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Abstract 

The science of nutrigenomics assesses gene–nutrient interactions using nutrient-

related genetic markers or site-specific genetic variations in genes known as single nucleotide 

polymorphisms (SNPs). SNPs are one aspect of genetic variability that can impact an 

individual’s response to food, including lipid and glucose metabolism, insulin response and 

appetite. In general, genetic differences can influence absorption, metabolism, uptake, 

utilisation and excretion of nutrients, ultimately affecting several physiological and 

nutritional outcomes. The effect of genetic differences can be assessed by changes in 

physiological outcomes during the postprandial state. The literature reports known 

associations between a particular SNP and a change in a physiological outcome; the 

robustness of many of these associations is uncertain. 

This study aimed to investigate the association between a range of physiological 

measures and the related 26 SNPs located in specific genes to consider the strength of their 

relationship during the postprandial digestive response to a standardised breakfast meal. This 

included: plasma concentrations of vitamin D and the cytochrome P450 family 2 subfamily R 

member 1 gene (CYP2R1) and the group-specific component vitamin D binding protein gene 

(GC); iron and the homeostatic iron regulator protein gene (HFE) and the solute carrier 

family 17 member 1 (SLC17A1) and the transmembrane protease serine 6 gene (TMPRSS6) 

and the type-2 transferrin receptor gene (TRF2) and the transferrin coding gene (TF); zinc 

and the solute carrier family 30 member 3 gene (SLC30A3); saturated fat and the 

apolipoprotein A-II gene (APOA2); total cholesterol and the apolipoprotein A5 gene 

(APOA5); low-density lipoprotein and the ATP-binding cassette subfamily G member 8 gene 

(ABCG8); high-density lipoprotein and the ATP-binding cassette subfamily A member 1 

gene (ABCA1); triglycerides and the angiopoietin-like 3 gene (ANGPTL3); glucose and the 

adenylate cyclase 5 gene (ADCY5); insulin and the insulin-receptor substrate 1 gene (IRS1); 

dietary intake of omega-6 & -3 and the fatty acid desaturase 1 gene (FADS1); nutrients to 

assess energy balance and the mitochondrial uncoupling protein 1 gene (UCP1); total fat and 

the transcription factor 7-like 2 gene (TCF7L2); saturated and unsaturated fat and the fat-

mass and obesity-related alpha-ketoglutarate dependent dioxygenase gene (FTO); 

monounsaturated fatty acids and the peroxisome proliferator-activated receptor γ2 gene 

(PPARγ2); protein and FTO gene; appetite scores for fat-taste perception and the cluster 
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determinant 36 gene (CD36); sugar preference and the glucose transporter type 2 gene 

(GLUT2); hunger and the neuromedin beta gene (NMB). 

Thirty young, healthy males (20–34 years) participated in an experimental study and 

consumed a standardised breakfast meal. Blood samples were collected before and hourly for 

4 hours after a meal. Plasma samples were used to assess nutrient concentrations or 

physiological biomarker status. Buccal swabs were collected and analysed using the Illumina 

assay technique to assess SNPs. An online visual analogue 100-point scale was used to assess 

appetite scores upon arrival, immediately following ingestion, 30 minutes after ingestion and 

hourly for 4 hours after ingestion. 

There was a positive association between the insulin-signalling IRS1 gene variant 

rs2943641, the typical risk (TT) compared to the increased risk (CT or CC), in relation to 

postprandial insulin levels, χ² = 1, N = 30, P = 0.0025, 95% confidence interval (CI) [1.61, 

4.93]. The UCP1 gene variant -3826 rs1800592, the typical risk (AA) compared to the 

increased risk (GG or GA), was positively associated with participants’ body-mass index 

(BMI), χ² = 1, N = 30, P = 0.011, 95% CI [0.081, 0.757]. The “sugar preference” GLUT2 

gene variant rs5400 was insignificant between the typical risk (CC) compared to the 

increased risk (CT or TT) in relation to an elevated preference for sugar intake, χ² = 1, N = 

30, P = 0.07, 95% CI [0.94, 19.81]. However, a larger sample size may have revealed 

differences as significant. The remaining measures (vitamin D, iron, zinc, omega-6 and -3, 

protein, total fat, unsaturated and monounsaturated fat, cholesterol, low density lipoprotein, 

high density lipoprotein, triglycerides, fat taste, hunger and glucose) did not appear to 

associate with the genetic variants. 

The findings of this study suggest a significant relationship between the associated 

SNP and digestive responses for the IRS1 gene variant rs2943641 and the UCP1 gene variant 

-3826 rs1800592. Despite scientific literature indicating statistically significant associations 

between other genetic variants and physiological outcomes, this study did not confirm the 

associations. However, as a pilot experimental study, we acknowledge that the power to 

determine other associations may be too small due to the limited sample size and the 

complexity of the genetic assessment. This study has emphasised many known associations 

between a particular SNP and a change in a physiological outcome, whilst providing 

information on how a genetic variant could increase health risks. Future research to establish 

the robustness and statistically significant associations between genetic variation and related 

psychological outcomes is needed. Whether the science of nutrigenomics is the key to 
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producing the “perfect diet,” the efficacy and utility of nutrient-related genetic markers are 

still under investigation. 
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SNPs 

 

  



v 

Acknowledgement 

I would like to acknowledge the people who have given me support and encouragement 

throughout the completion of this thesis. I am very grateful for each person’s contribution in 

helping me, and I sincerely thank them all. 

I would like to thank my primary supervisor, Dr. Andrea Braakhuis. Thank you for your 

patience, guidance and insightful suggestions, which helped me through my research and the 

writing of this thesis. Without your valued expertise, attention to detail and encouragement, I 

could not have completed this. 

Thanks to my co-supervisor, Dr. Toan Pham, who gave me enormous help and guidance 

throughout the clinical trial study. 

I would like to acknowledge the participation of the participants; I am grateful for their 

time and willingness to take part in my research.  

Acknowledgement and thanks are due to my husband, family, friends and colleagues, 

all of whom have given me invaluable encouragement and support when needed. 

  



vi 

 

Table of Contents 

Abstract ..................................................................................................................................... ii 

Acknowledgement .................................................................................................................... v 

List of Figures .......................................................................................................................... ix 

List of Tables ............................................................................................................................ x 

List of Abbreviations ............................................................................................................. xii 

Chapter 1: Introduction .......................................................................................................... 1 

1.1 Research Problem ............................................................................................................. 1 

1.2 Background of the Research Problem .............................................................................. 1 

1.3 Research Question ............................................................................................................ 2 

1.4 Study Aim and Objectives ................................................................................................ 2 

1.5 Overview of the Methodology .......................................................................................... 1 

1.6 Research Roles and Responsibilities ................................................................................ 1 

1.7 Impact ............................................................................................................................... 2 

Chapter 2: Literature Review ................................................................................................. 4 

2.1 The Emerging Science Behind Nutrigenomics ................................................................ 4 

2.1.1 Nutrigenomics and Genetic Variation ........................................................................ 4 

2.1.2 Single Nucleotide Polymorphisms ............................................................................. 5 

2.1.3 The Postprandial State and the Digestive Response .................................................. 7 

2.2 Biotechnology Companies Offering Nutrigenomic Testing ............................................. 8 

2.2.1. Ethical Considerations .............................................................................................. 9 

2.2.2 Direct-to-Consumer Genetic Tests ........................................................................... 10 

2.3 Vitamins and Essential Minerals and Associated Genetic Risk Variant ........................ 10 

2.3.1 Vitamin D and the CYP2R1 and GC Gene (rs10741657 and rs2282679) ............... 10 

2.3.2 Iron Overload and the HFE Gene (rs1799945, rs1800562) and SLC17A1 Gene 

(rs17342717) ............................................................................................................... 13 

2.3.3 Low Iron and the TMPRSS6 Gene (rs4820268,), TRF2 Gene (rs7385804) and TF 

Gene (rs3811647) ....................................................................................................... 15 

2.3.4 Zinc and the SLC30A3 Gene (rs1126936) ............................................................... 16 

2.4 Dietary Fats and Associated Genetic-Risk Variant ........................................................ 17 

2.4.1 Omega-6 and -3 Polyunsaturated Fatty Acids and the FADS1 Gene (rs174547) .... 17 

2.4.2 Energy Balance and the UCP1 Gene (rs1800592) ................................................... 19 



vii 

2.4.3 Total Fat and the TCF7L2 Gene (rs7903146) .......................................................... 21 

2.4.4 Saturated Fat and the APOA2 Gene (rs5082) .......................................................... 23 

2.4.5 Saturated and Unsaturated Fat and the FTO Gene (rs9939609) .............................. 24 

2.4.6 Monounsaturated Fatty Acids (MUFA) and the PPARγ2 Gene (rs1801282) .......... 25 

2.5 Protein and Associated Genetic-Risk Variant ................................................................ 26 

2.5.1 Protein and the FTO Gene (rs9939609) ................................................................... 26 

2.6 Lipoproteins and Associated Genetic-Risk Variant ....................................................... 27 

2.6.1 Total Cholesterol (Total LDL-C and HDL-C) and the APOA5 Gene (rs662799) .. 28 

2.6.2 LDL Cholesterol (LDL-C) and the ABCG8 Gene (rs6544713) .............................. 29 

2.6.3 HDL Cholesterol (HDL-C) and the ABCA1 Gene (rs1883025) ............................. 30 

2.6.4 Triglycerides (TG) and the ANGPTL3 Gene (rs10889353) .................................... 31 

2.7 Eating Habits and Associated Genetic Risk Variant ...................................................... 32 

2.7.1 Fat-Taste Perception and the CD36 Gene (rs1761667) ........................................... 33 

2.7.2 Sugar Preference and the GLUT2 Gene (rs5400) .................................................... 34 

2.7.3 Susceptibility to Hunger and the NMB Gene (rs1051168) ...................................... 35 

2.8 Regulation of Blood Glucose and Associated Genetic-Risk Variant ............................. 36 

2.8.1 Fasting Glucose and the ADCY5 Gene (rs11708067) ............................................. 37 

2.8.2 Fasting Insulin and the IRS1 Gene (rs2943641) ...................................................... 37 

2.9 Conclusion ...................................................................................................................... 38 

Chapter 3: Methodology........................................................................................................ 40 

3.1 Study Design ................................................................................................................... 40 

3.2 Study Setting ................................................................................................................... 40 

3.3 Eligibility Criteria ........................................................................................................... 40 

3.4 Recruitment and Informed Consent ................................................................................ 41 

3.5 Sample Size .................................................................................................................... 41 

3.6 Randomisation and Blinding .......................................................................................... 41 

3.7 Meal Preparation ............................................................................................................. 41 

3.8 Collection of Data ........................................................................................................... 43 

3.9 Genetic Analysis ............................................................................................................. 43 

3.10 Subjective Analysis ...................................................................................................... 44 

3.11 Digestive and Biochemical Analysis ............................................................................ 44 

3.12 Statistical Analysis ....................................................................................................... 48 

3.13 Digestive Response and Corresponding Genetic Risk Variant Based on Published 

Associations ................................................................................................................... 50 



viii 

3.14 Funding ......................................................................................................................... 53 

Chapter 4: Results.................................................................................................................. 54 

4.1 Participant Characteristics .............................................................................................. 54 

4.2 Nutritional Evaluation of Meal ....................................................................................... 54 

4.3 Digestive Responses Analysed Using Participant Data for Physiological Outcome 

Measures and the Corresponding Genetic-Risk Variant ................................................ 55 

4.4 Results for Physiological-Outcome Measures and the Corresponding Genetic Variants 

(SNP) .............................................................................................................................. 60 

4.5 Variation in Data ............................................................................................................ 61 

Chapter 5: Discussion ............................................................................................................ 63 

5.1 Major Findings ............................................................................................................... 63 

5.2 Limitations and Future Studies ....................................................................................... 65 

5.3 Clinical Significance ....................................................................................................... 66 

5.4 Overview ........................................................................................................................ 67 

5.5 Conclusion ...................................................................................................................... 68 

References ............................................................................................................................... 70 

Appendices .............................................................................................................................. 91 

Appendix A: Main Studies Used in the Literature Review Examining the Association 

Between the Gene and Risk Variant, Outcomes and Limitations. ................................. 91 

Appendix B: Baseline Data of Participants Before Food Consumption ............................ 102 

Appendix C: Ethics Approval ............................................................................................. 103 

Appendix D: Participant Information Sheet ....................................................................... 106 

Appendix E: Consent Form ................................................................................................ 110 

Appendix F: Raw Data for Individual Participant for Physiological Outcome Measures and 

the Corresponding Qualitative Genetic Risk ............................................................... 111 

Appendix G: Nutrient Reference Values for Dietary Components by Australian 

Government, National Health and Medical Research Council, New Zealand Ministry of 

Health (2006). Including Recommended Dietary Intakes (RDI) and Upper Limit (UL).

 ...................................................................................................................................... 117 

Appendix H: Results of Findings ....................................................................................... 118 

 

 

  



ix 

List of Figures  

Figure 1 The Insulin-Signalling IRS1 Gene Variant SNP rs2943641 ..................................... 60 

Figure 2 The Energy-Balance UCP1 Gene Variant -3826 SNP rs1800592 ........................... 61 

 

  



x 

List of Tables 

Table 1 Investigated Physiological Measures With the Related Dietary Components Justified 

Alongside the Published Related Gene–Nutrient Interaction ........................................ 0 

Table 2 Gene and Associated, Reference Marker, Normal or Increased Response to Risk 

Variant, Gene Frequency, RDI, Physiological Measures and Reference Intervals (RI 

95% Prediction Interval) ............................................................................................. 46 

Table 3 Physiological Output Measures and the Corresponding Genetic-Risk Variant Based 

on Published Literature and Nutrigenomix, 2020. ...................................................... 50 

Table 4 Participant Characteristics ........................................................................................ 54 

Table 5 Nutrient Composition of Participants’ Dietary Intake the Day Prior to the Clinic 

Visit Based on 24-Hour Dietary Recall ....................................................................... 54 

Table 6 Nutritional Value of the Standardised Breakfast Meal Based on the Standardised 

Recipe ........................................................................................................................... 55 

Table 7 Nutrient Composition per 100 g of the Standardised Breakfast Meal Based on Actual 

Nutrition Composition of the Test Meal....................................................................... 55 

Table 8 Combined Participant Data Including Plasma Measures at Baseline, the 

Physiological Parameters and the Corresponding Count Score of the Genetic Variant

...................................................................................................................................... 56 

Table 9 Combined Participant Data From Postprandial Changes in Long-Chain 

Polyunsaturated Fatty Acid (LCPUFA) Concentrations in the Chylomicron-Rich 

Fraction of Omega-6 and -3 and the Corresponding Qualitative Genetic Risk .......... 57 

Table 10 Participants’ BMI Measures to Assess Physiological Parameters and the 

Corresponding Qualitative Genetic Risk ..................................................................... 57 

Table 11 Participants’ Postprandial Changes in Online Analogue Measures and the 

Corresponding Qualitative Genetic Risk ..................................................................... 58 

Table 12 Recorded Headache and Gastrointestinal Symptoms of Postprandial Meal 

Response in all Participants (n = 30) at Each Time Point .......................................... 59 

Table 13 Recorded Headache and Gastrointestinal Symptoms of the Postprandial Meal 

Response in all Participants (n = 30) Over the Study Duration ................................. 59 

Table 14 Variation in Data ..................................................................................................... 62 

 

Table F.1 Individual Participant Plasma Measures for Nutrients at Baseline and 

Corresponding Qualitative Genetic-Risk Statement .................................................. 111 



xi 

Table F.2 Individual Participant Plasma Measures at Baseline for Cholesterols, 

Triglycerides, Fats, Glucose and Insulin and Corresponding Qualitative Genetic-Risk 

Statement .................................................................................................................... 112 

Table F.3 Individual Participant Postprandial Changes in Long-Chain Polyunsaturated 

Fatty Acid and the Corresponding Qualitative Genetic-Risk Statement ................... 113 

Table F.4 Individual Participant BMI and the Corresponding Qualitative Genetic Risk 

Statement .................................................................................................................... 114 

Table F.5 Individual Participant Postprandial Changes in an Online Visual Analogue Scale 

and the Corresponding Qualitative Genetic Risk Statement ...................................... 115 

  



xii 

List of Abbreviations 

AA  Amino acid 

AI  Adequate intake 

ALA  Alpha-linolenic acid 

AUC  Area under the curve 

BAT  Brown adipose tissue 

BMI  Body mass index 

BP  Blood pressure 

CAD  Coronary artery disease 

CI  Confidence intervals 

CMRF  Chylomicron-rich fraction 

DBP  D binding protein 

DEXA  Dual-energy X-ray absorptiometry 

DGI  Diabetes Genetics Initiative 

DTC  Direct-to-consumer 

EER  Estimated dietary energy requirement 

FADS  Fatty acid desaturase 

FAME  Fatty acid methyl esters 

FFQ  Food frequency questionnaire 

FUSION Finland-United States Investigation of NIDDM 

GINA  Genetic Information Non-discrimination Act 

GNA  Genetic Non-discrimination Act 

GWA  Genome-wide association 

HDL  High-density lipoprotein 

HFD  High-fat diet 

HFE  Human factors engineering 

HH  Hereditary hemochromatosis 

HPD  High-protein diet 

HR  Hazard ratio 

KED  Kinetic energy discrimination 

LA  Linoleic acid 

LCPUFA Long-chain polyunsaturated fatty acid 



xiii 

LDL  Low-density lipoprotein 

LFD  Low-fat diet 

LOLIPOP London Life Sciences Prospective Population 

LPD  Low-protein diet 

MFC  Macrophage foam cells 

MI  Myocardial ischemia 

MS  Metabolic syndrome 

NCD  Noncommunicable diseases 

OR  Odds ratio 

PAL  Physical activity levels 

PREDICT Personalised Response to Dietary Composition Trial 

RDI  Recommended dietary intakes 

REE  Resting energy expenditure 

RI  Reference intervals 

RMR  Resting metabolic rate 

ROS  Reactive oxygen species 

RT  Room temperature 

RV  Risk variant 

SNP  Single nucleotide polymorphism 

SNS  Sympathetic nervous system 

TC  Total cholesterol 

TS  Transferrin 

UL  Upper limit 

VAS  Visual analogue scale 

VDR  Vitamin D receptor 

WHO  World Health Organisation 

ZnT  Zinc transporters 

 

 



1 

Chapter 1: Introduction 

1.1 Research Problem 

Differences in human genomes affect how genes instruct cells during protein 

synthesis, termed gene expression (Kohlmeier, 2015). Gene variants can cause dysfunction of 

this process by a mutation in genes as deletion or insertion of nucleotides in DNA or site-

specific variations in genes named single nucleotide polymorphisms (SNPs) (Barnes, 2008; 

Camp & Trujillo, 2014; Liu, 2007). Gene variants can cause individuals to be more 

susceptible to diseases, especially if combined with a nutrient that could increase their 

susceptibility (M. N. Mead, 2007). The poor understanding of gene–nutrient interaction is 

partly due to the limited number of investigations and the complexity, in that gene–nutrient 

interactions that cause disease in one individual will not necessarily cause disease in another 

individual. Genetic and nutrient factors for maintaining normal health conditions have been 

proposed to help tailor individual dietary requirements (Kohlmeier, 2015; M. N. Mead, 2007; 

Paoloni-Giacobino et al., 2003). Increasingly, postprandial responses are considered 

independent risk factors for health and disease and may represent health more than a fasting 

blood assay (Berry et al., 2020). There are also limited data on digestion and physiological 

response to dietary foods and inherent genetic variability that may influence eating habits 

(Klementova et al., 2019). 

Therefore, the power of nutrigenomics to understand gene–nutrient interaction for the 

prevention of disease is gaining significant interest, and will ultimately be used in a longer 

term lifestyle plan by producing personalised nutritional interventions to help individuals to 

reduce their risk of disease and modify their eating habits (Grimm & Steinle, 2011; Lopez-

Miranda & Marin, 2010). Nevertheless, evidence from well-designed nutritional studies that 

can translate easily into health benefits through a clinical application is lacking (Ordovas, 

2008). 

1.2 Background of the Research Problem 

SNPs are one aspect of genetic variability that can impact an individual’s digestive 

response to a meal, including lipid and glucose metabolism, insulin response and appetite. 

The process of the postprandial digestive response depends on an individual’s metabolic 

efficiency and subtle differences in genetic variability. This variability is due to different 

allele forms caused by genes’ polymorphisms. The most common form is site-specific 

variations or SNPs, used as nutrient-related genetic markers. SNPs are helpful to study the 
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relationship between genetic variation and digestive response influenced by diet in an 

individual (Vincent et al., 2002). 

Subsequently, the effect of genetic differences can be assessed by changes in 

physiological outcomes during the postprandial state. Evaluating the postprandial digestive 

response to a meal is considered a relevant assessment for identifying the changes in 

digestion and metabolism as it enables the evaluation during the whole digestive response to 

a meal (den Hoed et al., 2008; den Hoed et al., 2009; Ellis et al., 2021; Grimm & Steinle, 

2011; Monrroy et al., 2019; Zeevi et al., 2015). 

Much of the nutrigenomic research has focused on the interaction of SNPs and 

singular physiological outcomes. Many postprandial investigations focus on a specific 

population with the same polymorphism related to a dietary nutrient-related genetic marker 

and resulting in individual disease-risk factors (Lairon et al., 2007; Lopez-Miranda & Marin, 

2010). 

Whilst most nutrigenomic research reports a known association exists between the 

SNPs and related physiological outcomes, this research will question the robustness of these 

interactions. 

1.3 Research Question 

Previous nutrigenomic research reports positive associations between a particular 

SNP and a related physiological or nutritional outcome change, but how robust are these 

interactions? 

