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Abstract

Conformal geometry is a weakening of Riemannian geometry where one works with a
smooth manifold equipped with an equivalence class of Riemannian metrics, where two
metrics are equivalent if and only if they define the same angles between curves. Early
interest in conformal equivalence included the question of biholomorphic equivalence of
domains in the complex plane. Interest has also been driven by physics and general rela-
tivity, since light in spacetime follows null geodesics, and these only depend on the confor-
mal structure. Recently there has been considerable progress in the study of codimension
one submanifolds in conformal manifolds. At the other extreme, there has also been an
increased understanding of the distinguished curves in conformal manifolds. In this thesis,
we develop a complete basic tractor theory of conformal submanifolds of any codimension
and use this to define a notion of distinguished conformal submanifolds. These distin-
guished submanifolds coincide with conformal circles and totally umbilic hypersurfaces in
the extremal cases. We emphasize three conformal tractor objects which we show encode
equivalent submanifold data. Our notion of distinguished submanifolds admits character-
izations in terms of all three invariants. Our definition immediately leads to a procedure
for proliferation of conserved quantities along these submanifolds. We also obtain a theo-
rem which characterizes our distinguished conformal submanifolds in terms of an incidence
relation and a parallel condition. We use this to show that zero loci of certain solutions
to a conformally invariant equation are, if nonempty, distinguished submanifolds. These
results extend existing results for conformal circles.

i



ii



Acknowledgments

First of all I want to thank my supervisor, Professor Rod Gover, for all his patient help,
guidance and good humor during my doctoral research. With you I have explored and
come to understand many deeply powerful and deeply beautiful ideas in mathematics, and
for this I am immensely grateful.

I also want to thank my fellow tractor-calculators Keegan Flood, Bartek Ertowski, Sam
Porath, Stephen Bell, Yuri Vyatkin and the other students and staff of the University of
Auckland Mathematics Department for many hours of productive and helpful discussions,
both mathematical and otherwise.

I have been fortunate to be surrounded by wonderful family and friends who have all en-
couraged and motivated me throughout this undertaking and over the years. Among these,
I must especially thank Mr. Ian Clark for inspiring a love of mathematics in my younger
self. Thank you also to my brother Timothy who tolerated having a mathematically-
inclined brother without too many complaints. I am particularly indebted to my (soon-
to-be) in-laws, the Laity’s: Bill, Pauline, Daniel and Jasmine who have always provided
nothing but love, and with whom I lived for a decent fraction my time as a PhD student.
In addition, my friends in New Zealand and Australia, especially the members of the Daily
Clack Discord server, have brought some very welcome normalcy during these turbulent
and extraordinary last two years.

Finally, to Joel, thank you for being with me every step of the way. Without your
unwavering love and support, I would not have made it to the finish line.

iii



iv



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Linear algebra conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Conformal geometry 13

2.1 Conformal densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Conformal transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The tractor bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Parabolic geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Conformally singular geometries . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Distinguished conformal curves 29

3.1 Conformal circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Parametrized conformal circles . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Unparametrized conformal circles . . . . . . . . . . . . . . . . . . . . 35

3.2 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 A note on null geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Conformal circles as distinguished curves in parabolic geometry . . . . . . . 41

4 Submanifolds in Riemannian and conformal geometry 43

v



vi CONTENTS

4.1 Riemannian submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 The Gauß formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Submanifolds and densities; minimal scales . . . . . . . . . . . . . . 52

4.1.3 Volume and normal forms . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Tractor calculus for submanifolds . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 The intrinsic and normal tractor bundles . . . . . . . . . . . . . . . 56

4.2.2 A tractor Gauß formula . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 The tractor normal projector . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 Some alternative formulae . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Low-dimensional conformal submanifolds . . . . . . . . . . . . . . . . . . . 71

4.3.1 2-dimensional conformal submanifolds . . . . . . . . . . . . . . . . . 71

4.3.2 1-dimensional conformal submanifolds . . . . . . . . . . . . . . . . . 73

4.4 Tractor differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 The tractor volume form . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 The tractor normal form . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 The dual formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Distinguished conformal submanifolds 91

5.1 Conformal circles as distinguished 1-submanifolds . . . . . . . . . . . . . . . 92

5.2 A definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Alternative distinguished submanifolds . . . . . . . . . . . . . . . . . . . . . 96

5.4 Generalized minimal scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Applications 115

6.1 BGG theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Submanifold incidence relations . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Conformal distinguished submanifolds as zero loci . . . . . . . . . . . . . . 123

6.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



CONTENTS vii

Bibliography 125



viii CONTENTS



Chapter 1

Introduction

This thesis has two main goals. Primarily, we seek to propose a notion of distinguished
submanifolds in a conformal manifold which generalizes the two well-studied cases of con-
formal circles and totally totally umbilic hypersurfaces. We motivate this notion by showing
that our proposed definition captures these two known classes of distinguished conformal
submanifolds as extremal cases while simultaneously extending this notion to submani-
folds of all codimension. Along the way we accomplish our second goal: the development
and presentation of tractor calculus machinery for treating submanifolds in conformal sub-
manifolds. While much of this theory is already known, our treatment focuses on three
invariant tractor objects which contain equivalent information about the embedding. Pre-
vious treatments have not closely examined these objects and the relations between them,
and we feel that this exactly provides the right framework for unifying and extending the
aforementioned classes of conformal submanifolds. We note that this approach also has
consequences in Riemannian geometry, since all these objects have Riemannian analogs,
and moreover that they encode equivalent information follows from a Gauß-type equation
and so is not limited to the conformal setting. We hope that the tools and machinery
developed here will be of use to those studying further questions in conformal geometry
and other related fields.

The study of sub-objects has repeatedly been a fruitful avenue in all areas of mathe-
matics. Thus it is natural to study submanifolds in differential, Riemannian and conformal
geometry. Riemannian submanifold theory is very well studied and one has many beautiful
and useful results. As a famous example, a theorem of Nash states that for any Riemannian
manifold (M, g) there is an embedding F : M → RN such that the pullback by F of the
standard Euclidean metric is the Riemannian metric g, where the dimension N depends
on dimM [55]. Namely, any Riemannian manifold may be regarded as a submanifold of a
Euclidean space of sufficiently high dimension.

The main setting for this thesis will be that of conformal geometry. In conformal
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2 CHAPTER 1. INTRODUCTION

geometry, one relaxes the Riemannian condition to only requiring that angles between
curves, and not lengths of curves, are defined. From the usual formula for angles defined
in terms of a metric, we see that now one only has a metric up to scale. Consequently we
may think of such as structure as being equipped with an equivalence class of metrics.

Conformal manifolds are examples of parabolic geometries, so named since they are
curved versions of homogeneous spaces G/P where G is a semisimple Lie group and P
is a parabolic subgroup. Projective geometry, Grassmanian structures, CR geometry and
Lagrangean contact geometries are also examples of parabolic geometries for appropriate
choices of the Lie group G and parabolic subgroup P . There is a rich representation theory
of parabolic subgroups and subalgebras, and this turns out to strongly govern the possible
behavior of these geometries, even in the curved setting. We will not explicitly require much
of this representation theory, although its techniques can be used to prove in a general way
many results which were previously proven in the setting of one specific class of parabolic
geometry.

The tangent bundle of a conformal manifold does not admit a distinguished connection.
Thus one does not immediately have an invariant machinery to approach questions in
conformal geometry. One näıve method is to compute transformation laws under conformal
rescalings, and try to identify invariants this way. We compute some basic transformation
laws in Chapter 2, and even from this small selection one sees that the combinatorial
explosion from iterated derivatives soon renders this approach intractable. One might
instead hope for a calculus which resembles the familiar tensor calculus, and which builds
conformal invariance into its construction. Luckily, it turns out that such a calculus does
exist, and the situation is almost as nice as one could hope for. This elegant solution which
was first introduced using modern terminology by Bailey, Eastwood and Gover in [4] is
to show that a conformal manifold M of dimension n admits a distinguished connection
on a vector bundle of rank n+ 2. This is the so-called tractor bundle, a portmanteau the
first part of which comes from the name of Tracey Thomas (whose earlier works [65, 68,
67, 66] touched on many of these ideas and inspired the subsequent (re)discovery) and
whose second part is named in the same style as vector, tensor, spinor, etc. The theory of
tractors is also closely related to the work of Cartan (e.g. [23, 21, 22] or [60] for a modern
summary of these ideas) and his notion of an espace généralisé, nowadays usually called
a Cartan geometry. Indeed, the tractor (vector) bundles are certain associated bundles to
the principal bundle of the Cartan geometry. The tractor theory aesthetically has much
in common with the Riemannian theory. Namely, one has a distinguished connection on
a vector bundle which preserves a non-degenerate metric. Thus one has a calculus for
stating and solving problems in conformal geometry in a way that naturally builds in
conformal invariance: any property stated in terms of tractors and the tractor connection
is immediately a well-defined conformal property.

Distinguished curves have long been understood to be an important feature of any ge-
ometry. Using the Riemannian metric, there is a well-defined notion of the length of a curve



3

γ : I → M . This is just the usual length formula for curves in Euclidean space but with
the Riemannian metric replacing the Euclidean inner product. Thus one is naturally led to
consider the curves joining two points which have minimal length among all such curves.
These curves are called geodesics, and they are the distinguished curves of Riemannian
geometry. Geodesics are also crucial to one characterization of Riemannian distinguished
submanifolds: any geodesic of a totally geodesic submanifold is automatically a geodesic
of the ambient Riemannian manifold.

There is a fairly comprehensive theory of hypersurfaces in conformal manifolds [4, 9, 62,
69]. This was then later expanded to include higher codimension submanifolds. Notable
contributions in this area were made by Calderbank and Burstall [11], and in the PhD thesis
of Curry [29]. The former is presented in a very different language from what we use. The
latter closely aligns with our current treatment, and was an important source of inspiration
for some ideas in this thesis. Despite this theory, there is not a generally agreed upon notion
of distinguished submanifolds for general conformal manifolds in the same way that one
has totally geodesic submanifolds in Riemannian and therefore also projective geometry.
A totally geodesic submanifold may be characterized by several equivalent properties. We
provide similar characterizations, in terms of conformal circles, for two distinct possible
notions of distinguished conformal submanifold.

Importantly, one can construct scalar functions which are constant along geodesics.
Conserved quantities are of interest to mathematicians and physicists in areas including
dynamical systems, quantum mechanics and the Kerr, Kerr-NUT-(A)ds and Plebański-
Demiański metrics and related questions of stability of black holes [1, 24, 35]. For example,
given a sufficient number of first integrals along a curve, the trajectory of the curve is
completely determined. In an extreme case, that of superintegrable geometries, the number
of such first integrals along a curve exceeds the dimension of the ambient manifold [49].

The classical method of producing a conserved quantity along a curve is to pair the
velocity field of the geodesic with a Killing vector. These are vector fields whose flows
are continuous isometries of the Riemannian manifold. Formally, this is captured via the
Lie derivative. If g is the metric of a Riemannian manifold, then X is a Killing field if it
satisfies

LXg = 0, (1.0.1)

which is called the Killing equation. This equation is not conformally invariant, and so
not a good candidate for proliferating conserved quantities along conformal distinguished
curves, but if one instead asks merely that LXg is proportional to g, then this equation
is indeed conformally invariant. A vector field X with this property is called a conformal
Killing field.

Throughout this thesis, we employ Penrose’s abstract index notation [58], which we
describe briefly. We denote the tangent resp. cotangent bundle Ea resp. Ea, and higher
rank tensors are then denoted using multiple Latin letters. So ωab is a section of Eab =
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T ∗M ⊗ T ∗M , Ta
b is a section of Ea ⊗ Eb = T ∗M ⊗ TM i.e. an endomorphism of TM and

so on. Additionally, usual parentheses around indices denote symmetrization, and square
brackets denote antisymmetrization. So, for example, for Tab a section of T ∗M ⊗ T ∗M ,
one has

T(ab) =
1

2
(Tab + Tba) ,

which is a section of S2T ∗M , and

T[ab] =
1

2
(Tab − Tba)

which is a section of Λ2T ∗M . We will discuss this in more detail in Section 1.1. We may
also sometimes abuse notation and use the same symbol for a bundle and its space of
sections, writing, for example, ωa ∈ Ea when really we mean ωa ∈ Γ(Ea). We will also use
abstract indices for the tensor calculus of submanifolds and for the tractor calculus. We
use different sets of indices in each setting, so it should always be clear which bundles are
involved in any situation. We will explain these conventions as we introduce the relevant
settings.

As a more concrete example of this notation, using the properties of the Levi-Civita
connection, it can be shown that (1.0.1) is equivalent to

∇(aXb) = 0, (1.0.2)

where we have used the Riemannian metric to identify the vector field X with a 1-form
(we have “lowered the index”). The conformally invariant conformal Killing equation

LXg = λg, (1.0.3)

where λ is a smooth function, is similarly equivalent to

∇(aXb)0
= 0, (1.0.4)

where the subscript zero denotes the trace-free part. Such invariant geometric PDEs will
play a very important role in our theory of conserved quantities. They provide a class
of generalized symmetries which yield conserved quantities when contracted with suitable
fields along a distinguished curve much as in the Riemannian manifold case.

We outline the structure of this thesis and the contents of each chapter. The remainder
of Chapter 1 is devoted to establishing conventions for notation, linear algebra and differ-
ential geometry. We make extensive use of differential forms in this thesis, so we dedicate
some time to them in particular.

Chapter 2 introduces conformal geometry. We calculate the transformations under
a conformal rescaling of many of differential geometric objects introduced in Chapter 1
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before introducing our main tool for studying conformal manifolds: the tractor calculus.
We briefly discuss the Cartan-geometric view of conformal geometry and how this treatment
is equivalent to the tractor bundle picture. Finally for this chapter we discuss conformally
singular geometries. These are structures consist of a conformal manifold together with
some additional distinguished object which has some singularity set.

In Chapter 3, we introduce the first well-known class of distinguished conformal sub-
manifolds: conformal circles. We consider some history of conformal circles before re-
viewing our treatment of conformal circles from [39]. This is a tractor characterization of
conformal circles which provides a large motivation for our later theory of more general
distinguished conformal submanifolds.

Chapter 4 provides a complete basic treatment of submanifolds in conformal manifolds.
One main purpose of this chapter is to introduce three submanifold tractor invariants which
all contain equivalent information which we will later use to characterize our notion of
distinguished submanifolds. We begin with the important notions of classical submanifolds
in Riemannian manifolds, covering the orthogonal decomposition of the ambient tangent
bundle into a subbundle isomorphic to the intrinsic tangent bundle and a normal bundle,
the compatible decomposition of the ambient Levi-Civita connection which is given by
the Gauß formula, and the Gauß, Codazzi, and Ricci equations. From there we give a
tractor theory which follows essentially the same order. One has a tractor analog of the
ambient tractor bundle decomposition and hence a tractor Gauß formula which defines
a tractor second fundamental form. This tractor second fundamental form is the first
of the aforementioned central objects in our treatment of conformal submanifolds. The
decomposition of the ambient tractor bundle and the tractor Gauß formula immediately
allow one to deduce tractor analogs of the Gauß, Codazzi and Ricci equations by arguing
formally in the same way as for the Riemannian case. The decomposition of the ambient
tractor bundle also has associated orthogonal projections, and the normal projector is the
second special submanifold tractor invariant. (We could equally include the tangential
projector as well, but its data is clearly equivalent to that of the normal projector and
so we simply take one of these two.) We finish this chapter with a treatment of tractor
differential forms. A conformal submanifold has a tractor normal form which is a tractor-
valued differential form with rank equal to the dimension of the normal tractor bundle.
This form is the third of the submanifold invariants, and we see that, as with the other two,
there are explicit relations between it and the others. This chapter lays the foundation for
our subsequent applications. The main results are Lemma 4.2.6, which relates the normal
tractor projector and the tractor second fundamental form, Proposition 4.4.2 which relates
the normal projector and the tractor normal form, and Theorem 4.4.5 which relates the
tractor normal form and the tractor second fundamental form.

Chapter 5 is the first of our two applications chapters. We first revisit the subject of
conformal circles, and show that a conformally circle may equally be described as a 1-
dimensional submanifold whose tractor second fundamental form vanishes. This, together
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with a similar observation concerning totally umbilic hypersurfaces, provides motivation
for our general definition of a distinguished conformal submanifold. A key result here is
Theorem 5.2.1, which follows immediately from the main results of the previous chapter,
and which shows that our three objects of interest encode equivalent data. We then con-
sider some alternative ways that one could define distinguished for conformal submanifolds.
These are phrased in terms of distinguished curves and come from considering characteri-
zations of total geodesicity in Riemannian geometry.

In Chapter 6, our final chapter, we show some applications of our general theory of
distinguished conformal submanifolds. These include conserved quantities, distinguished
submanifolds as zero loci, and an incidence relation characterization which generalizes a
result on conformal circles.

All manifolds and maps we work with are assumed to be smooth i.e. of class C∞.
We also assume that all manifolds M are oriented, although we will sometimes mention a
modification that extends some result or construction to the non-oriented setting.

1.1 Linear algebra conventions

Throughout our work, we make extensive use of differential forms. We explicitly describe
our notation and conventions here.

Definition 1.1.1 (Wedge product). Let V be an inner product space, and let α ∈ ΛpV
and β ∈ ΛqV be a p- and q-form respectively. Then the p + q−form α ∧ β ∈ Λp+qV is
defined by

α ∧ β :=
(p+ q)!

p! · q!
Alt(α⊗ β), (1.1.1)

where

Alt(α)(x1, . . . , xp) :=
1

p!

∑
σ∈Sp

sgn(σ)α(xσ(1), . . . , xσ(p)). (1.1.2)

The factor is chosen so that we have the following.

Proposition 1.1.2. Let {v1, . . . , vn} be an orthonormal basis for the inner product space
V and let τ ∈ Sn be a fixed permutation. Then

(v1 ∧ · · · ∧ vn)(vτ(1), . . . , vτ(n)) = sgn(τ). (1.1.3)

Proof. We prove this by induction. The base case n = 1 is trivial since our basis is
assumed orthonormal and the only permutation is the identify. For the general case, let
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ω := v1 ∧ · · · ∧ vn−1. Then

(ω ∧ vn) (vτ(1), . . . , vτ(n−1), vτ(n)) =
[(n− 1) + 1]!

(n− 1)! · 1!
Alt (ω ⊗ vn) (vτ(1), . . . , vτ(n−1), vτ(n))

=
n!

(n− 1)!
· 1

n!

∑
σ∈Sn

sgn(σ)(ω ⊗ vn)(vσ(τ(1)), . . . , vσ(τ(n−1)), vσ(τ(n)))

=
1

(n− 1)!

∑
σ∈Sn,
σ(n)=n

sgn(τ) sgn(σ)ω(vσ(1), . . . , vσ(n−1)) · vn(vn)

=
1

(n− 1)!

∑
σ∈Sn−1

sgn(τ) sgn(σ)ω(vσ(1), . . . , vσ(n−1))

=
1

(n− 1)!
· sgn(τ)

∑
σ∈Sn−1

sgn(σ) sgn(σ)

= sgn(τ).

In particular, for the orthonormal basis {v1, . . . , vn}, one has

(v1 ∧ · · · ∧ vn)(v1, . . . , vn) = 1. (1.1.4)

In the abstract index notation, we denote antisymmetrization by enclosing indices in
square brackets. Following Wald [70], our convention will be that

T[a1a2···an] :=
1

n!

∑
σ∈Sn

sgn(σ)Taσ(1)aσ(2)···aσ(n)
. (1.1.5)

This is equal to Alt(T ) defined in (1.1.2), namely

T[a1a2···an]v
a1
1 va22 · · · vann = Alt(T )(v1, v2 . . . , vn).

The following is extremely useful when doing computations using forms.

Proposition 1.1.3. The map Alt : ⊗∗V → ⊗∗V is a projection onto the subspace Λ∗V ,
where ⊗∗V and Λ∗V denote the tensor and exterior algebras respectively.

Proof. Clearly im (Alt) ⊂ Λ∗V . Let T ∈ ΛpV . We need to show that Alt ((Alt(T )) =
Alt(T ). Calculating
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Alt ((Alt(T )) ((x1, . . . , xp)

=
1

p!

∑
τ∈Sp

sgn(τ)(AltT )(xτ(1), . . . , xτ(p))

=
1

p!

∑
τ∈Sp

sgn(τ)
1

p!

∑
σ∈Sp

sgn(σ)T
(
(xσ(τ(1)), . . . , xσ(τ(p))

)
=

1

(p!)2

∑
τ∈Sp

sgn(τ)
∑
σ∈Sp

sgn(σ) sgn(τ)T
(
xσ(1), . . . , xσ(p)

)
=

1

(p!)2

∑
τ∈Sp

∑
σ∈Sp

sgn(σ)T
(
xσ(1), . . . , xσ(p)

)
=

1

(p!)2
· p! ·

∑
σ∈Sp

sgn(σ)T
(
xσ(1), . . . , xσ(p)

)
= Alt(T )(x1, . . . , xp).

One practical consequence of this fact is that

S[a1···aℓ]T
[a1···aℓ] = S[a1···aℓ]T

a1···aℓ (1.1.6)

for Sa1···aℓ , Ta1···aℓ ∈ Ea1···aℓ . This greatly simplifies many calculations. Note that Propo-
sition 1.1.3 still holds replacing Alt with Sym, and hence (1.1.6) holds with antisymmetriza-
tion replaced with symmetrization.

Clearly v1[a1 · · · v
n
an]

and v1 ∧ · · · ∧ vn are equal up to a constant factor, and this is

determined by the normalization condition (1.1.4).

We calculate

v1[a1 · · · v
n
an]

va11 · · · vann =
1

n!

∑
σ∈Sn

v1a1 · · · v
n
anv

a1
σ(1) · · · v

an
σ(n)

=
1

n!

∑
σ∈Sn

δ1σ(1) · · · δ
n
σ(n)

=
1

n!
.
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Hence
n! · v1[a1 · · · v

n
an]

va11 · · · vann = 1,

and so
v1 ∧ · · · ∧ vn = n! · v1[a1 · v

n
an]

. (1.1.7)

1.2 Riemannian geometry

Let (M, g) be a Riemannian manifold. We will sometimes use the term “Riemannian
manifolds” to also include pseudo-Riemannian manifolds, although for this thesis we will
generally assume that (M, g) has Riemannian signature, i.e. signature (n, 0). This is mainly
to preclude the possibility of submanifolds that have induced a degenerate metric conformal
structure. At times we will comment on how some results may be modified to hold for
pseudo-Riemannian signatures. The most important result in Riemannian geometry is that
the metric induces a distinguished connection on the tangent bundle.

Theorem 1.2.1. Let (M, g) be a Riemannian manifold. Then there exists a unique con-
nection ∇ on M which satisfies

(1) ∇g = 0, and

(2) ∇XY −∇Y X = [X,Y ].

A connection which satisfies (1) is said to be metric-preserving and a connection which
satisfies (2) is called torsion free. This connection is called the Levi-Civita connection
(associated to the metric g).

Proof. We show uniqueness. The metric-preserving condition (1) implies that

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ)

Y (g(X,Z)) = g(∇Y Z,X) + g(Z,∇Y X)

−Z(g(X,Z) = −g(∇ZX,Y )− g(X,∇ZY ).

Adding the above three equations together and then using torsion-freeness (condition (2)
above) shows that

g(∇XY, Z) =
1

2
(X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y ))

+g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X)) .
(1.2.1)

The above is known as the Koszul formula, and since g is non-degenerate, (1.2.1) completely
determines ∇XY . It remains to show that the ∇ defined by (1.2.1) is a connection, which
is a straightforward if tedious verification.
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The Riemann curvature tensor Rab
c
d is defined by

Rab
c
dV

d := (∇a∇b −∇b∇a)V
c, (1.2.2)

where V c ∈ Γ(Ec). The Ricci tensor and scalar curvature are then defined by

Rab := Rca
c
b, (1.2.3)

and

R := gabRab (1.2.4)

respectively.

In dimensions n ≥ 3, the curvature tensor admits the decomposition

Rabcd = Wabcd + 2gc[aPb]d + 2gd[bPa]c, (1.2.5)

where Wabcd is the totally trace-free part of Rabcd, called the Weyl tensor, and Pab is the
Schouten tensor, which may be expressed in terms of the Ricci and scalar curvatures as

Pab =
1

n− 2

(
Rab −

R

2(n− 1)
gab

)
. (1.2.6)

Note that the Schouten tensor is also frequently called the Rho tensor, and is sometimes
defined to be the negative of the right-hand side of the above display. The Schouten tensor
is an important object in conformal geometry. The decomposition (1.2.5) may also be
written

R = W + g ⃝∧ P, (1.2.7)

where⃝∧ denotes theKulkarni-Nomizu product which maps S2T ∗M×S2T ∗M → S2Λ2T ∗M
and whose definition can be read off (1.2.5). Finally, we let J := gabPab be the trace of the
Schouten tensor. This is related to the scalar curvature by

J =
1

2(n− 1)
R. (1.2.8)

In 2 dimensions, the Riemannian tensor has a single component. Hence

Rabcd = κ (gacgbd − gbcgad) . (1.2.9)

Tracing (1.2.9) appropriately, one sees that κ = 1
2R, where as above R is the scalar curva-

ture.

The Riemann curvature tensor also satisfies the Bianchi identities:

Rab
c
d +Rda

c
b +Rbd

c
a = 0, (1.2.10)
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which, using the symmetries of the Riemann curvature tensor, may be written

R[ab
c
d] = 0,

and
∇aRbc

d
e +∇bRca

d
e +∇cRab

d
e = 0, (1.2.11)

equivalently
∇[aRbc]

d
e.

Contracting the above display with gae yields the contracted Bianchi identity :

∇aRbcda +∇bRcd −∇cRbd = 0. (1.2.12)

Contracting again, this time with gbd, yields another identity, sometimes called the
twice-contracted Bianchi identity :

2∇aRab = ∇bR. (1.2.13)

Finally, using equations (1.2.6) and (1.2.8), this is seen to be equivalent to

∇aPab = ∇bJ. (1.2.14)
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Chapter 2

Conformal geometry

Conformal geometry is a weakening of pseudo-Riemannian geometry where one replaces
the Riemannian metric with an equivalence class of metrics. Let M be a smooth manifold.
We define an equivalence relation on metrics on M as follows. For g, ĝ metrics on M , we
declare g ∼ ĝ if, and only if

ĝ = Ω2g, (2.0.1)

where Ω is a smooth, positive real-valued function on M . We denote by c an equivalence
class of metrics related in this way and call the pair (M, c) a conformal manifold. Note
that all conformally related metrics necessarily have the same signature, so we may speak
of the signature of the conformal manifold (M, c).

We can equally view the conformal structure as a subbundle of S2T ∗M , where the fiber
at x ∈ M consists of all gx for g ∈ c. Note that for g, ĝ ∈ c there is some s ∈ R+ such that
ĝx = s2gx, and hence Q is an R+-subbundle. Sections of Q are in bijective correspondence
with metrics in the conformal class, so c = Γ(Q).

2.1 Conformal densities

Before proceeding to our main treatment of conformal manifolds, we need an important
tool. The bundles of conformal densities are a family of non-trivial line bundles indexed
by their weight w ∈ R. These are defined as associated bundles to the R+-principal bundle
Q. We have just seen that there is a principal R+-action on Q given by s · gx = s2gx.
For w ∈ R, define an action ρw of R+ on R by ρw(s)t := s−wt. Then define the bundle of
conformal w-densities by

E [w] := Q×ρw R, (2.1.1)

where this notation denotes the associated bundle, i.e. the quotient bundle (Q × R)/ ∼
with (g, t) ∼ (s2g, swt). It is a standard fact that sections of such an associated bundle

13
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are in bijective correspondence with suitably equivariant functions on the total space, see
e.g. [51]. In this case, elements of Γ(E [w]) are identified with functions f : Q → R such
that f(s2gx) = swf(gx). A choice of metric g ∈ c determines a trivialization of any of the
bundles E [w], and the different trivializations corresponding to conformally related metrics
depend on the weight w. Specifically, two metrics g, ĝ ∈ c each determine a section of the
bundle Q → M . Let f : Q → R be the homogeneous function corresponding to a section
of E [w], as above. Then, pulling back f via the two sections determined by g and ĝ yields
two functions on M related according to

f ĝ = Ωwfg, (2.1.2)

where as usual ĝ = Ω2g. Thus conformal densities of weight w may be thought of as real-
valued functions on M that rescale by a factor of Ωw when g is rescaled by Ω2. It is clear
from this (and the above associated bundle definition) that E [0] = E the trivial bundle of
smooth functions M → R. For any vector bundle V, we let

V[w] := V ⊗ E [w], (2.1.3)

and say that V[w] is a weighted bundle or has weight w. Such bundles are very natural in
conformal geometry, and we will frequently encounter weighted versions of familiar bundles.

It appears that the bundles E [w] as defined depend on the conformal structure. We
will show that this is not the case by showing that the conformal density bundles can be
identified with the usual density bundles from differential geometry. Let α ∈ R. Recall that
the bundle of α-densities is the line bundle associated to the linear frame bundle defined by
the GL(n)-representation ρα(A) := | det(A)|−α. Thus 1-densities are exactly the objects
that may be integrated on a manifold in a coordinate-independent way. So, writing F for
the GL(n)-principal frame bundle of M , the bundle of α-densities is then defined as

D[α] := F ×ρα R. (2.1.4)

Any 1-density then defines a conformal density of weight −n as follows. Let φ be a
1-density. Then once again by the correspondence between sections of associated bundles
and equivariant functions, we may view φ as a map F → R which is equivariant with
respect to the GL(n)-action on the frame bundle. Next, fix a Riemannian metric g on M .
Then, since M is oriented, g determines a volume form which in local coordinates takes the
form

√
| det(gij)|, and this induces a real-valued map on the frame bundle by calculating

the volume of the frame according to the metric g. Thus we may define the map F → R
by

u 7→ φ(u)

vol(g)(u)
. (2.1.5)

Moreover, since vol(g)(A ·u) = | det(A)|vol(g), this map in fact descends to a map M → R.
Now, if we rescale g to ĝ = Ω2g, we see from the expression of the metric in local coordinates
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that vol(ĝ) = Ωnvol(g). Thus, fixing the 1-density φ, we may define a map Q → R by

gx 7→ φ(x)

vol(g)(x)
, (2.1.6)

where we simply write that the function and the 1-density act on the point x ∈ M since as
we have seen above this quotient is independent of the frame chosen. From the transforma-
tion of the volume form under a conformal rescaling, this map is seen to be homogeneous
of degree −n. Thus we have constructed an element of E [−n], and so shown that there is a
correspondence between 1-densities and conformal densities of weight −n. More generally,
one may show that

(
−w

n

)
-densities correspond to conformal densities of weight w by taking

φ to be a
(
−w

n

)
-density and then defining the map Q → R by

gx 7→ φ(x)

(vol(g)(x))
w
n

. (2.1.7)

One can check that as above for a fixed metric g this gives a well-defined map M → R, and
is moreover homogeneous of degree w when viewed as a map on Q, i.e. a section of E [w].
Thus on any manifold we have the bundle of conformal densities of weight w available as
the bundle of

(
−w

n

)
-densities, and fixing a conformal structure gives an identification with

an associated bundle to Q. This implies in particular that the isomorphisms E [−2n] ∼= D[2]
and E [−n] ∼= D[1] hold, without any requirement that M be oriented. Moreover, note that
the square of a line bundle is always oriented, since after squaring there is canonically a
notion of positivity. Thus, even whenM is not orientable, we will have (ΛnT ∗M)2 ∼= E [−2n]
and, dually, (ΛnTM)2 ∼= E [2n].

If M is in fact orientable, then a choice of orientation yields the additional isomorphism
ΛnT ∗M ∼= E [−n]. To see this explicitly, note that a choice of metric g ∈ c results in a
volume form volg ∈ Γ(ΛnT ∗M) associated to the metric g. Rescaling the metric conformally
so that ĝ = Ω2g results in the volume form transforming according to volĝ = Ωnvolg.
Comparing with (2.1.2), we see that there is a well-defined weighted volume form which we
write vol ∈ Γ(ΛnT ∗M [n]), i.e. this does not depend on the choice of metric. This weighted
form then gives the isomorphism

ΛnTM
∼=−→ E [n], (2.1.8)

and dually an isomorphism ΛnT ∗M ∼= E [−n]. After choosing a metric g ∈ c and trivializing
density bundles, the weighted form vol coincides with the unweighted volume form volg of
the metric g.

Weighted bundles give yet another way to view a conformal structure. Tautologically,
there is a E [2]-valued non-degenerate bilinear form, which we denote g. Choosing a metric
g ∈ c and trivializing density bundles, g is simply given by g. Thus we may view g as
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a distinguished section of S2T ∗M [2], which contains the full information of the conformal
class. We call g the conformal metric.

A metric g ∈ c also determines a section σg ∈ Γ(E+[1]), where E+[1] denotes the
subbundle of the 1-density bundle consisting of those densities which are strictly positive.
This is characterized by the property that the corresponding homogeneous function Q → R
is equal to 1 along g. The conformal metric is then recovered by

g = (σg)
2g. (2.1.9)

One sees that the right-hand side of the above display is indeed independent of the choice
of metric g since rescaling g to ĝ = Ω2g yields correspondingly σĝ = Ω−1σg. Conversely,
given σ ∈ Γ(E+[1]),

g := σ−2g (2.1.10)

is a metric in the conformal class. Thus there is a bijection between metrics g ∈ c and
sections σ ∈ Γ(E+[1]). We call E+[1] the bundle of scales and call the corresponding
g := σ−2g ∈ c a choice of scale.

This conformal metric also realizes the isomorphism (ΛnTM)2 → E [2n] from our dis-
cussion of conformal densities. Let ωa1a2···an ∈ Γ(E [a1a2···an]) be an n-vector, and define a
map

⊗ng : (ΛnTM)2 −→ E [2n]

by
(⊗ng) (ω) := ga1b1ga2b2 · · · ganbnωa1a2···anωb1b2···bn .

The isomorphism (Λ2TM)
2 ∼=−→ E [2n] is this map, possibly up to a constant factor, de-

pending on the multilinear algebra conventions. The image of this map clearly lies in
E [2n], and it is invertible since g is invertible, with inverse essentially ⊗ng−1. This iso-
morphism is equivalently realized by the weighted volume form, viewing vol ⊗ vol as a
map (ΛnTM)2 → E [2n] by contracting a section of (ΛnTM)2 with this squared weighted
volume form in the obvious way.

We have already mentioned that a choice of scale trivializes the density bundles. Explic-
itly, a scale σ trivializes E [w] via the isomorphism E [w] → E [0] = E defined by τ 7→ σ−wτ ,
where τ ∈ Γ(E [w]). This gives another way to see (2.1.2), namely by comparing the triv-
ializations τ 7→ σ−wτ and τ 7→ σ̂−wτ , and as we saw above, σ̂ = Ω−1σ, where Ω is the
function such that ĝ = Ω2g.

