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Abstract. Analogical proportions are statements of the form “a is to
b as c is to d”. They deal simultaneously with the similarities and dif-
ferences between items, and they may be considered as a building block
of analogical inference. This short paper establishes the existence of a
close linkage between analogical proportions and (weak) multivalued de-
pendencies in databases, thus providing an unexpected bridge between
two distant areas of research: analogical reasoning and database design.
(Weak) multivalued dependencies express a form of contextual logical
independence. Besides, analogical proportions, which heavily rely on the
comparison of items inside pairs and to the pairing of pairs exhibiting
identical changes on attributes, are also a tool for providing adverse
example-based explanations. Lastly, it is suggested that this may be ap-
plied to a data set reporting decisions in order to detect if some decision
is unfair with respect to a sensitive variable (fairness being a matter of
independence).

1 Introduction

It is always interesting to discover that the same concept has been introduced
independently and for different purposes in two unrelated fields. It is the topic of
the present paper where we establish that analogical proportions and analogical
inference are at work in (weak) multivalued dependencies.

Analogical proportions are statements of the form a is to b as c is to d that
relate two pairs of items on a comparative basis. Analogical proportions have
proved to be instrumental in the formalization of analogical inference [13,2].
They started to receive a mathematical formalization about two decades ago
[7,20,19,12], although analogical reasoning has long been regarded more as a
heuristic way of making a plausible inference on the basis of a parallel between
two situations deemed to be analogous. Recently, it has been shown that ana-
logical proportions are a tool for building explanations about the value taken by
some attribute of interest using examples and counterexamples.

A multivalued dependency [3] is a constraint between two sets of attributes in
a relation in database theory. It states that when such a dependency holds if two
tuples are equal on the first set of attributes then there exist two other tuples
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satisfying some particular constraints involving the two sets of attributes. It
expresses that two sets of attributes take values that are logically independent of
each other. When multivalued dependencies hold in a database, some redundancy
takes place, which can be handled through an appropriate normalisation. In weak
multivalued dependencies [6,4,5] the existence of three tuples satisfying some
conditions entails the existence of a fourth tuple satisfying some other particular
conditions.

The two fields of research, analogical reasoning and databases have in com-
mon to deal with data, still in very different perspectives: plausible inference
on the one hand and design, updating and querying on the other hand. In the
following, after bridging analogical proportions and multivalued dependencies,
we discuss some synergy between the explanatory capabilities of analogical pro-
portions and the idea of independence underlying multivalued dependencies, and
we apply it to the evaluation of fairness.

The paper is organized as follows. First, a double background on analogical
proportions and on multivalued dependencies is given in Section 2 and in Section
3 respectively. Then Section 4 establishes the bridge between the two concepts.
Lastly, in Section 5, we make use of analogical proportions for providing adverse
example-based explanations, and thanks to the independence semantics, we use it
for discussing fairness. In Section 6, concluding remarks suggest lines for further
research.

2 Analogical proportions

An analogical proportion (AP) is a statement of the form “a is to b as c is to
d", linking four items a, b, c, d. It is denoted by a : b :: c : d. APs are supposed
to satisfy the following properties:

1. a : b :: c : d⇒ c : d :: a : b (symmetry);
2. a : b :: c : d⇒ a : c :: b : d (central permutation).

which along with a :b ::a :b (reflexivity), are the basic AP postulates (e.g., [14]).
These properties mimic the behavior of arithmetic proportions (i.e., a−b = c−d)
or geometric proportions (i.e., a

b = c
d ) between numbers. Easy consequences of

postulates are i) a : a :: b : b (identity); ii) a : b :: c : d ⇒ d : b :: c : a (extreme
permutation); iii) a : b :: c : d ⇒ b : a :: d : c (internal reversal); iv) a : b :: c : d ⇒
d : c :: b : a (complete reversal).

The items a, b, c, d considered in the following are tuples of n attribute val-
ues. The values of the attributes may be Boolean (binary attributes) or nominal
(discrete attributes with finite attribute domains having more than two values).
The APs are defined component-wise. We first consider the case of one Boolean
attribute applied to four items. Given a binary attribute applied to four items,
described by Boolean variables a, b, c, d respectively, the following logical ex-
pression has been proposed for an AP [12]:

a : b :: c : d =((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))
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This formula expresses that a differs from b as c differs from d and b differs
from a as d differs from c. It is only true for 6 valuations, namely 0 : 0 :: 0 : 0;
1 : 1 :: 1 : 1; 0 : 1 :: 0 : 1; 1 : 0 :: 1 : 0; 0 : 0 :: 1 : 1; 1 : 1 :: 0 : 0. This is the
minimal Boolean model agreeing with the three postulates of an AP [15]. Boolean
APs enjoy a code independence property: a : b :: c : d ⇒ ¬a : ¬b :: ¬c : ¬d. In
other words, encoding truth (resp. falsity) with 1 or with 0 (resp. with 0 and 1)
is just a matter of convention, and does not impact the AP.