1.4 Study Aim and Objectives 

This thesis aimed to investigate the unique genetic background of an individual and 

consider whether there are any associations between a range of physiological measures and 

the related 26 SNPs located in genes (Table 1).
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Table 1 

Investigated Physiological Measures With the Related Dietary Components Justified Alongside the Published Related Gene–Nutrient Interaction 

Associated gene Published gene–nutrient interactiona  Gene 
abbreviation  

SNP reference marker Physiological measure tested in the 
thesis 

Cytochrome P450 family 2 subfamily R 
member 1 

Involved in activation of vitamin D CYP2R1 rs10741657 
 

Vitamin D 

Group-specific component vitamin D 
binding protein  

Involved in vitamin D transport GC rs2282679 
 

Vitamin D 

Homeostatic iron regulator protein  Involved in iron transport (used to assess iron overload) HFE  variant H63D-rs1799945 &  
variant C282Y-rs1800562 

Iron 

Solute carrier family 17 member Involved in iron transport (used to assess iron overload) SLC17A1 rs17342717 Iron 
Transmembrane protease serine 6 Involved in absorption of iron (used to assess low iron) TMPRSS6 rs4820268 Iron 
Type-2 transferrin receptor  Involved in iron transport (used to assess low iron) TRF2 gene rs7385804 Iron 
Transferrin coding gene Involved in iron transport (used to assess low iron) TF gene rs3811647 Iron 
Solute carrier family 30 member 3 Involved in zinc transport SLC30A3 rs1126936 Zinc 
Fatty acid desaturase 1 Involved in activation of omega-6 & -3 long-chain 

polyunsaturated fatty acid 
FADS1 rs174547 & rs174546 in direct linkage with 

rs174547 
Long-chain polyunsaturated fatty acids 

Mitochondrial uncoupling protein 1 Involved in stimulating oxidation of fatty acid and 
increasing energy expenditure (used to assess 
energy balance; intake, expenditure, storage) 

UCP1 rs1800592 Body-mass index (BMI) measures 

Transcription factor 7-like2 Involved in response to dietary intake of fat  TCF7L2 rs7903146 BMI measures 
Apolipoprotein A-II Involved in response to dietary intake of saturated fat APOA2 rs5082 Low-density lipoprotein (LDL) cholesterol 
Fat-mass and obesity-related alpha-

ketoglutarate-dependent dioxygenase 
Involved in response to dietary intake of food (used to 

assess saturated and unsaturated fat) 
FTO rs9939609 BMI measures 

Fat-mass and obesity-related alpha-
ketoglutarate-dependent dioxygenase 

Involved in response to dietary intake of food (used to 
assess protein) 

FTO rs9939609 BMI measures 

Peroxisome proliferator-activated 
receptor γ2  

Involved in fat cell formation in adipose tissue (used to 
assess monounsaturated fatty acids) 

PPARγ2 rs1801282 BMI measures 

Apolipoprotein A5 Involved in lipid metabolism (used to assess total 
cholesterol)  

APOA5 rs662799 Total cholesterol 

ATP-binding cassette subfamily G 
member 8 

Involved in cholesterol uptake (used to assess LDL 
cholesterol) 

ABCG8 rs6544713 LDL cholesterol 

ATP-binding cassette subfamily A 
member 1 

Involved in cholesterol metabolism (used to assess HDL 
cholesterol) 

ABCA1 rs1883025 HDL cholesterol 

Angiopoietin-like 3 Involved in release of fatty acids and glycerol from 
adipose tissue (used to assess triglycerides) 

ANGPTL3 rs10889353 Triglycerides 

Cluster determinant 36 Involved in lipid absorption and response to fat detection 
(used online visual analogue 100-point scale (OVAS) 
to assess fat-taste perception) 

CD36 rs1761667 Appetite scores 

Glucose transporter type 2 gene Involved in glucose homeostasis and insulin release 
(used OVAS to assess sugar preference) 

GLUT2 rs5400 Appetite scores 

Neuromedin beta Involved in eating behaviours (used OVAS to assess 
susceptibility to hunger) 

NMB rs1051168 Appetite scores 

Adenylate cyclase 5 Involved in fasting glucose levels ADCY5 rs11708067 Glucose 
Insulin-receptor substrate 1 Involved in insulin levels IRS1 rs2943641 Insulin 

a The SNPs listed have been suggested by previous genome-wide association (GWA) studies to be associated with disease risk in a population (Appendix A) (Patron et al., 

2019).
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To achieve the overarching aims, the objectives of this study will include 

investigating dietary-nutrient-related genetic markers with the measured parameters reflecting 

a participant’s postprandial digestive response to a standardised breakfast meal. 

1.5 Overview of the Methodology 

Postprandial digestive responses were analysed using each participant’s physiological 

outcome measures or markers that correspond to the dietary component and correlated with 

the qualitative genetic SNP associated with published literature (Appendix A, Table 1). 

Participants’ plasma samples at baseline / premeal (t-pre) were used to assess the 

physiological measure for concentrations of vitamin D, iron, zinc, total cholesterol, low-

density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), glucose and 

insulin.  

Participants’ postprandial changes in long-chain polyunsaturated fatty acid 

(LCPUFA) (18:2 n-6, 18:3 n-6, 18:3 n-3) were used to assess the physiological measure for 

concentrations in the chylomicron-rich fraction (CMRF) for dietary intake of omega-6 and -3.  

An online visual analogue 100-point scale was used to assess the physiological 

measure for each participant’s postprandial appetite changes associated with fat-taste 

perception, sugar preference and susceptibility to hunger.  

Participants’ body-mass index (BMI) was used as the physiological marker related to 

body composition and energy balance. The categories of BMI were: Underweight < 18.5 

kg/m2, Healthy/Normal 18.5–24.9 kg/m2, Overweight 25–29.9 kg/m2 and Obese > 30 kg/m2 

(National Heart Foundation of New Zealand, 2022). 

The Oragene DNA ON-500 self-collection kits were used to take buccal samples from 

each participant for their genetic analysis. The samples were sent to and analysed by 

Nutrigenomix (2020) using the Illumina assay technique to assess 26 SNPs. Nutrigenomix is 

a multinational biotechnology company with over 10,000 accredited healthcare practitioners 

who practise in 40 countries. Nutrigenomix provides genetic-test kits and a direct-to-

practitioner customised nutritional-information report based on genetic variation and 

genotype. The report describes how each individual is susceptible to food-related traits based 

on their risk variant. 

1.6 Research Roles and Responsibilities 

This thesis is a small subsection of a larger randomised crossover trial to capture the 

biological difference in postprandial nutrient dynamics of the effect of red meat on 
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postprandial meal response. The trial compared the acute nutritional effects of iso-caloric, 

blinded meals. The trial was conducted at the Auckland Clinical Research Centre, and the 

writer’s duties and responsibilities were: the purchasing of most of the meal ingredients and 

supporting meal preparation; the cooking and serving of hot meals to participants who made 

four consecutive visits to the clinic over 9 weeks; the taking of vital signs for baseline data 

(height, weight, blood pressure, heart rate) (Appendix B); encouraging participants’ 

completion of the ASA 24-hour dietary recall and questionnaires; gaining consent for the 

collection of genetic samples; the coordination and collection of buccal samples for genetic 

testing; the management of data cleaning and manipulation for the extensive trial; and the 

interpretation and write up of outcomes for this thesis.  

1.7 Impact 

Genetic variation is one factor that can impact an individual’s digestion and 

physiological response to foods. Dietary components can impact health by affecting gene 

expression, necessitating an understanding of gene–nutrient interactions (Klementova et al., 

2019). The postprandial state presents independent health-risk factors due to elevated blood 

glucose and lipids which cause oxidative stress, inflammation, and endothelial damage (Berry 

et al., 2020). Therefore, investigating an individual’s inherent genetic variability and their 

postprandial digestive responses can be used to inform the individual about their disease risk 

and ultimately translate into effective preventive longer term lifestyle strategies using 

personalised dietary interventions (Ellis et al., 2021; Nielsen & El-Sohemy, 2014; Ordovas, 

2008). These investigations will help explain why certain nutrients may benefit one 

individual more than another and support individuals with unhealthy diets and 

noncommunicable diseases such as obesity, Type 2 diabetes mellitus (T2DM) and 

cardiovascular disease (CVD) (Barnes, 2008; Berry et al., 2020; Binia et al., 2014; Lopez-

Miranda & Marin, 2010). 

A good example of gene–nutrient interaction is between the “fat mass and obesity-

associated” (FTO) genes and how they can impact the body’s response to saturated fat 

(Rodrigues et al., 2015). Overconsumption of saturated fat causes weight gain leading to 

higher BMI and obesity. Obesity is a causal factor in developing insulin resistance, T2DM, 

and metabolic disease. Obesity has been linked with a common variant in the FTO gene 

variant rs9939609 genotype AA or TA (C. M. Phillips et al., 2012). The frequency of the A 

allele of the rs9939609 SNP is 0.4 in European-descent population and closer to 0.15 in 

Asian descent (National Center for Biotechnology Information [NCBI], 2005). Carriers of the 
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FTO A allele who consume larger quantities of saturated fat (commonly found in animal 

products) compared to polyunsaturated fatty acid (PUFA) increase their risk of obesity and 

CVD. Individuals with the high-risk allele may respond positively to a weight-loss plan that 

is high in PUFA and low in saturated fats (den Hoed et al., 2009; C. M. Phillips et al., 2012; 

Rodrigues et al., 2015). Therefore, future research on the FTO gene variant rs9939609 and 

other gene–nutrient interactions alongside an individual’s dietary intake could help translate 

into their personalised dietary plan. 

Another example of gene–nutrient interaction studies could impact carriers with 

specific genotypes as they may be more at risk of disease and more susceptible to dietary 

factors. For example, 57% of Indigenous Indians of America are carriers of the MTHFR gene 

TT genotype and are more at risk of colon cancer, but folate supplementation can help to 

reduce this risk (Binia et al., 2014). 

This thesis aimed to investigate the unique genetic background of individuals and 

consider whether there are any associations between a range of physiological measures and 

the related 26 SNPs (Table 1). The investigated physiological measures were selected 

alongside the corresponding dietary components and justified with the published related 

gene–nutrient interaction. The investigated gene–nutrient interactions with the measured 

parameters reflected a participant’s postprandial digestive response to a standardised 

breakfast meal. The “Personalised Response to Dietary Composition Trial” (PREDICT) 

helped justify using a postmeal analysis as a good way of investigating nutrition response, 

rather than what most studies do, which is a fasting blood sample (Berry et al., 2020). 
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Chapter 2: Literature Review 

2.1 The Emerging Science Behind Nutrigenomics 

The science of nutrigenomics assesses the gene–nutrient interactions using nutrient-

related genetic markers or site-specific genetic variations in genes known as SNPs. The term 

nutrigenomics first made an appearance around 2001 in literature by Dr Nancy Fogg-

Johnson, who, in her opinion, would “revolutionise how people manage nutrition and dietary 

components” (Peregrin, 2001, p.1). Fogg-Johnson believes nutrigenomics will allow gene 

variants in metabolic diseases to be successfully managed through dietary intervention. 

Today, there is a general acceptance of the notions that genetic variation plays a role in the 

health and longevity of an individual and that a perfect diet may differ depending on genetic 

background (Passarino et al., 2016). Whether or not the science of nutrigenomics is the key to 

producing the “perfect diet,” the efficacy and utility of nutrient-related genetic markers are 

still under investigation. 

2.1.1 Nutrigenomics and Genetic Variation  

Nutrigenomics is a subbranch of nutritional genomics or gene–nutrient interaction 

(the other branches being nutrigenetics and nutritional epigenetics) and incorporates the 

human genome, nutrition and health. Genomic technologies and genetic information are used 

in nutrigenomics to study how the body responds to nutrients (Farhud et al., 2010; M. N. 

Mead, 2007). Nutrigenomics utilises techniques such as proteomics, including gene 

expression and metabolism profiling (metabolomics), to investigate the role of an individual’s 

gene–nutrient interaction (M. N. Mead, 2007; Paoloni-Giacobino et al., 2003). Combined 

with individual dietary interventions, nutrigenomics is helping shift from a “one-size-fits-all” 

approach to diet towards an individualised, personalised diet for effective wellness (Nielsen 

& El-Sohemy, 2014; Zeisel, 2007).  

The Human Genome Sequencing Project, started in 1990 and completed in 2003, 

made it possible to identify SNPs (Chial, 2008; Karczewski et al., 2020). Data analysis from 

the project has allowed the referencing of SNPs using the prefix “rs” followed by a unique 

number (gnomAD, n.d.; Karczewski et al., 2020; NCBI, 2005; Sherry et al., 2001). This 

project provides a detailed description of genetic variation across populations. Everyone’s 

human genome is identical apart from approximately 0.001% of individual genetic variation 

in one’s DNA, chromosomes, or genes. Variations known as polymorphism could cause a 

genetic risk and increase the susceptibility to a disease or disorder (Collins et al., 2003). SNPs 
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are the most common polymorphisms found within genes and promising biomarkers for 

disease susceptibility (Farhud et al., 2010; M. N. Mead, 2007). 

2.1.2 Single Nucleotide Polymorphisms  

With the arrival of nutrigenomics and GWA studies, much research has been centred 

around SNPs, as they are associated with responses to diet and influence health and disease 

(Fenech, 2005). 

SNPs are a common type of genetic variation among individuals and constitute a 

single nucleotide variation at a specific position in genes located in an individual’s DNA 

sequence (den Hoed et al., 2008; den Hoed et al., 2009; Eny et al., 2008; Melis et al., 2015). 

DNA comprises a string of four different types of nucleotide bases: adenine, A, cytosine, C, 

guanine, G, and thymine, T. Alleles are the possible bases of a genetic variant and in SNPs 

are comprised of the single bases A, T, C or G. SNPs contain only two possible alleles, for 

example, T or C, and three possible genotypes: homozygous dominant, homozygous 

recessive, or heterozygous, making them easily assayed (Hinds et al., 2005; Sachidanandam 

et al., 2001). There are many types of SNP assay methods including polymerase chain 

reaction: resistive fault locates (PCR:RFL) -based genotype; single-strand conformation 

polymorphism; restriction fragment length polymorphism; DNA sequencing; DNA 

microarray; SNP chip analysis; capillary electrophoresis, and single base extension (Liu, 

2007). 

SNPs are genetic mutations caused by environmental factors, poor lifestyle, diet or 

stressful conditions. SNPs alter gene transcription and protein formation and act as genetic 

markers to locate genes associated with a disease. When SNPs interact with nutrients, 

initiating the turning off or on of gene expression, they can modify the behaviour of the 

molecular function and signalling pathways in cells (Camp & Trujillo, 2014). Failure of gene 

expression could cause damage to the cells and trigger the initiation of disease (Paoloni-

Giacobino et al., 2003; T. Phillips, 2008). Therefore, gene–nutrient interactions can 

profoundly affect dietary implications and health outcomes by influencing gene expression 

(Ramos-Lopez et al., 2017). The nutritional impact of the evidence of gene–nutrient variants 

supports healthy dietary intake to reduce the risk of disease (Paoloni-Giacobino et al., 2003). 

Throughout the population, 99% of the human genome is identical; the remaining 1% 

carries the same nucleotide variation or SNPs and there are about 10 million SNPs spaced 

approximately 300 nucleotides apart (Hinds et al., 2005). Of the 10 million SNPs, the most 

common ones are found in about 5% to 50% of the population (Hinds et al., 2005). 
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Advancements in biotechnology have allowed SNPs to be readily assayed using 

noninvasive techniques, thus, making discovering their risk variants accessible for 

individuals. Many companies now provide SNP analysis services and focus on the most 

common risk variants to report how susceptible an individual is to food-related traits that can 

increase health risks and cause disease (Zeisel, 2007). 

The location and identification of gene variants are currently being investigated and 

will help explain how different nutrients affect health and predict a person’s risk of disease 

(M. N. Mead, 2007). Dietary interventions can then be introduced as a treatment to reduce 

risk due to understanding gene–nutrient interaction (Afman & Müller, 2006; Paoloni-

Giacobino et al., 2003). 

Much research has reported disease-risk variants associated with gene–nutrient 

interaction. An example of a gene–nutrient interaction is a low intake of folate (B9), B6 and 

B12, which is associated with the methylenetetrahydrofolate reductase (MTHFT) gene 

variant rs1801133. This gene variant regulates homocysteine metabolism and increases the 

risk of breast cancer (Jiang-Hua et al., 2014). Another example is low calcium intake, 

affecting vitamin D availability and bone mineral density linked to the vitamin D receptor 

(VDR) gene variant rs1544410. This gene variant is associated with osteoporosis in 

postmenopausal women (Stathopoulou et al., 2011). The lipoproteins encoding genes, 

APOC3 gene variant rs5128, and the APOA1 gene variant rs670 and rs5069 are associated 

with a higher risk of metabolic syndrome (MS) in Tehranian adults (Hosseini-Esfahani et al., 

2015; Ramos-Lopez et al., 2017). 

The association of nutrient-related genetic markers and risk variants could be linked 

to multifactorial diseases like heart disease, cancer, and diabetes (M. N. Mead, 2007; Paoloni-

Giacobino et al., 2003). M. N. Mead (2007) has reported that “the selective use of genome-

protective nutrients in individuals with specific gene variants could potentially result in 

improved resistance towards these major diseases” (p. 584). Fenech (2005), who initiated the 

concept of nutrigenomics, has described the link between genome instability and nutritional 

deficiency as dependent on “genetic polymorphisms that can alter the function of genes” (p. 

255) with unfavourable health outcomes. Therefore, certain nutrients could provide 

protection in individuals with a particular gene variant (Fenech, 2005). 

The current thesis has a focus on SNPs as the basis for the genetic information; 

however, we acknowledge that epigenetic changes mean that our food is not just an input to 

the body system, as common with SNPs variants, but can also change how that system 

functions. Further, genetic variation can also influence epigenetic modifications, adding 
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another layer of complexity. While nutritional epigenomics is a relatively new field, it is clear 

that epigenetic processes play essential roles in how our bodies interact with food and other 

bioactive compounds. It may also partially explain the “missing heritability” problem of 

GWA studies, i.e., those genetic variants typically only explain a small fraction (5%–10%) of 

a phenotype’s heritability (Mullins et al., 2020). 

2.1.3 The Postprandial State and the Digestive Response 

Dietary advice to help control blood lipids and glucose levels are similar for all 

people. Recent research suggests that particular diets recommended to support optimal health 

can have the opposite effect on some people (Zeevi et al., 2015). Contrary to population-level 

guidance, we know there are considerable interpersonal variations in the glycaemic and lipid 

response to a meal and differences in how individuals respond to particular diets. 

Interestingly, while significant variation exists between different individuals, meal response 

is reasonably predictable from meal to meal (Monrroy et al., 2019; Zeevi et al., 2015). 

The postprandial state is the period between the ingestion of food and the 

postabsorptive state when the increase in plasma fatty acids, amino acids and appetite 

response occurs (den Hoed et al., 2008; den Hoed et al., 2009). Many dietary interventions 

have focused on taking measurements during the fasting state, but most adults spend more 

time in a dynamic postprandial state. For example, it can take up to 6 hours for triglycerides, 

lipoproteins, fatty acids, glucose and insulin response levels to return to preprandial or 

baseline levels (den Hoed et al., 2008; den Hoed et al., 2009; Desmarchelier et al., 2013; 

Lopez-Miranda & Marin, 2010). Therefore, studies should focus on assessing the relationship 

between digestion, metabolism, and genetic variants’ influence on the whole digestive 

response to a meal. This relationship is an important and under investigated topic in many 

dietary interventions. 

During the postprandial state, there are fluctuations in physiological parameters, 

including glucose, insulin, lipids and appetite response which can be analysed using 

physiological variables (den Hoed et al., 2008; den Hoed et al., 2009; Desmarchelier et al., 

2014; Mortensen et al., 2012). Therefore, the postprandial digestive response may be more 

relevant to identifying the differences in digestion and metabolism than measures taken in the 

fasting state (Azpiroz et al., 2014; Lopez-Miranda & Marin, 2010). Dietary intervention 

studies that measure the fasting state cannot accurately predict the peak changes accompanied 

by postprandial digestive responses during the test period. The changes can be calculated 
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using the trapezoidal method for the area under the curve (AUC) time-point differences 

during the postprandial digestive response (Lairon et al., 2007). 

2.2 Biotechnology Companies Offering Nutrigenomic Testing 

Recently with the explosion of nutrigenomics research and the demand for genetic 

data, biotechnology companies have developed individual genetic mapping relating to 

ancestry and to “optimise health.” These companies can assess an individual’s SNPs, identify 

their risk variant, and produce customised reports commenting on health and well-being 

insights (Dib et al., 2019; Mullins et al., 2020). Customised reports have become possible due 

to the genetic mapping used in the Human Genome Project and HapMap Project to identify 

genetic variations which may carry common traits and disorders (Vimaleswaran & Loos, 

2010). Genetic mapping has enabled the identification of 38 million SNPs, opening the 

floodgates for credible GWA population-based studies that have linked genetic variants to 

certain diseases and health risks (Moore, 2020). Personalised dietary nutrition plans have 

followed and been tailored to an individual’s genetic data to optimise health and well-being 

and reduce disease risk. 

Since 2001, due to growing public interest, there has been an increase in the 

publication of articles in the PubMed database on “stratified nutrition,” “nutrigenetics,” 

“personalised nutrition,” and “precision nutrition” (Moore, 2020). This interest has fuelled 

increased spending in the personal genomic biotechnology industry and decreased genotyping 

costs. The reduction in costs has allowed for the exponential growth since 2016 of 

nutrigenomic tests available to the public, and consumer numbers have surpassed 10 million 

(Khan & Mittelman, 2018; Moore, 2020). Growth to date, 2022, has seen investment in 

biotechnology being very profitable. Consequently, Illumina, a gene-sequencing company 

giant with a market cap of US$54.98 billion as of March 2022, has amalgamated with 

investors to form Helix, a new company that includes health and well-being consumer reports 

(Khan & Mittelman, 2018; Macrotrends, 2022), attracting many individual consumers who 

want to seek out health information and the risk of getting a disease (Khan & Mittelman, 

2018). 

Several issues exist with these biotechnology companies’ reported data on gene–

nutrient interaction. A lot of the information regarding the gene–nutrient interaction is 

derived from GWA studies performed on healthy individuals of similar ethnicity and does not 

account for changes in different environmental and stress conditions (Dib et al., 2019). 

Trying to untangle the gene–nutrient interaction, which involves a complex biosynthesis 
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process, will take time. Therefore, precision nutrition can only be successful when more 

rigorous research on individual differences associated with physiological outcome responses 

to nutrients is pursued (Dib et al., 2019; Khan & Mittelman, 2018).  

The Academy of Nutrition and Dietetics’s takes an evidence-based approach to 

nutrigenetics, and believes that dietary intake and genetics affect phenotype and can, 

together, effect health (Braakhuis et al., 2021). Nutrigenetics can be used in clinical practice, 

registered dietitians can interpret and convey the reported outcomes to individuals. Even 

though much research investigates gene–nutrient interactions, this has not led to successful 

facilitation in many clinical practices (Ellis et al., 2021). This is mainly due to practitioners’ 

lack of guidance and knowledge on applying personalised nutrition based on a patient’s 

genetic variation. Evidence-based guidelines called “nutrigenomic care maps” are being 

developed to help practitioners implement personalised nutrition. These care maps will help 

increase practitioners’ knowledge of nutrigenomics, genetic testing, and personalised 

nutrition (Horne et al., 2021). However, continued research is needed as polygenic traits are 

associated with more than one gene that can influence nutritional status. The efficacy of using 

nutrigenomics for multifactorial diseases such as obesity, T2DM and CVD to improve health 

outcomes is still under investigation (Camp & Trujillo, 2014; Ellis et al., 2021). 

2.2.1. Ethical Considerations 

Factors holding back individuals from sending off their DNA sample are privacy 

concerns about what happens to their sample and who owns the data once analysed. To stop 

the distribution of genetic information for other than private use, the USA passed the Genetic 

Information Nondiscrimination Act of 2008 (GINA), and Canada, the Genetic Non-

Discrimination Act 2017 (GNA), formally known as Bill S-201 (Sterling, 2008). 

Therefore, before submitting DNA samples, it is vital to know the biotechnology 

company’s privacy and data-handling policy and if they adhere to the GINA or GNA. Dr 

Ahmed El-Sohemy, professor and Canadian research chair in nutrigenomics at the University 

of Toronto and founder and chief science officer of Nutrigenomix, started in 2011, ensures 

the anonymity of all samples handled (Nutrigenomix, 2020). El-Sohemy assures consumers 

that his company uses the “most stringent standards for secure data transfer, privacy and 

security” as only registered dietitians or physicians can obtain genetic testing kits for their 

patients (Nutrigenomix, 2020, p. 1). Therefore, healthcare professionals, acting in their 

patient’s best interest, can provide an analysis of the Nutrigenomix results. Other 

nutrigenomic companies do not give the same “direct-to-practitioner” assurance. Sterling 
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(2008) reported this in his research on websites promoting biotechnology companies offering 

nutrigenomic testing. He found only 44 companies that had a privacy statement; 19 addressed 

the issue of privacy concerns regarding specimens and data results and only 14 of these 

specifically detailed their confidentiality procedure with the destruction of samples. Eleven 

other companies stated they would use data results for “future research.” 

2.2.2 Direct-to-Consumer Genetic Tests 

The evidence for and against the use of direct-to-consumer (DTC) biotechnology 

companies is that the genetic testing kits are easy to use for individuals to gain information 

concerning their nutrient metabolism, eating habits, food tolerance or health (Oh, 2019). DTC 

reports do not need approval from a healthcare practitioner and are less expensive than direct-

to-practitioner reports. But caution is required when analysing results that suggest the 

consumer is more susceptible to a disease or health condition (Jansen et al., 2019; Oh, 2019). 