For g ∈ c, we define a connection on E [w] by

∇aτ := σwd
(
σ−wτ

)
, (2.1.11)

where σ ∈ Γ(E+[1]) is such that g = σ2g. Note that σ−wτ has weight 0 (i.e. it is a function),
and the exterior derivative has a well-defined action on such objects.
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The conformal density bundles may also be described as associated bundles to the
conformal frame bundle G0, and it is hence clear that the Levi-Civita connection associated
to a choice of metric g ∈ c will induce a connection on E [w], as a choice of Levi-Civita
connection induces a connection on all bundles associated to the frame bundle. This
induced connection coincides with the one defined in equation (2.1.11).

From the connection defined above, it immediately follows that ∇g = 0, where ∇ is
the Levi-Civita connection of any metric in the conformal class. Thus we may use g (and
its inverse g−1 ∈ Γ(S2TM [−2])) to raise and lower indices on a conformal manifold in
the same way one uses the metric on a Riemannian manifold. Some caution is required
however, since this now comes at the cost of changing the weight:

gab : Ea → Eb[2],
va 7→ vb := gabv

a.

We will henceforth always use the conformal metric and its inverse for all raising and
lowering of indices. Moreover, we may retroactively replace any such uses of a choice
of metric in Chapter 1. So for example, the Riemann curvature tensor with all indices
lowered should be understood as Rabcd = gceRab

e
d, and hence all instances of the metric

g in (1.2.5) will be replaced with g. Similarly, the scalar curvature should now be taken
to be R = gabRab. As mentioned above, this comes at the cost of changing conformal
weights: whereas Rab

c
d ∈ Γ(E[ab]cd), when the index is lowered, Rabcd ∈ Γ(E[ab][cd][−2]).

The situation with the scalar curvature is similar. Writing R0 := gabRab for the usual
Riemannian geometry scalar curvature, and R := gabRab for our modified scalar curvature
defined with the conformal metric, we will have that R0 ∈ Γ(E [0]) = C∞(M), while
R ∈ Γ(E [−2]). These weighted objects are more convenient to work with in the conformal
setting.

2.2 Conformal transformations

Since (M, c) is equipped with an equivalence class of conformally related metrics, it no
longer possesses a distinguished connection on its tangent bundle TM . It is still very
useful to record how the Levi-Civita connection transforms under a conformal rescaling
of the metric. Throughout this section and indeed for the remainder of the thesis, we
will always assume that ĝ = Ω2g where Ω is a smooth positive function. Moreover, any
symbol adorned with a caret should be understood to mean that symbol but associated
to the metric ĝ. So ∇̂ denotes the Levi-Civita connection of ĝ, P̂ its Schouten tensor,
and so on. We also define Υa := Ω−1∇aΩ. This expression arises frequently in conformal
transformation formulae.
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For the Levi-Civita connection on density bundles as defined in (2.1.11), we find that

∇̂aτ = ∇aτ + wΥaτ. (2.2.1)

Meanwhile for sections vb and ωb of Eb and Eb respectively, we find that

∇̂av
b = ∇av

b +Υav
b − vaΥ

b +Υcv
cδba (2.2.2)

and
∇̂aωb = ∇aωb −Υaωb − ωaΥb +Υcωcgab. (2.2.3)

These formulae can be deduced from the local formulae for the Christoffel symbols or
the Koszul formula; we give a sketch using the later. Note that ∇̂ is also defined by the
Koszul formula (1.2.1), where all instances of g are replaced with ĝ. Replacing ĝ with Ω2g
and expanding using the Leibniz rule shows that

g(∇̂XY,Z) = g(∇XY,Z) + Ω−1X(Ω)g(Y, Z)

+ Ω−1Y (Ω)g(X,Z),
(2.2.4)

and rewriting this in abstract indices one arrives at (2.2.2). From there, (2.2.3) follows by
raising lowering the b index, noting that ∇̂g = −2(Ω−1∇Ω)g. Also, since Υc = gacΥa ∈
Ec[−2], the final term of (2.2.3) is in fact unweighted, despite the presence of the (weighted)
conformal metric.

Using (2.2.1), (2.2.2) and (2.2.3) together, one can determine the transformation law
for ∇̂ acting on any weighted tensor bundle. For example for V b ∈ Eb[w] and ωb ∈ Eb[w],
one has

∇̂aV
b = ∇aV

b + (w + 1)ΥaV
b − VaΥ

b +ΥcV
cδba (2.2.5)

and
∇̂aωb = ∇aωb + (w − 1)Υaωb − ωaΥb +Υcωcgab (2.2.6)

respectively. These also allow one to calculate the transformation law for the Riemann
curvature tensor. Working with the curvature tensor with all indices lowered (using the
conformal metric), we find that

R̂abcd = Rabcd − 2gc[aΛb]d − 2gd[bΛa]c, (2.2.7)

where

Λab := ∇aΥb −ΥaΥb +
1

2
ΥcΥ

cgab. (2.2.8)

In particular, from (2.2.7), one deduces that the Weyl tensor is conformally invariant:

Ŵabcd = Wabcd, (2.2.9)
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and therefore the failure of the curvature tensor to be conformally invariant is entirely due
to the transformation of the Schouten tensor. Comparing with (1.2.5), we find

P̂ab = Pab −∇aΥb +ΥaΥb −
1

2
ΥcΥ

cgab. (2.2.10)

The same discussion around weights from the end of Section 2.1 applies here: namely,
the Weyl tensor Wabcd, where the indices have been lowered using the conformal metric,
has conformal weight −2, while the Weyl tensor Wab

c
d is a true (unweighted) tensor.

2.3 The tractor bundle

We next define the (standard) tractor bundle, T . We fix a conformal manifold (M, c),
and we will assume that M has dimension n ≥ 3. For a conformal manifold (M, c), the
conformal standard tractor bundle is a rank (n+2)-vector bundle which possesses a metric
and a metric-preserving connection. Thus one obtains a tractor calculus which closely
resembles the tensor calculus available on Riemannian manifolds.

The (conformal) tractor bundle has its origins in the work of Thomas [68, 67, 66], and
was then rediscovered and presented in the modern language of vector bundles by Bailey,
Eastwood and Gover [4]. Using abstract index notation, the standard tractor bundle will
be denoted by EA, and for the remainder of this thesis we adopt the convention that upper
case Latin indices will denote tractor bundles and sections thereof. There are several ways
to define the tractor bundle. We will in fact first define the dual tractor bundle. The
non-degenerate metric then allows us to identify the dual tractor bundle with the standard
tractor bundle without further comment.

As we have seen in Section 2.1, on any smooth manifold, one has the bundle of conformal
1-densities that we call E [1]. Its 2-jet bundle J2E [1] admits the exact sequence at 2-jets [57],
which takes the form

0 → S2T ∗M [1] → J2E [1] → J1E [1] → 0. (2.3.1)

Recall that a conformal structure onM may equally be thought of as a conformal metric g ∈
Γ(S2T ∗M [2]). The introduction of a conformal structure therefore determines a canonical
splitting S2T ∗M [1] = S2

0T
∗M [1] ⊕ E [−1] by mapping µ to its trace-free and trace parts,

where traces are taken with the conformal metric:

µab 7→
(
µ(ab)0

,
1

n
gcdµcd

)
,

where µ(ab)0
:= µab − 1

ng
cdµcdgab. The standard conformal cotractor bundle T ∗ is then

defined as the quotient of J2E [1] by the image of S2
0T

∗M [1] and so has a filtration as given
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by the exact sequence

0 → E [−1]
X→ T ∗ → J1E [1] → 0. (2.3.2)

We will write the information of (2.3.2) as

T ∗ = J1E [1] +
�� E [−1], (2.3.3)

where we introduce the “semidirect sum” notation, +
�� , to compactly represent such a

short exact sequence. It may be shown that the semidirect sum notation is associative, i.e.
(A+

��B) +
��C = A+

�� (B +
��C). Using this notation, the exact sequence at 1-jets

0 → T ∗M [1] → J1E [1] → E [1] → 0 (2.3.4)

is represented by J1E [1] = E [1] +
�� T ∗M [1], and hence for the cotractor bundle T ∗ we have

T ∗ = E [1] +
�� T ∗M [1] +

�� E [−1]. (2.3.5)

A choice of metric g ∈ c defines an isomorphism EA → E [1]⊕Ea[1]⊕E [−1] by mapping

J2E [1] ∋ j2xσ 7→

 σ(x)
∇aσ(x)

− 1
ng

ab (∇a∇bσ(x) + Pabσ(x))

 ∈ E [1]⊕ Ea[1]⊕ E [−1], (2.3.6)

where ∇a and Pab are the Levi-Civita connection and Schouten tensor respectively associ-
ated to the metric g. To see that this map is well-defined, first note that it is clearly a map
J2E [1] → E [1]⊕Ea[1]⊕E [−1]. To show that it descends to a well-defined map on EA, observe
that if some j2xσ is contained in the kernel, then in particular j1xσ = 0 (from the vanishing
of the first two components), and hence the third component becomes gab∇a∇bσ(x), and
this vanishes if, and only if, ∇a∇bσ(x) lies in E(ab)0 [1] ⊂ J2E [1]. Thus the map factors to a

map EA → E [1]⊕Ea[1]⊕E [−1] which is injective on fibers. Moreover, since it may be seen
that EA and E [1]⊕Ea[1]⊕E [−1] are both vector bundles of rank n+2, this is immediately
seen to be an isomorphism. A choice of conformally related metric ĝ ∈ c yields a different
isomorphism EA → E [1] ⊕ Ea[1] ⊕ E [−1] where the Levi-Civita connection and Schouten
tensor in (2.3.6) are replaced with their conformally related counterparts. Explicitly, this
results in a section of E [1]⊕Ea[1]⊕E [−1] which is related to the one corresponding to the
metric g ∈ c by σ

∇aσ
− 1

ng
ab (∇a∇bσ + Pabσ)

̂ =

 σ
∇aσ +Υaσ

− 1
ng

ab (∇a∇bσ + Pabσ)−Υc (∇cσ +Υcσ)− 1
2Υ

cΥcσ

 .

(2.3.7)

Thus we have established that the tractor bundle is isomorphic to the direct sum
bundle E [1]⊕Ea[1]⊕E [−1] but not canonically. So we may regard sections of EA as triples
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(σ, µa, ρ) ∈ E [1]⊕Ea[1]⊕E [−1] where we identify (σ, µa, ρ) with some other triple (σ̂, µ̂a, ρ̂)
if, and only if,  σ̂

µ̂a

ρ̂

 =

 1 0 0
Υa δba 0

−1
2Υ

cΥc −Υb 1

 σ
µb

ρ

 (2.3.8)

for some Υa = Ω−1∇aΩ, where Ω is a positive function on M . This equivalence relation
lets us easily test if such a triple is a well-defined tractor, since it must transform in this
way.

We note that there is some choice in defining the map of (2.3.6). We follow the con-
vention introduced in [4] where the tractor bundle was introduced. This construction is
also used in [14] where it appears slightly different owing to a different sign convention for
the Schouten tensor.

We introduce a new notation for representing tractors as opposed to the tuple/column
vector notation we have used thus far. This notation will be much better suited to repre-
senting sections of tensor products of tractor bundles, and generally facilitates calculations
with tractors. We have already seen in (2.3.2) that there is a conformally invariant map
X : E [−1] → T ∗. We call this the canonical tractor (for the role it plays in the short exact
sequence) or position tractor (since it turns out that it also invariantly encodes information
about position on a conformal manifold). Moreover, a choice of metric g ∈ c determines
maps YA : E [1] → EA and Za

A : Ea[1] → EA, which we call the tractor projectors or splitting
tractors. In this notation, we write

VA
g
= σYA + µaZ

a
A + ρXA, (2.3.9)

where the g over the equality emphasizes that this splitting depends on the choice of metric
g ∈ c, although we will usually omit this in the sequel. We view YA and Za

A as sections of
EA[−1] and Ea

A[−1] respectively, and whileXA is conformally invariant, one sees from (2.3.8)
that, for a conformally related choice of metric, YA and Za

A must transform according to

ŶA = YA −ΥaZ
a
A − 1

2
ΥaΥaXA (2.3.10)

and
Ẑa
A = Za

A +ΥaXA (2.3.11)

respectively.

Let U, V be sections of T ∗, with U = (σ, µ, ρ) and VA = (σ′, µ′, ρ′). One can easily
check that

h(U, V ) = σρ′ + g−1(µ, µ′) + σ′ρ. (2.3.12)

defines a signature (p+1, q+1) conformally invariant metric on T ∗, and we may henceforth
identify T ∗ with its dual, which we write T , or EA in abstract index notation. Note that,
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having fixed a metric g ∈ c, EA g
= E [1]⊕Ea[−1]⊕E [−1], where we note that the conformal

weight of the middle summand is different from (2.3.5) since the (weighted) conformal
metric identifies T ∗M [1] and TM [−1].

Written using the tractor projectors, the metric on EA is

hAB = 2X(AYB) + gabZA
aZB

b. (2.3.13)

Hence XAYA = 1, ZA
aZA

b = δab and all other pairings of the splitting operators give zero.

The tractor bundle also admits a conformally invariant tractor connection, which is
equivalent to the normal Cartan connection [15]. In a choice of scale,

∇T
a

 σ
µb

ρ

 =

 ∇aσ − µa

∇aµb + gabρ+ Pabσ
∇aρ− Pabµ

b

 . (2.3.14)

If we wish to be explicit, we may write ∇T for the tractor connection, but usually we will
just write ∇ and context will determine whether this denotes the tractor connection or
a Levi-Civita connection. This implies that the action of the tractor connection on the
tractor projectors is given by

∇aX
A = ZA

a , ∇aZ
A
b = −PabX

A − gabY
A , ∇aY

A = Pa
bZA

b . (2.3.15)

The general action on a section of a tractor bundle then follows from the Leibniz rule.
In particular, one sees that ∇ahAB = 0, so the tractor connection preserves the tractor
metric. Therefore we will henceforth use the tractor metric to identify T and T ∗.

Finally, the tractor curvature Ωab
C
D of the tractor connection is defined by

Ωab
C
DΦ

D := 2∇[a∇b]Φ
C

for ΦA ∈ Γ(EA). Written using the tractor projectors takes, this takes the form

ΩabCD = WabcdZ
c
CZ

d
D − 2CabcX[CZ

c
D], (2.3.16)

where Wabcd is the Weyl tensor, and Cabc is the Cotton tensor

Cabc := 2∇[aPb]c. (2.3.17)

Recall that a Riemannian manifold (M, g) is said to be (locally) conformally flat if any point
has a neighborhood where there exists a conformally related metric which is flat. The
following well-known result, sometimes called the Weyl-Schouten theorem, characterizes
this property.

Theorem 2.3.1. Let (M, g) be a Riemannian n-manifold. Then M is locally conformally
flat if, and only if
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• Wabcd = 0, if n ≥ 4, and

• Cabc = 0, if n = 3.

See e.g. [2] for a proof.

We will say that (M, c) is flat if there is a locally flat metric in the conformal class c.
Using the above theorem, we see that this notion of conformally flatness coincides exactly
with the tractor connection being flat.

Theorem 2.3.2. Let (M, c) be a conformal manifold. Then M is flat if, and only if, the
tractor curvature vanishes.

Proof. If the connection is flat, then the Weyl and Cotton tensors both vanish, and hence
by Theorem 2.3.1, (M, c) is conformally flat in all dimensions n ≥ 3.

Conversely, suppose that (M, c) is conformally flat. In dimension 3, the Weyl tensor
vanishes identically. So the tractor connection is flat if, and only if, the Cotton tensor is
zero. But according to Theorem 2.3.1, this is exactly equivalent to the conformal flatness
of (M, c). In dimensions n ≥ 4, Theorem 2.3.1 gives that conformal flatness is equiv-
alent to the vanishing of the Weyl tensor. On the other hand, combining the Bianchi
identity (1.2.11) and its contracted versions (1.2.13) and (1.2.14), together with the de-
composition of the Riemann curvature tensor (1.2.5) and equation (1.2.6) relating the Ricci
and Schouten tensors, if follows that

∇dWabcd = (3− n)Cabc.

Hence when n ≥ 4, the vanishing of the Weyl tensor implies that the Cotton tensor vanishes
also, and so the whole tractor curvature vanishes. Thus for all dimensions at least 3, the
tractor curvature vanishes if, and only if, (M, c) is conformally flat.

Equivalently, one can think of (2.3.6) as defining a second-order linear differential op-
erator D : E [1] → EA by

Dσ =

 nσ
n∇aσ

− (∆σ + Jσ)

 , (2.3.18)

where ∆ := gab∇a∇b and recall J = gabPab is the trace of the Schouten tensor (now
taken with the conformal metric). We call this the Thomas-D operator. It is tautologically
conformally invariant since the transformation of (2.3.6) defines conformal invariance. The
factor of n here is merely a matter of convention. For some scale σ ∈ Γ(E [1]), we define
the scale tractor

IA :=
1

n
DAσ. (2.3.19)
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Such

In fact, the above Thomas-D operator is merely a special case of a more general con-
formally invariant second order operator DA : EΦ[w] → EA ⊗ EΦ[w − 1], where EΦ denotes
any tractor bundle. This acts on V ∈ EΦ[w] by

DAV
g
:=

 (n+ 2w − 2)wV
(n+ 2w − 2)∇aV
−(∆V + wJV )

 , (2.3.20)

where ∇a = ∇T
a is the induced tractor connection on EΦ and ∆ := gab∇T

a ∇T
b . It is clear

that this recovers (2.3.18) when EΦ[w] is the bundle of conformal 1-densities, E [1].
Recall that a metric g is said to be Einstein if Rab = λgab where Rab is the Ricci tensor

of the metric g and λ is a function. (In fact, the Bianchi identity implies that if such a λ
exists, then it is necessarily constant.) One may ask if a given conformal manifold (M, c)
is “conformally Einstein”, namely whether there is an Einstein metric in the conformal
class. This question is closely related to the existence of a parallel standard tractor, and
the Thomas-D operator gives the link between the two.

Theorem 2.3.3. On a conformal manifold, there is a bijective correspondence between
sections σ ∈ Γ(E [1]) satisfying

∇(a∇b)0
σ + P(ab)0

σ = 0 (2.3.21)

and parallel standard tractors IA. The mapping from scales to parallel tractors is given by
σ 7→ 1

nDAσ, while the inverse map from parallel tractors to scales is IA 7→ XAIA. We call
equation (2.3.21) the almost-Einstein equation.

Before proving the theorem, we briefly explain the reason for the almost in almost-
Einstein equation. Using the formulae from Section 2.2, one can show that (2.3.21) is
conformally invariant. Suppose that some σ ∈ Γ(E [1]) solves this equation, and in addi-
tion, suppose for the time being that σ is nowhere-zero. Then, working in the scale σ,
equation (2.3.21) becomes

P g
(ab)0

= 0,

where g := σ−2g is the metric determined by σ. One readily sees that P g
(ab)0

= 0 if, and

only if, the metric g is Einstein. Conversely, given some g ∈ c which is Einstein, then
g = σ−2g for some σ ∈ E+[1], and this solves (2.3.21). So solutions σ to (2.3.21) which are
nowhere-zero are in bijective correspondence with Einstein metrics in the conformal class.

However, note that one can still ask for solutions to (2.3.21) without requiring that they
are non-vanishing. Such a σ ∈ Γ(E [1]) determines an Einstein metric where it is non-zero,
but this metric is no longer defined on the whole manifold, merely on M\Z(σ), where Z(σ)
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is the zero locus of σ. Thus equation (2.3.21) gives a weakening of the notion of Einstein,
hence the name almost-Einstein.

We now prove the theorem.

Proof of Theorem 2.3.3. Suppose that IA is some standard tractor. Then IA is parallel if,
and only if,

∇aσ − µa = 0, ∇aµb + gabρ+ Pabσ, and ∇aρ− Pabµ
b = 0.

Combining the first two of these equations, we see that IA parallel implies that

∇a∇bσ + Pabσ = −ρgab,

and so σ solves (2.3.21). Conversely, one can check using (2.3.14) and (2.3.18) that ∇aIA =
0, where IA := 1

nDAσ for σ solving (2.3.21).

One can alternatively define the tractor bundle by prolonging the almost-Einstein equa-
tion. In this construction, one starts with (2.3.21) and introduces new variables for each
derivative of σ until the derivatives of all variables are expressed in terms of the other
variables and their derivatives. The Thomas-D operator then maps σ to its prolongation.
This construction is done in detail in [28].

The almost-Einstein equation (2.3.21) is the simplest example of a first BGG equation.
This family of overdetermined geometric PDEs will play an important role in our later
treatment of conserved quantities (Chapter 6), and we will see that it is no coincidence
that there is a bijective correspondence between solutions to the almost-Einstein equation
and parallel sections of the standard tractor bundle.

We will call (M, c, σ) an almost-Einstein manifold if σ ∈ E [1] is a non-trivial solution
to the Almost-Einstein equation (2.3.21). As we have already observed, such a solution
defines an Einstein metric g := σ−2g on M\Z(σ). Note that solutions to (2.3.21) also
correspond bijectively to parallel standard tractors even if σ has a non-empty zero locus.
We henceforth assume that σ is not identically zero. Since IA := 1

nDAσ is parallel, it
is everywhere non-zero, provided that IA ̸= 0, which holds as long as σ is not the zero
section. Hence σ must be non-zero on an open, dense set. A parallel standard tractor
corresponds to a special type of structure group reduction known as a holonomy reduction.
By a theorem from [16], this stratifies M into a disjoint union of curved orbits. In the case
of an almost-Einstein manifold, we have

Theorem 2.3.4. Let (M, c, I) be an almost-Einstein manifold. Then stratification of M
into curved orbits is according to the strict sign of σ := XAIA, and the zero locus Z(σ)
satisfies

• If I2 ̸= 0, then Z(σ) is either empty or a smoothly embedded hypersurface.
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• if I2 = 0, then Z(σ) is either empty or, after removing isolated points, a smoothly
embedded hypersurface.

2.4 Parabolic geometries

Conformal geometry is an example of a parabolic geometry. These are Cartan geometries of
type (G,P ), where P is a parabolic subgroup of the semisimple Lie group G. In addition to
conformal geometry, other examples of parabolic geometries include projective geometry
and hypersurface type CR geometry, to name some of the most well-known. Our main
tool for studying conformal geometries is the tractor calculus developed in the earlier
sections of this chapter, however we here touch briefly on the more general Cartan-geometric
viewpoint. We refer the reader to the excellent [17] for a comprehensive and thorough
Cartan-geometric text on parabolic geometry, or [60] for a good introduction to Cartan
geometry more generally. A Cartan geometry of type (G,H) on a manifold M consists
of an H-principal fiber bundle p : P → M together with a g-valued 1-form ω ∈ Ω1(P, g)
which is called the Cartan connection. The Cartan connection satisfies

1. (rh)
∗
ω = Ad(h−1) ◦ ω for all h ∈ H,

2. ω(ξX(u)) = X for each X ∈ h, and where ξX is the fundamental vector field corre-
sponding to X, and

3. ω(u) : TuP → g is a linear isomorphism for all u ∈ P.

A parabolic geometry is then a Cartan geometry of type (G,P ), where P is a parabolic
subgroup of G. Such a subgroup may be seen to correspond to a |k|-grading of the Lie
algebra g of G, that is, a decomposition g = g−k⊕· · ·⊕gk. Notable pioneering contributions
in the theory and applications of these structures were made by Tanaka [63, 64]. Different
classes of familiar parabolic geometries correspond to different choices of G and P . For
example, in conformal geometry of signature (p, q), one takes G = SO(p+ 1, q + 1) and P
the stabilizer of a null line in Rn+2, and projective geometry is given by G = SL(n + 1)
and P the isotropy group of the line through the first vector in the standard basis of Rn+1.
These examples are both |1|-graded geometries, which have the simplest behavior. Contact
geometries such as CR geometries and Lagrangean contact geometries are examples of |2|-
graded geometries. Fixing the larger group G and choosing different parabolic subgroups
also yields different geometries of interest. Generalizing the projective case, taking G =
SL(n+1) and P to be the stabilizer of the subspace generated by the first k standard basis
vectors gives the Grassmannian of all k-dimensional subspaces.

An important special example of a parabolic geometry of type (G,P ) is the (homo-
geneous) model, namely taking M to be the homogeneous space G/P , with the Cartan
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connection being given by the Maurer-Cartan form. A recurring theme in the study of
parabolic geometry is that properties on an arbitrary parabolic geometry of type (G,P )
tend to closely follow the behavior of that property on the model. We will see this later in
this thesis.

2.5 Conformally singular geometries

Geometries which are “singular in a conformal way”, such as Poincaré-Einstein manifolds,
have been shown to be useful in geometric scattering, the AdS/CFT-correspondence and
other areas of mathematics and mathematical physics [1, 45, 48, 38]. We define here a
very general class of structures which includes conformally singular geometries of interest,
among other things.

Definition 2.5.1. We say that (M, c, σ) is an almost pseudo-Riemannian manifold if
IA := 1

nDAσ is nowhere-zero and j1σ vanishes at most at isolated points.

We address this condition on the 1-jet of σ. If one only requires that IA ̸= 0, then it
may be that IA = − 1

n∆σXA at some non-isolated points if the 1-jet vanishes identically.
This situation is quite unnatural, by which we mean it does not occur on the flat model.

To prove this, we will use the theory of holonomy reductions developed in [16]. We
summarize the relevant results from that article. First, a parallel section of a tractor
bundle induces a holonomy reduction, a special type of reduction of structure group on the
G-principal bundle Ĝ := G ×P G. Such a holonomy reduction induces a stratification of
the underlying manifold M into a disjoint union of curved orbits which are parametrized
by P -type; the various P -types may be thought of as corresponding to various possible
relations between the given parallel tractor field and the canonical/position tractor X.
(This stratification generalizes the stratification of almost-Einstein manifolds at the end
of Section 2.3.) Finally, Theorem 2.6 of [16] asserts that even on a curved geometry, this
stratification must be locally diffeomorphic to the model.

The almost Einstein case is particularly simple, since the parallel object is just a stan-
dard tractor. The condition j1σ vanishing at most at isolated points is equivalent to asking
that X ∧ I vanishes only at isolated points. In the language of the theory of holonomy
reductions, the set of such points is a P -type, and therefore corresponds to a curved orbit
on M .

On the model, X is the homogeneous coordinates of a point, and I is a parallel (therefore
constant) vector. Therefore X ∧ I = 0 can only happen when X and I are parallel or anti-
parallel modulo dilations, and hence this happens in at most two points, and none if I2 ̸= 0.
Thus we see that on the model, a parallel tractor I can only satisfy X ∧ I = 0 in isolated
points, and hence the machinery of [16] guarantees that the same will be true in the
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curved case. Thus we see that this 1-jet condition is in particular true of almost-Einstein
structures.

Conformally compact manifolds are a special case of the almost pseudo-Riemannian
manifolds defined above, and an important class of conformally singular geometries in
their own right. We record the definition here.

Definition 2.5.2. Let M be a manifold with boundary with interior M̊ . We say that M
is conformally compact if g̊ = u−2g where g is a metric on M and u is a defining function
for ∂M , i.e.

1. Z(u) = ∂M , and

2. du is nowhere-zero on ∂M .



Chapter 3

Distinguished curves in conformal
geometry

3.1 Conformal circles

For any geometry, it is natural to ask which curves are distinguished in some sense. We
should mention from the outset that there are two classes of distinguished conformal curves.
One notes that the usual geodesic equation is conformally invariant provided that the
tangent vector of the curve in question is null. These curves are called null geodesics,
but they will not be the main focus of our work. The non-null conformal distinguished
curves are variously called conformal circles or conformal geodesics, and we will use these
terms interchangeably to refer to this class of curves. Since we mostly work in Riemannian
signature, these will be the only relevant class of distinguished curves for us, although null
geodesics may be treated in a similar way to what we present here [39]. The notion of
conformal circles has its origins in work of Fialkow, Yano and Schouten [71, 33, 59, 72].
The terminology conformal circles refers to the fact that in the homogeneous model with
signature (n, 0) these curves recover all circles on the sphere.

The conformal circle equation in taking the form usually seen in modern works appears
in [72, Chapter VII, §2]. The equation is given therein as

d3ξx

ds3
+

dξx

ds

(
gµλ

d2ξµ

ds2
d2ξλ

ds2
− 1

n− 2
Lµλ

dξµ

ds

dξλ

ds

)
+

1

n− 2
Lλ

xdξ
λ

ds
= 0,

where Lµλ is defined by

Lµλ := −Kµλ +
1

2(n− 1)
Kgµλ,

where Kµλ and K are the Ricci tensor and scalar curvature respectively. Comparing the

29
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above display with (1.2.6), wee see that this is related to our Schouten tensor according to

Lµλ = −(n− 2)Pµλ

Thus, Yano’s equation rewritten with our notation and conventions is

uc∇ca
b − ucPc

b + aca
cub + ucudPcdu

b = 0. (3.1.1)

We will explain shortly how this equation fits with the conformal circle equation as we will
define it.

After tractor methods were first used in [4] to characterize conformal circles, further
efforts were made to use such methods in [61, 39].

Notably, conformal manifolds are also a class of parabolic geometries, and thus inherit
a notion of distinguished curve from in the sense of Cartan geometry. The class(es) of
distinguished curves one obtains from this perspective agree with the more classical picture.
We will discuss this briefly in Section 3.4.

We fix some notational conventions for this chapter. We will denote by γ a smooth
curve in a conformal manifold (M, c). For this chapter, we allow that (M, c) have split
signature. Unless otherwise stated, we will assume that γ is a non-null curve, namely its
tangent vector always has non-zero length. If follows from continuity that the sign of the
length of the tangent to γ must be constant, i.e. for all u ∈ Tγ, one has g(u, u) > 0 or
g(u, u) < 0 at every point along γ. The symbols ub and ab will always denote, respectively,
the velocity and acceleration the curve γ. Recall that ab = ua∇au

b. We also define
u :=

√
|gabuaub| ∈ E [1]. For some connection ∇, we will also use the notation d∇

dt to
mean ua∇a. The connection ∇ may be a Levi-Civita connection or the standard tractor
connection; this should be unambiguous from context. Finally, we define some important
tractor fields associated to the curve γ. Recall that the canonical tractor XB can be viewed
as a section of EB[1]. Hence u−1XB is an unweighted tractor. Define

UB := ua∇a

(
u−1XB

)
(3.1.2)

and
AB := ua∇aU

B, (3.1.3)

which we call the velocity and acceleration tractors respectively. Explicitly, one has

UB =

 0
u−1ub

−u−3 (uca
c)

 (3.1.4)

and

AB =

 −u
u−1ab − 2u−3(uca

c)ub

−u−3
(
uc

dac

dt

)
− u−3aca

c + 3u−5(uca
c)2 − u−1Pcdu

cud

 . (3.1.5)
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3.1.1 Parametrized conformal circles

We begin by defining conformal circles to be solutions to a certain third order ODE. This
is the point of view taken in [3], wherein a smooth curve γ is said to be a conformal circle
if

uc∇ca
b = u2 · ucPc

b + 3u−2 (uca
c) ab − 3

2
u−2 (aca

c)ub − 2ucudPcdu
b, (3.1.6)

where u2 = u · u here should be understood to be unweighted. In that article it is stated
that the conformal circle equation (3.1.6) is equivalent to a pair of equations:(

uc∇ca
[b
)
ua] = 3

uca
c

udud
u[aab] + (ueu

e)ucPc
[bua], (3.1.7)

ubu
a∇aa

b = 3
(uca

c)2

ucuc
− 3

2
aca

c − (ueu
e)uaubPab. (3.1.8)

Clearly if the conformal circle equation holds then so too do (3.1.7) and (3.1.8). Con-
versely, supposing the above two equations hold, expanding the antisymmetrization of (3.1.7),
contracting with ua and then substituting (3.1.8) and rearranging gives the conformal circle
equation.

The above are equations (7) and (6), respectively, from [3], and may be understood as

• a parametrization-independent equation, (3.1.7), and

• a choice of distinguished parametrization, (3.1.8).

Equation (3.1.8) may be rephrased in terms of the curve tractors defined at the begin-
ning of this section. From (3.1.5) it follows that

ABA
B = 2u−2uc

dac

dt
+ 3u−2aca

c − 6u−4(uca
c)2 + 2Pcdu

cud, (3.1.9)

and hence (3.1.8) holds if, and only if, ABAB = 0. The family of distinguished parametriza-
tions specified by either (3.1.8) or the condition ABAB = 0 are the so-called projective
parametrizations. Such parametrizations are in fact available for all (non-null) curves.
The following proposition establishes this, as well as clarifying why such parametrizations
are called projective. It also provides an alternative proof of Cartan’s observation that any
curve in a conformal manifold inherits a natural projective structure [21].

Proposition 3.1.1. Any non-null curve γ in a conformal (or even Riemannian) manifold
M may be reparametrized such that it obeys (3.1.8). Moreover, the freedom in the choice
of such a parametrization is PSL(2,R).
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Proof. Let

f := ubu
a∇aa

b − 3
(uca

c)2

u2
+

3

2
aca

c + u2ucudPcd (3.1.10)

so that f = 0 is equation (3.1.8). Reparametrizing γ = γ(t) with a new variable s = g(t)
also results in

ua 7→ ũa =
dγ

ds
=

dt

ds

dγ

dt
= (g′)

−1
ua (3.1.11)

and

ab 7→ ãb =
d2γ

ds2
=

dt

ds

d

dt

(
(g′)

−1
ub
)
= (g′)

−2
ab − (g′)

−3
g′′ub. (3.1.12)

(Note that equations (3.1.11) and (3.1.12) may be used to verify the parametrization-
independence of (3.1.7).) Hence

f̃ = (g′)
−4

f − u2(g′)
−4

(
g′′′

g′
− 3

2

(
g′′

g′

)2
)
.

We can always solve the ODE f̃ = 0, and hence any curve γ may be locally reparametrized
such that (3.1.8) is satisfied. To prove the second statement of the theorem, we note that
there is freedom in doing so corresponding to solutions of

g′′′

g′
− 3

2

(
g′′

g′

)2

= 0, (3.1.13)

which is the Schwarzian differential equation, whose solutions are of the form

g(t) =
at+ b

ct+ d
, where ad− bc = 1.

Since we have already seen that equation (3.1.6) is equivalent to the pair of equa-
tions (3.1.7) and (3.1.8), and we have just established that a curve always admits a pro-
jective parametrization, equivalently a reparametrization always exists such that (3.1.8) is
satisfied, we have hence proved

Proposition 3.1.2. A curve γ satisfies (3.1.7) if, and only if, it admits a reparametrization
such that the conformal circle equation (3.1.6) holds.

