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Modelling Comparison of a Geothermal Vaporiser: A Step

Towards a Digital Shadow

Theo BREHMER-HINE

ABSTRACT

New Zealand is experiencing the need to meet net-zero GHG emissions and

growing energy demands. A key aim of the Ahuora research programme, that this

work is contributing to, is the development of tools such as Digital Twins to decar-

bonise New Zealand’s process heat sector and expand energy generation capabili-

ties. The organic Rankine cycle (ORC) is a thermodynamic process capable of util-

ising low-temperature heat sources such as geothermal reservoirs and waste heat to

generate power.

This thesis investigates the dynamic modelling of vaporisers in ORC systems

to support the development and understanding of Digital Twins for New Zealand

industries. Its focus is the dynamic modelling of an industrial scale geothermal va-

poriser where a model developed using Aspen HYSYS and a First Principles model

developed using Python were compared using various metrics. In terms of Digital

Twin model fidelity, the Python model and Aspen HYSYS model would be cate-

gorised as a 3-2-1D model in the behaves-like, looks-like and connects-to attributes.

In performance, good agreement between the temperature predictions was shown

for outlet geothermal brine, vapour and working fluid of the Aspen HYSYS model

with a percent error of 0.02%, 0.06% and 0.04%, respectively, for the validation case.

The Python model showed a percent error of 0.69%, 2.37% and 0.003%, respectively,

for the validation case. In comparing the ease of use of these software tools, a trade-

off would need to be made in deciding which modelling software to use, weighing

the monetary investment of using Aspen HYSYS and its high level of quality assur-

ance against the time investment of using Python.

The First Principles model will be used to aid in development of a vaporiser

model in the Ahuora platform.





vii

Acknowledgements

First and foremost, I am extremely grateful to my supervisors Prof. Brent Young and

Dr. Wei Yu. Without their invaluable guidance, feedback and patience, this work

would not be complete. Additionally, this endeavour would not have been possible

without support from the Ahuora research programme, to whom I am deeply in-

debted.

I would like to extend my sincere thanks to Dr. Robert Kirkpatrick for his practi-

cal advice and high level of expertise that he has generously shared.

Many thanks to Isaac Severinsen for his technical support and modelling guid-

ance which has kept me on track numerous times.

To Fabian Hanik and Ray Robinson of Top Energy, I am very grateful for your

time and supplying data from the Ngawha Geothermal power plant, which was in-

tegral to this work.

I am extremely grateful to my parents Robin Brehmer and Peter Hine for their

continuing support. In particular Robin who has assisted me in the final edits of this

work. Without her help, this work would be far less polished.

Thanks should also go to my partner for her support and belief in me that has

kept me motivated during this project.

Last but not least, all my family and friends for their encouragement, company

and support throughout this project.





ix

Contents

Declaration of Authorship iii

Abstract v

List of Symbols xvii

1 Introduction 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Evaporators in the Primary Manufacturing Industry . . . . . . . . . . . 2

1.2.1 Dairy Processing in New Zealand . . . . . . . . . . . . . . . . . 2

1.2.2 Pulp and Paper in New Zealand . . . . . . . . . . . . . . . . . . 2

1.3 The Organic Rankine Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 ORCs in Waste Heat Recovery . . . . . . . . . . . . . . . . . . . 3

1.3.2 Geothermal ORCs in New Zealand . . . . . . . . . . . . . . . . . 3

1.4 Digital Twins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Project Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 ORC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Pre-heaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Recuperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Thermal Interface Loop . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Dual Pressure ORC . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Vaporisers Utilised with ORC Technologies . . . . . . . . . . . . 10

2.3 Modelling Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



x

2.4 First Principles Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Heat Transfer Paradigm . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1.1 The Temperature Difference Method . . . . . . . . . . 12

2.4.1.2 The Log Mean Temperature Difference Method . . . . 12

2.4.1.3 The Number of Transfer Units (NTU) Method . . . . . 13

2.4.2 Spatial Model Paradigm . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2.1 The Lumped Method . . . . . . . . . . . . . . . . . . . 14

2.4.2.2 The Moving Boundary Method . . . . . . . . . . . . . 14

2.4.2.3 The Discretised Method . . . . . . . . . . . . . . . . . . 15

2.4.2.4 Two-Volume Method . . . . . . . . . . . . . . . . . . . 16

2.4.3 Published Work Summary . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3.1 Model Fidelity . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3.2 Model Summary . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Black Box Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Linear Modelling Techniques . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Nonlinear Modelling Techniques . . . . . . . . . . . . . . . . . . 23

2.5.2.1 Artificial Neural Networks Model . . . . . . . . . . . . 23

2.5.2.2 Fuzzy Logic Based Model . . . . . . . . . . . . . . . . 24

2.5.2.3 Neuro Fuzzy Modelling . . . . . . . . . . . . . . . . . . 24

2.5.3 Published Work Summary . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3.1 Model Fidelity . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3.2 Model Summary . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Comparing First Principles and Black Box Models . . . . . . . . . . . . 28

2.7 Grey Box Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Case Study 31

3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Production Delivery System . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Plant Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Vaporiser Configuration . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Geothermal Fluid Composition . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xi

4 Vaporiser and Plant Modelling 37

4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Aspen HYSYS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Modelling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.4 Model Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.5 Approximating Working Fluid Flow-rate . . . . . . . . . . . . . 43

4.2.6 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.7 Steady State Model Validation . . . . . . . . . . . . . . . . . . . 44

4.3 First Principles Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Cross-flow Configuration . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . . . . 47

4.3.5 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6 Data-Driven Correlations . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6.1 Temperature and Density Curves . . . . . . . . . . . . 49

4.3.6.2 Validation of Curves . . . . . . . . . . . . . . . . . . . . 55

4.3.7 Model Tuning and Steady State Validation . . . . . . . . . . . . 55

4.4 Dynamic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Working Fluid Step Change . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Brine Step Change . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Model Comparison 61

5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Ease of Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.4 Model Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



xii

6 Conclusions 67

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Appendices 71

Appendix A: Working Fluid Fitted Correlations . . . . . . . . . . . . . . . . . 71

Appendix B: Geothermal Fluid Fitted Correlations . . . . . . . . . . . . . . . 75

Appendix C: First Principles Paper Summary . . . . . . . . . . . . . . . . . . 76

Appendix D: Black Box Paper Summary . . . . . . . . . . . . . . . . . . . . . 78



xiii

List of Figures

2.1 Diagram of a basic ORC configuration . . . . . . . . . . . . . . . . . . . 7

2.2 Diagram of an ORC configuration including a pre-heater . . . . . . . . 8

2.3 Diagram of an ORC configuration including a recuperator . . . . . . . 9

2.4 Diagram of an ORC configuration including a thermal interface loop . 9

2.5 Diagram of a dual pressure ORC configuration . . . . . . . . . . . . . . 10

2.6 The Lumped modelling method diagram . . . . . . . . . . . . . . . . . 14

2.7 The Moving Boundary method where Qsub, Qsat and Qsup refer to

the subcooled, saturated and superheated regions of the working fluid. 15

2.8 The Discretised modelling method with (n) number of discretised cells 15

2.9 Graphical display of model purposes of the First Principles papers

found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 Graphical display of software used in First Principles model develop-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 A simplified process flow diagram of the working fluid cycle of the

Ngawha OEC4 plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The vaporiser shell and tube configuration for Ngawha OEC4 plant . . 34

4.1 Aspen HYSYS schematic of plant and vaporiser model. Specified

stream conditions are noted in tables. . . . . . . . . . . . . . . . . . . . 38

4.2 The Aspen HYSYS schematic of the vaporiser model. The Vap - Brine

and Vap - Steam refer to the brine and geothermal steam of the vaporiser. 39

4.3 Configuration of the First Principles model with a discretisation of seven 48

4.4 Prediction of temperature in (°C) in Figure A and density in kgm−3 in

Figure B of n-pentane. Both correlations are in terms of enthalpy and

pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xiv

4.5 Prediction of temperature in (°C) in Figure A and density in kgm−3 in

Figure B of the geothermal vapour. Both correlations are in terms of

normalised enthalpy and pressure . . . . . . . . . . . . . . . . . . . . . 53

4.6 Prediction of temperature in (°C) in Figure A and density in kgm−3

in Figure B of the geothermal brine. Both correlations are in terms of

normalised enthalpy and pressure . . . . . . . . . . . . . . . . . . . . . 54

4.7 Step change of the working fluid (A) and brine (B) flow-rates and the

temperature response of the vaporiser for the Aspen HYSYS model

and the First Principles model . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Bubble point curve of the working fluid fitted against pressure . . . . . 72

7.2 Dew point curve of the working fluid fitted against pressure . . . . . . 73

7.3 Saturated temperature curve of the working fluid fitted against pressure 74



xv

List of Tables

3.1 Table describing the plant readings. The working fluid flow-rate and

turbine efficiency are approximated . . . . . . . . . . . . . . . . . . . . 32

3.2 The composition of simplified geothermal vapour . . . . . . . . . . . . 35

4.1 Comparison of Equations of State in calculating the saturation pres-

sure and NCG mass flow-rate of the plant model . . . . . . . . . . . . . 42

4.2 Optimised working fluid mass flow-rate for Case 1 and 2 . . . . . . . . 44

4.3 Steady state results of plant and vaporiser of Case 1 . . . . . . . . . . . 44

4.4 Steady state results of plant and vaporiser of Case 2 . . . . . . . . . . . 45

4.5 Validation of data-driven correlations against data generated from

Aspen HYSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Steady state validation of FP model against plant data from Case 1 . . 56

4.7 Steady state validation of FP model against plant data from Case 2 . . 56

4.8 Working fluid step change - Dynamic comparison between Aspen

HYSYS model and FP model . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Brine step change - Dynamic comparison between Aspen HYSYS model

and FP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Error of the Aspen HYSYS vaporiser model for steady state Case 1 and 2 62

5.2 Error of the First Principles vaporiser model for steady state Case 1

and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Summary of the comparisons of the First Principles and Aspen HYSYS

model attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 First Principles paper summary where MD and MS stand for Model-

ica Dymola, and MATLAB Simulink environments respectively. NA

is used where no validation data or software is provided . . . . . . . . 76

7.2 Black Box paper summary where NA is used shown when no valida-

tion data or software is provided . . . . . . . . . . . . . . . . . . . . . . 78





xvii

List of Symbols

A surface area m2

Cp specific heat J/kg◦C

d diameter m

f friction factor -

h convective heat transfer coefficient W/m2◦C

H mass enthalpy J kg−1

L length m
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Chapter 1

Introduction

1.1 Preface

In order to meet New Zealand’s goal of net-zero greenhouse gas (GHG) emissions by

2050, development into disruptive decarbonisation technologies in the process heat

sector will be required. In 2016, the energy sector reported 39.8% of New Zealand’s

total GHG emissions, 28% of which are related to process heat. This equates to 8.3

million tonnes of carbon dioxide (EECA, 2019). These emissions related to process

heat are mostly (79%) a result of domestic manufacturing industries which encom-

pass the pulp and paper, food and beverage manufacturing, petrochemical, and

chemical processing industries

A key unit operation used in the food and beverage industry, and the pulp and

paper industry is the evaporator. In pulp and paper, evaporation is used to re-

concentrate black liquor to be reused in the process. Evaporation plants in paper

mills have been shown to account for 24-30% of the mill’s total energy requirement

(Kumar, Kumar, and Singh, 2013). In the food and beverage industry evaporation is

used in multiple applications such as a pre-concentration step before spray drying

in the production of milk powder products, in the concentration of fruit juices and

in the crystallisation of sugar.

Another application of evaporators in the energy generation industry is as an

essential part of the Organic Rankine Cycle (ORC). In this context a vaporiser is the

more commonly used terminology. ORC technology utilises low enthalpy sources

in energy generation which has been applied in waste heat recovery (WHR), binary

geothermal plants, biomass combustion plants and solar thermal plants (Meyer et

al., 2013). As evaporators and vaporisers are essential to New Zealand industry,

optimisation of this technology will assist in reducing emissions related to New
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Zealand’s process heat sector.

This thesis is a part of the Ahuora research programme which focuses on devel-

oping and integrating technology in the form of Digital Twins to aid the decarbon-

isation of the process heat sector while also expanding energy generation of New

Zealand’s energy resources. Investigation into various models of evaporators and

ORCs was conducted to inform modelling best practices. This can be broadly cate-

gorised into First Principles, Black Box and Grey Box modelling.

1.2 Evaporators in the Primary Manufacturing Industry

Evaporation plays a vital role in the manufacturing industry as it allows the removal

of water and concentration of the product. The largest users of this technology in-

clude the dairy manufacturing industry and the pulp and paper industry which

collectively generated 44% of the revenue of the primary manufacturing sector in

2020 (Ministry for Primary Industries, 2020).

1.2.1 Dairy Processing in New Zealand

New Zealand’s dairy industry makes up a key part of the primary manufacturing

industry, generating NZ$20 billion in revenue for the year-end June 2020. New

Zealand leads the world in global exports of whole milk powder at 1.5 million tones

of whole milk powder in 2019, and in the same year exports 373 thousand tonnes

of skim milk powder. Other major exports include cheese, butter and other protein

products such as whey protein powder (USDA, 2020; Ministry for Primary Indus-

tries, 2020).

1.2.2 Pulp and Paper in New Zealand

The New Zealand Pulp and Paper industry generated NZ$646 million from pulp and

NZ$492 million from paper and paperboard products in 2020 (Ministry for Primary

Industries, 2020). An integral part of producing pulp and paper products is pulp-

ing which separates the wood fibres: this can be achieved through mechanical or

chemical pulping. Chemical pulping yields a lower amount of fibres, however, the

product has improved strength properties when compared with mechanical pulp-

ing. In chemical pulp mills such as Kraft and Soda pulp mills, there is a recovery of

https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/strategic-science-investment-fund/ssif-funded-programmes/university-of-waikato/
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spent cooking chemicals used in the chemical pulping process. These spent chemi-

cals are called weak black liquor. Weak black liquor is recovered and concentrated

through evaporation from 12-14% to 40-55% solids (Bajpai, 2018; Yadav and Verma,

2020).

1.3 The Organic Rankine Cycle

The organic Rankine cycle is based on the Rankine cycle, a heat engine cycle which

converts heat into work through a four-step process: adiabatic compression, isobaric

heating, adiabatic expansion and isobaric cooling. This thesis will focus on the mod-

elling of the heating stage where the working fluid is vaporised in a vaporiser. How

ORCs differ from the Rankine cycle is in the use of a working fluid as an alterna-

tive to steam. Use of a working fluid with a boiling point lower than water allows

extraction of heat from lower temperature and enthalpy sources (Lie, 2015; Pethu-

rajan, Sivan, and Joy, 2018; Southon, 2015). The selection of this working fluid is

determined by the conditions of the application. This has been applied to medium

temperature geothermal fluids, the waste heat of industrial processes, combustion of

biomass and concentrated solar energy (Lie, 2015; Pethurajan, Sivan, and Joy, 2018;

Southon, 2015).

1.3.1 ORCs in Waste Heat Recovery

Waste heat refers to unused heat generated from a thermal process that would be di-

rectly vented or exhausted to the environment. Venting of heat is prevalent in New

Zealand manufacturing industries such as the food and beverage processing indus-

try, pulp and paper industry, petrochemical industry, and metal production industry.

In ORC applications waste heat is used to heat and evaporate the working fluid from

where this energy is then extracted. Investigations have found that low-grade waste

heat accounts for 50% of the total heat generated in the industry, therefore recovery

of this waste heat can provide economic and environmental incentives (Dong, 2020;

Hung, Shai, and Wang, 1997; Lie, 2015).

1.3.2 Geothermal ORCs in New Zealand

ORC technology is also utilised in obtaining power from medium temperature geother-

mal reservoirs, where the geothermal fluid is used to heat the working fluid. Energy



4 Chapter 1. Introduction

is generated from passing the vaporised working fluid through a turbine. This is

referred to as a binary plant as two separate fluids are used (DiPippo, 2005a; Dong,

2020; Lie, 2015). Geothermal plants currently installed in New Zealand have the ca-

pacity to generate 1028 MW, with binary geothermal plants accounting for 186 MW

of this (Lawless, Campen, and Randle, 2020). Overall, geothermal power plants pro-

duce 18% of New Zealand’s energy (Pan et al., 2019; Ministry of Business, Innovation

and Employment, 2021).

1.4 Digital Twins

A Digital Twin (DT) in a manufacturing context consists of a virtual representation

of a production system. A DT is able to run simultaneously with the physical sys-

tem, whereby, an automatic and bi-directional connection of data flows between

the physical and virtual systems. A role of the DT of manufacturing systems is to

predict and optimise the behaviour of the system in real time. At lower levels of

integration between model and system exist digital shadows and digital models. A

digital shadow is where the automatic flow of data is uni-directional from the phys-

ical system to the virtual system, while a digital model has no automated flow of

data between the systems (Kritzinger et al., 2018). A subtle adjustment to this clas-

sification was made by (Yu et al., 2022), where the term digital manager is used to

describe a two-way connection. This distinction is made to encompass DTs used in

plant design or plant retrofits rather than only plant control systems.

From Yu et al., 2022’s review, a classification framework is proposed in order to

categorise the fundamental attributes of a DT: these being behaves-like, looks-like,

and as described above, the connected-to attribute. The behaves-like attribute is fur-

ther categorised into single-state, discrete (multiple steady states) and dynamic. The

looks-like attribute is further categorised into a 1-D representation (e.g. a process

flow diagram), a 2-D representation (e.g. a process flow diagram with plant dimen-

sions and coordinates) and a 3-D representation (e.g. a virtual or augmented reality

plant model). The time-scale and physical-scale is also used in this classification

framework. The fidelity requirements for each of the fundamental attributes of a DT

is unique to the application. The requirements of the application also influence the

software and the modelling basis used in DT development.
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The first step in DT development is in building a digital model of a system. As

such, an investigation was conducted into various models of evaporator and ORC

systems. A significant portion of the models seen in literature have been developed

using commercial process simulators such as Aspen Plus, Aspen HYSYS, VMG Sym-

metry, gProms and Modelica. Models developed using these software programs

display a process flow diagram of this system itself and are capable of modelling

both steady state and dynamic systems. This is similar to First Principles (FP) based

models developed in software such as MATLAB, however, in FP models no visual

representation of the system is typically shown. A significant amount of empirical

(Black Box) models have also been developed for these systems in steady state and

dynamics, however, these also lack visual representations. Of these models, only

Soares et al., 2019 developed a model with a connection between the model and a

system.

