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Abstract

Linear mixed models have long been the method of choice for risk prediction analysis
on high-dimensional data, where random effect terms are used to capture predictive
effects from multiple markers. However, it remains computationally challenging to
simultaneously model a large number of variables that can be noise or have predic-
tive effects of complex forms. In this thesis, we first develop a penalized linear mixed
model with generalized method of moments estimators for prediction analyses. The
proposed method adopts the generalized method of moments estimators to improve
computational efficiency and uses the L1 penalty to select predictors. We show that
generalized method of moments estimators have oracle properties, including variable
selection consistency, estimation consistency, and asymptotic normality. We further
develop a hybrid screening rule that constitutes of the sequential strong rule and the
enhanced dual polytope projection rule to reduce data dimension and improve com-
putational efficiency. The proposed hybrid screening rule projects solutions to the
objective function of the proposed penalized linear mixed model into the dual space,
and then uses the sequential strong rule and the enhanced dual polytope projection
rule to detect inactive variables in the space. We show that the hybrid screening rule
aligns well with the proposed downstream prediction model, and it can correctly and
efficiently discard a large number of variables with no predictive effects in the corre-
sponding penalized linear mixed model. Lastly, we incorporate multiple kernels into the
proposed penalized linear mixed model to model high-dimensional multi-omics data,
where the interactive roles of multi-omics data and their complex types of predictive
effects are captured. Through extensive simulation studies, we have demonstrated that
the proposed methods are computationally efficient and can be applied to genome-wide
data. They can capture predictive effects of complex forms and outperform compet-
ing linear mixed models. In the prediction analyses of PET-imaging outcomes using
high-dimensional omics data, we find that the proposed method has better prediction
performance than commonly used methods, and our analyses show that genetic variants
on APOE, APOC1, TOMM40 and FADS3 genes are highly predictive.
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Chapter 1

Introduction

Precision medicine, an emerging model of health care, aims at providing effective
treatments tailored according to individual differences, including biomarkers at various
molecular levels and other environmental factors (Ashley, 2015; Collins and Varmus,
2015). Accurate disease risk prediction that recognizes individual differences is an es-
sential step in the modern quest for precision medicine. Complex human diseases, such
as type 2 diabetes, cancer and coronary heart disease, are regulated by multiple biolog-
ical pathways at different molecular levels (Kirchner et al., 2013). For example, both
genetic regulation and epigenetic regulatory mechanisms (e.g, DNA methylation) can
play a key role in cancer cell formation and growth (Das and Singal, 2004). With the
recent advances in high-throughput biotechnologies and the initiation of large-scale
precision medicine programmes (e.g., the All of Us Research Program), multi-omics
data (e.g., genome, transcriptome, methylome, epigenome, proteome and metabolome)
that can reflect different aspects of diseases become increasingly available. They are an-
ticipated to advance our understanding of complex human diseases as well as promote
precise prediction and treatment strategies (Boekel et al., 2015). The use of findings
from ongoing multi-omics studies and other existing knowledge to accurately predict
disease risk is expected to revolutionize the current trial-and-error practice of medicine.
However, the huge amount of noise (Byrnes et al., 2013), the high computational cost
(Weissbrod et al., 2016; Wen and Lu, 2020) and the complex relationships among
multi-omics data (Hasin et al., 2017) pose significant analytical challenges. An inte-
grative risk prediction framework that can efficiently detect predictors from ultra-high
dimensional multi-omics data and account for their complex relationships is urgently
needed (Morris and Baladandayuthapani, 2017; Ritchie et al., 2015; Zeng and Lumley,
2018).

Linear mixed models (LMMs) and their extensions have long been used for pre-
diction analysis on high-dimensional data (Speed and Balding, 2014; Weissbrod et al.,
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2016; Wen and Lu, 2020; Yang et al., 2010). Instead of estimating effect sizes from
each variable, LMMs model cumulative predictive effects from a group of variables
through random effect terms whose variance-covariance structures encode the assumed
relationships between predictors and outcomes (Speed and Balding, 2014; Weissbrod
et al., 2016). Therefore, LMMs have substantially reduced the number of model pa-
rameters, making them applicable in the analysis of high-dimensional data. Within
the LMM framework, the genomic best linear unbiased prediction (gBLUP) method, a
seminal work proposed by Harris et al., 2008, has been used extensively in genomic risk
prediction studies. For example, Yang et al., 2010 used the gBLUP method to predict
human heights, where a single random effect term was used to model cumulative predic-
tive effects from all genetic variants. Although efficient to implement, gBLUP assumes
that effect sizes of all genetic variants follow the same normal distribution, which is too
simple to be realistic. For example, single nucleotide polymorphisms (SNPs) located
at different genetic regions (e.g. coding and intron SNPs) can have various type of
effect sizes (Speed and Balding, 2014). Recently, Speed and Balding, 2014 proposed
the MultiBLUP, where gBLUP is extended to have multiple random effect terms with
each capturing the predictive effects from different genomic regions that can be defined
by various criteria (e.g., gene or pathway annotations). To account for complex types
of predictive effects, Weissbrod et al., 2016 and Wen and Lu, 2020 further generalized
MultiBLUP, where predictors are embedded into the reproducing kernel Hilbert space
and kernel functions are used to capture non-linear effects. Bayesian LMMs have be-
come more popular in recent years and they can accommodate various disease models
by assigning different prior distributions (Habier et al., 2011; Zhao et al., 2006; Zhou
et al., 2013). For example, BayesA assumes the variance of each genetic effect is differ-
ent, and thus uses a scaled univariate student’s t distribution (i.e., βi ∼ t(0, t, σ2

a)) as
its prior (Habier et al., 2011). BayesC assumes that a portion (π) of genetic variants
have no predictive effects and the remaining (1− π) variants have effects on the trait.
Therefore, each genetic variant is assumed to follow a mixture of distributions that has
a point mass at zero with probability π and a normal distribution with probability 1−π

(i.e., βi ∼ πδ0 + (1 − π)N(0, σ2
a)) (Habier et al., 2011). Indeed, Bayesian LMMs have

been widely used for prediction analysis (Dunson, 2001; Hai and Wen, 2020; Zeng and
Zhou, 2017; Zhou et al., 2013). For example, Zeng and Zhou, 2017 proposed the latent
Dirichlet process regression model to predict eight complex traits in a human cohort,
where the non-parametric Dirichlet process is used to efficiently model the effect size
distributions, which can be of any form. Zhou et al., 2013 proposed a Bayesian sparse
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linear mixed model (BSLMM), which consists of a linear mixed model and a sparse re-
gression model, to predict five phenotypes using two human Genome-Wide Association
Studies (GWAS) data sets. The BSLMM sets sparsity-inducing priors for the distri-
bution of genetic effects and uses a Markov chain Monte Carlo (MCMC) algorithm for
posterior inference. Rather than using a MCMC algorithm, which is computationally
demanding, Hai and Wen, 2020 developed a Bayesian LMM (BLMM) for risk predic-
tion, where a variational Bayesian algorithm that provides an analytical approximation
to the posterior distribution is used. Bayesian LMMs offer the flexibility to model a
range of phenotypes, but their performance can still be sensitive to the underlying dis-
ease model (Zeng and Zhou, 2017; Zhou et al., 2013) and the adopted priors (Gianola,
2013). In addition, Bayesian LMMs tend to be computationally expensive. While
LMM-based methods have great potential in modeling high-dimensional multi-omics
data, there are several key challenges, including: 1) how to reduce the impact of noise
in high-dimensional data; 2) how to efficiently estimate parameters for LMMs with a
large number of random effects; 3) how to reduce computational resources needed to
handle big multi-omics data; and 4) how to efficiently model complex predictive effects
while accounting for the intrinsic dependencies and interactive roles of multi-omics
data.

The fundamental assumption used in LMM-based prediction models is that in-
dividuals with similar molecular profiles would have similar phenotypes. LMM-based
prediction models model cumulative predictive effects from a group of variables through
random effect terms whose variance-covariance structures determined by similarity ma-
trices reflect the assumed relationships. Therefore, the performance of a LMM-based
risk prediction model highly depends on whether the estimated molecular similarity
matrices can capture the predictive patterns of disease-associated markers. For high-
dimensional data, the majority of the variables are noise, and thus constructing molec-
ular similarity matrices using all measured variables can dilute the signals, leading to
unstable and less accurate estimates of the molecular similarities of disease-relevant
markers. To reduce the impact of noise, dimension reduction and variable selection
have been considered as an indispensable step for the analysis of high-dimensional
data. However, for LMM-based models, most theoretical studies only focus on the
selection of fixed effects. For example, Schelldorfer et al., 2011 proposed an L1 penal-
ized maximum likelihood estimator for LMMs to select the relevant fixed effects in a
high-dimensional setting, where the estimation consistency and oracle optimality are

3
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presented. Rohart et al., 2014 consistently selected fixed effects in LMMs with L1 penal-
ization by using a multi-cycle expectation conditional maximization algorithm, where
random effects are considered as missing values in the LMMs. Despite the advances
achieved in selecting fixed effect terms, selection of random effects is still challenging.
In early studies, traditional methods (e.g, forward/stepwise selection) were used for
their selections. However, they lack theoretical guarantee and statistical stability (Pan
and Huang, 2014). Information criteria, such as Bayesian information criteria (BIC)
and generalized information criterion (GIC), have also been adopted for variable se-
lections. However, they can only maintain consistency for fixed effects and perform
substantially worse for the selection of random effects (Pu and Niu, 2006). Recently,
Wen and Lu, 2020 and Li et al., 2020 imposed L1 penalties on the random effect terms
for variable selection, where they showed that their methods can achieve estimation
and selection consistency and their estimated effects are normally distributed. While
imposing L1 penalties on the random effect terms can enable the variable selection,
it becomes computationally challenging for parameter estimations. Indeed, both Wen
and Lu, 2020 and Li et al., 2020 could only model a few random effect terms, limiting
the application of their methods for genome-wide studies.

The second challenge for existing LMMs with multiple random effects is their pa-
rameter estimation. Existing LMMs usually obtain the maximum likelihood estimators
(MLE) or the restricted maximum likelihood estimators (REML), both of which are
commonly estimated via the Newton-Raspon or expectation-maximization algorithms
(Speed and Balding, 2014; VanRaden, 2008; Yang et al., 2010). While MLE and
REML are statistically efficient, they can be computationally demanding, especially
for LMMs with a large number of random effects. As shown in Wang and Wen, 2021,
traditional LMMs can usually handle no more than 10 random effects, which greatly
limit their ability to capture complex predictive effects from different groups of vari-
ables. The penalized LMMs also suffer from high computational cost. Although the
models adopted a one-step approximation procedure to reduce the complexity of their
objective function (Fan and Li, 2001; Zou and Li, 2008), their parameter estimates
depend on the initial values that are estimated via MLE/REML, and thus is com-
putationally expensive. Generalized method of moments (GMM) is a long-existing
alternative to MLE/REML. For example, ANOVA proposed by Fisher, 1992 estimates
variance components using the method of moments, where the observed mean squares
are equated to their expectations to solve for the variance components. If the data
are balanced, the ANOVA estimators are unbiased and have minimum variance among
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all the unbiased estimators that are quadratic. However, ANOVA estimators can only
keep unbiased property for balanced data and it requires the normality assumption
(Swallow and Monahan, 1984). Rao, 1972 proposed the minimum norm quadratic
unbiased estimation (MINQUE) method to estimate the variance and covariance com-
ponents in models, where unbiased quadratic estimators are obtained by minimising
a Euclidean norm that measures the size of the covariance matrix of the estimators.
MINQUE does not require the normality assumptions built into MLE/REML, and the
equations do not need to be solved iteratively (Swallow and Monahan, 1984). There-
fore, MINQUE offers more flexibility with reduced computational cost. In addition,
Rao, 1971b proposed the minimum variance invariant quadratic unbiased estimation
(MIVQUE) method to estimate variance components, finding the minimum variance
estimator among all quadratic unbiased estimators of the variance components. Both
MINQUE and MIVQUE can be used for balanced and unbalanced data, and MINQUE
is equivalent to MIVQUE under normality assumptions (Khuri and Sahai, 1985). While
the GMM estimators are less statistically efficient than MLE/REML, they can sub-
stantially benefit from their high computational efficiency, as the objective function of
GMM can be changed into a quadratic form that is much easier to optimize. Indeed,
GMM has been used in genetic studies (Zhou, 2017; Zhu, 1995; Zhu and Weir, 1996).
For example, Mathew et al., 2018 used ANOVA to estimate variance components and
heritability of biomass allocation and related traits in 99 genotypes of wheat and one
triticale. Reimherr and Nicolae, 2016 examined the long-term effects of daily asthma
medications on children using a LMM, where variance components were estimated using
the MINQUE method. Gianola et al., 2018 predicted the milk yield of Italian Brown
Swiss cattle by a LMM, where variance components are estimated via the MINQUE
method. El-Moghazy et al., 2015 investigated some factors affecting body weight traits
of Zaraibi goat and used the MIVQUE method for mixed models to estimate variance
components of random effects. While GMMs have demonstrated their computational
efficiencies in estimating parameters in LMMs, they have rarely been used in penalized
LMMs, and thus their theoretical properties are not well studied.

One of the features of multi-omics data is their ultra-high dimensionality. LMM-
based models attempt to reduce the impact of high-dimension by grouping biomarkers
into groups and estimating the cumulative predictive effects from all markers within
the group. However, for ultra-high dimensional multi-omics data with intrinsic depen-
dencies across omics, it is natural to have a large number of groups, leading to a LMM
with a huge amount of random effects. Neither traditional methods (e.g., information
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criteria) nor the most recently developed penalization-based methods are capable of
dealing with such data directly. For example, as noted by Wang et al., 2015, when using
penalized LMMs, ultra-high dimensional data may not be able to load into the memory.
While empirical screening criteria like those adopted in MultiBLUP and MKLMM can
be applied to first reduce the number of random effects, there is no guarantee that the
discarded variables have no predictive effects. More recently, screening rules have been
proposed to reduce the data dimension so that the number of variables that are fed into
the prediction models is at a manageable size (Fan and Lv, 2008; Ghaoui et al., 2010;
Tibshirani et al., 2012; Wang et al., 2015; Xiang et al., 2016). The sure independence
screening rule (SIS) proposed by Fan and Lv, 2008 is one of the seminal works in this
area. Fan and Lv, 2008 first proposed the correlation ranking procedure within the
context of linear model with Gaussian variables (Fan and Lv, 2008), and then extended
it to the generalized linear models, where marginal maximum likelihood is considered
(Fan et al., 2009). SIS has also been extended to other models, such as nonparametric
additive models (Fan et al., 2011) and the Cox proportional hazard model (Zhao and
Li, 2012). SIS has a sure screening property; i.e., with probability tending to 1, SIS can
retain all important variables in the model. While attractive and easy to implement,
SIS and its extensions cannot consider the joint effects from all predictors as they only
focus on the marginal effects of each predictor. In addition, they are not designed
for penalized models, leading to a model with redundant variables. To accommodate
these issues, screening rules have been developed for penalized models (Ghaoui et al.,
2010; Ndiaye et al., 2015; Tibshirani et al., 2012; Wang et al., 2015). According to the
guarantees of correctness for discarded variables, these screening rules can be broadly
grouped into heuristic screening rules and safe screening rules (Wang et al., 2015).
The strong rule proposed by Tibshirani et al., 2012 is one of the well-known heuristic
screening rules. Given a penalty value of λ, it discards XXX i when | XXXT

i yyy |< 2λ− λmax,
where λmax = maxi | XXXT

i yyy | and yyy is the outcome vector (Tibshirani et al., 2012).
Therefore, for each penalty, the strong rule can discard a large number of variables
and reduce the complexity of penalized models used in downstream analysis. While
useful in practice, the strong rule can also mistakenly remove relevant variables, which
may reduce the accuracy of a prediction model (Wang et al., 2015). In contrast, as
the name indicates, safe screening rules can guarantee that the discarded variables are
noise (Wang et al., 2015). The SAfe Feature Elimination (SAFE) rule proposed by
Ghaoui et al., 2010 is a pioneer work of safe rules, where the common Lasso problem
(i.e., argmin 1

2
||yyy−XXXβββ||22+λ||βββ||1, whereXXX is the variable matrix and βββ is the unknown
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coefficients vector) was transformed to a dual problem (Kim et al., 2007):

argmax
1

2
||yyy||22 −

λ2

2
||θθθ − yyy

λ
||22, s.t. |XXXT

i θθθ| ≤ 1

where θθθ is the dual variable. We use θθθ∗ to denote the optimal solution of the dual
problem, and thus θθθ∗ = yyy −XXXβββ∗ with βββ∗ beings the optimal solution of the common
Lasso problem. When the condition (i.e., |XXXT

i θθθ| < 1) is satisfied, the ith variable
will be removed. As in practice the optimal solution θθθ∗ is unknown in advance, the
screening rule usually aims at finding a set ΘΘΘ, such that θθθ∗ ∈ ΘΘΘ and supθθθ∈ΘΘΘ |XXXT

i θθθ| < 1.
Obviously, the smaller the ΘΘΘ is, the more efficient the screening rule is (Wang et al.,
2015). The set ΘΘΘ derived from the SAFE rule is a sphere that is not very effective,
and thus SAFE can only discard a limited number of inactive variables. Recent efforts
have been made to improve the set ΘΘΘ. For example, the Dual Polytope Projection
(DPP) rule proposed by Wang et al., 2015 is designed based on the uniqueness and
non-expansiveness of the optimal dual solutions, and thus the problem in the dual
space becomes convex. Therefore, for a given value of λ, DPP removes XXX i when the
following condition is satisfied, | XXXT

i
yyy

λmax
|< 1 − ( 1

λ
− 1

λmax
)∥yyy∥2∥XXX i∥2. While the safe

screening rules can guarantee that inactive sets only include non-relevant variables,
they usually discard a moderate number of variables and the remaining can still be
large for the final optimization problem, limiting their applications for the analysis of
ultra-high dimensional data.

For penalized models, usually a full regularization path is considered and the op-
timal penalty parameter is selected based on some pre-defined criteria (e.g., BIC and
cross validation errors) (Li et al., 2020; Wang and Wen, 2021; Wen and Lu, 2020). The
standard versions for both safe and strong rules are designed for a given value of λ,
and thus it can be computationally expensive to apply these rules to a series values of
penalty parameters. As for penalized models, the size of active sets increases as the
penalty parameter decreases. To utilize this property, sequential screening rules have
been proposed, such as the sequential strong rules (SSR) (Tibshirani et al., 2012) and
the enhanced DPP (EDPP) rule (Wang et al., 2015), where inactive sets are efficiently
updated via a grid of decreasing tuning parameter values λ1, λ2, ..., λK . Specifically,
SSR obtains the screening results at λk+1 based on the solution of β̂ββ(λk) at λk, and the
ith variable at λk+1 is discarded if |XXXT

i (yyy −XXXβ̂ββ(λk))| < 2λk+1 − λk. The EDPP rule
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utilizes a similar idea but the screening condition is:∣∣∣∣∣XXXT
i

(
yyy −XXXβ̂ββ(λk)

λk

+
1

2
vvv⊥2 (λk+1, λk)

)∣∣∣∣∣ < 1− 1

2
∥XXX i∥2∥vvv⊥2 (λk+1, λk)∥2

where vvv⊥2 (λk+1, λk) = vvv2(λk+1, λk)− <vvv1(λk),vvv2(λk+1,λk)>

∥vvv1(λk)∥22
vvv1(λk),

vvv1(λk) =


yyy

λk

−
yyy −XXXβ̂ββ(λk)

λk

, 0 < λk < λmax;

sign(XXXT
∗ yyy)XXX∗, λk = λmax, and XXX∗ = argmaxXXXi

|XXXT
i yyy |.

and

vvv2(λk+1, λk) =
yyy

λk+1

−
yyy −XXXβ̂ββ(λk)

λk

.

Although sequential strong and safe rules have improved the computational efficiencies,
they still come with their own drawbacks. Specifically, strong-based rules can discard
a large number of variables but there is no guarantee that the discarded variables are
all inactive, while safe-based rules only screen out inactive variables but the remaining
variables can still be large. Therefore, a hybrid sequential screening rule that can
take advantages of both sequential strong and safe rules is needed for the analysis of
ultra-high dimensional multi-omics data (Zeng et al., 2021).

Unlike single-layer omics data, multi-omics can provide a more comprehensive view
of various diseases if integrated appropriately. For example, both genetic and epigenetic
variations were found to alter the expression of oncogenes or tumor-suppressor genes
in cervical cancer (Xu et al., 2019b). While multi-omics data offer great opportunities
to systematically investigate a deep catalogue of biomarkers at different molecular lev-
els, their intrinsic dependencies and their complex relationships with disease outcomes
have brought tremendous analytical challenges. Many integrative methods have been
proposed to tackle this issue (Bersanelli et al., 2016; Huang et al., 2017; Morris and
Baladandayuthapani, 2017; Zeng and Lumley, 2018). For example, the non-negative
matrix factorization method (Zhang et al., 2012) projects multi-omics data onto a com-
mon basis space to capture the coherent patterns among multi-omics data. Joint and
Individual Variation Explained (JIVE) decomposes the original multi-omics data into
three parts: joint variation, specific variation and noise. The extracted joint variation
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from mRNA expression and miRNA expression data was used for cancer patient classi-
fication (Lock et al., 2013). Exploratory multivariate analysis tools have also been used
for integrative analysis. For example, canonical correlation analysis constructs a set of
linear combinations of all variables within each omics data and searches the optimal
linear combination by maximizing the correlations between each canonical variate pair.
Therefore, the most expressive elements of canonical vectors can be used to reflect the
relationships among omics data (Meng et al., 2016). Similarly, partial least squares
considers the covariance rather than correlation (Chen and Zhang, 2016). Bayesian
methods that are more flexible in modeling various data types have gained populari-
ties for integration in recent years (Imoto et al., 2004; Zhao et al., 2012). For example,
the Patient Specific Data Fusion method applies a Bayesian non-parametric model (i.e.,
a two-level hierarchy Dirichlet Process model) to integrate copy number variation and
expression data for discovering prognostic cancer subtypes (Yuan et al., 2011). Shen
et al., 2009 proposed the iCluster method to integrate copy number and gene expres-
sion data for identifying subtypes of breast cancer and lung cancer. Network-based
methods, another type of integration approach, can offer better interpretation of the
model that can facilitate the understanding of the underlying mechanisms of complex
diseases (Huang et al., 2017). For example, the similarity network fusion method pro-
posed by Wang et al., 2014a builds patient similarity networks by integrating DNA
methylation, mRNA and miRNA expression data to detect three glioblastoma multi-
forme subtypes. The smoothed t-statistic support vector machine (stSVM) method
proposed by Cun and Fröhlich, 2013 smooths the gene-wise statistics (i.e., t-statistics)
from miRNA data and gene expression data over a molecular network, which is inte-
grated by the protein-protein interaction network and the miRNA-target gene network.
A random walk kernel is used for smoothing and a permutation test is used to select
significant genes that will be used to train a support vector machine classifier (Cun and
Fröhlich, 2013). Recently, Bayesian network has been used for integration. Conexic
proposed by Akavia et al., 2010 first integrates gene expression data and DNA copy
number variations into modules in the form of regression trees, and then evaluates each
module based on a Bayesian scoring function, where driver mutations in cancer can
be detected by searching for the highest scoring module. The PAthway Recognition
Algorithm using Data Integration on Genomic Models (PARADIGM) (Vaske et al.,
2010), another Bayesian network-based method, infers the activities of each biological
pathway using a probability score calculated from factor graphs, where copy number
variations, gene expression, DNA methylation and epigenetic data are integrated. In

9



Chapter 1. Introduction

recent years, deep learning methods, which have become the state-of-the-art method
in many fields (e.g., the analysis of electronic health records and medical images), have
also made their ways into the integrative analysis of multi-omics data (Chaudhary
et al., 2018; Grapov et al., 2018; Kang et al., 2022). For example, Seal et al., 2020
used a deep learning model to integrate genomic, epigenomic and transcriptomic data
and then extracted significant features from the integrative multi-omics data for dis-
ease classification. Xu et al., 2019a integrated gene expression, miRNA expression and
DNA methylation data using a deep learning model for the detection of breast can-
cer, glioblastoma multiforme and ovarian cancer. While existing integrative methods
have been widely used for multi-omics data analysis, they are mainly designed for dis-
covering coherent patterns that can be used for understanding molecular mechanisms
and/or disease classification. Therefore, they are not directly applicable for prediction
studies, especially for continuous outcomes.

The rest of the thesis is arranged as follows. In chapter 2, we develop a penalized
LMM with GMM estimators for the prediction analysis of genomic data, where we
focused on improving the computational efficiency of penalized LMMs with a large
number of random effects. In chapter 3, we develop a hybrid screening rule for penalized
LMMs with GMM estimators, where the hybrid screening rule is designed to reduce the
number of parameters entered into the penalized LMMs. In chapter 4, we extend the
penalized LMM with GMM estimators to multi-omics data analysis, where we mainly
focused on efficiently modeling complex predictive effects from multi-omics data within
our proposed LMM framework. Finally, we present the summary and future work in
the last chapter.
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Chapter 2

A penalized linear mixed model with
generalized method of moments
estimators for complex phenotype
prediction using genomic data

2.1 Introduction

Accurate disease risk prediction plays an important role in precision medicine, an
emerging model of healthcare that tailors treatment strategies based on individuals’
profiles (Ashley, 2015). Over the past decades, genome-wide association and whole-
genome sequencing studies have detected many disease-associated genetic variants.
While it is hoped that these genetic findings can facilitate the ongoing risk prediction
studies (Speed and Balding, 2014; Weissbrod et al., 2016; Wen and Lu, 2020), existing
genetic risk prediction models can only explain a small proportion of the heritability.
The complex relationships between predictors and phenotypes (Speed and Balding,
2014; Weissbrod et al., 2016), the huge amount of noise in high-dimensional genetic
data (Byrnes et al., 2013), and the high computational cost (Weissbrod et al., 2016;
Wen and Lu, 2020) greatly limit the prediction accuracy of existing models.