Thus the conformal circle equation as given in (3.1.6) implies that the curve is projec-
tively parametrized. We will thus refer to equation (3.1.6) as the projectively parametrized
conformal circle equation and, in light of the previous proposition, we call (3.1.7) the un-
parametrized conformal circle equation. We will say that a curve is an unparametrized
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conformal circle if it solves (3.1.7) or, equivalently (by the previous proposition), if it
admits a projective reparametrization solving (3.1.6).

Yano’s conformal circle equation (3.1.1) also involves an implicit choice of parameter.
Specifically, one has that (3.1.1) is equivalent to (3.1.7) together with the curve having a
unit speed parametrization (according to the metric in which one is working). To see this,
note first that the unit speed condition implies that uca

c = 0. Substituting this and the
unit speed condition ueu

e = 1 into (3.1.7) and expanding the antisymmetrizations yields

(uc∇ca
b)ua − (uc∇ca

a)ub = ucPc
bua − ucPc

aub.

Contracting the above display with ua yields

uc∇ca
b − ucPc

b − (uau
c∇ca

a)ub + ucudPcdu
b = 0,

which is almost (3.1.1). Finally, since uaa
a = 0, it follows that also uc∇c(uaa

a) = 0,
and hence uau

c∇ca
a = −aca

c. Substituting this into the above display then exactly
gives (3.1.1).

We have the following characterization of unparametrized conformal circles [38]. This
is [3, Proposition 3.3] but for unparametrized curves.

Proposition 3.1.3. Let (M, c) be a conformal manifold and γ a non-null, oriented curve
in M . Then γ is an unparametrized conformal circle if, and only if, γ is an unparametrized
geodesic for some metric in the conformal class and ucPc

b ∝ ub, where P is the Schouten
tensor for the given metric.

Proof. Suppose first that γ is an unparametrized conformal circle. In [3] it is claimed
without proof that one may find a scale making the acceleration zero. (In fact, it may also
be shown using results on submanifolds from later in this thesis, c.f. Proposition 5.1.2.)
Another proof of this may be found in [30], and a slight modification of the argument
therein shows that one can instead find a new scale such that âb ∝ ub, where âb := uc∇̂cu

b,
the acceleration computed in the new scale. Thus locally there exists a metric in the
conformal class for which γ has ab = fub for some smooth function f . Working in this
scale and substituting this expression for the acceleration into equation (3.1.7), we see that

0 = (ueu
e)ucPc

[bua],

whence it must be that ucPc
b ∝ ub, since recall we assume that the curve γ is non-null.

Conversely, suppose that such a scale exists, and that ucPc
b ∝ ub, where Pab is the

Schouten tensor of this special scale. Then, since we have that ab ∝ ub, the right-hand side
of (3.1.7) is clearly zero. Writing ab = fub and expanding out the left-hand side, one sees
that this is also zero. So equation (3.1.7) is satisfied, and hence γ is an unparametrized
conformal circle.



34 CHAPTER 3. DISTINGUISHED CONFORMAL CURVES

In Chapter 5, we will see that multiple potential notions of conformal distinguished
submanifold admit characterizations in terms of conformal circles. These characterizations
were studied by Belgun [6] without the use of tractors. In light of this, it seems prudent
to confirm that Belgun’s notion of conformal circle is the same as ours. Given a non-null
curve γ, Belgun defines the conformal acceleration to be

a(γ)b := u2ucPc
b − uc∇ca

b + 3u−2 (uca
c) ab

+

(
−6u−4 (uca

c) +
3

2
u−2 (aca

c) + 2u−2
(
ucu

d∇da
c
))

ub,
(3.1.14)

and defines conformal circles to be those non-null curves with vanishing conformal accel-
eration. Substituting the ucu

d∇da
c term of the above display with (3.1.8), one calculates

a(γ)b = u2 · ucPc
b + 3u−2(uca

c)− 3

2
u−2(aca

c)ub − 2ucudPcdu
b − uc∇ca

b,

and hence a(γ)b = 0 is exactly the projectively parametrized conformal circle equation (3.1.6).

Proposition 3.1.4. The curve γ is a projectively parametrized conformal circle if, and
only if, ABA

B = 0 and dAB/dt = 0.

Proof. We have already seen that ABAB = 0 is equivalent to the projective parametrization
condition (3.1.8). When ABA

B = 0, the acceleration tractor takes the simpler form

AB =

 −u
u−1ab − 2u−3 (uca

c)ub
1
2u

−3aca
c

 .

Hence,

dAB

dt
=
[
−u−1 · ucac − u−1 · acuc + 2u−3 (uca

c)udu
d
]
Y B[

−u · ucPc
b − u−2

(
u−1uca

c
)
ab + u−1da

b

dt
+ 6u−5(uca

c)2ub − 2u−3 (aca
c)ub

−2u−3

(
uc

dac

dt

)
ub − 2u−3 (uca

c) ab +
1

2
u−3 (aca

c)ub
]
ZB
b

+

[
−3

2
u−5

(
uda

d
)
(aca

c) + u−3

(
ac

dab

dt

)
− ucPcd

(
u−1ad − 2u−3 (uea

e)ud
)]

XB

=

 0

u−1 dab

dt − u · ucPc
b − 3u−3 (uca

c) ab + 3
2u

−3 (aca
c)ub + 2u−1ucudPcdu

b

u−3ac
dac

dt − u−1ucadPcd − 3
2u

−5
(
uda

d
)
aca

c + 2u−3ucudPcd (uea
e)

 (3.1.15)
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=

 0

u−1 dab

dt − u · ucPc
b − 3u−3 (uca

c) ab + 3
2u

−3 (aca
c)ub + 2u−1ucudPcdu

b

u−2ab

(
u−1 dab

dt − u · ucPc
b − 3u−3 (uca

c) ab + 3
2u

−3 (aca
c)ub + 2u−1ucudPcdu

b
)
 ,

and one sees that the middle slot vanishes precisely when

dab

dt
− u2 · ucPc

b − 3u−2 (uca
c) ab +

3

2
u−2 (aca

c)ub + 2ucudPcdu
b = 0,

which is exactly (3.1.6). Moreover, if ABA
B = 0, then also AB

dAB

dt = 0, and therefore if

both the top and middle slots of dAB

dt vanish, then so must the third (since the top slot
of AB is non-zero). Note that the equality below (3.1.15) also shows this explicitly. This
completes the proof.

3.1.2 Unparametrized conformal circles

Our goal in this section is to develop a parametrization-independent tractor theory of
conformal circles. We have seen a tractor characterization of conformal circles in Propo-
sition 3.1.4, but this is exclusively for projectively parametrized curves. While such
parametrizations are always available, it would nevertheless be preferable to state results in
a parametrization-independent way. On the other hand, equation (3.1.7) is parametrization-
independent, but it is not phrased in the language of tractors. This philosophy underpins
the treatment of conformal circles of [39]. As a first step towards the stated goal, we
introduce weighted versions of the velocity and acceleration vectors.

A nowhere-null curve γ with velocity ua ∈ Γ(Ea|γ) determines a scale u ∈ Γ(E+[1]|γ)
along the curve according to

u :=
√
|gabuaub|, (3.1.16)

where the absolute value allows for the case that γ is timelike. Using the conformal metric
and the unweighted velocity vector results in an overall weight.

Lemma 3.1.5. Let γ be an oriented non-null curve. Then there exists a unique weighted
vector field ua ∈ Γ(Tγ[−1]) along the curve that is compatible with the orientation and
satisfies

uaua =

{
1, if γ is spacelike,

−1, if γ is timelike.
(3.1.17)

Proof. Let ua ∈ Γ(Tγ) be an unweighted velocity field which is compatible with the orien-
tation, and let u ∈ Γ(E+[1]|γ) be defined as in (3.1.16). Then ua := u−1ua satisfies (3.1.17)
and is independent of the choice of velocity vector ua.
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Definition 3.1.6. Let γ be an oriented nowhere-null curve on (M, c). We call the canonical
weighted vector field ua of Lemma 3.1.5 the weighted velocity of γ. Given g ∈ c, define the
weighted acceleration ab ∈ Γ(Eb[−2]|γ) of γ by

ab := uc∇cu
b. (3.1.18)

From the defining property of ub (equation (3.1.17)) it is clear that

ubab = 0. (3.1.19)

Under a conformal rescaling, one calculates

âb = âb + uaΥau
b ∓Υb, (3.1.20)

where the sign is such that uaua = ±1.

For future reference, it is also useful to note the relationship between the weighted and
unweighted acceleration vectors. We have

ac = u−2ac − u−3
(
ub∇bu

)
uc, (3.1.21)

and

ac = u2ac + u
(
ub∇bu

)
uc. (3.1.22)

Viewing γ as a submanifold in (M, c), in turns out that the weighted velocity and
acceleration recover known submanifold invariants. This will be treated in more detail in
Section 5.1, but for now we simply note that the weighted velocity is the weighted volume
form of the submanifold and the weighted acceleration is the weighted mean curvature.

We can now state a weighted version of (3.1.7).

Lemma 3.1.7. Let γ be an oriented nowhere-null curve on (M, c). Then γ is a conformal
circle if, and only if its weighted velocity and acceleration satisfy the conformally invariant
equation (

uc∇ca
[a
)
ub] = ±ucPc

[aub], whenever uaua = ±1, (3.1.23)

for any g ∈ c with Levi-Civita connection ∇.

Proof. Recall that γ possesses a canonical weighted velocity as defined in Lemma 3.1.5.
Choose a scale σ ∈ Γ(E+[1]|γ) along γ and define ua := σua. This and equations (3.1.21)
and (3.1.22) allow one to convert between unweighted and weighted quantities. Substituting
these as appropriate into one of (3.1.7) or (3.1.23) yields the other.
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We now have the necessary results to state and prove our parametrization-independent
tractor characterizations of conformal circles. There are several related results all of which
are phrased in terms of a certain 3-tractor field along the curve. The main object of import
here is a certain 3-tractor field along a curve.

Theorem 3.1.8. On a pseudo-Riemannian or conformal manifold a nowhere null curve γ
is an oriented conformal circle if and only if along γ there is a parallel 3-tractor 0 ̸= Σ ∈
Γ(Λ3T |γ) such that

X ∧ Σ = 0. (3.1.24)

For a given oriented conformal circle γ the 3-tractor Σγ satisfying (3.1.24) is unique up
to multiplication by a positive constant, and unique if we specify |Σγ |2 = −1 when γ is
spacelike, or |Σγ |2 = 1 when γ is timelike.

Moreover, it turns out that the unique 3-tractor of the theorem has a simple expression
in terms of tractors that we have already seen. Choosing σ ∈ Γ(E+[1]|γ) and with the
velocity and acceleration tractors as above, define the 3-tractor ΣABC ∈ Γ(E [ABC]) by

ΣABC := 6σ−1X [AUBAC]. (3.1.25)

We claim that this object has the properties required of the 3-tractor Σ from the
theorem. To verify this, we must prove several things. While it appears that this expression
depends on σ (and therefore on the parametrization of γ), it turns out that this is not the
case.

Lemma 3.1.9. An unparametrized oriented nowhere-null curve γ canonically determines
a 3-tractor Σ ∈ Γ(Λ3T |γ) by (3.1.25).

Proof. Choose a scale σ ∈ Γ(E+[1]|γ) along the curve γ. Then since XA, UB and AC

are defined via conformal tractors and the conformal tractor connection, ΣABC can only
depend on γ and σ. Choosing an ambient scale to split the tractor bundles, it follows
from (3.1.4) and (3.1.5) that

ΣABC = ±6ucX [AY BZC]
c + 6ubacX [AZB

b ZC]
c , (3.1.26)

and note in particular that this expression does not depend on σ, i.e. ΣABC depends only
on the curve γ.

Finally one verifies that this ΣABC has the properties required by Theorem 3.1.8.

Proposition 3.1.10. Let γ be a nowhere-null oriented curve on (M, c) with associated
3-tractor ΣABC as defined by equation (3.1.25). Then γ is a conformal circle if and only
if ΣABC is constant along γ.
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Proof. Let ua be the weighted velocity of γ. Then differentiating equation (3.1.26) gives

ud∇dΣ
ABC = 6

(
ud∇da

c ∓ udPd
c
)
ubX [AZB

bZ
C]

c , whenever uaua = ±1,

and the result follows immediately from Lemma 3.1.7.

3.2 Conserved quantities

We defer a full discussion of this until Chapter 6, wherein our discussion of conserved
quantities on distinguished conformal submanifolds of arbitrary codimension will subsume
the technical discussion we would present here. We instead here give some examples which
illustrate how the tractor approach to conformal circles allows one to proliferate conserved
quantities. To state explicitly what we mean, we say that a scalar function Q : M → R is
a conserved quantity (along a curve γ) if ua∇aQ = 0, where ua is the velocity of γ.

While our ultimate goal is to be able to generate a quantity and verify that it is con-
served in a more elegant way, for the time being we will use more elementary methods
to prove that our example quantities are conserved. We will contrast this with the trac-
tor framework we will introduce in Chapter 6 and show how much more effectively this
perspective allows one to both come up with such a quantity in the first place, and more-
over prove that it is conserved. The important point here is that distinguished curves are
characterized in terms of parallel conformal tractors. Thus, roughly speaking, if we can
find a parallel (at least along the curve) tractor field that pairs with Σ to yield a scalar
function, then that function will be constant along the curve. In fact, we may construct
a field which is polynomial in Σ and the conformal metric rather than exactly Σ itself.
Actually, the field need not even be parallel, but at a minimum its derivative must be
annihilated by Σ (or the tractor field which is polynomial in Σ and the tractor metric).
This significantly increases the number of tractor fields we may use together with Σ and
the conformal tractor metric to produce candidate conserved quantities. The difficulty
with this method is finding suitable parallel tractor fields. It will turn out that a certain
class of overdetermined PDEs provide a source of such tractors. These are the first BGG
equations and include many well-known and studied geometric PDEs. They admit a very
elegant tractor theory, and it turns out that, at least in the flat case, the tractor sections
they provide are always parallel.

Theorem 3.2.1. Let M be a smooth manifold equipped with either a pseudo-Riemannian
or conformal structure, and let γ be a conformal circle of M with weighted velocity and
acceleration ua and ab respectively. Suppose that kab ∈ Γ(Eab[3]) is a conformal Killing-
Yano 2-form, i.e. kab satisfies the conformally invariant equation

∇akbc = ∇[akbc] −
2

n− 1
ga[b∇pkc]p. (3.2.1)
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Then

Q := ubackbc ∓
1

n− 1
ub∇pkpb (3.2.2)

is a first integral of γ.

Proof. We calculate ua∇aQ explicitly. We emphasize that after we have developed our
general theory of conserved quantities for distinguished submanifolds, verifying that objects
such as Q are conserved will be significantly simpler.

Note that the weighted conformal circle equation (3.1.23) is equivalent to

ub∇ba
c = ±ubPb

c − (Pbdu
bud ± adad)u

c. (3.2.3)

Hence

ua∇aQ = ±uaubPa
ckbc + uaubac∇akbc

∓ 1

n− 1
ab∇pkpb ∓

1

n− 1
ucua∇a∇pkpc

= ±uaubPa
ckbc ∓

1

n− 1
ucua∇a∇pkpc (3.2.4)

where we have used the skew-symmetry of kbc, equation (3.2.3) and that uau
a = ±1 and

uba
b = 0. Commuting covariant derivatives on the second term and again using the kbc

satisfies (3.2.1) shows that for the second term

ucua∇a∇pkpc = ucua∇p∇akpc − (n− 2)ucuaPa
pkpc

=
1

n− 1
ucua∇a∇pkpa − (n− 2)ucuaPa

pkpc.

Hence

ucua∇a∇pkpc = (n− 1)ucuaPa
pkcp,

and substituting this into (3.2.4) shows that ua∇aQ = 0.

We will see conformal Killing-Yano forms again in the general discussion of conserved
quantities on submanifolds of arbitrary codimension, as conformal Killing-Yano forms (of
the appropriate rank) turn out to be the most natural candidates for constructing conserved
quantities.
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3.3 A note on null geodesics

Let (M, c) be a conformal manifold. Suppose now that γ is a geodesic for some metric
g ∈ c with tangent vector everywhere-null. Rescaling the metric g conformally, one has
sees that

ua∇̂au
b = 2(Υau

a)ub,

and hence there is a reparametrization of γ with velocity ũb such that

ũa∇aũ
b = 0.

Thus the curve γ viewed as an unparametrized curve (equivalently as a submanifold of
M) is conformally invariant. This verifies that the null geodesics of a conformal manifold
form a well-defined class of conformally invariant distinguished curves. The class of null
geodesics as a distinct class of conformal distinguished curves can also be seen from the
parabolic geometry perspective; see Section 3.4 for more details.

Null geodesics may also be characterized in terms of conformal tractors, albeit differ-
ently from conformal circles. Recall that the velocity and acceleration tractors defined in
equations (3.1.2) and (3.1.3) involve u−1, and so are obviously not defined when γ is null.
First, one verifies the following “weighted null geodesic equation”, the null geodesic analog
of Lemma 3.1.7.

Lemma 3.3.1. Let γ be an oriented curve on (M, c). Then γ is an unparametrized null
geodesic if, and only if, there exists a non-vanishing null vector field ua ∈ Γ(Tγ[−2]) along
γ satisfying the conformally invariant equation

ua∇au
b = 0, (3.3.1)

where ∇ is the Levi-Civita connection of any g ∈ c. The weighted velocity field is unique
up to a positive factor that is constant along γ.

Proof. The conformal invariance of (3.3.1) follows from (2.2.2) and (2.2.1). Suppose that γ
is an unparametrized null geodesic for (M, c), and ua ∈ Γ(Tγ) is a smooth non-zero vector
field which is consistent with the orientation. Since γ is an unparametrized geodesic, it
follows that ua∇au

b = fub for some smooth function f along γ. Locally, we may find a
solution σ ∈ Γ(E+[1]|γ) to the ODE 2σ−1ua∇aσ = f . Then ua := σ−2ua ∈ Γ(Ea[−2]|γ)
solves (3.3.1), and is seen to be independent of the parametrization of γ initially used.

Conversely, suppose ua ∈ Γ(Tγ[−2]) is null and solves (3.3.1). Choosing a density
σ ∈ Γ(E+[1]|γ). Defining ua := σ2ua, one sees that ua satisfies an equation of the form
ua∇au

b = fub, where f is a smooth function whose explicit form is unimportant. In
particular, γ may be reparametrized such that ũa∇aũ

b = 0, where ũa denotes the velocity
vector in the new parametrization. Thus γ is an unparametrized null geodesic.
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It follows from the transformation laws of the tractor projectors that ub 7→ 2X [AZ
B]
b ub

defines a conformally invariant map Eb[−2] → E [AB]. We denote this by XAB
b . The null

geodesic analog of Prop 3.1.10 is then

Proposition 3.3.2. An oriented curve γ on (M, c) is an unparametrized null geodesic if,
and only if, it admits a non-vanishing section ub ∈ Γ(Tγ[−2]) such that ΣAB := XAB

b ub is
parallel along γ.

Proof. From equation (2.3.14),

ua∇aΣ
AB = XAB

b ua∇au
b − 2X [AY B]gabu

aub, (3.3.2)

and since the two terms on the right-hand side are linearly independent if non-zero, it must
be that γ satisfies the conditions of Lemma 3.3.1.

One may also proliferate conserved quantities along null geodesics using the same
approach as for conformal circles and more general conformal submanifolds. Since null
geodesics correspond to 2-tractors rather than 3-tractors, the precise sections that one
uses to manufacture scalar functions will be different, but the method is exactly the same.
Namely, given a null geodesic γ, one constructs a scalar function which is polynomial in the
2-tractor ΣAB associated to γ, the tractor metric and some tractor field which is parallel
along the curve.

3.4 Conformal circles as distinguished curves in parabolic
geometry

A general theory of distinguished curves in parabolic geometries is developed in [18]. While
our methods here are not those of general parabolic geometry theory, we briefly remark
on this here. For a general parabolic geometry of type (G,P ), it is a recurring theme that
the situation in the curved case closely mirrors what happens in the homogeneous model.
The stratification of parabolic geometries into curved orbits provides a strong example of
this [16]. One therefore reasonably expects that any classes of distinguished curves on the
homogeneous model G/P would determine classes of distinguished curves in the curved
geometry. This turns out to be the case. The homogeneous model (G,P ) has a natural
class of distinguished curves, namely those coming from 1-parameter subgroups inG. These
are further divided into different types according to the orbits of g− := g−k⊕· · · g−1 under
the action of G0. Recall that the tangent bundle of a parabolic geometry is G ×P g/p,
so g− ∼= g/p gives all possible initial directions for a distinguished curve. In Riemannian
signature conformal geometry, there is a single orbit which is the conformal circles. In
pseudo-Riemannian signature, there are three orbits, classified by the sign of the length of
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the velocity of the curve; curves with null velocity are the null geodesics, and the other
two classes are conformal circles. Parabolic geometries with longer gradings yield more
interesting classes still. For example, in CR geometry, which is |2|-graded, the chains
which generalize the chains of Chern and Moser [27] correspond to elements of g−2.

In [39] it was shown that the distinguished curves of projective geometry, which are
unparametrized geodesics of connections in the projective class, admit a similar charac-
terization via tractors, namely they are characterized by a tractor form which is parallel
along the curve for the appropriate tractor connection, and moreover this tractor form has
the property that wedging with the (projective) canonical tractor yields zero. We strongly
suspect that the same will hold for all parabolic geometries, and have even seen some evi-
dence for this in the CR case in some work in progress. Additionally, the characterization
of a distinguished curve in terms of a special scale given in Proposition 3.1.3 should have
versions in other parabolic geometries, see [30] for more details including an example in
contact Lagrangean geometry.



Chapter 4

Submanifolds in Riemannian and
conformal geometry

In this chapter, we begin in earnest our discussion of submanifolds in conformal geometry.
We develop general machinery for studying conformal submanifolds which we will turn to
application in the later chapters of this thesis. The general theory of Riemannian submani-
folds is well studied and much has been written on the subject. We briefly review the results
that are relevant for our applications, before turning our attention to the less studied sub-
manifolds of conformal manifolds. In particular, our approach will be one that utilizes the
tractor calculus introduced in Chapter 2. The conformal structure of the ambient manifold
induces a conformal structure on any submanifold. Thus a submanifold Γ in a conformal
manifold (M, c) possesses its own intrinsic tractor bundle, namely the tractor bundle of the
conformal manifold Γ with this induced conformal structure. Analogously to the intrinsic
submanifold tangent bundle in pseudo-Riemannian submanifold geometry, this intrinsic
tractor bundle is isomorphic to a subbundle of the ambient tractor bundle. Moreover, this
subbundle admits a complement which is isomorphic to a tractor normal bundle. Similarly,
one obtains tractor analogs of the Gauß equation, and thus a tractor second fundamental
form. Other notable equations and invariants from the pseudo-Riemannian setting also
admit conformal analogs.

Hypersurfaces in conformal manifolds have been studied to a much greater extent than
submanifolds of higher codimension. In [4], where the tractor calculus (in its modern
form) was first written down, the authors define the normal tractor for a hypersurface and
then use this to give tractor characterizations of some conformally invariant properties. A
pivotal result in the theory of submanifolds in conformal manifolds is that the ambient
tractor bundle has a normal subbundle, and the orthogonal complement of this bundle is
isomorphic to the intrinsic tractor bundle. This was first observed for hypersurfaces [9],
and then later for submanifolds of all codimensions [29, 11]. These two works develop and

43
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summarize much of the theory of conformal submanifolds of arbitrary codimension, albeit
using different techniques and presentation. We feel that the approach of Calderbank and
Burstall [11] is less intuitive than that of Curry [29], and since Curry works in terms of
tractors, the results have much aesthetically in common with Riemannian submanifold the-
ory. Our conventions and techniques largely mirror those of Curry’s work. Using these, we
give a unified treatment of hypersurfaces and higher codimension submanifolds, but make
remarks where the hypersurface case yields some simplification. Our approach emphasizes
the role of the tractor normal projector and the tractor normal form as fundamental objects
from which all (in a suitable sense) other submanifold invariants may be recovered.

We take a moment here to summarize the main new results of this chapter. Proposi-
tion 4.2.4 (resp. 4.4.6) shows how the tractor second fundamental form is recovered from
the tractor normal projector (resp. tractor normal form). In Proposition 4.4.4 and Theo-
rem 4.4.5, we compute explicit expressions for the derivative of the tractor normal form; the
corresponding expression for the tractor normal projector is the content of Lemma 4.2.6.
Among the new results in this chapter, the main ones are Theorems 4.2.7 (resp. 4.4.7) where
we prove the tractor projector (resp. tractor normal) form being parallel is a necessary and
sufficient condition for the tractor second fundamental form to vanish.

We regard the tractor normal form as the best generalization to higher codimension of
the hypersurface normal tractor. We illustrate this approach by showing how the tractor
analog of the second fundamental form may be expressed in terms of either the normal
projector of the normal form. These relations will form the basis for our discussion of
distinguished conformal submanifolds in the subsequent chapter.

4.1 Submanifolds in Riemannian manifolds

First, we state some conventions. We will denote by Γ an embedded submanifold of the
ambient manifold M . (In the case of a curve, we will usually use the lower case γ.) Where
necessary, ι will denote the embedding, so one has ι : Γ → M . We will also freely identify
Γ with ι(Γ). We will generally explicitly state any additional structure with which M is
endowed (e.g. Riemannian, conformal). We also reserve m := dimΓ and d := codimΓ.
Recall that n is already reserved to denote dimM , and therefore n = m+ d.

In general, we adopt the convention that Latin letters from the start of the alphabet
(a, b, c, . . .) will denote ambient indices, while indices from later in the alphabet (i, j, k, . . .)
will denote tangential indices. So, for example, Ea is the usual tangent bundle TM , E i is
the tangent bundle of the submanifold TΓ, and Ea

i denotes the bundle TM ⊗ T ∗Γ. Note
that indices alone will not distinguish sections of TM and TM |Γ (technically TM |ι(Γ)), so
va could be a section of either Ea or a section of Ea|Γ, where Ea|Γ → Γ is the pullback
bundle ι∗TM .
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Definition 4.1.1. In abstract indices, the canonical map Tι : TΓ → TM will be written
Πa

i and viewed as a section of T ∗Γ⊗ TM |Γ.

We will frequently identify TΓ with Tι(TΓ) ⊂ TM |Γ without comment.

Definition 4.1.2 (Pullback metric). Choosing a metric g on M determines a metric on Γ
by pullback (since the map ι is an immersion). Denoting this pullback metric by gΓ, one
has gΓ = ι∗g.

Explicitly, for U, V ∈ X(Γ),

(ι∗g)(U, V ) = g(Tι(U), T ι(V )) = g(Π(U),Π(V )). (4.1.1)

Writing gij for gΓ, the above display may be rewritten in abstract indices as

gijU
iU j = gabΠ

a
iU

iΠb
jV

j , (4.1.2)

whence

gij = Πa
iΠ

b
jgab, (4.1.3)

and one sees that the map Πa
i is equivalently restriction to the submanifold Γ when acting

on ambient form indices.

For any inclusion of manifolds ι : Γ ↪→ M , there is a short exact sequence of vector
bundles on Γ

0 TΓ TM |Γ TM/Γ := TM |Γ/T ι(TΓ) 0Tι p
(4.1.4)

and in this, Tι = Πa
i : E i → Ea|Γ is the map which pushes forward vector fields.

Dualizing the above sequence,

0
(
TM/Γ

)∗
T ∗M |Γ T ∗Γ 0

p∗ (Tι)∗
(4.1.5)

and here the map (Tι)∗ : T ∗M |Γ → T ∗Γ is the restriction of forms on M to the submanifold
Γ; in abstract indices, this again the map Πa

i as in e.g. (4.1.3).

If moreover M is equipped with a Riemannian metric g or a conformal metric g, one
may use such a metric to split the above sequences. We shall split (4.1.4) by constructing
a map TM |Γ → TΓ which is a left inverse to Tι; this map is essentially a tangential
projection. We can realize this via the following composition, which uses only Tι, the
ambient metric g and the pullback metric gΓ:
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TM |Γ T ∗M |Γ T ∗Γ TΓ

va gabv
a Πb

jgabv
a gijΠb

jgabv
a

gab Πb
j gij

Denote this composition by Πi
a : TM |Γ → TΓ:

Πi
a := gijΠb

jgab. (4.1.6)

Note that here we are assuming that the induced metric gij is invertible. We shall
henceforth assume that this holds. In particular, this means that the techniques developed
throughout the remainder of this thesis will not apply to null submanifolds, for example,
the null geodesics discussed in Section 3.3.

The notation Πi
a is therefore also consistent with the practice of raising and lowering

indices via a metric. It remains to verify that this is a left inverse of Tι, namely that the
composition Πi

aΠ
a
j is the identity on TΓ.

From equations (4.1.3) and (4.1.6), we see that

Πi
aΠ

a
j =

(
gikΠb

kgab

)
Πa

j = gikgabΠ
a
jΠ

b
k = gikgjk = δij .

Since we know that the sequence (4.1.4) splits, Tι(TΓ) admits an orthogonal comple-
ment inside TM |Γ.

To describe this complement explicitly, let

NpΓ := {n ∈ TpM : gp(n, v) = 0 for all v ∈ Tι(TΓ)p}. (4.1.7)

The normal bundle NΓ is then defined as the disjoint union over Γ of these fibers:

NΓ :=
∐

p∈ι(Γ)

NpΓ. (4.1.8)

Note that by equation (4.1.7), the normal bundle (and therefore also the above decom-
position) is invariant under a conformal rescaling of the metric.

The normal bundle is clearly an orthogonal complement to the subbundle Tι(TΓ) ⊂
TM :

TM |Γ = Tι(TΓ)⊕NΓ. (4.1.9)

Moreover, the composition Πa
b := Πa

iΠ
i
b : TM |Γ → Tι(TΓ), is the identity on Tι(TΓ)

and zero on NΓ. Thus Πa
b is orthogonal projection onto the first factor of (4.1.9). It then
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follows that Na
b := δab − Πa

b : TM |Γ → NΓ ⊂ TM |Γ is projection onto the second factor
of (4.1.9).

This also shows that TM/Γ = TM |Γ/T ι(TΓ) may be identified with the normal bundle
NΓ, since im (Na

b ) = NΓ and ker (Na
b ) = Tι(TΓ) ∼= TΓ.

Summarizing, we have

0 E i Ea|Γ NΓ 0
Πa

i

Πi
a

Nb
a

(4.1.10)

Write ∇i for the pullback connection ι∗∇ on ι∗TM ∼= TM |Γ, where ∇ is the Levi-Civita
connection of (M, g). Equivalently,

∇iV
b = Πa

i∇aṼ
b, (4.1.11)

where V b is a section of Eb|Γ, and Ṽ b is any extension of V b to the whole of M . It can be
seen that ∇iV

b as defined here does not depend on the choice of extension.

In a slight abuse of notation, we will sometimes not distinguish between the section V b ∈
Γ(Eb|Γ) and the extension Ṽ b ∈ Γ(Eb) when switching between the pullback connection and
the ambient connection. Since ultimately we will restrict to along the submanifold, this
inaccuracy will not affect the final formula.

Clearly conformally related metrics on M will pullback to conformally related metrics
on Γ. Thus the conformal structure c on M induces a conformal structure on Γ, which we
denote by cΓ. Then

cΓ = {gΓ := ι∗g : g ∈ c}.

Note that (Γ, cΓ) is a conformal manifold in its own right; we will refer to objects
defined solely on Γ without considering its embedding in the ambient manifold as intrinsic.

As a conformal manifold, it possesses its own conformal metric gij ∈ E(ij)[2], which we
call the intrinsic conformal metric.

Any choice of ambient metric g ∈ c induces a Levi-Civita connection on the Riemannian
manifold (Γ, ι∗g). This connection is very closely related to the pullback of the ambient
Levi-Civita connection determined by g:

Theorem 4.1.3. Let ι : Γ ↪→ M be a submanifold of a conformal manifold (M, c). Choose
a metric g ∈ c, and let ∇ and D denote the Levi-Civita connections of g and gΓ respectively,
where gΓ := ι∗g is the pullback metric on Γ. Then

DiV
j = Πj

b∇i

(
Πb

kV
k
)
, (4.1.12)

where V j ∈ Ej.
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Proof. The right-hand side of (4.1.12) defines a connection on TΓ. Moreover, one can
check that it is torsion-free and preserves the intrinsic metric gΓ, and thus must be the
Levi-Civita for the metric gΓ by uniqueness. For details, see e.g. [56].

Thus the intrinsic Levi-Civita connection of the submanifold Γ is completely described
by the tangential part of a choice of Levi-Civita connection for an ambient metric which
restricts to the given metric on the submanifold.

The ambient connection also induces a connection on the normal bundle NΓ:

Definition 4.1.4 (Normal connection). Let ν ∈ Γ(NΓ), and define

∇⊥
i ν

a := Na
b∇iν

b, (4.1.13)

where ∇i is the pullback connection. The above formula clearly defines a connection on
NΓ which we call the normal connection.

Suppose now that ν ∈ Γ(NΓ[w]), so now we allow ν to have a weight. From (2.2.1)
and (2.2.2), one sees that

∇̂⊥
i ν

a = ∇⊥
i ν

a + (w + 1)Υiν
a. (4.1.14)

In particular, coupling the normal connection with the Levi-Civita connection on E [−1]
yields a conformally invariant connection on NΓ[−1]. Recall that the conformal metric
has conformal weight 2 and therefore restricts to a genuine metric on NΓ[−1], since, for
any µ, ν ∈ Γ(NΓ[−1]), we have gabµ

aνb is a section of the trivial bundle E . Thus one may
locally construct orthonormal bases for NΓ[−1]. The restriction of the ambient conformal
metric to the normal bundle is also clearly preserved by this normal connection.

4.1.1 The Gauß formula

The normal part of the ambient Levi-Civita connection acting on tangent vectors is char-
acterized by the second fundamental form.

Definition 4.1.5 (Second fundamental form). Let Γ ↪→ M be a submanifold of a Rieman-
nian manifold (M, g). The second fundamental form, denoted IIij

c, is defined by the Gauß
formula:

∇iu
c = Πc

jDiu
j + IIij

cuj , (4.1.15)

where ∇i is the pullback connection ι∗∇ of the Levi-Civita connection ∇ of g, uj ∈ Ej ,
and uc := Πc

ju
j . Note that the bilinear form IIij

c defined by this equation is symmetric,
since both the ambient and intrinsic Levi-Civita connections are torsion-free, and the Lie
bracket of vector fields tangent to the submanifold remains tangential.
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Remark 4.1.6 (A note on conventions). Another common way to define the second funda-
mental form, particularly in the case of hypersurfaces, is to define the second fundamental
form to be the derivative of the unit conormal (or the normal projection in the case of
non-hypersurface submanifolds). This agrees with our convention up to sign:

IIGauß
ij
c = −II∇N

ij
c. (4.1.16)

This means that some of our later formulae will be slightly different from formulae appear-
ing in other literature in the field (usually only different up to a sign). Our convention will
be to define the second fundamental form by the Gauß formula, namely IIGauß

ij
c is the

section IIij
c from (4.1.15).