1.5 Project Aims and Objectives

1.5.1 Research Aims

The goal of the Ahuora research programme, is to develop a platform using novel

Digital Twin technology in order to reach net-zero GHG emissions by 2050 in the

process heat sector. This project coincides with aim 1 of project Ahuora: focusing on

developing models to aid in the development of the Ahuora platform.

To address the gap in industrial scale models of geothermal applications, the

Ngawha geothermal power plant’s vaporiser will be the subject of this thesis. In

this context, the term ’vaporiser’ is used to describe this unit operation, and as such,

this term will be used henceforth. Due to the absence of research directly comparing

modelling techniques of industrial scale vaporisers, this thesis will focus on compar-

ing aspects outlined in Section 1.5.2, of the different modelling methodologies and

modelling tools employed. These models will be developed in a commercial process

simulator and open-source software for variety in comparison. A plant model was

developed to aid in vaporiser model development and in future research to act as a

virtual plant in the development of a digital shadow.
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1.5.2 Research Objectives

• To develop dynamic digital models which can replicate the behaviour of a va-

poriser unit operation utilising different modelling approaches.

• To compare vaporiser models and modelling approaches against the four as-

pects:

– Performance: How accurate and fast are the predictions made by the sim-

ulation?

– Availability: How accessible is the software?

– Ease of use: How difficult to use was each software platform?

– Digital Twin Fidelity Framework: How would these models be categorised

using this framework?

1.6 Thesis Outline

Chapter 2 of this thesis will cover a review of literature on the various types of ORC

modelling methodologies to inform the common practices in model development.

This will be followed by a description of the system itself in Chapter 3. Based on the

investigation of Chapter 2, two methodologies will then be developed. The perfor-

mance of these models will be compared under steady state and dynamic conditions

in Chapter 4. In Chapter 5 the comparison will be extended to aspects of the mod-

elling software stated in Section 1.5.2. In Chapter 6 the results will be summarised

and recommendations given for improving and furthering the current work.
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Chapter 2

Literature Review

2.1 Preface

This chapter covers an investigation into modelling vaporisers used in energy gen-

eration. First, we take a broad look into the background knowledge of ORC systems

and then into the methodologies for modelling these vaporisers. This is followed by

an in-depth review of the models produced in these papers.

2.2 ORC Configurations

As described previously, an ORC has four basic components: compression, isobaric

vaporisation, isentropic expansion and finally isobaric condensation. This basic con-

figuration is shown in Figure 2.1.

FIGURE 2.1: Diagram of a basic ORC configuration
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Additionally, pre-heaters, recuperators, heat transfer loops and dual evaporators

may be used to improve system efficiency, however, this is dependent on the param-

eters of the ORC system.

2.2.1 Pre-heaters

Pre-heaters can be used when an additional lower temperature heat source is avail-

able. Typically, in geothermal applications, this is reusing the main source through

one or multiple additional heat exchangers. The additional heating before entering

the vaporiser allows further extraction of enthalpy from the heat source. This in-

creases the capacity of the working fluid of the system and therefore increases the

power output (Lie, 2015). Figure 2.2 displays this configuration.

FIGURE 2.2: Diagram of an ORC configuration including a pre-heater

2.2.2 Recuperators

Recuperators can be used when the outlet from the expander remains superheated

(Quoilin et al., 2013). This has the added benefit of recovering more enthalpy from

the working fluid before it is condensed. This pre-heats the working fluid before the

vaporiser. A recuperative cycle is shown in Figure 2.3.
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FIGURE 2.3: Diagram of an ORC configuration including a recuperator

2.2.3 Thermal Interface Loop

A thermal interface loop can be used to improve working longevity and provide

a more stable operation with fluctuating heat sources (Meyer et al., 2013; Jiménez-

Arreola et al., 2017). As a result, this configuration is typically used in a waste heat

recovery application, as shown by (Zhao et al., 2018; Jiménez-Arreola et al., 2017).

This configuration is shown in Figure 2.4.

FIGURE 2.4: Diagram of an ORC configuration including a thermal interface loop
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2.2.4 Dual Pressure ORC

A dual pressure ORC can be used under various configurations. Figure 2.5 replicates

a configuration of a dual pressure geothermal ORC shown in (DiPippo, 2005b). This

showed a higher utilisation efficiency when compared with a basic configuration

cycle. Additionally, a dual-evaporator cycle in waste-heat recovery has also been

shown in the literature (Seitz et al., 2016).

FIGURE 2.5: Diagram of a dual pressure ORC configuration

2.2.5 Vaporisers Utilised with ORC Technologies

The main types of heat exchangers utilised by industry in ORC applications are shell

and tube heat exchangers, plate heat exchangers and finned tube heat exchangers.

The most widely used of these are the shell and tube heat exchangers (Lie, 2015;

Quoilin et al., 2011). A subset of this type of heat exchanger is the kettle reboiler,

which is used in the vaporisation of the working fluid in large-scale geothermal

binary plants. Here the working fluid is passed through the shell-side while the

geothermal fluid or steam is passed through the tube-side (Lie, 2015; Proctor et al.,

2016; Sun and Li, 2011). In smaller-scale applications, plate heat exchangers are used

due to their compact size and higher heat transfer coefficient. In waste heat recovery

of gases, finned tubular heat exchangers are typically utilised (Wang et al., 2017; Lie,

2015). Finned tubular heat exchangers allow the exhaust, which commonly has poor
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convective heat transfer properties, to be passed shell-side, which improves heat

transfer.

2.3 Modelling Overview

Modelling of processes allows for simulation and prediction of process behaviour

which can be used for a variety of purposes. The model purpose or why the model

is developed dictates the requirements of the model and, therefore, will have an im-

pact on key development decisions. From the investigation into literature, the main

purposes for model development are variable prediction, testing control strategies,

comparing modelling methodologies, design optimisation and operational optimi-

sation. The development of process models in predicting variables of a vaporiser

is a key part of this thesis and is furthered by the comparison of the two separate

modelling methods. These types of models can be broadly categorised into steady

or dynamic states, and First Principles, Black Box and Grey Box models.

Steady state models are used when the dependent variables are static and there-

fore do not account for time. The main purpose behind steady state based models

is in the prediction of key variables, design and optimisation of an ORC system

(Proctor et al., 2016; Lie, 2015). Dynamic models describe the change in dependent

variables as a function of time (Roffel, 2006). The use of a dynamic model of an

ORC extends to testing control applications that can be used in improving control

performance, exploring new options with respect to control, or design and dynamic

optimisation (Georgiadis, Banga, and Pistikopoulos, 2011; Xu et al., 2020).

First Principles models are based on physical laws of conservation of mass, en-

ergy and momentum. These models are also referred to as mechanistic or white box.

These types of models give physical insight into the processes occurring and typi-

cally, these models require significant time in development. Black Box or empirical

models are based on input and output data: these models describe the relationship

between these variables. Black Box models require data for which to train and val-

idate the model and, typically require less time in development (Roffel, 2006). An-

other model type is the Grey Box or hybrid model which is developed using various

structures of mechanistic and Black Box models (Sansana et al., 2021).
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2.4 First Principles Modelling

In vaporisers, heat is transferred from the high-temperature fluid through a conduc-

tive material to a lower temperature fluid, with the intended effect of evaporating

a product. Different methodologies have been developed in literature in order to

model vaporisers. This section will cover First Principles (FP) models which focus on

theoretical or physics-based models. Following, is an examination of FP modelling

techniques. A sub-set of these models is process flow simulators where in-built unit

operations are available in the software used.

2.4.1 Heat Transfer Paradigm

The heat transfer model describes the method of calculation of heat transfer between

the vaporiser fluids. The main types of heat transfer modelling used throughout the

literature were the temperature difference method, log-mean temperature difference

method and NTU method. In addition to these methods, the enthalpy-based method

is used, which considers the change in enthalpy of each fluid.

2.4.1.1 The Temperature Difference Method

This method calculates the heat transfer based on the temperature difference be-

tween two points. In a vaporiser, this is the temperature of the heating and product

fluid. This temperature difference acts as the driving force for heat transfer. This is

the most commonly used method in the literature for modelling a heat exchanger

and has been used by Xu et al., 2020; Wei et al., 2008; Zhang et al., 2012. This rela-

tionship is shown by Equation 2.1.

Q = UA∆T (2.1)

Where Q is the amount of heat transferred between two sides, U is the overall heat

transfer coefficient, A is the transfer area and ΔT is the difference in temperatures.

2.4.1.2 The Log Mean Temperature Difference Method

The log-mean-temperature-difference (LMTD) method considers the LMTD between

the two fluids as the driving force for heat transfer. This method is used in modelling

counter-current heat exchangers. The addition of a geometrical term ‘F’ is used to
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model different heat exchanger arrangements (Farid, 2010; Lie, 2015; Proctor et al.,

2016). The LMTD method for heat transfer calculation is described by the following

Equation 2.2, sourced from Farid, 2010.

Q = FUoverall Ae f f ∆TLMTD (2.2)

Where the F is the geometry factor, and the ∆TLMTD is calculated by the following

Equation 2.3.

∆TLMTD =
T1 − T2

ln( T1
T2
)

(2.3)

Where T1 refers to the difference in temperatures of the fluids entering the heat ex-

changer and T2 refers to the difference in temperatures of the fluids exiting the heat

exchanger. This method is mainly used in steady state modelling such as in (Wang

et al., 2013). However, this method is also applied in the dynamic model of a binary

geothermal plant by Proctor et al., 2016, to model a shell and tube heat exchanger

with multiple tube sets in VMG Symmetry.

2.4.1.3 The Number of Transfer Units (NTU) Method

The number of transfer units (NTU) method uses the heat exchanger efficiency, η,

which is the ratio of actual heat transferred over the maximum heat transfer (Farid,

2010), shown below in Equation 2.4.

η =
Q

Qmax
(2.4)

The NTU method is typically used when there is insufficient information to cal-

culate the LMTD of the vaporiser (Lie, 2015). The NTU is calculated from the fol-

lowing Equation 2.5.

NTU =
UA
Cmin

(2.5)

Where Cmin is the smallest value of thermal capacitance or (mCp) of either the hot

side or cold side. This method was used by Liu et al., 2017.

2.4.2 Spatial Model Paradigm

Another type of modelling paradigm used in the modelling of heat exchangers is the

spatial paradigm. These modelling methods segment the heat exchanger along the
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axial direction. Only the axial direction is considered, as incorporating other spatial

dimensions may improve accuracy, however, it significantly increases processing

requirements. The methods used for segmenting the heat exchanger include the

lumped method, the moving boundary method, the discretised method and the two-

volume method.

2.4.2.1 The Lumped Method

The Lumped Method is the simplest of the three methods as it does not account for

the axial direction of flow. This method lumps the heat exchanger into a single point.

In its simplest form, the heat capacities remain constant throughout the heat trans-

fer length. This shows relative accuracy when no phase change occurs, however,

this is not ideal for a vaporiser due to the change in physical properties. Although,

accurate models have still been developed with additional tuning (Xu et al., 2020).

This method has also been used by Wei et al., 2007; Feng et al., 2020. A diagram

displaying this method is shown in Figure 2.6.

FIGURE 2.6: The Lumped modelling method diagram

2.4.2.2 The Moving Boundary Method

The Moving Boundary Method (MBM) is an intermediate between lumped analysis

and the discretised method as it segments the heat transfer length into three separate

regions of the working fluid’s pipe flow. These regions correspond to the liquid

phase region, the two-phase region and the vapour phase/superheated region. This

method is suitable for vaporisers as this accounts for changes in the density, heat

capacity and heat transfer coefficient of each region as a result of phase change. This

method has been utilised by Xu et al., 2020; Huster et al., 2018; Sun and Li, 2011. A

diagram displaying this method is shown in Figure 2.7. Though this phase-based
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segmentation is shown applied only to the working fluid, it can also be applied to

the heating fluid if it is condensing. This is common in geothermal applications

where geothermal steam is condensed.

FIGURE 2.7: The Moving Boundary method where Qsub, Qsat and Qsup refer to the
subcooled, saturated and superheated regions of the working fluid.

2.4.2.3 The Discretised Method

This method discretises the length along the vaporiser into segments. The number

of segments can vary in each model and can be tailored to suit the model’s purpose

(Huster et al., 2018). In each segment the heat transfer is calculated. Discretised

models tend to have higher computational requirements than MBM. However, dis-

cretising methods have shown to have higher prediction accuracy (Wei et al., 2008;

Xu et al., 2020). A diagram displaying this method is shown in Figure 2.8.

FIGURE 2.8: The Discretised modelling method with (n) number of discretised cells

Various studies have used this discretised method (Chowdhury et al., 2018; Xu

et al., 2020; Wei et al., 2008). Several key decisions are made in development based

on the model’s purpose. These include the model’s accuracy and the model’s pro-

cessing speed which inform which spatial paradigm suits the model’s purpose.
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2.4.2.4 Two-Volume Method

The Two-Volume method is newly developed and has been used only by (Pili, Spli-

ethoff, and Wieland, 2017) in a geothermal binary vaporiser. This is suited to this

application as the phase of the working fluid occurs in the shell-side of the heat ex-

changer, where a pool accumulates at the bottom of the shell (Imran et al., 2020; Pili,

Spliethoff, and Wieland, 2017). This works through segmentation of the shell-side

into a pool boiling and vapour region. In addition to this, the tube bundle was mod-

elled through the discretised method described in Section 2.4.2.3. Mass balances are

used for each region, where the condensation and evaporation rates are tuned based

on experimental data.

2.4.3 Published Work Summary

The First Principles papers found are shown in Appendix C: First Principles Paper

Summary. The industrial applications of the ORC models were waste heat recov-

ery, geothermal binary systems, solar systems and bio-generation systems. Of the

57 papers found, 61% were waste heat recovery applications (WHR), followed by

geothermal applications (Geo) at 23%. Biomass and solar applications comprise the

remaining 16%. The purposes for developing these models have been identified

as design, control applications, operational optimisation, variable prediction, mod-

elling method comparison and novel method of modelling. The only novel method

that was identified was shown by Pili et al., 2017. The model purpose of the FP pa-

pers found is shown in Figure 2.9. Steady state models comprise 82% and 36% of

the ’Design’ and ’Operational Optimisation’ sections. The remaining papers were

dynamic models.

FIGURE 2.9: Graphical display of model purposes of the First Principles papers found
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2.4.3.1 Model Fidelity

As described previously, the digital model fidelity is a categorisation framework

used for Digital Twins based on the behaves-like, looks-like and the connects-to at-

tributes. All of the above models require manual input of data from the physical

system to the digital model, therefore would be classified as Digital Models.

The behaves-like attribute of the model is determined by the type of validation

conducted for the model. Of the papers shown in Table 7.1, 44% made no mention of

the source of their validation data. A majority (72%) of them were steady state mod-

els and therefore would be classified as 0-D in this respect. The other papers were

validated against data generated from validated models, labs, pilot plants and in-

dustrial plants. Of the validated papers, 88% were found to be done so dynamically

and therefore would be classified as 3-D fidelity for the behaves-like attribute. The

remaining 12% which were steady state models include Hettiarachchi et al., 2007;

Wang, Wu, and He, 2019; Khennich and Galanis, 2012; Altun and Kilic, 2020, all

of which were validated against a single steady state case, and therefore would be

classified as 1-D.

The looks-like attribute is largely determined by the software tool used in model

development. There is likely to be only a visual representation when it is readily

available in the software. The various software tools stated in the literature are

shown in Figure 2.10. The software tools which do have a visual representation

used in literature include Aspen Plus, Aspen HYSYS, VMGSim, gProms, GT Suite,

MATLAB/Simulink, Modelica/Dymola and Simsci Pro II.

FIGURE 2.10: Graphical display of software used in First Principles model development
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2.4.3.2 Model Summary

From the papers found on First Principles models, those produced since 2018 were

further analysed. A summary of the models developed in these papers follows. This

is used to summarise common practices and results of these FP models.

A model was developed of a WHR of an ORC by Xu et al., 2020. Three dy-

namic First Principles models were compared including: a lumped model, moving

boundary model and discretised modelling method. Correction factors to the heat

exchanger efficiency and heat transfer coefficient were used based on steady state

experimental data, which were then optimised through particle swarm optimisa-

tion. A thermal inertia term was also used in slowing the change in enthalpy of

the lumped model, which was optimised with MATLAB’s grid search method. The

accuracy and computational costs were compared. The lumped, MBM and 30 cell-

discretised model required 4.6 s, 27.9 s and 118.6 s, respectively in simulating a 650 s

test. All models had relatively low mean error percentages of below 1.5% and mean

errors below 6.6K. The discretised model showed the highest prediction accuracy

and required less development effort and time than the MB method. Each model

can be used for a specific purpose based on its specific attributes.

A combined cooling-heating and power system from a geothermal source was

modelled dynamically by Cao et al., 2021. The moving boundary method was used

in the operational optimisation of this 250 kW ORC system to improve the controller

performance of changing heating and cooling loads. MATLAB Simulink and REF-

PROP were used in developing the model. No details were provided on the predic-

tion error of this system, however, predictions showed consistency through a graph-

ical validation against data provided in the literature.