The results may cause undue stress and anxiety to the consumer, but it could lead to lifestyle 

changes for others. A negative test is not conclusive, and a disease or health condition may 

develop irrespectively. The information from the tests becomes the biotechnology company’s 

property. For example, 23andMe, a DTC biotechnology company in the USA, collects and 

uses the data for further research (Jansen et al., 2019). Therefore, DTC tests are not always in 

the consumer’s best interest as they do not provide guidance or support, especially when 

analysing the results, which can be complex. Therefore, consultation with a healthcare 

practitioner is essential when consumers make health changes based on their genetic variants 

(Oh, 2019). 

2.3 Vitamins and Essential Minerals and Associated Genetic Risk Variant 

This section will investigate the association between vitamin D, iron overload, low 

iron, zinc and the related SNP variant located in genes: cytochrome P450 family 2 subfamily 

R member 1 gene (CYP2R1) and group-specific component vitamin D binding protein gene 

(GC), homeostatic iron regulator protein gene (HFE) (C282Y, H63D) and solute carrier 

family 17 member 1gene (SLC17A1), transmembrane protease serine 6 gene (TMPRSS6), 

type-2 transferrin receptor gene (TFR2) and transferrin coding gene (TF), and solute carrier 

family 30 member 3 gene (SLC30A3), respectively. 

2.3.1 Vitamin D and the CYP2R1 and GC Gene (rs10741657 and rs2282679) 

Vitamin D is a fat-soluble steroid hormone and has two forms: endogenous, 

manufactured by the skin’s exposure to UV light producing D3 (cholecalciferol), and 
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exogenous, consuming dietary components found as D2 (ergocalciferol) (Speeckaert & 

Delanghe, 2021). Vitamin D circulates in the blood as 25-hydroxyvitamin D (25[OH]D), the 

inactive precursor hormone used as a biomarker, and 1,25-dihydroxyvitamin D or calcitriol 

(1,25[OH]2D), the active hormone or metabolite involved in many physiological processes, 

such as maintaining immune function, cell growth and apoptosis (Christakos et al., 2011; 

Tomei et al., 2020). The primary function of vitamin D is to regulate levels of the minerals 

calcium and phosphorus by enhancing their absorption from the small intestines into the 

blood. Chylomicrons transport vitamin D to the liver via the bloodstream, where 25(OH)D 

can be circulated, attached to a vitamin D binding protein (DBP), and delivered to target 

tissues (Kohlmeier, 2015; Speeckaert & Delanghe, 2021). DBP allows calcium and 

phosphorus deposit into bone tissue as the mineral hydroxyapatite. This mineral is essential 

for building the bone matrix to increase bone density, bond strength and reduce the risk of 

bone diseases, including osteoporosis, rickets, osteomalacia and bone stress fractures 

(Alathari et al., 2020; Slater et al., 2017). The deficiency of vitamin D is associated with the 

risk of other multifactorial conditions such as diabetes, CVD, and cancer (T. J. Wang et al., 

2010). 

Not only do diet and seasonal conditions affect vitamin D deficiencies, but plasma 

concentrations of 25(OH)D might be heritable (Shea et al., 2009). Using 1,762 participants 

from the Framingham Heart Study, a cross-sectional study by Shea et al. (2009) found the 

heritability of 25(OH)D to be statistically significant (estimated at 28.8 ± 11.3% in 

multivariable-adjusted analysis, P = 0.003). 

Several studies are reporting a growing concern at the number of New Zealanders 

with insufficient levels of vitamin D (Baghurst & Record, 2002; Green et al., 2004). New 

Zealand has reported that 27.6% of adults have low vitamin D levels (< 37.5 nmol/L) and 

2.8% have very low (< 17.5 nmol/L) (Green et al., 2004). Therefore, to help boost vitamin D 

levels, it is commonly added to milk products (Baghurst & Record, 2002; Holick, 2001; 

Vanlint, 2005). 

A cross-sectional study on elderly women reported low vitamin D levels, resulting in 

increased falls leading to fractures that happened more often during winter (Pasco et al., 

2004). Vitamin D levels in winter were less than 58 nmol/L compared to less than 70 nmol/L 

in summer. The study reported seasonal variation in the number of fractures sustained in the 

winter months (67.5%; 95% CI [64.2, 70.8]) compared to the summer months (58.2%; 95% 

CI [54.6, 61.8], P < 0.001) and that low vitamin D reduces bone strength (Pasco et al., 2004). 
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Some studies have linked three gene variants to vitamin D status and low plasma 

levels of 25(OH)D (Tomei et al., 2020; T. J. Wang et al., 2010). The first is the protein-

coding gene, 7-dehydrocholesterol reductase (DHCR7). The DHCR7 gene synthesises 

cholesterol from 7DHC, a cholesterol precursor and a vital precursor essential for 

cholecalciferol (D3); 7DHC is then converted to vitamin D and D3 by a photochemical 

process in the skin (Tomei et al., 2020; T. J. Wang et al., 2010). 

The CYP2R1 gene is thought to encode the microsomal enzyme 25-hydroxylase in 

the hepatic system, where it gets hydroxylated to 25(OH)D and sequentially converted to the 

active form 1,25(OH)2D in the kidneys (Slater et al., 2017; Speeckaert & Delanghe, 2021). 

The CYP2R1 gene variant rs10741657 (genotypes GG and GA) is associated with low 

plasma levels of 25(OH)D (Slater et al., 2017; Speeckaert & Delanghe, 2021; Tomei et al., 

2020; T. J. Wang et al., 2010). 

The GC gene is involved in the transport of vitamin D by encoding the vitamin D 

binding protein (DBP) and binding of the vitamin D metabolites, 25(OH)D and 1,25(OH)2D, 

in the plasma (Kohlmeier, 2015). Therefore, low plasma levels of 25(OH)D and vitamin D 

are associated with low concentrations of DBP produced by the GC gene variant, rs2282679 

(genotype GG) (Slater et al., 2017; Speeckaert & Delanghe, 2021; Tomei et al., 2020; T. J. 

Wang et al., 2010). 

A cross-sectional study conducted by Slater et al. (2017) reported that of the 180 

participants taking similar supplements, 140 (78%) had low levels of 25(OH)D (< 75 nmol/L) 

and were linked to an increasing frequency of the CYP2R1 gene variant, rs10741657 

(genotypes GG and GA) and the GC gene variant, rs2282679 (genotype GG). Participants 

with the CYP2R1 gene variant (rs10741657 GG or GA) were 3.67 times more likely (OR = 

3.67, 95% CI [1.35, 9.99]) to have low vitamin D, whilst participants with the GC gene 

variant (rs2282679 GG) were 0.5 times more likely (OR = 0.42, 95% CI [0.18, 0.93]) to have 

lower levels of vitamin D. The results suggest genetics has a more significant impact on 

vitamin D status compared to supplementation (Slater et al., 2017). 

Another study conducted by T. J. Wang et al. (2010) using 33,996 European-descent 

subjects from the SUNLIGHT Consortium (Study of Underlying Genetic Determinants of 

Vitamin D and Highly Related Traits from the United Kingdom, United States, Canada, 

Netherlands, Sweden, and Finland) used 15 cohorts. T. J. Wang et al. (2010) found genetic 

variants identified at three different loci were significant in one cohort and confirmed in 

another. These genetic variants had a combined total of P = 2.9 × 10-109 for SNP rs2282679 

near GC, P = 3.3 × 10-20 for SNP rs10741657 near CYP2R1 and P = 2.1 × 10-27 for SNP 
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rs12785878 near DHCR7 and explain 1%–4% variation in 25(OH)D levels. The study 

assessed the influence of the SNPs and how they affected low vitamin D levels using 

25(OH)D of less than 75 nmol/L or less than 50 nmol/L. Findings reported that participants 

who had all three variants from the top quartile compared to the lower quartile had increased 

odds by 2–2.5-fold associated with insufficient vitamin D (25(OH)D < 20 nmol/L, adjusted 

odds = 1.43, 95% CI [1.13, 1.79], P = 0.02) (T. J. Wang et al., 2010). 

The studies by T. J. Wang et al. (2010) and Slater et al. (2017) have associated genetic 

variants with insufficient vitamin D levels. Still, there are confounding issues as vitamin D 

levels are dependent on biological nongenetic factors and environmental conditions. These 

factors include dark skin complexions, low sunlight exposure, low vitamin D dietary intake, 

obesity, and low magnesium levels, and may account for the low vitamin D in the studies. 

Suggesting CYP2R1 and GC genetic variants may not be the only causal effect of low 

vitamin D, and further investigation to enhance the association is needed (Al-Khalidi et al., 

2017; Tomei et al., 2020). 

2.3.2 Iron Overload and the HFE Gene (rs1799945, rs1800562) and SLC17A1 Gene 

(rs17342717) 

The HFE gene synthesises the human factors engineering protein that binds to 

transferrin receptor-1 (TfR1) (Holmström et al., 2002). Mutation of the HFE protein reduces 

its affinity to bind to transferrin receptors to form diferric transferrin and transport iron, 

absorbed from the diet into cells. This lack of binding results in iron overload as iron cannot 

be released into cells causing ferritin levels to elevate. Surplus iron is then deposited into 

tissues due to transferrin saturation (TS), causing a detrimental effect on organs, especially 

the liver, resulting in liver fibrosis or cirrhosis (Jacobs et al., 2009). Iron overload is 

associated with fatigue, aching joints, cancer, heart failure, diabetes, and hemochromatosis. 

The imbalance of iron homeostasis is worse for homozygous C282Y carriers at greater risk of 

developing autosomal recessive hereditary hemochromatosis (HH), commonly caused by a 

mutation in the HFE gene. (Allen et al., 2008; Emanuele et al., 2014; Holmström et al., 

2002). 

Studies have identified three-nucleotide sites where HFE mutation might occur 

(Emanuele et al., 2014). The most common is the G to A allele mutation forming the AA 

genotype at amino acid (AA) 282, resulting in cysteine substitution. Homozygous carriers of 

the C282Y gene variant, rs1800562, constitute 82%–90% of HH sufferers (Emanuele et al., 

2014; Garcia-Tsao et al., 2007). The second is the G to C allele substitution at AA 63, 
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resulting in histidine substitution, H63D gene variant, rs1799945. Last is the A to T allele 

mutation at AA 65 and serine substitution, S65C (Allen et al., 2008; Ganesh et al., 2009; 

Holmström et al., 2002; Katsarou et al., 2019). The American Association for the Study of 

Liver Disease has recommended that homozygous C282Y carriers with elevated TS reading 

of ≥ 45% should get a test for HH (Garcia-Tsao et al., 2007). 

Jacobs et al. (2009) conducted a cohort study using participants’ information from the 

Hemochromatosis Family Study. They confirmed a genetic risk for relatives of developing 

HH from proband carriers of homozygous C282Y who have elevated serum iron. Still, a 

positive genetic test does not suggest the existence of HH. H63D and S65C carriers have a 

low level of risk of HH, and heterozygous S65C carriers have a low risk of developing HH 

(Emanuele et al., 2014; Pedersen & Milman, 2009). 

Studies investigating HFE mutations include Allen et al. (2008), a 12-year project 

titled The Melbourne Collaborated Cohort Study that followed 31,192 European participants, 

with 29,676 genotyped successfully. A random sampling of 1,438 participants with the HFE 

genotype AA included 203 homozygous C282Y carriers (rs1800562). The sample was then 

stratified, and investigators were blinded to the participant’s genotype; 1,054 out of 1,325 

participants completed the study (79.5%). Out of the 203, 74 males completed the study, and 

21 had iron-overload-related diseases (28.4%; 95% CI [18.8, 40.2]) compared to 84 females, 

of whom one had an iron-overload-related disease (1.2%; 95% CI [0.03, 6.5]). The study 

concluded that homozygous C282Y carriers, especially males with a serum ferritin level of ≥ 

1,000 μg/L, are at a greater risk of disease caused by the HFE gene. The study’s limitations 

are that the 95% CI range in both males (18.8, 40.2) and females was too wide (0.03, 6.5), 

making the results less reliable. Validity is in question due to the high attrition rate and the 

small number of participants with homozygous C282Y that completed the study. Therefore, 

the study has low power making the result not statistically significant. Nevertheless, Allen et 

al. (2008) confirmed Guyader et al.’s (1998) earlier finding that elevated serum ferritin levels 

may be associated with cirrhosis and HH in homozygous C282Y carriers. 

A meta-analysis study performed on an Italian cohort found a common variant in the 

TFR2 gene associated with serum iron and the HFE gene variant H63D, rs1799945 (P = 

0.001) (Pichler et al., 2011). For ferritin, they found an association with TFR2 and the 

SLC17A1 gene variant, rs17342717, C/T allele (P = 8.0x10-6), and this reflected an 

association with HFE gene variant C282Y, rs1800562 and the hereditary disease, HH 

(HapMap CEU r2 = 0.42, P = 0.417). The analysis presented as forest plots confirmed an 

association between serum iron levels and TRF2 and SLC17A1 in linkage disequilibrium 
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with the HFE gene. Therefore, the HFE gene influences serum iron, transferrin, TS, and 

ferritin levels and may lead to iron overload and HH. Homozygous C282Y carriers may have 

an increased iron overload and HH risk. (Pichler et al., 2011). 

2.3.3 Low Iron and the TMPRSS6 Gene (rs4820268,), TRF2 Gene (rs7385804) and TF 

Gene (rs3811647) 

Iron is an essential mineral for blood production and is a primary component of 

haemoglobin found in red blood cells and myoglobin found in muscle cells. (Pichler et al., 

2011). The remainder iron is either stored in the liver as ferritin, and is necessary for cellular 

processes and DNA synthesis, or used in cytochromes, and various enzyme activities 

involved in metabolic processes. Low iron causes a reduction in oxygen flow and results in 

anaemia with symptoms of fatigue, dizziness, shortness of breath and rapid heartbeat. Iron 

deficiency is a common disorder and, if left untreated, causes an imbalance of iron 

homeostasis that can result in serious diseases, including T2DM and CVD. (Ganesh et al., 

2009; Pichler et al., 2011). To increase the amount of iron in the diet, nutritionists and 

dietitians will advocate that the patient consumes a range of foods rich in haem iron found in 

fish, red meat, poultry and wholemeal cereals (Timoshnikov et al., 2020). Plant sources have 

less bioavailable iron because they contain nonhaem iron that cannot be absorbed efficiently 

through the intestinal barrier. Therefore, if following a restricted diet to help increase 

nonhaem-iron absorption, it is advisable to include vitamin C (ascorbic acid) into the diet 

(Australian Government, National Health and Medical Research Council, New Zealand 

Ministry of Health, 2006). Nonhaem iron contains mainly ferric ions (Fe3+ ions), and, in 

acidic conditions, ascorbic acid forms a chelate with Fe3+ ions to maintain its solubility when 

entering alkaline conditions in the duodenum. Conversely, zinc, calcium, the stored form of 

phosphorous (phytate) and polyphenols can hinder iron absorption (Benyamin et al., 2009; 

Timoshnikov et al., 2020). 

Genetic testing cannot determine iron deficiency, but research has reported the 

association between gene variants and low-iron status (Benyamin et al., 2009). There are 

three major genes associated with iron deficiency: TMPRSS6 gene that has links to hepcidin 

levels for iron absorption, the TRF2 gene for iron transport into liver cells, and the TF gene 

for iron transport around the body (Benyamin et al., 2009; Ganesh et al., 2009; Pichler et al., 

2011). 

Pichler et al. (2011) investigated the regulation of iron levels in a European and USA 

five-population-based GWA study using meta-analysis. The study aimed to analyse serum 
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iron levels and iron status markers, including transferrin, soluble transferrin receptors (sTfR), 

ferritin and sTfR-ferritin index, to find an association with gene loci. Pichler et al. reported a 

significant association of iron levels with the TRF2 gene variant rs7385804 (CC genotype) 

and expression of the TF gene variant rs3811647 when analysed by the Bonferroni correction 

for multiple testing, along with iron homeostasis imbalance linked with the TF gene variant 

rs3811647 (AA genotype), the TMPRSS6 gene variant rs4820268 and the HFE gene variant 

rs1799945. The results showed an association of effect size in the same direction and 

magnitude of the TMPRSS6 gene variant rs4820268 (GG genotype) on hepcidin RNA found 

in blood levels and hepcidin in urine levels. Hepcidin, a peptide hormone, is one of the 

primary regulators of iron as it controls iron recycling and absorption and is involved in the 

manufacture of erythrocytes (Ganesh et al., 2009; Pichler et al., 2011). 

Consequently, chronically high levels of hepcidin cause iron deficiency, with low 

levels of hepcidin causing iron overload, potentially leading to HH (Pichler et al., 2011). 

Therefore, the TMPRSS6 gene variant rs4820268 may influence the hepcidin iron feedback 

loop and suppress hepcidin and iron absorption. Thus, homozygous G carriers are more at 

risk of iron deficiency. The study needs future investigation using larger samples to produce 

higher power results to prove statistically significant findings. 

2.3.4 Zinc and the SLC30A3 Gene (rs1126936) 

Zinc is the second-most abundant essential mineral found in > 85% of human bones 

and muscle (Huang & Tepaamorndech, 2013). Over 300 enzymes use zinc (in the form of 

zinc ions Zn2+) as a cofactor, called zinc metalloenzymes and used as catalysts to assist in 

protein synthesis and help maintain structure and stability. Zinc has antioxidant properties, is 

essential for the smooth running of the immune system and is involved in DNA production 

and metabolic processes. Zinc is found mainly in oysters, red meat, chicken, beans, fortified 

cereals, and dairy. It is not readily available as Zn2+, limiting its bioavailability, affecting its 

absorption in the digestive process, and binding affinity to protein. Iron supplements may 

counteract dietary zinc absorption, with severe zinc deficiency causing poor appetite, 

metabolic disorders, cognitive and immune dysfunction and alopecia (Australian 

Government, National Health and Medical Research Council, New Zealand Ministry of 

Health, 2006). To improve zinc absorption, consuming a diet high in animal proteins instead 

of a diet high in plant proteins is beneficial. Therefore, it is vital for individuals on a 

restricted diet to check their consumption of dietary zinc to maintain zinc homeostasis at the 

cellular level (Huang & Tepaamorndech, 2013). 
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Zinc homeostasis is controlled by two zinc transporters (ZnT) or functional membrane 

proteins that help reduce intracellular zinc concentration (da Rocha et al., 2014). ZnT are 

encoded by the solute carrier family 30 member 3 (SLC30A) gene and the solute carrier 

family 39-member 14 gene (SLC39A). The SLC30A gene lowers cytosolic zinc levels by 

transporting zinc out of cells. Therefore, the solute carrier SLC30A gene can be used as a 

biomarker for zinc serum concentration levels. 

A cross-sectional study by da Rocha et al. (2014) examined 56 Brazilian females and 

14 Brazilian males aged 50 years and over to investigate the influence of SNP rs11126936 

and the solute carrier gene SLC30A3 on zinc serum concentrations. The study found that zinc 

levels were statistically significantly lower (P = 0.014) in participants with the SLC30A3 

gene variant rs11126936, genotype CC recorded at 0.74 ± 0.30 mg/L compared to carriers of 

the genotype AA or AC recorded at 0.89 ± 0.28 mg/L. They also found that zinc serum levels 

negatively correlated with age (P = 0.008), and the genotype CC carriers most often had 

lower zinc levels (34.5%) compared to the genotype AA and AC carriers (18.2%, P = 0.024). 

The study’s limitations were small sample size, low power, no food-frequency 

questionnaires, diet recall, or anthropometric data. Therefore, this study needs to be 

interpreted with caution and will depend on future studies to further establish the influence of 

SNP rs11126936 and zinc serum levels alongside the mechanism of action. 

Another study by Fujihara et al. (2018) examined zinc levels on 102 autopsied 

Japanese subjects and agreed with da Rocha et al. (2014) that the SNP rs 11126936 had an 

association with zinc serum levels. Still, further study is needed to verify this study’s finding.  

2.4 Dietary Fats and Associated Genetic-Risk Variant  

This section will investigate the association between omega-6 and -3, energy balance, 

total fat, saturated fat, saturated and unsaturated fat and monounsaturated fat and the related 

SNP located in genes; fatty acid desaturase 1 gene (FADS1), mitochondrial uncoupling 

protein 1 gene (UCP1), transcription factor 7-like2 gene (TCF7L2), apolipoprotein A-II gene 

(APOA2), fat mass and obesity-related alpha-ketoglutarate dependent dioxygenase gene 

(FTO) and peroxisome proliferator-activated receptor γ2 gene (PPARγ2), respectively. 

2.4.1 Omega-6 and -3 Polyunsaturated Fatty Acids and the FADS1 Gene (rs174547) 

Omega-6 long-chain (≥ C20) polyunsaturated fatty acids (n-6 PUFA) in the form of 

linoleic acid (LA) and omega-3 (n-3 PUFA) in the form of alpha-linolenic acid (ALA) are 

essential fatty acids and obtained from the diet (Hoppenbrouwers et al., 2019). Oily fish and 
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fish supplements contain n-3 PUFA, and the two main ones are eicosapentaenoic acid (EPA, 

C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). EPA and DHA are known for their 

anti-inflammatory effects and increased amounts in the diet may help reduce triglyceride 

(TG) levels (Hoppenbrouwers et al., 2019; Kaur et al., 2011). 

N-3 PUFAs are TG and are broken down into fatty acids and incorporated into 

phospholipids, leading to numerous outcomes, including lower blood pressure and an 

increased lipoprotein lipase that helps break down TG, reducing serum triglyceride (Bäck, 

2017). Pure EPA can help decrease LDL cholesterol, improve endothelial and arterial 

function, reduce platelet aggregation, increase plaque stability, and protect against 

myocardial ischemia, indirectly reducing CVD risk (Bäck, 2017; Chang & Deckelbaum, 

2013). 

PUFAs have pleiotropic functions in cells, including influencing gene regulation, 

energy production, and forming eicosanoids, the signalling molecules for signalling pathways 

(Jump et al., 2013). The retina photoreceptor cells and phospholipids in the brain’s grey 

matter have high concentrations of PUFA, making them essential for vision, brain 

development, and the central nervous system (Innis, 2008; SanGiovanni & Chew, 2005). 

Therefore, the human diet must contain sources of PUFA for beneficial health 

benefits, including brain function and development; deficiency when young can impair 

growth and produce a dry skin rash (Burdge & Calder, 2005; Innis, 2008). Substituting 

saturated fatty acids with n-6 PUFA can help lower total blood cholesterol and reduce CVD 

risk (Hoppenbrouwers et al., 2019). However, a high dietary intakes of n-6 PUFA, such as 

sunflower seeds, Brazil nuts, corn oil and sesame oil, and low intake of n-3 PUFA can raise 

TG levels and lower HDL levels and cause adverse health effects (Hoppenbrouwers et al., 

2019; Kaur et al., 2011). 

The FADS1 and fatty acid desaturase 2 (FADS2) genes in the fatty acid desaturase 

(FADS) gene cluster region encode the rate-limiting enzymes delta-5 and delta-6 desaturases 

(Tosi et al., 2014). Delta-5 and delta-6 are important enzymes for the biosynthesis of PUFA 

(18 carbon chain) to active long-chain PUFA (≥ 20 carbon chain) (Rahbar et al., 2018). 

Alteration of the enzyme’s activity can affect fatty acids associated with T2DM and CVD 

(Lu, Feskens, Dollé et al., 2010; Tosi et al., 2014). 