Linear mixed models (LMMs) and their extensions are the most widely used meth-
ods for risk prediction studies (Speed and Balding, 2014; Weissbrod et al., 2016; Wen
and Lu, 2020). The genomic best linear unbiased prediction (gBLUP) method, which
was first introduced by Harris et al., 2008 to predict milk production and then extended
for the prediction of human traits (Yang et al., 2010), is one of the earliest methods
within the LMM framework. gBLUP assumes that each genetic variant acts in an
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additive manner and their effect sizes follow the same normal distribution. gBLUP is
equivalent to a LMM with one random effect term, in which the variance-covariance
structure encodes the assumed linear additive relationships. gBLUP only needs to esti-
mate one parameter associated with the random effect term, making it computationally
efficient. While easy to implement, the modeling assumptions in gBLUP are too sim-
ple, and thus efforts have been made to relax them. For example, Speed and Balding,
2014 have shown that genetic variants from different regions (e.g., eQTLs, intron SNPs
and coding) can have different effect sizes, and thus extended the gBLUP to Multi-
BLUP, where the genome is split into multiple regions (e.g., based on gene or pathway
annotations) with each being modeled by a random effect term with its own variance
parameter. Converging evidence suggests that epistasis widely exists (Buil et al., 2015;
Moore and Williams, 2009). Thus, Weissbrod et al., 2016 generalized the MultiBLUP
further by embedding cumulative predictive effects from each region into the repro-
ducing kernel Hilbert space, where a pre-specified kernel function is used to construct
variance-covariance matrices for each region, making it capable of capturing non-linear
predictive effects. Recently, Wen and Lu, 2020 incorporated the multi-kernel learnings
into the LMMs, where complex predictive effects can be efficiently captured. While the
advances in LMM-based methods offer greater flexibility in modeling complex diseases,
their levels of successes are largely limited, mainly due to the high computational cost
when a large number of random effects are used to accommodate different types of
predictive effects.

While high-dimensional genomic data allow for thorough investigations of disease
etiologies, they also contain a huge amount of noise. Within the LMM framework,
using all genetic regions, including those that only harbour noise variants, to build risk
prediction models not only substantially increases the computational complexity but
also reduces the robustness and accuracy of the models. Byrnes et al., 2013 have already
demonstrated that in the absence of good biological annotations, variable selection is
an efficient way to improve prediction accuracy, especially for high-dimensional data.
Conventional variable selection methods (e.g., BIC, GIC, and forward selection) as well
as those empirical criteria employed in LMMs can all be used to select predictive regions
(Speed and Balding, 2014; Weissbrod et al., 2016). However, there is no theoretical
guarantee for their optimal performance. L1 penalization is a common technique used
for simultaneously selecting predictive variables and estimating their effect sizes (Ghosh
and Chinnaiyan, 2005; Ma et al., 2007; Sun and Wang, 2012; Wu et al., 2009). Recently,
L1 penalization has been introduced into LMM-based risk prediction models, where
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penalties are imposed on the random effect terms to allow for consistent and efficient
selection of predictive regions (i.e., random effects) (Li et al., 2020; Wen and Lu, 2020).
While these advances can reduce the impact of noise and improve prediction accuracy,
their parameter estimations can be computationally demanding. Existing algorithms
usually employ the one-step approximation procedure (Fan and Li, 2001; Zou and Li,
2008) and their performance depends on the initial values, which are usually set to be
either the maximum likelihood estimators (MLE) or the restricted maximum likelihood
estimators (REML). However, both MLE and REML can themselves be hard to obtain
for LMMs when a large number of random effects is being considered. As a consequence,
existing penalized LMMs can only handle a few regions with limited types of predictive
effects, leading to sub-optimal prediction performance.

The parameters in LMM-based models are usually estimated with either MLE or
REML (Speed and Balding, 2014; VanRaden, 2008; Yang et al., 2010), where Newton-
Raphson or expectation-maximization algorithms are commonly used to optimize the
objective functions. Although both MLE and REML are statistically efficient, their es-
timation procedure involves repeatedly inversing the variance-covariance matrix, mak-
ing it computationally prohibitive to consider a large number of random effects. Re-
cently, simulated annealing algorithms have also been introduced to optimize the objec-
tive function of LMMs (Weissbrod et al., 2016). However, the performance of simulated
annealing algorithms is determined by empirical criteria, and thus the algorithm will
be very likely to find a local optimal or take a very long time to find a global op-
timal. The generalized method of moments (GMM) is a long-existing alternative to
REML/MLE for LMMs (Rao, 1970; Rao, 1971a; Rao, 1972), where statistical efficiency
is traded with computational efficiency. GMM is a promising alternative for penalized
LMMs with multiple random effects because it can change the objective function into
a quadratic form, which is much easier to optimize. Indeed, GMM estimators have
been used in LMMs for the estimation of variance components. For example, Zhu and
Weir, 1996 used the minimum norm quadratic unbiased estimation (MINQUE) method
to estimate variance components for maternal and paternal effects in a bio-model for
diallel crosses. Zhou, 2017 unified the method of moments, the MINQUE criterion, the
Haseman-Elston regression and the LD score regression to estimate the heritability of
height using the Australian GWAS data. Pazokitoroudi et al., 2019 presented a ran-
domized multi-component version of the classical Haseman-Elston regression, which
uses method-of-moments to estimate heritability of 22 complex traits using the UK
Biobank data. While GMMs have demonstrated their computational efficiencies in
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variance component estimation, they have not been used for parameter estimations
in penalized LMMs with multiple random effects, and their theoretical properties are
rarely studied.

To address these issues, we developed a penalized LMM with GMM estimators (re-
ferred to as pLMMGMM) to simultaneously select predictors and estimate their effect
sizes in the prediction analysis. Similar to existing LMMs, the proposed method splits
the genome into multiple regions and models the cumulative predictive effects for each
region via random effect terms. Fundamentally different from existing LMMs that
rely on MLE or REML, our method estimates its parameters using GMM, making it
much more computationally efficient. Therefore, our method can: 1) use a data-driven
approach to choose appropriate kernel functions to reflect different types of relation-
ships between predictors and outcomes, and 2) simultaneously and efficiently model a
large number of regions (i.e., random effects) and detect those that are predictive. In
the following sections, we will first present the pLMMGMM model and its theoretical
properties, in section 2. In section 3, we conduct the extensive simulation studies to
evaluate the model’s empirical performance, and further compare its prediction accu-
racy with commonly used methods. In section 4, we illustrate the practical utility of
our method by analyzing a data set obtained from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (Saykin et al., 2010).

2.2 Methods

LMMs have long been used for risk prediction analysis on high-dimensional genomic
data (De Los Campos et al., 2013; Speed and Balding, 2014; Weissbrod et al., 2016).
For completeness, we first present the LMMs used for prediction research, and then
introduce our penalized LMM where the parameters are estimated using GMM. Finally,
we show the theoretical properties of our proposed GMM-based estimators.

2.2.1 A linear mixed model for risk prediction using genomic

data

The fundamental assumption in LMMs is that genetically similar individuals can have
similar phenotypes. As genetic variants located at different locations (e.g., eQTLs,
intron SNPs and coding) can have different effect sizes (Speed and Balding, 2014), we
first split the genome into R regions based on some criteria (e.g., gene annotation and
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pathway), and model the outcomes YYY as:

YYY =XXXβββ +
R∑
i=1

gggi + ϵϵϵ with ϵϵϵ ∼ N(0, σ2
0IIIn) gggi ∼ N(0, σ2

iKKKi) (2.1)

where XXX is an n×P matrix of the demographic variables (e.g., age and gender) and βββ

is their effect sizes; gggi is the cumulative predictive effect from the ith region; and KKKi is
a n× n kernel matrix measuring the genetic similarities of region i.

Similar to existing LMMs, the variance-covariance matrix for each cumulative effect
implicitly determines the assumed relationship between predictors and the outcome.
For example, if a linear kernel is used for each region (i.e., KKKi = GGGiGGG

T
i with GGGi is an

n× pi genotype matrix for region i), the proposed model in equation 2.1 is equivalent
to:

YYY =XXXβββ +
R∑
i=1

GGGiγγγi + ϵϵϵ, ϵϵϵ ∼ N(0, σ2
0IIIn)

where γγγi ∼ N(0, σ2
i IIIpi). Therefore, a linear kernel implicitly assumes that there is a lin-

ear additive relationships between predictors and the outcome. To accommodate more
complex relationships, we extended the single kernel into multiple kernels, where mul-
tiple kernel matrices are combined in a data-driven manner. For example, when both
linear and pair-wise interaction effects are considered, we set the variance-covariance
matrix to be σ2

iKKKi = σ2
i1KKKi1 + σ2

i2KKKi2, where KKKi1 is a linear kernel designed to capture
additive effects and KKKi2 is the polynomial kernel with 2 degrees of freedom designed
to model the pairwise interaction effects. More kernels (e.g., the RBF kernel) can be
added to the candidate kernel set to efficiently model various types of predictive effects.
By using random effects to capture cumulative predictive effects and kernelizing the
covariance matrices, our proposed method not only reduces the model parameters but
also offers a very flexible framework for modeling traits with various underlying genetic
architecture (Li et al., 2020; Wen and Lu, 2020).

2.2.2 A penalized linear mixed model with generalized method

of moments estimators using genomic data

Converging evidence has shown that not all genetic variants and regions are predictive
(Li et al., 2020; Speed and Balding, 2014; Weissbrod et al., 2016; Wen et al., 2016;
Wen and Lu, 2020). Including noise can reduce the robustness and accuracy of the
prediction model. For our proposed model, if region i is not predictive, then there
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are no variations for its cumulative predictive effect gggi and thus σ2
i = 0. Therefore,

selecting predictive regions is equivalent to determining which σ2
i are not zero.

L1 penalty is a commonly used technique for simultaneously selecting predictors
and estimating their effect sizes. For example, Wen and Lu, 2020 added an L1 penalty
to the log likelihood function of LMMs to simultaneously select predictive regions and
estimate their effect sizes:

ϕ̂ϕϕ = argmin
ϕϕϕ

1

2
log|ΣΣΣ|+ 1

2
(YYY −XXXβββ)TΣΣΣ−1(YYY −XXXβββ) + λ

P+R+1∑
i=1

ωi(|ϕi|)

where ΣΣΣ = σ2
0IIIn+

∑R
i=1 σ

2
iKKKi; σσσ2 = (σ2

0, σ
2
1, · · · , σ2

R); and ϕϕϕ = (σσσ2,βββ). While capable of
detecting predictive regions, this method can only consider a limited number of genetic
regions in practice, mainly due to their high computational cost.

To simultaneously model predictive effects from a large number of genetic regions
(i.e., random effects in LMMs), we propose to use the GMM to select predictive regions
and estimate their effect sizes. Clearly, the variance of YYY depends on covariates XXX, and
thus we propose to follow the same procedure developed by Pazokitoroudi et al., 2019
to choose an AAA matrix, such that the variance of AAATYYY is independent of the covariates
XXX. Let VVV = III −XXX(XXXTXXX)−1XXXT is a symmetric and idempotent of rank n− P matrix.
We consider the eigen decomposition of VVV = EEEDDDEEET , where DDD is a diagonal matrix
with n− P ones and P zeros on the diagonal. We set the AAA matrix as the first n− P

columns of EEE. Therefore, AAAAAAT = VVV , AAATAAA = III, AAATXXX = 0, and

var(AAATYYY ) = AAAT

R∑
i=1

σ2
iKKKiAAA+ σ2

0IIIn−P (2.2)

Traditionally, the parameters in equation 2.2 are estimated using REML estima-
tors that can be computationally infeasible when the number of regions is large. To
overcome the computational bottleneck, we propose to trade statistical efficiency with
computational efficiency, and develop a penalized GMM estimator for its parameter
estimation:

σ̂σσ2 = argmin
σσσ2≥0

1

2
||AAATYYY YYY TAAA−AAAT

R∑
i=1

σ2
iKKKiAAA− σ2

0IIIn−P ||2F + λ

R∑
i=1

σ2
i , λ > 0 (2.3)

By using the proposed penalized GMM estimators, the objective function is in
a quadratic form that is much easier to optimize than traditional REML or MLE
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estimators. It is straightforward to see that the parameters can be easily obtained by
solving equation 2.4 (the details are shown in appendix A.1.1 of the Supplementary
Materials):

σ̂σσ2 = argmin
σσσ2≥0

1

2
||MMM − TTTσ2σ2σ2||2F + λ

R∑
i=1

σ2
i , λ > 0 (2.4)

where MMM = vec(AAATYYY YYY TAAA); TTT i = vec(AAATKKKiAAA); TTT i is the ith column of TTT matrix;
and thus TTT = (TTT 0,TTT 1, ...,TTTR). vec(.) is the vectorization of a matrix. Equation 2.4
can be solved by the coordinate descent algorithm implemented in glmnet R package
(Friedman et al., 2010). The optimal tuning parameter λ is chosen by cross validation.

Let YYY a = (YYY p,YYY ), where YYY is the n×1 vector of outcomes in the training data and
YYY p is np × 1 vector of outcomes to be predicted. Given the parameter estimates for σ̂σσ2

and β̂ββ, the variance of YYY a can be directly derived as Σ̂ΣΣYa =
∑

KKKa
i σ̂

2
i + IIIn+npσ̂

2
0, where

KKKa
i is the (np+n)× (np+n) genetic similarity matrix calculated from all samples. The

variance of YYY a can be written as:

Σ̂ΣΣYa =

[
Σ̂ΣΣpp Σ̂ΣΣpo

Σ̂ΣΣop Σ̂ΣΣoo

]

where Σ̂ΣΣpp and Σ̂ΣΣoo are the variance matrices for the testing and training samples,
respectively; and Σ̂ΣΣpo is the covariance matrix between testing and training samples.
Therefore, the predictive values for the testing samples can be calculated as:

YYY p =XXXpβ̂ββ + Σ̂ΣΣpoΣ̂ΣΣ
−1

oo (YYY −XXXoβ̂ββ)

where XXXp and XXXo are the covariates of the testing samples and training samples,
respectively.

2.2.3 Theoretical properties

We investigated the theoretical properties of our proposed method, including the se-
lection consistency, estimation consistency and asymptotic normality. We will explore
whether our model can choose the right predictive variables, and establish the asymp-
totic distribution of our estimators.
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Notations and assumptions

Let S1 = {i ∈ {0, 1, 2, ..., R} : σ2
i ̸= 0} denote the set of all predictive regions, and

S0 = {i ∈ {0, 1, 2, ..., R} : σ2
i = 0} be the set of regions that just harbour noise variants.

Let S(λ) = {i ∈ {0, 1, 2, ..., R} : σ̂2
i (λ) ̸= 0} be the estimated set of predictive regions

for a given value of λ that is selected independent of predictors and outcomes. For
simplicity and without loss of generality, we assume the first q regions are predictive
and the remaining R − q regions are noise. Let TTT (1) = (TTT 0,TTT 1, ...,TTT q) and TTT (2) =

(TTT q+1,TTT q+2, ...,TTTR). Let CCC = 1
N
TTT TTTT , where N is the number of rows in TTT matrix.

Therefore, CCC can be written as:

CCC =

[
CCC11 CCC12

CCC21 CCC22

]

where CCC11 = 1
N
TTT (1)TTTT (1); CCC12 = 1

N
TTT (1)TTTT (2); CCC21 = 1

N
TTT (2)TTTT (1); and CCC22 =

1
N
TTT (2)TTTT (2).

Similar to Wu et al., 2014, we assumed the following conditions for our method:

Assumption 1. There exist constants 0 ≤ c1 < c2 ≤ 1, 0 ≤ c3 < c2 − c1, and
M1,M2,M3 > 0, such that the following conditions hold:

TTT i
TTTT i

N
≤ M1, ∀i

αTC11α ≥ M2, ∀||α||22 = 1

q + 1 = O(N c1)

R = O(eN
c3 )

N
1−c2

2 mini=0,1,2,...,q | σ2
i |≥ M3

1
N
max1≤i≤N TTT i

TTTT i → 0, as N → ∞

Assumption 2. Nonnegative irrepresentable condition: there exists a positive constant
vector ρρρ, such that:

CCC21CCC
−1
11 111 ≤ 111− ρρρ

Assumption 3. Restricted eigenvalue condition: there exists constant km, such that:{ ||TTTσ2σ2σ2||22
N

≥ km||σσσ2||22∑
i∈S0

|σ2
i | ≤ 3

∑
i∈S1

|σ2
i |

Assumption 4. Column normalization condition:
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||TTT i||2√
N

≤ 1, i = 0, 1, 2, ..., R

Theoretical properties

Theorem 2.1 (Variable selection consistency). Under assumptions 1 and 2, the pLM-
MGMM method can have variable selection consistency. In particular, when λ ∝ N

1+c4

2

where c3 < c4 < c2 − c1, the following condition holds:

P (S(λ) = S1) ≥ 1− o(e−Nc3 ) → 1, as N → ∞

Theorem 2.1 demonstrates that the proposed pLMMGMM can consistently select
the predictive regions even when the number of regions (i.e., R) increases faster than
the sample size (N) at an exponential speed. The proof for theorem 2.1 can be seen in
appendix A.1.2 of the Supplementary Materials.

Theorem 2.2 (Variable estimation consistency). Under assumptions 3 and 4, the
pLMMGMM method can have variable estimation consistency. In particular, when the
regularization parameter λ = 4σ2

ω

√
logR
N

, there exists constants v1, v2 > 0 such that,
with probability at least 1− v1 exp(−v2Nλ2):

||σ̂2 − σ2||22 → 0, as N → ∞

Theorem 2.2 indicates that the penalized GMM estimators have variable estima-
tion consistency. The proof for theorem 2.2 can be seen in appendix A.1.3 of the
Supplementary Materials.

Theorem 2.3 (Asymptotic normality). Under the same setting in theorem 2.1, the
nonzero estimator σ̂σσ2(1) is asymptotically normal:

√
N(σ̂σσ2(1)− σσσ2(1)) ∼ N(0, σ2

ωCCC
−1
11 )

Theorem 2.3 indicates that the penalized GMM estimators for those nonzero pa-
rameters are asymptotically normally distributed. The proof for theorem 2.3 can be
seen in appendix A.1.4 of the Supplementary Materials.
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2.3 Simulation studies

We investigated the performance of the proposed pLMMGMM through extensive sim-
ulation studies, where the impacts of noise and the underlying disease models were
evaluated. We considered sample sizes of 500 and 1000. For each setting, we ran-
domly chose 70% of the samples to train the model, and used the remaining samples
to assess the model’s prediction accuracy, which was measured by both Pearson cor-
relations and mean square errors (MSE). We further compared our method with two
widely used methods, including gBLUP with its default settings (Yang et al., 2010)
and MKLMM (Weissbrod et al., 2016). Note that by default, MKLMM only includes
a pre-determined number of regions which are selected based on the rank of Likeli-
hood Ratio (LR) for each region. Therefore, for a fair comparison, we compared our
method with MKLMM under two settings, where the screening step is included (i.e.,
the default of MKLMM where the top 5% regions based on the likelihood ratio test
are chosen) or omitted (i.e., all regions are considered jointly). We denoted these two
settings as MKLMM and MKLMMpre, respectively. We did not compare our method
with MultiBLUP, mainly because MultiBLUP is equivalent to MKLMM with a linear
kernel. To evaluate whether the proposed method can select predictive regions, we
calculated the sensitivity and specificity for our method. For all simulations, to mimic
the real human genome, we directly obtained genotypes from the 1000 Genome Project
(The 1000 Genomes Project Consortium, 2015), and constructed each region with 30
randomly selected SNPs that are within 75Kb.

2.3.1 Scenario I: the impact of the number of noise regions

In this set of simulations, we gradually increased the number of noise regions to evaluate
their impact. In particular, we randomly set two regions as causal, and simulated the
outcomes under an additive model:

Yi =
∑
j

G1
ijβ

1
ij +

∑
j

G2
ijβ

2
ij + ϵi

where ϵi ∼ N(0, σ2
0); Gk

ij, k ∈ {1, 2} represents the jth SNPs on the kth causal region
for individual i; and βk

ij ∼ N(0, σ2
k) is their corresponding effect. It is straightforward

to show that:
YYY ∼ N(000,KKK1σ

2
1 +KKK2σ

2
2 + IIInσ

2
0) (2.5)
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where KKKk = GGGkGGGkT and GGGk is the genotype matrix for region k. Therefore, as shown in
equation 2.5, we simulated the outcomes based on a multivariate normal distribution.

We gradually increased the number of noise regions from 0 to 98 (i.e., the total
number of regions ranges from 2 to 100). For each setting, we conducted 1000 Monte
Carlo simulations, and calculated the prediction accuracy based on testing samples. We
reported the Pearson correlation, MSE and the computational cost for each method.
We further calculated the probabilities of correctly detecting causal and noise regions
for our method.

Figure 2.1: The impact of the number of noise regions on Pearson
correlations and MSEs (n = 500)

The Pearson correlations and MSEs for sample sizes of 500 and 1000 are shown in
Figure 2.1 and Supplementary Figure A.1, respectively. Among all the scenarios con-
sidered, pLMMGMM performs the best. When there are no noise regions, our proposed
method has similar levels of Pearson correlations as those of gBLUP and MKLMM, but
its MSEs tend to be smaller. As the number of noise regions increases, the prediction
accuracy of the proposed method remains roughly stable whereas the performance of
the other methods decreases to some extent, with gBLUP being affected the most and
MKLMM the least. gBLUP assumes that all genetic variants act in an additive manner
and their effect sizes follow the same normal distribution. Therefore, as the number
of noise regions increases, the assumption of gBLUP is severely violated, and thus its
performance dropped the most. In contrast, MKLMM allows genetic variants from
different regions to have different effects, and thus its variance component estimates
in LMM can differ substantially for variants located on different regions. Therefore,
MKLMM has some capacities to deal with noise regions and so tends to perform better

21



Chapter 2. A penalized linear mixed model with generalized method of moments
estimators for complex phenotype prediction using genomic data

than gBLUP. Comparing MKLMM under the two settings, the default setting has bet-
ter performance than the setting where the screening step is omitted. The employed
pre-screening procedure can limit the number of regions, and thus reduces the number
of random effects in LMM, which improves the robustness and computational efficiency
of MKLMM. However, the screening step implemented in MKLMM considers one re-
gion at a time and relies on some empirical criteria for region pre-selection, both of
which may lead to a sub-optimal prediction model.

Table 2.1: The chances of selecting two predictive regions as the num-
ber of noise regions increases (n = 500)

Regions Sensitivity Specificity
5 1.000 0.905
10 0.999 0.884
50 1.000 0.909
100 0.999 0.932

Comparing pLMMGMM with both gBLUP and MKLMM, our method can jointly
consider a large number of regions and select those that are predictive. Therefore, its
performance is relatively robust against noise. Indeed, excluding the noise regions not
only improves prediction accuracy but also improves the robustness of the model. With
regards to variable selection, our pLMMGMM method not only correctly detects causal
regions but also identifies those regions that are noise. The results for variable selection
under sample sizes of 500 and 1000 are summarized in Table 2.1 and Supplementary
Table A.1, respectively.

One of the benefits of using GMM is improved computational efficiencies, and thus
we compared the running time of our method and MKLMMpre, where the same LMM
model was fitted using the REML estimator. While the Newton-Raphson algorithm
is the most widely used method for optimizing the objective function of REML esti-
mators, it can barely converge when the number of random effects is large. Indeed,
the convergence rates for 2, 5, 10, 50 and 100 regions (i.e., random effects) are 100%,
15.5%, 7.9%, 0% and 0%, respectively. REML estimated using the simulated anneal-
ing algorithm can converge. However, there is no guarantee that the simulated anneal
algorithm will achieve the global optimum. As shown in Figure 2.1, MKLMMpre has
lower prediction accuracy than our proposed method. In addition, the computational
time of REML grows much faster than the GMM-based estimators as the number
of random effects increases, regardless of the sample sizes considered (Figure 2.2 and
Supplementary Figure A.2).
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Figure 2.2: The impact of the number of noise regions on computa-
tional time (n = 500)

2.3.2 Scenario II: the impact of disease models

Complex traits and diseases are affected by a large number of genes through com-
plicated biological pathways that are usually unknown in advance (Chatterjee et al.,
2013). It has long been recognized that a risk prediction model with flexible modeling
assumptions is more robust and accurate across a range of phenotypes with different
genetic architectures. In this set of simulations, we evaluated the performance of our
proposed method given different disease models. As in Scenario I, we considered two
causal genes and simulated the outcomes using equation 2.5, where the kernel matrices
KKK1 and KKK2 were used to reflect different disease models. Specifically, we considered five
disease models: 1)L + L: genetic variants on both regions have linear additive effects
(i.e., kl(xxx1,xxx2) =< xxx1,xxx2 >); 2) R + R: predictors from both regions have non-linear
predictive effects (i.e., krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
); 3) P + P : both regions

harbour variants with pair-wise interaction effects (i.e., kp(xxx1,xxx2) = (< xxx1,xxx2 >)2); 4)
L+R: genetic variants on the first and second regions have linear additive effects and
non-linear effects, respectively; and 5) L+P : predictors on the first and second regions
have linear additive and pair-wise interaction effects, respectively. The details for each
model setting and the corresponding kernels are summarized in Table 2.2. In addition
to these two causal regions, we also simulated 48 noise regions (i.e, the total number
of regions were 50) for this set of simulations.
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Table 2.2: Disease models description

Disease Models Description KKK1 KKK2

S1 : L+ L Linear additive effects kl(xxx1,xxx2) =< xxx1,xxx2 > kl(xxx1,xxx2) =< xxx1,xxx2 >
S2 : R +R Non-linear effects. krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
S3 : P + P Pair-wise interaction effects kp(xxx1,xxx2) = (< xxx1,xxx2 >)2 kp(xxx1,xxx2) = (< xxx1,xxx2 >)2

S4 : L+R Linear and non-linear effects kl(xxx1,xxx2) =< xxx1,xxx2 > krbf (xxx1,xxx2) = exp
[
−1

2
||xxx1 − xxx2||22

]
S5 : L+ P Linear and pair-wise interaction kl(xxx1,xxx2) =< xxx1,xxx2 > kp(xxx1,xxx2) = (< xxx1,xxx2 >)2

For MKLMM, unlike the first simulation where only linear kernel was used, we
used the default setting where the most appropriate kernels are selected in a data-
driven manner. Note that since MKLMMpre performs worse than MKLMM that
adopts an empirical screening rule (Figure 2.1 and Supplementary Figure A.1), we only
compared our method to MKLMM with screening implemented. Similar to Scenario
I, we conducted 1000 Monte Carlo simulations for each setting, and summarized the
prediction accuracy for all the methods considered. For our proposed method, we also
calculated the probabilities of detecting causal and non-causal regions.

Figure 2.3: The impact of disease models. L+ L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 500)

As shown in Figure 2.3 and Supplementary Figure A.3, the proposed pLMMGMM
has the lowest MSEs and highest Pearson correlations of all the methods considered,
which indicates that our method is quite robust against different disease models. This is
mainly because our method not only selects predictive genetic regions but also accounts
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for non-linear effects through selecting appropriate kernel functions from the candidate
kernel set.