This easily extends to nominal or categorical values where a, b, c, d belong to
a finite attribute domain A. In that case, a : b :: c : d holds true only for the three
following patterns (a, b, c, d)∈{(g, g, g, g), (g, h, g, h), (g, g, h, h)},g, h ∈ A, g 6= h.
This generalizes the Boolean case where A={0, 1}.

In the following, items are represented by tuples of n attribute values: e.g.,
a = (a1, · · · , an), where ai is the value of attribute i for the considered item,
APs are defined componentwise:

a : b :: c : d holds true if and only if ∀i ∈ {1, · · · , n}, ai : bi :: ci : di holds true.

In the Boolean (and nominal) case, the equation a : b :: c : x where x is unknown
does not always have a solution. Indeed neither 0 : 1 :: 1 : x nor 1 : 0 :: 0 : x
have a solution (since 0111, 0110, 1000, 1001 are not valid patterns for an AP).
Similarly, g : h :: h : x has no solution in the nominal case when g 6= h. The
Boolean solution exists if and only if (a ≡ b) ∨ (a ≡ c) is true. If the solution
exists, it is unique and given by x = c ≡ (a ≡ b). In the nominal case, the
solution exists (and is unique) if a = b (then d = c) or if a = c (then d = b) [13].

Table 1 provides an example of an AP with nominal attributes (with a
database flavor!). Note that, assuming that the AP a : b :: c : d is true, one
can indeed recalculate d from a, b, c. This corresponds to the case of a weak
multivalued dependency as we shall see in the next section.

Table 1: AP: example with nominal attributes
course teacher time

a Maths Peter 8 am
b Maths Peter 2 pm
c Maths Mary 8 am
d Maths Mary 2 pm

More generally, analogical inference amounts to an analogical jump stating
that if an AP holds between four items for n attributes, an AP may also hold
for an attribute n + 1 (see [2] for the relation with the analogical jump: from
P (x), Q(x), P (y) infer Q(y)):

∀i ∈ {1, ..., n}, ai : bi :: ci : di holds
an+1 : bn+1 :: cn+1 : dn+1 holds

If an+1, bn+1, cn+1 are known, this enables the prediction of dn+1, provided that
an+1 : bn+1 :: cn+1 : x is solvable. This is the basis for analogical proportion-
based classification [2].
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3 Multivalued dependencies

In the following, we use standard database notations. Let R be a relation schema
viewed as a set of attributes; X and Y denote subsets of attributes. A tuple t is
a complete instantiation of the attributes in R describing some existing item. A
relation r over R is a finite set of tuples over R. The restriction of a tuple t to
the attributes in X ⊆ R is denoted by t[X]. t[XY ] is short for t[X ∪ Y ].

Functional dependencies and multivalued dependencies play an important
role in the design of databases. A functional dependency X → Y (X ⊆ R and
Y ⊆ R) states that for any pair of tuples t1 and t2 obeying the relational schema
R, if t1[X] = t2[X] then t1[Y ] = t2[Y ], which reads “X determines Y ”.

Departing from a functional dependency, the definition of a multivalued de-
pendency requires the existence of particular tuples in the database, under some
conditions: The multivalued dependency [3,1] (see also [5]) X � Y (which can
be read as “X multidetermines Y ”) holds on R if, for all pairs of tuples t1
and t2 in r such that t1[X] = t2[X], there exists some tuple t3 in r such that
t3[XY ] = t1[XY ] and t3[X(R \ Y )] = t2[X(R \ Y )]. Note that, as a consequence
of the definition there also exists a tuple t4 in r such as t4[XY ] = t2[XY ] and
t4[X(R \ Y )] = t1[X(R \ Y )] (swapping the roles of t1 and t2).

Thus altogether, when X � Y holds, for all pairs of tuples t1 and t2 in r
such that t1[X] = t2[X], there exist tuples t3 and t4 in r such that

– t1[X] = t2[X] = t3[X] = t4[X]
– t1[Y ] = t3[Y ]
– t2[Y ] = t4[Y ]
– t1[R \ (X ∪ Y )] = t4[R \ (X ∪ Y )]
– t2[R \ (X ∪ Y )] = t3[R \ (X ∪ Y )]

A more simple, equivalent version of the above conditions can be expressed
as follows: if we denote by (x, y, z) the tuple having values x, y, z for subsets
X, Y , R \ (X ∪ Y ) respectively, then whenever the tuples (p, q, r) and (p, s, u)
exist in r, the tuples (p, q, u) and (p, s, r) should also exist in r. Note that in the
definition of X � Y , not only the attributes in X and in Y are involved, but
also those in R \ (X ∪ Y ), which departs from functional dependencies (where
only the attributes in X and in Y are involved).