It is also common in the hypersurface case to view the second fundamental form as a
scalar-valued symmetric 2-form on Γ, denoted IIij rather than the NΓ-valued form defined
here. In this case, one recovers the normal-valued form by declaring

IIij
c := IIijN

c,

where N c is the submanifold unit normal vector field.

Definition 4.1.7 (Mean curvature vector). Let g ∈ c, IIij
c be the second fundamental

form defined by the Levi-Civita connection of g. The mean curvature vector is the g-trace
of the second fundamental form:

Hc :=
1

dimΓ
gijIIij

c. (4.1.17)

Division by the dimension of Γ means that

IIij
c = I̊Iij

c + gijH
c, (4.1.18)

where I̊Iij
c := II(ij)0

c is the trace-free (with respect to the conformal metric) part of the
second fundamental form.

Remark 4.1.8 (A note on weights.). In equation (4.1.17), we take the trace with the
conformal metric. Therefore, the mean curvature will have a conformal weight: Hc ∈
Ec[−2]. To recover the usual (unweighted) mean curvature, we choose a metric in the
conformal class to trivialize the density bundles. Recall that a choice of metric g ∈ c
determines a scale σ ∈ E+[1] by g = σ−2g; the unweighted mean curvature is then given
by H̃c := σ2Hc, where σ is this same scale. This is the usual mean curvature vector of
Γ, viewed as a submanifold of the Riemannian manifold (M, g). We will not make this
distinction explicitly in what follows, since “working in the scale σ” corresponds to σ = 1
and hence in the scale the weighted and unweighted mean curvatures agree. However one
can always infer which mean curvature vector is being used from the surrounding objects.
Since all formulae are implicitly written relative to a chosen metric, we always have a
trivialization of the density bundles available.
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Although the second fundamental form is not conformally invariant, it has a simple
conformal transformation law, which we calculate. Choose an ambient metric g ∈ c with
pullback gΣ. Let ĝ ∈ c be a conformally related ambient metric and ĝΓ := ι∗ĝ be its
pullback. We make three observations which aid us in computing the conformal trans-
formation of the second fundamental form. First, the ambient Levi-Civita connection of
the conformally related metric must also satisfy its own Gauß formula for the transformed
rescaled Levi-Civita connection and the rescaled second fundamental form:

∇̂iu
c = Πc

jD̂iu
j + ÎIij

cuj . (4.1.19)

Second, we have already seen in (2.2.2) how the ambient Levi-Civita connection trans-
forms under a conformal rescaling:

∇̂iu
c = ∇iu

c +Υiu
c − uiΥ

c +Υdu
dΠc

i .

Note that the i index in the above display is tangential and therefore for the pullback
connection, δci = Πc

i .

Finally, the submanifold intrinsic Levi-Civita connection will transform similarly, since
(Γ, cΓ) is itself a conformal manifold and D ∈ cΓ:

D̂iu
j = Diu

j +Υiu
j − uiΥ

j +Υku
kδji . (4.1.20)

We can combine the above to determine the transformation of the second fundamental
form.

∇̂iu
c = ∇iu

c +Υiu
c − uiΥ

c +Υdu
dΠc

i

=
(
Πc

jDiu
j + IIij

cuj
)
+Υiu

c − uiΥ
c +Υdu

dΠc
i

= Πc
jDiu

j + IIij
cuj +ΥiΠ

c
ju

j − ui (Π
c
d +Nc

d)Υ
d +Υku

kΠc
i

= Πc
j

(
Diu

j +Υiu
j − uiΥ

j +Υku
kδji

)
+
(
IIij

cuj − uiN
c
dΥ

d
)

= Πc
jD̂iu

j +
(
IIij

c − gijN
c
dΥ

d
)
uj ,

so comparing with (4.1.19), the term in brackets must be ÎIij
c.

We conclude that under a conformal transformation,

ÎIij
c = IIij

c − gijN
c
dΥ

d. (4.1.21)

Since this transformation is by pure trace, it follows immediately that I̊Iij
c is confor-

mally invariant: ̂̊
IIij

c = I̊Iij
c.
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Thus the transformation of (4.1.21) is entirely due to the transformed mean curvature,
whence

Ĥc = Hc −Nc
dΥ

d. (4.1.22)

We will be interested in various special classes of conformal submanifolds. We introduce
the first of these here. Recall that a submanifold Γ in a Riemannian manifold (M, g) is called
totally geodesic if its second fundamental form vanishes. Since the second fundamental
form is not a conformal invariant, this notion does not make sense on a conformal manifold.
However, we have seen that the trace-free second fundamental form is conformally invariant.
This gives our first example of a class of special conformal submanifolds.

Definition 4.1.9 (Totally umbilic submanifold). Let M be a Riemannian or conformal
manifold, Γ ↪→ M a submanifold. A point p ∈ Γ where I̊Iij

c vanishes is called umbilic. Γ
is said to be totally umbilic if every point of Γ is umbilic.

We will often omit the word “totally” when discussing a totally umbilic submanifold and
simply say that a submanifold Γ satisfying Definition 4.1.9 is umbilic. Umbilic submanifolds
are a well-studied class of submanifolds, of interest in mathematics and physics [26, 25].

Having defined the second fundamental form, we can state the Gauß, Codazzi-Mainardi
and Ricci equations along the submanifold Γ:

Rijkl = RΓ
ijkl + 2gcdIIl[i

cIIj]k
d, (4.1.23)

Rij
c
kN

d
c = 2D[iIIj]k

d, (4.1.24)

Rij
a
bN

c
aN

b
d = R⊥

ij
c
d + 2gklIIl[i

cIIj]kd, (4.1.25)

where Rijkl := Πa
iΠ

b
jΠ

c
kΠ

d
lRabcd is the curvature of the ambient Levi-Civita connection

restricted to Γ, RΓ
ijkl is the intrinsic Riemann curvature tensor (i.e. the curvature of the

connection D), D is the intrinsic Levi-Civita connection coupled to the normal connection
and R⊥

ij
c
d is the curvature of the normal connection ∇⊥

i . These are standard equations
in Riemannian submanifold geometry. Proofs may be found in e.g. [56], but we sketch
the idea here. These formulae are all derived by substituting the Gauß formula (4.1.15)
into equation (1.2.2) which defines the curvature of the pullback connection ∇i. Using the
decomposition TM = TΓ⊕NΓ, we may write a section vc ∈ Γ(Ec) as a tuple (Πc

dv
d,Nc

dv
d).

Note also that Πc
dv

d = Πc
ku

k for a unique uk ∈ Γ(Ek). In a slight abuse of notation, we will
simply write vk for this unique section uk. From the Gauß formula (4.1.15), we have that

∇j

(
V k

Nc
dV

d

)
=

(
DjV

k − IIj
k
dV

d

IIjk
cV k +∇⊥

j

(
Nc

dV
d
)) .

Acting again with the connection on such a tuple gives the action of the Riemann curvature
Rij

c
d:

(∇i∇j −∇j∇i)

(
V k

Nc
dV

d

)
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=

(
RΓ

ij
k
lV

l − 2D[i

(
IIj]

k
dV

d
)
− 2gefII

k
[i
fIIj]l

eV l − 2II[i
k
|e|∇⊥

j]

(
Ne

dV
d
)

2IIk[i
c
(
Dj]V

k
)
− 2gklIIk[i

cIIj]ldV
d + 2∇⊥

[i

(
IIj]k

cV k
)
+R⊥

ij
c
dV

d

)

=

(
RΓ

ij
k
l + 2gcdIIl[i

cIIkj]
d −2D[iIIj]

k
d

2D[iIIj]l
c R⊥

ij
c
d + 2gklIIl[i

cIIj]kd

)(
V l

Nd
eV

e

)
,

where we have used

∇⊥
j

(
IIik

cV k
)
= (DjIIik

c)V k + IIik
c
(
DjV

k
)

and the corresponding

Di

(
IIj

k
cV

c
)
=
(
DiIIj

k
c

)
Nc

dV
d + IIj

k
c∇⊥

i

(
Nc

dV
d
)

for the adjoint second fundamental form to simplify the off-diagonal entries. (Note that
while we write D or ∇⊥ here, in reality the connections written will be coupled to at least
one other connection in order to act on the illustrated section.) Note also that we have
interchanged i and j in the second term of both diagonal entries, resulting in a sign change.
One can check that the resulting expressions really are equal to those in the previous line
by noting which of the two indices i and j is on the copy of the second fundamental
forms which acts on the appropriate element of the tuple. The formulae (4.1.23), (4.1.24)
and (4.1.25) now follow by projecting out various elements of this matrix.

4.1.2 Submanifolds and densities; minimal scales

For any w ∈ R, recall E [w] denotes the line bundle of conformal w-densities (on M), defined
in Section 2.1. Write EΓ[w] for the intrinsic bundle of w-densities on Γ and E [w]|Γ for the
restriction of ambient w-densities to Γ. Recall that a choice of metric g ∈ c trivializes the
density bundle E [w]. One sees that, trivializing E [w]|Γ via g ∈ c yields an isomorphic bundle
to trivializing EΓ[w] via gΓ := ι∗g. Thus the bundles E [w]|Γ and EΓ[w] are isomorphic. We
also extend our notation for weighted ambient bundles to bundles over Γ. If B is a bundle
over Γ, then we set B[w] := B ⊗ EΓ[w].

Recall that the Levi-Civita connection of a metric g ∈ c acts on a density τ ∈ E [w]
according to

∇τ = σwd
(
σ−wτ

)
, (4.1.26)

where σ ∈ E [1] is the scale determined by the metric g and d is the exterior derivative.
Any connection acts on smooth functions by the exterior derivative. Therefore

∇iτ = Diτ,

for τ ∈ E [w]|Γ ∼= EΓ[w].
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When working with submanifolds, it will often be convenient to work in an ambient
scale that is adapted to that submanifold. The right notion of adapted here is that the
mean curvature of the scale should be zero.

Definition 4.1.10 (Minimal scale). Let Γ ↪→ M be a submanifold. A scale σ ∈ E+[1] for
which the mean curvature vector Hc of Γ vanishes identically is a minimal scale.

It was observed in e.g. [9, 36] that such scales exist for hypersurfaces in conformal
submanifolds. Curry [29] proves that such scales exist for submanifolds of all codimension.
Calderbank and Burstall [11] similarly arrive at a minimal scale for a submanifold, which
in their setting they call the canonical Möbius reduction. Given a smooth curve in a
conformal manifold, one may always choose a scale in the conformal class for which the
curve is a geodesic for the corresponding Levi-Civita connection (c.f. Proposition 5.1.2
and see e.g. [30, Lemma 2] for a more elementary proof). One can view a minimal scale as
a generalization of such an adapted curve scale. Indeed, we will see in Section 5.1 that a
scale for which a given curve is an affine geodesic is exactly a minimal scale for the curve
viewed as a 1-dimensional submanifold γ ↪→ M , and thus the existence of minimal scales
gives an alternative proof of the mentioned result about special scales for curves.

Just as we refer to both a scale and the metric it determines as a scale, given a minimal
scale σ, we will sometimes refer to the metric g := σ−2g as a minimal scale. Thus we have

Theorem 4.1.11. Let Γ ↪→ M be a submanifold in a conformal manifold (M, c), and
gΓ ∈ cΓ a metric on Γ from the induced conformal structure. Then there exists a metric
g ∈ c on M such that gΓ = ι∗g and the mean curvature vector of Γ in the scale g vanishes.

4.1.3 Volume and normal forms

Recall that the normal bundle N∗Γ is a vector bundle with d-dimensional fibers. Thus
ΛdN∗Γ is a line bundle. There is thus a distinguished section Na1a2···ad ∈ Γ(ΛdN∗Γ) of this
line bundle characterized by

1. Na1a2···adv
a1 = 0 for all v ∈ Γ(TΓ); and

2. Na1a2···adN
a1a2···ad = d!.

It follows from these properties that, given a local orthonormal basis {n1, n2, · · · , nd}
for N∗Γ, one has

Na1a2···ad = d! · n1
[a1

n2
a2 · · ·n

d
ad]

. (4.1.27)

Much of the information about the embedding (Γ, gΓ) ↪→ (M, g) is encoded in this
section; many of the Riemannian invariants may be expressed in terms of it. We will see in
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subsequent sections that there is a tractor analog of this object which similarly encodes the
conformal invariants in the case where M is instead equipped with a conformal structure.

It is also useful for future applications to record the relations between the ambient and
submanifold volume forms and this normal form.

Proposition 4.1.12.

vol
a1a2···an−dan−d+1···an−1an
M Nan−d+1···an = d! · vola1a2···amΓ . (4.1.28)

Proof. Fix local orthonormal bases for the tangent bundle {u1, . . . , um} and the normal
bundle {n1, . . . , nd}. With our conventions,

vol
a1a2···amam+1···an
M = n! · u[a11 ua22 · · ·uamm n

am+1

1 · · ·nan]
d .

Hence

vol
a1a2···amam+1···an−1an
M Nam+1···an

= n! · u[a11 ua22 · · ·uamm n
am+1

1 · · ·nan]
d ·Nam+1···an

= n! · m! · (n−m)!

n!
· u[a11 ua22 · · ·uam]

m · n[am+1

1 · · ·nan]
d ·Nam+1···an

= m! · u[a11 ua22 · · ·uam]
m ·

(
d! · n[am+1

1 · · ·nan]
d ·Nam+1···an

)
= m! · u[a11 ua22 · · ·uam]

m ·
(
Nam+1···anNam+1···an

)
=
(
m! · u[a11 ua22 · · ·uam]

m

)
· d!

= d! · vola1a2···amΓ ,

where, in the third line, we partition the tangent and normal vectors into groups of size
n− d and d, and only the partition that does not have tangent and normal vectors mixed
will yield a nonzero contraction.

As a corollary, we see the relationship between the intrinsic volume form, the ambient
volume form and the normal form.

Corollary 4.1.13.

volMa1···amam+1···an = volΓa1···am ∧Nam+1···an (4.1.29)

Proof. Note that further contracting the right-hand side of (4.1.28) with volΓa1···am yields

volΓa1···am
(
d! · vola1a2···amΓ

)
= d! ·m!.
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Now, volΓ[a1···amNam+1···an] ∈ E[a1···an][n], which is a line bundle, and hence volΓ[a1···amNam+1···an] =

fvolMa1···an for some f a real-valued function on M .

Since

volMa1···anvol
a1···an
M = n!,

and

vola1···anM volΓa1···amNam+1···an = m! · d!,

it follows that

f =
m! · d!
n!

.

With our conventions,

volΓa1···am ∧Nam+1···ad =
(m+ d)!

m! · d!
· volΓ[a1···amNam+1···an].

and since n = m+ d, it follows that

volMa1···amam+1···an = volΓa1···am ∧Nam+1···an (4.1.30)

The results of this section still hold replacing all objects with their weighted counter-
parts. There is a weighted submanifold volume form volΓ ∈ Γ(ΛmT ∗Γ[m]) constructed as
in Section 2.1, and there is a weighted normal form N ∈ Γ(ΛdT ∗M [d]) defined by (4.1.27),
with the orthogonal basis of normals replaced by an orthonormal (according to the weighted
conformal metric) basis for N∗Γ[1]. The wedge of these weighted forms recovers the
weighted volume form of M .

4.2 Submanifold tractors

Having reviewed the relevant Riemannian submanifold geometry theory, we turn our at-
tention to developing tractor calculus for submanifolds. The theory here turns out to be
almost as nice as one could hope, with tractor analogs of many of the standard tools and
equations of Riemannian submanifold geometry. We remind the reader that we assume the
ambient conformal structure has Riemannian signature, and thus the induced conformal
structure on the submanifold is guaranteed to be non-degenerate.
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4.2.1 The intrinsic and normal tractor bundles

Much as is the case in Riemannian geometry, the intrinsic tractor bundle of the submanifold
is isomorphic to a subbundle of the ambient tractor bundle, and moreover this subbundle
admits an orthogonal (with respect to the tractor metric) complement which is isomorphic
to the normal bundle of the submanifold. This decomposition also induces a decomposition
of the ambient tractor connection which in turn leads to a tractor Gauß formula and a
tractor second fundamental form. This tractor second fundamental form will play a central
role in the theory of distinguished conformal submanifolds we present in later chapters.

Definition 4.2.1 (Normal tractor bundle). Let Γ ↪→ M be a submanifold in a conformal
manifold (M, c). Let na ∈ N∗Γ[1] be a normal covector of conformal weight 1 and consider
the map N∗Γ[1] → T ∗M |Γ given by

na 7→ NA
g
=

 0
na

naH
a

 (4.2.1)

where the above is written with respect to some g ∈ c and Ha is the mean curvature vector
of Γ in that scale.

Using the transformation law for the mean curvature (4.1.22), one easily verifies that
the above map is conformally invariant, and hence its image is a well-defined subbundle of
the ambient tractor bundle:

N̂A = n̂aẐ
a
A + n̂aĤ

aX̂A

= na(Z
a
A +ΥaXA) + na(H

a −ΥbNa
b )XA

= naZ
a
A + naΥ

aXA + naH
aXA − nbΥ

bXA

= naZ
a
A + naH

aXA

= NA.

We call the image of the map (4.2.1) the (dual) normal tractor bundle and denote it
by N ∗ or NA if we wish to explicitly show indices.

The map N∗Γ[1] → N ∗ defined in (4.2.1) is clearly injective and hence defines an
isomorphism N∗Γ[1] ∼= N ∗. Raising indices with the tractor metric, one sees that the same
formula defines an isomorphism NΓ[−1] to a subbundle of T M |Γ, which we call the normal
tractor bundle, and denote N or NA. Note that the restriction of the tractor metric to
N coincides with the restriction of the ambient conformal metric to NΓ[−1]. So we may
construct a local orthonormal frame for the normal tractor bundle by simply mapping such
a frame for NΓ[−1] to N under the isomorphism (4.2.1).
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Let N⊥ denote the orthogonal complement of N inside T M |Γ. Then one has a decom-
position

T M |Γ = N⊥ ⊕N (4.2.2)

with corresponding projection maps NA
B : EB|Γ → NA and ΠA

B : EB|Γ → N⊥, where

ΠA
B := δAB −NA

B. (4.2.3)

In fact, we shall soon see that the bundle N⊥ is isomorphic to the standard tractor
bundle T Γ of the submanifold Γ. For now, we conclude by computing an explicit expression
for this normal projector in the tractor projector notation.

Lemma 4.2.2. For a choice of scale, the tractor normal projector is given by

NA
B = Na

bZ
A
a Z

b
B +HaZA

a XB +HbX
AZb

B + (HdHd)X
AXB, (4.2.4)

where the Hc is the mean curvature vector in the chosen scale.

Proof. The right-hand side of (4.2.4) defines a conformally invariant bundle map EA → NB

which moreover acts as the identity on sections of NA as defined in Definition 4.2.1.

Our convention is to use the word “intrinsic” to refer to objects of the submanifold Γ
viewed as a conformal/Riemannian manifold without any embedding in an ambient space.
Thus the intrinsic tractor bundle refers to the standard tractor bundle T Γ of the conformal
manifold (Γ, cΓ).

We are now ready to prove another conformal analog of a Riemannian theorem, namely
that the intrinsic tractor bundle of a submanifold is isomorphic to the orthogonal comple-
ment of the normal tractor bundle. For hypersurfaces, this was first observed in [9], and
then further developed in [44, 62, 69]. The same result for higher codimension conformal
submanifolds was shown in [29, 11].

Theorem 4.2.3. The intrinsic tractor bundle T Γ is canonically isomorphic to the or-
thogonal complement N⊥ of the normal tractor bundle via a bundle isomorphism which
preserves both the metric and the filtration. We denote this isomorphism ΠA

I . Explicitly,
in a general ambient scale g ∈ c, it is given by

V I gΓ=

σ
µi

ρ

 ΠA
I7−→ V A g

=

 σ
µa −Haσ

ρ− 1
2H

aHaσ

 (4.2.5)

Proof. Fix a scale gΓ ∈ cΓ, and let g ∈ c be a scale that satisfies ι∗g = gΓ. We need to show
that the map (4.2.5) is unchanged if we replace g by some conformally related ĝ = Ω2g and
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gΓ by ĝΓ = Ω2gΓ. Equivalently, we need to show that the following diagram commutes

[EI ]gΓ [EA]g|Γ

[EJ ]ĝΓ [EB]ĝ|Γ

ΠA
I

ΠB
J

(4.2.6)

where the vertical maps are conformal rescaling, and the horizontal maps are (4.2.5) in
the appropriate scale. Write Υa = Ω−1∇aΩ and Υi = Ω−1DiΩ. Note that Υi = Πa

iΥa.
Applying ΠA

I and then rescaling is given by 1 0 0
Υb δba 0

−1
2Υ

cΥc −Υa 1

 1 0 0
−Ha Πa

i 0
−1

2H
cHc 0 1

 =

 1 0 0
Υb −Hb Πb

i 0
−1

2Υ
cΥc +HaΥa − 1

2H
cHc −Υi 1

 ,

while first rescaling and then applying ΠB
J corresponds to the matrix 1 0 0

−Ĥb Πb
j 0

−1
2Ĥ

cĤc 0 1

 1 0 0

Υj δji 0
−1

2Υ
kΥk −Υi 1

 =

 1 0 0

−Ĥb +Πb
jΥ

j Πb
i 0

−1
2Ĥ

cĤc − 1
2Υ

kΥk −Υi 1

 .

Using equation (4.1.22), we see that

−Ĥb +Πb
jΥ

j = −Hb +Nb
cΥ

c +Πb
jΥ

j = −Hb +Υb

and

−1

2
ĤcĤc −

1

2
ΥkΥk = −1

2
HcHc +HeΥe −

1

2

(
ΥkΥk +NcdΥcΥd

)
= −1

2
HcHc +HeΥe −

1

2
ΥcΥc,

whence the above two matrix products are equal. Hence the map ΠA
I is conformally

invariant. Moreover, the map is clearly injective, and the image is also easily seen to be
annihilated by any section of N .

In the minimal scale case, the map ΠA
I clearly preserves the metric and filtration, and

since we have verified conformal invariance, this is sufficient to complete the proof.

The inverse isomorphism of (4.2.5) is the map N⊥ → T Γ given by the matrix 1 0 0
−Ha Πa

i 0
−1

2H
cHc 0 1

 . (4.2.7)
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Just as the intrinsic and ambient tractor bundles are related, so are the intrinsic and
ambient tractor connections.

Define a connection ∇̌ on T Γ by

∇̌iV
J := ΠJ

B∇i

(
ΠB

KV K
)
, (4.2.8)

where V J ∈ EJ and ∇ denotes the usual ambient tractor connection. (When required,
we will refer to ∇̌ as the checked connection.) We denote by pij the intrinsic Schouten
tensor, namely the Schouten tensor of a metric gij ∈ cΓ. We will also encounter the
restriction of the ambient Schouten tensor to TΓ, which we denote by Pij = Πa

iΠ
b
jPab,

where recall Pab is the Schouten tensor of g ∈ c. Note that in general these two objects
are not equal, and this is the reason that we do not have verbatim a tractor version of
Theorem 4.1.3.

Fix metrics g ∈ c and gΓ ∈ cΓ such that ι∗g = gΓ to facilitate calculation. Then
explicitly we see that

∇̌iV
J =

 1 0 0

0 Πj
b 0

−1
2H

cHc −Hb 1

∇i

 1 0 0
−Hb Πb

k 0
−1

2H
cHc 0 1

 σ
µk

ρ


=

 1 0 0

0 Πj
b 0

−1
2H

cHc −Hb 1

∇i

 σ
µb −Hbσ

ρ− 1
2H

cHcσ


=

 1 0 0

0 Πj
b 0

−1
2H

cHc −Hb 1

 ∇iσ − µi

∇i

(
µb −Hbσ

)
+ Pi

bσ +Πb
i

(
ρ− 1

2H
cHcσ

)
∇i

(
ρ− 1

2H
cHcσ

)
− Pic (µ

c −Hcσ)


=

 1 0 0

0 Πj
b 0

−1
2H

cHc −Hb 1

 ∇iσ − µi

∇iµ
b − (∇iH

b)σ −Hb∇iσ + Pi
bσ +Πb

iρ− 1
2Π

b
iH

cHcσ
∇iρ− (Hc∇iHc)σ − 1

2H
cHc∇iσ − Picµ

c + PicH
cσ



=


∇iσ − µi

Πj
b

(
∇iµ

b − (∇iH
b)σ −Hb∇iσ + Pi

bσ +Πb
iρ− 1

2Π
b
iH

cHcσ
)

−1
2H

cHc(∇iσ − µi)−Hb

(
∇iµ

b − (∇iH
b)σ −Hb∇iσ + Pi

bσ +Πb
iρ− 1

2Π
b
iH

cHcσ
)

+∇iρ− (Hc∇iHc)σ − 1
2H

cHc∇iσ − Picµ
c + PicH

cσ


=

 Diσ − µi

Diµ
j + Pi

jσ + δji ρ− (Πj
b∇iH

b)σ − 1
2δ

j
iH

cHcσ
Diρ− Picµ

c + 1
2H

cHcµi −Hb∇iµ
b


=

 Diσ − µi

Diµ
j + pi

jσ + δji ρ− (−I̊Ii
j
b − δjiHb)H

bσ − 1
2δ

j
iH

cHcσ + (Pi
j − pi

j)σ

Diρ− picµ
c + 1

2H
cHcµi −Hb(I̊Iij

b + gijH
b)µj + (Pi

j − pi
j)µj
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=

 Diσ − µi

Diµ
j + pi

jσ + δji ρ
Diρ− picµ

c

+


0(

Pi
j − pi

j +HbI̊Ii
jb + 1

2H
cHcδ

j
i

)
σ

−
(
Pij − pij +HbI̊Iij

b + 1
2HbH

bgij

)
µj


= DT Γ

i

 σ
µj

ρ


+

 0 0 0

Pi
j − pi

j −HbI̊Ii
jb + 1

2H
cHcδ

j
i 0 0

0 −
(
Pij − pij +HbI̊Iij

b + 1
2HbH

bgij

)
0


 σ
µj

ρ

 .

Defining

SiJK := 2

(
Pij − pij +HbI̊Iij

b +
1

2
HbH

bgij

)
Zj
[JXK], (4.2.9)

we thus have
∇̌iV

J = DiV
J + Si

J
KV K . (4.2.10)

Since ∇̌ and D are conformally invariant objects, it follows that SiJK must also be.
We call SiJK the difference tractor. Equation (2.3.11) together with the invariance of the
canonical tractorX show that Zj

[JXK] is conformally invariant, and therefore the symmetric
tensor

Fij := Pij − pij +HbI̊Iij
b +

1

2
HbH

bgij (4.2.11)

must be invariant as well. This tensor is called the Fialkow tensor, seemingly having
first been studied by Aaron Fialkow in [32] under the name deviation tensor (where it
takes a different yet equivalent form, c.f. Proposition 4.2.9). It was calculated in this
current form as the discrepancy between the projection of the ambient tractor connection
and the intrinsic tractor connection in [62]. Note that this tensor essentially measures the
difference between the restricted ambient Schouten and the intrinsic Schouten: if one works
in a minimal scale, equation (4.2.11) becomes

Fij = Pij − pij .

Having thus defined the Fialkow tensor, the S tractor may be rewritten

SiJK = 2Fij Z
j
[JXK]. (4.2.12)

The ambient tractor connection also induces a connection on the normal tractor bundle.
For NA ∈ Γ(NA) a section of the normal bundle, define

∇N
i NA := NA

B∇iN
B. (4.2.13)
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We call this the normal tractor connection. Note that sections of the normal bundle
always have zero in their top slot. Since the middle slot of such a tractor is necessarily
conformally invariant (as can be seen from equation (2.3.11)), it follows that the middle slot
of ∇N

i NA is conformally invariant. This is easily seen to be the normal connection (4.1.13)
acting on sections ofNΓ[−1], and confirms our prior observation that the normal connection
is invariant when acting on sections of this bundle.

Using (2.3.14) and (4.2.4), one sees that

∇N
i

 0
na

Hcn
c

 =

 0
∇⊥

i n
a

Hc∇⊥
i n

c

 , (4.2.14)

which confirms that this is nothing but the normal connection acting on NΓ[−1], and then
mapped invariantly into the ambient tractor bundle via (4.2.1).

4.2.2 A tractor Gauß formula

The checked connection defined in (4.2.8) describes the tangential part of the ambient
tractor connection acting on tractors that are tangent to the submanifold. Hence we may
define a tractor second fundamental via a Gauß type formula. Much as in the Riemannian
case (4.1.15), this gives the normal part of the ambient tractor connection acting on a
tractor tangent to the submanifold:

∇iV
B = ΠB

J ∇̌iV
J + LiK

BV K , (4.2.15)

or, using (4.2.10),
∇iV

B = ΠB
J

(
DiV

J + Si
J
KV K

)
+ LiK

BV K , (4.2.16)

where V B := ΠB
J V

J ∈ EB|Γ is the image of the section V J ∈ EJ under the isomorphism
T Γ → N⊥. The tractor second fundamental form is then a 1-form on Γ valued in T ∗Γ⊗N .
This tractor second fundamental form appears in early works on hypersurfaces in conformal
submanifolds [44, 62, 69], with the general codimension version found in [29, 11].

By Theorem 4.2.3, we have N⊥ ∼= T Γ, and hence (4.2.2) reads

T M |Γ = T Γ⊕N . (4.2.17)

We shall compute explicit expressions for this tractor second fundamental form in
Theorem 4.2.8 and Proposition 4.2.11. We display the first of these here to give a preview.
In the tractor projector notation, the tractor second fundamental form is given by

LiK
B = I̊Iij

cZj
KZB

c +Nc
a (Pi

a −∇iH
a)XKZB

c

+HcI̊Iij
cZj

KXB +Hc (Pi
c −∇iH

c)XKXB.
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The Gauß formula describes the action of the ambient connection on an ambient tractor
which is tangent to the submanifold. Using (4.2.17), any section of the ambient tractor
bundle V B ∈ EB may be written as a pair (V ⊤, V ⊥) ∈ T Γ ⊕ N . From the tractor Gauß
formula, it then follows that the action of the ambient tractor connection on such a pair is
then given by

∇i

(
V ⊤

V ⊥

)
=

(
Di + Si −Li

T

Li ∇N
i

)(
V ⊤

V ⊥

)
, (4.2.18)

where

• Di is the intrinsic submanifold tractor connection,

• Si is the difference tractor of (4.2.9),

• Li is the tractor second fundamental form and Li
T is its adjoint (with respect to the

tractor metric) of the tractor second fundamental form, which may be viewed as a
section of T Γ⊗N ∗, and

• ∇N is the normal tractor connection (4.2.13).

In particular, note that if V ⊥ = 0 (i.e. V is really tangent to the submanifold Γ)
then (4.2.18) simply reads as the Gauß formula (4.2.15).

4.2.3 The tractor normal projector

We have already defined the projection NA
B : EB|Γ → NA which is the orthogonal projection

onto the second factor in the decomposition T M |Γ = T Γ ⊕ N . This normal projector
plays a major role in our theory of conformal submanifolds. The tractor normal projector
encodes much of the information about the conformal embedding Γ ↪→ M , and many
conformal invariants of this embedding may be recovered from formulae involving this
normal projector. In this section, we prove the first such relation: we relate the tractor
normal projector to the tractor second fundamental form.

Proposition 4.2.4. The tractor second fundamental form is given by

LiK
B = ΠC

KNB
A∇iΠ

A
C . (4.2.19)

Proof. Let NA be a section of the normal tractor bundle N . Note that ΠA
CNA = 0, and

hence

0 = ∇i(Π
A
CNA) = (∇iΠ

A
C)NA +ΠA

B∇iNA,

whence

ΠA
C∇iNA = −NA∇iΠ

A
C . (∗)
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As a consequence of the tractor Gauß formula (4.2.16),

NBLiK
BV K = NB∇iV

B = −V B∇iNB = −V KΠB
K∇iNB

for all V K ∈ EK , and therefore

NBLiK
B = −ΠB

K∇iNB = −ΠC
KΠA

C∇iNA.

Combining this with (∗), we have that

NBLiK
B = −ΠC

K

(
−NA∇iΠ

A
C

)
= NBΠ

C
KNB

A∇iΠ
A
C ,

and this must hold for any section NB of the normal tractor bundle, whence the result
follows.

Equation (4.2.19) gives several other equivalent formulae for the tractor second fun-
damental form. These all stem from using δAB = ΠA

B + NA
B together with the fact that

∇iδ
A
B = 0 to switch between tangential and normal projectors.

For example,

LiK
B = ΠC

KNB
A∇iΠ

A
C = ΠC

KNB
A∇i

(
δAC −NA

C

)
= −ΠC

KNB
A∇iN

A
C . (4.2.20)

We will use this formula to compute the tractor second fundamental form explicitly.

It may be verified that the C index of NB
A∇iN

A
C is annihilated by any normal section

NC ∈ Γ(NC). Therefore NB
A∇iN

A
C is a section of Ei ⊗ (N⊥)C ⊗ NB. We have seen in

Theorem 4.2.3 that the map ΠC
K restricts to an isomorphism N ∗ ∼=−→ T ∗Γ, and so identifies

NB
A∇iN

A
C with LiK

B. In the sequel, we will often make use of this identification without
explicitly saying that we are doing so. Where we do wish to make the distinction, we
will use LiC

B to mean −NB
A∇iN

A
C , and this is then related to the “true” tractor second

fundamental form by

LiK
B = ΠC

KLiC
B. (4.2.21)

Alternatively, substituting for the normal projector in (4.2.19),

LiK
B = ΠC

K

(
δBA −ΠB

A

)
∇iΠ

A
C = ΠC

K∇iΠ
B
C −ΠC

KΠB
A∇iΠ

A
C ,

and in fact, the second term in the final equality must be zero since the left hand side
requires that the B index is normal (this also implies that the B index of ΠC

K∇iΠ
B
C is

normal).

Thus

LiK
B = ΠC

K∇iΠ
B
C . (4.2.22)



64 CHAPTER 4. SUBMANIFOLD GEOMETRY

Remark 4.2.5. Note that the derivation of the above relations uses nothing uniquely
tractorial; it is merely a consequence of a Gauß-type formula and compatible orthogonal
projectors. This means that those same relations will hold replacing the tractor projectors
and tractor second fundamental form with the tangential and normal projectors, and usual
second fundamental form of Riemannian submanifold geometry. Thus for example,

IIij
c = −Πb

jN
c
a∇iN

a
b , (4.2.23)

where ∇i is now the pullback Levi-Civita connection. While the tangential and normal
projectors are conformally invariant, however the Levi-Civita connection is not. Therefore,
together with (2.2.2) and (2.2.3), equation (4.2.23) gives another way to derive (4.1.21)
(the transformation law for the Riemannian second fundamental form).