In a cohort study of 3,575 participants, measurements were performed on three 

variants in the FADS1 gene cluster region and analysis of n-6 and n-3 PUFA intake on 

plasma cholesterol levels (Lu, Feskens, Dollé et al., 2010). The results confirmed an 

association between the FADS1 gene variant rs174546, C allele (in linkage disequilibrium 
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with rs174547) and HDL and total cholesterol levels (P = 0.02) in participants with a high 

intake of n-6 PUFA (> 5.26% energy). Furthermore, participants with the CC genotype 

compared to the TT genotype (P = 0.004) had a lower HDL concentration than participants 

with a high intake of n-6 PUFA. Even though the study had a large sample size, there was no 

statistical significance between n-3 PUFA and the FADs1 gene variant rs174546, genotype 

TT, on cholesterol levels. More research on the FADS1 gene and its links to n-3 PUFA and 

n-6 PUFA performed on larger groups is needed to confirm the association. 

A cohort study by Dumont et al. (2018) tested cholesterol levels of 3,069 individuals 

and found an association with the FADS1 gene variant rs174547, CC genotype (β = -0.05 

mmol/L, P = 0.0002). The study reported that individuals with the CC genotype had lower 

levels of HDL cholesterol when intakes of n-6 PUFA (LA) were greater than 9.5 g/day 

compared with individuals with the TT genotype. Thus, individuals with the CC genotype 

might benefit by lowering their n-6 PUFA (LA). 

Hellstrand et al. (2012) supported Dumont et al.’s (2018) results with their study on 

4,635 subjects. They confirmed the C allele link to low levels of HDL-cholesterol levels (P = 

0.03) in individuals with high n-6 PUFA levels (high ratio of n-6 PUFA: n-3 PUFA). 

Therefore, studies have confirmed the FADS1 gene encodes for the rate-limiting enzymes 

delta-5 and delta-6 desaturases, linked to n-3 PUFA and n-6 PUFA and HDL-cholesterol 

levels (Dumont et al., 2018; Hellstrand et al., 2012; Lu, Feskens, Dollé et al., 2010). 

2.4.2 Energy Balance and the UCP1 Gene (rs1800592) 

Brown adipose tissue (BAT) is a type of body fat that oxidises high amounts of lipids 

and glucose (Dalgaard & Pedersen, 2001). BAT produces heat energy and is activated to 

maintain thermoregulation and decrease reactive oxygen species (ROS). The UCP1 gene, 

classed as a 33 kDa integral mitochondrial protein, is found in BAT and helps control 

nonshivering thermogenesis (Cannon & Nedergaard, 2004).  

The UCP1 facilitates proton transport across the mitochondrial inner membrane. 

During this process, the UCP1 uncouples respiration, increases the conductance across the 

membrane whilst dissipating excess heat energy and reducing ATP synthesis. (Cannon & 

Nedergaard, 2004; Dalgaard & Pedersen, 2001). Reducing ATP allows the maintenance of 

energy expenditure by stimulating the oxidation of fatty acids whilst protecting against 

oxidative stress caused by ROS (Brondani et al., 2012; Cannon & Nedergaard, 2004). There 

are different types of energy expenditure: resting metabolic rate (RMR) or basal/ resting 

energy expenditure (REE), physical exercise energy expenditure and thermogenesis energy 
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expenditure. RMR or REE is dependent on body fat, the concentration of hormones, genetic 

variation and the sympathetic nervous system (Brondani et al., 2012; Dalgaard & Pedersen, 

2001). 

Research suggests that the BAT function and UCP1 gene increases energy 

expenditure and decreases the mitochondrial membrane potential due to the UCP1 gene 

polymorphism of rs1800592 (-3826 GA, -1766GA, and -112AC) in the intraperitoneal 

adipose tissue (Brondani et al., 2012; Nagai et al., 2011; Vimaleswaran & Loos, 2010). 

Brondani et al. (2012) and Vimaleswaran and Loos (2010) suggested that carriers of the 

UCP1 gene polymorphisms rs1800592 (-3826 GA, -1766 GA, and -112AC) are at greater 

risk of multifactorial diseases, including obesity and T2DM; however, findings are still 

ambiguous. 

Other studies have reported that UCP1 gene expression in the intraperitoneal fat lining 

of the abdominal cavity walls in obese weight subjects is 50% lower than normal-weight 

subjects, even though BAT in adults is commonly low (Virtanen & Nuutila, 2011). BAT 

activity and mass decline with age, especially in males, as they burn fewer calories than 

females (Pfannenberg et al., 2010). Therefore, the lack of clarity in outcomes of UCP1 

genetic studies may be explained by differences in participants’ age, sex, ethnicity, muscle 

mass, weight and lifestyle. Also, multifactorial influences of other genes might account for 

the abundance of controversial conclusions (Brondani et al., 2012). 

A cohort study conducted by Nagai et al. (2011) used 82 Japanese females aged 20–

22 years from the same university campus in Japan and genotyped for the UCP1 gene 

polymorphism -3826 GA (rs1800592). Nagai et al. explored the links of the UCP1 gene 

polymorphism -3826 GA (rs1800592) to REE and thermoregulation. The study monitored 

each participant’s heart rate for their thermoregulatory activity of the sympathetic nervous 

system. Recorded results of the frequency rate of genotype AA was 0.27, genotype GA was 

0.45, and genotype GG was 0.28. The fat-energy consumption in carriers of genotype GG 

was lower (26.0 ± 1.2%) compared to genotype AA (30.7 ± 1.1%) and genotype GA (31.3 ± 

1.0%) with P < 0.01. The thermoregulatory activity of the sympathetic nervous system of 

carriers of genotype GG was the lowest (185) compared to genotype GA (333) and AA (313) 

with P < 0.05. The conclusion was that carriers of the G allele had lower REE/RMR (energy 

expenditure) and their energy needs were lower than the A allele carriers. A reduction in the 

thermoregulatory activity of the sympathetic nervous system in carriers with the genotype 

GG is linked to lower expression of the UCP1 gene. The association of the G allele to high 

LDL levels and low HDL levels suggests that the G allele influences lipid metabolism and 
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could affect appetite and food preference due to lipids usage in the BAT. Further 

investigation is needed using larger cohorts and a wider range of participants, especially male 

subjects who record stronger effects of BAT activity (Nagai et al., 2011; Pfannenberg et al., 

2010). 

2.4.3 Total Fat and the TCF7L2 Gene (rs7903146) 

Dietary fat is an essential source of fatty acids and an energy-dense macronutrient 

vital for absorbing fat-soluble vitamins such as A, D, E and K (Ravisankar et al., 2015). Lipid 

triglycerides are the main component of fatty adipose tissue, and hydrolysis happens in the 

body during exercise or fasting in a process called lipolysis (Piers et al., 2003). During 

lipolysis, TGs are converted into fatty acids and glycerol and contain twice the caloric energy 

(37.6 kJ/g) of protein or carbohydrates (16.7 kJ/g) (Rolls, 2000). There are different types of 

fatty acids: saturated, monounsaturated, polyunsaturated (PUFA) and trans-unsaturated 

(Marchand, 2010). Studies have reported that consuming too much saturated or trans-fat can 

increase fatty adipose tissue leading to obesity and raised LDL levels. Elevated LDL levels 

clog up arteries, eventually causing atherosclerosis and increasing the risk of myocardial 

infarction or CVD. Trans-fat causes the decrease of HDL used to carry cholesterol away from 

arteries to the liver and excreted as bile into the intestinal tract (Li et al., 2015; Piers et al., 

2003). 

Therefore, the World Health Organisation has advised consuming more unsaturated 

fats, especially n-3 PUFA; less saturated fat; and eliminating or limiting trans-fat to less than 

2.2 g / day (Ghebreyesus & Frieden, 2018; Marchand, 2010). Human deaths since 2010 from 

CVD linked to consuming manufactured trans-fat have risen to 537,200 per year and 

worldwide 7.7% (T. J. Wang et al., 2016). 

Dietary fat is easy to overconsume, which is thought to be due to the influence of 

genes on satiety (sensation of fullness between meals) and satiation (sensation of fullness that 

develops while eating a meal) compared to protein or carbohydrates (S. B. Roberts, 2000; 

Rolls, 2000). The TCF7L2 gene has been linked to T2DM and obesity and may influence 

how a body responds to weight-loss diets when consuming different amounts of fats in the 

diet (Grau et al., 2010; Mattei et al., 2012). The TCF7L2 transcription gene for the 

proglucagon gene produces proglucagon to form glucagon-like peptide 1 (GLP-1) (Yi et al., 

2005). GLP-1 is stimulated during consumption of food, and its main action is to secrete 

insulin and inhibit glucagon activity. Limiting glucagon reduces its breakdown in the liver to 

form glucose and thus lowers postprandial glucose release. GLP-1 regulates food intake and 
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controls hunger and features in T2DM research (Yi et al., 2005). Fat consumption appears to 

stimulate more GLP-1 as opposed to carbohydrates, whilst overstimulus of GLP-1 is thought 

to lead to hypoglycaemia and understimulus to obesity (Holst, 2007). 

A 10-week RCT focused on the influence of the TCF7L2 gene variant rs7903146, and 

total fat consumption, examined the effect on body weight and insulin resistance (Grau et al., 

2010). The study randomly selected 739 European obese participants aged 20–50 years from 

the more extensive Nutrient-Gene Interaction in Human Obesity Study. The female 

participants (75%) consumed either a high-fat diet (HFD) containing 40%–45% fat energy or 

a low-fat diet (LFD) containing 20%–25% fat energy. Both diets contained the same quantity 

of protein (15%) and carbohydrates (60%–65%). Results found that carriers of the genotype 

TT who consumed the LFD lost 2.57 kg less than carriers of the genotype TT who consumed 

the HFD. Consumers of the HFD with genotype TT lost 2.08 kg less than consumers of the 

HFD with the genotype CC or CT. Participants with genotype CC or CT recorded no weight 

loss when consuming either the LFD or HFD (P = 0.35). Therefore, individuals with the SNP 

rs7903146 and genotype TT respond more to LFD than HFD (Grau et al., 2010). This study 

presented factors that were difficult to control. For example, participants may have changed 

their behaviour during the study, termed the Hawthorne Effect (Mattei et al., 2012; Sedgwick 

& Greenwood, 2015). Keeping to the strict diet regime throughout the study period would 

have been challenging for participants (Grau et al., 2010). Thus, this research used post hoc 

analysis, and the interpretation of results could have been skewed, and further studies to 

support or refute these claims are needed. 

A 2-year RCT examined 588 White adults aged 30–70 years using GWA data from 

the Preventing Obesity Using Novel Dietary Strategies intervention and studied the influence 

of the TCF7L2 gene variant rs7903146 on body composition (Mattei et al., 2012). 

Participants were randomising to different macronutrient diets which ranged in the 

percentage of fat, protein and carbohydrates as follows: LFD 20%, 15%, 65%; LFD 20%, 

25%, 55%; HFD 40%, 15%, 45%, and HFD 40%, 25%, 30% respectively. During the trial, a 

dual-energy X-ray absorptiometry or DEXA scanner provided information on the changes in 

lean body mass (muscle mass, bones, and bodily fluids) versus fat mass. Findings reported a 

significant difference between the LFD participants with genotype CC who lost more lean 

mass at 6 months (P = 0.035) compared with the HFD participants with genotype CC. 

Therefore, lean fat maintenance and carriers of the genotype CC would not benefit from a 

LFD. There was no significant effect for carriers of the genotype TT on either the LFD or 

HFD. The Preventing Obesity Using Novel Dietary Strategies is one of the largest weight-
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loss programmes and means the gene–nutrient interaction RCT could control for confounding 

factors such as medication, smoking and alcohol consumption. The study’s limitations were 

that daily dietary values were not always complied with, and participants were mainly 

Caucasian adults. 

2.4.4 Saturated Fat and the APOA2 Gene (rs5082) 

The common apolipoprotein A-II protein, encoded by the APOA2 gene, is thought to 

impair the removal of excess cholesterol called reverse-cholesterol transport, out of cells, 

mediated by HDL (Corella et al., 2009). RCTs and epidemiologic studies have linked 

increased risk of atherosclerosis, heart disease, and obesity with saturated-fat consumption 

but only recently associated these risks with the APOA2 gene. Many gene–nutrient 

interaction studies have linked the APOA2 gene with saturated fat and its effect on hormonal 

control of food intake and weight management. (Zaki et al., 2013). 

A meta-analysis study by Corella et al. (2009) examined the interaction of the APOA2 

−265T>C gene variant on saturated-fat intake and obesity. The subjects, aged between 26–80 

years, were from three independent study populations, the Framingham Offspring Study 

(FOS) (1,454 non-Hispanic White participants), the Genetics of Lipid-Lowering Drugs and 

Diet Network (GOLDN) (1,078 European participants) and the Boston-Puerto Rican Centers 

on Population Health and Health Disparities (BPR) (930 Puerto Rican participants). The 

results recorded were a positive association with the genotype CC and the occurrence of 

obesity among participants who consumed > 22 g of saturated fat daily in all three strata 

compared to genotype TC and TT. The odds ratio (OR) between the genotype CC was 

significant at 1.84 (95% CI [1.38, 2.47], P < 0.001) compared to genotype TC and TT when 

consuming a high-saturated-fat diet of > 22 g/day. The results only infer a gene–nutrient 

interaction between BMI and obesity in individuals who carry the APOA2 gene variant 

rs5085 (CC genotype) when combined with consuming a high-saturated-fat diet of > 22 

g/day. 

Zaki et al. (2013) conducted a cross-sectional study on the metabolism of lipids, 

body-fat distribution and the risk of obesity in a sample of 303 Egyptians aged 16 to 19. The 

study found that the CC carriers of the APOA2 gene variant −265T>C (renamed -492T>C) 

had a higher level of visceral adipose tissue, food consumption, waist, and body 

circumference than the TT or TC carriers. 

Therefore, the influence of the APOA2 gene variant −265T>C and high-saturated-fat 

diets are possibly linked and fuel more nutrigenomic studies (Corella et al., 2009; Zaki et al., 
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2013). These studies enhance the understanding of gene–nutrient interactions and are 

especially important for individuals with obesity who may benefit from this knowledge. 

2.4.5 Saturated and Unsaturated Fat and the FTO Gene (rs9939609) 

The FTO gene is associated with the body’s response to saturated and unsaturated fat 

(C. M. Phillips et al., 2012; Rodrigues et al., 2015). Unsaturated fats contain double bonds 

and are usually of plant origin and liquids at room temperature (RT). In contrast, saturated 

fats have no double bonds and are typically of animal origin and solid at RT. Therefore, 

saturated-fat concentration is high in animal red meats and dairy products and linked to 

multifactorial diseases such as obesity, T2DM and CVD (C. M. Phillips et al., 2012). These 

diseases are associated with diet, environmental and polygenic traits, with studies showing 

that the FTO gene variant, rs9939609, has the strongest association with food intake (C. M. 

Phillips et al., 2012). Increased food intake of mono- and polyunsaturated fats found in seed 

oils has been linked to a plethora of health benefits as they reduce the risk of many 

multifactorial diseases (Australian Government, National Health and Medical Research 

Council, New Zealand Ministry of Health, 2006). 

C. M. Phillips et al. (2012) conducted a prospective case-control study using 1,754 

participants to investigate the FTO gene variant rs9939609 and its links to obesity and 

metabolic syndrome (MS). Participants were part of the French Diet, Genome and Metabolic 

Syndrome Project (LIPIENE). Diagnosis of MS uses measurement from three or more 

indicators: BMI, saturated-fat intake, waist circumference, TG, fasting blood sugar, blood 

pressure (BP) and HDL levels (C. K. Roberts et al., 2013). Measurements were taken for 2 

months and followed up at 7.5 years. The study concluded that the carriers of the A allele had 

higher MS measurements (OR = 1.66, 95% CI [1.07, 2.57], P = 0.02) and carried a greater 

risk of obesity than the TT genotype. Waist circumference (P = 0.04) and BMI of ≥ 25 kg/m2 

(P = 0.02) were higher in the AA and AT genotype participants whose saturated-fat intake 

was ≥ 15.5%, and the saturated-fat ratio was > 0.38 compared to the TT genotype. C. M. 

Phillips et al. (2012) concluded MS measurements were higher when on a high-saturated-fat 

diet, making participants more at risk of obesity. Thus, AA and AT genotype participants 

were more sensitive to low-saturated-fat diets than genotype TT, suggesting a gene–nutrient 

interaction between saturated fat and the FTO gene. 

C. M. Phillips et al. (2012) found gender-specific links and only observed statistically 

significant results for males genotyped AA and AT compared with male genotyped TT. The 
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female results were not significant. Due to the study using self-reporting questionnaires, it 

was prone to memory loss and inaccurate dietary accounts. 

2.4.6 Monounsaturated Fatty Acids (MUFA) and the PPARγ2 Gene (rs1801282) 

Oleic acid is the main MUFA and contains one (mono) double bond and is found in 

olive, peanut and canola oils, avocados, and nuts (Al-Goblan et al., 2014). Consuming foods 

high in MUFA may decrease the risk of obesity, insulin resistance and CVD by lowering 

LDL cholesterol. Insulin resistance results in a high concentration of nonesterified fatty acids 

(NEFAs) in plasma and low movement of glucose into the muscle tissues, eventually leading 

to T2DM (Al-Goblan et al., 2014; Australian Government, National Health and Medical 

Research Council, New Zealand Ministry of Health, 2006; Brassard et al., 2008). 

The PPARγ2 gene polymorphisms of the ALa allele in Pro12Ala are associated with 

fat cells’ formation in adipose tissue (Garaulet et al., 2011). Consequently, insulin resistance, 

obesity, body composition and weight loss have links to the gene PPARγ2. 

Garaulet et al. (2011) analysed the possibility of PPARγ2 polymorphism Pro12Ala 

(rs1801282) interaction with fat intake and BMI by studying 1,465 overweight and obese 

Spanish subjects (89% completed the study). The subjects enrolled in a dietary, behavioural, 

nutritional education and activity treatment programme. The programme included support 

groups, a controlled daily Mediterranean-style diet containing 35% fat (10% saturated and 

20% MUFA), 50% carbohydrates and 15%–20% protein and exercise scheduled 2–3 times 

per week. After the intervention, results indicated a direct gene–nutrient interaction between 

subjects with the PPARγ2 polymorphism Pro12Ala and MUFA intake associated with fat 

loss. Subjects with genotype GG or GC had a slower fat loss rate than genotype CC (P = 

0.003). Along with this, it was detected that genotype GG or GC were less obese and had less 

body fat if the proportion of fat consumed consisted of ≥ 56% of MUFA compared to 

genotype CC (BMI P = 0.039 and body fat P = 0.02). Therefore, Garaulet et al. concluded 

that when genotype GG or GC consumed a MUFA diet comprising ≥ 56%, there was a more 

positive response to weight loss than genotype CC. However, the results were not statistically 

significant for all genotypes on a low-MUFA diet who consume less than 56% MUFA (P = 

0.75). Based on these results, it is clear that there is no evidence that PPARγ2 influences 

weight reduction in response to dietary treatment. 
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2.5 Protein and Associated Genetic-Risk Variant 

Proteins are macronutrients made from long-chain polypeptides from a combination 

of 20 amino acids; some are essential, for example, histidine, isoleucine, leucine, and 

phenylalanine (Moon & Koh, 2020). Protein is found in animal and plant food and is vital for 

the human body for energy, growth and the repair of cells. Protein is essential for muscle 

mass (especially for the heart and brain), tissue function, a healthy immune system and gut 

function (Moon & Koh, 2020; Wolfe et al., 2018). Protein has been associated with the FTO 

gene variant rs9939609 (Wolfe et al., 2018). 

2.5.1 Protein and the FTO Gene (rs9939609) 

Consuming a high-protein diet (HPD) has been linked to lower body weight, 

decreased fat mass and increased satiety (Wolfe et al., 2018). HPD and increased satiety are 

associated with increased anorexigenic hormones and reduced orexigenic hormones. HPD is, 

therefore, considered a successful and safe method for weight loss and could benefit obese 

and overweight individuals who are at risk of T2DM and CVD (Australian Government, 

National Health and Medical Research Council, New Zealand Ministry of Health, 2006; 

Moon & Koh, 2020; Wolfe et al., 2018). 

GWA studies have recognised and associated gene loci with an increased risk of 

obesity (Zhang et al., 2012). One of the most robust findings is the fat-mass and obesity-

associated FTO gene linked to food intake. The FTO gene, expressed in the nuclei of the 

paraventricular (PVN) and dorsomedial (DMH) hypothalamus region of the brain, may 

impact metabolism and energy homeostasis in an individual (Pausova et al., 2009; Zhang et 

al., 2012). One of the hypothalamus’s key roles in regulating appetite and balancing food 

intake is controlled by a complex signalling pathway of neuropeptidergic neurons (Zhang et 

al., 2012). 

A 2-year RCT using participants from the Preventing Obesity Using Novel Dietary 

Strategies intervention used four different diets to investigate 742 obese adults (642 

completing the trial), 61% women, 80% white, 15% black, 3% Hispanic, 2% Asian, aged 30–

70 years (Zhang et al., 2012). Each participant was a carrier of the FTO gene variant 

rs1558902, which has linkage disequilibrium with the FTO gene variant rs9939609. The 

participants’ tomography of body composition and fat were measured using DEXA. The 

study found that the intervention with genotype AA, who received 25% energy as protein, 

displayed the most modifying effects and recorded the most changes in their fat mass and 

adipose tissue (P = 0.05). Over the 2 years, participants with the genotype AA receiving the 
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25% HPD lost 1.5 kg (P = 0.01) compared to the individuals with the genotype TT or AT. 

The participants with genotype AA who consumed a lower 15% protein diet than the 

genotype AA on the 25% HPD did not lose as much body fat. Therefore, the study found that 

the FTO gene variant rs9939609 and a HPD were linked but not to the HFD, but how protein 

interchanges with the FTO gene are still unclear. Zhang et al. (2012) concluded that 

individuals with the genotype AA who consumed a HPD (25% energy) compared to those 

with AA on a low-protein diet lost more visceral adipose tissue over 2 years. The study had 

80% White participants, whilst overadjusted statistical comparisons increased the type II 

error. Therefore, future studies comparing the FTO gene on obese individuals consuming 

different diets, using larger diverse ethnic groups, are needed. 

An intervention followed 146 obese patients 5 years after bariatric surgery and found 

all patients to have a high frequency of the FTO gene variant rs9939609 (Rodrigues et al., 

2015). Twenty-two percent of patients had a BMI of over 30 kg/m2 and the AA genotype. 

Those with the FTO gene variant AA and AT had higher BMI than the genotype TT 3 to 5 

years after surgery. Two years after surgery, the patients who achieved nonobesity, who had 

the genotype TT, were negatively related to genotypes AA and AT and associated with the 

FTO gene variant rs9939609. Therefore, participants with genotypes AA, AT, and TT 

influence bariatric surgery success and long-term weight loss (Rodrigues et al., 2015). 

Other studies that have focused on the FTO gene of obese individuals include the 

Finnish Diabetes Prevention Study which reported no statistically significant results with 

changes in BMI or body fat when reducing fat or sugar and increasing fibre in a diet (Haupt 

et al., 2008; Lappalainen et al., 2009; Müller et al., 2008). 

2.6 Lipoproteins and Associated Genetic-Risk Variant 

This section will investigate the association between total cholesterol (TC), LDL 

cholesterol, HDL cholesterol, TG and the related SNP located in genes: apolipoprotein A5 

gene (APOA5), ATP-binding cassette subfamily G member 8 gene (ABCG8), ATP-binding 

cassette subfamily A member 1 gene (ABCA1) and angiopoietin-like 3 gene (ANGPTL3), 

respectively. 

Chylomicrons (CM), the most significant primary class of lipoproteins, are formed in 

the intestines and made from apolipoprotein components (Feingold & Grunfeld, 2015). CMs 

are involved with the absorption and transportation of dietary insoluble hydrophobic lipids 

from the small intestines into the bloodstream and then onto the muscles and adipose tissue. 