A multivalued dependency X � Y is trivial if Y is a subset of X, or if X ∪Y
is the whole set of attributes of the relation (then R \ (X ∪ Y ) is empty).

In Table 2, the two multivalued dependencies {course} � {teacher} and
{course} � {time} hold, as can be checked.

Note that Table 2 can be rewritten more compactly as in Table 3. This
acknowledges the fact that r = {Maths}×{Peter,Mary, Paul}×{8am, 2pm}∪
{Comp.Sci.} × {Peter,Mary} × {8am}. Indeed the teachers attached to the
course and the time attached to the course are logically independent of each
other. Indeed, a multivalued dependency exists in a relation when there are at
least three attributes, say X, Y and Z, and for a value of X there is a defined
set of values of Y and a defined set of values of Z. Then, the set of values of Y
is independent of set Z and vice versa.
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Table 2: Multivalued dependencies: {course} � {teacher}; {course} � {time}
course teacher time
Maths Peter 8 am
Maths Peter 2 pm
Maths Mary 8 am
Maths Mary 2 pm
Maths Paul 8 am
Maths Paul 2 pm

Comp. Sci. Peter 8 am
Comp. Sci. Mary 8 am

Table 3: Compact writing of Table 2
course teacher time
Maths {Peter, Mary, Paul } {8 am, 2 pm }

Comp. Sci. {Peter, Mary} {8 am}

Moreover the following properties holds:
If X → Y , then X � Y .
If X � Y , then X � R \ Y
If X � Y and Z ⊆ U , then XU � Y Z
If X � Y and Y � Z, then X � Z \ Y .

Multivalued dependencies are of interest in databases since decomposition of
a relation R into (X,Y ) and (X,R \ Y ) is a lossless-join decomposition if and
only if X � Y holds in R. Multivalued dependencies are involved in the 4th
normal form in database normalization.

A multivalued dependency, given two particular tuples, requires the existence
of other tuples. Its weak form only requires the existence of one tuple given three
particular tuples.

A weak multivalued dependency [4] X �w Y holds on R if, for all tuples t1,
t2, t3 in r such that t1[XY ] = t2[XY ] and t1[X(R \ Y )] = t3[X(R \ Y )] there is
some tuple t4 in r such that t4[XY ] = t3[XY ] and t4[X(R \Y )] = t2[X(R \Y )].
It can be checked that if X � Y then X �w Y .

The existence of the weakmultivalued dependency X �w Y / Z is sufficient
for ensuring the commutativity of Y and Z in the nesting process that enables
us to rewrite Table 2 into Table 3 [5].

4 Analogical proportion &multivalued dependency:the link

Let us go back to analogical proportions. As for multivalued dependencies they
involved four tuples, which are taken by pairs. Let us consider the Boolean case
first. When one considers a pair of tuples (a, b), one can distinguish between
the attributes where the two tuples are equal and the attributes where the two
tuples disagree. If we take two pairs (a, b) and (c, d) whose tuples are equal on
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the same attributes and which disagree in the same way on the other attributes
(when (ai, bi) = (1, 0) (resp. (0, 1)), (ci, di) = (1, 0) (resp. (0, 1))), these two pairs
form an AP; see Table 4 where attributes A1 to An have been suitably ordered
and where all the possible situations are exhibited. As can be seen, we recognize
the six valuations, vertically, which make a Boolean AP true. Conversely, any
AP can be put under this form (with possibly some empty columns) [18].

Table 4: AP: Pairing pairs
A1-Ai−1 Ai-Aj−1 Aj-Ak−1 Ak-A`−1 A`-Am−1 Am-An

a 1 0 1 0 1 0

b 1 0 1 0 0 1

c 1 0 0 1 1 0

d 1 0 0 1 0 1

This can be easily generalized to nominal attributes, as shown in Table 5,
where a, b, c, d are equal on the subset of attributes X, where a = b 6= c = d on
the subset of attributes Y , and where the same change take place between a and
b and between c and d for attributes in Z. Note that by central permutation, we
can exchange the roles of Y and Z.

Table 5: AP: the nominal case
X (full identity) Y (pair identity) Z (change)

a s t v

b s t w

c s u v

d s u w

Let us now first examine the weak multivalued dependency: for all tuples t1,
t2, t3 in r such that t1[XY ] = t2[XY ] and t1[X(R \ Y )] = t3[X(R \ Y )] there is
some tuple t4 in r such that t4[XY ] = t3[XY ] and t4[X(R \Y )] = t2[X(R \Y )].