While MKLMM is designed to capture non-linear effects, in practice it can barely
capture them. Indeed, for most of the non-linear models that we considered, the chance
of selecting only linear kernels by the adaptive MKLMM is extremely high (> 99%).
For example, for the disease model that has pair-wise interaction effects (i.e., P+P ) on
both causal regions, the chance of selecting the ideal polynomial kernel for MKLMM is
close to 0%, whereas our proposed method had an average of 76% chance of choosing
the appropriate polynomial kernel. As a consequence, the adaptive MKLMM performs
in a way that is very similar to a MKLMM that only considers the linear kernel, and
can perform worse than the MKLMM with the most appropriate kernel employed.
See Supplementary Figures A.4 and A.5, where the most appropriate kernels are used
for MKLMM (i.e., the kernels are pre-determined based on the underlying disease
etiology).

Table 2.3: The chances of selecting two predictive regions under dif-
ferent disease models (n = 500)

Disease Models Sensitivity Specificity
S1 : L+ L 0.999 0.919
S2 : R +R 0.969 0.951
S3 : P + P 0.794 0.980
S4 : L+R 0.959 0.931
S5 : L+ P 0.917 0.949

One of the key features of MKLMM is that it screens the genome and selects regions
that are predictive to build the risk prediction model. However, its ability to detect
causal regions also depends on the underlying disease model. For example, for the P+P

disease model, the chance of adaptive MKLMM selecting any of those two causal regions
is very low (i.e., only noise regions are used for prediction), leading to a prediction model
that performs even worse than gBLUP. For other disease models, although adaptive
MKLMM is unlikely to efficiently capture those non-linear effects (i.e., it is not able
to choose the most appropriate kernel), the adaptive MKLMM has a relatively high
chance of detecting the causal regions and thus reducing the impact of noise. As a
result, the adaptive MKLMM can outperform gBLUP under these settings, as gBLUP
utilizes all regions and ignores the impact of noise. To evaluate whether our method
can detect causal regions under different underlying disease models, we calculated the
sensitivity and specificity of our method, and the results are summarized in Table 2.3
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and Supplementary Table A.2. On average, our method achieves a sensitivity of 93%
and a specificity of 95% among all the models considered with samples of 500, and
a sensitivity of 99% and a specificity of 93% among all the models considered with
samples of 1000.

2.4 Real data application

We used our proposed pLMMGMM method to predict positron emission tomography
(PET) imaging outcomes, including FDG and AV45, using the whole-genome sequenc-
ing data obtained from the ADNI. ADNI is a longitudinal study designed for the
prevention and treatment of Alzheimer’s disease (AD) (Mueller et al., 2005). It mea-
sures clinical, imaging, genetic and biochemical biomarkers from each participant to
investigate the pathology of AD. DNA samples from 818 participants aged between
55 and 90 were collected and sequenced on the Illumina HiSeq2000 at a non-Clinical
Laboratory Improvements Amendments (non-CLIA) laboratory (Saykin et al., 2015).
Genetic variants with missing rate large than 1% were first excluded, and then the
remaining variants were annotated based on GRch37 assembly. We selected 95 AD-
related genes based on existing literature (details are listed in Supplementary Table
A.3, and a total of 117,668 variants were included in the final analyses.

For our analyses, we are interested in predicting PET-imaging outcomes, including
FDG and AV45, using the whole-genome sequencing data. We removed individuals
who are either correlated or have missing outcomes, and the distributions of FDG and
AV45 for the remaining samples (n = 639 for FDG and n = 501 for AV45) are shown
in Supplementary Figure A.6. To evaluate the prediction accuracy, we randomly split
the samples into testing (n = 100) and training sets, where the training samples were
used to train the prediction model and the remaining samples were used to calculate
the Pearson correlations and MSEs. To reduce the risk of chance finding, we repeated
this process 100 times.

The prediction accuracies for FDG and AV45 are shown in Figure 2.4. For both
FDG and AV45, pLMMGMM has lower MSEs and higher Pearson correlations than
both gBLUP and MKLMM. This indicates that simultaneously considering multiple
genes and excluding those that are not predictive can improve the robustness and
accuracy of the risk prediction model.
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Figure 2.4: Accuracy comparisons for FDG and AV45

Table 2.4: The top three genes highly selected for FDG and AV45

Genes Chromosome Start Position End Position Probability(FDG) Probability(AV45)
APOC1 19 45417920 45422606 1 1
APOE 19 45409038 45412650 1 0.97
TOMM40 19 45394476 45406946 0.28 1

Table 2.4 lists the three genes that were most highly selected by pLMMGMM for
either AV45 or FDG, and the selection details of all the genes are shown in Supple-
mentary Table A.3. For FDG, both APOC1 and APOE were selected 100% of the
time, and the remaining genes were selected, on average, less than 1% of the time.
For AV45, APOC1, APOE and TOMM40 were selected more than 97% of the time
and the remaining genes were selected less than 5% of the time. The highly selected
genes, APOC1, APOE and TOMM40, are well-known AD-related genes (Ossenkop-
pele et al., 2013; Roses, 2010). All three genes are located on chromosome 19 and are
widely known as genetic risk factors of AD. For example, Duijn et al., 1994 found that
APOE ϵ4 was highly associated with a group of 175 early-onset AD patients. Zhou
et al., 2014b found the association of rs11568822 on APOC1 gene with the increased
AD risk in Caucasians, Asians and Caribbean Hispanics. Huang et al., 2016 found
that rs2075650 on TOMM40 is associated with AD patients for Caucasian and Asian
subjects.
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2.5 Discussion

In this work, we presented a novel and computationally efficient penalized LMM with
GMM estimators for prediction modeling using high-dimensional genomic data. The
proposed pLMMGMM first splits the genome into multiple regions and then adopts
multiple kernels for each region to capture complex predictive effects. pLMMGMM
simultaneously models the joint predictive effects from all variants within each region,
and efficiently select those regions that are predictive via a GMM-based estimator.
Through theoretical proof, we have shown that our proposed method can achieve con-
sistency of variable selection and variable estimation. We have also shown that our
proposed GMM estimators are asymptotically normal. Through extensive simulation
studies and the analysis of the ADNI data set, we have demonstrated that our method:
1) is more accurate and robust against various underlying disease models; 2) can ac-
curately detect predictive regions; and 3) is much more computationally efficient, es-
pecially when the number of regions is large (i.e., the number of random effects is
large).

Genomic data are high-dimensional and contain a large amount of noise. Including
noise variants in the analyses can reduce the robustness and accuracy of a risk predic-
tion model (Byrnes et al., 2013). Within the LMM framework, gBLUP cannot perform
variable selection (Yang et al., 2010), and has low prediction accuracy when a large
amount of noise present. Other LMM-based methods (e.g., MultiBLUP and MKLMM)
select regions based on empirical criteria (Speed and Balding, 2014; Weissbrod et al.,
2016), which cannot guarantee the optimal prediction performance. Existing penalized
LMMs can detect predictive regions and estimate their effects, but they can only handle
a very limited number of regions (Li et al., 2020; Wen and Lu, 2020). On contrary, our
proposed model can handle a large number of regions and efficiently remove those that
are not predictive. We have proved that the probability to correctly identify all predic-
tive regions approaches 1 when the sample size is large. In addition, the effect estimates
for these predictive regions are unbiased and asymptotically normal. As shown in the
first simulation (Figure 2.1 and Supplementary Figure A.1), the prediction accuracy
for pLMMGMM remains stable as the amount of noise increases, whereas it can be
greatly affected for other methods (i.e., gBLUP and MKLMM). Furthermore, the pro-
posed pLMMGMM has achieved relatively high sensitivity and specificity, regardless
of the number of noise regions (Table 2.1 and Supplementary Table A.1).

The underlying genetic etiology for many human diseases is complicated and is
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usually unknown in advance. While it is widely accepted that models with flexible
modeling assumptions can achieve more robust and accurate prediction performance
across a range of phenotypes (Speed and Balding, 2014; VanRaden, 2008; Yang et al.,
2010), existing LMMs mainly focus on linear relationships and thus their performance
can be sub-optimal when non-linear predictive effects are present. The recent develop-
ment in LMMs aims at capturing these non-linear predictive effects by embedding them
into the reproducing kernel Hilbert space, where appropriate kernel functions that re-
flect the underlying disease etiology are used (Weissbrod et al., 2016). However, how to
pre-choose appropriate kernel functions can be challenging in practice, as they can be
quite disease/trait dependent. In this work, we adopted the idea used in multi-kernel
learning algorithms and put multiple kernels into a candidate set, from which appro-
priate kernel(s) are chosen through a data-driven approach. Through simulations, we
have shown that our proposed pLMMGMM has robust and accurate prediction perfor-
mance across a range of disease models (Figure 2.3 and Supplementary Figure A.3). In
addition, our model has relatively high sensitivity and specificity in correctly detecting
prediction regions that harbour genetic variants with various types of predictive effects
(Table 2.3 and Supplementary Table A.2).

Computational efficiency is one of the major bottlenecks for LMMs with multiple
random effects (Li et al., 2020; Weissbrod et al., 2016; Wen and Lu, 2020). Traditional
methods usually obtain the MLE/REML estimators, both of which can be computa-
tionally demanding, especially when the number of multiple random effects is large. In
our work, we traded computational efficiency with statistical efficiency, and proposed
to obtain parameter estimates via GMM. By using GMM, our objective function is
much easier to optimize. Indeed, REML with a traditional Newton-Raphson algorithm
can barely converge when the number of random effects is above 10. Even for REML
with a simulated anneal algorithm where the global optimum is not guaranteed (Goffe
et al., 1994), the computational time increases at a much faster rate compared with
our proposed method (Figure 2.2 and Supplementary Figure A.2). The computational
efficiency allows our proposed method to jointly model a large number of genetic re-
gions and consider various forms of predictive effects, both of which can be important
for improving risk prediction models.

In the prediction analyses of FDG and AV45, we found that the proposed method
outperformed both MKLMM and gBLUP (Figure 2.4), indicating that the designed
variable selection and multi-kernel learning in pLMMGMM can improve the prediction
accuracy. In addition, the predictive genes selected by the pLMMGMM method are
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also quite consistent (Supplementary Table A.3). The three well-known AD-related
genes, APOC1, APOE and TOMM40, are highly selected (> 97%) for both FDG
and AV45. The APOE gene encodes apolipoprotein E which is involved in cholesterol
transport (Zannis et al., 1993), and high levels of cholesterol play a significant role
in the pathogenesis of AD (Puglielli et al., 2003). Indeed, the APOE gene has been
identified as a major genetic risk factor for AD in existing literature (Poirier et al., 1993;
Strittmatter et al., 1993). For example, Tang et al., 1998 found that the presence
of APOE ϵ4 is a determinant risk factor of AD in Caucasians; and Graff-Radford
et al., 2002 reported that one or two copies of APOE ϵ4 affect the risk of AD for
African Americans. The APOC1 gene encodes apolipoprotein C1, a member of the
apolipoprotein family, and it affects the cholesterol metabolism that is involved in AD
pathology (Poirier et al., 1993). In addition, it has also been found that the rs4420638

polymorphism on APOC1 increases the accumulation of homocysteine, and thus affects
AD risk (Prendecki et al., 2018). TOMM40 regulates mitochondrial function and it is
also a candidate gene for AD (Bagnoli et al., 2013; Huang et al., 2016; Ma et al., 2013).
For example, Roses, 2010 found that rs10524523 on TOMM40 is highly associated
with late-onset AD. In addition, Prendecki et al., 2018 proposed that rs10524523 on
TOMM40 can affect oxidative damage and thus influence the onset and progression
of AD. While our models improved prediction accuracy for both AV45 and FDG,
additional replication studies are needed to further investigate the performance of our
models.

In summary, we have proposed GMM-based penalized LMMs for risk prediction
analyses on high-dimensional genomic data, where the variable selection consistency,
variable estimation consistency and asymptotic normality of non-zero parameters have
been established. Our proposed pLMMGMM method is highly computationally ef-
ficient. It can simultaneously consider a large number of genetic regions and ac-
curately detect those that are predictive. In addition, our proposed method can
accommodate various disease models, as it can select appropriate kernel functions
that best reflect the underlying disease model via a data-driven approach. Similar
to other existing literature (Speed and Balding, 2014; Weissbrod et al., 2016), the
proposed pLMMGMM method only focus on continuous outcomes. It would be of
interest to develop a generalized framework that can analyse binary outcomes or Pois-
son outcomes. Although our method can reduce the computational cost, it can still
be computationally expensive for ultrahigh-dimensional data (e.g., multi-omics data).
These will be the future directions of our research. The R-package is available at
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https://github.com/XiaQiong/GMMLasso.
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Chapter 3

A hybrid screening rule designed for
the penalized linear mixed model with
generalized method of moments
estimators

3.1 Introduction

Precision medicine that takes individuals’ differences into account has been recently
initiated to provide tailored and effective health care (Ho et al., 2019). Accurate risk
prediction models can not only detect individuals that are at high risk (Abraham and
Inouye, 2015), but also provide precise diagnosis, interventions and treatment, playing
a pivotal role on precision medicine (Ashley, 2015). Over the past decades, information
from genomic data has been incorporated into the traditional risk prediction models,
which has improved the prediction performance (Speed and Balding, 2014; Weissbrod
et al., 2016; Wen and Lu, 2020). However, the high dimensionality of genomic data and
the complex relationships between predictors and outcomes have imposed significant
challenges for risk prediction models.

Linear mixed models (LMMs) have long been the method of choice for risk predic-
tion analysis of genomic data (Li et al., 2020; Speed and Balding, 2014; Weissbrod et
al., 2016; Yang et al., 2010). The well-known genomic best linear unbiased prediction
(gBLUP) method, an equivalence to a LMM with one random effect term, was first
proposed for the prediction of milk production (Harris et al., 2008) and then human
traits (Yang et al., 2010). The assumptions in gBLUP are that effect sizes of all genetic
variants are from the same normal distribution, and all genetic variants affect traits in
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a linear manner. However, these assumptions can be too simply to be realistic. Speed
and Balding, 2014 proposed the MultiBLUP, an extension of gBLUP, where genetic
variants are allowed to have different effect size distributions. Different from gBLUP,
MultiBLUP first groups genetic variants into regions based on some criteria (e.g., gene
or pathway annotations) and then each region is screened using the likelihood ratio
test to detect those that are significantly predictive. Finally, MultiBLUP builds risk
prediction models using a LMM with multiple random effects, with each corresponding
to a predictive region. While MultiBLUP has relaxed the assumptions of gBLUP, it
only aims at modeling linear additive effects from chosen regions, and thus the adopted
empirical screening criteria can be crucial for the final prediction performance of Multi-
BLUP. To reduce the impact of screening, Wen and Lu, 2020 and Li et al., 2020 have
recently introduced an L1 penalty into the random effects for LMM with multiple ran-
dom effects, where predictive regions and their effects can be detected and modeled
simultaneously. In addition, through theoretical investigations, they have shown that
their methods can achieve selection and estimation consistency.

While the advances in LMM-based methods can facilitate risk prediction studies,
the parameter estimations in LMMs can be computationally demanding, especially for
a LMM with multiple random effects (Speed and Balding, 2014; Weissbrod et al., 2016;
Wen and Lu, 2020). Most existing LMMs either use maximum likelihood estimators
(MLE) or restricted maximum likelihood estimators (REML), both of which are usu-
ally obtained by Newton-Raphson or expectation-maximization algorithms that need
repeat calculation of matrix inversion. Recently, Weissbrod et al., 2016 used a simu-
lated annealing algorithm to optimize the objective function of LMMs, and thus their
method can consider a large number of regions. However, the performance of simulated
annealing algorithms is determined by empirical criteria. Therefore, the algorithm may
simply find a local optimal or take an extremely long time to obtain the global opti-
mal. In contrast, the generalized method of moments (GMM) has been a long-existing
alternative for LMMs (Rao, 1970; Rao, 1971a; Rao, 1972). For example, Rao, 1972
proposed the minimum norm quadratic unbiased estimation (MINQUE) method to
estimate the variance and covariance components in LMMs. In addition, Rao, 1971b
proposed the minimum variance invariant quadratic unbiased estimation (MIVQUE)
method for the estimations of variance components, finding the minimum variance es-
timator among all quadratic unbiased estimators. Although GMM is less statistically
efficient than MLE/REML, it is computationally efficient. GMM transforms the ob-
jective function of LMMs into a quadratic form that is much easier to optimize. GMM
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has been used in genetic studies (Zhou, 2017; Zhu, 1995; Zhu and Weir, 1996). For
example, Zhu and Weir, 1996 predicted maternal and paternal effects of five plants
in a bio-model for diallel crosses, where the MINQUE method is used for estimating
variance and covariance components. Reimherr and Nicolae, 2016 examined the long-
term effects of daily asthma medications on children using a LMM, where variance
components are estimated using the MINQUE method. Henderson, 1985 predicted
two genetic merits of five animals using a LMM, where MIVQUE is used for variance
estimation of additive and non-additive genetic effects. Recently, Wang and Wen, 2021
also developed a GMM-based method to estimate parameters in penalized LMMs (de-
noted as pLMMGMM). They showed that their method can achieve estimation and
variable selection consistency, and their GMM estimators are asymptotically normally
distributed. Unlike traditional LMMs, which can handle a very limited number of
random effects (≤ 10), the number of random effects that pLMMGMM can handle is
much larger (≈ 100).

While treating all genetic variants as if they were predictive can dilute the signals
from relevant markers, including only a very limited number of genetic variants can-
not fully describe the genetic diversity and may only explain a very small fraction of
heritability (De Los Campos et al., 2010). For example, Holzapfel et al., 2010 consid-
ered several highly significantly single nucleotide polymorphisms (SNPs) on TMEM18
and SH2B1 genes to predict body mass index, and found that these SNPs only ac-
count for about 0.006% of the variability. Genome-wide data, which allow for the
consideration of the entire human genome, have great potential in improving predic-
tion models as they can detect additional predictive variants and model their effects
(De Los Campos et al., 2010). For example, Seshadri et al., 2010 identified two new loci
(i.e., rs744373 near BIN1 and rs597668 near EXOC3L2/BLOC1S3/MARK4 ) that are
associated with late-onset Alzheimer’s disease (AD) through genome-wide association
studies and found that these two loci further explained variation in susceptibility to
AD. While genome-wide data allow for systematic evaluations of the predictive effects
from all genetic variants, their use can be a double-edged sword. On one hand, they
offer a more comprehensive view of the human genome, if analyzed appropriately. On
the other hand, the huge amount of measured variants from genome-wide data not only
increases the impact of noise but also makes traditional methods not applicable primar-
ily due to its heavy computation. This can lead to a prediction model that requires a
huge amount of computational resources yet is much less robust and accurate. Existing
methods that use genome-wide data often employ very simple assumptions to reduce
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the model complexity and computational burden (Yang et al., 2010; Yang and Zhou,
2020). For example, gBLUP assumes that the effect sizes from all genetic variants come
from the same normal distribution, and thus can efficiently model genome-wide data
through a single parameter (i.e., a random effect term in LMM) (Harris et al., 2008;
Yang et al., 2010). Similarly, the Deterministic Bayesian Sparse Linear Mixed Model
(DBSLMM) first detects the markers with large effects through marginal associations
obtained via simple analysis (e.g., regression), and then treats them as fixed effects
with the remaining variants being modeled similarly to gBLUP. By assuming that all
large-effect predictors have marginal additive effects, DBSLMM significantly simpli-
fies the model, making it scalable to the prediction analysis of large-scale data (Yang
and Zhou, 2020). While simple assumptions allow for the consideration of genome-wide
data, they may lead to sub-optimal prediction performance. For example, both gBLUP
and DBSLMM assume linear relationships, and thus neither model is capable of model-
ing complex effects (Yang et al., 2010; Yang and Zhou, 2020) and their performance can
drop substantially when data severely violate the adopted model assumptions. Using
an empirical screening rule that is designed to align well with the downstream task is
another common approach for handling genome-wide data (Speed and Balding, 2014;
Weissbrod et al., 2016). For example, both MKLMM and MultiBLUP first fit a LMM
with single random effect for each region, and only regions that are significant from
those single-region LMMs are included as random effects in the final LMM (Speed
and Balding, 2014; Weissbrod et al., 2016). By employing this empirical screening
rule, MultiBLUP and MKLMM substantially reduce the number of model parameters,
making both models applicable to use with genome-wide data. While an empirical
screening rule is useful in practice, the rule may discard predictive regions, leading to
a low prediction accuracy. Penalized LMMs that can simultaneously detect predictive
markers and model their effects have shown their advantages in prediction studies (Li
et al., 2020; Wen and Lu, 2020). However, they have not been able to scale to genome-
wide data so far, even for the recently developed pLMMGMM (Wang and Wen, 2021).
Existing penalized LMMs usually go with a candidate gene approach, where genetic
variants from genome-wide data are first filtered according to existing literature (Hai
and Wen, 2020; Wang and Wen, 2021; Wen and Lu, 2020). Although these candidate
gene approaches tend to be consistent, they only consider existing knowledge and can
overlook important predictors that have not been reported yet. Therefore, a screen-
ing rule designed for penalized LMMs can be of great importance for the prediction
analysis of genome-wide data.
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Screening rules, especially those designed for penalized models, can reduce the
number of variables entered into the optimization process, and thus can substantially
reduce the model complexity, making penalized models applicable to genome-wide data
(Fan and Lv, 2008; Ghaoui et al., 2010; Tibshirani et al., 2012; Wang et al., 2015; Xiang
et al., 2016). Fan and Lv, 2008 proposed the sure independence screening (SIS) method,
one of the pioneering works in the field, for linear models, where marginal correlations
are used to rank the importance of each variable. Fan and Lv, 2008 established the sure
screening property of their procedure under a Gaussian linear model framework and the
probability that all important variables survive approaches to 1. Fan et al., 2009 further
proposed a SIS procedure for generalized linear models based on marginal likelihood
estimates, and SIS has also been extended for other models, such as nonparametric
additive models (Fan et al., 2011) and a cox proportional hazard model (Zhao and
Li, 2012). Although easy to implement, SIS and its extensions only consider marginal
effects and cannot take their joint effects into account. Moreover, SIS is not designed
for penalized models, and thus those redundant variables selected by SIS are kept in
the final prediction models.

Unlike SIS and its extensions, the strong and safe rules are designed for penalized
models (Tibshirani et al., 2012; Wang et al., 2015). A strong rule that is designed
for a penalized model with L1 penalty (i.e., Lasso type of problem) can discard the
ith variable (denoted by XXX i) for a given penalty value of λ if | XXXT

i yyy |< 2λ − λmax,
where λmax = maxi | XXXT

i yyy | and yyy is the vector of outcomes (Tibshirani et al., 2012).
The strong rule is simple and can screen out a large amount of inactive variables.
However, it can also mistakenly discard variables that are indeed predictive, leading to
a sub-optimal prediction model (Wang et al., 2015). Unlike strong rules, safe screening
rules that are also designed for penalized models can guarantee that the discarded
variables have no effects (Wang et al., 2015) for each penalty λ. These safe screening
rules are usually based on exploring geometric properties of the dual Lasso problem.
The objective function of a penalized model with L1 penalty is usually of the form:
argmin 1

2
||yyy −XXXβββ||22 + λ||βββ||1, where XXX is the variable matrix and βββ is the unknown

coefficients vector. The dual form (Kim et al., 2007) can be written as:

argmax
1

2
||yyy||22 −

λ2

2
||θθθ − yyy

λ
||22, s.t. |XXXT

i θθθ| ≤ 1

where θθθ is the dual variable and the coefficient of the ith variable is zero when the
optimal condition (i.e., |XXXT

i θθθ| < 1) is satisfied. The optimal solution θθθ∗ is generally
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unknown, and a set ΘΘΘ that contains optimal solution θθθ∗ is often used for screening.
Indeed, the set ΘΘΘ determines the effectiveness of the screening rule. The smaller the
set ΘΘΘ is, the more effective the screening rule is (Wang et al., 2015), which motivates
different safe screening rules being proposed to find a smaller ΘΘΘ. The pioneering work
of safe screening rules is the SAfe Feature Elimination (SAFE) rule, and it bounds
the optimal solution θθθ∗ of the dual problem within a sphere (Ghaoui et al., 2010).
The Dome rule further shrinks the set ΘΘΘ via bounding the optimal solution θθθ∗ into
a spherical dome region (Xiang and Ramadge, 2012). Both SAFE and Dome rules
are based on the estimation of the dual optimal solution that is unknown in advance,
therefore it can be quite challenging to accurately estimate them (Wang et al., 2015).
Recent efforts have been made to address this issue. For example, the Dual Polytope
Projection (DPP) rule is designed based on the uniqueness and non-expansiveness of
the optimal dual solutions (Wang et al., 2015), and thus the problem in the dual space
becomes convex. DPP can discard more inactive variables than SAFE rule as it bounds
the optimal solution within a smaller region. At a given value of λ, DPP screens out
the ith variable when |XXXT

i
yyy

λmax
|< 1−( 1

λ
− 1

λmax
)∥yyy∥2∥XXX i∥2 is met. While safe rules can

guarantee that removed variables are inactive in the corresponding penalized models,
they can only discard a moderate number of variables and the remaining number of
variables can still be large, making safe rules not appealing for ultra-high dimensional
data analysis.

For penalized models, the optimal tuning parameter λ is usually selected from a
sequence of candidates, and thus the inactive sets have to be determined accordingly.
While basic screening rules (e.g., strong rule and DPP rule) can be applied to discard
variables for each penalty, it is computationally expensive. It has been recognized that
the size of inactive set increases as the penalty parameter λ decreases. Therefore, the
basic screening rules have been extended into a sequential version, where inactive sets
are efficiently updated via a grid of decreasing regularization parameters λ1 > λ2 >

... > λK . For example, the sequential strong rule (SSR) obtains the screening results
at λk+1 based on the solution of β̂ββ(λk) at λk, and the ith variable at λk+1 is discarded
when |XXXT

i (yyy − XXXβ̂ββ(λk))| < 2λk+1 − λk. Similarly, the enhanced DPP (EDPP) rule
determines the inactive set at penalty λk+1 based on a known optimal solution β̂ββ(λk)

at λk. While these sequential screening rules reduce the computational complexity,
they still suffer the same problems as their basic versions, where the strong rule cannot
guarantee that discarded variables have no effects and the safe rules can only discard
a limited number of variables. Therefore, neither sequential strong or safe rules can be
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directly incorporated into the penalized LMMs for prediction analysis of genome-wide
data.