The lipids are then metabolised to fatty acids and glycerol and used for energy and fat 
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storage, with surplus cholesterol returning to the liver (Bayly, 2014; Feingold & Grunfeld, 

2015). 

Each lipoprotein transports certain types of lipids, CM transports triglycerides (TG) 

and cholesterol, VLDL transports TG; LDL transports most of the cholesterol (LDL-C) and 

are cholesterol-rich. HDL transports cholesterol (HDL-C) and removes cholesterol from the 

body by reverse-cholesterol transport (Bayly, 2014; Feingold & Grunfeld, 2015).  

Lipoprotein profile is a measure of total cholesterol (total LDL-C and HDL-C), HDL-

C, LDL-C, TG, total/HDL ratio and non-HDL-C that measures artery-clogging apoB particles 

such as VLDL, IDL and LDL (Auckland District Health Board, 2022). 

For a healthy heart, it is advisable to keep total cholesterol < 5.0 mmol/L; total/HDL 

ratio < 4.5 mmol/L; LDL cholesterol < 3.4 mmol/L; HDL cholesterol > 1.0 mmol/L in men 

and > 1.3 mmol/L in women; TG < 2.0 mmol/L and non-HDL-C < 4.2 mmol/L. If a 

measurement of non-HDL-C is > 5.7mmol/L, this could indicate signs of genetic 

dyslipidaemia (Auckland District Health Board, 2022). Obesity and T2DM can also lead to 

secondary dyslipidaemia, and high levels of LDL or TG can result in hyperlipidaemia; 

therefore, routine lipoprotein profile checks are essential in adults to minimise the risk of 

coronary artery disease (CAD) or CVD (Lee et al., 2017). 

Research has suggested SNPs can modify postprandial lipid metabolism that can be 

assayed by measuring apolipoproteins during the digestive process (Desmarchelier et al., 

2013; Nakajima et al., 2014). Measuring the progress of the apolipoproteins during 

postprandial lipid metabolism whilst analysing an individual’s SNPs could reveal interesting 

information about the interaction (Desmarchelier et al., 2014; Nakajima et al., 2014). For 

example, this information could help identify dyslipidaemia (high levels of LDL cholesterol 

or low levels of HDL cholesterol) in individuals who are more susceptible to the risk of heart 

disease or atherosclerosis, the leading factor of deaths globally (Rafieian-Kopaei et al., 2014). 

2.6.1 Total Cholesterol (Total LDL-C and HDL-C) and the APOA5 Gene (rs662799) 

Cholesterol is a vital component for cells’ membranes, formation of vitamin D and a 

precursor of hormones and bile-acid synthesis (Röhrl & Stangl, 2013). Cholesterol is 

manufactured endogenously and is, therefore, not needed as a food source but is consumed by 

many in the form of dairy, animal, cakes, biscuits and pastry products (Cerqueira et al., 

2016). 

Cholesterol is a lipid attached to a protein to form lipoprotein and is circulated in the 

bloodstream by HDL and LDL particles (Cerqueira et al., 2016). HDL is helpful as it 
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transports surplus cholesterol found in peripheral cells, including macrophage foam cells 

(MFC so-called due to them being saturated with lipids) back to the liver in a process called 

reverse-cholesterol transport. MFC are one of the leading causes of atherosclerosis as surplus 

cholesterol causes high quantities of LDL-C and results in the build-up of atherosclerotic 

plaque in arteries leading to atherosclerosis and eventually CAD. Therefore, when total 

cholesterol is low, this is a favourable biomarker for individuals; and when the ratio of HDL-

C levels are high, and LDL-C levels are low, this indicates a reduced risk of atherosclerosis, 

CAD and CVD (Mora et al., 2009; Rafieian-Kopaei et al., 2014; Röhrl & Stangl, 2013). 

High total-cholesterol levels are associated with an unhealthy diet, lack of exercise, 

and genetic variation resulting in low lipid metabolism (X. Su et al., 2018). A critical gene for 

lipid metabolism is the APOA5 gene, a subunit of lipoproteins. The APOA5 gene is involved 

with the lipolysis of TG and is found in HDL, VLDL and chylomicrons circulating in the 

blood. There is increasing evidence that polymorphisms of the APOA5 gene may increase 

total cholesterol-plasma levels, leading to obesity, insulin resistance, MS, and eventually 

T2DM and CVD. Reports indicate that low quantities of plasma APOA5 have a negative 

correlation in obese individuals (Lu, Feskens, Boer, et al., 2010; X. Su et al., 2018). 

Lu, Feskens, Boer, et al. (2010) used a longitudinal cohort study to examine SNPs 

across 243 genes in cholesterol metabolism by following 1,668 European participants over 11 

years, taking three nonfasting cholesterol blood readings. The study concluded that 

participants with the APOA5 gene variant rs662799 (genotype CC and TC) had a total 

average cholesterol reading of 0.18 mmol/L higher than genotype TT. When analysing only 

genotype CC, the magnitude of readings was double (P = 0.0066) compared to genotype TC 

and TT (Lu, Feskens, Boer, et al., 2010). The study did not provide clear evidence for the 

relationship between the APOA5 gene variant rs662799 and total cholesterol levels, as 

environmental exposures of the participants could have influenced the results. Therefore, 

future studies performed on different ethnic groups and controlled for environmental 

exposures are needed to ascertain more proof. 

2.6.2 LDL Cholesterol (LDL-C) and the ABCG8 Gene (rs6544713)  

High LDL-C levels or “bad cholesterol” can lead to atherosclerosis and eventually 

CAD or CVD as the lipoproteins that carry LDL-C are cholesterol-rich (Röhrl & Stangl, 

2013). Studies have shown that LDL-C levels and lipoprotein metabolism have links to diet, 

lifestyle and genetic factors, and research on the ABCG8 gene has inferred this. (Kathiresan 

et al., 2009). ATP-binding cassette SGM8, encoded by the ABCG8 gene, is a half-transporter 
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protein found in the liver and intestines. ABCG8 protein predominately moves cholesterol 

and plant sterols into the liver, which get absorbed into the bile acids. Excretion of the 

ABCG8 gene is via the intestines, and during this process, cholesterol absorption from the 

intestines reduces (Feingold & Grunfeld, 2015). The ABCG8 gene variant rs6544713, T 

allele, is associated with high levels of LDL-C. Therefore, the ABCG8 gene variant 

rs6544713 can elevate cholesterol uptake and lower secretion from the intestines (Acalovschi 

et al., 2006; Schroor et al., 2021). 

Kathiresan et al. (2009) conducted a large-scale study, using data from seven GWA 

studies, the Framingham Heart, the London Life Sciences Prospective Population 

(LOLIPOP), Supplémentation en Vitamines et Minéraux Antioxydants (SUV1MAZ), 

Invecchiare in Chianti (inCHIANTI), Diabetes Genetics Initiative (DGI), Finland-United 

States Investigation of NIDDM Genetics (FUSION) and Sardinia Study of Aging (SardiNIA). 

The study screened 19,840 participants alongside a replication study of 20,623 participants. 

Meta-analysis results confirmed the link of 11 distinct loci, with LDL-C being close to 

several common variants; one was the ABCG8 gene variant rs6544713. The research 

concluded that the T allele carriers (TT and TC) were more at risk of high LDL-C than CC 

carriers. Also, that polygenic hypercholesterolaemia was associated with several common 

variants. The study implied that genetic variants are associated with cholesterol levels. 

Therefore, further investigations, involving different ethnicities, with rigorous experiment 

procedures are needed. Once this happens, the SNP rs6544713 can be used as an indicator for 

clinical application to help at-risk individuals with CAD and CVD. 

A cross-sectional study by Schroor et al. (2021) investigated SNPs from 456 

individuals, aged 18 years and over, associated with cholesterol absorption in the intestines. 

The study found that the ABCG8 gene variant rs6544713 significantly deviated from Hardy-

Weinberg equilibrium (P = 0.05). The study’s limitations were that it had low power due to 

the small sample size and the participants had differences in baseline characteristics. As the 

study only examined European participants, the small heterogeneity of the study meant the 

results were biased. Therefore, further research is needed to follow up on these findings. 

2.6.3 HDL Cholesterol (HDL-C) and the ABCA1 Gene (rs1883025)  

The medical literature has well reported that cholesterol plaque build-up on artery 

walls inhibits blood flow and causes atherosclerosis that usually has minimal symptoms until 

the plaque ruptures and forms a blood clot (Stewart et al., 2017). The blood clot can cause 

CAD and includes heart attacks, strokes or sudden death. Reducing CAD risk by following a 
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healthy diet and weight management plan is the best prevention (Feig et al., 2014; Stewart et 

al., 2017).  

ATP-binding cassette transporter A1 is a protein encoded by the ABCA1 gene 

(Feingold & Grunfeld, 2015). The ABCA1 gene is involved in cholesterol metabolism, the 

cholesterol pump (involved in reverse-cholesterol transport), removal of excess cholesterol 

from cells and transfer of atherosclerotic plaques to HDL particles. Surplus cholesterol can 

then get transported through the plasma to the liver, and eventually excreted. Therefore, high 

HDL-C levels are negatively associated with atherosclerosis. HDL is involved with many 

other biological processes, including its interlinkage with TG and its antioxidant effects 

(Bandeali & Farmer, 2012; Feingold & Grunfeld, 2015). 

Research has linked the ABCA1 gene variant rs1883025 with HDL-C plasma levels 

(Kathiresan et al., 2009). Using population data from GWA studies, Kathiresan et al. (2009) 

analysed 40,463 European individuals and associated individuals who were carriers of the T 

allele (TT and TC). Results showed that TT and TC carriers had a 0.08 standard deviation 

lower HDL-C levels (P = 0.001) than individuals with the CC genotype. 

Nishida et al. (2020) conducted a cross-sectional observational study, part of the 

Japan Collaborative Cohort Study, and examined 2,231 Japanese men aged 35–69 years. 

They found that the ABCA1 gene variant rs1883025 and carriers of the C allele (TC and CC) 

who had high HDL-C had reduced function in men who performed low physical activity (β = 

0.008) compared to men with medium (β = 0.032) or high levels (β = 0.034) of physical 

activity. Therefore, the C allele may not be beneficial in men with low activity schedules. 

Still, conversely, men who carry the C allele and have active physical programmes have high 

HDL-C levels. Further research on different ethnic populations is needed to provide more 

evidence for the association between the gene variant rs1883025 and the genotypes CC, TC 

and TT and to confirm causal inference. 

2.6.4 Triglycerides (TG) and the ANGPTL3 Gene (rs10889353) 

TG are tri-esters produced from glycerol and three (tri) fatty acids found in 

approximately 95% of dietary fats: saturated, unsaturated, PUFA (linoleic and linolenic acid), 

and trans-fats (Feingold & Grunfeld, 2015,). They are the main components of body fat and, 

once consumed, carried in CM particles secreted from the intestines into the blood and stored 

in the adipose tissues as fat. Fatty-acid excess is converted into TG and transported by VLDL 

particles from the liver to peripheral tissues and used in muscles or stored in adipose tissue. 
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Elevated levels of TG can lead to dyslipidaemia, obesity and an increased prevalence of CAD 

and CVD (Chen et al., 2021; Feingold & Grunfeld, 2015; Lee et al., 2017). 

A prospective cohort study of 3,216 adult American Indians from the Strong Heart 

Study found that elevated TG levels and low HDL-C increased their risk of CAD and CVD 

(Lee et al., 2017). The findings found a 1.32-fold increase in the hazard ratio (HR) (95% CI 

[1.06, 1.64]) for CAD compared to adults with normal TG and high HDL levels. There was 

an even greater health risk of CAD for adults with diabetes of a 1.54-fold HR (95% CI [1.15, 

2.06], P = 0.003) than for adults without diabetes. 

The angiopoietin-like protein 3 (ANGPTL) encoded by the ANGPTL3 gene has been 

linked to TG levels as it helps to promote the release of fatty acids and glycerol from 

adipocytes found in adipose tissues (Chen et al., 2021). The ANGPTL regulates lipoprotein 

metabolism and inhibits lipoprotein and endothelial lipase activity, a catalyst involved in the 

hydrolysis of TG to fatty acids and glycerol. Therefore, endothelial lipase is an enzyme 

crucial for lipoprotein metabolism. Prevention of the lipase catalysts will slow the hydrolysis 

of TG-rich lipoproteins resulting in higher levels of TG and LDL-C in the blood plasma, 

linked to atherosclerosis and CVD (Chen et al., 2021; J. R. Mead et al., 2002; X. Su et al., 

2018). 

The ANGPTL3 gene variant rs10889353 was examined by Kathiresan et al. (2009) 

using population data from 40,463 European individuals. The study found that individuals 

who were carriers of the A allele (AA and CA) had a 0.05 standard deviation higher TG 

levels (P < 0.0001) than individuals with the CC genotype. 

2.7 Eating Habits and Associated Genetic Risk Variant 

This section will investigate the association between fat-taste perception, sugar 

preference and susceptibility to hunger and the related SNP located in genes: cluster 

determinant 36 gene (CD36), glucose transporter type 2 gene (GLUT2) and neuromedin beta 

gene (NMB), respectively. 

Individuals consume a meal when they feel hungry until reaching fullness or satiation 

(Robinson et al., 2014). The hunger-satiation feedback mechanisms trigger many 

physiological and metabolic processes during digestion. This feedback begins with oro-

sensory signals in the mouth, including food taste, texture, flavour, duration and quality, and 

is experienced during mastication of food, affecting food intake (Lasschuijt et al., 2021). 

During mastication, sensory signals are delivered to the higher cortex regions in the brain for 

taste and reward, influencing how much food an individual can consume until satiation is 
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reached (Bolhuis et al., 2012; Lasschuijt et al., 2021). Consequently, oro-sensory exposure is 

associated with regulation of food, weight management and eating habits. Observational 

studies have linked earlier satiation to more prolonged oro-sensory exposure when 

consuming certain textures or different tastes of foods (Robinson et al., 2014).  

Research has shown that food intake may reduce when foods are highly sweet or salty 

due to earlier satiation (Bolhuis et al., 2012). With the rising rate of obesity and T2DM, there 

is a need to understand the mechanisms of action involved in food-consumption regulation 

and the influence of genetic variants (Eny et al., 2008). 

2.7.1 Fat-Taste Perception and the CD36 Gene (rs1761667) 

Oro-sensory signals influence how much fatty foods an individual can consume 

before feeling satiated, affecting a person’s nutritional status (Melis et al., 2015). Fatty-food 

intake, fat-taste perception, and fat absorption influence the oral marker 6-n-propylthiouracil 

(PROP, genetic ability to taste bitterness) and the CD36 gene variant rs1761667 (Melis et al., 

2015; Sollai et al., 2019). The CD36 gene is found in many cells and is involved in the lipid 

absorption and processing of fatty acids. The CD36 rs1761667 polymorphisms affect GA 

substitution and excess fatty-acid intake, and both are associated with the accumulation of 

fatty acids and dysfunction of metabolic processes resulting in MS (Bajit et al., 2020; Pepino 

et al., 2014). 

During mastication of dietary fat to fatty acids, taste receptor “bud” cells express the 

CD36 gene and release lingual lipase, a salivary digestion enzyme (Keller, 2012). Therefore, 

the CD36 gene could influence physiological response to fat-taste perception (Keller, 2012; 

Pepino et al., 2014). The CD36 gene is also involved with dispensing oleic acid in the small 

intestines that turn into oleoylethanolamide and subsequently lowers food intake and 

production of chylomicrons (Pepino et al., 2014). 

Bajit et al. (2020) performed a case-control study on obese individual carriers of the 

CD36 gene variant rs1761667, genotype AA. Results suggested that participants with the 

genotype AA had a lower fat-taste perception than genotype GA and GG. Keller’s (2012) 

study reported that individuals with the genotype AA tasted more creaminess and wanted 

more fat added to salad dressings than genotype GA and GG. Therefore, genotype GA and 

GG individuals have been classed as “supertasters” as their oro-sensors can detect lower 

levels of fat and oil in foods consumed than AA genotype who are “typical-tasters” (Bajit et 

al., 2020; Keller, 2012; Pepino et al., 2014). These findings indicate that genotype AA 

carriers might be more at risk of obesity due to having a lower perception of fat detection. 
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Melis et al. (2015) conducted a RCT study on 64 Italian individuals aged 27 ± 0.85 

years using a randomised taste test to examine an association between oro-sensory exposure 

to oleic acid and the association with the CD36 gene variant rs1761667. They used paper 

filters soaked in three different concentrations of oil with two containing oil and one 

containing oleic acid ranging from 0.0015 to 10 μL. Individuals were sorted into taster status 

according to the oral marker PROP and genotyped. Results indicated that genotype GG 

supertasters had a 5-fold lower detection of oleic acid (P = 0.041), and GA “intermediate-

tasters” could detect low levels of oleic acid compared to genotype AA typical tasters. 

Therefore, there is a reduction of CD36 gene expression in genotype AA carriers. The study 

did have low power, but these observations could indicate that genetic variation in the CD36 

gene might impact fat-taste perception. Still, more research is needed to investigate if this is 

linked to supertasters reducing dietary-fat intake due to earlier satiation (Melis et al., 2015). 

A cross-sectional study by Lopez-Ramos et al. (2005) examined 441 West Mexican 

adults. Findings inferred an association between the CD36 gene variant rs1761667 (genotype 

AA) and consuming a HFD. Results indicated that cholesterol serum levels were higher 

overall in participants with genotype AA than in genotype GG or GA who did not have high 

cholesterol levels (OR = 2.75, 95% CI [1.33, 5.69], P = 0.005). This study has shown a direct 

link between fat intake and fat-taste preference with carriers of the genotype AA (Lopez-

Ramos et al., 2005). Still, environmental factors, including consumption of alcohol, may 

enhance CD36 expression. Therefore, further research is needed to associate the CD36 gene 

and dietary-fat intake. 

2.7.2 Sugar Preference and the GLUT2 Gene (rs5400) 

Sugar or glucose is a vital fuel for the brain, which needs a constant supply. The 

hypothalamus controls blood glucose levels via glucose-sensing neurons, first pioneered by 

Mayer in 1955 with his glucostatic theory (Mayer, 1955; Routh et al., 2014). The 

hypothalamus and hormones such as insulin and leptin control the rate of glucose 

metabolism, releasing glucose from the bloodstream when needed and using fatty acids and 

proteins if glucose levels are too low. If glucose homeostasis becomes unbalanced due to low 

glucose levels, a neuroendocrine response is activated to release more glucose into the 

bloodstream to prevent hypoglycaemia. If blood glucose levels are high, insulin is released to 

move more glucose into cells or store it as glycogen in the liver or muscles to prevent 

hyperglycaemia (Mayer, 1955; Pénicaud et al., 2002; Routh et al., 2014). As glucose gets 

depleted in the body, the body responds similarly to feelings of hunger. Therefore, high 
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carbohydrate intake has been linked to reaching satiation quicker and reducing food intake 

sooner (Eny et al., 2008). 

The solute carrier family 2 member gene (2SLC2a2) codes for the glucose transporter 

type 2 gene (GLU2) expressed in the hypothalamic glucose-sensing neurons and various 

other organs in the body (Eny et al., 2008). The GLU2 gene is associated with glucose 

homeostasis and insulin release during the postprandial state (Pénicaud et al., 2002). 

Research has focused on the association of the GLU2 gene variant rs5400 with the increased 

risk of T2DM, especially among carriers of the genotype TT or TC who have a greater desire 

for sugary foods (Eny et al., 2008; Pénicaud et al., 2002). 

Eny et al. (2008) compared two Canadian populations, one (P1) comprised 50 men 

and 50 women, aged 42–75 years, with BMI 30.7 ± 4.2 kg/m2 from the Diabetes Multicentre 

Intervention Study, who had early T2DM. Two (P2) comprised 182 men and 405 women, 

aged 20–29 years, part of the Toronto Nutrigenomics and Health Study. Eny et al. (2008) 

reported that P1 individuals with the GLUT2 gene variant rs5400, genotype CT or TT had a 

greater daily sugar consumption than genotype CC. Participants were assessed over a 3-day 

food diary, a food-frequency questionnaire (FFQ) and two on-site visits 2 weeks apart (visit 

1: 112 ± 9 vs 86 ± 4 g/day, P = 0.01; visit 2: 111 ± 8 vs 82 ± 4 g/day, P = 0.003). P2 

participants with the genotype CT or TT had a higher consumption of sugar over 1 month 

(131 ± 5 vs 115 ± 3 g/day, P = 0.007) compared to genotype CC. The study concluded that 

the GLUT2 gene variant rs5400 is associated with increased sugar consumption and could 

account for sugar craving in certain individuals (Eny et al., 2008). The oro-sensory signals 

that control the regulation of glucose intake need further investigation as elevated sugar 

craving has links to other factors, including mood, environment, culture, lifestyle and 

pleasure-generated response (Routh et al., 2014). Further RCT-type research is needed to 

control individual food intake as FFQ are sometimes unreliable. 

2.7.3 Susceptibility to Hunger and the NMB Gene (rs1051168) 

Much research focused on eating behaviours and obesity compares different diets, 

such as low-GI diet versus high-GI carbohydrate diet (Rashid et al., 2015). More recent 

studies have turned to genes linked to eating disorders (S. B. Roberts, 2000). One stressor 

resulting in an eating disorder such as obesity is hunger which is negatively associated with 

weight-control success (Pekkarinen et al., 1996). Hunger is a complicated process that is not 

fully understood; the hypothalamus partly controls hunger, dependent on glucose levels, the 
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emptiness of the stomach and intestines, and ghrelin, the “hunger hormone” (Pénicaud et al., 

2002; Rashid et al., 2015). 

Physiological responses that downregulate eating behaviours have links to the NMB 

gene (Bouchard et al., 2004). The NMB protein, encoded by the NMB gene, is linked to 

eating behaviours and could affect the ability to maintain weight management, leading to 

obesity. The NMB receptor proteins get expressed in the visceral adipocyte cells in adipose 

tissue, suggesting that fat deposits could regulate food intake. (Bouchard et al., 2004; Yang et 

al., 2003). 

A study conducted by Bouchard et al. (2004) focused on genes associated with eating 

habits and obesity and used the three-factor eating questionnaire (3FEQ). Stunkard and 

Messick (1985) created the 3FEQ in 1985 to study eating behaviours by measuring three 

components: dietary restraint, disinhibition and hunger. Overweight and obese individuals 

usually score higher on the disinhibition and hunger questions than normal-weight 

individuals. Bouchard et al. (2004) used participants from the Quebec Family Prospective 

Study that involved 274 men and 386 women aged 27–58 years with BMIs of 20.3 to 37.9 

kg/m2. The study aimed to identify numerous trait loci involved in eating behaviours. The 

study reported that the most significant linkage between locus and susceptibility to hunger 

(P < 0.0001) was the NMB gene variant rs1051168, genotype TT, compared to genotype GG 

or GT. The study revealed a missense mutation resulting in a genetic variation within the 

NMB gene located on SNP rs1051168. This SNP was positively associated (OR = 1.9, 95% 

CI [1.15, 3.06], P = 0.01) with eating behaviours in obesity phenotypes. The study’s 6-year 

follow-up reported that carriers of the genotype TT gained more than twice as much body fat 

than those carrying GG or GT genotype (3.6 compared with 1.5 kg; P < 0.05). The results 

show a significant association between the NMB gene variant rs1051168, genotype TT and 

eating behaviour with a predisposition to obesity. The limitation of the study was the use of 

FFQ which are prone to recording errors by participants. Also, for complex behaviours such 

as eating, it is unlikely that a single SNP could account for these results fully. Therefore, 

more research is needed to identify other mutations in the NMB gene, or in that location, 

linked to eating habits and hunger. 