Using equation (4.2.18) with a purely normal section of T Γ ⊕ N , one may repeat the
argument of Proposition 4.2.4 with a slight modification (or simply by observing that the
ambient tractor metric is preserved by the ambient tractor connection, and hence also the
pullback connection) to obtain a similar formula for the transpose of the tractor second
fundamental form:

Li
K

B = −ΠK
CNA

B∇iN
C
A. (4.2.24)

The above relations allow us to prove

Lemma 4.2.6. Let NC
B be the normal tractor projector. Then

∇iN
C
B = −Li

C
B − LiB

C . (4.2.25)

Proof. Noting that NC
B = NC

AN
A
B, we have

∇iN
C
B = NA

B∇iN
C
A +NC

A∇iN
A
B.

The first and second terms on the right-hand side are equations (4.2.20) and (4.2.24)
respectively without the tangential projectors. But from equation (4.2.21) these are exactly
(negative) L and its adjoint.

From this formula, the various expressions above for the tractor second fundamental
form and its adjoint are now clear: the B and C indices on the right-hand side are nor-
mal and tangential (resp. tangential and normal) and hence by applying the appropriate
projector one extracts one or the other. On the other hand, from the tractor Gauß for-
mula (4.2.18), one can see that these such projections will correspond to either the tractor
second fundamental form or its adjoint.

The lemma shows the relationship between the normal projector and the tractor second
fundamental form.
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Theorem 4.2.7. The tractor normal projector is parallel if, and only if, the tractor second
fundamental form vanishes, i.e., ∇iN

C
B = 0 if, and only if, LiJ

C = 0.

Proof. Recall that ΠB
J gives an isomorphism T ∗Γ → (N )⊥

∗
, and hence L = 0 if, and only

if, L = 0. Since
Li

C
B = hCFhBELiE

F ,

if one of the terms of the right-hand side of (4.2.25) vanishes, then so does the other. So the
vanishing of the tractor second fundamental form implies that the tractor normal projector
is parallel. Equation (4.2.20) shows that the converse also holds.

We now turn to the main result of this section: using (4.2.20) to derive an explicit
formula for the tractor second fundamental form in terms of splitting tractors.

Theorem 4.2.8. The tractor second fundamental form is given by

LiJ
C = I̊Iij

cZj
JZ

C
c +Nc

a (Pi
a −∇iH

a)XJZ
C
c

+HcI̊Iij
cZj

JX
C +Ha (Pi

a −∇iH
a)XJX

C .
(4.2.26)

Proof. We compute NC
A∇iN

A
B using the formula from Lemma 4.2.2. We then apply ΠB

J ,
the formula for which is given in Theorem 4.2.3 to complete the proof.

First, differentiating (4.2.4) gives

∇iN
A
B = (∇iN

a
b )Z

A
a Z

b
B +Na

b

(
−PiaX

A − giaY
A
)
Zb
B +Na

bZ
A
a

(
−P b

i XB − δbiYB

)
+ (∇iH

a)ZA
a XB +Ha

(
−PiaX

A − giaY
A
)
XB +HaZA

a ZBi

+ (∇iHb)X
AZb

B +HbZ
A
i Z

b
B +HbX

A
(
−Pi

bXB − δbiYB

)
+ 2(Hd∇iHd)X

AXB +HdHdZ
A
i XB +HdHdX

AZBi

= (∇iN
a
b +Hagib +Hbδ

a
i )Z

A
a Z

b
B

+
(
−Na

bPia +∇iHb +HdH
dgib

)
XAZb

B

+
(
−Na

bPi
b +∇iH

a +HdH
dδai

)
ZA
a XB

+
(
−HaPia −HbPi

b + 2Hd∇iHd

)
XAXB.

From (4.2.4), it follows that

NC
AZ

A
a = Nc

aZ
C
c +HaX

C and NC
AX

A = 0.

Hence

NC
A∇iN

A
B = (∇iN

a
b +Hagib +Hbδ

a
i )
(
Nc

aZ
C
c +HaX

C
)
Zb
B
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+
(
−Na

bPi
b +∇iH

a +HdH
dδai

) (
Nc

aZ
C
c +HaX

C
)
XB

= (Nc
a∇iN

a
b +Hcgib)Z

b
BZ

C
c +Nc

a (∇iH
a − Pi

a)XBZ
C
c

+Ha (∇iN
a
b +Hagib)Z

b
BX

C +Ha (∇iH
a − Pi

a)XBX
C .

All that remains is to apply the tangential tractor projector ΠB
J . According to (4.2.5),

ΠB
J Z

b
B = Πb

jZ
j
J and ΠB

J XB = XJ .

Therefore

ΠB
J N

C
A∇iN

A
B = Πb

j (N
c
a∇iN

a
b +Hcgib)Z

j
JZ

C
c +Nc

a (∇iH
a − Pi

a)XJZ
C
c

+HaΠ
b
j (∇iN

a
b +Hagib)Z

j
JX

C +Ha (∇iH
a − Pi

a)XJX
C

= (−IIij
c +Hcgij)Z

j
JZ

C
c +Nc

a (∇iH
a − Pi

a)XJZ
C
c

+Hc (−IIij
c +Hcgib)Z

j
JX

C +Ha (∇iH
a − Pi

a)XJX
C

= −I̊Iij
cZj

JZ
C
c +Nc

a (∇iH
a − Pi

a)XJZ
C
c

−HcI̊Iij
cZj

JX
C +Ha (∇iH

a − Pi
a)XJX

C ,

where we note that Ha∇iN
a
b = HcN

c
a∇iN

a
b , and we have used the observation from Re-

mark 4.2.5 to replace Πb
jN

c
a∇iN

a
b with IIij

c.

Finally, equation (4.2.20) shows that LiJ
C is equal to negative of the above, which is

exactly the formula claimed in the theorem.

4.2.4 Some alternative formulae

It is useful to have some alternative formulae for some of the invariant objects we have
seen in this chapter. Here we compute such formulae for the Fialkow tensor (4.2.11) and
the tractor second fundamental form (4.2.26). These formulae will facilitate the proofs of
certain results later in this thesis.

This formula for the Fialkow tensor has appeared in several places. Fialkow’s original
deviation tensor [32] is a mix of equation (4.2.11) and the following. It was also calculated
as in the following proposition in [29]. This expression for the Fialkow is better suited
to several applications than (4.2.11), and has the benefit of being manifestly conformally
invariant.

Proposition 4.2.9. The Fialkow tensor is given by

Fij =
1

m− 2

(
WicjdN

cd +
WabcdN

acNbd

2(m− 1)
gij + I̊Ii

kcI̊Ijkc −
I̊I

klc
I̊Iklc

2(m− 1)
gij

)
, (4.2.27)
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where Wicjd = Πa
iΠ

i
bWacbd is the ambient Weyl with two indices restricted to Γ, and m =

dimΓ ≥ 3.

Proof. We use the Ricci decomposition of the Riemann curvature tensor in the Gauß for-
mula (4.1.23):

Wijkl + gkiPjl − gkjPil + gljPik − gliPjk = WΓ
ijkl + gkipjl − gkjpil + gljpik

− glipjk + IIilcIIjk
c − IIjlcIIik

c,

and then apply the map Tijkl 7→ 1
m−2

(
Tikj

k − Tkl
kl

2(m−1)gij

)
to both sides:

1

m− 2

[(
Wikj

k + gjiPk
k − gjkPi

k + gk
kPij − gk

iPkj

)
− 1

2(m− 1)

(
Wkl

kl + gk
kPl

l − gk
lPk

l + gl
lPk

k − gl
kPl

k
)
gij

]
=

1

m− 2

[(
WΓ

ikj
k + gjipk

k − gjkpi
k + gk

kpij − gk
ipkj + IIikcIIj

kc − IIijcIIk
kc
)

− 1

2(m− 1)

(
WΓ

kl
kl + gk

kpl
l − gk

lpk
l + gl

lpk
k − gl

kpl
k + IIk

l
cIIl

kc − IIk
k
cIIl

lc
)
gij

]
.

After some simplification, one arrives at

1

m− 2
Wikj

k + Pij −
Wkl

kl

2(m− 1)(m− 2)
gij

=
1

m− 2
WΓ

ikj
k + pij +

1

m− 2

[
IIikcIIj

kc −m ·HcIIij
c
]

− WΓ
kl
kl

2(m− 1)(m− 2)
gij −

1

2(m− 1)(m− 2)

(
IIk

l
cIIl

kc −m2 ·HcH
c
)
gij .

(4.2.28)

Now,

Wikj
k = gklWikjl = gklΠc

kΠ
d
lWicjd = ΠcdWicjd = (gcd −Ncd)Wicjd = −WicjdN

cd,

where the term involving the metric vanishes since the Weyl tensor is totally trace-free.

Similarly,
Wkl

kl = WabcdN
acNbd.

Both terms involving the intrinsic Weyl tensor will also vanish since the intrinsic Weyl
tensor is also totally trace-free.

After accounting for these observations, (4.2.28) becomes

− 1

m− 2
WicjdN

cd + Pij −
WabcdN

acNbd

2(m− 1)(m− 2)
gij = pij +

1

m− 2

(
IIi

kcIIjkc −m ·HcIIij
c
)
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− 1

2(m− 1)(m− 2)

(
IIklcII

klc −m2 ·HcH
c
)
gij .

To obtain the final formula, we split the second fundamental form into trace-free and
trace parts:

IIi
kcIIjkc =

(
I̊Ii

kc + δki H
c
)(

I̊Ijkc + gjkHc

)
= I̊Ii

kcIIjkc + 2HcI̊Iij
c + gijHcH

c,

and

IIklcII
klc =

(
I̊Iklc + gklHc

)(
I̊I

klc
+ gklHc

)
= I̊IklcI̊I

klc
+ gklI̊IklcH

c + gklI̊I
klc

Hc + gklg
klHcH

c

= I̊IklcI̊I
klc

+m ·HcH
c.

Hence

− 1

m− 2
WicjdN

cd + Pij −
WabcdN

acNbd

2(m− 1)(m− 2)
gij

= pij +
1

m− 2

(
I̊Ii

kcIIjkc + 2HcI̊Iij
c + gijHcH

c −m ·Hc

(
I̊Iij

c + gijH
c
))

− 1

2(m− 1)(m− 2)

(
I̊IklcI̊I

klc
+m ·HcH

c −m2 ·HcH
c
)
gij

= pij +
1

m− 2

(
I̊Ii

kcI̊Ijkc − (m− 2) ·HcI̊Iij
c − (m− 1) ·HcH

cgij

)
− 1

2(m− 1)(m− 2)

(
I̊IklcI̊I

klc −m(m− 1) ·HcH
c
)
gij .

Therefore

Pij − pij =
1

m− 2

(
WicjdN

cd +
WabcdN

acNbd

2(m− 1)
+ I̊Ii

kcI̊Ijkc −
I̊IklcI̊I

klc

2(m− 1)
gij

)

− 1

m− 2
(m− 2) ·HcI̊Iij

c −
(
−
(
m− 1

m− 2

)
+

m(m− 1)

2(m− 1)(m− 2)

)
gijHcH

c

=
1

m− 2

(
WicjdN

cd +
WabcdN

acNbd

2(m− 1)
+ I̊Ii

kcI̊Ijkc −
I̊IklcI̊I

klc

2(m− 1)
gij

)
−HcI̊Iij

c − 1

2
gijHcH

c,
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which implies

Pij − pij +HcI̊Iij
c +

1

2
HcH

cgij

=
1

m− 2

(
WicjdN

cd +
WabcdN

acNbd

2(m− 1)
+ I̊Ii

kcI̊Ijkc −
I̊IklcI̊I

klc

2(m− 1)
gij

)
.

The left-hand side of this is exactly equal to the Fialkow tensor (4.2.11), while the
right-hand side is the expression from the statement of the proposition.

Remark 4.2.10. If Γ is a hypersurface, the above formula may be simplified further. In
this case, Nac = NaN c, where Na is the unit normal to the hypersurface. Then one sees
that WabcdN

acNbd = 0 by the symmetries of the Weyl tensor. Moreover, for a hypersurface,
one may write IIij

c = IIijN
c and Hc = HN c, viewing the second fundamental form as a

symmetric 2-tensor and the mean curvature as a scalar.

With these observations, the formula of the proposition simplifies to

Fij =
1

m− 2

(
WicjdN

cNd + I̊Ii
kI̊Ijk −

I̊I
kl
I̊Ikl

2(m− 1)
gij

)
. (4.2.29)

Next, we use the Codazzi-Mainardi equation (4.1.24) to give an alternative expression
for the tractor second fundamental form (equation (4.2.26)).

Proposition 4.2.11. We have

LiJ
C = I̊Iij

cZj
JZ

C
c − 1

m− 1

(
Dj I̊Iij

d +Πb
iWabceN

aeNcd
)
XJZ

C
d

+HcI̊Iij
cZj

JX
C − 1

m− 1
Hd

(
Dj I̊Iij

d +Πb
iWab

d
eN

ae
)
XJX

C ,

(4.2.30)

where the submanifold intrinsic Levi-Civita connection Di is coupled to the normal connec-
tion.

Proof. We use the Codazzi-Mainardi equation to re-express the term involving the Schouten
tensor. Substituting the Ricci decomposition of the Riemann curvature into (4.1.24) gives

Πa
iΠ

b
jΠ

e
k (Wabce + Pacgbe − Pbcgae + Pbegac − Paegbc)N

cd = DiIIjk
d −DjIIik

d,

and after contracting with gik, we arrive at

Wij
ciNd

c − (m− 1)Pj
cNd

c = DiIIij
d −DjIIi

id = DiIIij
d −m∇⊥

j H
d.
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Now substituting the decomposition of the second fundamental form into trace and
trace-free parts:

Wij
ciNd

c − (m− 1)Pj
cNd

c = Di
(
I̊Iij

d + gijH
d
)
−m∇⊥

j H
d

Wij
ciNd

c − (m− 1)Pj
cNd

c = DiI̊Iij
d − (m− 1)∇⊥

j H
d.

Hence

Nd
c

(
Pj

c −∇jH
d
)
=

1

m− 1

(
Wij

ciNd
c −DiI̊Iij

d
)
, (4.2.31)

the left-hand side of which is exactly a term appearing in our formula for the tractor second
fundamental form (4.2.26).

To complete the proof, we observe that

Wij
ci = gikΠa

iΠ
b
jΠ

e
kWab

c
e = Πb

jΠ
aeWab

c
e = −Πb

jN
aeWab

c
e.

Once again, the formula simplifies for hypersurfaces. This gives a well-known tractor
characterization of umbilic submanifolds.

Corollary 4.2.12. Let Γ ↪→ M be a hypersurface in a conformal manifold (M, c). Then
the tractor second fundamental form of Γ is zero if, and only, Γ is totally umbilic.

Proof. If Γ is a hypersurface, then Nae = NaN e, where Na is the unit normal to Γ.
Therefore

WabceN
aeNcd = WabceN

aN eN cNd = 0,

and

HdWab
d
eN

ae = HNdWab
d
eN

aN e = 0,

where H is the (scalar) mean curvature of Γ.

Hence equation (4.2.30) becomes

LiJ
C = I̊Iij

cZj
JZ

C
c − 1

m− 1
Dj I̊Iij

dXJZ
C
c

+HcI̊Iij
cZj

JX
C − 1

m− 1
HdD

j I̊Iij
dXJX

C .

(4.2.32)

From this it is clear that LiJ
C = 0 if, and only if, I̊Iij

c = 0, i.e. if Γ is umbilic.
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4.3 Low-dimensional conformal submanifolds

Thus far, when studying conformal manifolds, we have restricted to the case where the
conformal manifold has dimension at least 3. For dimensions 1 and 2, various parts of
the construction of Section 2.3 no longer hold. In dimension 2, we can still define the
tractor bundle T Σ as a quotient of the 2-jet bundle J2E [1] by the subbundle isomorphic to
S2
0T

∗M [1], but there is no longer a well-defined Schouten tensor so we do not immediately
get an intrinsic tractor connection on T Σ. In dimension 1, the trace-free part of S2T ∗M [1]
is trivial, so defining the tractor bundle as a quotient of the J2E [1] just yields the full 2-jet
bundle. While we will still require that our ambient conformal manifold has dimension
at least 3, we may use the ambient structure to define an intrinsic tractor bundle and an
intrinsic tractor connection for low-dimensional conformal submanifolds.

4.3.1 2-dimensional conformal submanifolds

We first note that, for Γ ⊂ M with dimΓ = 2, there is an obvious way to assign a
Schouten tensor to each metric gΓ ∈ cΓ: namely, take the Schouten tensor of some metric
g ∈ c which extends gΓ, and then restrict to TΓ. We verify that this defines an intrinsic
“Schouten” tensor, i.e. a section of S2T ∗Γ which transforms by (2.2.10). Let gΓ, ĝΓ ∈ cΓ be
two conformally related submanifold metrics, and let g, ĝ ∈ c be minimal ambient metrics
which extend gΓ and ĝΓ respectively. Let Pab be the ambient Schouten tensor of g, and
define pij := Πa

iΠ
b
jPab, i.e. the restriction of Pab to the submanifold. Then the Schouten

tensor of ĝΓ is p̂ij = Πa
iΠ

b
jP̂ab, and hence

p̂ij = Πa
iΠ

b
j

(
Pab −∇aΥb +ΥaΥb −

1

2
ΥcΥ

cgab

)
= pij −DiΥj +ΥiΥj −

1

2
ΥkΥ

kgij

where we have used that if g and ĝ are both minimal, then (4.1.22) implies that Nc
dΥ

d = 0,
so Υb can be identified with some submanifold form Υj ∈ Γ(Ej). Note that this also shows
that this assignment of Schouten tensor does not depend on the choice of minimal scale
extending g: if g and ĝ are both minimal scales which extend gΓ, (i.e. ĝ|Γ = g|Γ), then
Ω|Γ = 1 and we see that p̂ij = pij . The above display shows that pij satisfies the required
transformation law, and thus we have an assignment of a “Schouten” tensor for each
metric gΓ ∈ cΓ, and hence we have a well-defined tractor connection on T Γ. The tractor
connection determined by this assignment of a Schouten tensor amounts to declaring that
the intrinsic tractor connection is the checked connection of (4.2.8):

DT Γ
i V J := ∇̌iV

J = ΠJ
B∇i

(
ΠB

KV K
)
, (4.3.1)

where ∇i on the right-hand side is the ambient tractor connection. This approach, while
straightforward, does have some problems. Recall that the Fialkow tensor (4.2.11) is essen-
tially the difference between the checked connection and the intrinsic tractor connection,
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and so this assignment of an intrinsic Schouten tensor is equivalent to prescribing that
the Fialkow tensor vanishes identically. In our discussion of distinguished submanifolds in
Chapter 5, the Fialkow tensor will be an obstruction to the submanifold having a certain
property, and so if we wish for the theorem to say something non-trivial even in the m = 2
case, the Fialkow tensor being identically zero is undesirable.

We instead proceed by first showing that there is a natural Fialkow tensor for a 2-
dimensional submanifold, and then defining the intrinsic Schouten in terms of this Fialkow
so that (4.2.11) still holds. Consider equation (4.2.27). On first glance, the right-hand side
of this equation appears to be singular when m = 2. We claim however that this singularity
is removable.

First, we note that, when m = 2,

WicjdN
cd = −WicjdΠ

cd = −WikjlΠ
kl = −Wikjlg

kl,

andWikjl inherits Riemann tensor symmetries from the ambient Weyl tensor. But S2Λ2T ∗Γ
is a line bundle, and hence Wikjl = κ (gijgkl − gkjgil) for some scalar function κ. Hence
WicjdN

cd = −Wikjlg
kl = −κgij . So on the one hand, gijWicjdN

cd = −2κ. On the other
hand,

gijWicjdN
cd = gijΠa

iΠ
b
jWacbd = ΠabWacbdN

cd = −NabWacbdN
cd,

so we see that

WicjdN
cd = −WacbdN

abNcd

2
gij .

Thus when dimΓ = 2, the first two terms in parentheses of equation (4.2.27) cancel.

Secondly, we treat the remaining terms. By the Cayley-Hamilton theorem, the square of
any trace-free endomorphism of a 2-dimensional vector space is proportional to the identity
map. Thus we see that, when m = 2,

I̊Ii
kcI̊Ijkc = λgij , (4.3.2)

and tracing it follows that

λ =
1

2
I̊I

klc
I̊Iklc. (4.3.3)

Thus the third and fourth terms of (4.2.27) combine to give

I̊Ii
kcI̊Ijkc −

I̊I
klc

I̊Iklc
2(m− 1)

gij =
1

2

(
1− 1

m− 1

)
I̊I

klc
I̊Iklcgij =

m− 2

2(m− 1)
I̊I

klc
I̊Iklcgij ,

and that factor of (m − 2) will exactly cancel with the prefactor in (4.2.27). Hence when
dimΓ = 2, we have a well-defined Fialkow tensor:

Fij =
1

2
I̊I

klc
I̊Iklc gij . (4.3.4)
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We are now ready to define our assignment of a Schouten tensor for each intrinsic metric
in the submanifold conformal class. Fix gΓ ∈ cΓ. Then we define the Schouten tensor for
gΓ by

pij := Pij +HbI̊Iij
b +

1

2
HbH

bgij −
1

2
I̊I

klc
I̊Iklcgij , (4.3.5)

where Pij = Πa
iΠ

b
j for Pab the Schouten tensor of any metric g ∈ c such that ι∗g = gΓ. We

have

p̂ij = pij −DiΥj +ΥiΥj −
1

2
ΥkΥ

kgij , (4.3.6)

and so this pij satisfies the required transformation law for a Schouten tensor. In fact,
Pij + HbI̊Iij

b + 1
2HbH

bgij already transforms correctly, there is the freedom to add any

conformally invariant term. As already discussed, we choose −1
2 I̊I

klc
I̊Iklcgij so that the

right-hand side of (4.2.11) agrees with that of (4.2.27) in the m = 2 case. We may then
define an intrinsic conformal tractor connection on the tractor bundle T Σ by

DT Σ
i

 σ
µj

ρ

 :=

 ∇iσ − µi

∇iµj + pijσ + gijρ
∇iρ− pijµ

j

 , (4.3.7)

where pij is the Schouten tensor associated to the choice of scale by (4.3.5). Since pij
transforms as a Schouten tensor, this connection is invariant and one readily sees that it
preserves the induced submanifold metric.

4.3.2 1-dimensional conformal submanifolds

The case Γ ⊂ M with dimΓ = 1 is considerably simpler. As we have already observed,
if dimΓ = 1, then S2

0T
∗Γ is trivial, and so the tractor bundle constructed as a quotient

is simply the full 2-jet bundle. In this case, we define TΓ to be the image of N⊥ under
the map ΠI

A, where this map is just defined to be (4.2.7), noting that this is well-defined
even when dimΓ = 1. As in the 2-dimensional case, equation (4.2.27) again appears to be
singular. Since I̊Iij

c vanishes identically for a curve, we need only consider the first two
terms. We see that WicjdN

cd = κuiuj = κgij , where ui ∈ Γ(Ei[1]) is a (weighted) unit
length tangent vector to the curve Γ. Now, κ is obtained by tracing, and since the ambient
Weyl tensor is totally trace-free, we will have

κ = gijWicjdN
cd = −gijWicjdΠ

cd = −gijWikjlg
kl. (4.3.8)

But once again Wikjl inherits Riemann tensor symmetries from the ambient Weyl tensor,
and so is a section of S2Λ2T ∗Γ[2] where dimΓ = 1, and so must vanish identically. The
same holds for WabcdN

acNbd. Thus in the 1-dimensional case, the first two terms of (4.2.27)
are both zero, and combined with our observation about the trace-free second fundamental
form, we see that the entire right-hand side of (4.2.27) becomes zero.
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We mention now that the vanishing of the Fialkow tensor when dimΓ = 1 does not
create any problems in our later treatment of distinguished conformal submanifolds, so
there is no reason to define the Fialkow tensor otherwise.

The observation concerning the vanishing of the Fialkow tensor from Section 4.3.1
still holds: namely that the Fialkow tensor vanishing is equivalent to the intrinsic tractor
connection being exactly the checked connection. Thus in the 1-dimensional case we now
have a tractor bundle and a connection on that bundle.

Our conventions for the Fialkow tensor are thus summarized as follows:

Fij =


Pij − pij +HbI̊Iij

b + 1
2HbH

bgij if m ≥ 3,
1
2 I̊I

klc
I̊Iklcgij if m = 2,

0 if m = 1.

(4.3.9)

4.4 Tractor differential forms

It is useful to introduce some notation for tractor forms in general before proceeding to
the specific case of the normal form. From the composition series for the standard tractor
bundle, one sees that

E[A1A2···Ak−1Ak] = E[a2···ak][k] +
�� E[a1a2···ak−1ak][k]

⊕
E[a3···ak][k − 2]

+
�� E[a2···ak][k − 2]. (4.4.1)

The tractor projectors for the standard tractor bundle induce tractor projectors on the
bundles of tractor forms. Since these will be very important for us, we introduce dedicated
notation for these.

Y a2···ak−1ak
A1A2···Ak−1Ak

:= Y[A1
Za2
A2

· · ·Zak−1

Ak−1
Zak
Ak]

∈ E a2···ak−1ak
[A1A2···Ak−1Ak]

[−k]

Za1a2···ak−1ak
A1A2···Ak−1Ak

:= Za1
[A1

Za2
A2

· · ·Zak−1

Ak−1
Zak
Ak]

∈ Ea1a2···ak−1ak
[A1A2···Ak−1Ak]

[−k]

W a3···ak−1ak
A1A2A3···Ak−1Ak

:= X[A1
YA2Z

a3
A3

· · ·Zak−1

Ak−1
Zak
Ak]

∈ E a3···ak−1ak
[A1A2···Ak−1Ak]

[−k + 2]

X a2···ak−1ak
A1A2···Ak−1Ak

:= X[A1
Za2
A2

· · ·Zak−1

Ak−1
Zak
Ak]

∈ E a2···ak−1ak
[A1A2···Ak−1Ak]

[−k + 2]

(4.4.2)

It is also useful to record the derivatives (with the ambient tractor connection) of these
splitting operators for later use.

∇bY a2a3···ak
A1A2A3···Ak

= Pba1Z
a1a2a3···ak
A1A2A3···Ak

+ (k − 1) + Pb
a2W a3···ak

A1A2A3···Ak

∇bZ a2···ak
A1A2···Ak

= −k · Pb
a1X a2···ak

A1A2···Ak
− k · δba1Y a2···ak

A1A2···Ak

∇bW a3···ak
A1A2A3···Ak

= −gba2Y
a2···ak

A1A2···Ak
+ Pba2X

a2···ak
A1A2···Ak

∇bX a2a3···ak
A1A2A3···Ak

= gba1Z
a1a2a3···ak
A1A2A3···Ak

− (k − 1)δb
a2W a3···ak

A1A2A3···Ak
.

(4.4.3)
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In general, there is an isomorphism
(
ΛkN∗Γ

)
[k] ∼= ΛkN ∗ for k ≤ d = codimΓ.

For νa1a2···ak ∈
(
ΛkN∗Γ

)
[k], the isomorphism is given explicitly by

νa1a2···ak 7→ νa1a2···akZ
a1a2···ak
A1A2···Ak

+ k · νba2···akH
bX a2···ak

A1A2···Ak
. (4.4.4)

Invariance of this map may be checked via the transformation formulae for the tractor
form projectors and the mean curvature:

ν̂a1a2···ak Ẑ
a1a2···ak
A1A2···Ak

+ k · ν̂ba2···akĤ
bX̂ a2···ak

A1A2···Ak

= νa1a2···ak

(
Za1a2···ak
A1A2···Ak

+ k ·Υa1X a2···ak
A1A2···Ak

)
+ k · νba2···ak

(
Hb −Nb

a1Υ
a1
)
X a2···ak
A1A2···Ad

= νa1a2···akZ
a1a2···ak
A1A2···Ak

+ k ·
(
νba2···akH

b + νa1a2···akΥ
a1 − νba2···akN

b
a1Υ

a1
)
X a2···ak
A1A2···Ak

= νa1a2···akZ
a1a2···ak
A1A2···Ak

+ k · νba2···akH
bX a2···ak

A1A2···Ak
.

Note that in the case k = 1 this map is simply the map N∗Γ[1] → N ∗ of (4.2.1).

4.4.1 The tractor volume form

The top exterior power of the tractor bundle possesses a distinguished section, the tractor
volume form, defined by

ϵA1A2A3···An+2
:= volMa3···an+2

W a3···an+2

A1A2A3···An+2
, (4.4.5)

where volMa3···an+2
∈ (ΛnT ∗M) [n] is the (weighted) Riemannian volume form of M . While

not a true volume form, it nonetheless has much in common with such objects which makes
many similar definitions and operations possible.

The tractor normal form has two important properties, both of which will be useful for
our purposes:

1. the tractor volume form is parallel for the tractor connection; and

2. the tractor volume form induces an isomorphism ΛkT → Λn+2−kT ∗ defined by the
mapping νAn+3−k···An+2 7→ ϵA1A2···An+2−kAn+3−k···An+2ν

An+3−k···An+2 .

4.4.2 The tractor normal form

As a special case of (4.4.4), we get an isomorphism of normal top forms with the top
exterior power of the normal tractor bundle. The image of the usual Riemannian normal
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form under this map gives a distinguished section of this bundle, and this section is closely
related to the tractor second fundamental form and the tractor normal projector.

Definition 4.4.1 (Tractor normal form). Let Γ ↪→ M be a submanifold in a conformal
manifold (M, c), and let Na1a2···ad ∈ ΛdN∗Γ[d] be the (weighted) Riemannian normal form.
Define the tractor normal form to be the section NA1A2···Ad

∈ Γ(ΛdN ∗)

NA1A2···Ad
:= Na1a2···adZ

a1a2···ad
A1A2···Ad

+ d ·Nba2···adH
bX a2···ad

A1···Ad
. (4.4.6)

One readily sees that

NA1A2···Ad
NA1A2···Ad = Na1a2···adN

b1b2···bdZa1a2···ad
A1A2···Ad

ZA1A2···Ad
b1b2···bd

= Na1a2···adN
a1a2···ad

= d!,

since all other contractions of the X and Z projectors are zero.

In light of this, the tractor normal form may equivalently be characterized as the unique
section NA1···Ad

of ΛdN ∗ such that

1. NA1A2···Ad
vA1 = 0 for all v ∈ N⊥, and

2. NA1A2···Ad
NA1A2···Ad = d!.

Given an orthonormal basis {N1
A, . . . , N

d
A} for the normal tractor bundle, one sees that

d! ·N[A1
· · ·NAd] = N1

A1
∧ · · · ∧Nd

Ad
(4.4.7)

is clearly orthogonal to all sections of N⊥ and satisfies the above normalization condition.

Our task is now to relate the tractor normal form to the other objects introduced,
namely, the tractor normal projector and the tractor second fundamental form. These
relationships will lay the foundation for the notion of distinguished submanifold that we
will introduce in the following chapter.

First, the tractor normal projector.

Proposition 4.4.2. The tractor projector NA
B is equal to

NA1
A2

=
1

(d− 1)!
NA1B2···BdNA2B2···Bd

. (4.4.8)

Proof. Let {NA
1 , NA

2 , . . . , NA
d } be an orthonormal basis for the normal tractor bundle.

Then by equation (4.4.7),

NA1B2···Bd = d! ·N [A1

1 NB2
2 · · ·NBd]

d .
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The contraction NA1B2···BdNA2B2···Bd
is a sum of terms of the form

sgn(σ) sgn(τ)NA1

σ(1)N
B2

σ(2) · · ·N
Bd

σ(d)N
τ(1)
A2

N
τ(2)
B2

· · ·N τ(d)
Bd

,

where σ, τ ∈ Sd. Now, we claim that such a term will be non-zero if, and only if σ = τ .

Clearly, if σ = τ , then

sgn(σ) sgn(τ)NA1

σ(1)N
B2

σ(2) · · ·N
Bd

σ(d)N
τ(1)
A2

N
τ(2)
B2

· · ·N τ(d)
Bd

= NA1

σ(1)N
σ(1)
A2

.

Conversely, if σ ̸= τ , then there is some i ∈ {1, 2, . . . , d} such that σ(i) ̸= τ(i). Then
the contraction will contain

NBi

σ(i)N
τ(i)
Bi

= δ
τ(i)
σ(i),

by orthogonality, which is zero since we are assuming that σ(i) ̸= τ(i). Hence the only
non-zero terms in the contraction are those where the same permutation is applied to both
sets of indices.

Finally, we need only count how many such terms there are. We have just established
that there are d! non-zero terms. Fixing σ(1), one sees that there are (d−1)! remaining pos-

sibilities for σ, all of which will lead to NA
σ(1)N

τ(1)
B . Thus as σ(1) ranges over {1, 2, . . . , d},

we have that

NA1B2···BdNA2B2···Bd
=
∑
σ∈Sd

NA1

σ(1)N
σ(1)
A2

= (d− 1)! ·
(
NA1

1 N1
A2

+NA1
2 N2

A2
+ · · ·+NA1

d Nd
A2

)
= (d− 1)! ·NA1

A2
.

Remark 4.4.3. The factor here looks slightly strange, but the following shows that this
factor is consistent with our conventions. We compute NA

A in two different ways.

First from NA
B expressed in terms of an orthonormal basis for the normal bundle:

NA
A =

d∑
i=1

NA
i N i

A

= d,

and secondly using the relationship derived in the previous proposition:

NA
A =

1

(d− 1)!
NAB2···BdNAB2···Bd
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=
1

(d− 1)!
Nab2···bdNab2···bd

=
1

(d− 1)!
· d!

= d.

We compute two expressions for ∇iNA1A2···Ad−1Ad
; both are useful for different appli-

cations. First, we differentiate (4.4.3) directly using the derivatives of the tractor form
projectors from (4.4.3).

Proposition 4.4.4. The derivative of the tractor normal form expressed in the tractor
projector notation is

∇iNA1A2···Ad−1Ad
=
[
∇iNa1a2···ad−1ad + d ·Nba2···ad−1adH

bgia1

]
Za1a2···ad
A1A2···Ad

+ d ·
[
∇i

(
Nba2···ad−1adH

b
)
−Na1a2···ad−1adPi

a1
]
X a2···ad
A1A2···Ad

.
(4.4.9)

Proof. Differentiating equation (4.4.6):

∇iNA1A2···Ad−1Ad
= (∇iNa1a2···ad)Z

a1a2···ad
A1A2···Ad

+Na1a2···ad

(
−d · Pi

a1X a2···ad
A1A2···Ad

− d · δia1Y a2···ad
A1A2···Ad

)
+ d · ∇i

(
Nba2···adH

b
)
X a2···ad
A1A2···Ad

+ d ·Nba2···adH
b
(
gia1Z

a1a2···ad
A1A2···Ad

− (d− 1) · δia2W A3···Ad
a1a2a3···ad

)
=
[
∇iNa1a2···ad−1ad + d ·Nba2···ad−1adH

bgia1

]
Za1a2···ad
A1A2···Ad

+ d ·
[
∇i

(
Nba2···ad−1adH

b
)
−Na1a2···ad−1adPi

a1
]
X a2···ad
A1A2···Ad

,

where we use the fact that any terms where the i index is contracted into the normal form
will vanish, since i is tangential.