Many complex diseases, such as type 2 diabetes and cancers, are affected by mul-
tiple genetic factors through complex biological pathways (Kirchner et al., 2013). One
of the fundamental problems in risk prediction studies is how to detect and model the
underlying genetic architecture of complex traits (Ho and Hsu, 2015), especially those
non-linear effects. Existing studies mainly focus on detecting predictors with linear
additive effects (Chatterjee et al., 2016; Hill et al., 2008). For example, Reyes-Gibby
et al., 2009 evaluated 59 SNPs in 37 inflammation genes in newly diagnosed non-
Hispanic Caucasian lung cancer patients, showing a linear effect on their pain severity.
Collado-Hidalgo et al., 2008 found that IL1B -511 (C/T) polymorphism on the IL1B
gene may have a linear relationship with persistent fatigue in the aftermath of breast
cancer. However, as indicated by Ho and Hsu, 2015, non-linear effects (e.g., epistasis)
widely exist. For example, Badano et al., 2006 identified a novel locus, MGC1203,
which interacts with the BBS4 gene and has an epistatic effect on the developmen-
tal phenotype of Bardet–Biedl syndrome. Using combinatorial RNA in human breast
epithelial cells, Wang et al., 2014b found hundreds of genetic interactions (i.e., epista-
sis) among 67 genes that are frequently altered in breast cancer as well as other cancer
types. Therefore, recent efforts have been made to develop analytical methods that can
capture non-linear effects efficiently for prediction studies (Li et al., 2020; Weissbrod
et al., 2016; Wen and Lu, 2020). Within the LMM framework, Weissbrod et al., 2016
proposed MKLMM, an extension of MultiBLUP, to model both linear and non-linear
effects for prediction analyses. They first embed genetic variants into the reproducing
kernel Hilbert space and then use kernel functions (e.g., linear, radial basis function
and polynomial kernels) to accommodate various types of predictive effects. Wen and
Lu, 2020 and Li et al., 2020 further extended MKLMM so that predictive markers as
well as their types of effects can be determined via a data-driven manner. Although
these methods enable the detection of non-linear effects, they suffer from the same
computational challenges faced by LMMs. For example, to consider non-linear effects,
multi-kernel LMMs model each region using multiple kernel functions with each cor-
responding to a random effect term in LMMs (Li et al., 2020; Weissbrod et al., 2016;
Wen and Lu, 2020). As a consequence, multi-kernel LMMs can have a much larger
number of random effects than a LMM that only considers linear relationships. There-
fore, multi-kernel LMMs require the selection of both predictive regions and their types
of effects (i.e., kernels). This can lead to much heavier computation, especially for the
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analysis of genome-wide data.
To address these issues, we have incorporated a hybrid screening rule into a penal-

ized LMM with GMM estimators (denoted as HpLMMGMM) to simultaneously select
predictors from genome-wide data and estimate their predictive effects. The proposed
HpLMMGMM first applies the designed hybrid screening rule to discard a large amount
of noise variables, and then fits penalized LMMs with GMM estimators based on the
remaining variables. The HpLMMGMM method can be applied to genome-wide data
and efficiently captures both linear and non-linear predictive effects. In section 2, we
present our hybrid screening rule designed for penalized LMM with GMM estimators.
The results from the simulation studies and the analysis of whole-genome sequencing
data obtained from the ADNI study are summarized in sections 3 and 4, respectively.
We summarize our findings in section 5.

3.2 Methods

3.2.1 A penalized linear mixed model with generalized method

of moments estimators

For completeness, we first briefly describe the penalized LMM with GMM estimators
(pLMMGMM) developed by Wang and Wen, 2021. Similar to existing LMM-based
methods (Li et al., 2020; Speed and Balding, 2014; Weissbrod et al., 2016; Wen and
Lu, 2020), pLMMGMM first splits the genome into multiple regions and estimates the
cumulative predictive effects of all genetic variants within the region. It models the
outcomes as:

YYY =XXXβββ +
R∑
i=1

gggi + ϵϵϵ, ϵϵϵ ∼ N(0, σ2
0IIIn)

where XXX is an n × P matrix of the demographic variables (e.g., age and gender) and
βββ is their effect sizes; R is the total number of regions considered; gggi models the
cumulative predictive effects from all genetic variants within the ith region, where
gggi ∼ N(0,

∑M
m KKKimσ

2
im) and M is the total number of kernels considered. KKKim is a

kernel matrix calculated based on the mth kernel for region i and measures the genetic
similarities based on the mth kernel that reflects the assumed relationships between pre-
dictors and outcomes. For example, if both linear relationship and pair-wise interaction
effects are considered, then a linear kernel (i.e., KKKi1 = GGGiGGG

T
i ) and polynomial kernel
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with 2 degrees of freedom (i.e., KKKi2 = (GGGiGGG
T
i )

2) are used. Therefore, the cumulative
predictive effects from the ith regions are assumed to be gggi ∼ N(0,KKKi1σ

2
i1 +KKKi2σ

2
i2).

To select predictive regions and appropriate kernel functions that reflect the under-
lying relationships, pLMMGMM imposes an L1 penalty on the associated parameters
σσσ2 = (σ2

11, · · · , σ2
1M , · · · , σ2

R1, · · · , σ2
RM). Rather than using the traditional MLE/REML

estimators that are computationally expensive, pLMMGMM obtains its parameters
based on the GMM estimator with the corresponding objective function defined as:

σ̂σσ2 = argmin
σσσ2≥0

1

2

∥∥∥∥∥AAATYYY YYY TAAA−AAAT

R∑
i=1

σ2
iKKKiAAA− σ2

0IIIn−P

∥∥∥∥∥
2

2

+ λ
∥∥σσσ2
∥∥
1

(3.1)

where λ > 0; ∥·∥i , i ∈ {1, 2} denotes the ℓ− i norm; and the AAA matrix is chosen such
that AAATYYY is independent of the covariates XXX. To further simplify the notations, let
MMM = vec(AAATYYY YYY TAAA), TTT i = vec(AAATKKKiAAA) is the ith column of TTT matrix, and vec(.) is
the vectorization of a matrix. The objective function 3.1 can be rewritten as:

σ̂σσ2 = argmin
σσσ2≥0

1

2

∥∥MMM − TTTσσσ2
∥∥2
2
+ λ

R∑
i=1

σ2
i , λ > 0 (3.2)

3.2.2 A hybrid screening rule designed for the penalized lin-

ear mixed model with generalized method of moments

estimators

It is straightforward to see the optimization problem in equation 3.2 is a standard
non-negative Lasso problem. Therefore, motivated by the idea in Zeng et al., 2021, we
propose to design a hybrid screening rule, where SSR and EDPP rules are combined
to correctly and effectively discard a large amount of noise. The SSR rule can mistak-
enly screen out predictive variables, and thus in practice Karush-Kuhn-Tucker (KKT)
conditions have to be checked for each variable, which can substantially increase the
computational burden. Therefore, our idea is to first apply the EDPP rule to discard a
moderate number of variables that are guaranteed to be inactive, and then adopt the
SSR rule on the remaining variables so that the KKT checking is only employed for a
fraction of variables.

Suppose that we are given a sequence of decreasing penalties λ1 > λ2 > ... > λK

and the parameter estimates at λk (denoted as σ̂σσ2(λk)), we will first apply the EDPP
rule to discard a moderate number of variables at λk+1. Specifically, the ith variable is
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treated as inactive at λk+1 if the following condition holds:∣∣∣∣TTT T
i

(
MMM − TTTσ̂σσ2(λk)

λk

+
1

2
vvv⊥2 (λk+1, λk)

)∣∣∣∣ < 1− 1

2
∥TTT i∥2

∥∥vvv⊥2 (λk+1, λk)
∥∥
2

(3.3)

where vvv⊥2 (λk+1, λk) = vvv2(λk+1, λk)−<vvv1(λk),vvv2(λk+1,λk)>

∥vvv1(λk)∥22
vvv1(λk); < · > is the inner product;

and vvv2(λk+1, λk) = MMM
λk+1

− MMM−TTTσ̂σσ2(λk)
λk

. vvv1(λk) = TTTσ̂σσ2(λk)
λk

when 0 < λk < λmax, and it
equals to sign(TTT T

∗MMM)TTT ∗ when λk = λmax and TTT ∗ = argmaxTTT i
| TTT T

i MMM |. The details
of the derivation of our employed EDPP rule are shown in Supplementary Materials
B.1.2.

SEDPP
λk+1

:= {TTT i :
∣∣∣TTT T

i

(
MMM−TTTσ̂σσ2(λk)

λk
+ 1

2
vvv⊥2 (λk+1, λk)

)∣∣∣ ≥ 1 − 1
2
∥TTT i∥2

∥∥vvv⊥2 (λk+1, λk)
∥∥
2
}

represents the set of remaining variables after applying the EDPP rule. As the size of
set SEDPP

λk+1
can be large for high-dimensional data, we propose to apply the SSR rule

on TTT i ∈ SEDPP
λk+1

to further discard inactive variables. Specifically, TTT i is discarded by
our adopted SSR rule when the following conditions are met:∣∣∣TTT T

i

rrr

n

∣∣∣ < 2λk+1 − λk (3.4)

where n is the sample size; rrr =MMM−TTTσ̂σσ2(λk) and TTT i ∈ SEDPP
λk+1

. The detailed derivations
can be found in Supplementary Materials B.1.1.

Let SSSR
λk+1

denote the remaining variables after applying the SSR rule, and thus
SSSR
λk+1

:= {TTT i :
∣∣TTT T

i
rrr
n

∣∣ ≥ 2λk+1 − λk and TTT i ∈ SEDPP
λk+1

} by definition. Since the SSR rule
can mistakenly screen out active predictors, KKT conditions must be checked for all
discarded variables; i.e., TTT i ∈ SEDPP

λk+1
∩ S̄SSR

λk+1
. Therefore, we first fit model 3.2 with

inputs being {TTT i : TTT i ∈ SSSR
λk+1

} to estimate σ̂σσ2(λk+1), and then check whether each of
the discarded variable satisfies the KKT condition:∣∣∣∣TTT T

i rrrλk+1

n

∣∣∣∣ < λk+1

where rrrλk+1
= MMM − TTTσ̂σσ2(λk+1) and TTT i ∈ SEDPP

λk+1
∩ S̄SSR

λk+1
. Let SSSR,KKT

λk+1
denote the

set of all mistakenly discarded variables by the SSR rule, and thus SSSR,KKT
λk+1

:= {TTT i :∣∣∣TTTT
i rrrλk+1

n

∣∣∣ ≥ λk+1 and TTT i ∈ SEDPP
λk+1

∩ S̄SSR
λk+1

}. If there are active variables being screened

out (i.e., SSSR,KKT
λk+1

̸= ∅), we first update the input set as SSSR
λk+1

= SSSR
λk+1

⋃
SSSR,KKT
λk+1

.
We then refit model 3.2 and re-check the KKT conditions with the updated input
set SSSR

λk+1
. We repeat this process until SSSR,KKT

λk+1
= ∅. The final variables included
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in model 3.2 at λk+1 are SSSR
λk+1

when SSSR,KKT
λk+1

= ∅. The detailed procedure of our
proposed hybrid screening rule is shown in algorithm 1.

Algorithm 1 The hybrid screening rule
Input: TTT , MMM , λmax = λ0 > λ1 > ... > λK , λmax = maxi | TTT T

i MMM |, n is the sample size

Initialization: σ̂σσ2(λ0) = 000

for k ∈ {0, 1, ..., K} do

EDPP screening: SEDPP
λk+1

:= {TTT i :
∣∣∣TTT T

i

(
MMM−TTTσ̂σσ2(λk)

λk
+ 1

2
vvv⊥2 (λk+1, λk)

)∣∣∣ ≥ 1 −
1
2
∥TTT i∥2

∥∥vvv⊥2 (λk+1, λk)
∥∥
2
}

SSR screening: SSSR
λk+1

:= {TTT i :
∣∣∣TTT T

i
MMM−TTTσ̂σσ2(λk)

n

∣∣∣ ≥ 2λk+1 − λk and TTT i ∈ SEDPP
λk+1

}
while SSSR,KKT

λk+1
̸= ∅ do

Estimate σ̂σσ2(λk+1) via equation 3.2 with inputs being {TTT i : TTT i ∈ SSSR
λk+1

}
Update residual: rrrλk+1

=MMM − TTTσ̂σσ2(λk+1)

Check KKT: SSSR,KKT
λk+1

:= {TTT i :
∣∣∣TTTT

i rrrλk+1

n

∣∣∣ ≥ λk+1 and TTT i ∈ SEDPP
λk+1

∩ S̄SSR
λk+1

}
if SSSR,KKT

λk+1
̸= ∅ then

SSSR
λk+1

= SSSR
λk+1

⋃
SSSR,KKT
λk+1

end if

end while

end for

3.2.3 Prediction

To choose an appropriate penalty parameter that performs the best for prediction, we
consider a sequence of penalty values in a decreasing order, λ1 > λ2 > ... > λK . For
a given value of λk, we first apply the proposed hybrid screening rule to prune a large
number of inactive variables. We then fit model 3.2 with all inputs that are in the
set SSSR

λk
. Bayesian information criteria (BIC) are calculated for model 3.2 at λk. The

optimal penalty parameter λ∗ is selected based on BIC and the variance components
estimates at the optimal penalty parameter λ∗ are used for prediction. We denote the
parameter estimates at the optimal value of λ∗ as σ̂σσ2(λ∗).

Let YYY a = (YYY p,YYY ), where YYY is the n × 1 vector of outcomes in the training data
and YYY p is np × 1 vector of outcomes in the testing data. After obtaining the variance
components estimates σ̂σσ2(λ∗), the variance of YYY a can be directly derived as Σ̂ΣΣYa =
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∑R
i

∑M
m KKKimσ̂

2
im(λ

∗) + IIInp+nσ̂
2
0(λ

∗), where KKKim is the (np + n) × (np + n) genetic
similarity matrix measured by the mth kernel for region i calculated from all samples.
The variance of YYY a can be written as:

Σ̂ΣΣYa =

[
Σ̂ΣΣpp Σ̂ΣΣpo

Σ̂ΣΣop Σ̂ΣΣoo

]

where Σ̂ΣΣpp and Σ̂ΣΣoo are the variance matrices for the testing and training samples,
respectively. Σ̂ΣΣpo is the covariance between the testing and training samples. Therefore,
the predictive values for the testing samples can be calculated as:

YYY p =XXXpβ̂ββ + Σ̂ΣΣpoΣ̂ΣΣ
−1

oo (YYY −XXXoβ̂ββ)

where theXXXp andXXXo are the covariates of the testing and training samples, respectively.

3.3 Simulation studies

We conducted extensive simulation studies to evaluate the impact of data dimension
and the underlying disease models on the performance of HpLMMGMM. We further
compared our method with two widely used methods that can be applied to genome-
wide data, including gBLUP (Yang et al., 2010) under its default setting and MKLMM
(Weissbrod et al., 2016). Note that we did not compare our method with MultiBLUP,
as MultiBLUP is equivalent to MKLMM with a linear kernel. MKLMM requires the
user to specify the number of chosen regions. Therefore, we considered three settings.
We first set the number of chosen regions equal to the top 5% of regions based on the
likelihood ratio test that is employed to screen the regions. This is mainly because
MKLMM first divides all the genetic variants into regions and then discards those
whose likelihood is among the bottom 95%. We then considered the setting where
the number of selected regions is 9 (denoted as MKLMM9). This is mainly because
Weissbrod et al., 2016 pointed out that no improvement in prediction is observed for
more than 9 regions. Finally, we considered the setting where the pre-specified number
of regions is set to be 2 (denoted as MKLMM2). This is mainly because for all our
simulations, the number of casual regions is equal to 2. To mimic the real human
genome, we directly obtained genomic data from the 1000 Genome Project (The 1000
Genomes Project Consortium, 2015), and built genetic regions based on 10 randomly
selected SNPs that are within 75Kb. For all settings, we conducted 100 Monte Carlo
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simulations and considered sample sizes of 500 and 1000, where 65% of the samples
were randomly selected for training and the remaining samples were used to gauge
the prediction performance, measured by both Pearson correlations and mean square
errors (MSEs). We further evaluated the efficiency of variable screening rule employed
by both our method and MKLMM.

3.3.1 Scenario I: the impact of data dimension

The genome-wide data are high-dimensional, and there are approximately 20,000 genes
for human genomes. To evaluate the impact of data dimension, we gradually increased
the number of regions from 5000 to 20000 with the number of SNPs increasing from
50,000 to 200,000. We randomly selected two regions and set them as causal. We
simulated the outcomes under an additive model:

Yi =
∑
j

G1
ijβ

1
ij +

∑
j

G2
ijβ

2
ij + ϵi

where ϵi ∼ N(0, σ2
0); Gk

ij, k ∈ {1, 2} is the jth genotype on the kth causal region for
individual i; and βk

ij ∼ N(0, σ2
k) is the effect size of genetic variants. It is straightforward

to show that:
YYY ∼ N(000,KKK1σ

2
1 +KKK2σ

2
2 + IIInσ

2
0) (3.5)

where KKKk = GGGkGGGkT and GGGk is the genotype matrix for region k. Therefore, we simu-
lated the outcomes based on a multivariate normal distribution following equation 3.5.
The details of the simulation setting are summarized in Supplementary Table B.1. We
reported the Pearson correlations and MSEs based on the testing samples. We further
presented the average total number of selected regions and the number of causal regions
among the selected regions for both the hybrid screening rule used by HpLMMGMM
and the empirical screening rule employed by MKLMM.

Pearson correlations and MSEs for sample sizes of 500 and 1000 are shown in
Figure 3.1 and Supplementary Figure B.1, respectively. Of all the scenarios considered,
HpLMMGMM performed the best, followed by MKLMM and gBLUP. MKLMM2 and
MKLMM9 always performed the worst. This is mainly because the causal regions
are not ranked the top based on the likelihood ratio test statistics, and thus both
MKLMM2 and MKLMM9 essentially built the prediction models based on only noise.
This leads to almost no prediction power regardless of the number of regions considered.
For MKLMM and gBLUP, their prediction performance decreased as the number of
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Figure 3.1: The impact of data dimension on Pearson correlations and
MSEs (n = 500)

simulated regions increased. gBLUP models the cumulative predictive effects from
all measured genetic variants and ignores the impact of noise. As a consequence,
its performance can worsen as the amount of noise accumulates. For the MKLMM
method, the screening rule it employs can help to reduce the impact of noise, and
thus MKLMM tends to have better prediction accuracy than gBLUP. However, as the
number of regions increases, the remaining regions included in the prediction model can
still include lots of noise, leading to reduced prediction performance. For the proposed
HpLMMGMM, the hybrid screening rule can screen out lots of inactive regions and
the penalization used in LMM can further fine-tune the selected regions to achieve an
optimal prediction performance. As shown in Figure 3.1 and Supplementary Figure
B.1, HpLMMGMM maintains a robust prediction performance as the number of regions
approaches to genome-wide level.

Table 3.1: The number of selected total and causal regions as the input
data dimension increases (n = 500)

Regions Number of Total Regions Selected (Number of Causal Regions Selected)
MKLMM MKLMM2 MKLMM9 Hybrid Screening Rule

5000 292.84 (1.99) 2 (0) 9 (0) 13.57 (1.99)
10000 589.64 (1.96) 2 (0) 9 (0) 17.06 (1.99)
15000 884.73 (1.99) 2 (0) 9 (0) 16.71 (1.98)
20000 1178.02 (1.96) 2 (0) 9 (0) 17.46 (1.98)

Table 3.1 and Supplementary Table B.2 present the efficiencies of the screening rules
employed by both MKLMM and our proposed method. Apparently, neither of the two
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causal regions have been ranked among the top 9, and thus MKLMM with 2 or 9 regions
failed to capture their predictive effects. This means that MKLMM2 and MKLMM9
had no predictive power (Figure 3.1 and Supplementary Figure B.1). MKLMM screens
out the bottom 95% of regions based on the rank of the Likelihood Ratio (LR) test
for each region. Although MKLMM could detect the predictive markers, the number
of noise regions also increased with the data dimension. Therefore, MKLMM would
fit a LMM with lots of random effects that are not associated with the outcomes.
This not only increases computational complexity, but also reduces the accuracy and
robustness of the prediction model. The proposed hybrid screening rule, however,
could tease out a huge amount of noise while still keeping the causal regions. Indeed,
when the number of regions increase from 5,000 to 20,000, the number of kept regions
for the hybrid screening rule remained relatively stable (i.e., within 20), whereas the
number of kept regions increased from 293 to 1,178 for MKLMM. Therefore, comparing
with MKLMM, the data dimension and the amount of noise had little impact on the
performance of HpLMMGMM. This makes the proposed method robust enough to be
applied to high-dimensional data.

3.3.2 Scenario II: the impact of disease models

Complex human diseases are affected by a wide array of genes through a complicated
biological system that is usually unknown in advance (Chatterjee et al., 2013). There-
fore, we evaluated the performance of our proposed method under various underlying
disease models. Similar to Scenario I, we considered two causal regions and gener-
ated the outcomes using equation 3.5. We used different kernel matrices to reflect
the assumed relationships between predictors and outcomes, and simulated five disease
models with genetic variants. Specifically, we considered simulations when: 1) both
causal regions have linear additive effects and linear kernels are used to simulate out-
comes (denoted as model L + L); 2) both causal regions have non-linear effects and
radial basis function (RBF) kernels are used (denoted as model R+R); 3) both causal
regions only have pair-wise interaction effects and polynomial kernels of 2 degrees are
employed (denoted as model P + P ); 4) one causal region has linear additive effects
and the other causal region has non-linear effects (denoted as model L+R); and 5) one
causal region has linear effects and the other causal region have pair-wise interaction
effects (denoted as L + P ). The details of the simulation settings are summarized in
Supplementary Table B.3. We simulated 5,000 regions for each disease model setting.
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Similar to Scenario I, we reported the Pearson correlations and MSEs based on test-
ing samples, and calculated the efficiencies of variable screening. However, unlike the
first set of simulations which only considered linear kernel for the MKLMM method,
we used the adaptive setting in this set of simulations, where a linear kernel, a RBF
kernel, a polynomial kernel of 2 degrees and a neural network kernel are included in
the candidate kernel set and the most appropriate kernels are selected in a data-driven
manner.

Figure 3.2: The impact of disease models. L+ L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 500)

As shown in Figure 3.2 and Supplementary Figure B.2, the proposed HpLMMGMM
performed the best among all simulations considered. Our method had the lowest
MSEs and highest Pearson correlations regardless of disease models, indicating that
our method can maintain robust performance across a range of phenotypes. Compar-
ing the other methods, adaptive MKLMM and gBLUP performed better than adaptive
MKLMM with 2 or 9 chosen regions. While the screening rule employed by adaptive
MKLMM is designed to reduce the impact of noise as well as improve the computa-
tional efficiencies of LMMs, it can mistakenly discard predictive regions, leading to low
prediction performance. As shown in Table 3.2 and Supplementary Table B.4, when
the number of chosen regions is 2 or 9, the screening process employed by adaptive
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MKLMM can barely keep any causal regions. This explains why adaptive MKLMM2
and adaptive MKLMM9 have even worse prediction performance than gBLUP that
keeps all genetic variants. Comparing gBLUP with adaptive MKLMM that keeps the
5% of regions with the highest likelihood ratio test statistics, adaptive MKLMM has
better performance in all of the disease models except the P + P model. This is pri-
marily because gBLUP keeps all measured genetic variants in the prediction modeling
and thus is not able to reduce the impact of noise, leading to a less accurate prediction
model. For the P + P model, adaptive MKLMM is quite likely to screen out some
of the causal regions (Table 3.2 and Supplementary Table B.4), resulting in reduced
prediction accuracy. Comparing adaptive MKLMM with 5% regions chosen with our
designed hybrid rule, our method has much higher probability of correctly teasing out
the noise while maintaining the causal regions in the selected set, regardless of the
underlying disease models. Indeed, the number of kept regions after screening is only
12 for our method, whereas it can go up to 295 regions for adaptive MKLMM with
5% regions chosen (Table 3.2), on average. Including lots of noise regions in the final
prediction analysis not only increases the computational burden for LMMs, but also
reduces the robustness and accuracy of the prediction.

Table 3.2: The number of selected regions and the number of causal
regions within the selected regions under different disease models (n =

500)

Disease Number of Total Regions Selected (Number of Causal Regions Selected)
Models MKLMM MKLMM2 MKLMM9 Hybrid Screening Rule
S1 : L+ L 294.12 (2.00) 2 (0) 9 (0) 12.11 (1.96)
S2 : R +R 295.02 (1.97) 2 (0) 9 (0) 13.88 (1.88)
S3 : P + P 295.54 (1.25) 2 (0) 9 (0) 8.95 (1.92)
S4 : L+R 294.21 (1.97) 2 (0) 9 (0) 13.77 (1.83)
S5 : L+ P 294.11 (1.62) 2 (0) 9 (0) 10.45 (1.96)

Our proposed hybrid screening rule can capture non-linear effects and shed light
on the underlying relationships through selecting appropriate kernel functions from
the candidate set. The probability of selecting the most appropriate kernels for both
adaptive MKLMM and our method is shown in Table 3.3 and Supplementary Table
B.5 . Note that we did not report the screening results of kernel selection for adaptive
MKLMM2 and adaptive MKLMM9, since neither method could correctly detect any
predictive regions. Although adaptive MKLMM is designed to capture non-additive
effects through a data-driven manner, it can barely select any non-linear kernels from

49



Chapter 3. A hybrid screening rule designed for the penalized linear mixed model
with generalized method of moments estimators

the candidate set in practice. For example, for the disease model P + P where both
causal regions have pair-wise interaction effects, the probability of selecting the poly-
nomial kernel for adaptive MKLMM is close to 0%, whereas it is above 90% for the
proposed hybrid screening rule. Similarly, under the disease model R+R, the screening
rule employed by adaptive MKLMM mainly chooses linear kernel for prediction (≈ 0%

for using the RBF kernel), whereas our method has over 85% of chance to use the most
appropriate kernels. Therefore, the proposed method has better capability of capturing
non-linear effects, leading to a prediction model with much higher accuracy.

Table 3.3: The chance of selecting the most appropriate kernels under
different disease models (n = 500)

Disease MKLMM Hybrid Screening Rule
Models 1st Causal Region 2nd Causal Region 1st Causal Region 2nd Causal Region
S1 : L+ L 1.00 1.00 0.98 0.98
S2 : R +R 0 0 0.87 0.85
S3 : P + P 0 0 0.94 0.98
S4 : L+R 0.99 0 1.00 0.73
S5 : L+ P 0.97 0 1.00 0.96

*Note: results from MKLMM2 and MKLMM9 are not reported. Neither of the causal regions can
be kept, and thus the chances of selecting the most appropriate kernels are 0.

3.4 Real data application

AD is a common neurodegenerative condition and accounts for 60% to 70% of demen-
tia cases; it is becoming a growing health problem worldwide due to population aging
(Cuingnet et al., 2011). An early and accurate diagnosis of AD has been widely re-
garded as a critical step for AD treatment. The ADNI study, which was launched in
2003 by multiple public and private organizations, has provided great opportunities for
systematic investigations of AD (Cuingnet et al., 2011). ADNI has collected clinical
assessment, biochemical biomarkers, and results from magnetic resonance imaging and
positron emission tomography (PET) for early and accurate diagnosis of AD (Mueller
et al., 2005).