A steady state model was produced for comparing ORC configurations by Wang,

Wu, and He, 2019. An enthalpy-based approach was taken in the design of this

system. MATLAB and REFPROP were used in producing the model. Particle Swarm

Optimisation was used in optimising the net power output of the model. This model

was validated against data from previous literature showing a percent error of 0.49%

and 0.5% for evaporation temperature and net power output. A Partial Evaporating

dual-pressure ORC system was found to have the best thermal performance, with

increased net power output and exergy efficiency up to 27% and 4.6% respectively.

A steady state model was produced for a binary power plant by Altun and Kilic,



2.4. First Principles Modelling 19

2020. The enthalpy-based modelling methodology was used for the vaporiser. This

model was produced using EES and validated against SCADA (Supervisory Con-

trol and Data Acquisition) data from a geothermal plant. The model was addition-

ally validated against another binary geothermal plant. Minor differences were ob-

served between both validations. This model was used to assess the feasibility of a

recuperator. Optimal operational conditions were found under the configurations

with and without the recuperator. With the proposed internal heat recovery system

(recuperator), the power output increased by 15%.

A steady state model was produced in the optimisation and design of a waste

heat ORC system by Feng et al., 2020. MATLAB and REFPROP were used in the

optimisation of the enthalpy-based model. Results showed a maximum net power

output of 37 kW, an increase of 25% from the previous power output.

Petrollese and Cocco, 2020 developed an approach for steady state modelling of

solar-based ORC systems. Lumped analysis was used on the vaporiser. This model

was used in the design of four case studies. Toluene as the working fluid was found

to perform the best with the lowest levelised cost of ownership for all four cases.

Aspen HYSYS was used in the design and thermo-economic optimisation of a

geothermal power plant by Hidayah, Putera, and Subiantoro, 2020. Comparison

of basic and recuperative configurations and various working fluids were tested in

these optimisations. N-pentane showed the best performance thermodynamically

and economically, with a thermal efficiency of 15% and a specific investment cost of

$4,300 per kW. The basic configuration showed better economic performance despite

the recuperative configuration’s better thermal efficiency. The payback period of the

basic ORC system is one year shorter with lower specific investment costs.

A geothermal application was dynamically modelled by Pili et al., 2020 for con-

troller improvement. This model was developed in a Dymola environment with

REFPROP for access to thermodynamic properties. The plate heat exchanger was

modelled using the discretised modelling approach. The ORC was validated against

a test rig with a net power output of 5-10 kW. Predictions showed a relative root

mean square error (RRMSE) of 1% and 0.4% for the working fluid and water outlets

to the vaporiser.

Carraro et al., 2019 developed a dynamic simulation of a small-scale WHR ORC

system with a net power output of 3.1 kW. The MB method was used in modelling

a plate heat exchanger used as the vaporiser. This was developed in a MATLAB
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Simulink environment in addition to REFPROP. In validation against the test rig, a

maximum relative error of 1.4% for the vaporiser outlet temperature was shown.

A dynamic model was produced in order to compare direct and indirect evapo-

ration utilising a thermal oil loop by Carraro et al., 2019. Plate, and shell and tube,

vaporisers were used as the indirect vaporisers, while fin and tube were used as the

direct vaporiser. These models were produced at the design stage in Dymola. As

such, the components were based on validated models in the TIL library. Approxi-

mately 55 kW of thermal power was transferred into the ORC loop. Implementation

of the thermal oil loops has the advantage of damping heat source fluctuations, al-

though with the trade-off of a higher footprint and lower thermal efficiency.

An enthalpy-based model was produced in the design and optimisation of a

micro-scale bio-generation CHP system by Wang, Wu, and He, 2019. This system

had a net power output of 2.1 kW. The model was developed in MATLAB, using

REFPROP and validated against available literature data (Jang and Lee, 2018). Rel-

ative errors of 0.3% and 1.4% were shown for the thermal efficiency and net power

output of the model, respectively. The developed optimisation algorithm was tested

and found the optimal power output and thermal power output to be 1.7 kW and 37

kW, respectively.

Zhang et al., 2019 developed a discretised dynamic model in Dymola. Experi-

mental data from the test rig system was used in the validation of the models pro-

duced. Discrepancies were seen in the working fluid outlet of the vaporiser, with a

20% maximum relative error (MRE). A significantly better prediction was shown in

the heating source outlet of the vaporiser with a MRE of 1.7%.

(Zhao et al., 2018) developed a model of a diesel engine-ORC combined system

with a net power of 2.5 kW in GT-suite. This was integrated with Simulink in order

to test the performance of control strategies. The shell and tube vaporiser was mod-

elled and verified based on tutorials from GT-suite which recommend the deviation

between the wall and working fluid temperature is less than 25%. This standard was

met, however, no additional validation against experimental data was done for the

vaporiser.

A steady state model was produced in MATLAB for a geothermal application

utilising a recuperator and pre-heater by Sun, Liu, and Duan, 2018. A discretised

LMTD heat exchanger method was used in modelling the shell and tube vaporiser.

This model was used in optimising net power output through changing vaporiser
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pinch temperature and heat exchange area. As the pinch point temperature differ-

ence (PPTD) decreased, the required area for heat exchange increased. At a brine

inlet temperature of 150◦C and a PPTD of 4◦C, the optimal conditions found a net

power output of 1900 kW.

An enthalpy-based model was produced to design and optimise a micro-scale

combined heating and power system by Jang and Lee, 2018. The model was devel-

oped using EES. Various configurations and working fluids were tested. The optimal

performance was found using cyclopentene as the working fluid and a recuperator

in the configuration. This produced 2 kW net power.

A dynamic model of a solar ORC system capable of generating 16 kW net power

was developed by Ni et al., 2018. The discretised modelling approach was used in

modelling the shell and tube vaporiser in the Dymola environment. The model was

developed for testing a PID control strategy. In validation against another study’s

experimental data (Fu, Lee, and Hsieh, 2015), a maximum relative error in outlet

temperature of 2.1% and an average relative error of 0.96% were shown.

A dynamic model for a solar ORC system with thermal energy storage was de-

veloped by Li, Ma, and Li, 2018. The model was developed in the MATLAB/Simulink

environment utilising the discretised approach. This model was used in determining

the output power with solar disturbances and fluctuations.

A steady state model in Aspen Plus of a biomass ORC system using a thermal oil

interface loop was developed by Nur and Sunoto, 2018. Configurations were tested

with and without a recuperator where the exergy destruction was compared. No

validation of the model was described in this paper. The recuperator was shown

to decrease the exergy destruction by approximately 20 kW at ambient temperature

conditions.

Bellos and Tzivanidis, 2018 developed a steady state model of a hybrid solar

and waste heat ORC system. A lumped, enthalpy-based heat exchanger modelling

method was used. Various working fluids were tested in order to maximise the

heat source utilisation. Toluene as the working fluid performed the best, enabling

the system to generate 480 kW to 850 kW when the waste heat source ranged from

150◦C- 300◦C, respectively.

Huster et al., 2018 developed a dynamic model of an ORC WHR system using

gProms. The moving boundary approach was taken to model the vaporiser due

to its lower computational requirements. As parameters were estimated based on
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dynamic data, lower computational requirements were necessary. In validating the

model against experimental data, the relative mean errors (RME) of the temperature

of the working fluid and the exhaust gas leaving the vaporiser were 0.8% and 0.4%

respectively. The relative maximum errors of these same streams were 2.7% and

1.2% respectively.

Other key research that was conducted prior to 2018 includes Pili, Spliethoff, and

Wieland, 2017; Proctor et al., 2016.

As stated in Section 2.4.2.4, (Pili, Spliethoff, and Wieland, 2017) used a two-

volume method in modelling a kettle re-boiler of a geothermal vaporiser. The dy-

namic model was produced in Dymola and the fluid properties were computed from

REFPROP. The model was validated against a geothermal CHP plant, and both val-

idation scenarios were predicted within 1% of the measured outlet temperature of

the working fluid and brine.

(Proctor et al., 2016) produced a dynamic model in VMG Symmetry of a binary

geothermal plant with a gross power generation of 10 MW. Due to the configuration

of the vaporiser with multiple tube-sets, two coolers were used to model the heat

transfer of each tube-set in addition to a heater modelling the heating of the shell

side. The LMTD was calculated for each section which were multiplied by the static

UA values. These UA values were calculated based on plant data. The resultant

heat flow was summed and used for specifying the shell side heater. The average

relative error was 1.7%, 5.0% and 3.2% for the working fluid, geothermal steam and

geothermal brine, respectively.

2.5 Black Box Modelling

Black Box modelling or data-driven modelling involves fitting an equation relating

a data-set of inputs to outputs. In process modelling, this involves treating the unit

operation like a ‘black box’, taking the input data values and finding the relationship

to the output data. In producing dynamic models these input values are the present

values of the system while the output is the prediction of the future values. The main

Black Box modelling techniques used in vaporiser modelling can be categorised into

linear and non-linear modelling techniques.
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2.5.1 Linear Modelling Techniques

Linear regression aims to fit a line to describe the relationship as an input and output.

Auto-Regressive (AR) models are typically utilised in dynamic or time-dependent

process modelling. An AR model uses previous output values of the time series in

regression of future outputs, hence auto-regression (Ljung, 1998; Rhinehart, 2016).

The addition of an X term represents the inclusion of exogenous variables, which is

associated with the input in vaporiser modelling. Incorporating a moving average

term which averages the most recent data values in a time series is shown by adding

MA, (Rhinehart, 2016; Young, 1992). Equation 2.6 displays an Auto-Regressive Mov-

ing Average with Exogenous inputs model, more commonly referred to as an AR-

MAX model.

A(q−1)y(k) = B(q−1)u(k) + C(q−1)e(k) (2.6)

Where A(q−1)y(k) refers to the auto-regressive part, C(q−1e(k) refers to the moving

average part and B(q−1)u(k) refers to the exogenous variable.

2.5.2 Nonlinear Modelling Techniques

2.5.2.1 Artificial Neural Networks Model

Artificial neural networks are non-linear self-learning systems commonly applied in

control methods and strategies. Neural networks consist of a number of layers, in-

cluding the input and output layers which correspond to the input variables at the

present time and the output variables predicted by the model. Between the input

and output layers are the hidden layers which can vary in number. Each layer con-

sists of several interconnected nodes or neurons. These neurons manipulate the in-

put data or present values of the system to produce an output or prediction. Weights

are applied to each connection and multiplied by the corresponding value of the

connection. These values are summed together with a bias where if a threshold is

met, set by an activation function, the neuron ‘fires’ and produces an output (Roffel,

2006).

Neural Networks come in various types and structures. The common structures

seen in the literature include Feed Forward, Recurrent, Back-Propagation and Long

Short-Term Memory. A Feed-Forward network represents the most basic network
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structure and describes when particular, or multiple neurons connect to all the neu-

rons in the following layer (Roffel, 2006; Palagi et al., 2019). A Recurrent network

describes when a neuron is connected to neurons in a previous layer (Roffel, 2006;

Palagi et al., 2019). A specific type of the Recurrent network is the Long Short-Term

Memory or LSTM network which inputs not only the current time step’s inputs but

also an output from a previous time step (Roffel, 2006; Palagi et al., 2019). A Back-

Propagation network uses the gradient of a defined cost or error function with re-

spect to the weights of each modifiable connection. These weights are then updated

to minimise the cost function (Roffel, 2006).

2.5.2.2 Fuzzy Logic Based Model

Fuzzy sets look to describe continuous domains of input and output variables by

dividing the domains into a small number of overlapping regions, each having a

corresponding linguistic value: for example high temperature, medium temperature

or low temperature. The categorisation of the data or fuzzification occurs through

membership functions (Roffel, 2006; Chowdhury, Nguyen, and Thornhill, 2015).

Based on the membership function value, a different linguistic term will be asso-

ciated with this input. This linguistic term corresponds to a different mathematical

relationship relating input to output. This type of fuzzy model is named the Takagi-

Sugeno model. If, instead of a mathematical-based relationship, fuzzy reasoning is

used, this is called a Mamdani model (Roffel, 2006).

2.5.2.3 Neuro Fuzzy Modelling

Neuro-Fuzzy modelling uses a neural network structure, which incorporates fuzzy

characteristics of a Sugeno-type model to combine the advantages of both approaches

(Roffel, 2006; Enayatollahi, Fussey, and Nguyen, 2020; Khosravi et al., 2019). This

type of model is capable of learning non-linear mappings of data and has been used

in both steady state and dynamic modelling of ORC units (Roffel, 2006; Enayatollahi,

Fussey, and Nguyen, 2020; Khosravi et al., 2019).

2.5.3 Published Work Summary

The research papers using Black Box models are shown in Appendix D: Black Box

Paper Summary. The applications of Black Box models researched in the literature

include ORC models used in waste heat recovery, geothermal binary systems and
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a hybrid solar and geothermal system by Khosravi et al., 2019. Of the 22 papers

found, 86% were waste heat recovery applications, followed by 9% geothermal ap-

plications.

2.5.3.1 Model Fidelity

As in Section 2.4.3.1, the models seen in this area show no connection to their physi-

cal system, therefore, would be classified as digital models.

The behaves-like attribute of the model is determined by the type of validation

conducted for the model. Of the validation seen in the literature, 91% of these mod-

els were validated against data generated from a validated model, lab or industrial

plant. Of these models, 59% were steady state based models while 32% were dy-

namic models: these models would therefore be classified as 1-D and 3-D in the

behaves-like attribute. None of the papers in Table 7.2 displayed a visual represen-

tation or had a dimension that represented the physical vaporiser, therefore these

models would be classified as 0-D.

2.5.3.2 Model Summary

From the papers found, using Black Box models, the papers produced since 2018

were further analysed. A summary of the models developed in those papers follows:

this is used to summarise common practices and results of Black Box models.

Palagi et al., 2019 employed three different methods in Python, namely Feed

Forward Neural Networks (FF), Recurrent Neural Networks (RNN) and Long Short-

Term Memory Neural Networks (LSTM). These were used in modelling a waste

heat ORC Cycle utilising a thermal oil interface circuit. This unit had a gross power

generation of 20 kW. All the aforementioned methods showed a percentage error

lower than 10% in predictions 60 seconds ahead and lower than 5% in predictions

10 seconds ahead. Of these methods, the best performing was the LSTM-NN with a

Root Mean Square Error (RMSE) of 0.03 to 0.08 in the predictions of mass flow rate,

pressure and turbine inlet of the working fluid.

Mert et al., 2020 compared step-wise Multi-Linear Regression models (MLR), a

FF-NN with varying structures and a hybrid MLR and FF model. These models

were employed in predicting the generated power of the turbine of a 10 kW waste

heat ORC system. Of these methods, the hybrid MLR-NN model performed the best

with an RMSE of 0.047–0.20.
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Peng et al., 2021 developed a steady state model to be used in the prediction of

heat transfer across the vaporiser. A Back Propagation NN was used to produce this

model. For the heat transfer predictions across the vaporiser, an R2 of 0.9999 for

both validation and test sets was achieved. The average absolute deviation (AAD)

for this prediction was 0.56%. Other variables such as net work of the system and

thermal efficiency were also predicted, which displayed similar errors. This data

was generated and validated against REFPROP.

Kovacı et al., 2017 compared FF-NN and an Adaptive Neural Fuzzy Inference

System (ANFIS) in steady state modelling of a WHR ORC system. The R2 value of

the FF-NN and ANFIS were 0.99 and 0.97, respectively, for the R-365mfc working

fluid. The primary purpose of these models was to be further used in the design of

ORC systems.

Kılıç and Arabacı, 2019 developed a BP NN and ANFIS model based on gener-

ated data using CoolPack which is a collection of simulation models for refrigeration

systems. In this study, various working fluids were tested for prediction of the ther-

mal efficiency using the BP-NN and ANFIS. For the working fluid R123, an R2 and

an RMSE value of 0.999 and 0.02 and 0.996 and 0.0056 was achieved, respectively.

Comparison of a Support Vector Machine (with both a radial based kernel func-

tion and a linear function) model against a BP-NN was carried out by Dong et al.,

2018. These models were used in the prediction of the output work of the system.

The best performance was shown with SVM linear function and BP-NN. The SVM

linear function model achieved an R2 and RMSE of 0.998 and 0.41, respectively and

the BP-NN achieved 0.998 and 0.30, respectively. This was found when 40% of the

available data was used for testing.

Yang et al., 2018 produced a BP-NN used in dynamic predictions of the power

generated from the turbine of a lab-sized ORC system. This system had a gross

power of 4.8 kW and was used in waste heat recovery, data from which was used to

generate and validate the NN. A genetic algorithm was used to optimise the weights

of the NN. The absolute prediction error for this model ranged up to 0.2 kW. This

model was utilised for operational improvements to the system.

Khosravi et al., 2019 modelled a geothermal and solar system, where the solar

unit was used in superheating the working fluid. A Multi-Layer Perceptron (MLP)

NN and ANFIS were used with particle swarm optimisation to update the model

parameters. The R2 and RMSE for the validation of the ANFIS model were 0.999
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and 3.587e−4, respectively, for predicting the energy efficiency of the system while

the MLP-NN achieved an R2 and RMSE of 0.9954 and 7.574e−4, respectively. The

exergy efficiency and net work were also predicted, with similar prediction errors

shown. The model was produced for the design of a novel system and for assessing

its economic feasibility.

A dynamic NN model was produced of a geothermal power plant by Liu et al.,

2021. Although a generation capacity was not specified, however, this particular

plant is operated by Cyrq Energy Inc. This model was trained, validated and tested

on different data sets from the industrial plant data. An R2 of 0.97 was achieved for

both the working fluid outlet and brine outlet of the vaporiser.

Wang et al., 2020 produced a BP-NN and a Support Vector Regression (SVR)

model for the prediction of thermal and exergy efficiency for various working fluids.