2.8 Regulation of Blood Glucose and Associated Genetic-Risk Variant 

This section will investigate the association between glucose and insulin and the 

related SNP located in genes: adenylate cyclase 5 gene (ADCY5) and insulin-receptor 

substrate 1 gene (IRS1), respectively. 
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The pancreas’s endocrine hormones regulate blood glucose levels in the body 

(Almgren et al., 2017). Within minutes of eating, the body secretes hormones: glucagon, 

insulin, somatostatin, amylin, gut hormones and incretins from enteroendocrine cells. These 

hormones enter the bloodstream to help regulate blood glucose balance by negative feedback. 

Insulin increases glucose uptake by signalling the muscles to use the glucose for energy or 

transport it to the liver, where excess glucose gets stored as glycogen in fat cells. If the body 

does not produce enough insulin, Type 1 diabetes (T1DM) develops. When the body does not 

respond to insulin, the body becomes insulin resistant, and insulin-producing cells called 

pancreatic beta cells are less responsive. If the body has a high fasting insulin level, it will, if 

left untreated, result in T2DM (Almgren et al., 2017; Dupuis et al., 2010). Much research has 

been focused on Westernised populations as there is a higher frequency of elevated glucose 

levels, which increases the risk of T2DM (Dupuis et al., 2010). Obesity is a causal factor in 

developing insulin resistance, T2DM and MS (C. K. Roberts et al., 2013). 

2.8.1 Fasting Glucose and the ADCY5 Gene (rs11708067) 

The ADCY5 gene encodes the enzyme adenylate cyclase, which catalyses cyclic 

AMP 5 (Dupuis et al., 2010). Signalling in the pancreas triggers insulin secretion, dependent 

on the generation of cyclic AMP. The ADCY5 gene variant rs11708067 has been linked to 

elevated fasting glucose levels (Almgren et al., 2017; Dupuis et al., 2010). 

Dupuis et al. (2010) combined 21 GWA studies, using 46,186 European nondiabetic 

subjects, that included loci associated with fasting glucose near the ADCY5 gene. Meta-

analysis after adjustments for BMI demonstrated that the ADCY5 gene was associated with 

elevated fasting glucose levels of 0.027 mmol/L in A allele carriers (P = 0.0001). Therefore, 

A allele carriers had an increased risk of T2DM compared to G allele carriers. The study’s 

limitations are that the findings could have been due to other factors influencing the results, 

such as the diet and lifestyle of the patients, and a cause-and-effect relationship may not be 

solely due to the rs11708067 SNP. 

2.8.2 Fasting Insulin and the IRS1 Gene (rs2943641) 

A study examining adipocytes reported that in obese individuals, their IRS1 gene 

mRNA concentration was less than in leaner individuals (Kovacs et al., 2003). Further 

investigation on the IRS1 gene has reported its possible association with insulin levels and 

T2DM. 
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Almgren et al. (2017) performed a population-based cohort study using 3,344 

Swedish participants born between 1923 and 1950 and 4,905 Finnish participants. The study 

compared circulating insulin with identical phenotypes using an oral glucose tolerance test 

and blood samples after 30 and 120 minutes. The association of SNPs with insulin levels was 

analysed using linear regression models, and Cox regression models for prediction of risk of 

T2DM, and adjusted for sex and age. The study searched for a link between nondiabetic 

participants and fasting insulin levels and found that a location near the IRS1 gene variant 

rs2943641 showed a significant association (P = 2.4 x 10-7). Almgren et al. concluded that 

participants who carried the CT or CC genotypes had greater fasting insulin concentrations 

than the TT genotype. The study’s finding could have been due to other factors such as the 

diet and lifestyle of the patients, and a cause-and-effect relationship may not be solely due to 

the rs2943641 SNP. 

2.9 Conclusion 

The Human Genome Project has provided information about the genome’s structure 

and function and identified around 25,000 protein-coding genes (Chial, 2008; Karczewski et 

al., 2020; Moore, 2020). Many factors, including specific nutrients, cause genetic 

polymorphisms, producing gene variants. The nutrigenomics approach to examining 

individual variation and identifying nutrition response and risk has prompted much research 

(Moore, 2020). Developing SNP arrays to detect polymorphisms due to gene–nutrient 

interactions has resulted in extensive GWA studies on different genotypes. These studies 

have linked many gene–nutrient interactions, such as the FTO gene related to lipid profile 

which could help prevent overweight individuals from becoming obese and developing MS 

(Reddy et al., 2018). 

Many of the observational studies using genome-wide genetic variants data discussed 

in the literature review had limitations. The loss of participants and the low occurrence rate of 

the genetic variant in the population resulted in bias, reducing the validity of results and 

causing low statistical power. For example, Zhang et al. (2012) performed a 2-year RCT, part 

of the Preventing Obesity Using Novel Dietary Strategies intervention, and concluded that 

the FTO gene and a HPD were linked. This RCT started with 742 participants but lost 100, an 

attrition rate of 13.5%. An attrition rate of < 5% results in slight bias, whilst > 20% has 

validity issues, but every participant lost can cause significant bias (Nunan et al., 2018). 

Therefore, increasing statistical power for observational GWA studies may require the 

enrolment of many hundreds of participants to detect a difference. However, if the genetic 
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variant has low occurrence, this could still result in low numbers of carriers with the required 

genotype. For example, Allen et al. (2008) studied iron-overload-related diseases and their 

association with the C289 gene variant rs1800562. From a genome-wide sample set of 

31,192, they successfully genotyped 29,676 for this study. A random stratified sample of 

1,438 generated only 203 individuals (74 men and 84 women) who were C289 homozygous 

carriers. By the end of the study, there was a positive correlation between 21 men and one 

woman who had iron-overload-related diseases associated with the C289 gene variant 

rs1800562. The results highlight the problem when examining high-risk SNP variants in a 

cohort that only exists in a low frequency in the total population, making it difficult to 

adequately power the studies to detect effects. As is evident in Allen et al.’s (2008) study, 

only 0.05% of the population are carriers of the high-risk C289 gene variant rs1800562, A 

allele (gnomAD, n.d.; NCBI, 2005). 

The studies involving food-consumption measures, such as Grau et al.’s (2010) 

examining total fat, proved challenging to monitor, especially when subjects were off-site. 

Another challenge is controlling participants’ behaviour when they participate in a study, 

termed the Hawthorne Effect; and maintaining strict adherence to the protocols throughout 

the study period is difficult (Eny et al., 2008; Sedgwick & Greenwood, 2015). Self-reporting 

questionnaires are prone to memory loss and inaccurate dietary accounts. Some studies only 

used young, healthy subjects, for example, Nagai et al.’s (2011) study on energy balance. 

Some studies had confounding variables, as demonstrated in the vitamin D studies, as levels 

are dependent on other factors such as biological nongenetic factors and environmental 

conditions (Slater et al., 2017; T. J. Wang et al., 2010). Therefore, the results are unreliable 

and need to be replicated in a larger population. 

Most of the studies reviewed needed further investigation involving different 

ethnicities and population groups and tighter, more rigorous experiment procedures. For 

example, the studies conducted by Kathiresan et al. (2009) on LDL-C, HDL-C and TG only 

used participants of European ancestry. 

Due to the ever-increasing amount of epidemiological research performed all over the 

globe, on similar topics, using meta-analysis or systematic reviews to integrate findings from 

nutrigenomic studies would be beneficial (Page et al., 2020). 
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Chapter 3: Methodology 

3.1 Study Design  

This study is a small subsection of a more extensive investigation: An acute, blinded, 

randomised cross-over design intervention to compare beef, lamb and a meat analogue on 

digestive, metabolic and nutritional outcomes, 31 May 2022, PREPRINT (Version 1) 

available at Research Square (https://doi.org/10.21203/rs.3.rs-1640468/v1). The extensive 

investigation was registered as a universal trial number: U1111-1244-9426. The clinical trial 

prerecruitment (Ref: NCT04545398) was carried out under the auspices of the University of 

Auckland. The study was approved by the New Zealand Ministry of Health’s Health and 

Disability Ethics Committees (Ref: 19/STH/226) and conducted following the ethical 

standards in the 1964 Declaration of Helsinki (Appendix C).  

Thirty young, healthy males (20–34 years), 20 normal weight, nine overweight and 

one obese, participated in an experimental study, and they consumed a standardised breakfast 

meal. Blood and plasma samples were collected and analysed before and hourly for 4 hours 

after the meal to assess nutrient concentrations. Buccal swabs were collected and analysed 

using the Illumina assay technique to assess SNPs. An online visual analogue 100-point scale 

was used to assess appetite scores upon arrival, immediately following ingestion, 30 minutes 

after ingestion and then hourly for 4 hours after ingestion. 

This thesis describes a pilot experimental study to examine the present and emerging 

knowledge of genetic variation and determine whether this may influence postprandial 

digestive responses to a meat meal. In particular, it assessed the participants’ genetic variants 

and considered whether they influenced an individual’s postprandial digestive response to a 

standardised breakfast meal. 

3.2 Study Setting 

The trial was conducted between October and December 2020 at the University of 

Auckland Clinical Research Centre. The study setting was used to examine the digestion and 

metabolism of essential nutrients and subjective qualities of the meal experience, such as 

appetite and gastrointestinal scores. 

3.3 Eligibility Criteria 

All participants were omnivores willing to consume a standardised breakfast meal 

(Appendix D). The study excluded participants with chronic health conditions, 

https://doi.org/10.21203/rs.3.rs-1640468/v1
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hyperlipidaemia, BMI ≥ 30 kg/m2, use of medications (except occasional use of nonsteroidal 

anti-inflammatory drugs and antihistamines), history of anosmia and ageusia (issues with 

taste and smell), current dieting or disordered eating pattern, smokers and recreational drugs 

users. Participants completed an online screening which included the Three-Factor Eating 

Questionnaire-R18 (TFEQ) and a health survey. Participants with a TFEQ score greater than 

75% were excluded because underlying psychological issues potentially influence their 

perception of food (Appendix D). 

3.4 Recruitment and Informed Consent 

Males were recruited from the millennial generation (20–34 years), as males typically 

have a greater postprandial lipid response than females (Chan et al., 2013). In general, 

millennials were chosen as this population demographic has been demonstrated to have the 

most significant variation in meat intake (Lairon et al., 2007). Recruitment occurred via 

posters around the University of Auckland and social media sites (Facebook). Informed 

consent was collected by research staff following participant inquiry and provision of 

information (Appendix E). 

3.5 Sample Size 

The current thesis is a pilot investigation with a sample size of 30 participants and 

was based on the principal biomarker for the more extensive investigation for postprandial 

change in LCPUFA concentrations in blood chylomicrons (namely 20:4 n-6, 20:5 n-3, 22:5 

n-3, 22:6 n-3). An estimate of 29 enabled detecting the slightest worthwhile change of 0.5 

mmol/L from baseline to 5 hours postmeal consumption (Linderborg et al., 2013). The 

current investigation is observational by design but includes a range of SNPs. The study may 

not be sufficiently powered to detect weak gene–nutrient association, and, as such, we 

consider this investigation a pilot study. 

3.6 Randomisation and Blinding 

The design was an experimental study, and participants consumed a standardised 

breakfast meal. Staff responsible for meal preparation, blood collection and analysis were 

blinded to the intervention, as were participants. 

3.7 Meal Preparation 

The breakfast meal was a burrito wrap of grain-fed beef with vegetables and sauce, 

served hot. The meat was a 220 g raw serving of minced beef (approximately 160 g cooked), 
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in line with the World Cancer Research Fund International (n.d.). The agency 

recommendation on red meat consumption suggests limiting the weekly red meat 

consumption to 350–500 g cooked. A minimum quantity of 100 g of cooked meat is required 

to ensure adequate fat intake to assess postmeal lipid dynamics (Linderborg et al., 2013). 

The breakfast meal was prepared according to standardised recipes by the research 

dietitians and served at the test kitchen site in the University of Auckland Clinical Research 

Centre. The recipe was analysed using the New Zealand food database for macronutrient 

status using Foodworks 10 Professional software (Xyris). The meat was grain-fed New 

Zealand beef, specifically slaughtered, minced, packaged and stored at the research centre for 

this trial. The meat was minced to ensure homogeneity between participants, and all other 

food items were purchased at a local supermarket. The nutritional value of the standardised 

meal is provided in Table 6 and the nutrient composition per 100 g of the cooked meal is 

provided in Table 7. 

All participants fasted for 10 hours prior to consuming the test meal, which was given 

in the morning, as postprandial lipid responses are greatest at this time (Lairon et al., 2007). 

One researcher, who was not involved with the meal preparation, took the allocated 

mince (220 g per person) from the freezer the day prior and placed it in the test kitchen 

refrigerator. They added 2 teaspoons of brown sugar per 220 g to the meat as a requirement to 

produce isocaloric meals for the larger investigation (data not reported in this thesis). A 

researcher who was blind to the allocation prepared the meal. The food preparation strictly 

adhered to food safety regulations (Australian Government, National Health and Medical 

Research Council, New Zealand Ministry of Health, 2006). Each participant had the same 

breakfast meal prepared in the university kitchen. Salter scales were used to measure the 

exact quantities per person: 220 g of mince, 54 g of chopped brown onion, 72 g chopped red 

capsicum, 67 g of canned corn kernels, two jumbo tortilla wraps, 1/6 jar of salsa and salt and 

pepper for seasoning. The onions were fried in a teaspoon of oil, using an electric wok, until 

tender, before adding the mince. Cooking of the mince continued until it reached a 

temperature of at least 70°C (checked with a PUREQ solo probe food thermometer). Next 

was the addition of the capsicum, corn, salsa and seasoning. The meal was left to simmer for 

10 minutes before equally dividing the mixture into two portions onto two flat tortillas. The 

tortillas were folded and placed under a sandwich grill until toasted and then wrapped in 

aluminium foil and served. After the trial, a sample test meal was sent for nutritional analysis 

(Tables 5 & 6). 



 

43 

3.8 Collection of Data 

Participants were asked to maintain a normal lifestyle and physical activity schedule 

before the study. Reminder text messages were sent to participants the night before the visit 

to ask them to remain fasted from 9 pm (only water was allowed for the rest of the evening). 

Participants arrived at the clinical research facilities at 7.30 am. A researcher carried out the 

collection of baseline data, before food consumption, on weight (kg), height (cm), BP 

(systolic and diastolic mm/Hg taken using a HEM7130 digital meter) and heart rate 

(beat/min) (Table 4; see also Appendix B). An Automated Self-Administered Recall System 

(ASA24 24-hour Australia 2016 edition, https://asa24.nci.nih.gov) food-recall questionnaire 

and appetite scores using an online visual analogue 100-point scale were completed upon 

arrival, immediately following ingestion, 30 minutes after ingestion and hourly for 4 hours 

after ingestion. 

A cannula was inserted into the antecubital vein of the forearm. Venous blood was 

collected into ethylenediaminetetraacetic acid (EDTA) tubes immediately prior to the meal (t-

pre) and at four-time points postprandially (60, 120, 180, and 240 min). Participants were 

instructed to consume the provided breakfast meal within 15 minutes. Blood samples were 

centrifuged at 1,500 g for 15 min at 4°C. Plasma samples were aliquoted and stored at -80°C 

for later analysis. 

Participants recorded their 24-hour dietary food recall using the ASA24, using a 

specific password. ASA24 provides analysis on energy and essential macro- and 

micronutrients and is a proven valid method (Kirkpatrick et al., 2014). Nutrient composition 

of participants’ dietary intake the day prior to the clinic visit based on 24-hour dietary recall 

is provided in Table 5. 

3.9 Genetic Analysis 

A direct-to-practitioner biotechnology company, Nutrigenomix (2020), analysed each 

participant’s buccal swab sample. A customised nutritional report details nutrient 

metabolism, eating habits, and food intolerances based on genetic variation and genotype. 

The report indicated how susceptible a person is to food-related traits based on their risk 

variant. According to company literature, the accuracy of the genetic-test results is between 

99.7%–100%. 

Oragene DNA ON-500 collection kits were used to collect DNA from each 

participant’s cheek cells and used for their genetic analysis. The buccal swab stick was taken 

out of the blue top screw cap collection tube and held in the middle, while the tip ends were 

https://asa24.nci.nih.gov/
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rubbed on the inside of the participant’s cheek about six times. The swab was then placed 

back into the collection tube and sealed. The researcher labelled each collection tube with the 

participant’s research number and the unique identification collection tube number was noted. 

The researcher then sent all the specimens to the Nutrigenomix CLIA-certified and CAP-

accredited (College of American Pathologists) laboratory centre at the University of Sydney, 

Australia. The iPLEX Gold assay with mass spectrometry-based detection on the Sequenom 

MassARRAY platform (Agena Bioscience) was used for all genotyping. The Illumina assay 

technique is used to find mutations in the DNA by identifying different insertions of the 

addition or deletion of a base to determine the risk variant (Sachidanandam et al., 2001). 

The qualitative genetic risk results from Nutrigenomix were low, typical, elevated, 

enhanced, or diminished genetic risk. Low or typical risk indicates a low or normal response 

to a genetic variant, elevated, enhanced, or diminished genetic risk indicates an increased 

response to a genetic variant. 

3.10 Subjective Analysis 

An online visual analogue 100-point scale was used to assess the physiological 

measure for each participant’s postprandial appetite changes associated with fat-taste 

perception, sugar preference, and hunger, and correlated with the qualitative genetic risk. 

Appetite scores were analysed using an online visual analogue scale previously 

validated for use in single-meal investigations (Flint et al., 2000). The participants completed 

appetite scores upon arrival, immediately following ingestion, 30 minutes after ingestion and 

then timed with blood sampling for 4 hours. 

3.11 Digestive and Biochemical Analysis 

Postprandial digestive responses were analysed using each participant’s physiological 

outcome measures, or markers that corresponded to the dietary component, and correlated 

with the qualitative genetic SNP associated with published literature and after review by the 

research team (Tables 2 & 3; see also Appendix A). 

Participants’ plasma samples at baseline / premeal (t-pre) were used to assess the 

physiological measure for concentrations of vitamin D, iron, zinc, total cholesterol, LDL, 

HDL, triglycerides, glucose and insulin (Table 2). 

Participants’ postprandial changes in LCPUFA (18:2 n-6, 18:3 n-6, 18:3 n-3) were 

used to assess the physiological measure for concentrations in the CMRF for dietary intake of 

omega-6 and -3 (Table 2). 
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Participants’ BMI was used as the physiological marker related to body composition 

and energy balance (Table 2). The categories of BMI were: Underweight < 18.5 kg/m2, 

Healthy/Normal 18.5–24.9 kg/m2, Overweight 25–29.9 kg/m2 and Obese > 30 kg/m2 

(National Heart Foundation of New Zealand, 2022).
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Table 2 

Gene and Associated, Reference Marker, Genetic Variant, Gene Frequency, RDI, Physiological Measures and Reference Intervals (RI 95% 

Prediction Interval) 

Gene Variant and risk 
ref. marker 

Genetic varianta Refb allele Altc allele & 
frequency in global population 

Recommend daily intake (RDI) Physiological outcome 
measures 

Ref. intervals 

CYP2R1 
 

rs10741657 
 

AA typical 
GG or GA elevated risk 

Ref A = 0.38 
Alt G = 0.62 

Meet RDI 5.0 µg 
 

Resting premeal vitamin D 
conc. 

< 25mod-severe deficiency 25–50 mild 
dif. 50–150 

normal > 250 intoxication nmol/L GC rs2282679 TT or TG typical risk 
GG elevated risk 

Ref T = 0.72 
Alt G = 0.28 

Meet RDI by increasing 
bioavailable sources 

SLC17A1 rs17342717 CC low risk 
CT typical 

TT elevated 

Ref C = 0.92 
Alt T = 0.84 

If elevated risk does not exceed 
RDI of 8 mg iron, keep vit C 
to minimum monitor serum 
iron levels 

Resting premeal plasma 
iron conc. umol/L 

Hb < 90 mg/L 
Hb Medscape Male: 14–18 g/dL or 

8.7–11.2 mmol/L 
Fe 10–30 umol/L (adults) 
Fe Medscape: Male: 80–180 mcg/dL 

or 14–32 μmol/L 

HFE (C282Y) rs1800562 GG low risk AG typical 
AA elevated 

Ref G = 0.95 
Alt A = 0.05 

HFE (H63D) rs1799945 CC Low risk 
GC typical 

GG elevated risk 

Ref C = 0.86 
Alt G = 0.14 

TMPRSS6 rs4820268 GG or GA typical risk 
AA elevated 

Ref G = 0.46 
Alt A = 0.54 

If elevated meet RDI of 8 mg 
iron + vit C 

Resting premeal plasma 
iron conc. umol/L 

Hb < 90 mg/L 
Fe 10–30 umol/L (adults) 

TFR2 rs7385804 CA typical 
CC or AA elevated risk 

Ref C = 0.36 
Alt A = 0.64 

TF rs3811647 GA or GG typical risk AA 
elevated 

Ref G = 0.67 
Alt A = 0.33 

SLC30A3 Zinc 
transporter 

rs11126936 AA or AC typical 
CC elevated risk 

Allele freq. G-T 0.35 Meet RDI 14 mg. If elevated 
keep to RDI by increasing 
bioavailable sources 

Resting premeal zinc conc. 
mg/L 

10.7–18.3 umol/L or 2.5–4.3 mg/L 
fasting 

FADS1 rs174547 CC or CT elevated risk Ref T = 0.67 
Alt C = 0.33 

Reduce ratio of n-6 PUFA: n-3 
PUFA aim for RDI n-3 (ALA) 
of 1.3 g & n-6 (LA) 13 g 

AUC essential fatty-acid 
concentration of 
C18:2.n-6, C18:3.n-6 & 
C18:3.n-3 

No RI used median AUC 

UCP1 rs1800592 AA typical risk. GG or GA 
diminished low resting metabolic 

rate (RMR) calorie needs are 
lower 

Allele freq. T-C 0.39 If BMI > 25 keep to estimated 
energy requirements (EER) = 
basal metabolic rate (BMR) x 
physical activity levels (PAL) 
or lower daily kcal by 200–
400 daily 

Body mass index Underweight < 18.5 kg/m2 
Normal weight 18.5–24.9 kg/m2 
Overweight 25–29.9 kg/m2 
Obese 30+ kg/m2 

FTO rs9939609 TT or AT typical risk 
AA enhanced risk 

Ref T = 0.60 
Alt A = 0.40 

Protein diet 15%–25% or RDI 
52g 

If BMI > 25 aim for HPD 25%–
35% 

Body mass index See above 

TCF7L2 rs7903146 CC or CT typical risk 
TT enhanced risk 

Ref C = 0.71 
Alt T = 0.29 

20%–35% fat energy/day 
If BMI > 25 aim for LFD 15%–

25% fat energy/day 

Body mass index 2.6–24.9 (fasting) mU/mL (mU/L x 
6.95 = pmol/L) 

APOA2 rs5082 TT or TC typical 
CC elevated risk 

Allele Freq G-A 0.69 Saturated & Trans-fat 8%–
10%/day essential for 
genotype CC & keep to total-
fat RDI 

Resting premeal LDL 
cholesterol mmol/L 

< 3.4 mmol/L 

FTO rs9939609 TT typical risk 
AA or AT enhanced risk 

Ref T = 0.60 
Alt A = 0.40 

Saturated & Trans-fat 8%–
10%/day essential for 
genotype TA or AA and 5% 
PUFA and keep to total-fat 
RDI 

Body mass index See above 
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Gene Variant and risk 
ref. marker 

Genetic varianta Refb allele Altc allele & 
frequency in global population 

Recommend daily intake (RDI) Physiological outcome 
measures 

Ref. intervals 

PPARγ2 rs1801282 CC typical risk 
GG or GC enhanced risk 

Ref C = 0.90 
Alt G = 0.10 

Aim for balance of saturated, 
MUFA & PUFA. If BMI > 25 
aim for 50% of total fat intake 
from MUFA 