In this study, we are interested in using whole-genome sequencing data to predict
baseline PET-imaging outcomes, including AV45 and FDG. We excluded individuals
who do not have genetic data and/or are missing baseline phenotype measurements.
A total of 639 and 501 samples were kept for the analyses of FDG and AV45, re-
spectively. The distributions of these phenotypes are shown in Supplementary Figure
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B.3. Whole-genome sequencing of the genomic data has been performed on the Illu-
mina HiSeq2000 at a non-Clinical Laboratory Improvements Amendments (non-CLIA)
laboratory (Saykin et al., 2015). We removed genetic variants with more than 1% of
missing rate and annotated them based on GRch37 assembly. A total of 20,350 genes
with 8,041,596 genetic variants and 20,617 genes with 7,702,415 variants were analyzed
for FDG and AV45, respectively. To avoid over-fitting, we randomly set 100 individuals
as testing samples and used the remaining samples to train the predictive models. We
evaluated the prediction accuracy based on the testing samples. To reduce the risk of
chance finding, this process was repeated 100 times.

Figure 3.3: Accuracy comparisons for FDG and AV45

The prediction accuracies for FDG and AV45 are shown in Figure 3.3. For FDG,
MKLMM2 and MKLMM9 were the worst performers of all the methods. MKLMM
had a similar performance to that of the gBLUP method. For AV45, MKLMM was
the worst performer regardless of the pre-specified number of region. For both FDG
and AV45, HpLMMGMM performed the best, having the lowest MSEs and highest
Pearson correlations of all the methods. These results clearly indicate that correctly
detecting predictive regions and simultaneously modeling their linear and non-linear
effects can improve the robustness and accuracy of a prediction model.

The MKLMM that included the top 5% of regions selected about 1700 genes from
an initial data set of more than 20,000 genes in each replicate, and about 400 genes
were consistently selected among 100 replicates. However, the prediction accuracy
of MKLMM is generally lower than the proposed method (HpLMMGMM), and this
suggests that a substantial number of the genes selected by MKLMM could still be
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noise, leading to reduced the method’s accuracy. Furthermore, most the genes selected
by MKLMM have not previously been reported to be associated with AD. Indeed, some
well-known AD-related genes had a low probability of being selected by MKLMM. For
example, the probability of detecting APOC1 APOE and TOMM40 genes were close
to 0%. Similarly, there is little evidence in the current literature that the genes kept
by MKLMM2 and MKLMM9 are actually associated with AD. Indeed, these selected
genes have almost no prediction power, as shown in Figure 3.3. Unlike MKLMM, the
proposed hybrid screening rule aligns well with the downstream prediction tasks and
tends to keep only a small proportion of genes with most of them being predictive. In
particular, we found there was a high probability that well-known AD-related genes
are kept by the proposed screening rule. For example, APOC1, APOE and TOMM40
genes can be selected by more than 96% of the time among 100 replicates.

The final prediction model HpLMMGMM used was the penalized LMM with GMM
estimators, and thus the model had the capability to further fine-tune the gene set
determined by the hybrid screening rule and so improve its predictive powers. Supple-
mentary Tables B.6 and B.7 list the genes that were selected by the final prediction
model at least once for FDG and AV45, respectively. For FDG, a total of 120 genes
were selected by the final prediction model at least once among 100 replicates. APOE,
APOC1 and FADS3 genes were selected more than 95% of the time, whereas the
remaining 117 genes were averagely selected less than 7% of the time. For AV45, a
total of 124 genes were selected by the final prediction model at least once among
100 replicates. APOE, APOC1 and TOMM40 were selected more than 94% of the
time, whereas the others were selected less than 5% of the time, on average. From our
genome-wide analysis with more than 20,000 genes considered, all the most commonly
selected genes for both FDG and AV45 are well-known AD-related genes. For example,
both APOC1 and APOE were highly selected for both FDG and AV45 by our HpLM-
MGMM method (i.e., > 94%). Converging evidence has show that these two genes are
major genetic risk factors for AD (Ossenkoppele et al., 2013; Roses, 2010). APOE ϵ4

is a major risk factor for late-onset AD (LOAD) and an increasing number of APOE
ϵ4 alleles increases the LOAD risk (Corder et al., 1993). APOC1 participates in the
biological processes of cholesterol metabolism, whose deterioration has an important
impact on the development of AD (Zhou et al., 2014b). The rs11568822 polymor-
phism on APOC1 also increases the risk of AD in Caucasians, Asians and Caribbean
Hispanics (Zhou et al., 2014b). In addition to these two genes which are predictive
for both FDG and AV45, FADS3 and TOMM40, which are respectively predictive
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for FDG and AV45, have also been reported to be associated with AD. The FADS3
gene has been found to be related to AD via long-chain polyunsaturated fatty acids
(LCPUFA), which are involved in the pathophysiology of neurodegenerative diseases,
including AD (Schuchardt et al., 2016). TOMM40 encodes a mitochondrial protein
whose dysfunction is closely related to aging diseases (e.g, LOAD) (Bagnoli et al.,
2013).

3.5 Discussion

In this work, we have designed a hybrid screening rule and further incorporated it
into a penalized LMM with GMM estimators for prediction analysis on genome-wide
data. The proposed HpLMMGMM first splits the genome into multiple regions based
on various criteria (e.g., gene and pathway annotations), where the complex predictive
effects (i.e., linear and non-linear effects) for each region are captured by multiple kernel
functions. We then developed a hybrid screening rule to reduce the data dimension,
where the number of inputs for the downstream prediction model (i.e., penalized LMM
with GMM estimators) has been substantially reduced, making our method applicable
to the analysis of genome-wide data. Through extensive simulation studies and the
analysis of the ADNI data set, we have demonstrated that our method can: 1) be
applied to genome-wide data; 2) efficiently capture both linear and non-linear predictive
effects; and 3) have robust and accurate prediction performance across a range of
phenotypes and dimensions of input data.

Whole-genome data are high-dimensional and contain a large number of non-relevant
variables. Therefore, variable selection has been regarded as an indispensable step in
the analysis of whole-genome data. Variable selection can not only reduce the impact
of noise from high-dimensional data, but also improves the computational efficiencies
that are of great importance for large data analyses (Byrnes et al., 2013). Existing
LMM-based models that can be applied to genome-wide data either ignore the im-
pact of noise and treat all genetic variants in a similar manner (e.g., gBLUP (Yang
et al., 2010)) or employ empirical screening rules for variable selection (e.g., Multi-
BLUP and MKLMM (Speed and Balding, 2014; Weissbrod et al., 2016)). Therefore,
their performance depends on the underlying disease models and the amount of noise
in the data, leading to less robust prediction performance. For example, MKLMM
with the top 5% of regions selected achieved a similar level of prediction performance
as gBLUP for FDG (i.e., the median of the Pearson correlations were all around 0.12),
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but it had almost no predictive power for AV45, where the median of the Pearson
correlations were −0.02 and 0.09 for MKLMM and gBLUP, respectively. While some
existing penalized LMMs intend to improve the robustness of prediction via enabling
the variable selection within the prediction modeling, they can only handle a limited
number of regions and it is computationally prohibitive to apply them to genome-wide
data (Li et al., 2020; Wen and Lu, 2020). This is partially due to the fact that their
parameter estimations rely on MLE/REML, which can be extremely computational
demanding even for a moderate number of random effects. Unlike existing methods,
the proposed HpLMMGMM incorporated a hybrid screening rule into the prediction
modeling framework, where the data dimension is reduced substantially before build-
ing the prediction model and the parameter estimation in the final model relies on a
much more computationally efficient GMM estimator. The designed hybrid screen-
ing rule aligns well with the downstream prediction task, and the discarded variables
are guaranteed to have no predictive power in the corresponding penalized LMM with
parameters estimated by GMM. This property makes HpLMMGMM much more ap-
pealing in modeling high-dimensional data, as it can keep the number of variables at a
manageable size while maintaining the same level of prediction performance. As shown
in the Scenario I, as the number of regions increase from 5,000 to 20,000 (i.e., genome-
wide level), the number of regions kept by the designed hybrid screening rule remained
small (i.e., about 16), whereas the number of regions increased from 293 to 1,178 for
the empirical screening rule adopted by MKLMM (Table 3.1). Correspondingly, the
prediction accuracy for HpLMMGMM remained relatively stable, whereas it decreased
substantially for MKLMM as the number of regions increases. Furthermore, our pro-
posed hybrid screening rule has very high chance of screening out the noise regions.
Indeed, HpLMMGMM detected the true causal regions more than 99.25% of the time
and incorrectly identified noise regions as causal only 0.15% of the time. Therefore,
our proposed HpLMMGMM can effectively screen out noise using its designed hybrid
screening rule, and the remaining regions can be jointly modeled by the prediction
model (i.e., penalized LMM with GMM estimator) employed in HpLMMGMM. This
makes HpLMMGMM capable of modeling genome-wide data while maintaining high
and robust prediction accuracy (Figure 3.1 and Supplementary Figure B.1).

The underlying etiology for human diseases can be quite complex and it is unknown
in advance. Therefore, traditional LMMs (e.g., gBLUP and MultiBLUP) that only
focus on capturing linear additive effects can have reduced prediction accuracy when
other types of predictive effects are present (Speed and Balding, 2014; VanRaden,
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2008; Yang et al., 2010). Multi-kernel LMM is designed to capture complex effects
through utilizing various kernel functions. However, in practice, Multi-kernel LMM
tends to select only linear kernels even when non-linear effects truly exist (Table 3.3
and Supplementary Table B.5). In the contrast, although our method also applies
multiple kernels to capture various types of predictive effects, it has a much higher
chance of choosing the most appropriate kernels, which can shed light on the underlying
disease model. For example, for disease model L + P where one of the causal regions
only has pair-wise interaction effects, the hybrid screening rule has 96% probability
of using polynomial kernels that clearly suggest the presence of non-linear effects for
the prediction, whereas adaptive MKLMM always chooses to use the linear kernel.
Similarly, for model L+R, our hybrid screening has 73% chance of using the RBF kernel
for prediction, whereas it is close to 0% for adaptive MKLMM. In practice, having the
ability to choose the most appropriate kernels for prediction can lead to robust and
accurate performance across a range of phenotypes with different underlying genetic
architecture.

In the prediction analyses of FDG and AV45, HpLMMGMM achieved a better pre-
diction performance than those of commonly used methods (Figure 3.3). The designed
hybrid screening rule can substantially reduce the impact of noise and the multiple ker-
nels used in HpLMMGMM can capture both linear and non-linear predictive effects,
both of which have facilitated the prediction modeling. The empirical screening rule
used by MKLMM selected a large number of genes (i.e., about 1700 genes, on average)
in each replicate and about 400 genes were constantly kept among 100 replicates. As
shown in Figure 3.3, these selected genes may include a large number of noise, which
greatly reduces the accuracy of the prediction. Indeed, well-known AD-related genes
(e.g.,APOE and APOC1 ) were barely selected. In contrast, the hybrid screening rule
selected, on average, 34 genes and 36 genes in each replicate for FDG and AV45, re-
spectively. Moreover, from 100 replicates, only 5 genes and 3 genes were detected more
than 90% of the time for FDG and AV45, and most of these selected genes have been re-
ported to be AD-related genes in existing studies (i.e.,APOE, APOC1 and TOMM40
), which substantially improves the prediction accuracy of our method (Figure 3.3).
The input for final prediction models is determined by screening rules, and thus its
effectiveness can substantially affect the prediction performance and the interpretation
of corresponding models.

The genes kept by the screening rule are not guaranteed to be predictive, and thus
the HpLMMGMM prediction framework utilizes a penalized LMM that can further
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fine-tune the set of predictive genes for improved prediction modeling. All the genes
that were consistently selected by HpLMMGMM have been previously reported to be
associated with AD. For example, the APOE gene has been identified as the major
susceptibility gene for AD (Poirier et al., 1993; Strittmatter et al., 1993). It encodes
apolipoprotein E which is related to cholesterol metabolism, and mounting evidence
has shown that the accumulation of cholesterol in the brain (Puglielli et al., 2003) is
associated to AD. Furthermore, other studies have found that the APOE ϵ4 allele is
overrepresented among AD patients (Poirier et al., 1993; Strittmatter et al., 1993).
For example, Zhou et al., 2014a reported that APOE ϵ4 allele increases the risk of
cognitive decline in Chinese LOAD patients. Saunders et al., 1993 also found a strong
connection between the APOE ϵ4 allele and the risk of AD. The APOC1 gene encodes
apolipoprotein C1, which is also a member of apolipoprotein family, and thus it affects
AD in a similar way as APOE. Indeed, many studies suggest APOC1 along with
APOE affect the risk of AD (Ki et al., 2002; Lucatelli et al., 2011; Shi et al., 2004).
For example, Bertram et al., 2007 proposed that rs11568822 on the APOC1 gene
is associated with AD due to the linkage disequilibrium between the APOC1 with
APOE. The APOC1 Hpal+ variant has been found to be associated with AD in
Caribbean Hispanic individuals, mainly due to strong linkage disequilibrium between
the APOC1 and the APOE ϵ4 allele (Tycko et al., 2004). In addition, APOC1 can
be independently related to AD. For example, the APOC1 H2 allele was found to
be significantly associated with LOAD in the Korean population (Ki et al., 2002).
The FADS3 gene has been reported to be associated with aging diseases via affecting
LCPUFA metabolism, which plays a key role in neuronal membrane integrity and
function within the brain (Schuchardt et al., 2016). Specifically, rs174455 on FADS3
was found to be associated with LCPUFA metabolism and further affects the cognitive
ability of patients with mild cognitive impairment (MCI) (Schuchardt et al., 2016).
TOMM40 is one of the candidate genes related to the pathogenesis of AD (Ma et al.,
2013). Recent, several SNPs on the TOMM40 gene have been found to be significantly
associated with AD in genome-wide association studies (Kim et al., 2011; Potkin et al.,
2009; Shen et al., 2010). For example, Bagnoli et al., 2013 found the association of
rs157581 on TOMM40 with AD in Italian population and Huang et al., 2016 found
the association between rs2075650 on TOMM40 and AD risk for Caucasian and Asian
patients.

In summary, we have incorporated a hybrid screening rule into a penalized LMM
with GMM estimators for risk prediction analyses on high-dimensional genetic data.
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3.5. Discussion

Our proposed HpLMMGMM method can be applied to genome-wide data and effi-
ciently captures both linear and non-linear predictive effects, leading to a better predic-
tion model across a range of phenotypes. HpLMMGMM can effectively select variables
from high-dimensional genome-wide data but ignore the large sample size (e.g.,10,000)
problem. This will be the future direction of our research.
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Chapter 4

A penalized linear mixed model with
generalized method of moments
estimators for the prediction analysis
of multi-omics data

4.1 Introduction

Accurately predicting disease risk, which can facilitate the delivery of tailored treat-
ments, plays a key role towards precision medicine (Ashley, 2015). Recent emerging
high-dimensional multi-layer omics data (e.g., genome, transcriptome, methylome and
proteome data) has provided unprecedented opportunities to comprehensively investi-
gate the role of a deep catalogue of predictors in disease risk prediction (Boekel et al.,
2015). However, the complex relationships among multi-layer omics data and their
high-dimensionality have brought tremendous analytical and computational challenges
(Morris and Baladandayuthapani, 2017; Ritchie et al., 2015; Zeng and Lumley, 2018).

Existing integrative methods are mainly designed for discovering coherent patterns
among multi-omics data (Bersanelli et al., 2016; Huang et al., 2017; Morris and Bal-
adandayuthapani, 2017; Zeng and Lumley, 2018). For example, the non-negative ma-
trix factorization method (Zhang et al., 2012) projects multi-omics data onto a common
basis space so that their consistent information can be captured. Canonical correla-
tion analysis, an exploratory multivariate analysis tool, finds linear combinations of all
variables within each omics data that maximize the correlations between each canon-
ical variate pair. Therefore, the most expressive elements of canonical vectors reflect
the relationships among omics data. Partial least squares utilizes a similar idea, but
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considers covariance rather than correlation (Chen and Zhang, 2016). To further con-
sider prior biological knowledge, Bayesian models have been introduced for the inte-
grative analysis of omics data (Huang et al., 2017; Wang et al., 2012). For example,
Integrative Bayesian Analysis of Genomics (iBAG) developed by Wang et al., 2012,
integrates gene expression and methylation data in the Bayesian framework to explore
their associations with clinical outcomes. Wang et al., 2019 proposed the integrative
risk gene selector (iRIGS), a Bayesian framework that integrates multi-omics data and
gene networks, to select risk genes from genome wide association studies. Recently,
network-based methods, which can reflect complex inter-relationships in a network
and facilitate model interpretation, have been used in the integrative analysis (Huang
et al., 2017; Zhou et al., 2020). For example, similarity network fusion method pro-
posed by Wang et al., 2014a constructs a sample-by-sample similarity matrix from each
data type, and then uses a graph diffusion algorithm to fuse these similarity matrices
into a comprehensive network that is further used for patient detection. Lemon-Tree,
an integrative multi-omics network analysis, first finds co-expressed gene clusters, and
then reconstructs regulatory programs that include a set of regulator genes as network
modules by fuzzy decision trees. Finally, a probabilistic score is calculated for each
regulatory program, and the ones with high probabilistic scores are selected as poten-
tial disease drivers (Bonnet et al., 2015). Although the existing integrative analysis
has facilitated the detection of coherent patterns embedded in multi-omics data, they
usually focus on a particular gene/pathway and thus cannot be directly applied to the
analysis of high-dimensional multi-omics data.

Complex human diseases/traits manifest themselves at various molecular levels and
they are usually regulated by a number of pathways (Subramanian et al., 2020). There-
fore, jointly modeling a large number of predictors at various molecular levels while ac-
counting for their complex inter-relationships is a critical step for an accurate prediction
model (Morris and Baladandayuthapani, 2017). While high-dimensional multi-layer
omics data have provided the essential information, their ultra-high dimensionality
has made it computationally challenging to jointly analyze them. Existing integrative
methods usually only focus on specific genes or pathways, and they are mainly designed
for detecting disease-associated variables. For example, Meng et al., 2014 integrated
transcriptomic and proteomic data in the NCI-60 cancer cell line panel and found that
the leukemia extravasation signaling pathway is highly related to metastasis in leukemia
cell lines. Vaske et al., 2010 showed that the estrogen- and ErbB2-related pathways
are associated with breast cancer through integrating copy number variations, gene
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expression and DNA methylation data. While existing integrative methods have shed
light on the underlying disease etiology, they can only model a limited number of vari-
ables (e.g., one specific pathway) and thus cannot directly be applied for prediction
analyses. This is mainly because an accurate risk prediction model requires the joint
consideration of a large number of predictors from multiple candidate pathways, and
utilizing information from only one disease-associated pathway is unlikely to produce
an accurate prediction model. For example, immune response, lipid metabolism and
cell differentiation pathways are all associated Alzheimer’s disease (AD). Using infor-
mation from the immune response pathway alone is not enough to accurately predict
AD risk. Therefore, an integrative method that can simultaneously model a large num-
ber of variables from different layers of omics data is urgently needed for prediction
research.

Linear mixed models (LMMs) have great potential in modeling high-dimensional
multi-omics data. Indeed, LMMs have already long been used for prediction analysis
on high-dimensional genomic data (Speed and Balding, 2014; VanRaden, 2008; Weiss-
brod et al., 2016; Yang et al., 2010). For example, the genomic best linear unbiased
prediction (gBLUP) method uses a single random effect term to model cumulative pre-
dictive effects from all measured genetic variants (Yang et al., 2010). Both MultiBLUP
and multi-kernel LMM adopt multiple random effect terms to estimate the joint pre-
dictive effects from multiple genetic regions with each harboring many variants (Speed
and Balding, 2014; Weissbrod et al., 2016). Recently, to account for non-linear pre-
dictive effects, Wen and Lu, 2020 introduced a penalized multi-kernel LMM, where
kernel functions are used to model complex jointly predictive effects from multiple ge-
netic variants and penalization is used to select predictive regions. The basic rationale
for these LMM-based models is that genetically similarly individuals can have simi-
lar phenotypes. Therefore, instead of estimating effect sizes for each genetic variant,
LMMs aim at capturing cumulative predictive effects from a large number of predictors
through their estimated genetic similarity, which can substantially reduce the number
of model parameters, making it applicable for the analysis of genome-wide data. A sim-
ilar idea can be applied for the prediction analysis of multi-omics data, where genetic
similarities are replaced by omic-similarities that can be measured by various kernel
functions.

While LMM-based models are promising for the analysis of high-dimensional multi-
layer omics data, they can have limited predictive power if a large amount of noise is
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present. Recent work has shown that excluding noise when estimating genetic simi-
larities can not only facilitate model interpretation, but also improve the robustness
and accuracy of a prediction model. Adding an L1 penalty to the objective func-
tion is a commonly adopted approach to reduce the impact of noise. For example,
Wen and Lu, 2020 proposed a penalized multi-kernel LMM to predict phenotypes
based on high-dimensional genomic data, and Li et al., 2020 extended this method
for the prediction analysis on multi-omics data. While these methods have improved
the accuracy of prediction models, their parameter estimation can be extremely com-
putationally demanding. This is mainly because for penalized LMMs, obtaining the
maximum likelihood estimator (MLE) or the restricted maximum likelihood estimator
(REML) (Weissbrod et al., 2016; Wen and Lu, 2020), which are usually estimated
by Newton-Raphson or expectation-maximization algorithms, is computationally ex-
pensive. Generalized method of moments (GMM) is a promising alternative for the
estimation of variance components for penalized LMMs, as it can change the objective
function into a quadratic form that is much easier to optimize (Rao, 1970; Rao, 1971a;
Rao, 1972). For example, Zhu and Weir, 1996 used the minimum norm quadratic un-
biased estimation method to estimate variance components for maternal and paternal
effects in a bio-model for diallel crosses. We recently developed a GMM-based LMM
for the prediction analysis of genomic data, where we showed that the GMM-based es-
timators can accurately detect prediction genetic regions and improved the prediction
accuracy of LMM-based prediction models (Wang and Wen, 2021).

In this paper, we propose a penalized LMM with GMM estimators (MpLMMGMM)
for the prediction analysis of multi-omics data. The proposed MpLMMGMM model
can: 1) account for complex inter/intra-relationships among multi-omics data; 2) detect
predictive biomarkers; and 3) substantially reduce the computational cost of penalized
LMMs. In the following sections, we first present the MpLMMGMM method and then
compare its prediction accuracy with commonly used methods (i.e., OmicKrig) through
simulation studies. Finally, we use the proposed method to analyze the multi-omics
data obtained from the ADNI (Saykin et al., 2010).
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4.2 Methods

4.2.1 A linear mixed model for prediction analysis using multi-

omics data

Suppose we have a sample of n individuals. Let YYY be the n × 1 outcome vector and
XXXd be a n × Pd matrix of demographic variables (e.g., age and gender). We split the
genome into R sets that can be defined by various criteria (e.g., gene and pathway
annotations), and use OOOi to denote the joint predictive effects from all predictors in
the ith set. We model the outcomes as:

YYY =XXXdβββd +
R∑
i=1

OOOi + ϵϵϵ, with ϵϵϵ ∼ N(0, σ2
0IIIn) (4.1)

For notation simplicity and without loss of generality, we use the gene annotation
to define the set and only considered gene expression, genomic and methylation data.
Correspondingly, equation 4.1 can be written as:

YYY =XXXdβββd +
R∑
i=1

eeei +
R∑
i=1

gggi +
R∑
i=1

mmmi +
R∑
i=1

OOOinter
i + ϵϵϵ (4.2)

where ϵϵϵ ∼ N(0, σ2
0IIIn). eeei, gggi, mmmi, and OOOinter

i are predictive effects of gene expression
data, genomic data, methylation data and their interactions in set i. Similar to LMM-
based models designed for the analysis of genomic data (Weissbrod et al., 2016), we
assume individuals with similar molecular profiles have similar phenotypes, and model
the joint predictive effects from a large number of predictors within each omics layer
using random effect terms, where gggi ∼ N(0,KKKg,iσ

2
g,i), mmmi ∼ N(0,KKKm,iσ

2
m,i) andOOOinter

i ∼
N(0,KKKinter,iσ

2
inter,i). Here KKKg,i, KKKm,i and KKKinter,i respectively measure the similarities

among genomic data, methylation data and their interactions for the set i. While the
predictive effects from gene expression data can also be modeled in a similar fashion,
we propose to use the fixed effect defined as eeei = EEEi × γi instead, where EEEi represents
the gene expression level for the set i and γi is the corresponding effect. This is mainly
because when the number of predictors within the set is very limited, using a fixed
effect term is more efficient than the corresponding random effect model. Therefore,
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equation 4.2 can be written as:

YYY =XXXdβββd +
R∑
i=1

EEEiγi +
R∑
i=1

gggi +
R∑
i=1

mmmi +
R∑
i=1

OOOinter
i + ϵϵϵ (4.3)

where gggi ∼ N(0,KKKg,iσ
2
g,i), mmmi ∼ N(0,KKKm,iσ

2
m,i), and OOOinter

i ∼ N(0,KKKinter,iσ
2
inter,i).

The proposed modeling framework is very flexible and can accommodate various
disease model assumptions. For example, if only linear effects from all omics layers
are considered, then both genomic and methylation similarities can be measured using
linear kernels, KKKg,i = GGGiGGG

T
i /pg,i and KKKm,i = MMM iMMM

T
i /pm,i, ∀i ∈ {1, · · · , R}, where GGGi

and MMM i are n× pg,i genotype and n× pm,i methylation matrices for set i, respectively.
By using linear kernels, our proposed model is equivalent to:

YYY =XXXdβββd +
R∑
i=1

EEEiγi +
R∑
i=1

pg,i∑
j=1

GGGijγ
g
ij +

R∑
i=1

pm,i∑
j=1

MMM ijγ
m
ij + ϵϵϵ

where γg
ij ∼ N(0, σ2

g,i/pg,i), γm
ij ∼ N(0, σ2

m,i/pm,i), ϵϵϵ ∼ N(0, σ2
0IIIn), GGGij (MMM ij) is the

jth column of Gi (Mi), and γg
ij (γm

ij ) is their corresponding effect. Similarly, if only
pairwise interaction between genomic and methylation is considered, then we can set
OOOinter

i =KKKg,i ◦KKKm,i, where ◦ is the Hadamard product.