The Mean Relative Error (MRE) of the BP-NN and SVR models maintained values

of about 1%- 5% and 1% - 2% respectively, for the thermal energy efficiency. These

previous values describe results from the basic ORC system with various working

fluids, however other system configurations are also used in predictions with com-

parable results. These models were developed in Python and based on and validated

against data generated from REFPROP. The main purpose of these models was to

compare modelling methods for design. The type of system modelled was a waste

heat system.

Yan et al., 2021 compared a MLR, SVR and BP-NN steady state model in MAT-

LAB. This was used in the prediction of thermal efficiency and net power output.

The system utilised waste heat and a thermal interface oil loop and had a capacity to

generate 10 kW. Data from this system was used to validate and test the model. All

models achieved R2 values greater than 0.995 for net power output and greater than

0.977 for thermal efficiency. The SVR model showed the highest accuracy. All mod-

els showed similar findings with a lower RMSE than 0.055, where the SVR model

performed the best.

Enayatollahi, Fussey, and Nguyen, 2020 developed a dynamic model of a 1 kW

ORC waste heat cycle, which was based on data from this lab-scale unit. The gra-

dient descent-based approach and Particle Swarm Optimisation (PSO) were used in

training the ANFIS model. An R2 of 0.98 and 0.99 for predicting the outlet temper-

ature of the brazed plate vaporiser were obtained for the gradient descent approach

and PSO learning methods, respectively. These results also showed an RMSE of
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3.4◦C and 2.4◦C, respectively.

A dynamic fuzzy-based model was produced of a 4.5 kW ORC WHR system

by Chowdhury et al., 2018. This model was based on and validated against data

generated from a FP discretised model. The results showed a RMSE error of 1.1K

and 3.1K for the outlet temperature of the refrigerant and heat source, respectively.

Huster, Schweidtmann, and Mitsos, 2019 used data generated from CoolProp in

predictions of the thermodynamic properties for optimisation of design conditions

of the ORC system. A NN model was used which was developed in MATLAB. This

work was extended by Huster, Schweidtmann, and Mitsos, 2020, where a model was

used in the thermoeconomic optimisation of a geothermal ORC unit. Schweidtmann

et al., 2019 then developed a steady state model based on a validated dynamic model

of a waste heat unit by Huster et al., 2018.

Zhi et al., 2019 produced a steady state model for the design of an ORC waste

heat system. A BP-NN was based on data generated from REFPROP in MATLAB.

This model was validated against another study (Cayer et al., 2009), and was used

in the prediction of the thermal efficiency and exergy efficiency of the ORC system

with and without a recuperator. The results show an RMSE and AAD of 0.044 and

0.52% respectively.

Feng et al., 2020 developed a BP-NN for predicting the net power output and

thermal efficiency of a 3 kW experimental ORC waste heat system. Experimental

data from this system was used in the training and validation of the model. The

absolute error of the thermal efficiency predicted by the model is in the range of

10 × 10−4 – 6 × 10−4, and the absolute error of the net output work is 0.03 – 0.04 kW.

2.6 Comparing First Principles and Black Box Models

First Principles (FP) models take more time to create, tune and validate when com-

pared with Black Box models. However, this comes with the added benefit of the

robustness of FP models. As Black Box models are generally valid only at the tested

conditions, the as-built model will therefore struggle in the simulation of extreme

conditions. This limits the application of Black Box models. FP models are able to

more accurately simulate extreme conditions and may be applied to new vaporiser

models as a result of the theoretical modelling approach (Quaak, Wijck, and Haren,

1994; Rasmussen, 2012).
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Black Box models are also highly dependent on the data set. Practically, Black

Box models can be used only when sufficient inputs and outputs are measured,

which may prevent some applications in industrial settings (Yin et al., 2014; Quaak,

Wijck, and Haren, 1994). Black Box models work well in situations where the mecha-

nisms are not completely understood or simplification of a model is required. This is

where white box models struggle. Deriving unknown or complex relationships of a

FP model from data has been shown to work well in improving model efficiency. In

some cases, it was shown that Black Box models outperformed FP models in model

accuracy (Russell, 1997). Incorporating aspects of both of these models has been

termed ‘grey box’ or ‘hybrid modelling’.

2.7 Grey Box Models

As stated in Section 2.6, Grey Box models incorporate aspects of both FP and Black

Box models. Grey Box models are developed through integrating sub-models of dif-

ferent types. This can be implemented through various structures such as in series,

in parallel or surrogate modelling (Sansana et al., 2021).

The only model of ORCs classified as a Grey Box model is (Kalina and Świerzewski,

2019). In this model, an industrial, biomass-fired co-generation plant was simulated.

This system had a net power generation of 1300 kW. A dynamic model was devel-

oped, capable of predicting the heat duty of the vaporiser. The predictions were val-

idated against plant data, showing an R2 of 0.98 and a RMSE of 260 kW. The model

was capable of other predictions, showing similar accuracy to the aforementioned

prediction.

2.8 Conclusions

As described in this chapter, a large number of papers has been published based

on theoretical and experimental performance of small scale ORC systems (Kalina

and Świerzewski, 2019). A majority of models produced in the literature focus on

FP models, however, these models have key advantages over Black Box models,

namely, their robust nature allows predictions over a wide range of conditions. As

the mechanisms for heat transfer are well-understood, FP models can be seen as

more suitable for modelling vaporisers.
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Of the FP models found in the literature, six models were validated against data

from large-scale, industrial processes (Altun and Kilic, 2020; Pili, Spliethoff, and

Wieland, 2017; Proctor et al., 2016; Mazzi, Rech, and Lazzaretto, 2015; Sun and Li,

2011; Sohel et al., 2010). These predominantly were dynamic models with the model

purpose of control strategy testing and operational optimisation and design. Of

these models, four have been produced based on geothermal applications, cover-

ing various modelling methodologies. These include lumped models produced by

(Proctor et al., 2016; Sohel et al., 2010) and the two-volume model by (Pili, Spliethoff,

and Wieland, 2017).

Of the dynamic models found in the literature, Aspen HYSYS has yet to be ap-

plied to a geothermal industrial application, in addition no First Principles model

was developed using Python. Of the First Principles models described, each spatial

paradigm and heat transfer paradigm has benefits that can suit a specific modelling

purpose. Due to the discretised method’s flexibility to scale the number of discre-

tised sections, and the relative simplicity of the equations needed, the discretised

methodology was selected. The temperature difference method was selected for the

heat transfer paradigm, as this is most suitable for dynamic applications.

To address the gap in comparative analysis of large-scale geothermal models and

to add to the small group of dynamic models, this thesis will focus on developing,

then comparing, modelling techniques of the Ngawha geothermal power plant’s

vaporiser. The models will be developed in Aspen HYSYS and Python to ascertain

if these software tools can effectively model a geothermal application.

Chapter 3 will describe details of the system itself.
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Chapter 3

Case Study

3.1 Preface

Chapter 3 covers the background of the system modelled in this thesis, the Ngawha

OEC4 Geothermal binary plant operated by Top Energy. This work focuses on the

working fluid cycle of the plant and validates the models developed with two snap-

shots of the plant’s human-machine interface (HMI). An explanation will also be

given of the production delivery system and details of the plant’s background.

3.2 System Description

The Ngawha OEC4 Geothermal binary plant is located north of the Ngawha Springs

area alongside three other geothermal plants. The Ngawha plant can generate a

gross 35 MW during normal operation. The geothermal brine and steam are sepa-

rated by OEC4’s own separator plant. A dual turbine system is used, in addition

to air-cooled condensers. The system uses normal pentane as the working fluid,

which passes through several pre-heaters in order to extract heat from the brine and

the condensed vapour. Additionally, a non-condensable gas (NCG) pre-heater is

used to heat the working fluid bypass. Recuperators are also used in recovering

heat from the turbine outlets. The plant SCADA data readings are shown in Table

3.1. Operational data of the working fluid cycle was not received due to contractual

confidentiality. Discussion on approximating the turbine efficiency and the working

fluid flow-rate is shown in Section 4.2.5.

http://ngawhageneration.co.nz/
http://ngawhageneration.co.nz/
https://topenergy.co.nz/
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TABLE 3.1: Table describing the plant readings. The working fluid flow-rate and turbine
efficiency are approximated

Plant Specification Value Units

Working Fluid Flow-rate 1343.6 tonne/h

Working Fluid Pressure 26.18 bar

Working Fluid Temperature 61.6 °C

Brine Flow-rate 1199 tonne/h

Brine Pressure 14.51 bar

Brine Temperature 191.1 °C

Steam Flow-rate 105 tonne/h

Steam Pressure 12.76 bar

Steam Temperature 189.7 °C

Expander Efficiency (Isentropic) 85 %

Ambient Air Pressure 1.013 bar

Ambient Air Temperature 17.1 °C

3.3 Production Delivery System

In liquid-dominated regions such as those used by binary systems, the geothermal

fluid flows naturally from the reservoir to the surface. The pressure of the fluid is

reduced, therefore vapour flashes in the well, resulting in a two-phase mixture. The

system involved in the transportation of this geothermal mixture is the production

delivery system, whereby this mixture is separated into vapour and liquid phases.

These fluids are then used in vaporising and pre-heating the working fluid. This

differs from flash steam plants in that flashing of the two-phase mixture produces

vapour, which is then used to drive the turbine.

3.4 Plant Description

As described in Section 3.3, the two-phase geothermal fluid is fed into a separator.

In this separator, the two phases are split into vapour and liquid streams, each of

which passes through a vaporiser. Following the outlet of the vapour side, this fluid

is partially condensed and then enters the vaporiser separator. The condensate is
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reincorporated with the brine, while the remaining vapour enters the tubes of the

non-condensable gas pre-heater.

The two-phase fluid, including the condensate and remaining gaseous steam and

non-condensables, is separated. The vapour is vented to the atmosphere while the

condensate is incorporated into another portion of the brine stream. The brine en-

tering the vaporiser tubes makes two passes, then passes through three pre-heaters

in series. After reincorporating the brine with both condensate streams, it is sent

to the reinjection system. The working fluid passes through the shell-side of these

three heat exchangers. A bypass is made for the working fluid around these heat ex-

changers which passes through the shell-side of the NCG pre-heater. This is used in

optimising the temperature of the working fluid entering the vaporiser. The work-

ing fluid exiting the vaporiser enters two identical turbines and then the shell-side

of two identical recuperators. For simplicity, one recuperator and turbine are shown

in Figure 3.1. After exiting the recuperator, the working fluid is condensed in an

air-cooled condensor. The fully liquid working fluid is pressurised and enters the

tube-side of the recuperators, and on exiting these recuperators, the cycle is com-

plete.

FIGURE 3.1: A simplified process flow diagram of the working fluid cycle of the Ngawha
OEC4 plant
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3.4.1 Vaporiser Configuration

As described in Section 3.4, the vaporiser has multiple tube-sets, for brine and for

geothermal vapour. The basic configuration is shown in Figure 3.2. The brine tubes

have two passes, which carry out the sub-heating and a small amount of vaporisa-

tion of the working fluid, while the geothermal vapour carries out the remainder of

the vaporisation and a degree of superheating of the working fluid in a single pass.

The working fluid flows perpendicular to the flow of the geothermal fluids.

FIGURE 3.2: The vaporiser shell and tube configuration for Ngawha OEC4 plant

3.5 Geothermal Fluid Composition

Geothermal fluid is formed through the natural movement of water through the

Earth’s crust. As such, the composition of a geothermal fluid consists of a complex

mixture of water, salts and gases (DiPippo, 2016; Talybov, Azizova, and Abdulaga-

tov, 2019). This composition varies with each region, depth and type of geothermal

reservoir. This is explained in more detail in DiPippo, 2016.

The composition of a geothermal vapour is strongly related to its thermodynamic

properties and therefore requires a ’fit for purpose’ equation of state in order to be

modelled most effectively. With access to the geothermal plant’s compositional anal-

ysis, the vapour is largely comprised of water and a small amount of carbon diox-

ide. Minuscule amounts of Methane, Ammonia, Hydrogen Sulfide, Hydrogen and

Nitrogen were also shown by this analysis, however, the mole fraction was less than



3.6. Conclusions 35

0.0001 and was therefore deemed unnecessary. The brine is assumed to be pure wa-

ter as the changes to the thermodynamic properties of the fluid are relatively small

when compared with vapour. The simplified mole fraction of the separated vapour

used in the following models is shown in Table 3.2.

TABLE 3.2: The composition of simplified geothermal vapour

Component Mole Fraction

Water 0.985
Carbon Dioxide 0.015

3.6 Conclusions

This chapter provides an overview of the system that is modelled in this work. A

simplified process flow diagram and a diagram representing the vaporiser configu-

ration is shown in Figures 3.1 and 3.2, respectively. Plant readings and the simpli-

fied composition of geothermal vapour are shown in Tables 3.1 and 3.2, respectively.

These are used as inputs to the models developed in Chapter 4.





37

Chapter 4

Vaporiser and Plant Modelling

4.1 Preface

Chapter 4 covers the development of the plant model and the vaporiser models.

These include a vaporiser and plant model developed in Aspen HYSYS and a va-

poriser model developed in Python. All models were developed and tuned against

snapshots of plant conditions at steady state. The vaporiser models were transi-

tioned into dynamics where a dynamic response was compared. This comparison is

made between a widely used, commercial process simulator and a First Principles

model developed in this thesis.

4.2 Aspen HYSYS Model

Aspen HYSYS is widely used in both industry and academia in analysing process

engineering applications in steady state and dynamics. This software package has

yet to be applied to analyse a dynamic model of an industrial-scale geothermal bi-

nary plant and vaporiser. As such, Aspen HYSYS was selected in the development

of a dynamic model of the vaporiser. In addition to this, a plant model of the work-

ing fluid cycle was developed in steady state. A flow diagram of this model is shown

in Figure 4.1.

https://www.aspentech.com/en/products/engineering/aspen-hysys
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4.2.1 Modelling Procedure

There is no unit operation provided by Aspen HYSYS that replicates a multiple tube-

set heat exchanger. The approach taken is based on the method developed by Proctor

et al., 2016, where two coolers were used to model the heat transfer of each tube-set

in addition to a heater modelling the heating of the shell side. The LMTD was calcu-

lated for each section and these were multiplied by the static UA values calculated

based on plant data. The resultant heat flow was summed and used for specifying

the shell-side heater. This approach worked well, however a limitation identified

was the static UA values. As a result, a different approach was taken for the heat

transfer coefficients of this model. To facilitate this, two heat exchangers are used in

contrast to the two coolers and heater used by Proctor et al., 2016. The Aspen HYSYS

schematic is shown in Figure 4.2.

FIGURE 4.2: The Aspen HYSYS schematic of the vaporiser model. The Vap - Brine and
Vap - Steam refer to the brine and geothermal steam of the vaporiser.

4.2.2 Heat Transfer Coefficients

In approximating the heat transfer coefficient (HTC), empirical calculations were

used to predict temperature differences over a range of conditions.
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A nucleate boiling correlation was selected for the vaporising of the working

fluid due to the mechanisms of the kettle re-boiler, whereby a pool of working fluid

accumulates bubbles which nucleate on the outer tube-side wall. Researchers such

as Pili, Spliethoff, and Wieland, 2017, have tested the Mostinski correlation in a ket-

tle re-boiler with butane as the working fluid. This was compared with the Cooper

equation (Cooper, 1984). Similar comparisons have also been made by Calise et al.,

2018, however, contradictory results suggest that the ideal heat transfer coefficient

may be system-specific. Due to its relative simplicity, the Cooper equation was cho-

sen, Equation 4.1.

U = Constt55P0.12−0.2log10Rp
r log10P−0.55

r M−0.5
w Q0.67

f lux (4.1)

Where Constt is equal to 1.7 as this contacts a cylindrical surface, Pr is the reduced

pressure, Rp is the surface roughness of the pipe, Mw is the molecular weight of

pentane 72.15gmol−1, Q f lux is the heat flux in Wm−2.

In the pre-heating of the working fluid, the convective coefficient for the working

fluid is classified as flow perpendicular to banks of tubes (Carta, 2021; McAdams,

1954). The HTC was found from Equation 4.2.

Nu = bRenPr1/3 (4.2)

Where b and n values were used from Grimison, 1937. These values correspond to

the pitch and diameter of the tube bundle.

The heat transfer coefficient between carbon dioxide and condensing steam mix-

ture and the wall is shown in Equation 4.3. This has been described as an annular

two-phase flow regime whereby the condensed water accumulates on the wall sur-

face while the vapour flows in the centre of the pipe (Sinnott, 2005). Researchers

such as (Siwach, 2016) have used the correlation proposed by (Dobson and Chato,

1998). Other correlations such as Cavallini et al., 2006; Shah, 1979 have been sug-

gested by Dobson and Chato, 1998. These correlations were compared, however, the

correlation proposed by (Dobson and Chato, 1998) showed better performance. This

was used in both the steam section of the vaporiser and the NCG pre-heater.

Nu = 0.023Re0.8
L Pr0.4

[
1 +

2.22
X0.89

tt

]
(4.3)
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Where the ReL is the Reynolds number of the liquid and the Lockhart-Martinelli

parameter Xttis defined as follows:

Xtt =
1 − x
x0.9 (ρv/ρl)

0.5(µl/µv)
0.1 (4.4)

Where x is the vapour fraction leaving the steam tubes, ρv and ρl are the density

of the vapour and liquid and µv and µl are the viscosity of the vapour and liquid.

In approximating the convective coefficient for the geothermal brine and conden-

sate, the Haaland equation was used for the friction factor (Haaland, 1983). Gnielin-

ski’s equation (Gnielinski, 1975) (Equation 4.5) was then used in approximating the

Nusselt number for turbulent flow in a pipe. A relative roughness of the pipe was

assumed, based on Kandlikar, Joshi, and Tian, 2003; Wu and Little, 1984.