The derivative of the tractor normal form is also closely related to the tractor second
fundamental form; the second of our two expressions for ∇iNA1A2···Ad−1Ad

makes precise
this relationship.

Theorem 4.4.5. The tractor normal form is related to the tractor second fundamental
form by

∇iNA1A2···Ad−1Ad
= −d · Li[Ad

A0NA1A2···Ad−1]A0
, (4.4.10)
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Proof. Fix an orthonormal basis of normal tractors {N1
A, . . . , N

d
A}. (Such a basis is simply

the image of an orthonormal basis for N∗Γ[1] under the isomorphism (4.2.1).) Recall
equation (4.2.20):

−LiAd

A0 = NA0
B ∇iN

B
Ad

.

We have already made use of this to compute one explicit expression for the tractor second
fundamental form. We make use of it again to compute NA0

B ∇iN
B
Ad

in a different way.

Working with the same orthonormal basis of normal tractors,

NA0
B ∇iN

B
Ad

=
(
NA0

1 N1
B + · · ·+NA0

d Nd
B

)
∇i

(
NB

1 N1
Ad

+ · · ·+NB
d Nd

Ad

)
=
(
NA0

1 N1
B + · · ·+NA0

d Nd
B

) (
N1

Ad
∇iN

B
1 +NB

1 ∇iN
1
Ad

+ · · ·

+Nd
Ad

∇iN
B
d +NB

d ∇iN
d
Ad

)

Expanding the final line of the above will yield two types of terms:

• terms of the form NA0
k Nk

B

(
∇iN

ℓ
Ad

)
NB

ℓ , which are zero unless k = ℓ, in which case

it simplifies to NA0
k ∇iN

k
Ad

; and

• terms of the form NA0
k Nk

BN
ℓ
Ad

∇iN
B
ℓ , which are zero unless k ̸= ℓ.

Thus

−LiAd

A0 =
d∑

k=1

NA0
k ∇iN

k
Ad

+
∑
k ̸=ℓ

NA0
k N ℓ

Ad

(
NB

k ∇iN
ℓ
B

)
. (4.4.11)

We now use this formula for to compute the right-hand side of the equation (4.4.10).

−Li[Ad

A0NA1A2···Ad−1]A0
=

(
d∑

k=1

NA0
k ∇iN

k
[Ad

)
NA1A2···Ad−1]A0

+

∑
k ̸=ℓ

(
NB

k ∇iN
ℓ
B

)
NA0

k N ℓ
[Ad

NA1A2···Ad−1]A0
.

(4.4.12)

We deal with each of these sums separately. Note that NA0
k NA1A2···Ad−1A0 appears in

both terms, so we compute an expression for this as an intermediate calculation.

It is convenient to interchange Ak and A0, so that the two copies of Nk have the same
tractor index before expanding the antisymmetrization. This will incur a factor of −1
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unless d = k; in this case those indices are already the same. This is the reason for the
Kronecker delta term in the following:

NA0
k NA1A2···Ad−1A0 = d! ·NA0

k N1
[A1

N2
A2

· · ·Nk−1
Ak−1

Nk
Ak

Nk+1
Ak+1

· · ·Nd
A0]

= (−1)1−δk,d · d! ·NA0
k N1

[A1
N2

A2
· · ·Nk−1

Ak−1
Nk

A0
Nk+1

Ak+1
· · ·Nd−1

Ad−1
Nd

Ak]

= (−1)1−δk,d ·
∑

σ∈Sym{0,1,2,...,d−1}

sgn(σ)NA0
k N1

Aσ(1)
N2

Aσ(2)
· · ·Nk−1

Aσ(k−1)

·Nk
Aσ(0)

Nk+1
Aσ(k+1)

· · ·Nd−1
Aσ(d−1)

Nd
Aσ(k)

= (−1)1−δk,d ·
∑

σ∈Sym{0,1,2,...,d−1},
σ(0)=0

sgn(σ)N1
Aσ(1)

N2
Aσ(2)

· · ·Nk−1
Aσ(k−1)

· (NA0
k Nk

Aσ(0)
)Nk+1

Aσ(k+1)
· · ·Nd−1

Aσ(d−1)
Nd

Aσ(k)

= (−1)1−δk,d ·
∑

σ∈Sd−1

sgn(σ)N1
Aσ(1)

N2
Aσ(2)

· · ·Nk−1
Aσ(k−1)

·Nk+1
Aσ(k+1)

· · ·Nd−1
Aσ(d−1)

Nd
Aσ(k)

= (−1)1−δk,d · (d− 1)! ·N1
[A1

N2
A2

· · ·Nk−1
Ak−1

Nk+1
Ak+1

· · ·Nd−1
Ad−1

Nd
Ak]

. (4.4.13)

After interchanging Ak and A0 as described above, the contracted term will be zero
unless σ(0) = 0. Fixing σ(0) = 0, the sum effectively runs over σ ∈ Sym{1, 2, . . . , d− 1} =
Sd−1, and therefore one sees that the sum is just the full antisymmetrization over the
uncontracted indices, with a factor of (d − 1)! so that there are no fractions when that is
expanded.

The salient observations from this calculation are:

• Nk does not appear; and

• the expression is (up to a factor) the antisymmetrization of all remaining elements
of the orthonormal basis.

We are now ready to proceed with the proof. We claim that the second sum of (4.4.12)
vanishes. In fact, we claim that each summand of the second sum vanishes.

We see this via the above formula for NA0
k N ℓ

[Ad
NA1A2···Ad−1]A0

. The reason for this

is the following: NA0
k N ℓ

[Ad
NA1A2···Ad−1]A0

is equal to a constant multiplied by the wedge

product of the N j
A for j ̸= k. In particular, this contains N ℓ, since in the second sum,

k ̸= ℓ. Therefore NA0
k N ℓ

[Ad
NA1A2···Ad−1]A0

is skew over the indices A1, . . . , Ad, and contains

two copies of N ℓ
A.
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More formally,

NA0
k N ℓ

[Ad
NA1A2···Ad−1]A0

= (−1)1−δk,d · (d− 1)! ·N ℓ
[Ad

N1
[A1

N2
A2

· · ·Nk−1
Ak−1

Nd
Ak

Nk+1
Ak+1

· · ·Nd−1
Ad−1]]

= (−1)1−δk,d · (d− 1)! ·N ℓ
[Ad

N1
A1

N2
A2

· · ·Nk−1
Ak−1

Nd
Ak

Nk+1
Ak+1

· · ·Nd−1
Ad−1]

= (−1)1−δk,d · (d− 1)! ·N ℓ
[Ad

N1
A1

N2
A2

· · ·N ℓ
Aℓ

· · ·Nk−1
Ak−1

Nd
Ak

Nk+1
Ak+1

· · ·Nd−1
Ad−1]

= 0.

The above is written with ℓ < k, but the result clearly still holds if ℓ > k.

We use equation (4.4.13) again in computing the other sum from (4.4.12).

For a general term,

NA0
k ∇iN

k
[Ad

NA1A2···Ad−1]A0

= (−1)1−δk,d · (d− 1)! ·
(
∇iN

k
[Ad

)
N1

[A1
N2

A2
· · ·Nk−1

Ak−1
Nd

Ak
Nk+1

Ak+1
· · ·Nd−1

Ad−1]]

= (−1)1−δk,d · (d− 1)! ·
(
∇iN

k
[Ad

)
N1

A1
N2

A2
· · ·Nk−1

Ak−1
Nd

Ak
Nk+1

Ak+1
· · ·Nd−1

Ad−1]

= (−1)1−δk,d · (−1)1−δk,d · (d− 1)! ·
(
∇iN

k
[Ak

)
N1

A1
N2

A2
· · ·Nk−1

Ak−1
Nd

Ad
Nk+1

Ak+1
· · ·Nd−1

Ad−1]

= (d− 1)! ·
(
∇iN

k
[Ak

)
N1

A1
N2

A2
· · ·Nk−1

Ak−1
Nd

Ad
Nk+1

Ak+1
· · ·Nd−1

Ad−1]

= (d− 1)! ·N1
[A1

N2
A2

· · ·Nk−1
Ak−1

(
∇iN

k
Ak

)
Nk+1

Ak+1
· · ·Nd−1

Ad−1
Nd

Ad]
.

Note from the third to fourth lines we interchange Ad and Ak, which multiplies the
result by −1 unless k = d, so we collect another of the Kronecker delta factors.

However

(−1)1−δk,d · (−1)1−δk,d =
(
(−1)1−δk,d

)2
= 1,

so those terms do not appear in the following lines.

Finally, it remains to sum the above terms over k:(
d∑

k=1

NA0
k ∇iN

k
[Ad

)
NA1A2···Ad−1]A0

= (d− 1)! ·
d∑

k=1

N1
[A1

N2
A2

· · ·Nk−1
Ak−1

(
∇iN

k
Ak

)
Nk+1

Ak+1
· · ·Nd−1

Ad−1
Nd

Ad]

= (d− 1)! · ∇i

(
N1

[A1
N2

A2
· · ·Nd−1

Ad−1
Nd

Ad]

)
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=
(d− 1)!

d!
· ∇i

(
d! ·N1

[A1
N2

A2
· · ·Nd−1

Ad−1
Nd

Ad]

)
=

1

d
· ∇iNA1A2···Ad−1Ad

.

Now that we have computed both of the sums from equation (4.4.12), we have

−Li[Ad

A0NA1A2···Ad−1]A0
=

(
d∑

k=1

NA0
k ∇iN

k
[Ad

)
NA1A2···Ad−1]A0

+

∑
k ̸=ℓ

(
NB

k ∇iN
ℓ
B

)
NA0

k N ℓ
[Ad

NA1A2···Ad−1]A0

=
1

d
· ∇iNA1A2···Ad−1Ad

+ 0,

whence
∇iNA1A2···Ad−1Ad

= −d · Li[Ad

A0NA1A2···Ad−1]A0
.

Using Theorem 4.4.5, we see that the tractor second fundamental form may also be
written purely in terms of the tractor normal form.

Proposition 4.4.6. The tractor second fundamental form is related to the tractor normal
form via

NAd+1A2···Ad∇iNA1A2···Ad
= −(d− 1)! · LiA1

Ad+1 . (4.4.14)

Proof. Theorem 4.4.5 gives that

∇iNA1A2···Ad−1Ad
= −d · Li[Ad

A0NA1A2···Ad−1]A0
.

We will contract both sides of this display with NAd+1A2···Ad . First, we see that

NAd+1A2···AdLi[Ad

A0NA1A2···Ad−1]A0

= −NAd+1A2···AdLi[A1

A0NAdA2···Ad−1]A0

= − 1

d!

∑
σ∈Sd

sgn(σ) · LiAσ(1)

A0NAσ(d)Aσ(2)···Aσ(d−1)A0N
Ad+1A2···Ad .

Now, the contraction of the tractor second fundamental form and the first tractor nor-
mal form will be zero unless σ(1) = 1, since otherwise the normal form will be contracted
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into the (tangential) lower index of the tractor second fundamental form. Any such per-
mutation σ will mean the two normal forms are contracted on all indices except one on
each copy. Hence

− 1

d!

∑
σ∈Sd

sgn(σ) · LiAσ(1)

A0NAσ(d)Aσ(2)···Aσ(d−1)A0N
Ad+1A2···Ad

=
1

d!

∑
σ∈Sd

sgn(σ)LiAσ(1)

A0NA0Aσ(2)···Aσ(d−1)Aσ(d)
NAd+1A2···Ad

=
1

d!

∑
σ∈Sym{2,...,d−1,d}

sgn(σ) · LiA1
A0NA0Aσ(2)···Aσ(d−1)Aσ(d)

NAd+1A2···Ad

=
1

d!

∑
σ∈Sym{2,...,d−1,d}

sgn(σ) · sgn(σ) · LiA1
A0NA0Aσ(2)···Aσ(d−1)Aσ(d)

NAd+1Aσ(2)···Aσ(d)

=
1

d!

∑
σ∈Sym{2,...,d−1,d}

LiA1
A0 · (d− 1)! ·NAd+1

A0

=
(d− 1)!

d!

∑
σ∈Sym{2,...,d−1,d}

LiA1
Ad+1

=
1

d
· (d− 1)! · LiA1

Ad+1

=
(d− 1)!

d
· LiA1

Ad+1 .

Thus, equation (4.4.10) implies that

NAd+1A2···Ad−1Ad∇iNA1A2···Ad−1Ad
= −d ·NAd+1A2···Ad−1AdL[Ad

A0NA1A2···Ad−1]A0

= −d · (d− 1)!

d
· LiA1

Ad+1

= −(d− 1)! · LiA1
Ad+1 .

We have already seen in Theorem 4.2.7 that the vanishing of the tractor second funda-
mental form is equivalent to the tractor normal projector being parallel. Using the results
of this section, we can now prove a similar equivalence involving the tractor normal form.

Theorem 4.4.7. The tractor normal form is parallel if, and only if, the tractor second
fundamental form vanishes.

Proof. First, suppose that LiAd
Ad+1 = 0. Then the result of Theorem 4.4.5 shows that

∇iNA1A2···Ad−1Ad
= 0.
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For the other direction, from Proposition 4.4.6, we have

NAd+1A2···Ad−1Ad∇iNA1A2···Ad−1Ad
= −(d− 1)! · LiA1

Ad+1 ,

and it follows that if ∇iNA1A2···Ad−1Ad
= 0, then LiA1

Ad+1 = 0.

Remark 4.4.8. Of note, many of the results of this Chapter used nothing more than a local
orthonormal basis for the normal bundle and the Gauß formula. Since the normal tractor
bundle is isomorphic to the usual normal bundle, and we have a Gauß formula in both
cases, the proofs of these results may be repeated mutatis mutandis for the Riemannian
objects to yield analogous statements and formulae.

4.5 The dual formulation

We have already noted in Section 4.4.1 that the tractor volume form gives an isomorphism
ΛdT ∗ → Λn+2−dT . Let NA1A2···Ad

be the tractor normal form of a submanifold Γ. Define

ΣA1A2···Am+2 := ϵA1A2···Am+2Am+3···An+2NAm+3···An+2 . (4.5.1)

Then, since the tractor volume form is parallel and the map induced by contraction
with it is an isomorphism, one observes

Theorem 4.5.1. Let Γ ↪→ M be a submanifold of dimension m. Then the m + 2-tractor
ΣA1A2···Am+2 defined in (4.5.1) is parallel if, and only if, the tractor normal form of Γ is
parallel.

Throughout the rest of this work, Σ will always denote the dual of a tractor normal
form via the tractor volume form.

In light of this observation, one may equally well phrase results concerning the normal
d-form dually, in terms of m+ 2-forms. Indeed, the results of [39] are presented from this
perspective, with conformal distinguished curves being characterized via 1 + 2 = 3-tractor
fields. The point of this section is to note that these approaches are equivalent, and also
to introduce this “dual” picture so that we can refer to it later.

In this section we calculate an explicit formula in terms of tractor projectors for the
m + 2-form Σ defined above. The calculation is split across two lemmata which combine
to give the final formula.

Lemma 4.5.2. The contraction of the ambient tractor volume form with the Z slot of the
tractor normal form is(

vol
a3···am+2am+3···an+2

M WA1A2A3···Am+2Am+3···An+2

a3···am+2am+3···an+2

)(
Nbm+3···bn+2Z

bm+3···bn+2

Am+3···An+2

)
=

(m+ 2)(m+ 1)

(n+ 2)(n+ 1)
· d! · vola3···am+2

Γ ·WA1A2A3···Am+2

a3···am+2
.

(4.5.2)
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Proof. The idea is to partition the individual tractor projectors that make up the W
projector into d contracted indices and the n+2−d = m+2 uncontracted indices. Do this
by fixing the order of the tractor indices and assigning a tractor projector, X, Y or one of
the Zai , to those indices. Note that if either the X or Y are in the contracted partition,
the result will be zero. Therefore we only consider the (n+2)−2Cd partitions where the only
contracted projectors are Z projectors:

vol
a3···am+2am+3···an+2

M Nbm+3···bn+2X
[A1Y A2ZA3

a3 · · ·ZAm+2
am+2

ZAm+3
am+3

· · ·ZAn+2]
an+2

Z
bm+3

[Am+3
· · ·Zan+2

An+2]

= vol
a3···am+2am+3···an+2

M Nbm+3···bn+2 ·
d! · (n+ 2− d)!

(n+ 2)!

·
(
X [A1Y A2ZA3 · · ·ZAm+2]

am+2
Z [Am+3
am+3

· · ·ZAn+2]
an+2

−X [A1Y A2ZA3 · · ·ZAm+2]
am+3

Z [Am+3
am+2

· · ·ZAn+2]
an+2

− · · ·
)
Z

bm+3

Am+3
· · ·Zbn+2

An+2

= vol
a3···am+2am+3···an+2

M Nbm+3···bn+2 ·
d! · (m+ 2)!

(n+ 2)!

·
(

n!

d!(n− d)!
·X [A1Y A2ZA3 · · ·ZAm+2]

am+2
δbm+3
am+3

· · · δbn+2
an+2

)
= vol

a3···am+2am+3···an+2

M Nam+3···an+2 ·
(m+ 2)(m+ 1)

(n+ 2)(n+ 1)
·X [A1Y A2ZA3 · · ·ZAm+2]

am+2

= d! · vola3···an+2−d

Γ · (m+ 2)(m+ 1)

(n+ 2)(n+ 1)
·WA1A2A3···An+2−d

a3···am+2
.

Note that any permutation of the tensorial indices during the partitioning will can be
reversed by applying the same permutation to the volume form and then relabelling in-
dices. Therefore all non-zero terms remaining after the contraction will be equal and added
together, and as already explained there are nCd of these. These two observations com-
bined explain the factor in the third-from-last line. We have also used Proposition 4.1.12
to simplify the contraction of the ambient volume form and the normal form in the final
line of the above display.

Lemma 4.5.3. The contraction of the ambient tractor volume form with the X slot of the
tractor normal form is(

vol
a3···am+2am+3am+4···an+2

M WA1A2A3···Am+2Am+3Am+4···An+2

a3···am+2am+3am+4···an+2

)
(
d ·Ncbm+4···bn+2H

c · X bm+4···bn+2

Am+3Am+4···An+2

)
= (−1)m+1d! · (m+ 2)(m+ 1)

(n+ 2)(n+ 1)
vol

[a2···am+1

Γ Ham+2]XA1A2···Am+2

a2···am+2

(4.5.3)
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Proof. We follow the same partitioning strategy as in the previous lemma. Note that the
X projector in X must be contracted into the Y projector of W; any other contraction
yields zero.

WA1A2A3···Am+2Am+3Am+4···An+2

a3···am+2am+3am+4···an+2
X bm+4···bn+2

Am+3Am+4···An+2

X [A1Y A2ZA3
a3 · · ·ZAm+2

am+2
ZAm+3
am+3

ZAm+4
am+4

· · ·ZAn+2]
an+2

XAm+3Z
bm+4

Am+4
· · ·Zbn+2

An+2

−X [A1ZA2
am+3

ZA3
a3 · · ·ZAm+2

am+2
Y Am+3ZAm+4

am+4
· · ·ZAn+2]

an+2
XAm+3Z

bm+4

Am+4
· · ·Zbn+2

An+2

= −(n+ 1)! · 1!
(n+ 2)!

X [A1ZA2
am+3

ZA3
a3 · · ·ZAm+2

am+2
ZAm+4
am+4

· · ·ZAn+2]
an+2

(
Y Am+3XAm+3

)
Z

bm+4

Am+4
· · ·Zbn+2

An+2

= − 1

n+ 2
X [A1ZA2

am+3
ZA3
a3 · · ·ZAm+2

am+2
ZAm+4
am+4

· · ·ZAn+2]
an+2

Z
bm+4

Am+4
· · ·Zbn+2

An+2

= − 1

n+ 2
· (−1)m ·X [A1ZA2

a3 Z
A3
a4 · · ·ZAm+2

am+3
ZAm+4
am+4

· · ·ZAn+2]
an+2

Z
bm+4

Am+4
· · ·Zbn+2

An+2

= (−1)m+1 · 1

n+ 2
·X [A1ZA2

a3 Z
A3
a4 · · ·ZAm+2

am+3
ZAm+4
am+4

· · ·ZAn+2]
an+2

Z
bm+4

Am+4
· · ·Zbn+2

An+2

= (−1)m+1 · 1

n+ 2
· XA1A2A3···Am+2Am+4···An+2

a3a4···am+3am+4···an+2
· Zbm+4···bn+2

Am+4···An+2
.

For convenience, we relabel indices here before proceeding with the computation. We
will compute just the contraction of the tractor projectors, and only restore the constant
factors at the end. We again use our standard partition strategy, noting that for this
particular contraction, the only non-zero contractions arise from partitions of the projectors
making up the X projector where the X is in the uncontracted partition. There are
n+1Cm+2 =n+1 Cd−1 possible partitions, of which nCm+1 =n Cd−1 have the X in the
uncontracted partition.

Thus

XA1A2A3···Am+2Am+3···An+1

a2a3···am+2am+3···an+1
· Zbm+3···bn+1

Am+3···An+1

=
nCm+1

n+1Cm+2
XA1A2A3···Am+2

[a2a3···am+2
· δbm+3

am+3
· · · δbn+1

an+1]

=
n!

(m+ 1)! · (d− 1)!
· (m+ 2)! · (d− 1)!

(n+ 1)!
· XA1A2A3···Am+2

[a2a3···am+2
· δbm+3

am+3
· · · δbn+1

an+1]

=
m+ 2

n+ 1
· XA1A2A3···Am+2

[a2a3···am+2
· δbm+3

am+3
· · · δbn+1

an+1]
.

Returning the coefficients of the tractor terms yields

d · vola3···am+2am+3am+4···an+2

M Ncbm+4···bn+2H
c·
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WA1A2A3···Am+2Am+3Am+4···An+2

a3···am+2am+3am+4···an+2
X bm+4···bn+2

Am+3Am+4···An+2

= (−1)m+1 · d · m+ 2

(n+ 2)(n+ 1)
vol

a2···am+1am+2am+3···an+1

M Ncbm+3···bn+1H
c

XA1A2A3···Am+2

[a2a3···am+2
· δbm+3

am+3
· · · δbn+1

an+1]

= (−1)m+1 · d · m+ 2

(n+ 2)(n+ 1)
vol

a2···am+3···an+1

M Ncam+3···an+1H
c · XA1A2A3···Am+2

a2a3···am+2
.

Note that in the second line we have relabelled the tensor indices.

To complete the proof, we simplify the term involving the volume form, normal form
and mean curvature. Again for simplicity, we relabel the indices. We pick local orthonormal
frames for the intrinsic tangent bundle TΓ and the normal bundle NΓ, {u1, . . . um} and
{n1, . . . , nd} respectively.

vol
a1···amam+1am+2···an
M Ncam+2···anH

c

= n! · u[a11 · · ·uamm n
am+1

1 n
am+2

2 · · ·nan]
d · d! · n1

[cn
2
am+2

· · ·nd
an]

Hc

= n! · (m+ 1)! · (d− 1)!

n!

(
u
[a1
1 · · ·uamm n

am+1]
1 n

[am+2

2 · · ·nan]
d

−u
[a1
1 · · ·uamm n

am+1]
2 n

[am+2

1 · · ·nan]
d − · · ·

)
· d! · (d− 1)! · 1!

d!

(
n1
cn

2
[am+2

· · ·nd
an]

− n2
cn

1
[am+2

· · ·nd
an]

− · · ·
)
Hc

= (m+ 1)! · ((d− 1)!)2
(
u
[a1
1 · · ·uamm n

am+1]
1 (n1

cH
c)n

[am+2

2 · · ·nan]
d n2

[am+2
· · ·nd

an]

+ u
[a1
1 · · ·uamm n

am+1]
2 (n2

cH
c)n

[am+2

1 · · ·nan]
d n1

[am+2
· · ·nd

an]
+ · · ·

+u
[a1
1 · · ·uamm n

am+1]
d (nd

cH
d)n

[am+2

1 · · ·nan]
d−1n

1
[am+2

· · ·nd−1
an]

)
= (m+ 1)! · ((d− 1)!)2

(
1

(d− 1)!
· u[a11 · · ·uamm n

am+1]
1 (n1

cH
c)+

+
1

(d− 1)!
· u[a11 · · ·uamm n

am+1]
2 (n2

cH
c) + · · ·

+
1

(d− 1)!
· u[a11 · · ·uamm n

am+1]
d (nd

cH
d)

)
= (m+ 1)! · (d− 1)! · u[a11 · · ·uamm Ham+1]

= (m+ 1) · (d− 1)! ·m! · u[[a11 · · ·uam]
m Ham+1]

= (m+ 1) · (d− 1)! · vol[a1···amΓ Ham+1].

Note that the contractions of the form n
[am+2

2 · · ·nan]
d n2

[am+2
· · ·nd

an]
give the factors of

1
(d−1)! .
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Substituting this back into our earlier equation and relabelling the indices appropriately
gives

d · vola3···am+2am+3am+4···an+2

M Ncbm+4···bn+2H
c·

WA1A2A3···Am+2Am+3Am+4···An+2

a3···am+2am+3am+4···an+2
X bm+4···bn+2

Am+3Am+4···An+2

= (−1)m+1 · m+ 2

(n+ 2)(n+ 1)
vol

a2···am+3···an+1

M Ncam+3···an+1H
c · XA1A2A3···Am+2

a2a3···am+2

= (−1)m+1 · d! · (m+ 2)(m+ 1)

(n+ 2)(n+ 1)
· vola2···am+1

Γ Ham+2 · XA1A2A3···Am+2

a2a3···am+2
.

Combining Lemmata 4.5.2 and 4.5.3 gives an explicit formula for Σ.

Theorem 4.5.4. Let Γ ↪→ be a m-dimensional submanifold of a conformal manifold (M, c).
Fix d := codimΓ, and let NA1···Ad

denote the tractor normal form of Γ. Define

ΣA1A2A3···Am+2 := ϵA1A2A3···Am+2Am+3···An+2NAm+3···An+2 .

Then

ΣA1A2A3···Am+2 =
(m+ 2)(m+ 1) · d!

(n+ 2)(n+ 1)

[
vol

a3···am+2

Γ WA1A2A3···Am+2

a3···am+3

+(−1)m+1 · vola2···am+1

Γ Ham+2 · XA1A2A3···Am+2

a2a3···am+2

]
.

(4.5.4)

Proof. From the formulae for the tractor volume form (4.4.5) and the normal form (4.4.6),
it follows that Σ is simply the sum of equations (4.5.2) and (4.5.3).

As the notation suggests, the Σ defined in (4.5.1) is a generalization to arbitrary codi-
mension of the Σ used to characterize distinguished conformal curves from [39]. We con-
clude this chapter with some remarks on this subject.

With the conventions and definitions of Chapter 3, it was shown that

ΣABC = ±6ucX [AY BZC]
c + 6ubacX [AZB

b ZC]
c , (4.5.5)

where ub and ac are the weighted velocity and acceleration vectors of the curve.

For a curve γ viewed as a 1-dimensional submanifold, one has vola1γ = ua1 , and we will
shortly see (equation (5.1.5)) that Ha2 = aa2 . In [39] and Chapter 3, we allowed both
space- and time-like curves; this is the reason for the ± in (4.5.5). Since in this thesis we
mainly assume Riemannian signature (to avoid the complications of null submanifolds),
that sign will always be positive. (In fact, if we allow split signature but still assume that
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the submanifold Γ is non-null, the W slot of Σ will have a prefactor of (−1)q, where (p, q)
is the signature of the induced metric on Γ.) Thus in the case of a curve, the tractor form
Σ of equation (4.5.4) becomes the ΣABC of equation (3.1.26), up to a constant factor. The
exact value of this factor is not particularly important, and rescaling Σ by a constant factor
does not change the statement of Theorem 4.5.1.

In ΣA1A2···Am+2ΣA1A2···Am+2 , the only non-zero contraction of tractor projectors is that
of the two W projectors. Therefore

ΣA1A2···Am+2ΣA1A2···Am+2 = −
(
(m+ 2)(m+ 1) · d!

(n+ 2)(n+ 1)

)2

· vola3···an+2

Γ volΓa3···an+2
· 1

(m+ 2)!
,

which is constant and depends only on the dimensions of M and Γ.

The particular factor here is a consequence of initially working with normal forms,
and defining those in such a way that they are volume forms for the normal bundle.
Equally, one may start with the right-hand side of (4.5.4) without any prefactors involv-
ing the dimensions of M or Γ, and then define ΣA1···Am+2 to be this expression scaled
such that ΣA1···Am+2ΣA1···Am+2 has a prescribed value. This was done in [39], where we
chose the factor such that ΣA1A2A3ΣA1A2A3 = ∓1, with the sign according to whether the
submanifold (curve) was spacelike or timelike respectively. From that viewpoint, now it
is ϵA1A2···Am+2Am+3···An+2Σ

A1A2···Am+2 which then recovers the tractor normal form of the
submanifold up to some factor that will again depend only on dimM and dimΓ.
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Chapter 5

Distinguished conformal
submanifolds

In this chapter, we define a notion of a distinguished submanifold of a conformal manifold.
Our proposed definition is motivated by results from Chapter 4, and it generalizes some
existing special classes of conformal submanifolds.

Recall that, for 1-manifolds, there is already a notion of distinguished conformal sub-
manifold: that of a conformal circle, which we have already discussed in Chapter 3. We
begin by recasting a characterization of conformal circles from Chapter 3 in terms of the
submanifold tractor theory developed in Chapter 4. Specifically, we show that a curve
(viewed as a 1-dimensional submanifold) satisfies the conformal circle equation if, and only
if, its tractor second fundamental form vanishes.

This result is even more significant when taken together with a similar characterization
of totally umbilic hypersurfaces in conformal manifolds. Total umbilicity is another con-
formally invariant property, and Corollary 4.2.12 shows that, for hypersurfaces, this is also
equivalent to the tractor second fundamental form being zero. These observations natu-
rally motivate a notion of distinguished conformal submanifold which interpolates between
these extremal cases, giving a notion that is valid in all codimensions.

We should also consider alternative ways that such a notion could be defined. Partic-
ularly influential to the content of this chapter was the work of Belgun [6]. Specifically,
the notions of weak and total conformal circularity (Definitions 5.3.2 and 5.3.3 respec-
tively), as well as the characterization of these conditions in terms of conformally invariant
tensors (essentially Theorems 5.3.8 and 5.3.9 if one considers the individual slots of the
tractor fields concerned, instead of viewing the tractors as atomic objects, as we do) all
appear in [6]. Belgun also observed that the notions of total conformal circularity, weak
conformal circularity, and umbilicity form a nested chain, where any of these conditions

91
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holding implies that the subsequent ones do also. This is Theorem 5.3.4, but it is clear
from the characterizations of these notions in terms of conformal tractors. Belgun also
observed that all of these notions coincide for conformally flat manifolds (Theorem 5.3.11).
The machinery developed in Chapter 4 allows us to recover and restate these results using
tractor calculus. In this way, the statements are manifestly invariant and are more natural
in a native conformal geometry setting.

We also summarize which of the results presented in this chapter are new. Theo-
rem 5.2.1 may be regarded as the main result of this thesis. It motivates the notion of
distinguished for submanifolds which we propose in Definition 5.2.2. Section 5.4 extends
many of the ideas of [38] from curves to submanifolds of any codimension.

5.1 Conformal circles as distinguished 1-submanifolds

We will maintain our convention of using γ to denote a curve, even when we are viewing it
as a 1-dimensional submanifold. In this case, the projector Πa

i = uaui, where u
a is the unit

velocity of the curve viewed as a section of TM |γ , and ui is the unit (co)velocity viewed as
a section of T ∗γ. Therefore also

Na
b = δab − uaub. (5.1.1)

So far, the only conformally invariant condition on submanifolds we have seen is that of
total umbilicity. Any general notion of a “distinguished conformal submanifold” should re-
cover the conformal circle condition when the submanifold is 1-dimensional. The following
proposition shows that total umbilicity alone does not give this.

Proposition 5.1.1. Let γ ↪→ M be any smooth curve in M , viewed as a 1-dimensional
submanifold. Then γ is totally umbilic.

Proof. Since γ is 1-dimensional, the second fundamental form of γ must have the form

IIij
c = uiujH

c, (∗)

where ui ∈ Ei[1] is a unit length tangent covector and Hc ∈ Ec[−2] is the mean curvature
vector of γ. (Equally, one may also take unweighted ui ∈ Ei and Hc ∈ Ec; either convention
gives a second fundamental form of conformal weight zero.) Our convention is to use
weighted velocity for two reasons: firstly, it was shown in Chapter 3 a weighted conformal
circle equation is naturally parametrization-independent so a weighted velocity is more
natural when giving the equations for conformal circles, and secondly, with ui weighted,
we have gij = uiuj . Hence equation (∗) is really

IIij
c = gijH

c,

i.e. the second fundamental form is pure trace. Thus I̊I(ij)0
c = 0 and γ is totally umbilic.
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Following Remark 4.2.5, we have that

IIij
c = Πa

jN
c
d∇iΠ

d
a. (5.1.2)

Specializing to the case of a curve,

IIij
c = Πa

jN
c
d∇iΠ

d
a

= uauj (δ
c
d − ucud)∇i

(
uau

d
)

= uauj (δ
c
d − ucud)

(
ua∇iu

d + ud∇iua

)
= uauj

(
ua∇iu

c + uc∇iu
a − ucuaud∇iu

d − uc∇iua

)
= uj∇iu

c,

where we have used that ud has unit length, and this therefore also implies the vanishing
of ud∇iu

d.

Finally, writing ũc for an extension of uc to the whole of M and using the definition of
the pullback connection given in equation (4.1.11),

∇iu
c = Πa

i∇aũ
c = uiu

a∇aũ
c along γ

= uia
c, (5.1.3)

where ac := ua∇au
c is the (weighted) acceleration of the curve.

Thus
IIij

c = uiuja
c. (5.1.4)

Comparing with (∗) above,

Hc = gijIIij
c = uiujuiuja

c = ac, (5.1.5)

i.e. the weighted mean curvature of a curve is exactly the weighted acceleration.

While writing [38], Mike Eastwood sent us an extract from his then-upcoming article
with Lenka Zalabová [30] in which the following result was proved. Our result that the
mean curvature of a curve is equal to its acceleration, combined with Theorem 4.1.11 on
the existence of minimal scales now gives an alternate proof.