4.2.2 A penalized linear mixed model with generalized method

of moments estimators using multi-omics data

Recent work has indicated that not all measured variables from multi-omics data are
predictive (Li et al., 2020; Wen et al., 2016; Wen and Lu, 2020), and thus variable
selection can be of great importance for the robustness and accuracy of a prediction
model (Byrnes et al., 2013). Adding an L1 penalty into the objective function is a com-
monly adopted approach for simultaneous variable selection and parameter estimation
(Li et al., 2020; Wen and Lu, 2020; Wu et al., 2009). For high-dimensional multi-
omics data, it is essential to perform variable selection at each omics layer. Therefore,
we proposed to add an L1 penalty on both the fixed effect (e.g., for the selection of
gene expression data) and random effect terms (e.g., for the selection of genomic and
methylation data). While REML is widely used to estimate parameters for LMMs
(Speed and Balding, 2014; VanRaden, 2008; Yang et al., 2010), it is computationally
expensive, especially for LMMs with a large number of random effects. Indeed, it is
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computationally prohibitive to consider a large number of random effects for REML
and MLE. Therefore, following a similar idea in Wang and Wen, 2021, we proposed to
use the GMM to estimate model parameters, and thus the objective function for model
4.3 can be written as:

(β̂ββd, γ̂γγ, σ̂σσ
2) = argmin

βββd,γγγ,σσσ2

1

2
||ZZZZZZT −

R∑
i=1

∑
j∈(g,m)

KKKj,iσ
2
j,i − σ2

0IIIn||2F

+ λ1

R∑
i=1

∑
j∈ (g, m)

σ2
j,i + λ2

R∑
i=1

|γi| (4.4)

where γγγ = (γ1, · · · , γR); ZZZ = YYY −XXXdβββd −
∑R

i=1EEEiγi; λi > 0, i ∈ {1, 2} is the penalty;
and σσσ2 = (σ2

0, σ
2
g,1, · · · , σ2

g,R, σ
2
m,1, · · · , σ2

m,R).
We used an iterative procedure to estimate parameters in the random (i.e., σσσ2) and

fixed effects (i.e., βββd and γγγ). During iteration step t+ 1, we first updated the random
effect term as:

σ̂σσ2,t+1 =argmin
σσσ2≥0

1

2
||ZZZtZZZ

T
t −

R∑
i=1

∑
j∈(g,m)

KKKj,iσ
2
j,i − σ2

0IIIn||2F

+ λ1

R∑
i=1

∑
j∈ (g, m)

σ2
j,i, λ1 > 0 (4.5)

where ZZZt = YYY −XXXdβββ
t
d −

∑R
i=1EEEiγ

t
i . Given the parameter estimates for the random

effect term during step t+ 1, we updated the parameters associated with fixed effects
as:

(β̂ββ
t+1

d , γ̂γγt+1) = argmax
βββd,γγγ

−1

2
log |ΣΣΣt+1| −

1

2
ZZZTΣΣΣ−1

t+1ZZZ

− λ2

R∑
i=1

|γi|, λ2 > 0 (4.6)

where ΣΣΣt+1 =
∑R

i=1

∑
j∈(g,m)KKKj,iσ

2,t+1
j,i + σ2,t+1

0 IIIn. The details of the proposed estima-
tion procedure is shown in algorithm 2.

Compared to penalized LMMs that rely on REML estimators, our proposed objec-
tive function during each of the iteration step is much easier to optimize. Therefore,
our proposed algorithm is computationally efficient. As opposed to existing LMMs
that can only consider a limited number of random effects (i.e., usually ≤ 10 (Wang
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and Wen, 2021)), our proposed method can jointly consider a large number of regions
(i.e., random effects) and efficiently detect those that are predictive.

Algorithm 2 Procedure for the parameter estimation
Initialization: at step t = 0:

Set σσσ2,0 = 0

Estimate (β̂ββ
0

d, γ̂γγ
0) = argmin

1

2
||YYY −XXXdβββd −

∑R
i=1EEEiγi||2F + λ2

∑R
i=1 |γi|

while the changes of parameters (i.e., βββd, γγγ and σσσ2) estimation are not simultane-

ously negligible do

t = t+ 1

Update σ̂σσ2,t via equation 4.5

Update (β̂ββ
t

d, γ̂γγ
t) via equation 4.6

end while

Let YYY a = (YYY p,YYY ), where YYY p is np × 1 vector of outcomes to be predicted. Given
the parameter estimates for σ̂σσ2, β̂ββd and γ̂γγ, the variance of YYY a can be directly derived
as Σ̂ΣΣYYY a =

∑R
i=1

∑
j∈(g,m)KKKj,iσ̂

2
j,i + σ̂2

0IIIn. The variance of YYY a can be further written as:

Σ̂ΣΣYYY a =

[
Σ̂ΣΣpp Σ̂ΣΣpo

Σ̂ΣΣop Σ̂ΣΣoo

]

where Σ̂ΣΣpp and Σ̂ΣΣoo respectively denote the variance of testing and training samples, and
Σ̂ΣΣpo is their covariance. Using the conditional distribution formula of the multivariate
normal distribution, the predictive values for the testing samples can be calculated as:

YYY p =XXXd,pβ̂ββd +
R∑
i=1

EEEi,pγ̂i + Σ̂ΣΣpoΣ̂ΣΣ
−1

oo (YYY −XXXdβ̂ββd −
R∑
i=1

EEEiγ̂i)

where XXXd,p (XXXd) and EEEi,p, i ∈ {1, · · · , R} (EEEi) denote the demographic variables and
gene expression levels in the testing (training) samples, respectively.

4.3 Simulation studies

We conducted extensive simulation studies to evaluate the performance of MpLM-
MGMM, and further compared it with OmicKrig, a commonly used method for pre-
diction analysis of multi-omics data (Wheeler et al., 2014), under its default setting.
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For all the simulation studies, we considered three types of omics data, including gene
expression, DNA methylation and genotypes. For our proposed method, we grouped
genetic variants and methylation levels according to the gene annotation, and mod-
eled their effects using the random effect terms according to equation 4.3. For gene
expression data, since they are summarized at the gene level (i.e., one expression level
per gene), we modeled them using the fixed effects. For all the simulation scenarios,
we used the 1000 Genome Project (The 1000 Genomes Project Consortium, 2015) to
generate genomic data and randomly selected 30 SNPs that are within 75Kb in each
region. In addition, 30 methylation levels were also included in each region. Both gene
expression and methylation levels were simulated using the uniform distribution. We
set the first three regions as causal and the remaining as noise. We considered sample
sizes of 500 and 1000, where 70% of the samples are used for model training and the
rest for model evaluations. The prediction accuracy was gauged according to both
Pearson correlations and mean square errors (MSEs). For our proposed method, we
also calculated the probability of correctly selecting predictive regions from each layer
of omics data.

4.3.1 Scenario I: the impact of the number of noise regions

Converging evidence has suggested that a large number of variables collected from
multi-omics data is noise. To evaluate their impact, we set three regions to be causal
and gradually increased the number of noise regions from 7 to 97. We considered a dis-
ease model where three levels of omics data contributed to disease risk independently:

YYY =
3∑

i=1

EEEiγi +
3∑

i=1

30∑
j=1

GGGijγ
g
ij +

3∑
i=1

30∑
j=1

MMM ijγ
m
ij + ϵϵϵ (4.7)

where ϵϵϵ ∼ N(0, σ2
0IIIn). For region i, EEEi is its gene expression data; GGGij, j ∈ {1, · · · , 30}

is its genotypes; and MMM ij is the methylation levels. For region i, γi, i ∈ {1, 2, 3} is
the effect sizes of gene expression data; γg

ij ∼ N(0, σ2
g,i/pg,i),∀j is the effect sizes of

genetic variants; and γm
ij ∼ N(0, σ2

m,i/pm,i),∀j is the effect sizes of methylation levels.
The details of the simulation settings are shown in Supplementary Table C.1. It is
straightforward to show that equation 4.7 is equivalent to:

YYY ∼ N(
3∑

i=1

EEEiγi,
3∑

i=1

∑
j∈(g,m)

KKKj,iσ
2
j,i + IIInσ

2
0)
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where KKKj,i, j ∈ (g,m) is a kernel matrix calculated based on the linear kernel. There-
fore, we simulated outcomes based on the multivariate normal distribution. For each
model setting (i.e., different number of noise regions), we ran 1000 Monte Carlo repli-
cates, and reported the Pearson correlations and MSEs calculated from the testing
samples. We further calculated the average probability of correctly detecting causal
predictors.

Figure 4.1: The impact of the number of noise regions on Pearson
correlations and MSEs (n = 500)

Table 4.1: The chances of selecting causal regions as the number of
noise regions increases (n = 500)

Regions Gene Expression Data Genomic Data Methylation Data

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

10 0.999 0.919 0.928 0.901 0.924 0.969
25 1.000 0.971 0.924 0.917 0.923 0.968
50 0.998 0.984 0.895 0.929 0.911 0.975
75 0.996 0.987 0.906 0.940 0.899 0.977
100 0.995 0.990 0.887 0.948 0.894 0.979

Pearson correlations and MSEs for sample sizes of 500 and 1000 are shown in Figure
4.1 and Supplementary Figure C.1, respectively. Among all the scenarios considered,
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MpLMMGMM performs better than the OmicKrig method. Of particular note, as the
number of noise regions increases, the prediction accuracy of OmicKrig drops substan-
tially, whereas it remains relatively stable for our proposed method. For example, the
mean of the Pearson correlations dropped from 0.642 to 0.345 for OmicKrig, whereas
it only changed from 0.757 to 0.712 for our method. Similarly, the MSEs increased
from 3.043 to 4.502 for OmicKrig, while they barely changed for our method. In terms
of the variable selection, our proposed method can choose the causal regions at a high
probability while maintaining a low false positive rate, regardless of which layers of
omics data we are exploring (Table 4.1 for n = 500 and Supplementary Table C.2
for n = 1000). This clearly indicates that our proposed method can significantly re-
duce the impact of noise, and thus can maintain robust performance as the amount of
non-relevant variables increases. We consider the robustness against noise important,
especially for the analysis of high-dimensional multi-layer omics data, as only a small
proportion of measured variables are causal and they are usually unknown in advance.

4.3.2 Scenario II: the impact of disease models

Complex human diseases manifest themselves at various molecular levels (Chatterjee et
al., 2013), and thus we evaluated the impact of disease models in this set of simulations.
We set three regions to be causal and generated the outcomes as:

YYY ∼ N(
3∑

i=1

EEEiγi,
3∑

i=1

∑
j∈(g,m,gm)

KKKj,iσ
2
j,i + IIInσ

2
0)

We considered 7 disease models (Table 4.2), ranging from the simplest model where
only one layer of omics data is associated with the outcomes to complex models where
multiple layers of omics data jointly contribute to disease risk. The corresponding
effect sizes under each disease model are summarized in Supplementary Table C.3.
For each of the disease models, we considered 50 regions and generated 1000 Monte
Carlo replicates for each model setting. As we did in the first round of simulations, we
first used Pearson correlations and MSEs to gauge the prediction accuracy, and then
calculated the probability of correctly detecting predictive markers. For comparison
purposes, in addition to OmicKrig which models all layers of omics data, we also
analyzed each simulated data using our proposed method, where only one layer of omics
data is considered. Specifically, when only gene expression data are considered, our
proposed method is equivalent to Lasso and we denoted this model as Transcriptome.
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When only genomic or methylation data are considered, MpLMMGMM is equivalent to
the pLMMGMM model proposed in Wang and Wen, 2021, and we denoted the genomic
data only and methylation data only model as Genome and Methylome, respectively.

Table 4.2: The chances of selecting causal regions under different dis-
ease models (n = 500)

Disease Gene Expression Data Genomic Data Methylation Data

Models Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

S1 : E
a 0.996 0.980 – 0.946 – 0.937

S2 : G
b – 0.994 0.983 0.930 – 0.986

S3 : M
c – 0.996 – 0.987 0.991 0.987

S4 : GMd – 0.996 0.741 0.955 0.603 0.985
S5 : G+M e – 0.995 0.893 0.946 0.896 0.986
S6 : E +Gf 0.981 0.981 0.987 0.903 – 0.962
S7 : E +Mg 0.984 0.981 – 0.965 0.993 0.962
a Only gene expression data is causal.
b Only genomic data is causal.
c Only methylation data is causal.
d Only the interaction between genomic and methylation data is causal.
e Both genomic and methylation data are causal.
f Both gene expression data and genomic data are causal.
g Both gene expression data and methylation data are causal.

Figure 4.2 and Supplementary Figure C.2 summarize the prediction accuracy for all
the methods when using the sample sizes of 500 and 1000, respectively. Our proposed
method outperforms OmicKrig under all the disease models considered. It has higher
Pearson correlation coefficients and lower MSEs than OmicKrig. Although OmicKrig
can simultaneously consider all layers of omics data, it treats all measured variables in
a similar fashion and thus its performance can be greatly impacted when not all layers
of omics data are predictive. On contrary, our proposed method has the capacity in
selecting predictive variables at each omics layer, and thus maintains better prediction
performance when a large number of noise is present or not all layers of omics data are
predictive. As shown in Table 4.2 and Supplementary Table C.4 , our proposed MpLM-
MGMM method has high sensitivity and specificity for each layer of omics data. For
example, when only methylation data are associated with the outcomes (i.e., disease
model M), our model displayed 99.1% chance of correctly identifying the causal fac-
tors from the methylation data. With regards to the false positive, the model only has
0.4%, 1.3% and 1.3% chance of mislabeling noise variables as causal for gene expres-
sion, genomic and methylation data, respectively. Using our proposed method, we can
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identify specific causal variants at each omics layer, providing a more comprehensive
view of the disease etiology. The precise identification of causal factors from the corre-
sponding omics layers can facilitate health practitioners to deliver tailed interventions.
Furthermore, unlike OmicKrig which assumes each omics contributes independently
to the traits, our proposed method can take the contributions from interactions into
consideration (i.e., KKKgmσ

2
gm,i). As shown in Table 4.2, even for the models without

marginal effects (i.e., disease model GM), the average chance of our method correctly
detecting causal and noise regions are 67.2% and 97.9%, respectively. When building
risk prediction models, our proposed method uses a data-driven approach to accurately
select predictors from different omics layers, and thus reduces substantially the impact
of noise. In addition, our proposed method can not only jointly model predictors at
each omics layer, but also take the interaction effects between different omics layers
into consideration. It can achieve robust and accurate prediction performance across
a range of disease models (Figure 4.2 and Supplementary Figure C.2).

Figure 4.2: The impact of disease models (n = 500)

Comparing to the single-layer-based methods, when only one layer of omics data is
associated with the outcomes (i.e., disease models E, G and M), our proposed method
has similar performance to the models where only relevant omics data that contribute
to disease risk are used. For example, when outcomes are only influenced by gene
expression data (i.e., disease model E), our proposed method performs similarly to the
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single-layer-based analysis where only gene expression data are used (i.e., Transcrip-
tome), and it significantly outperforms the other single-layer-based methods where
either genomic or methylation data are modeled. Similarly, when only genomic data
are relevant to disease outcomes, our model has similar level of performance to Genome
that only used genomic data, and it has much better performance than Transcriptome
and Methylome where non-relevant layers of omics data are modeled. When multiple
layers of omics data jointly affect the outcomes, as expected, our proposed method
significantly outperformed the single-layer based methods. For example, for disease
model G+M , where both genomic and methylation data are associated with the out-
comes, our method performed better than the ones where only genomic or methylation
data are used. This clearly indicates the advantages of jointly modeling multi-layer
omics data, where predictors at various molecular levels can affect the outcomes. As
shown in Figure 4.2 and Supplementary Figure C.2, our method has better and robust
prediction performance, regardless of whether only one layer of omics data contributes
to disease risk or multiple layers are relevant.

4.4 Real data application

We are interested in predicting PET-imaging outcomes, including FDG and AV45,
using the whole-genome sequencing and gene expression data obtained from the ADNI.
ADNI is a longitudinal study that collects biomarkers from control, mild cognitive
impairment and AD patients to investigate prevention and treatment strategies for
AD (Mueller et al., 2005). After removing correlated individuals, 808 subjects aged
between 55 and 90 remained.

The whole-genome sequencing data were collected and sequenced on the Illumina
HiSeq2000 at a non-Clinical Laboratory Improvements Amendments (non-CLIA) labo-
ratory (Saykin et al., 2015). DNA samples come from study subjects in ADNI 2, which
includes both newly recruited subjects and ADNI 1/GO continuing subjects. Gene
expression data were collected from subjects in ADNI 2 at baseline for newly recruited
subjects and 1st ADNI 2 visit for ADNO 1/GO continuing subjects, and then yearly.
We annotated genetic variants based on GRch37 assembly, and selected 89 genes that
have been reported to be associated with AD based on existing literature. We further
filtered out genetic variants with missing rate larger than 1%, and a total of 59,666
variants remained in our final analyses. We focused on the baseline data, and only kept
individuals with both genomic and gene expression data at the baseline. Therefore,
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Figure 4.3: Accuracy comparisons for FDG and AV45

a total of 443 and 441 samples were analyzed for FDG and AV45, respectively. The
distributions of FDG and AV45 for these samples are shown in Supplementary Figure
C.3. We further randomly split the samples into training and validation sets (n = 100),
where models are built based on the training samples and prediction accuracy is eval-
uated based on the validation set. We replicated this process 100 times to reduce the
risk of chance findings.

The prediction accuracy for both FDG and AV45, including Pearson correlations
and MSEs, is shown in Figure 4.3. Our proposed method has achieved better prediction
performance than OmicKrig; i.e., it has higher Pearson correlations and lower MSEs
than OmicKrig for both FDG and AV45. This result clearly indicates that filtering
out the impact of noise can improve prediction accuracy. Comparing our proposed
models built with multi-omics data with the ones built with single-layer omics data,
our method has a similar level of prediction accuracy as the one built with genomic data
only, but it has much better performance than the one where only gene expression data
are modeled. This result indicates that genomic factors are the driving forces for the
prediction of both FDG and AV45. Indeed, for both FDG and AV45, gene expression
data have been rarely selected by our method (Supplementary Table C.5). Similarly,
for the single-layer-based method where only gene expression data were modeled, only
two genes are selected 1% of the time for FDG and eight genes are selected less than
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7% of the time for AV45.
The selection details for our proposed method are shown in Supplementary Table

C.5. For transcriptomic data, more than 88% of the genes were never selected from
the 100 random replicates. For those genes that were selected at least once, the chance
of their being selected was extremely low (i.e., 2% on average). For genomic data,
three genes (i.e., APOC1, APOE and TOMM40 ) were selected more than 90% of
the time, whereas the other genes averaged a less than 2% chance of being selected.
All of the highly selected genes are well-known AD risk factors (Ossenkoppele et al.,
2013; Roses, 2010). For example, APOE ϵ4 highly affects the risk of AD (Tang et
al., 1998). The rs4420638 polymorphism on APOC1 can increase the accumulation
of homocysteine, and thus influences the risk of AD (Prendecki et al., 2018). The
rs10524523 on TOMM40 has also been reported to be associated with late-onset AD
(Roses, 2010).

4.5 Discussion

In this work, we proposed a penalized LMM with the GMM estimator for prediction
analysis on multi-omics data. The proposed MpLMMGMM groups multi-omics data
into multiple regions that can be defined based on various criteria (e.g., gene and
pathway annotations). It employs multiple random effect terms to model cumulative
predictive effects from predictors at various molecular levels, and captures both lin-
ear and non-linear predictive effects through adopting multiple kernel functions. The
proposed method uses a penalty term to enable the selection of predictive regions and
omics layers, where the GMM estimator is used to expedite the model’s computation.
Through extensive simulation studies and analysis of the ADNI data set, we have
demonstrated that our method: 1) is robust against noise; 2) has better prediction
performance across a range of disease models; 3) can accurately detect predictors, in-
cluding their interactions, from each layer of omics data; and 4) is computationally
efficient.

Multi-omics data can be ultra-high dimensional, as single-layer omics data itself can
already have millions of potential predictors. For example, the whole-genome sequenc-
ing for genomic and methylation data can each have millions of measured predictors.
Treating variables obtained from all layers of omics data as predictive can not only
increase the computational burden but also reduce the prediction accuracy (Byrnes et
al., 2013). Therefore, variable selection is an essential step in the prediction analyses
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of multi-omics data. Existing LMM-based methods either ignore the impact of noise
(e.g., gBLUP) or reply on empirical criteria to perform variable screening (e.g., Multi-
BLUP and MKLMM) (Speed and Balding, 2014; Weissbrod et al., 2016; Yang et al.,
2010), both of which can result in poor and unstable performance. On the contrary,
our proposed method can efficiently detect predictive variables at each omics layer, and
simultaneously model their joint predictive effects. As the amount of noise increases,
MpLMMGMM maintains stable and accurate prediction performance, whereas OmicK-
rig can be greatly affected (Figure 4.1 and Supplementary Figure C.1). Furthermore,
as shown in Table 4.1 and Supplementary Table C.2, the sensitivity and specificity
for the proposed MpLMMGMM method are relatively high, and they remain stable
regardless of the amount of noise. This clearly indicates that the proposed method
has achieved robust performance against noise, which is of great importance for an
accurate risk prediction model.

Due to the advances in high-throughput biotechnologies, multi-omics data are be-
coming increasingly accessible. For example, the Cancer Genome Atlas project provides
multiple molecular assays, including mRNA, DNA methylation and proteomics data,
by profiling thousands of tumor samples (Cancer Genome Atlas Research Network et
al., 2013). Although existing integrative methods have greatly facilitated our under-
standing of complex biological systems (Morris and Baladandayuthapani, 2017; Ritchie
et al., 2015; Zeng and Lumley, 2018), they mainly focus on specific genes/pathways
and thus have limited applicability to prediction research. This is mainly because com-
plex human traits/diseases are usually affected by multiple genes/pathways at various
molecular levels. Focusing on only a few factors can overlook the contributions from
other predictors, leading to a model with low prediction accuracy. Therefore, jointly
considering all potential predictors as well as their intra/inter-relationships is an essen-
tial step towards an accurate prediction model. To simultaneously model predictors at
various omics layers, we extended the LMM framework, a widely used model for the
analysis of genomic data, by introducing kernel functions to account for various types
of predictive effects (e.g., pairwise interaction) and adopting penalization to detect
predictors from all omics layers. As shown in the second simulation studies (Figure 4.2
and Supplementary Figure C.2), the proposed method outperforms the existing meth-
ods, especially when multiple layers of omics data jointly contribute to disease risk. In
addition, the proposed method has much better interpretation than OmicKrig does.
As shown in both Table 4.2 and Supplementary Table C.4, our model can correctly
detect predictors and their interactions from the relevant omics layers, and thus greatly
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facilitates the understanding of disease mechanisms. For example, when only one layer
of omics data is predictive (e.g., disease models E, G and M), the proposed method
can correctly detect causal regions from the corresponding omics layer and achieve a
similar level of prediction accuracy as a model where only the disease-associated omics
layer is used. Even for the models without marginal effects (i.e., disease model GM),
our method can still detect causal regions and achieve better prediction performance
than existing methods can.

Computational efficiency is one of the major challenges for penalized LMMs with
a large number of random effects (Li et al., 2020; Weissbrod et al., 2016; Wen and Lu,
2020). While MLE and REML are widely used in the parameter estimations for LMMs,
it is computationally demanding, especially when the number of random effects is large.
This is mainly because the objective function of penalized REML/MLE is non-convex,
and it has to repeatedly calculate the inverse of the n × n matrix. To expedite its
computation, we adopted the GMM estimators and the objective functions to obtain
GMM estimators are in a quadratic form, which is much easier to optimize. The
computational efficiency of GMM allows us to jointly model a large number of regions
and account for various non-linear effects. As shown in the simulations in Scenario I,
MpLMMGMM can simultaneously model 100 random effect terms (e.g., the number
of regions ≥ 50), whereas other existing LMMs can only consider a limited number
of random effects (i.e., usually ≤ 10 (Wang and Wen, 2021)). The computational
time as the number of random effects increases for our proposed method is shown in
Supplementary Figures C.4 and C.5.

In the prediction analysis of PET-imaging outcomes based on genomic and gene
expression data, we found that baseline FDG and AV45 are mainly predicted by the
genomic data. Our method consistently found that genotypes on APOC1, APOE
and TOMM40 are highly predictive. APOE has been identified as a major genetic risk
factor for AD. The apolipoprotein E is encoded by APOE gene on chromosome 19, and
is involved in cholesterol transport (Zannis et al., 1993), which affects the pathogenesis
of AD (Puglielli et al., 2003). The APOE ϵ4 is also found to be a determinant risk
factor for AD (Graff-Radford et al., 2002; Duijn et al., 1994). The APOC1 gene located
on chromosome 19 encodes apolipoprotein C1, which takes part in the metabolism of
brain cholesterol. Researchers have found that the deterioration of brain cholesterol is
associated with AD (Poirier et al., 1993). In addition, the rs11568822 polymorphism
on APOC1 increases the risk of AD in Caucasians, Asians and Caribbean Hispanics
(Zhou et al., 2014b). TOMM40 encodes a translocase (i.e., Tom40) which causes the
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accumulation of 29 amyloid precursor proteins during mitochondrial biogenesis, and
thus affects the mitochondrial dysfunction in late-onset AD (Roses, 2010). In addition,
the rs2075650 and rs10524523 polymorphisms on TOMM40 were also found to be
associated with AD (Huang et al., 2016; Prendecki et al., 2018).

In summary, we have developed a penalized LMMs with GMM estimators for risk
prediction analysis on multi-omics data. Our method is robust against noise and can
capture predictive markers, including their interactions, from relevant omics layers.
It has better prediction performance than the commonly used methods. While our
proposed method has achieved better prediction performance, there are several lim-
itations. Similar to existing literature (Speed and Balding, 2014; Weissbrod et al.,
2016), MpLMMGMM only focuses on continuous outcomes. It would be of interest to
develop a generalized LMM framework for outcomes that come from the exponential
family (e.g., binary and Poisson). In addition, a penalized LMM with adaptive Lasso
where different penalties are imposed on each coefficient to meet the smaller bias and
better sparsity, can be proposed to adopt a data-driven approach to select predictive
regions. The R-package implementing the proposed method is available at the GitHub
(https://github.com/XiaQiong/MpLMMGMM).
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Chapter 5

Summary and future Work

5.1 Summary

This dissertation considers the penalized linear mixed model (LMM) with general-
ized method of moments (GMM) estimators for the prediction analysis using high-
dimensional data. LMMs and their extensions have long been used for prediction
analysis on high-dimensional genetic data. They usually focus on modeling simple lin-
ear relationships, and their parameter estimations rely on MLE or REML. However,
the computation of penalized LMMs can be demanding, especially when the number of
random effects is large and/or complex types of relationships are modeled. Therefore,
we have proposed to use GMM to estimate the parameters in penalized LMM, where
multi-kernel learning and variable screening are further incorporated for improved pre-
diction performance. The new modeling framework performed significantly better than
existing LMM-based methods in both simulated and real data examples.