Body mass index See above 

APOA5 
component of 
HDL 

rs662799 TT typical risk 
CC or TC elevated risk 

Allele freq. G-A 0.90 Typical risk of high total 
cholesterol 

Increased risk of high total 
cholesterol and if > 5mmol/L 
& adjust lifestyle 

Resting premeal total 
cholesterol mmol/L 

< 5.0 mmol/L 

ABCG8 
cholesterol 
transporter 

rs6544713 CC typical risk 
TT or TC elevated risk 

Ref T = 0.30 
Alt C = 0.70 

Typical risk of high LDL-C 
If elevated increased risk of high 

LDL-C 

Resting premeal LDL-C 
mmol/L 

< 3.4 mmol/L 

ABCA1 
cholesterol 
transporter 

rs1883025 CC typical risk 
TT or TC elevated risk 

Ref C = 0.74 
Alt T = 0.26 

Typical risk of low HDL-C 
Elevated risk of low HDL-C 

Resting premeal HDL-C 
mmol/L 

Men > 1.0mmol/L Women > 
1.3mmol/L 

ANGPTL3 
lipid metabolism 

rs10889353 CC typical risk 
AA or CA elevated risk 

Ref A = 0.68 
Alt C = 0.32 

Typical risk of high TG 
Elevated risk of high TG 

Resting premeal TG mmol/L < 2.0 mmol/L 

CD36 rs1761667 AA typical taste 
GG or GA enhanced taste 

Ref G = 0.48 
Alt A = 0.52 

Typical ability to taste fat 
Enhanced ability to taste fat 

AUC fat-craving 
questionnaire (appetite) 

Genotype AA carriers might be more 
at risk of obesity especially if BMI 
25+ as they have lower fat-taste 
perception 

GLUT2 rs5400 CC typical risk 
CT or TT elevated risk 

Allele Freq G-A 0.15 Typical risk for high sugar intake 
Elevated risk for high sugar 

intake 

AUC sugar-craving 
questionnaire (appetite) 

 

Genotype CT or CC might be more at 
risk of obesity especially if BMI 
25+as they have elevated sugar 
intake preference 

NMB regulates 
eating behaviour 

rs1051168 GG or GT typical risk 
TT elevated risk 

Ref G = 0.73 
Alt T = 0.27 

Typical susceptibility to hunger 
Elevated susceptibility to hunger 

AUC fullness, hunger and 
how much can you eat 
questionnaire (appetite) 

 

Genotype TT might be more at risk of 
obesity especially if BMI 25+ as 
they have elevated susceptibility to 
hunger 

ADCY5 
insulin secretion 

rs11708067 GG typical risk 
GA or AA elevated risk 

Ref A = 0.79 
Alt G = 0.21 

Typical risk of high fasting 
glucose 

Elevated risk of high fasting 
glucose 

Resting premeal glucose 
plasma conc. mmol/L 

<2.8 hypoglycaemia (HG) mmol/L 
2.8–3.4 mild HG 
3.5–5.4 normal fasting 
5.5–6.0 borderline 
6.1–6.9 prediabetes 
< 7.0 diabetes 

IRS1 
insulin signalling 

rs2943641 TT typical risk CT or CC 
elevated risk 

Ref T = 0.34 
Alt C = 0.66 

Typical risk of high insulin 
Elevated risk of high insulin 

Resting premeal insulin 
conc. µU/mL 

2.6–24.9 (fasting) mU/mL (mU/L x 
6.95 = pmol/L) 

Note. Dietary component reference intervals retrieved from Auckland District Health Board (2022). BMI retrieved from National Heart Foundation of New Zealand (2022). Data 

for reference allele, alternative allele and frequency allele retrieved from gnomAD (n.d.); and NCBI (2005), from population groups, European, African, African others, African 

American, Asian, East Asian, Other Asian, Latin American 1, Latin American 2, South Asian European.  

aThe qualitative genetic risk results were low, typical, elevated, enhanced, or diminished genetic risk. Low or typical risk indicates a low or normal response to a genetic variant, 

elevated, enhanced, or diminished genetic risk indicates an increased response to a genetic variant. 

bReference (Ref) allele frequency is the base found in the reference genome and is not always the major allele. 

cAlternative (Alt) allele frequency is the base found at the locus, other than the reference allele.
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For blood and plasma analyses, blood samples were centrifugated at 1,500 g for 15 

minutes at 4°C. An aliquot of plasma was maintained at 4°C for the CMRF separation to 

occur within 6 hours with the remaining stored at -80°C until analysis. 

The fatty-acid composition of the CMRF was analysed by the fatty-acid methyl esters 

(FAME) assay (Milan et al., 2016; M. Su et al., 2019). 

The analysis of plasma vitamin D used ultra-high-performance liquid 

chromatography-tandem mass spectrometry (UHPLC-MS/MS) at the Liggins Institute, 

Auckland, New Zealand (Sharma et al., 2019). 

Plasma samples were prepared under the fat-soluble vitamin procedure and analysed 

using the fat-soluble vitamin liquid chromatography-mass spectrometry (LC-MS) method 

(Khaksari et al., 2017) at AgResearch, New Zealand. 

The inductively coupled plasma mass spectrometry (ICP-MS) process assessed iron 

and zinc at Analytica Laboratories, Hamilton, New Zealand. The plasma samples were 

digested in aqua regia on a hot block for 2 hours. Following digestion, Type 1 water was 

added to dilute the sample 50-fold total. Samples were analysed on a Perkin Elmer ICP-MS 

fitted with a CETAC autosampler. Internal standard and carrier solution were introduced into 

the instrument using an ESI peristaltic pump, and were combined with the sample prior to 

injection into the instrument by the nebuliser. The plasma was formed using argon gas. Both 

standard and kinetic energy discrimination (KED) modes were used, with helium gas being 

introduced into the collision cell for operation of KED mode, to remove polyatomic 

interferences where required. The instrument was calibrated using a 1-point calibration, and 

this calibration was verified with a range of internal quality controls. 

Plasma glucose, cholesterol (total, LDL, HDL) and triglyceride were measured using 

a Roche Cobas c311 by enzymatic colorimetric assay and insulin was measured by an 

electrochemiluminescence immunoassay. 

3.12 Statistical Analysis 

Results were analysed using contingency tables and a chi-square test to compare the 

participants’ genetic risk with the calculated median value from the 30 participants’ 

corresponding physiological measures (Appendix F). Count scores of the low and high 

physiological values were recorded, along with the high- and low-risk genetic variants. The 

median value was used to split and triage the data into two halves and is considered more 

robust to outliers (del Campo-Albendea & Muriel-García, 2021). 
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The choice of physiological variables was considered the best matched for the 

associated SNP as reported in the literature review and after review by the research team 

(Table 3 and Appendix A). 

A chi-square test for independence was used to determine if the physiological 

measure and the genetic risk of the associated SNP gene variant were related. This method 

uses a 2 x 2 contingency table for comparing two variables to see if they are related. The data 

calculated in the table must be 5 or greater to test for statistical significance established as P 

≤ 0.05 (McDonald, 2014). If they are not related, the variables are independent and have no 

influence. If they are related the variables are dependent on each other. 

Median values were calculated using each participant’s physiological parameters (n = 

30) from their baseline / premeal (t-pre) recorded measures or BMI measures or the AUC 

measures. The AUC values were calculated using all-times recorded data from each 

participant’s physiological measure. The data was imported into GraphPad Prism (Version 

9.2), which used the trapezoidal method for AUC time-point differences and corrected for 

baseline values. 

Each participant’s quantitative physiological measures were categorised as either 

greater than or less than/equal to the median value. Their qualitative genetic risk was 

categorised as either normal or increased risk and values input into a 2 x 2 contingency table. 

A chi-square test was then used to determine if there was a statistically significant 

relationship between the physiological measure and the genetic risk of the SNP genetic 

variant.



 

 

5
0
 

3.13 Digestive Response and Corresponding Genetic Risk Variant Based on Published Associations 

Table 3 

Physiological Output Measures and the Corresponding Genetic-Risk Variant Based on Published Literature and Nutrigenomix, 2020. 

Physiological measure & 
related gene variant 

Analysis of genetic response based on published associations for participants in 
this study 

Analysis of digestive response for participants in this study 

Vitamin D and the CYP2R1 
and GC gene (rs10741657 and 
rs2282679) 

We might expect participants with the CYP2R1 gene variant AA (rs10741657) and the GC gene variant 
TT or TG (rs2282679) to have a low risk of vitamin D deficiency; they should follow the RDI of 5.0 
µg/day for males aged 19–50 years. Participants with CYP2R1 gene variant GG or GA 
(rs10741657) and the GC gene variant GG (rs2282679) are at an elevated risk of vitamin D 
deficiency. To reduce this risk, recommendation of the RDI and the consumption of food sources 
rich in vitamin D. 

CYP2R1 gene variant AA and the GC gene variant TT or TG typical 
variants, we might expect baseline plasma vitamin D levels to be 50–
150 nmol/L. 

Iron overload and the HFE 
gene (rs1799945, rs1800562) 
and SLC17A1 gene 
(rs17342717)  

We might expect participants with the HFE gene variant SLC17A1, rs17342717 or C282Y, rs1800562 
to be at a high to medium risk of iron overload and HH. These participants should not exceed the 
RDI of 8 mg/day for males aged 19–70 years and should keep vitamin C to a minimum as this 
enhances absorption of iron from the diet and increases iron overload. Participants with HFE variant 
H63D, rs1799945, who have a low risk of iron overload, should keep to the RDI of iron. For 
participants who have the SNPs rs17342717, rs1800562, or rs1799945, consultation with their 
doctor and monitoring serum iron levels is advisable. 

We might expect typical baseline plasma levels of whole blood 
haemoglobin to be less than 90 mg/L and plasma iron levels to be 10–
30 μmol/L. 

Low iron and the TMPRSS6 
gene (rs4820268,), TRF2 gene 
(rs7385804) and TF gene 
(rs3811647) 
 

We might expect participants with the gene variants; TMPRSS6 gene variant GG or GA (rs4820268) 
could influence hepcidin RNA found in blood levels and hepcidin in urine levels. Whilst the TRF2 
gene variant CC (rs7385804) could affect iron serum levels, and TF gene variant AA (rs3811647) 
could affect iron homeostasis, consequently, all are at risk of low-iron status. Therefore, all 
participants should follow the RDI of 8 mg/day for males aged 19–70 years. Participants with low 
iron need to increase iron levels by the consumption of food sources rich in haem iron and vitamin C 
to enhance iron absorption. If following a restricted diet, supplementation may be advisable but do 
not go above the UL of 45 mg/day. 

We might expect typical baseline plasma levels of whole blood 
haemoglobin to be less than 90 mg/L and plasma iron levels to be 10–
30 μmol/L. 

Zinc and the SLC30A3 gene 
(rs1126936) 

We might expect participants in our investigation with the SLC30A3 SNP rs11126936 AA or AC 
genotype to have a typical risk of having low zinc-plasma levels. These participants should follow 
the RDI of 14 mg/day. Participants with genotype CC could be at an elevated risk of low zinc-
plasma levels and, if following a vegetarian diet, are most at risk. To reduce this risk, they should 
consume foods high in zinc. 

With the typical variant genotype AA or AC, we might expect fasting 
plasma zinc levels to be 10.7–18.3 μmol/L. 

Omega-6 and omega-3 
polyunsaturated fatty acid and 
the FADS1 gene (rs174547) 

We might expect participants in our investigation with the FADS1 gene variant CC or CT (rs174547) to 
have lower circulating HDL levels. HDL levels will be lower still if the ratio of dietary intake of n-6 
PUFA is high compared to dietary intake of n-3 PUFA. Therefore, participants should consume 
adequate intake (AI) of n-3 PUFA (ALA) of 1.3 g/day and for n-6 PUFA (LA) of 13 g/day. If they have 
the elevated risk variant CC or CT, reducing the n-6 PUFA: n-3 PUFA ratio will be beneficial. 

We might expect plasma levels of n-6 PUFA to be higher than n-3 PUFA. 

Energy balance and the UCP1 
gene (rs1800592) 
 

We might expect participants in our investigation with the UCP1 gene variant -3826 GG or GA 
(rs1800592) to have a lower energy expenditure (REE/RMR) and their energy needs to be lower 
than AA genotype. Participants with GG or GA genotype may need to reduce their intake of calories 
if overweight or obese according to their BMI, whilst increasing their output energy (Nagai et al., 
2011; Pfannenberg et al., 2010). If the participants are overweight or obese, aiming for energy 
balance strategies and healthy lifestyle choices is recommended to maintain healthy body weight 
(Hill et al., 2012). To work out an individual’s estimated dietary energy requirement (EER), calculate 
basal metabolic rate (BMR) x physical activity levels (PAL) (Australian Government, National Health 
and Medical Research Council, New Zealand Ministry of Health, 2006). 

With the typical variant, AA genotype, we might expect a normal BMI if 
following a healthy diet and active lifestyle. 
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Physiological measure & 
related gene variant 

Analysis of genetic response based on published associations for participants in 
this study 

Analysis of digestive response for participants in this study 

Total fat and the TCF7L2 gene 
(rs7903146) 
 

We might expect participants in our investigation with the TCF7L2 gene variant TT to benefit from 
consuming a low-fat diet (LFD) (15% to 25% fat energy). A LFD and reducing saturated and trans-
fats will help with weight loss and body-composition maintenance, especially if they are obese or 
overweight. A recommendation for obese or overweight participants with genotype CC or CT is to 
consume between 20% to 35% fat energy per day to help maintain lean fat as they do not respond 
to LFD (Foster & Wilson, 2013; Grau et al., 2010; Mattei et al., 2012). 

With the TCF7L2 typical gene variant CC or CT, we might expect a normal 
BMI if following a healthy diet and active lifestyle. 

Saturated fat and the APOA2 
gene (rs5082) 
 

We might expect participants in our investigation with the APOA2 gene variant CC compared to 
genotype TT or TC, most at risk of obesity, mainly if saturated-fat intake is high. All genotypes 
should reduce this risk by consuming a minimum of 8% to 10% /day of saturated fats and trans-fats. 
To maintain a healthy weight for genotype CC or TC, consume 20% to 35% of dietary fat and 
genotype CC 15% to 25% dietary fat. 

With the TT or TC typical variant, we might expect baseline plasma levels 
of LDL cholesterol to be less than 3.4 mmol/L. 

Saturated and unsaturated fat 
and the FTO gene (rs9939609) 
 

We might expect participants in our investigation with the FTO gene variant AA or AT compared to 
genotype TT to be more responsive to reducing dietary intake of saturated fat. If these participants 
are overweight or obese increasing PUFA, especially n-3 PUFA will help with the lowering of BMI. 
Consuming less saturated fat and trans-fat and keeping to a minimum of 8% to 10% /day would 
benefit all genotypes. AT or AA genotypes would also benefit from consuming 5% PUFA / day and 
keeping to total-fat RDI. 

With the TT typical variant, we might expect a normal BMI if following a 
healthy diet and active lifestyle. 

Monounsaturated fatty acid 
(MUFA) and the PPARγ2 gene 
(rs1801282) 

We might expect participants in our investigation with the PPARγ2 polymorphism Pro12Ala (rs1801282) 
genotype GG or GC to have a more significant weight and body fat loss if they consume a higher 
dietary intake of MUFA than genotype CC participants. Therefore, nutritional benefits for weight 
management for participants with genotype GG or GC would be consuming ≥ 50% of total fat intake 
from MUFA (Garaulet et al., 2011). Even though they are not responsive to a high-MUFA diet, 
participants with genotype CC would benefit from balancing their intake of total fat with a 
combination of fats. Mainly, saturated, MUFA, and PUFA would lower their risk of a multifactorial 
disease, especially if their BMI > 25 kg/m2. 

With the CC typical variant, we might expect a normal BMI if following a 
healthy diet and active lifestyle. 

Protein and the FTO gene 
(rs9939609) 
 

We might expect participants in our investigation with the FTO gene variant AA (rs9939609) along with 
a BMI of 25 to 30+ kg/m2 to benefit from consuming a moderate- to high-protein diet (HPD) (25% to 
35% protein energy) which may result in a more significant weight loss and reduced fat mass, 
compared to individuals on a low-protein diet (LPD) with genotype AA or carriers of the FTO gene 
variant TT or AT (Zhang et al., 2012). Participants with genotype TT or AT along with BMI of 25 to 
30+ kg/m2 may benefit from consuming a moderate to LPD (15% to 25% protein energy) to reduce 
fat mass (Zhang et al., 2012). For all other participants with a normal BMI, keeping to the RDI of 
protein of 52 g/day is advisable. 

With the TT or AT typical variant, we might expect a normal BMI if following 
a healthy diet and active lifestyle. 

Total cholesterol (total LDL-C 
and HDL-C) and the APOA5 
gene (rs662799) 
 

We might expect participants in our investigation with the APOA5 SNP rs662799 TT genotype to have a 
typical risk of high total cholesterol levels. They should ensure their levels do not exceed 5.0 
mmol/L. Participants with the genotype CC or TC have an elevated risk of high total cholesterol. 
They should monitor their levels making sure to keep below 5.0 mmol/L and, if necessary, reduce all 
high cholesterol foods and adjust their diet and lifestyle according. Therefore, to control cholesterol 
levels, they should consume low quantities of saturated and trans-fats and increase PUFA, 
exercise, and keep stress low. Keeping LDL-C levels low and HDL-C levels high will reduce the risk 
of CAD and CVD especially, if overweight or obese. 

With the typical variant genotype TT, we might expect fasting 
concentrations of total cholesterol levels to be < 5.0mmol/L and 
Total/HDL ratio < 4.5mmol/L. 

LDL cholesterol (LDL-C) and 
the ABCG8 gene (rs6544713)  
 

We might expect participants in our investigation with the ABCG8 gene variant SNP rs6544713 
genotype CC to have a typical risk of high levels of LDL-C. CC genotype carriers should ensure 
their levels do not exceed 3.4 mmol/L. Participants with the genotype TT or TC have an elevated 
risk of high LDL-C levels and should monitor their levels ensuring levels are kept below 3.4 mmol/L. 
If necessary, they should adjust diet and lifestyle according, especially if overweight or obese, as 
these are the major modifiable risk factors of high LDL-C. 

With the typical variant genotype CC, we might expect fasting 
concentrations of LDL levels to be < 3.4mmol/L. 

HDL cholesterol (HDL-C) and 
the ABCA1 gene (rs1883025)  
 

We might expect participants in our investigation with the ABCA1 gene variant SNP rs1883025 CC 
genotype to have a typical risk of low levels of HDL-C. CC genotype carriers should keep their 
levels > 1.0 mmol/L. Participants with the genotype TT or TC have an elevated risk of low HDL-C 
levels. They should monitor their levels, ensuring they keep them > 1.0 mmol/L, if necessary, 
adjusting diet and lifestyle according, especially if overweight or obese. 

With the typical variant genotype CC, we might expect fasting 
concentrations of HDL levels to be > 1.0 mmol/L. 
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Physiological measure & 
related gene variant 

Analysis of genetic response based on published associations for participants in 
this study 

Analysis of digestive response for participants in this study 

Triglycerides (TG) and the 
ANGPTL3 gene (rs10889353) 
 

We might expect participants in our investigation with the ANGPTL3 gene variant SNP rs10889353 CC 
genotype to have a typical risk of high levels of TG, and they should make sure their levels keep < 
2.0 mmol/L. Participants with the genotype AA or CA have an elevated risk of high TG and should 
monitor their levels, ensuring to keep them > 2.0 mmol/L. If necessary, they should adjust diet and 
lifestyle accordingly, especially if overweight or obese, as these are the major modifiable risk factors 
of high TG. 

With the typical variant genotype CC, we might expect fasting 
concentrations of TG levels to be > 2.0 mmol/L. 

Fat-taste perception and the 
CD36 gene (rs1761667) 
 

We might expect participants in our investigation with the CD36 gene variant SNP rs1761667 AA 
genotype, termed typical tasters of fat, to have a typical ability to taste fat. Participants with the 
genotype GG or GA (supertasters) have an enhanced ability to taste fat (Bajit et al., 2020; Lopez-
Ramos et al., 2005; Melis et al., 2015). 

With the typical variant genotype AA, we might expect their fat-craving 
questionnaire answers to be higher than genotype GG or GA. 
Consequently, genotype AA carriers may be more at risk of being 
overweight or obese (Bajit et al., 2020; Lopez-Ramos et al., 2005; Melis 
et al., 2015). 

Sugar preference and the 
GLUT2 gene (rs5400) 
 

We might expect participants in our investigation with the GLUT2 gene variant SNP rs5400 CC 
genotype to have a typical preference for sugar intake. Participants with the genotype TT or CT 
have an elevated high preference for sugar intake and, if necessary, adjust diet and lifestyle 
according, especially if overweight or obese (Eny et al., 2008; Pénicaud et al., 2002; Routh et al., 
2014). 

With the elevated variant genotype TT or CT, we might expect sugar-
preference questionnaire answers to be higher than for genotype CC. 
Therefore, CT or TT genotype carriers are more at risk of being 
overweight or obese, especially if BMI is 25+ kg/m2 due to higher intake 
of sugary foods (Eny et al., 2008; Pénicaud et al., 2002; Routh et al., 
2014). 

Susceptibility to hunger and 
the NMB gene (rs1051168) 
 

We might expect participants in our investigation with the NMB gene variant SNP rs1051168 GG or GT 
genotype to have a typical susceptibility to hunger. Participants with the genotype TT have a 
psychologically driven elevated susceptibility to hunger. Therefore, adjust diet and lifestyle, 
especially if overweight or obese (Pénicaud et al., 2002; Rashid et al., 2015). 

With the elevated variant genotype TT, we might expect their susceptibility 
to hunger to be higher than genotype GG or GT. Therefore, the TT 
genotype may be more at risk of being overweight or obese due to 
higher appetites, especially if BMI is 25+ kg/m2 (Eny et al., 2008; 
Pénicaud et al., 2002; Routh et al., 2014). 

Fasting glucose and the 
ADCY5 gene (rs11708067) 

We might expect participants in our investigation with the ADCY5 gene variant SNP rs11708067 GG 
genotype to have a typical fasting glucose level. Participants with the genotype GA or AA are more 
likely to have an elevated fasting glucose level. They may have to adjust diet and lifestyle, 
especially if overweight or obese (Dupuis et al., 2010). 

With the elevated variant genotype GA and AA, we might expect their 
fasting glucose level to be higher than the typical variant genotype GG. 
GA or AA genotype may be more at risk of T2DM or being overweight 
or obese, especially if BMI is 25+ kg/m2 due to a higher concentration 
of fasting blood glucose (Dupuis et al., 2010). 

Fasting insulin and the IRS1 
gene (rs2943641) 
 

We might expect participants in our investigation with the IRS1 gene variant SNP rs2943641 TT 
genotype to have a typical risk of high insulin levels. Participants with the genotype CT or CC are 
more likely to have an increased risk of elevated insulin levels. They may have to adjust diet and 
lifestyle, especially if overweight or obese (Almgren et al., 2017). 

With the variant genotype CT or CC, we might expect them to be more at 
risk of high levels of insulin concentrations than the typical variant 
genotype TT. Therefore, CT or CC carriers may be more at risk of 
T2DM, especially if BMI is 25+ kg/m2 (Almgren et al., 2017; Kovacs et 
al., 2003). 

Note. Nutrient reference values for Australia and New Zealand recommended by Australian Government, National Health and Medical Research Council, New Zealand Ministry 

of Health (2006) (see Appendix G). Plasma levels retrieved from Auckland District Health Board (2022). Published risk variants see Appendix A. Analysis of Genetic response 

based on published associations for participants in this study retrieved from Nutrigenomix (2020).
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Chapter 4: Results 

4.1 Participant Characteristics 

The collection of baseline data was conducted before food consumption (Table 4; see 

also Appendix B). 