Nu =
( f /8)(Re − 1000)Pr

(1 + 12.7( f /8)1/2(Pr2/3 − 1)
(4.5)

Where f is the Haaland friction factor calculated from:

1√
f
= −1.8log

[
ϵ/D
3.7

1.11

+
6.9
Re

]
(4.6)

4.2.3 Equations of State

Careful consideration must be taken in selecting the Equations of State (EOS) as this

is necessary for an accurate model as it handles the calculation of state variables un-

der given conditions. Based on Peng-Robinson’s wide use in the modelling of hydro-

carbons, it was selected for use with the pentane working fluid (Aspen Technology,

2013). Aspen HYSYS’ Peng Robinson package was also compared with data avail-

able from the National Institute of Standards and Technology (NIST) by Haydary,

2019, where agreeable results were shown. The Peng Robinson EOS used in Aspen

HYSYS uses enhanced binary interaction parameters, therefore differs slightly from

the standard Peng Robinson EOS (Haydary, 2019).

Modelling a vapour mixture of water and carbon dioxide can be difficult due

to the complex interactions between the polar water and non-polar carbon dioxide

molecule. Extensive research into mixtures of higher mass fraction carbon diox-

ide has been conducted, however, this range is outside the carbon dioxide mass

fraction seen in geothermal applications (Talybov, Azizova, and Abdulagatov, 2019;
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Colucci et al., 2019). From the literature, various suggestions have been made for

cubic-based equations of state including Peng-Robinson, Redlich-Kwong and Cubic-

Plus-Association equations (Talybov, Azizova, and Abdulagatov, 2019; Colucci et

al., 2019). Other EOS, such as multi-parameter Helmholtz-based equations used in

REFPROP and CoolProp (Lemmon, Huber, and McLinden, 2013; Bell et al., 2014)

which are not available in Aspen HYSYS, will be discussed in later sections. Of

the suggestions that are available through Aspen HYSYS, the Peng Robinson (PR),

Peng Robinson Twu (PR-Twu), Peng Robinson Stryjek Vera (PR-SV) and Cubic-Plus-

Association (CPA) EOS were tested in calculating the saturation pressure at a tem-

perature specified by plant conditions. PR and Soave Redlich-Kwong (SRK) Sour

were also tested as these were considered potential options. Modelling of the NCG

vent mass flow-rate was tested with the aforementioned EOS. This was done by

replicating the geothermal vapour and NCG flows through the plant whereby the

vapour passes through the vaporiser and is separated. The separated vapour then

passes through the NCG pre-heater and is separated again. The resultant vapour,

largely made up of NCG, is vented. The NCG mass flow-rate predictions are shown

in Table 4.1.

TABLE 4.1: Comparison of Equations of State in calculating the saturation pressure and
NCG mass flow-rate of the plant model

EOS Sat. Pressure (bar) Error (%) NCG Mass Flow (T/h) Error (%)

CPA 12.72 0.31% 3.66 30.29
PR Twu 12.62 1.10% 3.65 30.5
PR SV 12.66 0.78% 3.68 29.9
PR Sour 12.65 0.86% 3.58 31.8
SRK Sour 12.65 0.86% 3.58 31.8
Measured 12.76 5.25

The percentage error was calculated using the Equation 4.7.

%Error =
ymeas − ypred

ymeas
× 100% (4.7)

From these results, the Cubic-Plus Association EOS shows the lowest error at 0.31%,

followed by the PR-SV EOS at 0.78%. The CPA and PR-SV perform the best for

the NCG mass flow-rate test at 30.29% and 29.9% percentage error, respectively, al-

though none of the tested EOS performed adequately. Based on these basic results,
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the EOS does not capture the chemical interactions of the mixture effectively, how-

ever further research is required for a more conclusive result.

4.2.4 Model Specifications

In the development of an Aspen HYSYS model, key stream characteristics and equip-

ment can be specified. The geometry of the pre-heaters was approximated based on

ratios of the vaporiser geometry. These values were then used, in addition to fluid

conditions, to calculate the empirical HTC described previously, for each heat ex-

changer in the system. In each heat exchanger a pressure drop was specified on both

shell and tube streams. An isentropic efficiency of 85% was assumed for the turbine,

and pressure specifications were also made on the outlet to the turbine as this value

remained relatively constant. Similarly, the working fluid pressure and tempera-

ture were specified leaving the recuperator. The mass flow-rate at this point and the

bypass flow-rate is also specified. However, further details in the method of approx-

imating these mass flows are shown in Section 4.2.5. The compositions, the mass

flow-rate and the temperature were specified for both geothermal fluids. However,

saturated conditions were assumed for the geothermal vapour. The brine pressure

was also specified. The aforementioned specifications are displayed in Table 3.1.

4.2.5 Approximating Working Fluid Flow-rate

Due to the nature of a binary geothermal plant there are no readings of working fluid

flow-rate as this is controlled by adding and removing from a working fluid storage

system. This flow-rate dictates key temperature differences across all heat exchang-

ers in the working fluid cycle of the plant, therefore an approximation needs to be

made of not only the main flow-rate but also the bypass flow. An optimisation was

conducted using Aspen HYSYS’s inbuilt optimiser. The first optimisation was based

on the working fluid bypass through the NCG bypass, where a minimum absolute

difference between the model and the plant reading of the working fluid tempera-

ture was found. The second optimisation was conducted in a similar manner to the

first, although this was based on the working fluid inlet flow to the vaporiser. The

optimised flows are shown in Table 4.2.

These results were then supported by comparing the power generated by the

turbine in the model to a plant specified value. An error of less than 1 MW in
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both cases shows agreeable results for this optimisation. The resultant discrepancy

against plant data is shown in the following Tables 4.3 and 4.4.

TABLE 4.2: Optimised working fluid mass flow-rate for Case 1 and 2

Approximated Mass Flow-rate Case 1 Case 2

ṁw f _T (T/h) 1343.6 1220.0
ṁw f _ncg (T/h) 45.1 19.1

4.2.6 Model Tuning

To match the outlet temperatures to the plant’s equipment, the HTC was multiplied

by a tuning factor. The tuning factor matches the HTC to the specific exchangers’

geometries. This has the proposed benefit of replicating the behaviour of the system

over a range of plant conditions. The model was tuned to the steady state data

from the plant, shown in Table 4.3. The condensate reinjection and NCG pre-heater

showed the largest discrepancies of the model with an absolute error of 6.77◦C and

5.52◦C, respectively. This discrepancy is discussed below in Section 4.2.7.

TABLE 4.3: Steady state results of plant and vaporiser of Case 1

Fluid Variable Plant Data Hysys Model Error Abs. Error (%)

Tw f _vap_out (°C) 174.00 174.03 0.03 0.02
Tv_vap_out (°C) 174.80 174.63 0.17 0.10
Tl_vap_out (°C) 174.60 174.55 0.05 0.03
Tw f _vap_in (°C) 162.50 162.48 0.02 0.01
Tv_ncg_out (°C) 120.00 126.77 6.77 5.64
Tl_inj_out (°C) 97.00 102.52 5.52 5.69
Pgen (MW) 34.94 35.14 0.20 0.58

4.2.7 Steady State Model Validation

The second case against which the model was validated, showed significantly differ-

ent plant conditions from Case 1. This was due to the change in ambient temperature

and therefore differing optimal conditions of the plant, as deemed by the operator.

These results show good agreement for all streams leaving the vaporiser, with less

than a degree error, which is less than the expected error of the temperature sensors.

However, an even larger error is shown in the outlet NCG temperature of the NCG

pre-heater. A significant discrepancy is also shown in the percentage error of this

stream’s mass flow-rate. To support the model’s prediction, a mass balance of CO2
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was done. This showed approximately 95% of the CO2 leaving the system through

this stream, with the remaining leaving the system in an aqueous solution as a result

of the separation processes. This is thought to be a limitation of the EOS in state

calculations of the carbon dioxide and water mixture. The flow-rate of this stream

is comparatively small relative to the working fluid and condensate flow-rates at

3.92T/h and 3.61T/h in Case 1 and Case 2 respectively. Another notable error is

shown on the condensate reinjection stream, with an absolute error of 5.52◦C and

2.91◦C in Case 1 and Case 2 respectively. This is thought to result from the approxi-

mations of geometrical data of the pre-heaters, thus could be remedied through the

implementation of this geometrical information.

TABLE 4.4: Steady state results of plant and vaporiser of Case 2

Fluid Variable Plant Data Hysys Model Error Abs. Error (%)

Tw f _vap_out (°C) 170.10 170.17 0.07 0.04
Tv_vap_out (°C) 170.40 170.30 0.10 0.06
Tl_vap_out (°C) 170.80 170.83 0.03 0.02
Tw f _vap_in (°C) 156.70 157.71 1.01 0.64
Tv_ncg_out (°C) 105.00 135.39 30.39 28.94
Tl_inj_out (°C) 95.90 92.99 2.91 3.04
Pgen (MW) 31.96 31.28 0.68 2.13
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4.3 First Principles Model

Based on the four approaches described in Chapter 2, the discretised modelling

method was selected. This is based on its higher accuracy than the corresponding

moving boundary and lumped methods. This method also has the added flexibility

in the level of discretisation such that the model parameters can be changed to re-

flect its purpose (Huster et al., 2018). A discretisation of 20 was selected as this was

shown by literature, along with heuristics, to have a good balance between process-

ing speed and accuracy.

4.3.1 Software

The model was developed in Python using solve_ivp integrator from SciPy inte-

grate, where the explicit Runge-Kutta method of order 3(2) was used in solving the

ODE. The model utilised Coolprop for the thermodynamic package. Python and

CoolProp were used as they are widely available, with both being open source and

free programs.

4.3.2 Model Formulation

The governing equations of the vaporiser are the working fluid mass and energy

balance, the geothermal fluid mass and energy balance, and the energy balance of

the wall. First, the following assumptions were made for simplification of the differ-

ential equations solution:

• No axial heat conduction, only heat transport, in the working fluid, wall or

geothermal fluid.

• Spatially constant fluid pressure p(t).

• The three tube passes are each discretised into a number (n) of lumped sub-

volumes, each of which corresponds to a sub-volume of the shell.

• The geothermal fluid and working fluid temperature profile of each section are

static.

• Inlet and outlet enthalpy are averaged in order to approximate the temperature

of the section.

• The mass flow-rate for each individual fluid is equal in all sections.
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• The geothermal vapour composition is assumed to contain CO2 and water. The

mole fraction is specified in Table 3.2.

The resultant differential equations are shown below.

Working fluid mass balance:

∂(Aw f ρw f )

∂t
+

∂ṁw f

∂z
= 0 (4.8)

The working fluid energy balance:

Aw f ρw f
∂hw f (z, t)

∂t
= −ṁw f

∂hw f

∂z
+ πdoUw f (Tw − Tw f ) (4.9)

The geothermal fluid mass balance:

∂(Ag f ρg f )

∂t
+

∂ṁg f

∂z
= 0 (4.10)

The geothermal fluid energy balance:

Ag f ρg f
∂hg f (z, t)

∂t
= ṁg f

∂hg f

∂z
+ πdoUg f (Tw − Tg f ) (4.11)

The wall energy balance:

ρwCpw AwL
dTw(z, t)

∂t
= NtπdiUg f (Tw − Tg f ) + NtπdoUw f (Tw − Tw f ) (4.12)

4.3.3 Cross-flow Configuration

In developing this model, the working fluid was segmented into three vertical sec-

tions. These corresponded to the three passes of geothermal fluid through the va-

poriser. Section 1 corresponded to the brine tube-set second pass, Section 2 corre-

sponded to the brine tube-set first pass and Section 3 corresponded to the steam

tube-set. To solve Section 1, the temperature of the brine leaving Section 1 is needed.

Both sections are then solved using a loop until the brine outlet enthalpy of Section 2

matches the brine inlet enthalpy of Section 1. This was done with a relative tolerance

of 1 e−5. A diagram describing this configuration is shown below in Figure 4.3.

4.3.4 Heat Transfer Coefficients

The Haaland equation was used for friction factor and Gnielinski’s HTC were used

for brine tubes (Haaland, 1983). The Dobson equation was used for the HTC of
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FIGURE 4.3: Configuration of the First Principles model with a discretisation of seven

condensing geothermal vapour and the Cooper correlation was used for the nucleate

boiling HTC of the working fluid (Cooper, 1984; Dobson and Chato, 1998). In the

previous Section 4.2.2, the heat transfer coefficients decisions were described in more

detail.

4.3.5 Equations of State

Much like section 4.2.3, Peng Robinson was used for the working fluid. However,

differing from Aspen HYSYS, CoolProp uses the multi-parameter Helmholtz EOS.

This EOS was the most suitable of the three available in CoolProp. The approach

taken by CoolProp in characterising the behaviour of carbon dioxide and water

mixtures utilises empirical mixing terms to improve its thermodynamic description

(Harvey et al., 2016; Lemmon, Huber, and McLinden, 2013; Bell et al., 2014).

4.3.6 Data-Driven Correlations

Based on the approach taken by (Huster, Schweidtmann, and Mitsos, 2020), thermo-

dynamic data generated from CoolProp was used in developing empirical correla-

tions for temperature and density. These correlations were developed as an alterna-

tive to using CoolProp while running the simulation, which led to slow processing

speeds. Comparatively, in Huster, Schweidtmann, and Mitsos, 2020 the models pro-

duced are simpler. The curve fit function from SciPy for fitting power functions and
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Polyfit from NumPy for linear and polynomial functions were used. Though this ap-

proach is simpler, the range of conditions for which these models are valid is small.

Consequently, adequate results are shown in Table 4.5.

4.3.6.1 Temperature and Density Curves

The equations shown in the formulation of these models are in terms of enthalpy. In

calculating the heat transfer the temperature must be known, therefore a relationship

was derived. These models were extended to incorporate pressure in order to adapt

to changing pressure conditions of the plant. One standard deviation above and

below the mean from plant data was selected for temperature and pressure ranges

for the geothermal fluids. Approximately 10,000 data points were generated for each

curve. Each curve fitted follows a similar method, fitting the temperature in terms of

enthalpy at the specified range of pressures. The change in the various coefficients

is then fitted in terms of pressure using Polyfit.

In order to effectively model the phase change of the normal pentane working

fluid, over a range of temperatures, a piece-wise modelling approach was taken. A

relationship predicting density was also fitted in the same piece-wise form. This

required a dew curve, a bubble curve and the saturation temperature to be fitted

using a linear relationship of pressure. The coefficients of these equations are shown

in Equations 4.15, 4.16 and 4.17. These equations are used in the classification of the

phase of the working fluid. Based on the phase, whether that be subcooled, satu-

rated or superheated, a different relationship for temperature and density is used.

The resultant curves are shown in Figure 4.4. The temperature curve describes the

typical phase change of a pure fluid, whereas a function of only enthalpy, a linear

increase in temperature is shown during subcooled and superheating. This is sep-

arated by the evaporation region of the working fluid. If pressure is disregarded,

the temperature remains constant with changing enthalpy within this range. In ac-

counting for pressure, a linear increase in temperature is shown in the Y direction.

The density curve can be described similarly, however, a cubic equation is used to

describe the fluid undergoing evaporation. These curves were not required to be

normalised for the coefficients to be fitted. The curve fit for the subcooled region

is shown by Equation 4.13 and the curve fit for the superheated region is shown

by Equation 4.14. The remaining equations and graphs are shown in Appendix A:

Working Fluid Fitted Correlations.
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Tw f = (−2.42e−11P + 0.0003)H + 1.11e−5P + 49.47 (4.13)

Where H and P are the subcooled enthalpy and pressure of the working fluid.

Tw f = (−1.85e−10P + 0.00074)H + 1.24e−4P − 293.8 (4.14)

Where H and P are the superheated enthalpy and pressure of the working fluid.

The fitted coefficients for the bubble point are shown in Equation 4.15.

Hw f _bubble = 0.108P + 146628.9 (4.15)

The fitted coefficients for the dew point are shown in Equation 4.16.

Hw f _dew = −0.022P + 512845.5 (4.16)

The fitted coefficients for the saturated temperature are shown in Equation 4.17.

Tw f _sat = 2.67P + 11.2 (4.17)
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(A)

(B)

FIGURE 4.4: Prediction of temperature in (°C) in Figure A and density in kgm−3 in Figure
B of n-pentane. Both correlations are in terms of enthalpy and pressure



52 Chapter 4. Vaporiser and Plant Modelling

The simplified geothermal vapour is a mixture of water and carbon dioxide. The

composition is shown in Table 3.2. The inlet of the vapour is assumed to be satu-

rated, therefore this limits the upper conditions of the vapour. The water vapour of

this mixture undergoes condensation, resulting in a three-phase mixture of carbon

dioxide vapour, remaining water vapour and liquid water, therefore a comparatively

more complex model is required. During the condensation of the water vapour, sen-

sible heat is lost due to the presence of carbon dioxide. Based on the characteristics

of this curve, a power equation was used for temperature and density correlations

in terms of enthalpy. As a function of pressure, both curves display a linear relation-

ship in the P axis, shown in Figure 4.5. These curves were required to be normalised

with the maximum and minimum enthalpies 2710071 J kg−1 and 772538 J kg−1 and

pressures 13.14 bar and 12.55 bar. These ranges are based on the maximum and min-

imum plant conditions shown in the plant data. This was done to allow easier fitting

of the coefficients. The coefficients are shown below in Equation 4.18.

Tv = (1.43Pn + 16.66)e−Hn(0.0025Pn−0.054) + 0.71Pn + 173.5 (4.18)

Where Pn and Hn refer to the normalised pressure and normalised enthalpy, respec-

tively. The density curve coefficients are shown in Appendix B: Geothermal Fluid

Fitted Correlations.

The geothermal brine is assumed to be pure water. As the brine undergoes solely

sensible cooling, a linear model of temperature and density in terms of enthalpy fits

the relationship. The temperature and density also show a linear relationship as

a function of pressure. The enthalpy and pressure are normalised to replicate the

form of the geothermal vapour to allow for easier processing in Python. These val-

ues were normalised with enthalpies 816511 J kg−1 and 730288 J kg−1 and pressures

13.82 bar and 12.81 bar. These ranges are based on the maximum and minimum

plant conditions shown in the plant data. The curve is shown in Figure 4.6. The

coefficients are shown below in Equation 4.19.