In chapter 1, previous work on prediction analysis based on high-dimensional multi-
layer omics data was reviewed. Particularly, we focused on the widely used LMMs
and their challenges in modeling high-dimensional data, including variable selection,
parameter estimation and non-linear effect modeling. We first briefly described the
commonly used variable selection method, and then presented a detailed discussion
about regularization and screening rules, including SIS, strong and safe rules. Regard-
ing parameter estimations, the traditional maximum likelihood and restricted maxi-
mum likelihood estimators used in LMMs and penalized LMMs were discussed first,
and then the GMM estimators for variance component estimation, including ANOVA,
MINQUE, and MIVQUE. Finally, we discussed existing methods for integrating multi-
layer omics data, where the complex inter/intra-relationships among multi-omics data
can be efficiently captured.
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In chapter 2, a new penalized LMM that estimates its parameters using the GMM
was presented. The major challenge in estimating parameters for penalized LMMs
with multiple random effects is computation. The objective function to obtain MLE or
REML estimators is not easy to optimize and its traditional optimization algorithms,
such as Newton Raphson and expectation-maximization, cannot handle a large number
of random effects. To overcome this, we utilize the GMM estimators, where the objec-
tive function is transformed into a quadratic form that is much easier to optimize. We
showed that the GMM estimators for penalized LMM have the desired oracle property.
Empirical studies using simulated and real-world data showed that the new penalized
LMM with GMM estimators performs remarkably better than existing methods. It can
not only simultaneously model a large number of random effects, but also efficiently
detect those regions that are relevant. For the prediction analysis of PET-imaging
outcomes based on a candidate gene approach, the new method explained more heri-
tability than existing methods, and it detected that genetic variants on APOC1, APOE
and TOMM40 genes are highly important for the predictions.

In chapter 3, a hybrid screen rule, which is built based on the sequential strong
rule and enhanced DPP rule and incorporated into the penalized LMM with GMM
estimators, is described. Penalized LMMs use multiple random effects to capture joint
predictive effects from multiple markers. For the analysis of genome-wide data, penal-
ized LMMs can have tens of thousands of random effects, which makes it computational
infeasible. To address this challenge, we developed a hybrid screening rule and further
incorporated it into the penalized LMMs with GMM estimators. We showed that the
designed hybrid screening rule aligns well with the penalized LMM with GMM estima-
tors. In particular, for each given value of penalty, variables that have been screened
out by the hybrid screening rule are guaranteed to have no predictive effects in the
corresponding penalized LMM with parameters estimated by GMM. Empirical studies
showed that the hybrid screening rule can reduce the data dimension to a manage-
able size for the downstream prediction task. Our model can not only consistently
detect predictive variables while keeping the number of selected non-relevant mark-
ers small, but also screen out inappropriate kernels to facilitate the final prediction.
For the analysis of PET-imaging outcomes based on genome-wide data, the proposed
screening rule screened out more than 95% of the 20,000 possible genes and the fi-
nal predictions had much better and more robust performance than the performance
of competing methods. The highly predictive genes detected from this genome-wide
analysis were APOC1, APOE, TOMM40 and FADS3, all of which are known to be
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related to Alzheimer’s disease (AD).
In chapter 4, a penalized LMM with the GMM estimator was developed for pre-

diction analysis on high-dimensional multi-layer omics data. Multi-omics data are
high-dimensional and they have complex inter/intra relationships, which impose sig-
nificant analytical and computational challenges for prediction analysis. To address
these challenges, we extended the penalized LMM with GMM estimators for the pre-
diction analysis of multi-omics data. We used multiple kernel functions to capture
complex predictive effects at various molecular levels and used a penalty term to select
predictors from relevant omics layers, where GMM is used for parameters estimation.
We showed that the computational efficiency of GMM allows our method to jointly
model a large number of predictors from multiple omics layers. Extensive simulation
studies showed that our method has better predictive performance than other existing
methods. Our method can not only account for complex relationships among multi-
omics data but also has the capabilities of selecting predictive regions, including their
interactions, from the relevant omics layer. In the analysis of the ADNI data set, we
used genomic data and gene expression data to predict PET-imaging outcomes, and we
found that our proposed method has better prediction performance than other com-
peting method. In addition, our method consistently found that genotypes on APOC1,
APOE and TOMM40 are highly predictive.

5.2 Future work

The aim of our research was to effectively select variables from high-dimensional data
and ignore the large sample size (e.g.,10,000) problem. However, in the era of big
data, the sample size also increases at an exponential speed. For example, The UK
Biobank can provide the whole-genome sequencing data from 314,278 participants for
an AD genetic study, which provides more opportunities to elucidate the biological
mechanisms underlying AD. Our method cannot be used when the sample size is very
large, mainly because of the complexity of objective functions. After the vectorization
of elements in our objective function, the sample size becomes the square of the previous
sample size. Thus, as a next step in the development of our model, we would like to
derive a new optimization process of objective functions instead of its vectorization or
apply a more efficient algorithm to solve the objective functions.

Another problem is that our method only focuses on continuous outcomes. However,
some disease outcomes used in prediction analysis are categorical. For example, in the
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studies of Gestational trophoblastic diseases, the presence of gestational trophoblastic
neoplasia can be regarded as an outcome, so the result is binary (Dandis et al., 2020).
Therefore, it would be of interest to develop a generalized LMM framework for outcomes
that come from the exponential family (e.g., binary and Poisson), where various link
functions can be applied to the outcomes. For example, we could use a logistic link
function for binary outcomes and use the probability mass function for the Poisson
outcomes.

In addition, our method applies a L1 penalty (i.e., Lasso) to select predictive mark-
ers, where the Lasso imposes the same penalty on each coefficient. However, for small
bias and better sparsity, small penalties should be applied to large coefficients and
large penalties should be applied to small coefficients. Thus, in the future, we hope to
develop a penalized LMM with adaptive Lasso and further use GMM for parameter
estimation, which will adopt a data-driven approach to select predictive regions as well
as predictive layers of omics data.

To summarize, our future research will explore the large sample size, categorical
outcomes and the selection of penalty techniques.
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Appendix A

A penalized linear mixed model with
generalized method of moments
estimators for complex phenotype
prediction using genomic data

A.1 Proofs of theorems

A.1.1 The derivation of objective function

Recall the objective function defined in equation 2.3 of the main text is:
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As noted in the main text, MMM = vec(AAATYYY YYY TAAA), TTT i = vec(AAATKKKiAAA). Therefore, the
estimation of equation 2.3 in the main text is equal to solving the equationMMM = TTTσ2σ2σ2+ωωω

and ωωω ∼ N(0, σ2
ωIII). Our penalized objective function can be rewritten as:

σ̂σσ2 = argmin
σσσ2≥0
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A.1.2 Proof of theorem 2.1

Using the KKT (Karush-Kuhn-Tucker) conditions, σσσ2 = (σ2
0, σ
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negative Lasso estimator for given λ if and only if:
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Let σσσ2(1), σσσ2(2), σ̂σσ2(1), σ̂σσ2(2), WWW (1), WWW (2) and rrr(1), rrr(2) are the q+1 nonzero elements
and the R − q zero elements of σσσ2, σ̂σσ2, WWW and rrr. If there exist σ̂σσ2 meet equation A.2,
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Let HHH = III − TTT (1)(TTT (1)TTTT (1))−1TTT (1)Tand HHH is a projection matrix and whose
maximal eigen value λmax(HHH) is 1 or 0.
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Because ωωωi are i.i.d. Gaussian variables, ZZZi and ξξξi are also Gaussian variables
and are bounded by secondary moment. Let Φ(t) denote the distribution function of
standard Gaussian variable, then for any t > 0,

1− Φ(t) ≤ t−1e−
1
2
t2

for λ ∝ N
1+c4

2 , by λ
2
√
N
[CCC−1

11 111]i ≤ λ
2
√
NM2

√
q + 1, we have

q∑
i=0

P (Zi ≤ −
√
Nσσσ2

i +
λ

2
√
N
[CCC−1

11 111]i) ≤
q∑

i=0

P (|Zi| ≥
√
Nσσσ2

i −
λ

2
√
N
[CCC−1

11 111]i)

= (q + 1)O(1− Φ((1 + o(1))M3M2N
c2
2 ))

= o(e−Nc3 )

And also we can get

R∑
i=q+1

P (ξi ≤ − λ

2
√
N
ρi) ≤

R∑
i=q+1

P (|ξi| ≥
λ

2
√
N
ρi)

= (R− q)O(1− Φ(
1

M1

λ√
N
)ρρρ)

= o(e−Nc3 )

P (S(λ) ̸= S1) =

q∑
i=0

P (Zi ≤ −
√
Nσσσ2

i +
λ

2
√
N
[CCC−1

11 111]i) +
R∑

i=q+1

P (ξi ≤ − λ

2
√
N
ρi)

≤ o(e−Nc3 ) + o(e−Nc3 ) → 0, as N → ∞
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P (S(λ) = S1) → 1, as N → ∞

Variable selection consistency proof completed.

A.1.3 Proof of theorem 2.2

Under assumptions 3 and assumptions 4 in the main text, Negahban et al. (2012)
establishes upper bounds for nonnegative Lasso estimation errors:

||σ̂2 − σ2||22 ≤
64σ2

ω

k2
m

(q + 1) logR

N

||σ̂2 − σ2||1 ≤
24σ2

ω

k2
m

(q + 1)

√
logR

N

From these bounds, we know that our pLMMGMM method has estimation consistency,
i.e., ||σ̂2 − σ2||22 → 0 if (q+1) logR

N
→ 0, as N → ∞.

A.1.4 Proof of theorem 2.3

Based on the proof of theorem 2.1:

√
N(σ̂σσ2(1)− σσσ2(1)) = CCC−1

11 (WWW (1)− λ√
N
111)

Since ωi ∼ N(0, σ2
ω), then

CCC−1
11WWW (1) ∼ N(0, σ2

ωCCC
−1
11 )

Then we have

Φ̂(t) = P (
√
N(σ̂σσ2(1)− σσσ2(1)) ≤ t)

= P (CCC−1
11WWW (1)− λ√

N
CCC−1

11 111 ≤ t, S(λ) = S1)

+ P (
√
N(σ̂σσ2(1)− σσσ2(1)) ≤ t, S(λ) ̸= S1)

= P (CCC−1
11WWW (1)− λ√

N
CCC−1

11 111 ≤ t)− P (CCC−1
11WWW (1)− λ√

N
CCC−1

11 111 ≤ t, S(λ) ̸= S1)

+ P (
√
N(σ̂σσ2(1)− σσσ2(1)) ≤ t, S(λ) ̸= S1)
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Based on the assumption 1 in the main text, we can prove that:

λ√
N
CCC−1

11 111 → 0, as N → ∞

then by Slutsky’s theorem,

P (CCC−1
11WWW (1)− λ√

N
CCC−1

11 111 ≤ t) = P (CCC−1
11WWW (1) ≤ t) ∼ N(0, σ2

ωCCC
−1
11 ), as N → ∞

In addition,

P (CCC−1
11WWW (1)− λ√

N
CCC−1

11 111 ≤ t, S(λ) ̸= S1) ≤ P (S(λ) ̸= S1) → 0, as N → ∞

P (
√
N(σ̂σσ2(1)− σσσ2(1)) ≤ t, S(λ) ̸= S1) ≤ P (S(λ) ̸= S1) → 0, as N → ∞

Asymptotic normality proof completed.

A.2 Additional tables

Table A.1: The chances of selecting two predictive regions as the num-
ber of noise regions increases (n = 1000)

Regions Sensitivity Specificity
5 1.000 0.894
10 1.000 0.887
50 1.000 0.905
100 1.000 0.922
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A.2. Additional tables

Table A.2: The chances of selecting two predictive regions under dif-
ferent disease models (n = 1000)

Disease Models Sensitivity Specificity
S1 : L+ L 1.000 0.911
S2 : R +R 1.000 0.909
S3 : P + P 1.000 0.980
S4 : L+R 0.999 0.904
S5 : L+ P 0.999 0.947

Table A.3: The chances of selecting genes for FDG and AV45

Genes Chromosome Start Position End Position Probability(FDG) Probability(AV45)

COL11A1 1 103342022 103574052 0 0
CR1 1 207669472 207815110 0 0
CR1L 1 207818457 207897036 0 0
FCER1G 1 161185086 161189038 0 0
FLVCR1 1 213031596 213072705 0 0
FLVCR1-AS1 1 213029945 213031480 0 0
GBP2 1 89571815 89591842 0 0
HSD11B1 1 209859524 209908295 0 0
NGF 1 115828536 115880857 0 0
PARP1 1 226548391 226595801 0 0
POU2F1 1 167190065 167396582 0 0
BIN1 2 127805598 127864903 0 0
LHCGR 2 48913912 48982880 0 0
LRP2 2 169983618 170219122 0 0
APOD 3 195295572 195311076 0 0
GSK3B 3 119540801 119813264 0 0
SST 3 187386693 187388201 0 0.01
ALB 4 74269971 74287129 0 0.02
COL25A1 4 109731876 110223799 0 0
ADRB2 5 148206155 148208197 0 0
ARSB 5 78073036 78282357 0 0
FGF1 5 141971742 142077635 0.24 0
FGF10 5 44305096 44388784 0 0
FGF10-AS1 5 44388833 44414091 0 0
FGF18 5 170846666 170884630 0 0
NDUFS4 5 52856464 52979171 0 0
PPP2R2B-IT1 5 146293769 146299069 0 0
AGER 6 32148744 32152099 0 0.01
HSPA1A 6 31783290 31785719 0 0
MICA 6 31367560 31383092 0 0.01
MICAL1 6 109765265 109787171 0 0
TBP 6 170863420 170881958 0 0
TBPL1 6 134273307 134308638 0 0
TREM2 6 41126243 41130924 0 0
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Table A.3: The chances of selecting genes for FDG and AV45 (con-
tinued)

Genes Chromosome Start Position End Position Probability(FDG) Probability(AV45)

CAV1 7 116164838 116201239 0 0
PON3 7 94989183 95025687 0 0.01
RELN 7 103112230 103629963 0 0
ADAM9 8 38854504 38962779 0 0.03
NAT1 8 18027970 18081198 0 0
NRG1 8 31497267 32622558 0 0
DAPK1 9 90112142 90323549 0 0
DFNB31 9 117164359 117267736 0 0
HSPA5 9 127997126 128003666 0 0.01
POMT1 9 134378288 134399193 0.05 0.04
RXRA 9 137218308 137332432 0 0
TLR4 9 120466452 120479769 0 0
CACNB2 10 18429605 18830688 0 0
MINPP1 10 89264222 89313218 0 0
TET1 10 70320116 70454239 0 0
TFAM 10 60144902 60158990 0 0
HBG2 11 5274420 5276011 0.07 0
ATF7 12 53901639 54020199 0.03 0
ATF7IP 12 14518565 14655869 0 0
OLR1 12 10310898 10324790 0 0
SLC11A2 12 51373565 51422058 0 0
KLF5 13 73629113 73651680 0 0
CINP 14 102814618 102829253 0 0
GNPNAT1 14 53241910 53258386 0 0
HNRNPC 14 21677295 21737638 0 0
MTHFD1 14 64854758 64926725 0.01 0
PNP 14 20937537 20946165 0 0
SEL1L 14 81937890 82000205 0 0
SERPINA1 14 94843083 94857029 0.21 0
SERPINA2 14 94829974 94833039 0 0
SERPINA3 14 95078713 95090390 0 0
SERPINA4 14 95027756 95036250 0 0
SERPINA5 14 95047705 95059457 0 0
SERPINA6 14 94770584 94789688 0 0
SERPINA9 14 94929057 94942670 0 0
SERPINA10 14 94749649 94759608 0 0
SERPINA11 14 94908800 94919122 0 0
SERPINA12 14 94953619 94984181 0 0
SERPINA13P 14 95107061 95113331 0 0
CHRNA3 15 78885394 78913637 0 0
MEF2A 15 100106132 100256629 0 0
MEFV 16 3292027 3306627 0 0
UBE2I 16 1359153 1377019 0 0
CCL3 17 34415602 34417506 0 0
CDK5R1 17 30814104 30818271 0 0
COX10 17 13972718 14111996 0 0
COX10-AS1 17 13932608 13972775 0 0
PNMT 17 37824233 37826728 0 0
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Table A.3: The chances of selecting genes for FDG and AV45 (con-
tinued)

Genes Chromosome Start Position End Position Probability(FDG) Probability(AV45)

APOC1 19 45417920 45422606 1 1
APOE 19 45409038 45412650 1 0.97
GNA11 19 3094407 3124000 0 0
TOMM40 19 45394476 45406946 0.28 1
DOPEY2 21 37536838 37666572 0 0
MCM3AP 21 47655038 47705308 0 0
MCM3AP-AS1 21 47649144 47671615 0 0
NCAM2 21 22370632 22912517 0 0
RUNX1-IT1 21 36410232 36411723 0.07 0
S100B 21 48018530 48025035 0.24 0
SAMSN1 21 15857548 15955723 0 0
SAMSN1-AS1 21 15954522 15970624 0.01 0
SEPT3 22 42372930 42394225 0 0

A.3 Additional figures

Figure A.1: The impact of the number of noise regions on Pearson
correlations and MSEs (n = 1000)
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Figure A.2: The impact of the number of noise regions on computa-
tional time (n = 1000)

Figure A.3: The impact of disease models. L+L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 1000)
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Figure A.4: The impact of disease models. L+L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 1000)

Figure A.5: The impact of disease models. L+L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 1000)
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Figure A.6: The distribution for FDG and AV45
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Appendix B

A hybrid screening rule designed for
the penalized linear mixed model with
generalized method of moments
estimators

B.1 Screening rule

B.1.1 Sequential strong rule

For the derivation of SSR rule, we start with the KKT condition of the standard Lasso
problem 3.1:

TTT T
i (MMM − TTTσ̂σσ2) = λvi, i = 1, 2, ...R (B.1)

where vi is the ith component of the subgradient of
∥∥σ̂σσ2
∥∥
1
. Let ci(λ) = TTT T

i (MMM−TTTσ̂σσ2(λ))

and assume that ci(λ) is non-expansive in λ, then:∣∣∣ci(λ)− ci(λ̃)
∣∣∣ ≤ ∣∣∣λ− λ̃

∣∣∣ , for any λ and, λ̃ and i = 1, 2, ...R (B.2)

Using the condition B.2, if we have |ci(λk)| < 2λk+1 − λk then:

|ci(λk+1)| ≤ |ci(λk+1)− ci(λk)|+ |ci(λk)|

< (λk − λk+1) + (2λk+1 − λk)

= λk+1

which implies that σ̂2
i (λk+1) = 0 based on the KKT condition B.1.
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B.1.2 Enhanced DPP rule

Firstly, we give the detailed derivation of the dual problem of Lasso. Based on the
standard Lasso problem 3.2 in the main text, we introduce a new variableZZZ =MMM−TTTσ2σ2σ2.
Then the standard Lasso problem 3.2 was reformulated as:

argmin
σσσ2≥0

1

2
∥ZZZ∥22 + λ

∥∥σσσ2
∥∥
1

s.t. ZZZ =MMM − TTTσ2σ2σ2

Thus the new likelihood function becomes:

L(σσσ2,ZZZ,ηηη) =
1

2
∥ZZZ∥22 + λ

∥∥σσσ2
∥∥
1
+ ηηηT (MMM − TTTσ2σ2σ2 −ZZZ) (B.3)

and the objective function is:

argmin
σσσ2,ZZZ

L(σσσ2,ZZZ,ηηη) = ηηηTMMM+argmin
σσσ2

(−ηηηTTTTσσσ2+λ
∥∥σσσ2
∥∥
1
)+argmin

ZZZ

(
1

2
∥ZZZ∥22−ηηηTZZZ) (B.4)

The objective function B.4 can be divided into two parts:

argmin
σσσ2

(−ηηηTTTTσσσ2 + λ
∥∥σσσ2
∥∥
1
) (B.5)

and
argmin

ZZZ

(
1

2
∥ZZZ∥22 − ηηηTZZZ) (B.6)

Firstly, we consider the optimization problem B.5. Let

f1(σσσ
2) = −ηηηTTTTσσσ2 + λ

∥∥σσσ2
∥∥
1

(B.7)

and its subgradient:
∂f1(σσσ

2) = −TTT Tηηη + λvvv

where ∥vvv∥∞ ≤ 1 and vvv is the subgradient of ∥σσσ2∥1. The necessary condition for f1 to
attain an optimum is to exist σσσ2∗,vvv∗ which satisfy:

vvv∗ =
TTT Tηηη

λ
, ∥vvv∥∞ ≤ 1, vvv∗Tσσσ2∗ =

∥∥σσσ2∗∥∥
1

(B.8)

96



B.1. Screening rule

which is equivalent to ∣∣TTT T
i ηηη
∣∣ ≤ λ, i = 1, 2, ..., R

Plugging the equations B.8 into equation B.7, we can get the optimal value of equation
B.7 is 0.

Next, for the second optimal problem B.6, we let

f2(ZZZ) =
1

2
∥ZZZ∥22 − ηηηTZZZ (B.9)

Clearly, the optimal value of equation B.9 is −1
2
∥ηηη∥22 when ZZZ = ηηη. Therefore, the

objective function B.4 is rewritten as:

argmin
ηηη

ηηηTMMM − 1

2
∥ηηη∥22

s.t.
∣∣TTT T

i ηηη
∣∣ ≤ λ, i = 1, 2, ..., R

which is equivalent to

argmin
ηηη

1

2
∥MMM∥22 −

1

2
∥ηηη −MMM∥22 (B.10)

s.t.
∣∣TTT T

i ηηη
∣∣ ≤ λ, i = 1, 2, ..., R

let θθθ = ηηη
λ
, function B.10 transforms to

argmin
θ

1

2
∥MMM∥22 −

λ2

2

∥∥∥∥θθθ − MMM

λ

∥∥∥∥2
2

(B.11)

s.t.
∣∣TTT T

i θθθ
∣∣ ≤ 1, i = 1, 2, ..., R

From the KKT condition, we have:

0 ∈ ∂σσσ2L(σσσ2∗,ZZZ∗, θθθ∗) = −λTTT Tθθθ∗ + λvvv, where ∥vvv∥∞ ≤ 1, vvvTσσσ2∗ =
∥∥σσσ2∗∥∥

1
(B.12)

∇ZZZL(σσσ
2∗,ZZZ∗, θθθ∗) = ZZZ∗ − λθθθ∗ = 0 (B.13)

∇θθθL(σσσ
2∗,ZZZ∗, θθθ∗) = λ(MMM − TTTσσσ2∗ −ZZZ∗) = 0 (B.14)

From B.13 and B.14, we have:

MMM = TTTσσσ2∗ + λθθθ∗
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From B.12, we know there exists vvv∗ ∈ ∂ ∥σσσ2∗∥1 such that:

TTT Tθθθ∗ = vvv∗, ∥vvv∗∥∞ ≤ 1, (vvv∗)Tσσσ2∗ =
∥∥σσσ2∗∥∥

1

which is equivalent to

∣∣TTT T
i θθθ

∗∣∣ ≤ 1, i = 1, 2, ..., R., (θθθ∗)TTTTσσσ2∗ =
∥∥σσσ2∗∥∥

1
(B.15)

Thus, the equation B.15 can give a conclusion:

TTT T
i θθθ

∗(λ) ∈

{
1 if σ2∗

i ̸= 0

(−1, 1) if σ2∗
i = 0

(B.16)

Then we can conclude the following rule :

∣∣TTT T
i θθθ

∗(λ)
∣∣ < 1 ⇒ σ2∗

i = 0 ⇒ TTT i is an noisy variable (B.17)

However, θ∗(λ) is generally unknown, we can not directly apply rule B.17 to identify
the noise. Inspired by the SAFE rules (Ghaoui et al., 2010), we can first estimate a
region ΘΘΘ which contains the θθθ∗(λ). Then, the rule B.17 can be rewritten as follows:

sup
θθθ∈ΘΘΘ

∣∣TTT T
i θθθ(λ)

∣∣ < 1 ⇒ σ2∗
i = 0 ⇒ TTT i is an noisy variable (B.18)

Clearly, the final aim is to find a region ΘΘΘ which contains θθθ∗(λ).
Based on the equation B.11, we can see that the dual optimal solution is the feasible

point which is closest to MMM
λ

. Let the feasible set be FFF and θθθ∗(λ) can be regarded as the
projection of MMM

λ
onto the polytope FFF , i.e.,

θθθ∗(λ) = PF

(
MMM

λ

)
= argmin

θθθ∈FFF

∥∥∥∥θθθ − MMM

λ

∥∥∥∥
2

where PF (·) is the projection operator. It is easy to see that MMM
λ

would be an interior
point of FFF when λ is large enough, which implies that, for all i = 1, 2, ...R, we have∣∣TTT T

i
MMM
λ

∣∣ < 1. And θθθ∗(λ) is also an interior point of FFF since θθθ∗(λ) = MMM
λ

. It is easy to see
that

∣∣TTT T
i θθθ

∗(λ)
∣∣ < 1 for all i = 1, 2, ...R. Thus, we can conclude that σσσ2∗(λ) = 0, under

the assumption that λ is large enough.
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For the Lasso problem, λ and λ0 are two regularization parameters, we have:

∥θθθ∗(λ)− θθθ∗(λ0)∥2 ≤
∣∣∣∣1λ − 1

λ0

∣∣∣∣ · ∥MMM∥2 (B.19)

The equation B.19 implies that the dual optimal solution must be inside a ball centered
at θθθ∗(λ0) with radius

∣∣∣ 1λ − 1
λ0

∣∣∣ · ∥MMM∥2. Then, Wang et al., 2015 proposed the theorem:

Theorem B.1. For the Lasso problem, assume that the dual optimum at λ0 (i.e.,
θθθ∗(λ0)) is known. Let λ be a positive value different from λ0. Then σ2∗

i (λ) = 0 if

∣∣TTT T
i θθθ

∗(λ)
∣∣ < 1− ∥TTT i∥2 ∥MMM∥2

∣∣∣∣1λ − 1

λ0

∣∣∣∣
By setting λ0 = λmax and θθθ∗(λmax) =

MMM
λmax

, the basic DPP rule can be derived:∣∣∣∣TTT T
i

MMM

λmax

∣∣∣∣ < 1−
(
1

λ
− 1

λmax

)
∥TTT i∥2 ∥MMM∥2

Then Wang et al., 2015 further proposed the sequential DPP screening rule,∣∣∣∣TTT T
i

MMM − TTTσσσ2∗(λk)

λk

∣∣∣∣ < 1− ∥TTT i∥2 ∥MMM∥2
(

1

λk+1

− 1

λk

)
In order to improve the performance of the DPP screening rules, Wang et al.,

2015 further proposed the EDPP screening rule based on projections of rays and the
nonexpansiveness of the projection operators:

∣∣∣∣TTT T
i (
MMM − TTTσσσ2∗(λk)

λk

+
1

2
v⊥2 (λk+1, λk))

∣∣∣∣ < 1− 1

2
∥TTT i∥2

∥∥v⊥2 (λk+1, λk)
∥∥
2

(B.20)

Given σσσ2∗(λk)], the ith variable under λk+1 will be discarded when the condition B.20
was met.
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B.2 Additional tables

Table B.1: The effect sizes for the first simulation

Regions σ2
1 σ2

2 σ2
0

5000 1 1 1
10000 1 1 1
15000 1 1 1
20000 1 1 1

Table B.2: The number of selected total and causal regions as the
input data dimension increases (n = 1000)

Regions Number of Total Regions Selected (Number of Causal Regions Selected)
MKLMM MKLMM2 MKLMM9 Hybrid Screening Rule

5000 289.92 (1.98) 2 (0) 9 (0) 6.06 (1.96)
10000 586.40 (1.96) 2 (0) 9 (0) 6.38 (2.00)
15000 878.57 (1.90) 2 (0) 9 (0) 6.23 (1.97)
20000 1102.00 (2.00) 2 (0) 9 (0) 7.47 (1.97)

Table B.3: Disease models description

Disease Models Description KKK1 KKK2 σ2
1 σ2

2 σ2
0

S1 : L+ L Linear additive effects kl(xxx1,xxx2) =< xxx1,xxx2 > kl(xxx1,xxx2) =< xxx1,xxx2 > 1 1 1
S2 : R +R Non-linear effects. krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
1 1 1

S3 : P + P Pair-wise interaction effects kp(xxx1,xxx2) = (< xxx1,xxx2 >)2 kp(xxx1,xxx2) = (< xxx1,xxx2 >)2 1 1 1
S4 : L+R Linear and non-linear effects kl(xxx1,xxx2) =< xxx1,xxx2 > krbf (xxx1,xxx2) = exp

[
−1

2
||xxx1 − xxx2||22

]
1 1 1

S5 : L+ P Linear and pair-wise interaction kl(xxx1,xxx2) =< xxx1,xxx2 > kp(xxx1,xxx2) = (< xxx1,xxx2 >)2 1 1 1

Table B.4: The number of selected regions and the number of causal
regions within the selected regions under different disease models (n =

1000)

Disease Number of Total Regions Selected (Number of Causal Regions Selected)
Models MKLMM MKLMM2 MKLMM9 Hybrid Screening Rule
S1 : L+ L 290.77 (2.00) 2 (0) 9 (0) 8.10 (2.00)
S2 : R +R 295.83 (1.97) 2 (0) 9 (0) 9.47 (1.83)
S3 : P + P 296.60 (1.73) 2 (0) 9 (0) 5.94 (2.00)
S4 : L+R 293.63 (1.93) 2 (0) 9 (0) 7.30 (1.87)
S5 : L+ P 292.83 (1.67) 2 (0) 9 (0) 5.20 (1.93)
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Table B.5: The chance of selecting the most appropriate kernels under
different disease models (n = 1000)

Disease MKLMM Hybrid Screening Rule
Models 1st Causal Region 2nd Causal Region 1st Causal Region 2nd Causal Region
S1 : L+ L 1.00 1.00 1.00 1.00
S2 : R +R 0 0 0.83 0.97
S3 : P + P 0 0 1.00 0.94
S4 : L+R 0.97 0 1.00 0.80
S5 : L+ P 1.00 0 1.00 0.93

*Note: results from MKLMM2 and MKLMM9 are not reported. Neither of the causal regions can be
kept, and thus the chances of selecting the most appropriate kernels are 0.