Proposition 5.1.2. Let γ be a smooth curve in a conformal manifold. Then there exists
a scale in the conformal class for which γ is an affine geodesic.

Proposition 5.1.1 showed that total umbilicity does not give a notion of distinguished
submanifolds which in the 1-dimensional case exactly recovers the curve being a conformal
circle. We now prove a theorem which provides the link between the theory of conformal
circles and our work on conformal submanifolds from Chapter 4.
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Theorem 5.1.3. A curve γ is a conformal circle if, and only if, its tractor second funda-
mental form vanishes.

Proof. The characterization of conformal circles we will use is that of Proposition 3.1.3,
namely that a curve is an unparametrized conformal circle if, and only if, there is a scale
in the conformal class for which that curve is an affine geodesic, and Pa

bua ∝ ub, where
ua is the velocity of the curve, and Pab is the Schouten tensor in the geodesic scale. Since
we have seen that a minimal scale is exactly a scale in which γ is an affine geodesic, and
moreover that minimal scales for submanifolds always exist, we may work in a minimal
scale without loss of generality. By equation (4.2.26) and Proposition 5.1.1, in such a scale,
one has

LiK
B = Pi

bNc
bXKZB

c ,

and so L will vanish if, and only if, Pi
bNc

b = 0.

In the case of a curve, one has Πa
i Pa

b = uiu
aPa

b, and so Πa
i Pa

bNc
b = 0 if, and only if,

uaPa
b is in the kernel of Nc

b, i.e. u
aPa

b ∝ ub.

Thus we have that the tractor second fundamental form of a curve is zero if, and only
if, there exists a minimal scale for γ such that uaPa

b ∝ ub where P is the Schouten tensor
of that minimal scale. But by Proposition 3.1.3, this is exactly equivalent to γ being a
conformal circle, since the mean curvature of a curve is its acceleration.

The following theorem gives a link between umbilic hypersurfaces and conformal circles.

Theorem 5.1.4. Suppose that Γ1, . . . ,Γn−1 are a collection of (n − 1) totally umbilic
hypersurfaces in M , and let γ :=

⋂
Γi. Suppose moreover that the hypersurfaces Γi are

mutually transverse, i.e., Nγ = NΓ1⊕· · ·⊕NΓn−1, where Nγ is the usual normal bundle of
the submanifold γ. (This transversality condition is a generic one.) Then γ is a conformal
circle.

Proof. The transversality condition ensures that dim
⋂
Γi = 1, i.e. γ is a curve. By the

characterization of conformal circles given in Theorem 3.1.8, it suffices to construct a
totally-skew 3-tractor which is parallel along γ and satisfies the incidence relation involving
the canonical tractor.

Let N i
A denote the (unit) conormal tractor of the hypersurface Γi. Then

NA1A2···An−1 := d! ·N1
[A1

N2
A2

· · ·Nn−1
An−1]

is the tractor normal form of the submanifold γ: the N i
Ai

form an orthonormal basis for the
tractor normal bundle N ∗γ at every point and equation (4.4.7) gives an expression for the
tractor normal form in such a case. Since each N i

A is parallel along Γi by total umbilicity,
NA1A2···An−1 is parallel along the intersection γ.
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Thus the 3-tractor Σ defined by

ΣA1A2A3 := ϵA1A2A3A4···An+2NA4···An+2 (5.1.6)

following equation (4.5.1) is also parallel via Theorem 4.5.1. It remains to show that the
incidence relation is satisfied, i.e. X [A0ΣA1A2A3] is zero. Theorem 4.5.4 gives the explicit
formula for a Σ defined as the tractor volume dual of a normal form. In particular, such
a Σ only involves the W and X tractor form projectors, both of which already contain the
canonical tractor X. Hence it follows that the ΣA1A2A3 defined here for the curve γ will
satisfy X [A0ΣA1A2A3] = 0. Theorem 3.1.8 now gives that γ is a conformal circle.

In fact, one easily see that the above Theorem is not limited to curves; the intersection
of a collection of dmutually transverse totally umbilic hypersurfaces will give a codimension
d submanifold whose normal form is parallel and satisfies the incidence relation with the
canonical tractor. Note that when phrased in terms of the normal form, the “incidence
relation” X ∧ Σ = 0 becomes XA1NA1A2···Ad

= 0, which a tractor normal form is readily
seen to satisfy (c.f. equation (4.4.6)).

5.2 A definition

We have now seen that in both extremal cases of a submanifold (namely curves and hyper-
surfaces), an existing notion of distinguished submanifold is characterized by the vanishing
of the tractor second fundamental form. Before formally stating our proposed definition
for distinguished submanifold in conformal geometry, we begin with a theorem which sum-
marizes many of the main results from the previous chapter.

Theorem 5.2.1. Let (M, c) be a conformal manifold and Γ ↪→ M a conformal submanifold
of codimension d. Then the following are equivalent:

1. LiAd
Ad+1 = 0;

2. ∇iN
A1
A2

= 0;

3. ∇iNA1A2···Ad−1Ad
= 0.

Proof. Theorem 4.2.7 shows that (1) and (2) are equivalent, and the equivalence of (1)
and (3) is Theorem 4.4.7.

In light of these equivalences, we make the following definition.

Definition 5.2.2 (Distinguished submanifold). Let Γ ↪→ M be a submanifold in a confor-
mal manifold (M, c). We will say that Γ is a distinguished submanifold if Γ satisfies one
(equivalently any) of the conditions of Theorem 5.2.1.
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Recall that Corollary 4.2.12 shows that a hypersurface is distinguished exactly when it
is totally umbilic, and we have just seen in Theorem 5.1.3 that a curve is distinguished in
the sense of this definition if, and only if, it is a conformal circle. So this general notion
of distinguished encompasses two existing classes of distinguished conformal submanifolds
and extends the notion to arbitrary codimension.

Additionally, a notable feature of the theory of distinguished curves in Chapter 3 is a
concrete way to produce conserved quantities along these curves. The proliferation of such
quantities is made possible by the characterization of the curve via a parallel (along the
curve) tractor field. Theorem 5.2.1 characterizes submanifolds of arbitrary codimension in
terms of a parallel tractor field, namely the tractor normal form. Section 4.5 describes the
relationship between the normal form and its dual via the volume form, the latter object
being the direct generalization of the 3-tractor Σ from Chapter 3 which characterizes
distinguished curves. We view both of these points as strong justification for the notion of
distinguished that we propose.

5.3 Alternative notions of distinguished conformal subman-
ifolds

Defining a notion of distinguished object in a class is a significant matter. In this section,
we present several different ways that one could define distinguished for conformal sub-
manifolds. These have their origins as conformal generalizations of the various equivalent
conditions to total geodesicity for Riemannian submanifolds. We first recall the theorem
from Riemannian submanifold geometry where these originate. A detailed proof may be
found in many places, e.g. [56], but it is mostly just an exercise in using the Gauß formula.

Theorem 5.3.1. Let (M, g) be a Riemannian manifold, Γ ↪→ M a submanifold. The
following are equivalent:

1. Γ is totally geodesic in M , i.e. IIij
c = 0;

2. If v ∈ TpM is tangent to Γ, then the M -geodesic with initial velocity v lies in Γ;

3. Every geodesic of Γ is also a geodesic of M .

While these properties are not conformally invariant, they admit slight modifications
which have the desired invariance property. However, in the conformal context, these
generalizations are no longer equivalent. The conformal analog of Property (1) is that
of totally umbilicity, see Definition 4.1.9. We introduce new definitions for the conformal
analogs of Properties (2) and (3). Belgun [6] calls these weakly geodesic and strongly
geodesic respectively; we use terminology that we feel makes clearer their role as conformal
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analogs of the notions in Theorem 5.3.1. The notion of weakly conformally circular was
also studied in [4, Proposition 2.13] for hypersurfaces, although it was not given an explicit
name.

Definition 5.3.2 (Weakly conformally circular). A submanifold Γ is weakly conformally
circular if any M -conformal circle whose 2-jet at a point lies in Γ remains in Γ. That is,
for any M -conformal circle γ whose 2-jet at some point p lies in Γ, with γ(0) = p, γ(t) ∈ Γ
for all t.

Definition 5.3.3 (Totally conformally circular). Let Γ be a submanifold in a conformal
manifold M . Then Γ is totally conformally circular if any Γ-conformal circle is also an
M -conformal circle.

We will see shortly that there is a minor subtlety around whether we consider parametrized
or unparametrized curves in the notion of total conformal circularity. We will say more on
this when when we come to characterize this property in terms of tractors.

As the choice of terminology suggests, total conformal circularity implies weak confor-
mal circularity. In fact, more can be said.

Theorem 5.3.4. The classes of umbilic, weakly and totally conformally circular subman-
ifolds form a nested chain:

totally conformally circular ⇒ weakly conformally circular ⇒ umbilic.

We defer the proof of this until after we have characterized weakly and totally con-
formally circular submanifolds in terms of tractors and/or invariant tensors, since when
cast in this language the result is clear. We comment on the extremal cases. For curves,
the first two notions are equivalent, while the third is always satisfied. For hypersurfaces,
we have already seen that umbilicity is equivalent to the vanishing of the tractor second
fundamental form, and we will shortly see that this in turn is equivalent to weak confor-
mal circularity. Thus in the hypersurface case, the second and third notions in the above
display are equivalent.

To facilitate these characterizations, we introduce a new conformally invariant tensor
field due to Belgun. Define µ ∈ Γ(T ∗Γ⊗NΓ) by

µi
c := Nc

b

(
Pi

b −∇iH
b − 1

m− 1
Dj I̊Iij

b

)
, (5.3.1)

where the intrinsic Levi-Civita connection D is coupled to the normal connection ∇⊥. In
the m = 1 case (i.e. Γ is a curve) we adopt the convention of omitting the divergence of
the trace-free second fundamental form term. Recall that for a curve, one has I̊Iij

c = 0
trivially, so this is reasonable.
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In our derivation of the alternate formula (4.2.30) for the tractor second fundamental
form, the intermediate calculation (4.2.31) shows that, for m ̸= 1,

µi
c =

1

m− 1
Wij

diNc
d. (5.3.2)

The conformal invariance of the Weyl tensor and the normal projector then immediately
implies that the same property is true of µi

c.

The µ tensor is closely related to the tractor second fundamental form. Without the di-
vergence of the trace-free second fundamental form, it is the coefficient of XJZ

C
c in (4.2.26).

Thus one sees that if LiJ
C = 0, then it must be that I̊Iij

c = 0 and then also µi
c = 0 by

this observation. This essentially shows that I̊Iij
c is the obstruction to Nc

b

(
Pi

b −∇iH
b
)

being conformally invariant. The converse also holds, as the following lemma shows.

Lemma 5.3.5. Let Γ ↪→ M be a submanifold in a conformal manifold with LiJ
C its tractor

second fundamental. Then LiJ
C = 0 if, and only if, I̊Iij

c = 0 and µi
c = 0.

Proof. First, suppose that LiJ
C = 0. Then from (4.2.26) we immediately have I̊Iij

c = 0
and hence (5.3.1) now reads

µi
c = Nc

b

(
Pi

b −∇iH
b
)
.

Equation (4.2.26) then becomes

LiJ
C = µi

cZC
c XJ +Hcµi

cXCXJ , (5.3.3)

and thus LiJ
C = 0 implies that µi

c = 0.

Conversely, suppose I̊Iij
c = 0 and µi

c = 0. Then (5.3.3) holds once more, and thus the
vanishing of µi

c gives that LiJ
C = 0.

In fact, the data (I̊Iij
c, µi

c) is equivalent to the tractor second fundamental form. To
see this, for one direction, note that LiJ

C may be constructed from (I̊Iij
c, µi

c) according
to

(I̊Iij
c, µi

c) 7→ I̊Iij
cZj

JZ
C
c +

(
µi

c +
1

m− 1
Dj I̊Iij

c

)
XJZ

C
c

+HcI̊Iij
cZj

JX
C +Hc

(
µi

c +
1

m− 1
Dj I̊Iij

c

)
XJX

C .

(5.3.4)

The converse requires some more work. It is clear that there is a map LiJ
C 7→ I̊Iij

c,
since the trace-free second fundamental form is in the projecting part (i.e. the top slot)
of the tractor second fundamental form, and thus one can simply extract this component
using the tractor projectors. We show now that there is also an invariant operator which
maps LiJ

C 7→ µi
c. To this end, we first prove a lemma.
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Lemma 5.3.6. There is an invariant map M : S2
0T

∗Γ⊗NΓ → T ∗Γ⊗ T ∗Γ⊗N . Written
in tractor projectors, this takes the form

ωij
c 7→ McJ

jCωij
c :=ωij

cZj
JZ

C
c − 1

m− 1
Djωij

cXJZ
C
c

+Hcωij
cZj

JX
C − 1

m− 1
HcD

jωij
cXJX

C ,

(5.3.5)

where again the intrinsic Levi-Civita connection D is coupled to the normal Levi-Civita
connection ∇⊥ when acting on ω.

Proof. Using (2.2.3) and (4.1.14), one computes that

D̂jωij
c = Djωij

c + (m− 1)Υjωij
c −Υiωkl

cgkl = Djωij
c + (m− 1)Υjωij

c (5.3.6)

since ωij
c is trace-free over the pair of indices (i, j).

Therefore, using the above together with equations (4.1.22) and (2.3.11), and that the
X tractor is conformally invariant,

ωij
cẐj

J Ẑ
C
c − 1

m− 1
D̂jωij

cX̂J Ẑ
C
c + Ĥcωij

cẐj
JX̂

C − 1

m− 1
ĤcD̂

jωij
cX̂JX̂

C

= ωij
c
(
Zj
J +ΥjXJ

) (
ZC
c +ΥcX

C
)

− 1

m− 1

(
Djωij

c + (m− 1)Υjωij
c
)
XJ

(
ZC
c +ΥcX

C
)

+
(
Hc −Nd

cΥd

)
ωij

c
(
Zj
J +ΥjXJ

)
XC

− 1

m− 1

(
Hc −Nd

cΥd

) (
Djωij

c + (m− 1)Υjωij
c
)
XJX

C

= ωij
cZj

JZ
C
c − 1

m− 1
Djωij

cXJZ
C
c + (Hcωij

c − ωij
cΥc + ωij

cΥc)Z
j
JX

C

+

(
− 1

m− 1
HcD

jωij
c −Hcωij

cΥj +
1

m− 1
ΥcD

jωij
c + ωij

cΥjΥc − ωij
cΥjΥc

− 1

m− 1
ΥcD

jωij
c +Hcωij

cΥj − ωij
cΥjΥc + ωij

cΥjΥc

)
XJX

C

= ωij
cZj

JZ
C
c − 1

m− 1
Djωij

cXJZ
C
c +Hcωij

cZj
JX

C − 1

m− 1
HcD

jωij
cXJX

C ,

which verifies the claimed conformal invariance of the operator McJ
jC .

We will use this operator M to recover Belgun’s invariant µi
c tensor from the tractor

second fundamental form.
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Theorem 5.3.7. The tensor µi
c is equal to the projecting part of the tractor(

δKJ δCD −MJc
CjZK

j Zc
D

)
LiK

D = LiJ
C −MJc

Cj I̊Iij
c. (5.3.7)

Proof. By inspection, one sees that (5.3.7) has zero in the Zj
JZ

C
c slot (since ZK

j Zc
DLiK

D =

I̊Iij
c) and hence projecting out the XJZ

C
c slot must yield a conformally invariant object.

Such projection is accomplished by contraction with Y JZc
C , and from equations (4.2.26)

and (5.3.5) one sees that this projection is equal to

Y JZc
C

(
LiJ

C −McJ
jC I̊Iij

c
)
= Nc

b

(
Pi

b −∇iH
b
)
− 1

m− 1
Dj I̊Iij

c, (5.3.8)

which is exactly µi
c as defined in (5.3.1) (since the c index of Dj I̊Iij

c is already normal).
In particular, this is another way to establish the conformal invariance of µi

c.

Thus the previously-mentioned map LiJ
C 7→ µi

c is realized by mapping

LiJ
C 7→ Y JZc

C

(
LiJ

C −MJc
CjZK

j Zc
DLiK

D
)
.

We have already noted (and used) that there is also a map LiJ
C 7→ I̊Iij

c, since this
is in the projecting part of the tractor LiJ

C . Thus both I̊Iij
c and µi

c may be recovered
from LiJ

C . Taken together with equation (5.3.4), this shows that the package (I̊Iij
c, µi

c)
is indeed equivalent to the tractor second fundamental form LiJ

C .

We now have the required objects and machinery to give tractor characterizations of
Definitions 5.3.2 and 5.3.3.

Theorem 5.3.8. The submanifold Γ ↪→ M is weakly conformally circular if, and only if,
LiJ

C = 0. Thus weakly conformally circular and our notion of distinguished coincide.

Proof. First, suppose that Γ is weakly conformally circular. Let γ be an M -conformal
circle whose 2-jet at p ∈ Γ lies in Γ. Then by assumption γ remains in Γ. We need to
introduce some notation. Let

• NΓ↪→M
A1A2···Ad

be the normal form of Γ ↪→ M ,

• Nγ↪→M
A1A2···An−1

be the normal form of γ ↪→ M , and

• Nγ↪→Γ
A1A2···Am−1

be the normal form of γ ↪→ N .

We note a couple of important relations between these various normal forms. First, since
the curve γ lies in the submanifold Γ, we have

N
A1A2···Am−1

γ↪→Γ NΓ↪→M
A1A2···Ad

= 0. (5.3.9)
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Second, adapting the argument from the proof of Corollary 4.1.29, we see that

Nγ↪→Γ
A1A2···Am−1

∧NΓ↪→M
Am···An−1

= Nγ↪→M
A1A2···An−1

. (5.3.10)

Finally, since γ is an M -conformal circle, it follows from Theorem 5.1.3 that

ui∇iN
γ↪→M
A1A2···An−1

= 0.

Therefore, using the above,(
ui∇iN

γ↪→Γ
[A1A2···Am−1

)
NΓ↪→M

Am···An−1]
+Nγ↪→Γ

[A1A2···Am−1

(
ui∇iN

Γ↪→M
Am···An−1]

)
= 0,

and hence(
ui∇iN

γ↪→Γ
[A1A2···Am−1

)
NΓ↪→M

Am···An−1]
+Nγ↪→Γ

[A1A2···Am−1

(
−d · uiLiAn−1

A0NΓ↪→M
Am···An−2]A0

)
= 0

by Theorem 4.4.5. Now, we contract N
A1A2···Am−1

γ↪→Γ into both sides of the above display.

Since Nγ↪→Γ
A1A2···Am−1

N
A1A2···Am−1

γ↪→Γ is constant, and NΓ↪→M
A1A2···Ad

N
A1B2···Bm−1

γ↪→Γ = 0, this com-
pletely annihilates the first term. Hence only the contraction with the second term re-
mains. This yields two terms: one term where Nγ↪→Γ is completely contracted with itself,
and another term where one index is contracted into the tractor second fundamental form,
and the remaining indices are all contracted into Nγ↪→Γ

A1A2···Am−1
. If any indices of Nγ↪→Γ are

contracted into NΓ↪→M the result will be zero. After some calculation and simplifying, we
find that

d ·
(
(m− 1)! · uiLi[Am

A0NΓ↪→M
An−1Am+1···An−2]A0

− (m− 1)(m− 2)! · uiLi[A1

A0NΓ↪→M
An−1Am+1···An−2]A0

Nγ↪→ΓA1
Am

)
= 0,

where Nγ↪→ΓA1
Am

is the normal projector of γ viewed as a submanifold of Γ. We may

contract the normal form NΓ↪→M to isolate the tractor second fundamental forms, c.f.
Proposition 4.4.6. After resolving the Am index of the first term into γ-tangential and
γ-normal components and simplifying, we see that

uiLiAmΠ
γ↪→ΓA1

Am
= 0,

Therefore contracting the velocity tractor of the curve into the above annihilates the second
term, and we see that

uiLiAn−1
A0UAn−1 = 0,

which implies in particular that I̊Iij
cuiuj = 0. But the above must hold for any M -

conformal circle γ, and hence I̊Iij
cuiuj = 0 for all ui ∈ Γ(E i), whence Γ is totally umbilic

by polarization.
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We must also establish that µi
c vanishes. Since we have already seen that I̊Iij

c = 0,
it suffices to show that Nc

b

(
Pi

b −∇iH
b
)
= 0. We may assume without loss of generality

that γ is projectively parametrized, since such parametrizations are available for any curve.
Then γ satisfies the (projectively parametrized) ambient conformal circle equation (3.1.6).
Moreover, since I̊Iij

c = 0, the Gauß formula gives

ab =
d∇ub

dt
= Πb

ju
iDiu

j + uiuiH
b

and
d∇ab

dt
= Πb

ju
iDia

j + 3(akuk)H
b + (ukuk)u

i∇iH
b,

In particular, one sees that

Nc
ba

b = ukukH
b

and

Nc
b

d∇ab

dt
= 3(akuk)H

b + ukukN
c
bu

i∇iH
b.

Applying the normal projector to both sides of (3.1.6) yields

3(u · a)Hc + (u · u)Nc
bu

i∇iH
b = (u · u) · udPd

bNc
b + 3u−2(u · a)(u · u)Hc, (5.3.11)

where we use that acu
c = aku

k since u is tangential, and hence we may write simply a · u
for either term. After simplifying,

Nc
b

(
Pi

b −∇iH
b
)
ui = 0. (5.3.12)

Note that the scale in which the above holds does not depend on the particular curve
γ, and so (5.3.12) must hold for all ui ∈ E i, and it follows that Nc

b

(
Pi

b −∇iH
b
)
= 0. Thus

we have shown that LiJ
C = 0.

Conversely, suppose that LiJ
C = 0. For convenience, we work in a minimal scale. Our

approach is as follows: first, we define a family of curves which solve a third order ODE
on Γ which is similar to the conformal circle equation but whose solution curves are not
in general conformal circles of Γ. We then show that the vanishing of the second funda-
mental form is sufficient for such curves to be ambient conformal circles. By uniqueness of
solution to an ODE with initial conditions (now the ambient conformal circle equation),
one concludes that a conformal circle of the ambient manifold which satisfies the given
(tangential) initial conditions will remain in the submanifold for some positive time.

Let I be an interval centered on 0 and suppose γ : I → Γ is a projectively parametrized
smooth curve in Γ with velocity u and acceleration a. Suppose moreover that the 2-jet of γ
at 0 is tangential to Γ. We make the following temporary definition, which we will not use
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outside of this proof. Define the adapted conformal geodesic equation to be the following
ODE on Γ:

dDaj

dt
= u2 · uiPi

j + 3u−2
(
uka

k
)
aj − 3

2
u−2

(
aka

k
)
uj − 2ukulPklu

j , (5.3.13)

where as usual Pi
j and Pkl denote the restriction of the ambient Schouten tensor to the

intrinsic tangent and cotangent bundles, and dD

dt denotes uiDi where D is the intrinsic
Levi-Civita connection for the pullback of the ambient scale. We say that γ is an adapted
conformal geodesic if it satisfies this equation. Note that equation (5.3.13) is a third order
ODE on Γ, and therefore the initial value problem with given initial data has a unique
solution on Γ for some interval centered at 0. This solution may also be viewed as a curve
in M , and one may ask whether it solves a related ODE there. Since the 2-jet of γ is
initially tangential and LiJ

C = 0 implies in particular that I̊Iij
c = 0, it follows that in

our minimal scale Πb
ju

j = ub, Πb
ja

j = ab and Πb
j
dDaj

dt = d∇ab

dt , and therefore uka
k = uca

c,

aka
k = aca

c and ukulPkl = ucudPcd. Thus applying Πb
j to both sides of (5.3.13) shows

that, viewed as a curve on M , γ satisfies

d∇ab

dt
= u2

(
Πb

ju
iPi

j
)
+ 3u−2 (uca

c) ab − 3

2
u−2 (aca

c)ub − 2ucudPcdu
b.

But LiJ
C = 0 also implies (again for the minimal scale) that Nc

bPi
b = 0, i.e. Πc

bPi
b =

δcbΠi
b = Pi

c. Hence

Πb
jPi

j = Πb
jΠ

j
dPi

d = Πb
dPi

d = Pi
b,

and so
Πb

ju
iPi

j = udΠi
dPi

b = udΠi
dΠ

d
iPd

b = udΠc
dPc

b = ucPc
b.

Hence viewed as a curve in M , γ satisfies the ODE

d∇ab

dt
= u2 · ucPc

b + 3u−2 (uca
c) ab − 3

2
u−2 (aca

c)ub − 2ucudPcdu
b,

which is exactly the (projectively parametrized) M -conformal circle equation. So if LiJ
C =

0, and γ is an adapted conformal circle, then it is an M -conformal circle, and by the
uniqueness of solution to an initial value problem, the curve γ, which lies in Γ, is the
unique M -conformal circle with the given initial conditions. Hence any M -conformal circle
whose 2-jet at a point p ∈ Γ is tangential will remain in Γ, i.e. Γ is weakly conformally
circular.

We now turn to the characterization of total conformal circularity. Recall from equa-
tion (4.2.10) that the intrinsic tractor connection is not simply the projection of the am-
bient pullback connection. Therefore, a projectively parametrized curve γ in Γ satisfying
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dΓAJ/dt = 0 (where we are calculating entirely with intrinsic objects) is not sufficient to
conclude that the curve (viewed now as a curve in M) satisfies dAB/dt = 0 (identifying
AJ with an ambient tractor and calculating with the ambient tractor connection). Thus
a Γ-conformal circle is not necessarily an M -conformal circle, even if LiJ

C = 0. The pre-
cise statement characterizing total conformal circularity depends on whether one considers
parametrized or unparametrized conformal circles. We state both results separately.

Theorem 5.3.9. Any projectively parametrized Γ-conformal circle is also an M -conformal
circle if, and only if LiJ

C = 0 and SiJK = 0 (i.e. Fij = 0).

Theorem 5.3.10. Any unparametrized Γ-conformal circle is also an unparametrized M -
conformal circle if, and only if LiJ

C = 0 and SiJK ∝ gijZ
j
[JXK] (i.e. Fij ∝ gij).

Note that following our conventions for the Fialkow tensor in Section 4.3.1, these results
still hold when Γ is a submanifold of dimension 2. The Γ-conformal circle equation is then
the usual conformal circle equation (either the projectively parametrized equation (3.1.6) or
the parametrization-independent weighted equation (3.1.23)) with Schouten tensor induced
by the Fialkow tensor playing the role of the usual Schouten tensor. For a 1-dimensional
submanifold, weakly conformally circular and totally conformally circular are equivalent,
and thus the Fialkow tensor vanishing identically does not result in any loss of information.

Proof of Theorem 5.3.9. First suppose that Γ is totally conformally circular. Suppose that
γ is a Γ-conformal circle satisfying some initial conditions at p ∈ Γ. Then by assumption
γ is also an M -conformal circle with those same initial conditions, identified with sections
of TM . By uniqueness of the solution to an initial value problem, one sees that a totally
conformally circular submanifold is necessarily weakly conformally circular. In particular,
by Theorem 5.3.8, Γ is totally umbilic, and so I̊Iij

c = 0.

The curve γ must satisfy the intrinsic and ambient versions of the conformal circle
equation, namely

dDaj

dt
= u2 · uipij + 3u−2

(
uka

k
)
aj − 3

2
u−2

(
aka

k
)
uj − 2ukulpklu

j (5.3.14)

and
d∇ab

dt
= u2 · ucPc

b + 3u−2 (uca
c) ab − 3

2
u−2 (aca

c)ub − 2ucudPcdu
b (5.3.15)

respectively.

From the Gauß formula (4.1.15), we have that

Πb
ja

b = aj

and

Πj
b

d∇ab

dt
=

dDaj

dt
+ u2(ui∇iH

b)Πj
b,
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where aj = dDuj

dt , i.e. the acceleration of the curve calculated intrinsically. Therefore,

applying Πj
b to (5.3.15) and comparing the result to (5.3.14), we see that

u2 · ukPk
bΠj

b −
3

2
u2HbH

buj − 2ukulPklu
j + u2ujHbH

b = u2 · ukpkj − 2ukulpklu
j ,

after using that Πj
bu

b = uj and Πj
ba

b = aj , uca
c = uka

k since u is already tangent to the

submanifold Γ, acac = akak + (u2)
2
HbH

b, and that Πj
b∇iH

b = −δjiHbH
b. (Note that the

last two relations here use that Γ is umbilic.)

Contracting the above display with uj yields

u2 · ujukPk
j − 1

2
(u2)

2
HbH

b − 2ukulPkluju
j = u2 · ujukpkj − 2ukulpkluju

j ,

and hence (
Pij − pij +

1

2
gijHbH

b

)
uiuj = 0, (5.3.16)

and when I̊Iij
c = 0, the term in parentheses is exactly the Fialkow tensor Fij from (4.2.11).

(Note that in fact one can contrive to have the full equation (4.2.11) for the Fialkow here
by carrying I̊Iij

c from the earlier ∇iH
b term through. Alternatively, since it is zero, one

can even insert HbI̊Iij
b into the above parentheses.)

Now, any ui ∈ E i can be the initial velocity for a conformal circle, and hence (5.3.16)
must hold for all ui ∈ E i. Hence Fij = 0. Together with our earlier observation that total
conformal circularity implies weak conformal circularity, this establishes that LiJ

C = 0 and
SiJK = 0.

Conversely, suppose that LiJ
C = 0 and SiJK = 0. Let γ be a projectively parametrized

Γ-conformal circle. Then the intrinsic acceleration tractor of γ satisfies dDAJ

dt = 0. We must
also show that γ satisfies the ambient (projectively parametrized) conformal circle equation.
Writing UJ for the intrinsic velocity tractor of γ, we see from equation (3.1.4) (the explicit
form of the velocity tractor) and equation (4.2.5) (the formula for the isomorphism ΠB

J )
that UB = ΠB

J U
J . Then applying the tractor Gauß formula shows that

AB =
d∇AB

dt
= ΠB

J (u
iDiU

J + Si
J
KUK) + uiLiJ

BUJ = ΠB
J

dDUJ

dt
= ΠB

J A
J

and
d∇AB

dt
= ΠB

J

dDAJ

dt
.

So if γ satisfies dDAJ/dt = 0, then also d∇AB/dt = 0. Finally, recall that the isomorphism
ΠB

J is also metric-preserving, and so

ABAB = ΠB
J A

JΠK
BAK = δKJ AJAK = AKAK = 0.
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Thus by Proposition 3.1.4 γ is an M -conformal circle, and therefore Γ is totally con-
formally circular.

We next prove the parametrization-independent version of Theorem 5.3.9, namely The-
orem 5.3.10. As this Theorem is a statement about unparametrized conformal circles, we
use the 3-tractor Σ introduced in Chapter 3.

Proof of Theorem 5.3.10. First, suppose that Γ is totally conformally circular, i.e. every
Γ-conformal circle is an M -conformal circle. Let γ be a Γ-conformal circle. In the previous
proof, we observed that total conformal circularity implies weak conformal circularity.
Parametrization was not used at all in this part of the proof and hence we may employ the
same argument here. Thus LiJ

C = 0 by Theorem 5.3.8.

Per Chapter 3, γ determines an intrinsic 3-tractor ΣIJK ∈ E [IJK] which satisfies
X [IΣJKL] = 0 and uiDiΣ

IJK = 0, where XI is the intrinsic canonical tractor and Di

is the intrinsic tractor connection.

Explicitly,

ΣIJK = 6σ−1X [IUJAK],

with UJ and AK defined as in equations (3.1.2) and (3.1.3) respectively, using the intrinsic
position tractor and tractor connection.

On the other hand, viewing γ as an ambient curve also defines a 3-tractor; denote this
by ΞABC . It is defined by

ΞABC = 6σ−1X [AV BBC], (5.3.17)

where XA is the ambient position tractor and V B and BC are the velocity and acceler-
ation tractors of the curve ι(γ), defined using the ambient tractor connection. Since Γ
is totally conformally circular, ι(γ) is an M -conformal circle and hence ΞABC must sat-
isfy the ambient incidence relation X [AΞBCD] = 0 and be parallel along the curve, i.e.
ua∇aΞ

ABC = 0.

Using the calculation from the proof of Proposition 3.1.4, the derivatives of the intrinsic
and ambient 3-tractors are

uiDiΣ
IJK = 6

(
uiDia

k ∓ ulpl
k
)
ujX [IZJ

j Z
K]
k ,

and

ui∇iΞ
ABC = 6

(
ui∇ia

c ∓ udPd
c
)
ubX [AZB

b ZC]
c ,

respectively. We may freely replace the ambient tractor connection from the proof of
Proposition (3.1.4) with the pullback connection since these agree along Γ.

Both of the above displays are zero since γ is a Γ- and M -conformal circle. Hence
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0 = ΠI
AΠ

J
BΠ

K
C

(
ui∇iΞ

ABC
)
− uiDiΣ

IJK

= 6
[(

uiDia
k ∓ ulPl

k
)
−
(
uiDia

k ∓ ulpl
k
)]

ujX [IZJ
j Z

K]
k

= ∓6ul
(
Pl

k − pl
k
)
ujX [IZJ

j Z
K]
k ,

so it must be that
ul
(
Pl

k − pl
k
)
∝ uk

and in fact this means that

ulFl
k = ul

(
Pl

k − pl
k +HcI̊I l

kc +
1

2
HcH

cδkl

)
∝ uk,

since we have already seen that I̊Iij
c = 0, and moreover adding any amount of the metric

(here appearing as the Kronecker delta since we have raised an index) will not affect this
proportionality. Thus it must be that ulFl

k ∝ uk, and so Fij ∝ gij , since the (weighted)
velocity can be any element of TΓ[−1] and the result follows.

Conversely, suppose that LiJ
C = 0 and Fij ∝ gij , and let γ be a Γ-conformal circle.

The Γ-conformal circle γ determines an intrinsic 3-tractor ΣIJK ∈ E [IJK] which is parallel
along γ for the intrinsic tractor connection and satisfies X [IΣJKL] = 0 where XI is the
position tractor of Γ. To show that γ is an M -conformal circle, we need to show that the
ambient 3-tractor ΞABC = 6u−1X [AV BBC] satisfies these same properties, this time using
the ambient tractor connection and position tractor. We show this by using the conditions
on the tractor second fundamental form and the difference tractor to relate the ambient
X,U and A tractors to their intrinsic counterparts.

