects of sleep disturbance on bird
vocal performance

While there are good reasons to predict that sleep, and lack of
it, are likely to influence birds’ vocalizations, only a few
species have been studied. This lack of broader research is
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Figure 1. (a) Top rows are simplified vocalization spectrograms through life in different types of avian vocalizers, bottom row illustrates hypothetical alterations due
to sleep disturbances. Note the missing elements, changed number and length of syllables and lighter colour—indicating lower amplitude. Coloured outlines
indicate when vocal performance (green) or learning (yellow) are predicted to be affected by sleep disturbances. Dashed line indicates sexual maturity. (b)
Table indicates vocal performance and vocal learning parameters predicted to be affected by sleep disturbance according to life stage (J, juvenile birds; A,
adult birds). Spectral and temporal components include: amplitude, bandwidth, element length, output; maintenance = neuronal and motor maintenance of
learned songs; repertoire = number of different songs or elements; accuracy = similarity to vocal tutor or mimicked sound. Numbers indicate the number of studies
that explicitly test relationship between sleep (not only the lack of it) and these vocal parameters [13,50,51].
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problematic given that the extreme diversity of bird vocal
learning and performance suggests there will be equally
diverse responses to sleep disturbances. Here, we make
some initial predictions about how different groups might
respond to sleep disturbances (figure 1). We predict these
effects are cumulative, i.e. effects on innate vocalizers will
apply to close-ended learners, and effects on close-ended to
open-ended learners. All effects will likely vary based on
the degree and duration of sleep disturbance and individual
characteristics (e.g. age, breeding stage, sex, condition).

(i) Innate vocalizers
We predict that lack of sleep would affect the vocal perform-
ance of both juvenile and adult innate vocalizers, such as
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chickens (Gallus gallus domesticus). By hindering the regulation
of physiological mechanisms affecting motivation and stress
levels, sleep disturbances might cause changes in the timing,
quantity and quality of innate calls. For instance, disturbed
sleepers may call less frequently, produce calls shorter in
duration, or alter their temporal patterns. These changes are
likely temporary, and innate calls should return to baseline
levels after sleep recovery.

(ii) Close-ended vocal learners
Before crystallization, songs are moulded by the environment
and vulnerable to anomalies via sleep disturbances. Because
close-ended learners acquire their songs during a limited
early development phase, we predict sleep disturbances
during this phase to be particularly damaging to vocal learn-
ing processes. Elevated stress hormones hinder song
learning; if sleep deprivation is stressful, this could indirectly
impede learning [54–56]. Sleep disturbances during the learn-
ing period are likely to reduce song repertoire and increase
inaccuracies by interfering with memory consolidation.
Chronic sleep disturbances during song development may
lead to permanent negative consequences. The maintenance
of already crystallized songs in adulthood is also likely
dependent on sleep, i.e. without adequate memory consoli-
dation and reconsolidation due to sleep disturbances,
learned songs will deteriorate, affecting their overall perform-
ance. In this case, we may expect shorter songs with fewer
song elements, reduced stereotypy and poor structure or
syntax.

(iii) Open-ended vocal learners
Open-ended learners retain a high level of vocal plasticity as
adults and continue to modify current vocalizations and add
new ones to their repertoire throughout their lives. Therefore,
in addition to the critical nature of sleep during juvenile
song development, we predict that for open-ended learners,
sleep is essential for song learning throughout their adult
lives. Sleep disturbances in adult open-ended learners may
reduce the number of songs added to their repertoire, and
learned songs may have fewer elements, reduced bandwidth,
low amplitude, or poor fidelity. Some adult open-ended
learners only learn new songs and modify old ones during
specific periods of the year (e.g. canary—Serinus canaria)
[57]; therefore, sleep disturbances are likely to be especially
detrimental during those periods. Moreover, when new
songs are crystalized, sleep disturbances may still affect
song performance similarly to innate vocalizers and close-
ended birds.

(d) Future directions
Despite scarce empirical data, we argue that sleep disruption
and disturbance likely have important consequences for avian
vocal learning and performance. In addition to basic research
testing for any such changes (figure 1), we suggest three key
research directions for building an integrated understanding of
the importance of sleep for avian vocal communication:

(i) It is imperative that future research include taxa with
different vocal development patterns to fully under-
stand the effects of sleep disturbances on bird
vocalizations. Considering the current gaps, future
studies should investigate the effects of sleep on the
vocal communication of innate vocalizers, open-ended
learners and adult birds.

(ii) Most bird sleep studies are conducted in a laboratory
setting. Captivity can be stressful for birds and may
cause abnormal behaviour and physiological responses
[58,59]. Sleep patterns also vary depending on multiple
extrinsic (e.g. season, presence of predators, parasites)
and intrinsic factors (territoriality, foraging, reproduc-
tive activity and migration) [60]. In addition, some
species might be adapted to the lack of sleep, compen-
sate by sleeping deeper or for longer, and wild birds
might avoid the source of disruption [61–63]. Hence,
the effects of sleep on vocal learning and performance
inwild birds are doubtlesslymore complex than labora-
tory studies can reveal. Future research should also
include less invasive methods to assess sleep in wild
birds to increase accuracy, broaden taxa and minimize
ethical issues [64].

(iii) With the continuous expansion of urban areas, anthro-
pogenic nocturnal disruptions (e.g. light and noise
pollution) are increasingly common and can interrupt
birds’ sleep patterns [23,65–67]. To date, only the
direct effects of daytime noise pollution on vocaliza-
tion have been studied, and generally from the
perspective of signal transmission interruption from
sender to receiver [68]. Light pollution studies have
focused on circadian rhythms and daily activity
changes [30]. However, the potential changes in
vocal performance connected to light and noise pol-
lution may be due to indirect effects mediated by the
interruption of their sleeping patterns. By disentan-
gling the direct and indirect effects of different sleep
disturbances on bird vocalizations, we will be better
able to predict and mitigate the consequences of
urbanization on birds’ behaviour.

Both vocal communication and sleep are part of complex
systems, and their interactions are undoubtedly connected to
multiple ecological and physiological factors. Therefore, we
must start to explore these relationships and how different
facets of vocal communication depend on sleep. Vocaliza-
tions are essential tools for most birds, crucial for attracting
mates and defending territories. Vocal changes caused by
sleep might have downstream consequences for reproductive
success, survival and consequently, population dynamics.
Finally, birdsong is a long-standing model for understanding
human speech and language [18,69]. Thus, a clear under-
standing of the effects of sleep disturbance on learning and
performance is likely to provide critical insight into human
communication and sleep.
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