Table B.6: The chances of selecting genes by HpLMMGMM for FDG

Genes Chromosome Start Position End Position Probability(FDG)

APOC1 19 45417920 45422606 0.98
APOE 19 45409038 45412650 0.96
FADS3 11 61640994 61659017 0.96
IQCF3 3 51860898 51864874 0.68
ZNF805 19 57752052 57774106 0.67
FAM193B 5 176946789 176981548 0.60
PSMD6 3 63996224 64009686 0.41
U2AF1 21 44513065 44527688 0.32
LOC728463 1 218517537 218519020 0.27
C3orf72 3 138666075 138672830 0.27
TRAPPC10 21 45432205 45526432 0.26
FSTL1 3 120113060 120169918 0.26
LOC101927364 16 51796429 51806557 0.24
ZNF320 19 53379424 53394599 0.24
TOMM7 7 22852250 22862471 0.23
OR10AD1 12 48596121 48597075 0.21
ZBTB1 14 64971291 65000408 0.20
LILRB1 19 55128383 55148981 0.17
PAPD4 5 78908242 78982471 0.15
UGT2B7 4 69962192 69978705 0.13
LDOC1L 22 44888449 44894005 0.13
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Appendix B. A hybrid screening rule designed for the penalized linear mixed model
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Table B.6: The chances of selecting genes by HpLMMGMM for FDG
(continued)

Genes Chromosome Start Position End Position Probability(FDG)

RFK 9 79000432 79009444 0.12
PTEN 10 89623194 89728532 0.11
GLUL 1 182350838 182361341 0.11
GPR108 19 6729924 6737633 0.11
H1FNT 12 48722762 48724062 0.11
FAM87B 1 752750 755214 0.10
NKX3-1 8 23536205 23540450 0.09
NDUFAB1 16 23592334 23607639 0.07
FILIP1L 3 99551987 99833357 0.07
CLDN24 4 184242916 184243579 0.05
DNAAF2 14 50091891 50101948 0.05
H19 11 2016405 2019065 0.05
ABCG8 2 44066102 44105605 0.05
LTB 6 31548335 31550202 0.04
C7orf55 7 139025195 139031065 0.04
TOR2A 9 130493802 130497628 0.04
TTC29 4 147628178 147867034 0.04
C16orf54 16 29753785 29757340 0.04
C20orf141 20 2795632 2796476 0.04
ZNF140 12 133657036 133684258 0.04
CCDC178 18 30517365 31020685 0.04
EPB41L4A-AS2 5 111755279 111756677 0.04
FKSG29 13 100003673 100004281 0.04
MFAP5 12 8798539 8815433 0.03
MYCBP 1 39328161 39339050 0.03
BAZ1A 14 35221936 35344853 0.03
PMCHL2 5 70671611 70681820 0.03
RPL32P3 3 129101676 129118282 0.03
SLC52A3 20 740723 749228 0.03
CFL2 14 35179587 35184029 0.03
F11R 1 160965000 160991133 0.03
HP09053 3 99535475 99542709 0.03
KCNH3 12 49932939 49952077 0.03
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Table B.6: The chances of selecting genes by HpLMMGMM for FDG
(continued)

Genes Chromosome Start Position End Position Probability(FDG)

KIAA1683 19 18367905 18385319 0.03
ARL6IP4 12 123464606 123467460 0.02
LOC101927332 15 98626207 98631982 0.02
PSMD6-AS2 3 63989697 63997917 0.02
RCN3 19 50030874 50046890 0.02
RUSC1-AS1 1 155290250 155293938 0.02
STAG3L4 7 66767624 66786513 0.02
SYCE1 10 135367403 135382876 0.02
TFAP2A-AS1 6 10412550 10416402 0.02
TOMM40 19 45394476 45406946 0.02
ZBTB25 14 64953554 64970554 0.02
CASP1 11 104896236 104905884 0.02
EFNA2 19 1286152 1301429 0.02
FAM168A 11 73111522 73309234 0.02
LINC00115 1 761585 762902 0.02
ARCN1 11 118443101 118473747 0.02
LOC646938 15 79044378 79045734 0.01
LOC102723641 17 72966783 72971823 0.01
LY75 2 160659867 160761267 0.01
ASPN 9 95218488 95244844 0.01
MARC2 1 220921675 220957596 0.01
MGAT4C 12 86373036 87232681 0.01
ACADM 1 76190031 76229363 0.01
MOBP 3 39509063 39570988 0.01
NDUFAF3 3 49057907 49060926 0.01
OR8G2 11 124095343 124096368 0.01
BPESC1 3 138823026 138844005 0.01
PROX1 1 214161277 214214847 0.01
PTRHD1 2 25013135 25016251 0.01
RPL37A 2 217363519 217366188 0.01
SEMA7A 15 74701629 74726299 0.01
C5orf20 5 134779903 134783038 0.01
C8G 9 139839697 139841426 0.01
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Table B.6: The chances of selecting genes by HpLMMGMM for FDG
(continued)

Genes Chromosome Start Position End Position Probability(FDG)

SPATS2 12 49760687 49921207 0.01
SPINT4 20 44350987 44354335 0.01
C9orf78 9 132589563 132597572 0.01
SUV420H1 11 67923506 67980784 0.01
TBC1D23 3 99979660 100044096 0.01
TEDDM1 1 182367251 182369751 0.01
TIMM21 18 71815745 71826204 0.01
TMEM14A 6 52535883 52551385 0.01
TMEM25 11 118401802 118417313 0.01
TNFSF8 9 117655622 117692875 0.01
TOR1A 9 132575220 132586441 0.01
TRPM4 19 49661015 49715098 0.01
TTC26 7 138818489 138876732 0.01
C16orf78 16 49407807 49433319 0.01
C22orf39 22 19428409 19435755 0.01
CHRNA4 20 61974661 61992748 0.01
CLEC4C 12 7882010 7902069 0.01
CMSS1 3 99536677 99897476 0.01
DNAJC25 9 114393631 114416631 0.01
DUSP16 12 12626215 12715448 0.01
ETNPPL 4 109663201 109684235 0.01
FAM170B-AS1 10 50329883 50359592 0.01
FJX1 11 35639734 35642421 0.01
FOXL2 3 138663065 138665982 0.01
GPC5-AS1 13 93353641 93373867 0.01
ANKRD20A1 9 67926760 67969840 0.01
GRB2 17 73314156 73401790 0.01
HID1 17 72946838 72968900 0.01
HIF1A 14 62162118 62214977 0.01
ICOSLG 21 45642877 45660887 0.01
ANXA2R 5 43039181 43040447 0.01
IL10 1 206940947 206945839 0.01
KIAA1024L 5 129083883 129100756 0.01
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Table B.7: The chances of selecting genes by HpLMMGMM for AV45

Genes Chromosome Start Position End Position Probability(AV45)

TOMM40 19 45394476 45406946 1.00
APOC1 19 45417920 45422606 1.00
APOE 19 45409038 45412650 0.94
SPRR2G 1 153122057 153123427 0.49
LOC400863 21 35321229 35336262 0.46
CGB7 19 49557530 49558997 0.37
VOPP1 7 55538300 55640200 0.30
CPB2-AS1 13 46626982 46675482 0.30
PIN1P1 1 70385004 70386000 0.16
LINC00545 13 31456698 31457532 0.15
LINC01070 13 112851646 112855316 0.14
LOC101928269 21 37326976 37376965 0.12
PVRL2 19 45349392 45392485 0.12
OR5H14 3 97868229 97869162 0.11
VAMP1 12 6571403 6579843 0.11
ADAM28 8 24151579 24212726 0.11
NKX3-1 8 23536205 23540450 0.10
PRR23B 3 138737872 138739768 0.10
C16orf82 16 27078218 27080487 0.10
HGC6.3 6 168376603 168377619 0.09
LINC00316 21 46758504 46761905 0.09
FBXO33 14 39865576 39901704 0.07
GPATCH1 19 33571785 33621318 0.07
NT5C3A 7 33053724 33102409 0.06
PAFAH1B2 11 117014999 117048889 0.06
SEC61B 9 101984569 101992901 0.06
PRR23A 3 138722803 138725110 0.05
TPSAB1 16 1290677 1292555 0.05
TRAF3IP1 2 239229184 239309541 0.05
DHRS7 14 60611499 60632211 0.05
GPX2 14 65405869 65409623 0.05
ARL2BP 16 57279037 57287545 0.04
LOC100652768 11 117066328 117072630 0.04
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Table B.7: The chances of selecting genes by HpLMMGMM for AV45
(continued)

Genes Chromosome Start Position End Position Probability(AV45)

NT5DC3 12 104166080 104234975 0.04
ZNF773 19 58011308 58019510 0.04
DDR1 6 30851860 30867933 0.04
APOA4 11 116691417 116694011 0.04
LOC100270746 6 26987144 26988085 0.02
LOC100996385 5 175476680 175489058 0.02
MYOC 1 171604556 171621773 0.02
PCNT 21 47744035 47865682 0.02
PDE6D 2 232597134 232646037 0.02
PSORS1C1 6 31082607 31107869 0.02
C2CD2L 11 118978059 118987834 0.02
SLC1A6 19 15060844 15121455 0.02
SLC30A5 5 68389775 68426899 0.02
SPATA13-AS1 13 24826886 24828577 0.02
TPTE2P5 13 41371120 41495886 0.02
U2SURP 3 142720371 142779567 0.02
C19orf48 19 51300949 51308110 0.02
CCDC37 3 126113781 126155398 0.02
CDSN 6 31082864 31088252 0.02
CFL1 11 65622284 65625804 0.02
CYFIP2 5 156693089 156822606 0.02
FMO5 1 146655883 146697230 0.02
FOLR3 11 71846770 71850934 0.02
FRRS1 1 100174258 100231349 0.02
H2AFX 11 118964584 118966177 0.02
HDGFL1 6 22569677 22570750 0.02
KLK4 19 51409607 51413994 0.02
LINC00471 2 232373136 232379050 0.02
LOC285074 2 87257797 87303536 0.01
LOC100128573 19 7537722 7538247 0.01
LOC101927332 15 98626207 98631982 0.01
LOC101928295 19 49871961 49891338 0.01
LOC101928744 7 41004276 41019537 0.01
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Table B.7: The chances of selecting genes by HpLMMGMM for AV45
(continued)

Genes Chromosome Start Position End Position Probability(AV45)

LRIT1 10 85991275 86001217 0.01
LRRC25 19 18501953 18508415 0.01
LTB 6 31548335 31550202 0.01
MAD2L1 4 120980578 120988013 0.01
MAMDC2-AS1 9 72768049 72790804 0.01
MYCNOS 2 16076386 16081845 0.01
NEFH 22 29876180 29887277 0.01
NTF4 19 49564396 49567124 0.01
OR5E1P 11 7870597 7871118 0.01
BNIP2 15 59955061 59981642 0.01
PLAC9 10 81892257 81904784 0.01
POM121L12 7 53103348 53104618 0.01
PRR7 5 176873795 176883287 0.01
RAB3GAP2 1 220321609 220445843 0.01
RAB36 22 23487512 23506531 0.01
C1orf68 1 152691997 152692905 0.01
RPGRIP1L 16 53633817 53737771 0.01
C1S 12 7167979 7178335 0.01
SEC61A2 10 12171639 12211957 0.01
SETX 9 135136826 135230372 0.01
SIK3 11 116714117 116969131 0.01
SNAPC3 9 15422781 15461627 0.01
SNX2 5 122110690 122170234 0.01
SNX15 11 64794879 64808044 0.01
SNX24 5 122181159 122344902 0.01
TAOK2 16 29985187 30003582 0.01
TAPBPL 12 6561176 6571488 0.01
TMEM155 4 122680084 122686340 0.01
TMEM159 16 21169911 21191937 0.01
TMEM182 2 103378489 103434138 0.01
TSSK1B 5 112768250 112770728 0.01
UBA6-AS1 4 68566995 68588222 0.01
ZBTB40 1 22778343 22857650 0.01
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Table B.7: The chances of selecting genes by HpLMMGMM for AV45
(continued)

Genes Chromosome Start Position End Position Probability(AV45)

CACNA1C-AS4 12 2329702 2332647 0.01
CCDC6 10 61548505 61666414 0.01
CELF5 19 3224700 3297073 0.01
CHRNA4 20 61974661 61992748 0.01
COA1 7 43670750 43769140 0.01
COL4A2-AS1 13 111154922 111160526 0.01
FAM192A 16 57186377 57219976 0.01
FBXO28 1 224301788 224349749 0.01
GCNT4 5 74323288 74326724 0.01
ABCC6P1 16 18582569 18609607 0.01
GS1-204I12.1 1 185527511 185597620 0.01
GTF2H4 6 30875976 30881880 0.01
HAVCR1 5 156456530 156485970 0.01
HINFP 11 118992232 119005765 0.01
HLA-DPA1 6 33032345 33048555 0.01
IL36A 2 113763448 113765621 0.01
INHBB 2 121103718 121109383 0.01
KBTBD8 3 67048726 67061632 0.01
KIAA1024L 5 129083883 129100756 0.01
APOC3 11 116700623 116703787 0.01
LAMP3 3 182840002 182880667 0.01
LAMTOR5 1 110943876 110950546 0.01
LAMTOR5-AS1 1 110950430 110958896 0.01
LINC00602 6 166401038 166403103 0.01
LINC01007 7 101206034 101212286 0.01

B.3 Additional figures
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B.3. Additional figures

Figure B.1: The impact of data dimension on Pearson correlations and
MSEs (n = 1000)

Figure B.2: The impact of disease models. L+L: genetic variants on
both regions have linear additive effects. R + R: predictors from both
regions have non-linear predictive effects. P + P : both regions harbor
variants with pair-wise interaction effects. L + R: genetic variants on
the first and second regions have linear additive and non-linear effects,
respectively. L+P : predictors on the first and second regions have linear

additive and pair-wise interaction effects, respectively (n = 1000)
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Figure B.3: The distribution for FDG and AV45
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Appendix C

A penalized linear mixed model with
generalized method of moments
estimators for the prediction analysis
of multi-omics data

C.1 Additional tables

Table C.1: The effect sizes for the first simulation

Parameters 1st Region 2nd Region 3rd Region
γ 0.8 1 1.2
σ2
g 0.45 0.5 0.55

σ2
m 0.45 0.5 0.55

Table C.2: The chances of selecting causal regions as the number of
noise regions increases (n = 1000)

Regions Gene Expression Data Genomic Data Methylation Data

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

10 1.000 0.926 0.997 0.878 0.998 0.960
25 1.000 0.968 0.998 0.893 0.998 0.964
50 1.000 0.984 0.996 0.912 0.998 0.969
75 1.000 0.988 0.993 0.920 0.999 0.971
100 1.000 0.989 0.996 0.927 0.999 0.974
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Table C.3: The effect sizes for the second simulation

Parameters E G M GM G+M E+G E+M
γ1 0.8 0 0 0 0 0.8 0.8
γ2 1.0 0 0 0 0 1.0 1.0
γ3 1.2 0 0 0 0 1.2 1.2
σ2
g,1 0 0.45 0 0 0.45 0.45 0

σ2
g,2 0 0.5 0 0 0.5 0.5 0

σ2
g,3 0 0.55 0 0 0.55 0.55 0

σ2
m,1 0 0 0.45 0 0.45 0 0.45

σ2
m,2 0 0 0.5 0 0.5 0 0.5

σ2
m,3 0 0 0.55 0 0.55 0 0.55

σ2
gm,1 0 0 0 0.45 0 0 0

σ2
gm,2 0 0 0 0.5 0 0 0

σ2
gm,3 0 0 0 0.55 0 0 0

Table C.4: The chances of selecting causal regions under different dis-
ease models (n = 1000)

Disease Gene Expression Data Genomic Data Methylation Data

Models Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

S1 : E
a 1.000 0.982 – 0.946 – 0.934

S2 : G
b – 0.994 1.000 0.908 – 0.984

S3 : M
c – 0.995 – 0.986 1.000 0.987

S4 : GMd – 0.996 0.962 0.942 0.949 0.985
S5 : G+M e – 0.996 0.996 0.931 0.996 0.985
S6 : E +Gf 1.000 0.980 0.999 0.871 – 0.956
S7 : E +Mg 1.000 0.979 – 0.965 1.000 0.961
a Only gene expression data is causal.
b Only genomic data is causal.
c Only methylation data is causal.
d Only the interaction between genomic and methylation data is causal.
e Both genomic and methylation data are causal.
f Both gene expression data and genomic data are causal.
g Both gene expression data and methylation data are causal.

Table C.5: The chances of selecting genes by MpLMMGMM for FDG
and AV45

Genes Chromosome Start Position End Position FDGa FDGb AV45c AV45d

COL11A1 1 103342022 103574052 0 0 0 0
CR1 1 207669472 207815110 0 0 0 0.01
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Table C.5: The chances of selecting genes by MpLMMGMM for FDG
and AV45 (continued)

Genes Chromosome Start Position End Position FDGa FDGb AV45c AV45d

CR1L 1 207818457 207897036 0 0 0 0
FCER1G 1 161185086 161189038 0 0 0 0
FLVCR1 1 213031596 213072705 0 0.01 0.05 0
FLVCR1-AS1 1 213029945 213031480 0 0 0 0
GBP2 1 89571815 89591842 0 0 0 0
HSD11B1 1 209859524 209908295 0 0 0 0
NGF 1 115828536 115880857 0 0 0 0
PARP1 1 226548391 226595801 0.01 0 0 0
POU2F1 1 167190065 167396582 0 0 0 0
BIN1 2 127805598 127864903 0 0 0 0.06
LHCGR 2 48913912 48982880 0 0 0 0
LRP2 2 169983618 170219122 0 0 0 0
APOD 3 195295572 195311076 0.01 0 0 0
GSK3B 3 119540801 119813264 0 0 0 0.02
SST 3 187386693 187388201 0 0 0 0
ALB 4 74269971 74287129 0.3 0 0.07 0
COL25A1 4 109731876 110223799 0 0 0 0
ADRB2 5 148206155 148208197 0.01 0 0 0
ARSB 5 78073036 78282357 0 0.01 0 0
FGF1 5 141971742 142077635 0.24 0.01 0 0
FGF10 5 44305096 44388784 0 0 0 0
FGF18 5 170846666 170884630 0 0 0 0
NDUFS4 5 52856464 52979171 0 0 0.05 0
AGER 6 32148744 32152099 0 0.01 0 0
HSPA1A 6 31783290 31785719 0 0 0 0
MICA 6 31367560 31383092 0.03 0 0.11 0
MICAL1 6 109765265 109787171 0.05 0 0 0
TBP 6 170863420 170881958 0.01 0 0 0
TBPL1 6 134273307 134308638 0 0 0 0
TREM2 6 41126243 41130924 0 0 0 0
CAV1 7 116164838 116201239 0 0 0 0
PON3 7 94989183 95025687 0 0 0.06 0.03
RELN 7 103112230 103629963 0 0 0 0
ADAM9 8 38854504 38962779 0 0 0.28 0
NAT1 8 18027970 18081198 0 0 0 0
NRG1 8 31497267 32622558 0 0.03 0 0
DAPK1 9 90112142 90323549 0 0 0 0
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Table C.5: The chances of selecting genes by MpLMMGMM for FDG
and AV45 (continued)

Genes Chromosome Start Position End Position FDGa FDGb AV45c AV45d

DFNB31 9 117164359 117267736 0 0 0 0
HSPA5 9 127997126 128003666 0 0 0 0
POMT1 9 134378288 134399193 0.58 0 0.02 0
RXRA 9 137218308 137332432 0 0 0 0
TLR4 9 120466452 120479769 0 0 0 0
CACNB2 10 18429605 18830688 0.01 0 0 0
MINPP1 10 89264222 89313218 0 0 0 0
TET1 10 70320116 70454239 0 0 0 0
TFAM 10 60144902 60158990 0 0.02 0 0.01
HBG2 11 5274420 5276011 0.48 0 0 0
ATF7 12 53901639 54020199 0.02 0 0 0
ATF7IP 12 14518565 14655869 0 0 0.01 0
OLR1 12 10310898 10324790 0 0 0 0
SLC11A2 12 51373565 51422058 0 0 0 0
KLF5 13 73629113 73651680 0 0 0 0
CINP 14 102814618 102829253 0 0 0 0.03
GNPNAT1 14 53241910 53258386 0.01 0 0 0
HNRNPC 14 21677295 21737638 0 0 0.02 0
MTHFD1 14 64854758 64926725 0.06 0 0 0
PNP 14 20937537 20946165 0.01 0 0 0
SEL1L 14 81937890 82000205 0 0 0 0
SERPINA1 14 94843083 94857029 0.05 0 0 0
SERPINA3 14 95078713 95090390 0 0 0 0.01
SERPINA4 14 95027756 95036250 0 0.06 0 0.02
SERPINA5 14 95047705 95059457 0 0 0 0
SERPINA6 14 94770584 94789688 0.01 0 0.01 0.02
SERPINA9 14 94929057 94942670 0 0 0 0
SERPINA10 14 94749649 94759608 0 0 0 0
SERPINA11 14 94908800 94919122 0 0 0.06 0
SERPINA12 14 94953619 94984181 0 0 0 0
SERPINA13P 14 95107061 95113331 0.02 0 0 0
CHRNA3 15 78885394 78913637 0 0.06 0 0
MEF2A 15 100106132 100256629 0 0.03 0 0
MEFV 16 3292027 3306627 0 0 0 0
UBE2I 16 1359153 1377019 0 0 0.02 0
CCL3 17 34415602 34417506 0 0 0 0
CDK5R1 17 30814104 30818271 0 0 0 0
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Table C.5: The chances of selecting genes by MpLMMGMM for FDG
and AV45 (continued)

Genes Chromosome Start Position End Position FDGa FDGb AV45c AV45d

COX10 17 13972718 14111996 0 0 0 0
PNMT 17 37824233 37826728 0 0.02 0 0
APOC1 19 45417920 45422606 1 0.01 1 0
APOE 19 45409038 45412650 0.9 0 0.95 0
GNA11 19 3094407 3124000 0.04 0.01 0 0
TOMM40 19 45394476 45406946 0.94 0.01 1 0.01
DOPEY2 21 37536838 37666572 0 0 0 0
MCM3AP 21 47655038 47705308 0 0 0 0
MCM3AP-AS1 21 47649144 47671615 0 0 0 0.01
NCAM2 21 22370632 22912517 0.01 0 0 0.01
S100B 21 48018530 48025035 0.02 0 0 0
SAMSN1 21 15857548 15955723 0 0 0 0.01
SEPT3 22 42372930 42394225 0 0 0 0

a The probability of genes being selected for FDG based on genetic data.
b The probability of genes being selected for FDG based on gene expression data.
c The probability of genes being selected for AV45 based on genetic data.
d The probability of genes being selected for AV45 based on gene expression data.
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C.2 Additional figures

Figure C.1: The impact of the number of noise regions on Pearson
correlations and MSEs (n = 1000)

Figure C.2: The impact of disease models (n = 1000)
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C.2. Additional figures

Figure C.3: The distribution of FDG and AV45

Figure C.4: The computational time as the number of random effects
increases for MpLMMGMM (n = 500)
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Figure C.5: The computational time as the number of random effects
increases for MpLMMGMM (n = 1000)
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