Tl = (−0.0023Pn + 19.55)Hn − 0.011Pn + 172.5 (4.19)

Where Pn and Hn refer to the normalised pressure and normalised enthalpy, respec-

tively. The density curve coefficients are shown in Appendix B: Geothermal Fluid

Fitted Correlations.



4.3. First Principles Model 53

(A)

(B)

FIGURE 4.5: Prediction of temperature in (°C) in Figure A and density in kgm−3 in Figure
B of the geothermal vapour. Both correlations are in terms of normalised enthalpy and

pressure
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(A)

(B)

FIGURE 4.6: Prediction of temperature in (°C) in Figure A and density in kgm−3 in Figure
B of the geothermal brine. Both correlations are in terms of normalised enthalpy and

pressure
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4.3.6.2 Validation of Curves

The validation of the temperature and density curves was carried out by comparing

the predictions made by the fitted models with 10,000 data points values calculated

through Aspen HYSYS. For the n-pentane working fluid, the Peng Robinson EOS

could be used in CoolProp and Aspen HYSYS, however, the Helmholtz EOS is not

available in Aspen HYSYS, therefore the CPA EOS was used. This would account

for the small discrepancies between predictions of the aforementioned models and

Aspen HYSYS. Regardless, adequate results are shown in the prediction of temper-

ature and density, with an R2 above 0.97 for all fluids. Results are shown in Table

4.5.

TABLE 4.5: Validation of data-driven correlations against data generated from Aspen
HYSYS

Fluid Correlation R2 Units

Tl 0.990 ◦C
ρl 0.987 kgm−3

Tw f 0.978 ◦C
ρw f 0.981 kgm−3

Tv 0.986 ◦C
ρv 0.991 kgm−3

4.3.7 Model Tuning and Steady State Validation

The model was tuned to the steady state data from Case 1 using the minimise mod-

ule from SciPy integrate. Steady state results of the tuned First Principles (FP) model

are shown in Table 4.6. Adequate predictions are shown in each stream outlet tem-

perature. The model was then validated against the Case 2 data set, the results of

which are shown in Table 4.7. During validation, an instability was noticed sur-

rounding the power model fit for the temperature prediction of the vapour. This

prediction showed an absolute error and percent error of 4.13◦C and 2.37%, respec-

tively. Both the instability and the comparatively larger error is thought to be a result

of the vapour cooling to a lower temperature than accounted for by this curve. This

could be addressed by widening the applicable ranges of the temperature curve.
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TABLE 4.6: Steady state validation of FP model against plant data from Case 1

Fluid Variable Plant Data FP Model Error Abs. Error (%)

Tw f _vap_out (°C) 174.0 173.87 0.13 0.07
Tv_vap_out (°C) 174.8 174.89 0.09 0.05
Tl_vap_out (°C) 174.6 174.63 0.03 0.02

TABLE 4.7: Steady state validation of FP model against plant data from Case 2

Fluid Variable Plant Data FP Model Error Abs. Error (%)

Tw f _vap_out (°C) 170.0 170.00 0.00 0.00
Tv_vap_out (°C) 170.4 174.53 4.13 2.37
Tl_vap_out (°C) 170.8 171.98 1.18 0.69

4.4 Dynamic Comparison

In order to transition the Aspen HYSYS vaporiser model into its dynamic state, pres-

sure drops had to be introduced into the model, as a requirement for flow in Aspen

HYSYS. As a result, small adjustments were made to tuning factors to facilitate this

change. Changes were also made to the FP model in transitioning into dynamic con-

ditions. One of the assumptions was that the predicted conditions of the shell-side of

Section 3 could be approximated based on the average of inlet and outlet enthalpy.

This was found to remove any disturbances expected in the vapour outlet tempera-

ture. Instead, only the outlet enthalpy was used for approximating the temperature

and the density of the working fluid in Section 3 of the vaporiser. Two cases of

800 s were simulated, however, only 100 s to 600 s is displayed in Figure 4.7, to

clearly show the step change. The Aspen HYSYS model is used as the standard to

which the FP model is compared. In both cases there is good agreement between the

models.
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(A)

(B)

FIGURE 4.7: Step change of the working fluid (A) and brine (B) flow-rates and the tem-
perature response of the vaporiser for the Aspen HYSYS model and the First Principles

model
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4.4.1 Working Fluid Step Change

To test the dynamic response of all the outlet streams of the vaporiser, the work-

ing fluid flow-rate was increased from 1230T/h to 1310T/h. This result is shown

in Figure 4.7a, which displays the expected responses for each stream. The lack

of response displayed in the brine outlet of the Aspen HYSYS model is a conse-

quence of the method of calculation for heat transfer. As shown in Haydary, 2019,

enthalpy balances and the LMTD approach are used to calculate heat transfer in As-

pen HYSYS. Before and after the step change, the temperature of the working fluid

leaving the brine heat exchanger is largely unaffected by the mass flow-rate step

change. This is due to it undergoing evaporation. From inspection of the data, a

0.01◦C increase of the brine outlet temperature can be seen at the time of the step

change.

The FP model appears to show a comparatively faster response, which is most

evident in the working fluid’s response. The response of Aspen HYSYS, in addition

to being slower, appears to be of a comparatively higher-order derivative. This is

thought to result from the more comprehensive ’hold up’ and pressure specifications

used in Aspen HYSYS’s heat exchanger model which mimics physical systems. This

could be addressed by implementing more rigorous mass and momentum balances

into the ODE or by tuning the model dynamically (Pili, Spliethoff, and Wieland,

2017; Huster et al., 2018).

When comparing the FP model against the outlet temperatures produced in As-

pen HYSYS, a Root Mean Squared Error (RMSE) of 0.124◦C, 0.401◦C and 0.250◦C

was shown for the brine, vapour and working fluid respectively. The mean aver-

age percentage error (MAPE) was 0.039%, 0.211% and 0.093% for brine, vapour and

working fluid, respectively.

TABLE 4.8: Working fluid step change - Dynamic comparison between Aspen HYSYS
model and FP model

Fluid Variable RMSE. MAPE%

Tw f _vap_out(◦C) 0.2496 0.093%
Tv_vap_out(◦C) 0.4009 0.211%
Tl_vap_out(◦C) 0.1235 0.039%
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4.4.2 Brine Step Change

A brine flow-rate step change from 1000T/h to 1200T/h was also tested. The dy-

namic response is shown in Figure 4.7b. The slight delay in response of the working

fluid outlet temperature is a result of the change from a vapour fraction of approxi-

mately 0.98 to a fully vaporised outlet. This delay in increasing temperature is cap-

tured by both models. A very small increase was noted in the outlet vapour temper-

ature of the FP model of approximately 0.01◦C. Like the working fluid step change,

the Aspen HYSYS model’s response appears slower which reiterates that this model

may be higher order. Though this is not displayed in the graph, the working fluid

response of the Aspen HYSYS model does reach steady state.

The outlet brine and working fluid temperatures of the FP model display an off-

set, which is shown most evidently in Figure 4.7b, although is noticeable prior to the

step change of the working fluid in Figure 4.7a. This could be addressed by addi-

tional tuning, particularly so around the brine step change. Comparing the FP out-

lets against the outlet temperatures produced in Aspen HYSYS, an RMSE of 0.848◦C,

0.279◦C and 0.764◦C were obtained for the brine, vapour and working fluid, respec-

tively. The MAPE was 0.442%, 0.152% and 0.378% for brine, vapour and working

fluid, respectively.

TABLE 4.9: Brine step change - Dynamic comparison between Aspen HYSYS model and
FP model

Fluid Variable RMSE. MAPE%

Tw f _vap_out(◦C) 0.764 0.378%
Tv_vap_out(◦C) 0.279 0.152%
Tl_vap_out(◦C) 0.848 0.442%

4.5 Conclusions

Based on this chapter’s analysis, both the models produced in this thesis have shown

an adequate prediction accuracy at the two steady state cases of the plant. The tem-

perature predictions were shown for the outlet geothermal brine, vapour and work-

ing fluid of the Aspen HYSYS model with a percent error of 0.02%, 0.06% and 0.04%,

respectively, for the validation with Case 2, while the FP model showed a percent

error of 0.69%, 2.37% and 0.003%, respectively. The range of applicability of the FP

model could be improved by widening the range of conditions used in fitting the
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empirical correlations for the temperature of the geothermal vapour. Both models

could be further improved by comparing results with an operational data set in or-

der to validate these models dynamically.

Based on the current analysis, and considering the Aspen HYSYS model as the

"de facto" for comparison, the First Principles model is able to replicate the behaviour

of the Aspen HYSYS model with reasonable accuracy. Improvements could be made

to the FP model response to more resemble the behaviour of the Aspen HYSYS

model by implementing more rigorous mass balances and tuning the model dynam-

ically. It is also thought that the dynamic response could be improved through the

application of the two-volume methodology. This would better approximate evapo-

ration and the mixing that would realistically occur in the vaporiser shell. However,

application of this would require further segmentation into three volumes as the

vaporiser inlet is subcooled to a significant degree.

The plant model which was developed showed good predictions of the vapor-

iser outlets, however, streams surrounding the NCG pre-heater showed significant

errors up to 29% when compared with plant data. This is thought to result from the

difficulties of the EOS replicating the state behaviour of a gaseous and liquid water

and carbon dioxide gas mixture. Further research is required to assess other EOS

options or to potentially develop a new EOS tailored to carbon dioxide and water

compositions seen in geothermal applications.

The models developed in this thesis and the software tools used will be com-

pared in Chapter 5 based on their performance, availability, ease of use and model

fidelity.
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Chapter 5

Model Comparison

5.1 Preface

This chapter covers a comparison between the models developed in this thesis, and

the software tools used in model development. The comparison criteria are based

on Alford, 2021. This comparison is also extended to the model fidelity framework

outlined by Yu et al., 2022.

5.2 Comparison Criteria

The comparison criteria for software tools used in model development are based on

(Alford, 2021): this includes the model performance and availability of the software.

The comparison criteria are also extended to include the aforementioned model fi-

delity framework from Section 1.4 and the ease of use of the modelling software.

5.2.1 Performance

The model performance considers prediction accuracy and the processing time re-

quired. The prediction accuracy is arguably the most important attribute of these

models. The steady state results for Case 1 and Case 2 are shown in Tables 5.1 and

5.2. In Case 1, both models perform functionally the same, with a minuscule im-

provement shown by the FP model. However, in Case 2, the Aspen HYSYS model

shows a lower error. This is largely a result of the error in the vapour outlet tem-

perature, which is potentially caused by the fitted temperature curve. Extending

this comparison to the dynamic step changes, the highest RMSE found was in the

brine outlet temperature prediction. This error was 0.848 ◦C when compared with

the Aspen Hysys model’s prediction.
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The processing speed is also considered as this is required for real-time simula-

tion. An approximate value was measured using Google’s stopwatch for the Aspen

HYSYS model which required 93.09 +/- 1 timed seconds to simulate 830 simulated

seconds. The same simulation was tested using the FP model which was measured

using Python’s built-in time module. This required 80.09 seconds. Based on these

results, both models would be capable of simulating the vaporiser parallel to the

system, with the FP model running slightly faster.

TABLE 5.1: Error of the Aspen HYSYS vaporiser model for steady state Case 1 and 2

Aspen HYSYS Model Case 1 Case 2
Error Abs. Error (%) Error Abs. Error (%)

Tw f _vap_out 0.03 0.02 0.07 0.04
Tv_vap_out 0.17 0.1 0.10 0.06
Tl_vap_out 0.05 0.03 0.03 0.02

TABLE 5.2: Error of the First Principles vaporiser model for steady state Case 1 and 2

First Principles Model Case 1 Case 2
Error Abs. Error (%) Error Abs. Error (%)

Tw f _vap_out 0.13 0.07 0.00 0.00
Tv_vap_out 0.09 0.05 4.13 2.13
Tl_vap_out 0.03 0.02 1.18 0.69

5.2.2 Availability

The availability considers the accessibility and the monetary investment of these

software tools. Python and CoolProp are both available worldwide at no cost, while

an Aspen HYSYS dynamic licence, though also globally available, costs approxi-

mately 85% of a process engineering graduate’s annual salary in New Zealand.

5.2.3 Ease of Use

This section considers the difference in time, effort and skill requirements of de-

veloping each model. Of the entire FP model, a relatively small percentage of the

written code is used for the calculation of heat transfer, whereas the remaining code

is used in setting up the thermodynamic properties and state variables. This set-

up includes the developed empirical equations and CoolProp. This differs from the

Aspen HYSYS model which has a wide range of easily accessible thermodynamic

property packages.
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In calculating the heat transfer, Aspen HYSYS allows the use of built-in unit op-

erations, however, for this case it does not accommodate multiple tube-set heat ex-

changers. Using two heat exchangers in series allows the ability to replicate this

vaporiser’s configuration. This highlights a difficulty in Aspen HYSYS if modelling

a unique unit operation. An alternative is to use the inbuilt, Excel-based formats that

could add flexibility to the unit operations. Using Python allows for a large degree of

flexibility as the differential equations are formulated on First Principles equations.

This allows the model to easily replicate unique equipment that is not accounted for

in available unit operations.

In the development of both models, a graduate chemical engineering background

would be necessary. In addition to this, the Python model would require an interme-

diate level of coding skills which would have a significant impact on the time taken

in this model’s development. In this case, with minimal prior coding experience, it

is thought to have taken a four-month period in development of the First Principles

model. Yet, using Aspen HYSYS, the vaporiser model, excluding the plant model,

was able to be developed in less than a week.

The assured robustness of either software is also a point of comparison. Develop-

ing the FP model as an individual, the quality assurance of the model is significantly

less than that of a well-established tool such as Aspen HYSYS. The latter is devel-

oped by a team of industry professionals recognised as the industry standard for

process simulation.

5.2.4 Model Fidelity

As outlined in section 1.4, the model fidelity framework includes three distinct at-

tributes of a Digital Twin: looks-like, behaves-like and connects to. Both models

developed have been validated against multiple steady state data points and are ca-

pable of modelling dynamically. These models therefore would be classified as 3-D

in the behaves-like attribute.

The Aspen HYSYS model would be considered a 2-D visual representation of

the vaporiser. A visual process flow diagram is used as an interactive medium in

addition to the vaporiser specific dimensions being used in the model. The FP model

also uses vaporiser specific dimensions, and a coordinate system of both horizontal

and vertical dimensions: this would therefore be considered a 2-D in the visual-

likeness attribute.
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Neither model has an automatic connection between model and plant, and there-

fore would be considered a digital model. A proposed connection could be devel-

oped between the FP vaporiser model and the plant model developed in Aspen

HYSYS. To justify this other than as a proof of concept, the performance in both pre-

diction accuracy and processing speed would have to be significantly better in the

FP vaporiser model than the Aspen HYSYS vaporiser model. In this current iteration

this is not the case.

These results are summarised in Table 5.3.

TABLE 5.3: Summary of the comparisons of the First Principles and Aspen HYSYS model
attributes

Model Attribute Aspen HYSYS First Principles

Average Prediction Error

of Steady State Case 1

and 2

0.084 & 0.065 0.082 & 1.773

Simulation Speed (s) 93.09 80.09

Availability Available worldwide Available worldwide

Software Cost 85% of a graduate

process engineer’s

annual salary

Freely available

Set-up (thermodynamic

properties)

Built-in to the software Set-up using CoolProp

Flexibility of Heat

Transfer

Less flexible, easily used

if the unit operation is

available

As the heat transfer

equation is formulated

high degree of flexibility

Development Time

(Estimate)

1 week 4 months

Quality

Assurance/Robustness

Tested commercially by a

professional team of

people

Tested by one person

Behaves-like 3D 3D

Looks-like 2D 2D

Connects-to 1D 1D
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5.3 Conclusions

In summary, the suitability of Aspen HYSYS and Python modelling tools were com-

pared. Both models showed similar predictions in both steady state cases. The time

investment for the FP model is significantly higher than for the Aspen HYSYS model.

This is largely a result of the amount of thermodynamic set-up required in the FP

model, while having this readily available in the Aspen HYSYS model. However, a

dynamic licence of Aspen HYSYS for a single user is approximated at 85% of a New

Zealand process engineering graduate’s annual salary. This highlights a trade-off

between time and monetary investments by the modelling software used.

The fidelity of each of the modelling tools is comparable. Both models are con-

sidered as 3-D in the behaves-like attribute, and both models are manually input

with data, therefore are considered digital models. These models would also be con-

sidered 2-D in visual representation due to their vaporiser specific dimensions and

coordinate system of the vaporiser.

Chapter 6 covers the overall conclusions and recommendations of this work.





67

Chapter 6

Conclusions

This thesis develops and compares various modelling techniques and the software

tools used in their development. The subject of these models was an industrial-scale

vaporiser with multiple tube-sets, which is an essential part of an ORC cycle in a

binary geothermal plant. This was used to further understand the key strengths

and limitations of the software tools used, and the model development process. As

part of the Ahuora research programme, this work will aid the development and

understanding of Digital Twins for New Zealand industries.

Firstly, a plant model of the ORC cycle was developed in Aspen HYSYS, which

was used as a tool in the development of the vaporiser models. Additionally, as fu-

ture work, this could be used in the development of a Digital Twin for a virtual plant.

The vaporiser model was developed in Aspen HYSYS as part of the plant model,

however, the former was separately transitioned into a dynamic state in which ad-

ditional tuning was required. A unique approach had to be taken, utilising two heat

exchangers in series to model the vaporiser. These models were validated against

two sets of steady state data.

Secondly, a First Principles-based model of the vaporiser was developed in Python

using the Discretised approach. This required segmentation of the model into three

sections, each corresponding to a separate pass of the tubes. In order to improve

processing speeds, empirical correlations were developed for temperature and den-

sity based on data generated from CoolProp. This vaporiser model was validated

against two sets of steady state data.