From the isomorphism of Theorem 4.2.3, it follows that XA = ΠA
I X

I and V B =
ΠB

J U
J , where XI and UJ are the intrinsic submanifold canonical and velocity tractors of

γ respectively. Write Fij = fgij where f is a density of weight -2 on Γ. (Equally we can
write Fij = fgij where f is a smooth function and gij is the intrinsic metric of the scale
which we are using, but we choose to work in a way that uses the conformal metric.) Then

BC = ui∇iV
C

= ui∇i(Π
C
J U

J)

= ΠC
J

[
uiDiU

J + uifgij

(
ZJjXK − Zj

KXJ
)
UK
]

= ΠC
J

(
AJ − u · fXJ

)
,

and

ui∇iB
C = ui∇i(Π

C
J A

J)− ui∇i(u · fΠC
J X

J)
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= ΠC
J (u

iDiA
J + f · uj(ZJ

j XK − ZKjX
J)AK)

− ui∇i(u · f)XJ − u · fΠC
J u

iZJ
i

= ΠC
J (u

iDiA
J − 2u · f · ujZJ

j + ρXJ) (5.3.18)

where as in Chapter 3, u2 := uku
k and we have collected all the terms in the bottom slot

into ρ. Its exact form will not be important. Now, recall that V B = ui∇i(u
−1XB) and

BC = ui∇iU
C . Hence, using the skew-symmetry,

ui∇iΞ
ABC = ui∇i

(
6u−1X [AV BBC]

)
= 6u−1X [AV B(ui∇iB

C]).

Now, substituting (5.3.18) for the derivative of the acceleration,

ui∇iΞ
ABC = 6u−1X [AV B(ui∇iB

C])

= 6u−1XIUJ(uiDiA
K)Π

[A
I ΠB

J Π
C]
K − 12f · ujXIUJZK

j Π
[A
I ΠB

J Π
C]
K

+ 6u−1ρXIUKXKΠ
[A
I ΠB

J Π
C]
K

= 6u−1X [IUJ(uiDiA
K])ΠA

I Π
B
J Π

C
K

= uiΠA
I Π

B
J Π

C
KDiΣ

IJK , (5.3.19)

where the term that is skew in two copies of the canonical tractor clearly vanishes, and
moreover

ukX [IUJZ
K]
k = u−1ujukX [IZJ

j Z
K]
k − u−3(ula

l)ukX [IXJZ
K]
k = 0

since the first term is skew over two copies of the velocity and the second term is once again
skew over two copies of the canonical tractor X. Finally, the right-hand side of (5.3.19) is
zero, since γ is a Γ-conformal circle.

The final thing to show is that ΞABC also satisfies the incidence relation, but this is
easily seen since

X [AΞBCD] = XIΠ
[A
I ΠB

J Π
C
KΠ

D]
L ΣJKL

= ΠA
[IΠ

B
J Π

C
KΠD

K]X
IΣJKL

= ΠA
I Π

B
J Π

C
KΠD

KX [IΣJKL]

= 0.

Thus γ is an unparametrized M -conformal circle.

The nested chain of Theorem 5.3.4 is now easily seen.
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Proof of Theorem 5.3.4. Let Γ be a totally conformally circular submanifold. Then either
of Theorem 5.3.9 or Theorem 5.3.10 gives that in particular LiJ

C = 0, and hence Γ is weakly
conformally circular by Theorem 5.3.8. If Γ is weakly conformally circular, then one sees
from (4.2.26) that LiJ

C = 0 implies in particular I̊Iij
c = 0, and thus Γ is umbilic.

We summarize these notions and their characterizations via tractors and invariant ten-
sors in a table:

Property Characterization

Umbilic I̊Iij
c = 0

Weakly conformally circular/distinguished LiJ
C = 0

Strongly conformally circular (parametrized) LiJ
C = 0 and SiJK = 0

Strongly conformally circular (unparametrized) LiJ
C = 0 and SiJK ∝ gijZ

j
[JXK]

While in general the inclusions of Theorem 5.3.4 are strict, in the flat case this is not
true.

Theorem 5.3.11. Suppose (M, c) is a conformally flat manifold, and Γ ↪→ M is a sub-
manifold. Then the following are equivalent:

1. Γ is umbilic;

2. Γ is weakly conformally circular;

3. Γ is totally conformally circular.

Proof. In light of the inclusions of Theorem 5.3.4, it suffices to prove that if Γ is umbilic
then it is totally conformally circular. But if Wabcd = 0 and I̊Iij

c = 0 then one sees that
equations (4.2.27) and (4.2.30) both vanish, i.e. the Fialkow tensor and the tractor second
fundamental form are both zero. Theorem 5.3.9 now completes the proof.

5.4 Characterizations and generalizations of minimal scales

Many of the results from [38] also admit generalizations to submanifolds of arbitrary codi-
mension. Throughout this section, we frequently use a scale tractor corresponding to a
choice of distinguished scale. Unless otherwise stated, for the remainder of this section IA
will always be equal to 1

nDAσ, where σ ∈ E [1] is the particular choice of scale. We begin
with a characterization of minimal scales in terms of the tractor normal form. We will
soon generalize what we mean by a minimal scale, but for now we mean simply the usual
definition: a minimal scale is one for which the corresponding mean curvature is zero.
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Proposition 5.4.1. Let (M, g) be a pseudo-Riemannian manifold. A submanifold Γ is
minimal if, and only if IA1NA1A2···Ad

= 0, where IA = 1
nDAσ with σ ∈ E+[1] such that

g = σ−2g. In other words, the scale σ is minimal if, and only if, IA is an intrinsic tractor
of the submanifold.

Proof. Working in the scale σ, one has IA = σYA − 1
nJσXA. Using equation (4.4.6), we

have that

IA1NA1A2···Ad−1Ad
=

(
σY A1 − 1

n
JσXA1

)(
Na1a2···ad−1adZ

a1a2···ad−1ad
A1A2···Ad−1Ad

+d ·Nba2···ad−1adH
b · X a2···ad−1ad

A1A2···Ad−1Ad

)
= σ · d ·Nba2···ad−1adH

b · Y A1X a2···ad−1ad
A1A2···Ad−1Ad−1

= σ · d ·Nba2···ad−1adH
b·

Y A1 · 1

d!
·
∑
τ∈Sd

sgn τXAτ(1)
Za2
Aτ(2)

· · ·Zad−1

Aτ(d−1)
Zad
Aτ(d)

= σ · d ·Nba2···ad−1adH
b·

Y A1 · 1

d!
·

XA1

∑
τ∈Sd,
τ(1)=1

sgn τZa2
Aτ(2)

· · ·Zad−1

Aτ(d−1)
Zad
Aτ(d)

+
∑
τ∈Sd,
τ(1)̸=1

sgn τXAτ(1)
Za2
Aτ(2)

· · ·Zad−1

Aτ(d−1)
Zad
Aτ(d)


= σ · d ·Nba2···ad−1adH

b · 1

d!

(
(d− 1)! · Za2

[A2
· · ·Zad−1

Ad−1
Zad
Ad]

)
= σNba2···ad−1adH

b Za2···ad−1ad
A2···Ad−1Ad

.

Since σ ̸= 0 and the mean curvature is normal, the above vanishes if, and only if,
Hb = 0, i.e. the chosen scale is minimal.

Remark 5.4.2. This result generalizes Theorem 2 from [38]: one may restate the above as
“a submanifold Γ in a Riemannian manifold (M, g) is minimal if, and only if IA1NA1···Ad

=
0, where I is the scale tractor corresponding to the metric g”. Note that a minimal 1-
dimensional submanifold in a Riemannian manifold is exactly a geodesic. (Recall one may
still form the tractor normal form on a Riemannian manifold.)

Suppose now that (M, c, I) is an almost Einstein manifold. If Γ is minimal for the scale
σ, then by the above, IA may be identified with a submanifold tractor. Since IA is parallel
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for the standard tractor connection, and IA is a submanifold tractor, IA is also parallel for
the connection ∇̌:

∇̌iIJ = ΠA
J∇i

(
ΠK

A IK
)
= ΠA

J∇iIA = 0.

Therefore, from the definition of the checked connection (4.2.10), one sees that IJ is parallel
for the submanifold tractor connection if, and only if, SJi KIK = 0.

Choosing a background scale to split the tractor bundles, we have that

Si
J
KIK = Fij

(
ZJjXK − Zj

KXJ

)(
σY K +∇kσZ

Kk − 1

n
(∆ + Jσ)XK

)
= Fij

(
σZJj −∇jσXJ

)
.

Recall that almost-Einstein manifolds are a special case of almost pseudo-Riemannian
manifolds (Definition 2.5.1), and hence the 1-jet j1σ only vanishes at isolated points (see
the discussion of Section 2.5 for details). Therefore away from these points we must have
Fij = 0, and then also at those points by continuity.

Thus we have proven

Theorem 5.4.3. Let Γ ↪→ M be a minimal submanifold of the almost-Einstein manifold
(M, c, I), where I is the parallel standard tractor corresponding to the solution to the almost
Einstein equation (2.3.21). Then Γ is almost-Einstein if, and only if, Fij = 0.

Proposition 5.4.1 suggests a way to extend the notion of minimal submanifolds to con-
formally singular geometries. This is an extension of the program initiated in [38]. In
that work, Theorem 2 was motivation for Definition 2 in which the notion of a general-
ized geodesic was introduced. This notion allows one to extend usual geodesics to/across
the singularity locus of certain singular geometries. Here, we extend that notion with a
definition inspired by Proposition 5.4.1.

Definition 5.4.4. Let (M, c, σ) be an almost-Riemannian manifold. We say that a sub-
manifold Γ ⊂ M of codimension d is a generalized minimal submanifold if

IA1NA1···Ad
= 0, (5.4.1)

where as usual IA := 1
nDAσ is the scale tractor for σ.

Proposition 5.4.5. Let (M, c, σ) be an almost-Riemannian manifold. Suppose that Γ is
a submanifold of codimension d that is minimal for g := σ−2g on M\Z(σ). Then Γ is a
generalized minimal submanifold of (M, c, σ).

Proof. Minimality on M\Z(σ) implies that IA1NA1A2···Ad
= 0 there. But this is an open

dense set, so this must hold on the closure M\Z(σ) = M by smoothness. Hence Γ is a
generalized minimal submanifold.
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Proposition 5.4.6. On a conformally compact manifold, any generalized minimal sub-
manifold which extends to the boundary meets the boundary orthogonally.

Proof. Since ∂M = Z(σ),

IA|∂M = ∇aσZA
a − 1

n
∆σXA, (5.4.2)

and recall that ∇aσ is nowhere-zero along the boundary. Thus

IA1NA1A2···Ad

σ
= Na1a2···ad∇

a1σZa2···ad
A2···Ad

.

Hence ∇a1Na1a2···ad = 0, and it follows that ∇aσ (the conormal to the boundary ∂M)
is orthogonal to the normal form of Γ. Thus if Γ extends to the boundary, it meets it
orthogonally.

Proposition 5.4.7. Let (M, c) be a conformal manifold with Γ a distinguished subman-
ifold of codimension d. Suppose moreover that there exists a scale σ ∈ E+[1] such that
IA1NA1···Ad

= 0, i.e. Γ is a generalized minimal submanifold of the almost-Riemannian
manifold (M, c, σ). Then Γ is a totally geodesic submanifold of the Riemannian manifold
(M, gσ), with gσ the Riemannian metric determined by the scale σ.

Proof. Since the scale tractor is orthogonal to the normal form, by Proposition 5.4.1 we
have that Γ is a minimal submanifold in (M, gσ). Moreover, since Γ is distinguished, the
normal form is parallel for the pullback tractor connection. Substituting the minimality
condition into (4.4.9), together with the fact that Γ is a distinguished submanifold and
therefore has parallel normal tractor form, shows that ∇iNa1a2···ad = 0 and Nba2···adPi

b = 0.
And ∇iNa1a2···ad = 0 if, and only if, Γ is totally geodesic in the given scale.

In general, the implication of the proposition only holds in one direction. However, on
an (almost-)Einstein manifold, we get a converse to the above.

Proposition 5.4.8. Let (M, c, σ) be an almost-Einstein manifold. Suppose that Γ ⊂ M is
a submanifold of codimension d. If Γ is an umbilic, generalized minimal submanifold, then
Γ is a (conformally) distinguished submanifold.

Proof. We must show any of the equivalent conditions of Theorem 5.2.1. The Einstein
condition implies that Nba2···adPi

b = 0, and that Γ is a generalized geodesic submanifold
implies that Hb = 0 up to Z(σ), and hence also on/across it by continuity. Thus for
a minimal submanifold of an almost-Einstein manifold, ∇iNA1A2···Ad

= 0 if, and only if,
∇iNa1a2···ad = 0, i.e total geodesicity in the chosen scale. Since the scale is minimal, this
is equivalent to total umbilicity.
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Thus we see that if our ambient space is Einstein, minimal umbilic submanifolds con-
served quantities may be proliferated using our existing conformal theory. Moreover, if
the submanifold in question is generalized minimal, such conserved quantities will extend
to/across singularity sets of these geometries where they exist.
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Chapter 6

Applications

In this last chapter, we present some applications of the machinery developed in the pre-
vious chapters. We obtain generalizations to arbitrary codimension of the distinguished
curve theory introduced in Chapter 3. This includes first integrals, and characterizations
of distinguished conformal submanifolds via an incidence relation and zero loci. We also
mention some further areas of research wherein this machinery may be used.

6.1 BGG theory

In order to discuss conserved quantities and the methods for their proliferation which
our machinery provides, we must review some elements of the theory of BGG sequences.
We only require a small amount of this vast theory. The BGG sequence originated in
work of Bernstein, Gel’fand and Gel’fand as a projective resolution of modules over a flag
variety [8, 7]. Later the construction was generalized to parabolic geometries [12]. In this
latter context the sequences are sometimes called curved BGG sequences, but since we
only work in this setting we do not make the distinction. We only require some very basic
elements of the general theory, but more detailed treatments can be found in [12, 5, 19]
for the parabolic geometry setting. Specifically, certain overdetermined PDEs turn out to
be coincide exactly with the kernel of the first operator in one of these sequences. These
equations are the (first) BGG equations. One obtains various important overdetermined
geometric PDEs by simply varying the representation used in the construction. The general
theory then gives a correspondence between solutions to the equation and sections of a
tractor bundle (determined by the representation) which are, in a suitable sense, “almost
parallel” for the induced tractor connection. This correspondence will play a pivotal role
in the way that we construct conserved quantities on distinguished submanifolds.

Note that from (2.3.15) it immediately follows that there is an invariant bundle map

115
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T ∗M → Λ2T given by ub 7→ 2ubX
[AZB]b. Using the tractor metric, we may identify sections

of Λ2T with skew endomorphisms in End(T ). Since sections of End(T ) act tensorially on
any tractor bundle V := G ×P V, where V is an irreducible G-representation, we therefore
have an action of T ∗M on V. We thus have a sequence of bundle maps

∂∗ : ΛkT ∗M ⊗ V → Λk−1T ∗M ⊗ V, (6.1.1)

where k = 0, 1, . . . , n and ∂∗ is the Kostant codifferential of Lie algebra cohomology [52].

We define the cohomology bundles Hk in the usual way as the quotient bundles Hk :=
ker (∂∗)/im (∂∗). We will denote the canonical projection by Πk : ΛkT ∗M ⊗ V → Hk, or
more commonly simply Π since the domain and codomain will usually be clear from the
context. There is then the BGG sequence:

H0
DV

0→ H1
DV

1→ · · · (6.1.2)

We will only be interested in the first operator DV
0 which we henceforth denote simply by

DV , and is constructed as follows. Recall that the parabolic subgroup P ⊂ G determines
a filtration on V by P -invariant subspaces. Writing V0 for the largest non-trivial filtration
component, one sees that H0 = V/V0, where V0 := G ×P V0. The construction of the
operator DV is then given by the following theorem from [13].

Theorem 6.1.1. Let V be an irreducible G-representation and let V := G ×P V. There
is a unique differential operator L : H0 → V such that Π ◦ L = idH0 and ∇ ◦ L lies
in ker (∂∗) ⊂ T ∗M ⊗ V. For σ ∈ Γ(H0), the first BGG operator DV is then given by
DVσ = Π(∇(L(σ))). Moreover, the map Π induces an injection from the space of parallel
sections of V to a subspace of Γ(H0) which is contained in the kernel of the first BGG
operator

DV : H0 → H1.

The information of the theorem is summarized in the following diagram:

V T ∗M ⊗ V

ker (∂∗) ker (∂∗)

H0 H1

∇

i i

Π

DV
0

L

where the maps i : ker (∂∗) → ΛkT ∗M ⊗ V are the obvious inclusions.

Any equation of the form DVσ = 0 for some tractor bundle V is called a first BGG
equation. This class of equations includes many well-known geometric PDEs on conformal
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manifolds such as the almost-Einstein equation (2.3.21), the conformal Killing-Yano equa-
tion and the conformal Killing tensor equation, as well as important equations in other
parabolic geometries, for example the metrizability equation in projective geometry [54,
34]. These equations all arise from this same underlying construction. For example, the
almost-Einstein equation comes from taking V = Rn+2 the standard representation of G,
and the conformal Killing form equation arises from V = Λ2Rn+2, the second exterior
power of the standard representation. We note that we have already seen one example of a
BGG splitting operator. Recall that the Thomas-D operator (2.3.18) maps E [1] → T , and
that ∇T (D(σ)) = 0 if, and only if, σ solves the almost-Einstein equation (2.3.21). Hence
the Thomas-D operator is a BGG splitting operator. Recall that parallel standard tractors
are in bijective correspondence with solutions to the almost-Einstein equation, so in this
case it turns out that the subspace of Γ(H0) mentioned above is the full kernel of DV .

We call the elements of the subspace of Γ(H0) described in the theorem the normal
solutions of the equation DVσ = 0 [53]. The operator L : H0 → V, whose existence is the
subject of the theorem, is called a BGG splitting operator. Normal solutions to DVσ = 0
are by definition in bijective correspondence with sections of V which are parallel for the
usual tractor connection on V. We note here that on geometries which are flat (according
to either the tractor connection or, equivalently, the Cartan connection), all solutions are
normal. It turns out that one can say even more about ∇(L(σ)). Specifically, in [46] (see
also [47] for examples), it is shown that σ ∈ Γ(H0) solves DVσ = 0 if, and only if, L(σ) is
parallel for a certain modified connection, called the prolongation connection. This takes
the form of the usual tractor connection on V plus a deformation term. This deformation
is expressed in terms of the curvature of the tractor connection on ∇V . Thus one sees
that on flat geometries, where the curvature of this connection vanishes, the prolongation
connection is just the usual tractor connection ∇V and hence all solutions are normal.
Using this result, we are often able to calculate ∇(L(σ)) explicitly.

6.2 Conserved quantities

A key feature of the tractor characterization of distinguished curves developed in [39] is
the procedure to proliferate conserved quantities. As was showed by Theorem 6.3.1, our
notion of distinguished for conformal submanifolds exactly generalizes the existing trac-
tor characterization of distinguished curves; the theory and techniques for manufacturing
quantities that are constant along distinguished curves similarly generalize to submanifolds
of all codimensions.
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6.2.1 General theory

The following technical result is Theorem 6.1 from [39] extended from conformal circles to
the case of more general submanifolds. Let G := SO(n+1, 1) since we work in Riemannian
signature conformal geometry. In that article, W0 denotes the G-representation determined
by the class of distinguished curve; here it will denote the G-representation determined
by the distinguished submanifold Γ: if dimΓ = m, then W0 := Λm+2Rn+2. Note that we
are working here with the dual characterization of distinguished submanifolds, just to be
consistent with the approach of [39].

Theorem 6.2.1. Let V1, . . .Vk be irreducible representations of G, Vi := G ×P Vi, and
DVi be the corresponding first BGG operator for each i = 1, . . . k. Suppose that, for each i,
σi is a normal solution of the first BGG equation

DViσi = 0, (6.2.1)

and mi ∈ Z≥0. Then for each copy of the trivial G-representation R in

(⊙m0W0)⊗ (⊙m1V1)⊗ · · · ⊗ (⊙mkVk) (6.2.2)

there is a corresponding distinguished submanifold first integral.

Proof. The proof from [39] may be repeated mutatis mutandis.

The theorem also provides a method for proliferation of conserved quantities: every copy
of the trivial G-representation in (6.2.2) has an associated G-epimorphism mapping (6.2.2)
to R. Such a map determines a corresponding parallel tractor field which we denote T
which takes values in the bundle

(⊙m0W∗
0 )⊗ (⊙m1V∗

1 )⊗ · · · ⊗ (⊙mkV∗
k) . (6.2.3)

Writing Si := Li(σi) ∈ Γ(G ×P Vi), where Li denotes the BGG splitting operator
corresponding to the BGG equation DViτ = 0, the quantity

T (⊙m0Σ,⊙m1S1, · · · ,⊙mkSk) (6.2.4)

is constant along the distinguished submanifold Γ characterized by Σ, and this exactly
realizes the first integral of Theorem 6.2.1.

6.2.2 An example of a distinguished submanifold conserved quantity

We give an example to show how this machinery yields conserved quantities for distin-
guished submanifolds. The space Ea0[a1a2···ad][w] = Ea0 ⊗ E[a1a2···ad][w] is completely irre-
ducible, and has the O(g)-decomposition

Ea0[a1a2···ad][w] = E[a0a1a2···ad][w]⊕ E{a0[a1a2···ad]}0 [d]⊕ E[a2···ad][w − 2], (6.2.5)
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where E{a0[a1a2···ad]}0 [d] consists of sections ka0a1···ad which are completely skew on the
indices a1, a2, . . . ad, and for which k[a0a1a2···ad] = 0. A d-form ka1a2···ad ∈ Γ(E[a1a2···ad][d+1])
is said to be a conformal Killing-Yano form or simply conformal Killing form if it satisfies

∇{a0ka1a2···ad}0 = 0, (6.2.6)

where the braces and subscript zero denote projection onto the middle factor of (6.2.5).
This equation can be checked to be conformally invariant, and is moreover a first BGG
equation (which in particular implies conformal invariance anyway). Thus solutions to this
equation correspond bijectively to sections of a certain tractor bundle. For this equation,
the corresponding tractor bundle is Λd+1T ∗ [37], and the BGG splitting operator L :
E[a1a2···ad][d+ 1] → E[A0A1···Ad] is calculated there also:

L(ka1···ad) = ka1···adY
a1···ad

A0A1···Ad
+

1

d+ 1
∇a0ka1···adZ

a0a1···ad
A0A1···Ad

+
d

n− d+ 1
∇ckca2···adW

a2···ad
A0A1A2···Ad

+ ρa1···adX
a1···ad

A0A1···Ad
,

(6.2.7)

where the exact form of ρa1···ad ∈ E[a1···ad][d− 1] is unimportant for our purposes.

Proposition 6.2.2. Let ka1···ad ∈ E[a1···ad][d] be a normal solution to the conformal Killing-
Yano equation and Γ a distinguished submanifold of codimension d+ 1 with corresponding
tractor normal form NA0A1···Ad

. Let KA0A1···Ad
:= L(ka1···ad) ∈ E[A0A1···Ad] be the im-

age of ka1···ad under the BGG splitting operator L of (6.2.7). Then the scalar function
KA0A1···Ad

NA0A1···Ad is constant along Γ.

Proof. Since ka1···ad is a normal solution, we have that ∇iKA0A1···Ad
= 0. Moreover, since Γ

is a distinguished submanifold, ∇iN
A0A1···Ad = 0 by definition. Hence the scalar quantity

KA0A1···Ad
NA0A1···Ad is constant.

We show the non-triviality of this quantity by calculating it directly. This also allows
us to see that the normality is necessary in this case.

From the explicit forms of KA0A1···Ad
and NA0A1···Ad

, we see that

KA0A1···Ad
NA0A1···Ad = (d+ 1) · ka1···adN

cb1···bdHc · Y a1···ad
A0A1···Ad

XA0A1···Ad
a1···ad

+
1

d+ 1
(∇a0ka1···ad)N

b0b1···bd · Za0a1···ad
A0A1···Ad

ZA0A1···Ad
b0b1···bd

= ka1···adN
ca1···adHc +

1

d+ 1
(∇a0ka1···ad)N

a0a1···ad , (6.2.8)

which verifies non-triviality.

To show that the normality is required for this example, we calculate

∇i

(
KA0A1···Ad

NA0A1···Ad
)
= (∇iKA0A1···Ad

)NA0A1···Ad
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for a general conformal Killing-Yano form. The derivative of the splitting operator may be
calculated directly via the prolongation connection [46, 47]. Theorem 3.9 of [37] essentially
gives the prolongation connection for the conformal Killing-Yano equation. Recall that
this connection is equal to the connection induced on E[A0A1···Ad] by the standard tractor
connection, plus a modification term.

In the special case of the conformal Killing equation on forms, one has

(∇c −Ψc)KA0A1···Ad
= 0,

where ∇c is the standard tractor connection and Ψc : E[A0A1···Ad] → Ec[A0A1···Ad] is defined
by

Ψc(KA0A1A2···Ad
) := −1

2
Wa0a1c

pkpa2···adZ
a0a1a2···ad
A0A1A2···Ad

+ φca2···adW
a2···ad

A0A1A2···Ad

+ ξa1a2···adX
a1a2···ad

A0A1A2···Ad
,

(6.2.9)

where only the explicit form of the Z slot will be important.

Therefore one has

∇i

(
KA0A1A2···Ad

NA0A1A2···Ad
)
= (∇iKA0A1A2···Ad

)NA0A1A2···Ad

= Ψi(KA0A1A2···Ad
)NA0A1A2···Ad

= −1

2
Wa0a1i

pkpa2···adN
b0b1b2···bd · Za0a1a2···ad

A0A1A2···Ad
ZA0A1A2···Ad
b0b1b2···bd

= −1

2
Wa0a1i

pkpa2···adN
a0a1a2···ad ,

which we will not in general expect to vanish.

In [39], some scalar quantities were constructed that were shown to be conserved even
when the corresponding BGG solution was not necessarily normal. It seems that this
phenomenon may be quite limited for higher-codimension submanifolds, since in the curve
case the reason for this is frequently simply a symmetry one: namely that any skew terms
vanish on repeated contraction with the velocity vector of the curve (compare, for example,
the difference between the formula for the Fialkow tensor in the hypersurface case (4.2.29)
and the more general case (4.2.27) where a simplification of this type occurs). Even in the
case of a 2-dimensional submanifold, the situation is vastly different, as the above example
illustrates.
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6.3 Distinguished submanifolds via incidence relations

We next give a result which generalizes the main theorem (for non-null conformal circles)
of [39].

Theorem 6.3.1. Let Γ ↪→ M be a submanifold of codimension d in the conformal manifold
(M, c). Then Γ is distinguished if, and only if, there exists ΨA1A2···Ad

∈ ΛdT ∗ such that
ΨA1A2···Ad

XA1 = 0 and ∇iΨA1A2···Ad
= 0 along Γ.

Proof. If Γ is distinguished, then by Theorem 5.2.1, the tractor normal form is parallel
in tangential directions. Moreover, it is clear from the definition of the tractor normal
form (4.4.6) that NA1A2···Ad

XA1 = 0. Thus we may take ΨA1···Ad
to be the tractor normal

form.

Conversely, suppose that such a Ψ exists along Γ. From (4.4.1), we know that Ψ must
be of the form

ΨA1A2···Ad
= σa2···adY

a2···ad
A1A2···Ad

+ νa1a2···adZ
a1a2···ad
A1A2···Ad

+ φa3···adW
a3···ad

A1A2A3···Ad
+ ρa2···adX

a2···ad
A1A2···Ad

.

We immediately see that the condition ΨA1···Ad
XA1 = 0 implies that σa2···ad = 0 and

φa3···ad = 0.

Moreover, if ui ∈ E i, the above incidence relation together with the parallel condition
means that

0 = ui∇i

(
XA1ΨA1A2···Ad

)
= uiZA1

i ΨA1A2···Ad

so uiZA1
i ΨA1A2···Ad

= 0 for all ui ∈ E i.

Expanding this, one sees that νa1a2···adu
a1 = 0 and ρa2···adu

a2 = 0. Since ui was
an arbitrary submanifold tangent vector, we conclude that ν ∈ (ΛdN∗Γ)[d] and ρ ∈
(Λd−1N∗Γ)[d − 2], i.e. ν and ρ are in appropriate exterior powers of the normal bun-
dle. Thus in particular νa1a2···ad = fNa1a2···ad , where Na1a2···ad is the Riemannian normal
form of Γ and f is a function on Γ.

Now, note that

∇i

(
ΨA1A2···AdΨA1A2···Ad

)
= 2ΨA1A2···Ad∇iΨA1A2···Ad

= 0,

so ΨA1A2···AdΨA1A2···Ad
is constant along Γ.

On the other hand,

ΨA1A2···AdΨA1A2···Ad
= νa1a2···adνa1a2···ad = f2Na1a2···adNa1a2···ad = f2 · d!,
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and therefore the function f is constant. Thus νa1a2···ad is a constant multiple of the
Riemannian normal form.

From equation (4.4.3), we calculate

∇iΨA1A2···Ad
= (f∇iNa1a2···ad + ρa2···adgia1)Z

a1a2···ad
A1A2···Ad

+ (∇iρa2···ad − f · d ·Na1a2···adPi
a1)X a2···ad

A1A2···Ad
.

(6.3.1)

Now, note that the same argument that yielded equation (4.4.10) may be repeated
replacing normal tractors with normal vectors (as per Remark 4.4.8) to give

∇iNa1a2···ad = −d · IIi[ad
a0Na1a2···ad−1]a0 . (6.3.2)

Substituting this into (6.3.1) gives that in particular

−f · d · IIi[ad
a0Na1a2···ad−1]a0 + gi[a1ρa2···ad−1ad] = 0. (6.3.3)

Contracting the above with gia1 allows us to express ρa2···ad explicitly.

The contraction with the second fundamental form term is not completely obvious, so
we compute it first.

gia1IIi[ad
a0Na1a2···ad−1]a0 = −gia1 · IIi[a1

a0Nada2···ad−1]a0

= − 1

d!
· gia1

∑
σ∈Sd

sgnσIIiaσ(1)

a0Naσ(d)aσ(2)···aσ(d−1)a0

= − 1

d!
· gia1

∑
σ∈Sd,
σ(1)=1

sgnσIIia1
a0Naσ(d)aσ(2)···aσ(d−1)a0

= − 1

d!

∑
σ∈Sd,
σ(1)=1

IIia1
a0Nada2···ad−1a0

=
(d− 1)!

d!
·m ·Ha0Na0a2···ad−1ad .

For the other term,

gia1gi[a1ρa2···ad] = gia1 · 1

d!

∑
σ∈Sd

giaσ(1)
ρaσ(2)···aσ(d)

= gia1 · 1

d!

∑
σ∈Sd
σ(1)=1

gia1ρaσ(2)···aσ(d)
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=
(d− 1)!

d!
gia1gia1ρa2···ad

=
m

d
ρa2···ad .

Hence

gia1gi[a1ρa2···ad−1ad] = f · d · gia1IIi[ad
a0Na1a2···ad−1]a0

m

d
· ρa2···ad−1ad = f · d · 1

d
·m ·Ha0Na0a2···ad−1ad

ρa2···ad−1ad = f · d ·Ha0Na0a2···ad−1ad .

Thus

ΨA1A2···Ad
= fNa1a2···adZ

a1a2···ad
A1A2···Ad

+ f
(
d ·HbNba2···ad

)
X a2···ad
A1A2···Ad

= fNA1A2···Ad
,

where NA1A2···Ad
is the tractor normal form.

Since the function f is constant, ∇iΨA1A2···Ad
= 0 implies that the tractor normal form

is parallel. Thus Γ satisfies ones of the equivalent conditions of Definition 5.2.2, and is
therefore a distinguished submanifold.

6.4 Conformal distinguished submanifolds as zero loci

In [39], there is also a theorem linking conformal circles to zero loci of conformal Killing
2-forms. As one might expect, this also extends to more general submanifolds that are
distinguished according to our definition.

Theorem 6.4.1. Suppose ka1···ad is a normal solution of the conformal Killing form equa-
tion on (M, c). Then the zero locus of

(ka1···ad ,∇
ckca2···ad) for any g ∈ c with Levi-Civita connection ∇,

is either empty or a distinguished conformal submanifold of codimension d+ 1.

Proof. Suppose ka1···ad ∈ E[a1···ad][d+1] is a normal solution to (6.2.6). Then KA0A1···Ad
:=

L(ka1···ad) is parallel for the standard tractor connection.

From equation (6.2.7), one sees that XA0
p KA0A1···Adp = 0 at some point p ∈ M is exactly

the condition (ka1···ad ,∇ckca2···ad) = 0 at the point p.

In the case of the model, if K is a parallel simple d-cotractor and X⌟K is zero at
some point p, then X⌟K is zero along a submanifold of dimension m through p, namely the
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unique plane through p with normal form Na1···ad := XA0A1···Ad
a1···ad KA0A1···Ad

(equivalently, the
unique plane through p spanned by the vectors orthogonal to the defined normal form).
From Theorem 2.6 of [16] it then follows that on (M, c) for a d-tractor of the same algebraic
type (namely simple and of signature (+,+, . . . ,+,−), where the signature of a simple k-
tractor refers to the restriction of the tractor metric to the span of its factors) is either
empty or a distinguished conformal submanifold.

6.5 Further work

We end by mentioning several further directions of related work or potential applications
of the machinery developed here.

The most obvious of these is extensions of our ideas on conformal distinguished curves
to the distinguished curves of (hypersurface type) CR geometry. CR geometry is closely
related to conformal geometry, see for example the so-called Fefferman space construction,
which originated in [31] and was later treated using CR tractor calculus in [20]. The
Fefferman space M̃ of a CR manifold M is the total space of a circle bundle over M . The
CR structure on M induces a conformal structure on M̃ , and much of the CR structure
on M is recoverable from the conformal structure on the Fefferman space. Notably, there
are relations between the CR tractor bundle on M and the conformal tractor bundle
on M̃ . Given known relations between the distinguished curves of a CR manifold and
its Fefferman space (for example, all chains of M are projections of null geodesics in its
Fefferman space [10]), we expect this approach to yield tractor characterizations of CR
distinguished curves such as chains and null-chains [50] similar to those of conformal and
projective distinguished curves in [39].

Another question of interest is the extent to which one can relax the normality condition
on solutions to first BGG equations when constructing conserved quantities. Certainly this
can be done to some extent for curves, but we would hope for a full theory which, given
some distinguished curve or submanifold, completely describes the conditions needed on
first BGG solutions in order to get a conserved quantity.

Finally, in [42, 40, 43, 41], Gover and Waldron develop boundary calculus methods and
apply these to study hypersurfaces in conformal manifolds through the singular Yamabe
problem. The tractor conormal to a hypersurface in a conformal manifold plays an impor-
tant role in this theory. Since the tractor normal form is a generalization of this conormal
to arbitrary submanifolds, it seems promising to try to extend the singular Yamabe ap-
proach of Gover and Waldron to submanifolds of arbitrary codimension with the tractor
normal form somehow playing the role of the tractor conormal.
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[16] A. Čap, A. R. Gover, and M. Hammerl. “Holonomy reductions of Cartan geome-
tries and curved orbit decompositions”. In: Duke Mathematical Journal 163.5 (2014),
pages 1035–1070.
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