Then if t1[XY ] = t2[XY ] = (s, t) and t1[X(R \ Y )] = t3[X(R \ Y )] = (s, v)
there exists a tuple t4 in r such that t4[XY ] = t3[XY ] = (s, u) and t4[X(R\Y )] =
t2[X(R \ Y )] = (s, w). We recognize Table 5 with t1 = a, t2 = b, t3 = c, t4 = d.
Thus there is a perfect match between a weak multivalued dependency and an
analogical proportion. In fact, the existence of t4 in r amounts to the existence
of a (unique) solution for a : b :: c : x in Table 5.

The case of a multi-valued dependency is slightly different, as we are going
to see. Indeed X � Y holds as soon as whenever the tuples (p, q, r) and (p, s, u)
exist in r on subsets X, Y , R\ (X ∪Y ), the tuples (p, q, u) and (p, s, r) also exist
in r on subsets X, Y , R \ (X ∪ Y ). This corresponds to Table 6 where (r, u, u,
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r) is not a valid valuation for an AP. So t1 : t2 :: t3 : t4 does not hold (in fact,
this corresponds to another logical proportion called “paralogy” [14]).

Table 6: Multivalued dependency and the failure of the AP
X Y R \ (X ∪ Y )

t1 p q r

t2 p s u

t3 p q u

t4 p s r

Fortunately, it is possible to reorder the tuples for obtaining a valid AP.
Indeed t1 : t4 :: t3 : t2 does hold. See Table 7.

Table 7: Multivalued dependency and the AP recovered
X Y R \ (X ∪ Y )

t1 p q r

t4 p s r

t3 p q u

t2 p s u

5 Explanations and fairness

We now go back to Table 5 which describes what is an AP in the nominal case.
Moreover, we have singled out a (nominal) attribute called Result, supposed to
depend on the other attributes, it may be the class to which the tuple belongs,
or the result of an evaluation / selection for each tuple. We have also identified
the roles plaid by each subset of attributes: attributes X having the same values
for the four tuples, attributes Y stating the different contexts of pairs (a, b)
and (c, d), attributes Z describing the change(s) inside the pairs, which may be
associated or not with a change on the value of Result. This is Table 8.

Table 8: Results associated with tuples
X (shared values) Y (context) Z (change) Result

a s t v p

b s t w q

c s u v p

d s u w ?

We recognize the schema of analogical inference in Table 8 (p : q :: p : x
always has a (unique) solution x = q; see the end of Section 2; we do not
consider the case p : p :: q : x which can be obtained by central permutation,
exchanging Y and Z). We leave aside the case p = q, which suggests that the
rule X = s → Result = p may hold, and even that a functional dependency
X → Result might hold. Referring to notations in Table 8, if for all a, b, c in r
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there exists d in r, X �w Y and X �w Z hold in r; if for all a, d in r there exist
b, c in r, X � Y and X � Z hold in r. It is also true changing Z in Result.

Table 8 is also a basis for presenting analogical proportion-based explanations
[17,8]. Indeed the answer to the question “why Result(d) is not p?” is to be found
in the values taken by the change attributes for d. Note that when c is a close
neighbor of d, the number of change attributes is small. This looks like the
definition of a contrastive explanation [10], namely we have

∃x = c ∈ r. [
∧

j∈R\change

(xj = cj = dj)] ∧ (Result(d) 6= p)

where cj is the value of tuple c for attribute j. Such a c could be termed as an
adverse example. But the analogy-based explanation is richer, we know at least
another pair (here (a, b)), with another context value, where the same change of
attribute values leads to the same change of Result value as in pair (c, d), which
suggests the possibility of the following rule (with an abductive flavor)

∀ t, (context = t) ∧ (change = w)→ Result((s, t, w)) = q

However, nothing forbids that ∃ a′ ∈ r, ∃ b′ ∈ r such that a′ = (s, t′, v),
b′ = (s, t′, w) with Result(a′) = Result(b′) = p, which would provide an excep-
tion to the rule. The strength of the explanation would depend on the relative
cardinalities of pairs such as (a, b) and (a′, b′).

Table 9: Is Result for d fair (and if no, why)?
X (shared values) Y (diploma) Z (sex) Result

a s yes M P

b s yes F P

c s no M N

d s no F P

Estimating fairness is a matter of conditional stochastic independence [11].
However we have seen that multi-valued dependencies and thus analogical pro-
portions exhibit logical independence relations. Thus the violation of an AP
(and thus of a multivalued dependency) in Table 9 suggests that the value of
Result(d) is unfair.

6 Concluding remarks

The link established in this paper between analogical proportions and multival-
ued dependencies should lead to further developments, besides explanation and
fairness. One may wonder if the axiomatic characterization of dependencies may
bring some new light on analogical proportions. Other questions worth of inter-
est are: What might be the impact on explanation capabilities [8] on analogical
querying [16]? Can we handle uncertain data with analogical proportions, as in
database design [9]?
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