Each of the models described, showed adequate predictions at multiple steady

state conditions. However, of the vaporiser models, the Aspen HYSYS model per-

formed slightly better with a percent error of 0.02%, 0.06% and 0.04%, for the temper-

atures of the outlet geothermal brine, vapour and working fluid, respectively. The
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FP model showed a percent error of 0.69%, 2.37% and 0.003% for the same streams,

respectively. The plant model showed reasonable predictions around most of the key

streams, however, a sizable error was shown in the non-condensable gas leaving the

system. This is likely to be a result of the equations of state used for this stream,

and its difficulty in replicating behaviour of fluids with higher CO2 mole fraction.

The dynamic behaviour of the vaporiser models is shown, where the First Princi-

ples model is able to replicate the behaviour of the Aspen HYSYS model for most

streams. However, differences were noted in the differential order of the models.

A comparison was made between models and the tools used in their develop-

ment based on attributes of performance, availability, ease of use and model fidelity.

As described, there were slight differences in prediction performance and in pro-

cessing speeds. For the availability and ease of use of these tools, a trade-off would

need to be made in deciding which modelling software to use, weighing monetary

investment in using Aspen HYSYS against the time investment in using Python. In

terms of model fidelity, the First Principles model and Aspen HYSYS model would

be categorised as a 3-2-1D model in terms of behaves-like, looks-like and connects-to

attributes.

6.1 Future Work

Through this thesis’ investigation into geothermal vaporiser modelling, various ar-

eas for potential improvements and future research arose. These are:

Improved Aspen HYSYS Model: The areas of improvement for the Aspen HYSYS

model were its dynamic validation against plant data and further investigation into

the equations of state. Further validation of the Aspen HYSYS model against dy-

namic plant data would be beneficial in tuning the model’s dynamic response.

Improved First Principles Model: The areas of improvement for the First Prin-

ciples model were its dynamic response and applicable ranges of the temperature

model for the geothermal vapour. Two improvements could address the dynamic

response: these are the use of the two-volume modelling approach, and the dynamic

tuning of the model. The two-volume approach involves a significantly more com-

plex mass balance of the shell, directly approximating evaporation rates and there-

fore mass flow between each volume. Additionally, further validation and tuning
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with dynamic plant data could be used to improve the model’s dynamic response.

Another potential area of improvement is the inaccuracies of the model at com-

paratively lower temperatures. The inaccuracies are thought to be a result of the

temperature relationship for the geothermal vapour, and could be addressed by fit-

ting the curve to wider temperature ranges.

Black Box Model Comparison: In addition, a Black Box model comparison

would be useful in widening the range of models developed. Based on the litera-

ture reviewed in Section 2.5, hitherto only one industrial-scale Black Box model has

been developed which shows promising results.

Implementing One-way Connection: The development of a one-way connec-

tion between the First Principles model and the Aspen HYSYS plant model would

be useful as a step towards a Digital Twin and allowing a plant model with more

flexibility in vaporiser modelling. This would address the gap seen in the literature

regarding a lack of Digital Shadows and Digital Twins of ORCs.
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Chapter 7

Appendices

Appendix A: Working Fluid Fitted Correlations

The fitted coefficients for the density of the working fluid (normal pentane) are

shown in Equations 7.1, 7.3 and 7.4. These correspond to the evaporating, subcooled

and superheated regions of the working fluid.

ρw f _evap =(−2.37e−20P − 5.87e−14)H3 + (5.97e−14P − 3.82e−8)H2 (7.1)

+ (−4.35e−8P + 0.0089)H + 0.0099P − 6798 (7.2)

ρw f _subcooled = (−7.11e−11P − 0.0009)H + 4.4e−5P + 677 (7.3)

Where H and P are the sub-cooled enthalpy and pressure of the working fluid.

ρw f _superheat = (−5.7e−10P + 0.001)H + 0.00038P − 637.1 (7.4)

Where H and P are the superheated enthalpy and pressure of the working fluid.
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The bubble point curve is shown in Figure 7.1.

FIGURE 7.1: Bubble point curve of the working fluid fitted against pressure
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The dew point curve is shown in Figure 7.2.

FIGURE 7.2: Dew point curve of the working fluid fitted against pressure
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The saturated temperature curve is shown in Figure 7.3.

FIGURE 7.3: Saturated temperature curve of the working fluid fitted against pressure



Appendix B: Geothermal Fluid Fitted Correlations 75

Appendix B: Geothermal Fluid Fitted Correlations

The fitted coefficients for the density of the geothermal vapour are shown in Equa-

tion 7.5.

ρv = (−12.4Pn − 117.8)e−Hn(0.0025Pn−0.063) + 12.2Pn + 116.9 (7.5)

Where Pn and Hn refer to the normalised pressure and normalised enthalpy respec-

tively.

The fitted coefficients for the density of the geothermal brine are shown in Equa-

tion 7.6.

ρl = (−0.013Pn − 21.3)Hn + 0.084Pn + 884.3 (7.6)

Where Pn and Hn refer to the normalised pressure and normalised enthalpy respec-

tively.
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Appendix C: First Principles Paper Summary

The table summary of First Principles papers is shown in 7.1.

TABLE 7.1: First Principles paper summary where MD and MS stand for Modelica Dy-
mola, and MATLAB Simulink environments respectively. NA is used where no valida-

tion data or software is provided

Model Type Validation Data Software Reference

Steady State Model Based NA Hettiarachchi et al., 2007

Steady State NA MD Wei et al., 2007

Dynamic Lab MD Wei et al., 2008

Steady State NA NA Franco et al., 2009

Steady State NA NA Dai et al., 2009

Dynamic Industrial Plant gProms Sohel et al., 2010

Dynamic Industrial Plant NA Sun et al., 2011

Dynamic NA MD Quoilin et al., 2011

Dynamic Lab NA Zhang et al., 2012

Steady State Model Based EES Khennich et al., 2012

Steady State NA EES Meyer et al., 2013

Steady State NA Other El-Emam et al., 2013

Steady State NA MATLAB Wang et al., 2013

Dynamic Lab MS Feru et al., 2014

Dynamic Lab MS Zhang et al., 2014

Steady State NA Aspen Plus Lv et al., 2014

Dynamic Industrial Plant MS Mazzi et al., 2015

Dynamic Lab VMG Sim Lie, 2015

Dynamic NA MATLAB Grelet et al., 2015

Steady State NA EES Taylor, 2015

Dynamic Industrial Plant VMG Sim Proctor et al., 2016

Dynamic Lab MS Seitz et al., 2016

Dynamic NA NA Shi et al., 2016

Dynamic Industrial Plant MD Pili et al., 2017

Dynamic Lab gProms Schilling et al., 2017

Dynamic Lab MS Koppauer et al., 2017

Dynamic Lab MS Xu et al., 2017
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Continuation of Table 7.1.

Model Type Validation Data Software Reference

Dynamic Lab Aspen Plus Kuboth et al., 2017

Dynamic Lab MATLAB Liu et al., 2017

Dynamic Lab GT Suite Marchionni et al., 2017

Dynamic Model Based MATLAB Lakhani et al., 2017

Dynamic NA NA Jolevski et al., 2017

Dynamic Pilot Plant NA Wang et al., 2017

Steady State NA NA Gullapalli, 2017

Steady State NA Aspen Plus Rajabloo, 2017

Dynamic Lab MD Ni et al., 2018

Dynamic Lab GT Suite Zhao et al., 2018

Dynamic Lab gProms Huster et al., 2018r

Dynamic NA MS Li et al., 2018

Steady State NA NA Jang et al., 2018

Steady State NA Aspen Plus Nur et al., 2018

Steady State NA NA Sun et al., 2018

Steady State NA EES Bellos et al., 2018

Dynamic Lab MD Zhang et al., 2019

Dynamic Lab MS Carraro et al., 2019

Dynamic NA MD Jiménez-Arreola et al., 2019

Steady State Model Based MATLAB Wang et al., 2019

Steady State Model Based MATLAB Luo et al., 2019

Dynamic Lab MD Pili et al., 2020

Dynamic Lab MS Xu et al., 2020

Steady State Industrial Plant EES Altun et al., 2020

Steady State NA Aspen HYSYS Hidayah et al., 2020

Steady State NA NA Petrollese et al., 2020

Steady State NA MATLAB Feng et al., 2020

Dynamic Model Based MS Cao et al., 2021

Steady State NA MS Liu et al., 2020
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Appendix D: Black Box Paper Summary

The table summary of Black Box papers is shown in 7.2.

TABLE 7.2: Black Box paper summary where NA is used shown when no validation data
or software is provided

Model Type Validation Data Software Reference

Steady State No Source MATLAB Arslan et al., 2011

Dynamic Model Based MATLAB Chowdhury et al., 2015

Dynamic Model Based NA Zhang et al., 2012

Steady State Model Based MATLAB Massimiani et al., 2017

Steady State No Source NA Kovacı et al., 2017

Steady State Lab NA Dong et al., 2018

Dynamic Model Based NA Chowdhury et al., 2018

Dynamic Lab NA Yang et al., 2018

Steady State Model Based MATLAB Kılıç et al., 2019

Steady State Lab MATLAB Khosravi et al., 2019

Dynamic Lab Python Palagi et al., 2019

Steady State Model Based MATLAB Schweidtmann et al., 2019

Steady State Model Based MATLAB Huster et al., 2019

Steady State Model Based MATLAB Zhi et al., 2019

Dynamic Lab NA Enayatollahi et al., 2020

Steady State Model Based Python Wang et al., 2020

Steady State Lab NA Feng et al., 2020

Steady State Model Based MATLAB Huster et al., 2020

Steady State Lab Python Mert et al., 2020

Steady State Lab MATLAB Yan et al., 2021

Steady State Model Based NA Peng et al., 2021

Dynamic Industrial Plant NA Liu et al., 2021
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neural network approach to estimation of power production for an organic Rank-

ine cycle system”. In: Journal of the Brazilian Society of Mechanical Sciences and En-

gineering 42 (12). ISSN: 18063691. DOI: 10.1007/s40430-020-02701-y.

Meyer, David, Choon Wong, Frithjof Engel, and Susan Krumdieck (2013). Design and

Build of a 1Kilowatt Organic Rankine Cycle Power Generator.

Ministry for Primary Industries (2020). Situation and Outlook for Primary Industries

(SOPI) December 2020. URL: www.mpi.govt.nz.

Ministry of Business, Innovation and Employment (2021). Energy In New Zealand

2021. Ministry of Business, Innovation and Employment.

Ni, Jiaxin, Li Zhao, Zhengtao Zhang, Ying Zhang, Jianyuan Zhang, Shuai Deng, and

Minglu Ma (Mar. 2018). “Dynamic performance investigation of organic Rankine

cycle driven by solar energy under cloudy condition”. In: Energy 147, pp. 122–

141. ISSN: 03605442. DOI: 10.1016/j.energy.2018.01.032.

Nur, T. B. and Sunoto (Mar. 2018). “Exergy analysis of biomass organic Rankine cycle

for power generation”. In: IOP Conference Series: Materials Science and Engineering

309 (1). ISSN: 1757899X. DOI: 10.1088/1757-899X/309/1/012057.

Palagi, Laura, Apostolos Pesyridis, Enrico Sciubba, and Lorenzo Tocci (Jan. 2019).

“Machine Learning for the prediction of the dynamic behavior of a small scale

https://doi.org/10.1016/j.egypro.2017.09.146
https://doi.org/10.1016/j.egypro.2017.09.146
https://doi.org/10.1016/j.egypro.2017.09.174
https://doi.org/10.1016/j.energy.2015.07.083
https://doi.org/10.1016/j.energy.2015.07.083
https://doi.org/10.1007/s40430-020-02701-y
www.mpi.govt.nz
https://doi.org/10.1016/j.energy.2018.01.032
https://doi.org/10.1088/1757-899X/309/1/012057


88 References

ORC system”. In: Energy 166, pp. 72–82. ISSN: 03605442. DOI: 10.1016/j.energy.

2018.10.059.

Pan, Shu Yuan, Mengyao Gao, Kinjal J. Shah, Jianming Zheng, Si Lu Pei, and Pen

Chi Chiang (Mar. 2019). “Establishment of enhanced geothermal energy utiliza-

tion plans: Barriers and strategies”. In: Renewable Energy 132, pp. 19–32. ISSN:

18790682. DOI: 10.1016/j.renene.2018.07.126.

Peng, Yannan, Xinxing Lin, Jinghang Liu, Wen Su, and Naijun Zhou (Aug. 2021).

“Machine learning prediction of ORC performance based on properties of work-

ing fluid”. In: Applied Thermal Engineering 195. ISSN: 13594311. DOI: 10.1016/j.

applthermaleng.2021.117184.

Pethurajan, Vignesh, Suresh Sivan, and Grashin C. Joy (June 2018). “Issues, com-

parisons, turbine selections and applications – An overview in organic Rankine

cycle”. In: Energy Conversion and Management 166, pp. 474–488. ISSN: 01968904.

DOI: 10.1016/j.enconman.2018.04.058.

Petrollese, Mario and Daniele Cocco (Dec. 2020). “A multi-scenario approach for a

robust design of solar-based ORC systems”. In: Renewable Energy 161, pp. 1184–

1194. ISSN: 18790682. DOI: 10.1016/j.renene.2020.07.120.

Pili, R., S. Eyerer, F. Dawo, C. Wieland, and H. Spliethoff (Dec. 2020). “Develop-

ment of a non-linear state estimator for advanced control of an ORC test rig for

geothermal application”. In: Renewable Energy 161, pp. 676–690. ISSN: 18790682.

DOI: 10.1016/j.renene.2020.07.121.

Pili, Roberto, Hartmut Spliethoff, and Christoph Wieland (Apr. 2017). “Dynamic

simulation of an Organic Rankine Cycle - Detailed model of a kettle boiler”. In:

Energies 10 (4). ISSN: 19961073. DOI: 10.3390/en10040548.

Proctor, Matthew J., Wei Yu, Robert D. Kirkpatrick, and Brent R. Young (May 2016).

“Dynamic modelling and validation of a commercial scale geothermal organic

rankine cycle power plant”. In: Geothermics 61, pp. 63–74. ISSN: 03756505. DOI:

10.1016/j.geothermics.2016.01.007.

Quaak, P, Van Wijck, and Van Haren (1994). “Comparison of process identifica-

tion and physical modelling for falling-film evaporators”. In: Food Control 5 (2),

pp. 73–82.

Quoilin, Sylvain, Martijn Van Den Broek, Sébastien Declaye, Pierre Dewallef, and

Vincent Lemort (2013). “Techno-economic survey of organic rankine cycle (ORC)

https://doi.org/10.1016/j.energy.2018.10.059
https://doi.org/10.1016/j.energy.2018.10.059
https://doi.org/10.1016/j.renene.2018.07.126
https://doi.org/10.1016/j.applthermaleng.2021.117184
https://doi.org/10.1016/j.applthermaleng.2021.117184
https://doi.org/10.1016/j.enconman.2018.04.058
https://doi.org/10.1016/j.renene.2020.07.120
https://doi.org/10.1016/j.renene.2020.07.121
https://doi.org/10.3390/en10040548
https://doi.org/10.1016/j.geothermics.2016.01.007


References 89

systems”. In: Renewable and Sustainable Energy Reviews 22, pp. 168–186. ISSN: 13640321.

DOI: 10.1016/j.rser.2013.01.028.

Quoilin, Sylvain, Sébastien Declaye, Bertrand F. Tchanche, and Vincent Lemort (2011).

“Thermo-economic optimization of waste heat recovery Organic Rankine Cy-

cles”. In: Applied Thermal Engineering 31 (14-15), pp. 2885–2893. ISSN: 13594311.

DOI: 10.1016/j.applthermaleng.2011.05.014.

Rajabloo, Talieh (2017). “Thermodynamic study of ORC at different working and

peripheral conditions”. In: Energy Procedia 129, pp. 90–96. ISSN: 18766102. DOI:

10.1016/j.egypro.2017.09.165.

Rasmussen, Bryan P. (Oct. 2012). “Dynamic modeling for vapor compression systems-

Part I: Literature review”. In: HVAC and R Research 18 (5), pp. 934–955. ISSN:

10789669. DOI: 10.1080/10789669.2011.582916.

Rhinehart, R Russell (2016). Nonlinear regression modeling for engineering applications :

modeling, model validation, and enabling design of experiments. ISBN: 9781118597972.

Roffel, Brian (2006). Process Dynamics and Control : Modeling for Control and Prediction.

John Wiley Sons. ISBN: 0470016639.

Russell, Nigel Thomas (1997). “Dynamic Modelling of a Falling-film Evaporator for

Model Predictive Control”. PhD Thesis. Massey University.

Sansana, Joel, Mark N. Joswiak, Ivan Castillo, Zhenyu Wang, Ricardo Rendall, Leo

H. Chiang, and Marco S. Reis (May 2021). “Recent trends on hybrid modeling for

Industry 4.0”. In: Computers Chemical Engineering, p. 107365. ISSN: 00981354. DOI:

10.1016/j.compchemeng.2021.107365. URL: https://linkinghub.elsevier.

com/retrieve/pii/S0098135421001435.

Schilling, Johannes, Joachim Gross, and André Bardow (2017). “Integrated design

of ORC process and working fluid using process flowsheeting software and PC-

SAFT”. In: Energy Procedia 129, pp. 129–136. ISSN: 18766102. DOI: 10.1016/j.

egypro.2017.09.184.

Schweidtmann, Artur M., Wolfgang R. Huster, Jannik T. Lüthje, and Alexander Mit-

sos (Feb. 2019). “Deterministic global process optimization: Accurate (single-

species) properties via artificial neural networks”. In: Computers and Chemical En-

gineering 121, pp. 67–74. ISSN: 00981354. DOI: 10.1016/j.compchemeng.2018.

10.007.

https://doi.org/10.1016/j.rser.2013.01.028
https://doi.org/10.1016/j.applthermaleng.2011.05.014
https://doi.org/10.1016/j.egypro.2017.09.165
https://doi.org/10.1080/10789669.2011.582916
https://doi.org/10.1016/j.compchemeng.2021.107365
https://linkinghub.elsevier.com/retrieve/pii/S0098135421001435
https://linkinghub.elsevier.com/retrieve/pii/S0098135421001435
https://doi.org/10.1016/j.egypro.2017.09.184
https://doi.org/10.1016/j.egypro.2017.09.184
https://doi.org/10.1016/j.compchemeng.2018.10.007
https://doi.org/10.1016/j.compchemeng.2018.10.007


90 References

Seitz, D., O. Gehring, C. Bunz, M. Brunschier, and O. Sawodny (2016). “Dynamic

Model of a Multi-Evaporator Organic Rankine Cycle for Exhaust Heat Recov-

ery in Automotive Applications”. In: IFAC-PapersOnLine 49 (21), pp. 39–46. ISSN:

24058963. DOI: 10.1016/j.ifacol.2016.10.508.

Shah, M. M. (Apr. 1979). “A general correlation for heat transfer during film con-

densation inside pipes”. In: International Journal of Heat and Mass Transfer 22 (4),

pp. 547–556. ISSN: 0017-9310. DOI: 10.1016/0017-9310(79)90058-9.

Shi, Rongqi, Tianqi He, Jie Peng, Yangjun Zhang, and Weilin Zhuge (May 2016).

“System design and control for waste heat recovery of automotive engines based

on Organic Rankine Cycle”. In: Energy 102, pp. 276–286. ISSN: 03605442. DOI:

10.1016/j.energy.2016.02.065.

Sinnott, R K (2005). Coulson Richardson’s chemical engineering. Vol. 6, Chemical engi-

neering design. Ed. by J M (John Metcalfe) Coulson and J F (John Francis) Richard-

son. 4th ed.. Includes bibliographical references and index. Oxford : Elsevier

Butterworth-Heinemann 2005.

Siwach, Sandeep (2016). “Development and validation of a CFD-based approach to-

wards analysing Pentane vaporizers”. PhD Thesis. University of Canterbury.

Soares, Rafael M., Maurício M. Câmara, Thiago Feital, and José Carlos Pinto (Aug.

2019). “Digital Twin for Monitoring of Industrial Multi-Effect Evaporation”. In:

Processes 7 (8), p. 537. ISSN: 2227-9717. DOI: 10.3390/pr7080537.

Sohel, Mohammed Imroz, Susan Krumdieck, Mathieu Sellier, M Imroz Sohel, and

Larry J Brackney (2010). Dynamic Modelling and Simulation of an Organic Rankine

Cycle Unit of a Geothermal Power Plant, pp. 25–29. URL: https://www.researchgate.

net/publication/272483115.

Southon, Michael (2015). “Performance and cost evaluation to inform the design and

implementation of Organic Rankine Cycles in New Zealand”. Master’s Thesis.

University of Canterbury.

Sun, Jian and Wenhua Li (Aug. 2011). “Operation optimization of an organic rankine

cycle (ORC) heat recovery power plant”. In: Applied Thermal Engineering 31 (11-

12), pp. 2032–2041. ISSN: 13594311. DOI: 10.1016/j.applthermaleng.2011.03.

012.

Sun, Jie, Qiang Liu, and Yuanyuan Duan (Sept. 2018). “Effects of evaporator pinch

point temperature difference on thermo-economic performance of geothermal

https://doi.org/10.1016/j.ifacol.2016.10.508
https://doi.org/10.1016/0017-9310(79)90058-9
https://doi.org/10.1016/j.energy.2016.02.065
https://doi.org/10.3390/pr7080537
https://www.researchgate.net/publication/272483115
https://www.researchgate.net/publication/272483115
https://doi.org/10.1016/j.applthermaleng.2011.03.012
https://doi.org/10.1016/j.applthermaleng.2011.03.012


References 91

organic Rankine cycle systems”. In: Geothermics 75, pp. 249–258. ISSN: 03756505.

DOI: 10.1016/j.geothermics.2018.06.001.

Talybov, Misirkhan A., Lala A. Azizova, and Ilmutdin M. Abdulagatov (Sept. 2019).

“Experimental Vapor-Pressures and Derived Thermodynamic Properties of Geother-

mal Fluids from Baden-Baden Geothermal Field (Southeastern Germany)”. In:

Journal of Energy and Power Technology 1 (4), pp. 1–1. DOI: 10 . 21926 / jept .

1904006. URL: https://www.lidsen.com/journals/jept/jept-01-04-006.

Taylor, Leighton John (2015). “Development of a Low Temperature Geothermal Or-

ganic Rankine Cycle Standard”. Master’s Thesis. University of Canterbury.

USDA (2020). United States Department of Agriculture Foreign Agricultural Service Dairy

Production and Trade Developments.

Wang, Jiangfeng, Zhequan Yan, Man Wang, Maoqing Li, and Yiping Dai (2013).

“Multi-objective optimization of an organic Rankine cycle (ORC) for low grade

waste heat recovery using evolutionary algorithm”. In: Energy Conversion and

Management 71, pp. 146–158. ISSN: 01968904. DOI: 10.1016/j.enconman.2013.

03.028.

Wang, Qi, Weifeng Wu, and Zhilong He (Oct. 2019). “Thermodynamic analysis and

optimization of a novel organic Rankine cycle-based micro-scale cogeneration

system using biomass fuel”. In: Energy Conversion and Management 198. ISSN:

01968904. DOI: 10.1016/j.enconman.2019.111803.

Wang, Wei, Shuai Deng, Dongpeng Zhao, Li Zhao, Shan Lin, and Mengchao Chen

(Apr. 2020). “Application of machine learning into organic Rankine cycle for pre-

diction and optimization of thermal and exergy efficiency”. In: Energy Conversion

and Management 210. ISSN: 01968904. DOI: 10.1016/j.enconman.2020.112700.

Wang, Xuan, Gequn Shu, Hua Tian, Peng Liu, Dongzhan Jing, and Xiaoya Li (2017).

“Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recov-

ery of a natural gas engine”. In: Energy Conversion and Management 148, pp. 724–

736. ISSN: 01968904. DOI: 10.1016/j.enconman.2017.06.014.

Wei, Donghong, Xuesheng Lu, Zhen Lu, and Jianming Gu (2007). “Performance

analysis and optimization of organic Rankine cycle (ORC) for waste heat recov-

ery”. In: Energy Conversion and Management 48 (4), pp. 1113–1119. ISSN: 01968904.

DOI: 10.1016/j.enconman.2006.10.020.

Wei, Donghong, Xuesheng Lu, Zhen Lu, and Jianming Gu (2008). “Dynamic mod-

eling and simulation of an Organic Rankine Cycle (ORC) system for waste heat

https://doi.org/10.1016/j.geothermics.2018.06.001
https://doi.org/10.21926/jept.1904006
https://doi.org/10.21926/jept.1904006
https://www.lidsen.com/journals/jept/jept-01-04-006
https://doi.org/10.1016/j.enconman.2013.03.028
https://doi.org/10.1016/j.enconman.2013.03.028
https://doi.org/10.1016/j.enconman.2019.111803
https://doi.org/10.1016/j.enconman.2020.112700
https://doi.org/10.1016/j.enconman.2017.06.014
https://doi.org/10.1016/j.enconman.2006.10.020


92 References

recovery”. In: Applied Thermal Engineering 28 (10), pp. 1216–1224. ISSN: 13594311.

DOI: 10.1016/j.applthermaleng.2007.07.019.

Wu, Peiyi and W A Little (1984). “Measurement of the heat transfer characteristics

of gas flow in fine channel heat exchangers used for microminiature refrigera-

tors”. In: Cryogenics 24 (8), pp. 415–420. ISSN: 0011-2275. DOI: https://doi.org/

10.1016/0011- 2275(84)90015- 8. URL: https://www.sciencedirect.com/

science/article/pii/0011227584900158.

Xu, Bin, Dhruvang Rathod, Shreyas Kulkarni, Adamu Yebi, Zoran Filipi, Simona

Onori, and Mark Hoffman (2017). “Transient dynamic modeling and validation

of an organic Rankine cycle waste heat recovery system for heavy duty diesel

engine applications”. In: Applied Energy 205, pp. 260–279. ISSN: 03062619. DOI:

10.1016/j.apenergy.2017.07.038.

Xu, Bin, Dhruvang Rathod, Adamu Yebi, Simona Onori, Zoran Filipi, and Mark

Hoffman (Jan. 2020). “A comparative analysis of dynamic evaporator models

for organic Rankine cycle waste heat recovery systems”. In: Applied Thermal En-

gineering 165. ISSN: 13594311. DOI: 10.1016/j.applthermaleng.2019.114576.

Yadav, Drishti and Om Prakash Verma (July 2020). “Energy optimization of Multiple

Stage Evaporator system using Water Cycle Algorithm”. In: Heliyon 6 (7). ISSN:

24058440. DOI: 10.1016/j.heliyon.2020.e04349.

Yan, Dong, Fubin Yang, Fufang Yang, Hongguang Zhang, Zhiyu Guo, Jian Li, and

Yuting Wu (July 2021). “Identifying the key system parameters of the organic

Rankine cycle using the principal component analysis based on an experimental

database”. In: Energy Conversion and Management 240, p. 114252. ISSN: 01968904.

DOI: 10.1016/j.enconman.2021.114252. URL: https://linkinghub.elsevier.

com/retrieve/pii/S0196890421004283.

Yang, Fubin, Heejin Cho, Hongguang Zhang, Jian Zhang, and Yuting Wu (May

2018). “Artificial neural network (ANN) based prediction and optimization of

an organic Rankine cycle (ORC) for diesel engine waste heat recovery”. In: En-

ergy Conversion and Management 164, pp. 15–26. ISSN: 01968904. DOI: 10.1016/j.

enconman.2018.02.062.

Yin, Shen, Steven X. Ding, Xiaochen Xie, and Hao Luo (2014). “A review on basic

data-driven approaches for industrial process monitoring”. In: IEEE Transactions

on Industrial Electronics 61 (11), pp. 6418–6428. ISSN: 02780046. DOI: 10.1109/TIE.

2014.2301773.

https://doi.org/10.1016/j.applthermaleng.2007.07.019
https://doi.org/https://doi.org/10.1016/0011-2275(84)90015-8
https://doi.org/https://doi.org/10.1016/0011-2275(84)90015-8
https://www.sciencedirect.com/science/article/pii/0011227584900158
https://www.sciencedirect.com/science/article/pii/0011227584900158
https://doi.org/10.1016/j.apenergy.2017.07.038
https://doi.org/10.1016/j.applthermaleng.2019.114576
https://doi.org/10.1016/j.heliyon.2020.e04349
https://doi.org/10.1016/j.enconman.2021.114252
https://linkinghub.elsevier.com/retrieve/pii/S0196890421004283
https://linkinghub.elsevier.com/retrieve/pii/S0196890421004283
https://doi.org/10.1016/j.enconman.2018.02.062
https://doi.org/10.1016/j.enconman.2018.02.062
https://doi.org/10.1109/TIE.2014.2301773
https://doi.org/10.1109/TIE.2014.2301773


References 93

Young, Brent R (1992). “Modelling and Identification of a Climbing Film Evapora-

tor”. PhD Thesis. University of Canterbury.

Yu, Wei, Panos Patros, Brent Young, Elsa Klinac, and Timothy Gordon Walmsley

(June 2022). “Energy digital twin technology for industrial energy management:

Classification, challenges and future”. In: Renewable and Sustainable Energy Re-

views 161. ISSN: 18790690. DOI: 10.1016/j.rser.2022.112407.

Zhang, Jianhua, Wenfang Zhang, Guolian Hou, and Fang Fang (Sept. 2012). “Dy-

namic modeling and multivariable control of organic Rankine cycles in waste

heat utilizing processes”. In: Computers and Mathematics with Applications 64 (5),

pp. 908–921. ISSN: 08981221. DOI: 10.1016/j.camwa.2012.01.054.

Zhang, Jianhua, Yeli Zhou, Rui Wang, Jinliang Xu, and Fang Fang (Mar. 2014). “Mod-

eling and constrained multivariable predictive control for ORC (Organic Rankine

Cycle) based waste heat energy conversion systems”. In: Energy 66, pp. 128–138.

ISSN: 03605442. DOI: 10.1016/j.energy.2014.01.068.

Zhang, Ying, Shuai Deng, Li Zhao, Shan Lin, Mengjie Bai, Wei Wang, and Dongpeng

Zhao (Apr. 2019). “Dynamic test and verification of model-guided ORC system”.

In: Energy Conversion and Management 186, pp. 349–367. ISSN: 01968904. DOI: 10.

1016/j.enconman.2019.02.055.

Zhao, Rui, Hongguang Zhang, Songsong Song, Yaming Tian, Yuxin Yang, and Yi

Liu (Jan. 2018). “Integrated simulation and control strategy of the diesel en-

gine–organic Rankine cycle (ORC) combined system”. In: Energy Conversion and

Management 156, pp. 639–654. ISSN: 01968904. DOI: 10.1016/j.enconman.2017.

11.078.

Zhi, Liang Hui, Peng Hu, Long Xiang Chen, and Gang Zhao (Jan. 2019). “Multi-

ple parametric analysis, optimization and efficiency prediction of transcritical or-

ganic Rankine cycle using trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) for low

grade waste heat recovery”. In: Energy Conversion and Management 180, pp. 44–59.

ISSN: 01968904. DOI: 10.1016/j.enconman.2018.10.086.

https://doi.org/10.1016/j.rser.2022.112407
https://doi.org/10.1016/j.camwa.2012.01.054
https://doi.org/10.1016/j.energy.2014.01.068
https://doi.org/10.1016/j.enconman.2019.02.055
https://doi.org/10.1016/j.enconman.2019.02.055
https://doi.org/10.1016/j.enconman.2017.11.078
https://doi.org/10.1016/j.enconman.2017.11.078
https://doi.org/10.1016/j.enconman.2018.10.086

	Declaration of Authorship
	Abstract
	List of Symbols
	Introduction
	Preface
	Evaporators in the Primary Manufacturing Industry
	Dairy Processing in New Zealand
	Pulp and Paper in New Zealand

	The Organic Rankine Cycle
	ORCs in Waste Heat Recovery
	Geothermal ORCs in New Zealand

	Digital Twins
	Project Aims and Objectives
	Research Aims
	Research Objectives

	Thesis Outline

	Literature Review
	Preface
	ORC Configurations
	Pre-heaters
	Recuperators
	Thermal Interface Loop
	Dual Pressure ORC
	Vaporisers Utilised with ORC Technologies

	Modelling Overview
	First Principles Modelling
	Heat Transfer Paradigm
	The Temperature Difference Method
	The Log Mean Temperature Difference Method
	The Number of Transfer Units (NTU) Method

	Spatial Model Paradigm
	The Lumped Method
	The Moving Boundary Method
	The Discretised Method
	Two-Volume Method

	Published Work Summary
	Model Fidelity
	Model Summary


	Black Box Modelling
	Linear Modelling Techniques
	Nonlinear Modelling Techniques
	Artificial Neural Networks Model
	Fuzzy Logic Based Model
	Neuro Fuzzy Modelling

	Published Work Summary
	Model Fidelity
	Model Summary


	Comparing First Principles and Black Box Models
	Grey Box Models
	Conclusions

	Case Study
	Preface
	System Description
	Production Delivery System
	Plant Description
	Vaporiser Configuration

	Geothermal Fluid Composition
	Conclusions

	Vaporiser and Plant Modelling
	Preface
	Aspen HYSYS Model
	Modelling Procedure
	Heat Transfer Coefficients
	Equations of State
	Model Specifications
	Approximating Working Fluid Flow-rate
	Model Tuning
	Steady State Model Validation

	First Principles Model
	Software
	Model Formulation
	Cross-flow Configuration
	Heat Transfer Coefficients
	Equations of State
	Data-Driven Correlations
	Temperature and Density Curves
	Validation of Curves

	Model Tuning and Steady State Validation

	Dynamic Comparison
	Working Fluid Step Change
	Brine Step Change

	Conclusions

	Model Comparison
	Preface
	Comparison Criteria
	Performance
	Availability
	Ease of Use
	Model Fidelity

	Conclusions

	Conclusions
	Future Work

	Appendices
	Appendix A: Working Fluid Fitted Correlations
	Appendix B: Geothermal Fluid Fitted Correlations
	Appendix C: First Principles Paper Summary
	Appendix D: Black Box Paper Summary


	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 
	pbs@ARFix@71: 
	pbs@ARFix@72: 
	pbs@ARFix@73: 
	pbs@ARFix@74: 
	pbs@ARFix@75: 
	pbs@ARFix@76: 
	pbs@ARFix@77: 
	pbs@ARFix@78: 
	pbs@ARFix@79: 
	pbs@ARFix@80: 
	pbs@ARFix@81: 
	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 
	pbs@ARFix@89: 
	pbs@ARFix@90: 
	pbs@ARFix@91: 
	pbs@ARFix@92: 
	pbs@ARFix@93: 
	pbs@ARFix@94: 
	pbs@ARFix@95: 
	pbs@ARFix@96: 
	pbs@ARFix@97: 
	pbs@ARFix@98: 
	pbs@ARFix@99: 
	pbs@ARFix@100: 
	pbs@ARFix@101: 
	pbs@ARFix@102: 
	pbs@ARFix@103: 
	pbs@ARFix@104: 
	pbs@ARFix@105: 
	pbs@ARFix@106: 
	pbs@ARFix@107: 
	pbs@ARFix@108: 
	pbs@ARFix@109: 
	pbs@ARFix@110: 
	pbs@ARFix@111: 