Table 4 

Participant Characteristics 

Characteristics at baseline Mean (n = 30) Standard deviation 

Anthropometry   

Age (years) 28.0 3.8 

Body weight (kg) 76.6 10.0 

Body height (cm) 176.6 5.8 

BMI (kg/m2) 24.5 2.7 

Systolic pressure (mm Hg) 117.3 11.7 

Diastolic pressure (mm Hg) 75.7 9.0 

Heart rate (bpm) 67.4 10.0 

4.2 Nutritional Evaluation of Meal 

The nutrition composition of participants’ dietary intake the day prior to the clinic 

visit, based on 24-hour dietary recall, is presented in Table 5. The breakfast-meal nutrient 

composition was balanced for energy, carbohydrate, and fibre according to the food 

database analysis. A sample test meal was saved for later nutritional analysis; the nutritional 

composition of the actual meal sample is presented in Tables 6 and 7. 

Table 5 

Nutrient Composition of Participants’ Dietary Intake the Day Prior to the Clinic Visit Based 

on 24-Hour Dietary Recall 

Nutrient Nutrient composition 

Mean (n = 30) Standard deviation 

Energy (kJ) 9,956 3,910 

Protein (g) 117 44 

Total fat (g) 102 73 

Carbohydrates (g) 238 95 

Fibre (g) 24 12 
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Table 6 

Nutritional Value of the Standardised Breakfast Meal Based on the Standardised Recipe 

Nutrient Nutrient value 

Energy (kJ) 3,419 

Protein (g) 61 

Fat (g) 30 

Saturated Fat (g) 12 

Carbohydrates (g) 71 

Fibre (g) 29 

Sodium (mg) 983 

Table 7 

Nutrient Composition per 100 g of the Standardised Breakfast Meal Based on Actual 

Nutrition Composition of the Test Meal 

Nutrient (unit per 100g) Nutrient composition per 100g 

Crude protein (%) 11.2 

Fat (%) 6.7 

Carbohydrates (%) 18.4 

Total dietary fibre (%) 1.1 

Sugars (g)  4.0 

Sodium (g) 0.3 

Iron (mg) < 2.0 

Zinc (mg) 1.4 

Cholesterol (mg) 26.0 

4.3 Digestive Responses Analysed Using Participant Data for Physiological Outcome 

Measures and the Corresponding Genetic-Risk Variant 

The analysis of participants’ data from plasma measures at baseline and physiological 

parameters for vitamin D, iron (iron overload and low iron), zinc, total cholesterol, LDL, 

HDL, triglycerides (TG), glucose and insulin and the corresponding qualitative genetic-risk 

statement was completed (Tables 8, 15 & 16). 
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Table 8 

Combined Participant Data Including Plasma Measures at Baseline, the Physiological 

Parameters and the Corresponding Count Score of the Genetic Variant 

                                                       Total number of participants withb 

Physiological 
marker – 
plasma 
measure 

Mean value 
using n = 
30 plasma 
measures 

Standard 
deviation 

Ref. marker & 
Gene variant 

Mediana value 
using n = 30 

plasma 
measures 

Normal 
respon

se ≤ 
median 

Normal 
respon

se > 
median 

Increased 
response 
≤ median 

Increased 
response 
> median 

Chi-
square 

P value 

Vit D ng/mL 
 

19.70 8.76 Vitamin D 
rs10741657 
rs2282679 

17.26 0 3 15 12 3.333 0.07 

Iron  
µmol/L  

17.22 6.09 Iron overload 
rs17342717 
rs1800562 
rs1799945 

16.73 15 13 0 2 2.143 0.14 

Iron  
µmol/L  

17.22 6.09 Low iron 
rs4820268 
rs7385804 
rs3811647 

16.73 7 10 8 5 1.222 0.27 

Zinc 
mg/L  

  0.10 Zinc  
rs11126936 

0.85 9 8 7 6 0.002 0.96 

Total 
cholesterol 
mmol/L  

4.60 0.73 Total cholesterol 
rs662799 

4.41 9 11 7 3 1.674 0.20 

LDL mmol/L  2.91 0.69 LDL  
rs6544713 

2.84 11 9 4 6 0.600 0.44 

HDL mmol/L 
 

1.47 0.41 HDL  
rs1883025 

1.41 9 7 6 8 0.536 0.46 

TG  
mmol/L  

1.14 0.65 TG  
rs10889353 

1.00 1 0 14 15 1.034 0.31 

LDL mmol/L 
 

2.91 0.69 Sat Fat 
rs5082 

 

2.84 13 15 2 0 2.143 0.14 

Glucose 
mmol/L 
 

4.96 0.41 Glucose 
rs11708067 

5.04 1 2 13 14 0.238 0.63 

Insulin 
µU/mL  

7.72 4.13 Insulin 
rs2943641 

6.89 7 0 8 15 9.130 2.50 x 10-3 

aMedian values were calculated from the participants’ physiological parameters (n = 30) using their baseline/ 

premeal recorded data. Each participant’s physiological measures were categorised as either greater than or less 

than/equal to the median value. 

bThe qualitative genetic risk results were low, typical, elevated, enhanced, or diminished genetic risk. Low or 

typical risk indicates a low or normal response to a genetic variant, elevated, enhanced, or diminished genetic 

risk indicates an increased response to a genetic variant. 

The analysis of participants’ data for postprandial changes in LCPUFA (18:2 n-6, 

18:3 n-6, 18:3 n-3,) concentrations in the CMRF for dietary intake of omega-6 and -3 and the 

corresponding qualitative genetic-risk statement was completed (Tables 9 & 17). 
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Table 9 

Combined Participant Data From Postprandial Changes in Long-Chain Polyunsaturated 

Fatty Acid (LCPUFA) Concentrations in the Chylomicron-Rich Fraction of Omega-6 and -3 

and the Corresponding Qualitative Genetic Risk 

                                                                        Number of participants withc 

Physiologica
l marker -
plasma 
measure 
AUCa & ref. 
marker 

Mean 
using n = 

30 
plasma 

measure
s 

Standard 
deviatio

n 

Ref. 
marker 
& gene 
variant 

Medianb 
using n = 

30 
plasma 

measure
s 

Normal 
respons

e ≤ 
median 

Normal 
respons

e > 
median 

Increase
d 

response 
≤ median 

Increase
d 

response 
> median 

Chi- 
squar

e 

P 
valu

e 

LCPUFA 
C18:2n-6  

222.09 125.18 Omega
-6 & -3 

rs 
174547 

184.10 7 8 8 7 0.133 0.72 

LCPUFA 
C18:3n-6  

2.41 2.22 Omega
-6 & -3 

rs 
174547 

1.72 6 9 8 7 0.536 0.46 

LCPUFA 
C18:3n-3  

12.78 7.74 Omega
-6 & -3 

rs 
174547 

9.59 7 8 8 7 0.133 0.72 

aAUC, area under the curve. 

bMedian values were calculated from the participants’ physiological parameters (n = 30) using AUC data. The 

median AUC values were calculated using all-times recorded data (t-pre, t60, t120, t180, t240) of each 

participant’s physiological measure, then categorised as either greater than or equal to/less than the median 

baseline values before performing chi-square.  

cThe qualitative genetic risk results were low, typical, elevated, enhanced, or diminished genetic risk. Low or 

typical risk indicates a low or normal response to a genetic variant, elevated, enhanced, or diminished genetic 

risk indicates an increased response to a genetic variant. 

Participants’ BMI was used to assess physiological parameters related to body 

composition and energy balance and the corresponding qualitative genetic-risk statement 

(Tables 10 & 18). 

Table 10 

Participants’ BMI Measures to Assess Physiological Parameters and the Corresponding 

Qualitative Genetic Risk 

                                                       Number of participants withc 

BMIa 
kg/m2 

Mean 
(n=30) 

Standard 
deviation 

Ref.marker & 
Gene variant 

Healthy BMIb 
(maximum) 

Normal 
response ≤ 

25 

Normal 
response 

> 25 

Increased 
response ≤ 

25 

Increased 
response 

> 25 

Chi- 
square 

P value 

BMI 24.5 2.69 Energy 
balance 
rs1800592 

24.9 3 17 6 4 6.429 1.12 x 
10-2 

BMI 24.5 2.69 Protein 
rs9939609 

24.9 16 5 8 1 0.635 0.43 

BMI 24.5 2.69 Total Fat 
rs7903146 

24.9 19 10 1 0 0.517 0.47 

BMI 24.5 2.69 Saturated & 
unsaturated 
fat rs9939609 

24.9 9 9 5 7 0.201 0.65 

BMI 24.5 2.69 Mono-
unsaturated 
fat rs1801282 

24.9 16 10 1 3 1.885 0.17 

aBMI Categories (kg/m2): Underweight < 18.5, Healthy/Normal 18.5–24.9, Overweight 25–29.9, Obese > 30 

(National Heart Foundation of New Zealand, 2022). 
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bBMI healthy maximum value of 25 kg/m2 was used to categorise the participants’ (n = 30) BMI measures as 

either greater than 25 kg/m2 or equal to/less than 25 kg/m2, before performing chi-square. 

cThe qualitative genetic risk results were low, typical, elevated, enhanced, or diminished genetic risk. Low or 

typical risk indicates a low or normal response to a genetic variant, elevated, enhanced, or diminished genetic 

risk indicates an increased response to a genetic variant. 

Participants’ postprandial changes in an online visual analogue 100-point scale was 

used to assess fat-taste perception, sugar preference and hunger (using hunger, satisfaction, 

fullness, desire to consume sweet, or fatty-food appetite scores) and the corresponding 

qualitative genetic-risk statement (Tables 11 & 19). 

Table 11 

Participants’ Postprandial Changes in Online Analogue Measures and the Corresponding 

Qualitative Genetic Risk 

                                        Number of participants withc 

Appetite 
scores 
AUCa 

Mean 
(n=30) 

Standard 
deviation 

Ref. marker 
& Gene 
variant 

Medianb Normal 
response 
≤ median 

Normal 
response 
> median 

Increased 
response 
≤ median 

Increased 
response 
> median 

Chi-
square 

P 
value 

Fat 
craving 

134.92 92.68 Fat-taste 
perception 
rs1761667 

117.40 3 1 11 15 1.489 0.22 

Sugar 
craving 

116.49 104.07 Sugar 
preference 
rs5400 

76.88 14 10 1 5 3.333 6.79 x 
10-2 

Hunger 191.26 94.03 Hunger 

rs1051168 

184.15 12 15 1 2 0.136 0.71 

aAUC, area under the curve. 

bMedian values were calculated from the participants’ online analogue 100-point scale measures (n = 30) using 

AUC data. The median AUC values were calculated using all-times recorded data (t-pre, t0, t30, t60, t120, t180, 

t240) of each participant’s online analogue 100-point scale measures. Then categorised as either greater than or 

equal to/less than the median values before performing chi-square. 

cThe qualitative genetic risk results were low, typical, elevated, enhanced, or diminished genetic risk. Low or 

typical risk indicates a low or normal response to a genetic variant, elevated, enhanced, or diminished genetic 

risk indicates an increased response to a genetic variant. 

Recorded gastrointestinal symptoms experienced by participants during each time 

point of the study and over the entire study duration were collated (Table 12 & 13). 

Gastrointestinal symptoms could have affected the participants’ appetite scores. 
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Table 12 

Recorded Headache and Gastrointestinal Symptoms of Postprandial Meal Response in all 

Participants (n = 30) at Each Time Point 

Time 
point 

Headache Bloating Wind Abdominal 
Pain 

Nausea Fatigue Rumbling Belching Indigestion Diarrhoea Constipation 

t-pre 1 2 4 1 2 10 5 0 0 0 0 

t0 2 6 2 1 2 6 0 8 1 0 0 

t30 4 8 8 2 3 7 5 8 2 0 0 

t60 2 5 8 2 3 7 5 7 2 0 0 

t120 4 3 8 2 1 9 4 6 1 0 1 

t180 4 3 5 2 2 11 2 2 2 1 2 

t240 4 5 6 3 2 10 3 2 1 1 2 

Mean (n 
= 30) 

3.0 4.6 5.9 1.9 2.1 8.6 3.4 4.7 1.3 0.3 0.7 

Standard 
Deviation  

1.3 2.1 2.3 0.7 0.7 1.9 1.9 3.3 0.8 0.5 1.0 

Table 13 

Recorded Headache and Gastrointestinal Symptoms of the Postprandial Meal Response in all 

Participants (n = 30) Over the Study Duration 

Participant Headache Bloating Wind Abdominal 
Pain 

Nausea Fatigue Rumbling Belching Indigestion Diarrhoea Constipation 

1 
     

x 
     

2 x 
    

x 
     

3 
 

x 
  

x x x x 
   

4 
           

5 x 
    

x x x 
   

6 x 
 

x 
  

x 
     

7 
 

x x x 
 

x x x 
   

8 x x x x x x x x x x x 

9 x x x x x x x x x 
 

x 

10 
  

x 
   

x 
    

11 
           

12 
           

13 x 
    

x x 
    

14 
 

x x 
  

x x x 
   

15 
           

16 
  

x 
        

17 
           

18 
    

x 
      

19 
       

x x 
  

20 
 

x x 
   

x x x 
  

21 
  

x 
  

x x x 
   

22 x x x 
  

x 
     

23 
           

24 
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Participant Headache Bloating Wind Abdominal 
Pain 

Nausea Fatigue Rumbling Belching Indigestion Diarrhoea Constipation 

25 
           

26 
 

x 
   

x 
 

x 
   

27 
     

x 
     

28 
 

x 
     

x 
   

29 
           

30 
 

x x 
  

x 
   

x 
 

4.4 Results for Physiological-Outcome Measures and the Corresponding Genetic 

Variants (SNP) 

There was a positive association (P < 0.05) between the insulin-signalling IRS1 gene 

variant rs2943641, the typical risk (TT) compared to the increased risk (CT or CC), in 

relation to postprandial insulin levels, χ² = (1, N = 30) = 9.130, P = 0.0025, 95% CI [1.61, 

4.93] (Figure 1, Table 8). 

Figure 1 

The Insulin-Signalling IRS1 Gene Variant SNP rs2943641 

 

Note. The results compared participants with insulin levels ≤ median value of 6.89 µU/mL with insulin levels > 

median value (> 6.89 µU/mL) alongside their typical or increased risk. 

The UCP1 gene variant -3826 rs1800592, the typical risk (AA) compared to the 

increased risk (GG or GA), was positively associated (P = < 0.05) with participants’ BMI, 

χ²= (1, N = 30) = 6.429, P = 0.011, 95% CI [0.081, 0.757] (Figure 2, Table 10).  
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Figure 2 

The Energy-Balance UCP1 Gene Variant -3826 SNP rs1800592 

 

Note. The results compared participants with BMI of < 25 kg/m2 with BMI > 25 kg/m2 alongside their typical or 

increased risk. 

The “sugar preference” GLUT2 gene variant rs5400 was insignificant towards a 

difference between the typical risk (CC) compared to the increased risk (CT or TT) in 

relation to an elevated preference for sugar intake, χ² = (1, N = 30) = 3.333, P = 0.07, 95% CI 

[0.94, 19.81] (Table 11; Appendix H). However, only six participants had genotype CT or 

TT, indicating an elevated sugar preference. Therefore, a larger sample size may reveal 

differences as significant. 

The remaining measures (vitamin D, iron, zinc, omega-6 and -3, protein, total fat, 

saturated, unsaturated and monounsaturated fat, cholesterol, LDL, HDL, triglycerides, fat 

taste, hunger and glucose) did not appear to associate with the genetic variants. 

4.5 Variation in Data  

Participants with values greater than the physiological-parameter median values did 

not necessarily associate with an increased genetic risk. However, there was a higher chance 

of an increased genetic risk if participants had a median value greater than the physiological-

parameter value for: vitamin D levels (n = 15); TG levels (n = 15); glucose levels (n = 14); 

insulin levels (n = 15) and fat-taste perception (n = 15) (Table 14).  
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Table 14 

Variation in Data 

Physiological measure Number of participants (n = 30) 
with physiological parameter < 

median 

Number of participants (n = 30) 
with typical genetic risk and 

physiological parameter  
> median 

Number of participants (n = 
30) with increased risk and 

physiological parameter 
 > median 

Vit D 15 0 15 
Iron overload 15 13 2 
Low iron 15 10 5 
Zinc 16 8 6 
Total cholesterol 16 11 3 
LDL 15 9 6 
HDL 15 7 8 
TG 15 0 15 
LDL (For Sat Fat SNP APOA2) 15 15 0 
Glucose 14 2 14 
Insulin 15 0 15 
LCPUFA C18:2n-6 15 8 7 
LCPUFA C18:3n-6 14 9 7 
LCPUFA C18:3n-3 15 8 7 
Energy balance 9 17 4 
Protein 24 5 1 
Total Fat 20 10 0 
Saturated & unsaturated fat 14 9 7 
Monounsaturated fat 17 10 3 
Fat-taste perception 14 1 15 
Sugar preference 15 10 5 
Hunger 13 15 2 

Note. The table gives a generalised account of whether there is a relationship between an increased genetic risk 

and having a physiological-parameter measure higher than the median score calculated in Tables 8, 9, 10 and 

11.  
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Chapter 5: Discussion 

5.1 Major Findings 

The study examined an individual’s unique genetic background and considered the 

association with related physiological outcomes following a meal. This study is a step 

towards understanding the consequences of the long-term repeated consumption of a mixed 

meal during the postprandial state. Previous postmeal investigations have focused on the 

nutrient composition of a meal, single dietary nutrient-related genetic markers, and 

individual disease-risk factors. The literature reports associations between particular SNPs 

and a change in the physiological outcome, but many of these studies need further 

investigation and validation. Therefore, determining if genetic variation influences 

postprandial digestive responses by conducting research that maintains rigorous protocols 

on large populations will help confirm other associations. 

The finding of this study was a positive association (P < 0.05) between the insulin-

signalling IRS1 gene variant rs2943641 and postprandial insulin levels and the UCP1 gene 

variant -3826 rs1800592, was positively associated (P = < 0.05) with participants’ BMI 

(Figures 1 & 2; Appendix H). 

This investigation found that there was a positive association between the insulin-

signalling IRS1 gene variant rs2943641, the typical risk (TT) compared to the increased risk 

(CT or CC), in relation to postprandial insulin levels (P = 0.0025). In the literature review, 

Almgren et al.’s (2017) population-based cohort study used 3,344 Swedish participants born 

between 1923 and 1950 and 4,905 Finnish participants. This study found a link between 

nondiabetic participants and fasting insulin levels. The IRS1 gene variant rs2943641 showed 

a significant association (P = 2.4 x 10-7) with postprandial insulin levels. The results of a 

RCT performed on 376 participants who had T2DM, and 380 healthy control participants, 

all from Saudi Arabia, concluded there was a positive relationship between subjects with 

T2DM and the IRS1 gene variant rs2943641 (OR = 1.482, 95% CI [1.176, 1.867], P = 

0.001) (Alharbi et al., 2014). Therefore, based on Almgren et al. (2017) and Alharbi et al.’s 

(2014) published association and this study’s findings on 30 young males (20–34 years) (P 

= 0.0025, 95% CI [1.61, 4.93]), the evidence suggests a positive relationship between the 

IRS1 gene variant rs2943641 and elevated insulin response. At-risk participants may have to 

adjust their diet and lifestyle, especially if they are overweight or obese (Almgren et al., 

2017). Other factors, such as the diet and lifestyle of the participants (10 of the participants 
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in this study were overweight), could be responsible for the cause-and-effect relationship 

and may not be solely due to the rs2943641 SNP. The frequency of the high-risk C allele in 

the global population is 0.66. This frequency may account for participants with the risk-

variant genotype CT and CC in this study, and is a similar frequency to the literature 

(gnomAD, n.d.). 

The energy-balance UCP1 gene variant -3826 rs1800592 studied by Nagai et al. 

(2011) using 82 Japanese females aged 20–22 years from the same university campus in 

Japan were genotyped for the UCP1 gene polymorphism -3826 GA (rs1800592). The study 

explored the UCP1 gene variant rs1800592 linked to REE affecting energy balance (intake, 

expenditure and storage). The conclusion was that carriers of genotype GG and GA had 

lower rates of REE, and their energy needs were lower than the A allele carriers. This 

evidence suggests a positive relationship between the UCP1 gene variant polymorphism  

-3826 GA (rs1800592) and GG and GA genotype carriers, suggesting that the high-risk allele 

carriers may be at risk of excess body weight or a higher BMI. The literature reports that the 

UCP1 gene variant rs1800592 is involved in the oxidation of fatty acids and increases energy 

expenditure (used to assess energy balance; intake, expenditure and storage). BMI is the 

physiological measure linked to the UCP1 gene variant in this thesis. Despite the crude fit 

using BMI, this study reported a positive association. Ten participants in this investigation 

are carriers of the UCP1 gene variant -3826 GG or GA (rs1800592), and of these, four had a 

BMI greater than 25 kg/m2. The genotype GG and GA participants could have a lower REE 

and a lower energy need than the AA genotype carriers (P = 0.011, 95% CI [0.081, 0.757]. 

Therefore, participants with GG or GA genotype may need to reduce their intake of calories 

if their BMI is greater than 25 kg/m2 whilst increasing their energy expenditure (Brondani et 

al., 2012; Nagai et al., 2011; Pfannenberg et al., 2010). Further investigation is required with 

higher power using larger cohorts and a wider range of participants. The frequency of the 

high-risk allele in the population is unknown. 

For the sugar-preference GLUT2 gene variant rs5400, this study found the results 

nonsignificant (P = 0.2). Only six participants had genotype CT or TT, indicating an 

elevated sugar preference. However, a larger sample size may reveal differences as 

significant. The published study identified that individuals with the GLUT2 gene variant 

rs5400 genotype CT or TT had a higher consumption of sugar over 1 month analysed from a 

FFQ (131 ± 5 vs 115 ± 3 g/day, P = 0.007) compared to genotype CC. However, FFQs can 

be unreliable (Routh et al., 2014). The study concluded that GLUT2 has been associated 

with increased sugar consumption and could account for sugar craving in specific 
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individuals (Eny et al., 2008). The regulation of glucose intake needs further investigation as 

elevated sugar craving has links to other factors, including mood, environment, culture, 

lifestyle, and pleasure-generated response (Routh et al., 2014). 

The remaining psychological measures examined did not appear to associate with the 

genetic-risk variants despite scientific literature indicating associations between the other 

genetic-risk variants studied and outcomes. 

5.2 Limitations and Future Studies 

The strength of the association between the physiological parameters and the genetic 

variant is reliant on the GWA studies researched in the literature. These studies have shown a 

positively associated region of the genome where genetic variants located in genes have 

disease-causing effects. However, the studies varied in allele frequency, effect size, and the 

population they studied and only contributed to the increased likelihood of disease risk. This 

thesis has only focused on one SNP, not a region, associated with a physiological measure 

linked to the causal effect of a disease or health condition. Therefore, one major limitation is 

that perhaps there was a mismatch or crude match of some of the physiological measures to 

the genetic variant, which would account for the lack of association. For example, hunger 

was associated with the NMB gene; a better association might have been between hunger and 

the FTO gene variant rs9939609, linked to postprandial hunger responses (den Hoed et al., 

2009). Diseases are complex, and some of the associated SNPs are linked with other risk 

variants (linkage disequilibrium) and dependent on factors such as lifestyle and environment. 

However, this research and other studies can help with the understanding and maybe the early 

detection of diseases and prevention and treatment intervention (Tam et al., 2019). 

It is unclear whether performing the bivariate chi-square analysis was the correct 

analysis to test the associations or whether regression analysis would have been more 

appropriate. Chi-square for independence analysis seemed the most appropriate test to 

perform on the two categorical variables. The outcome was a description of the strength of 

the association, which was the intention. If this study used regression analysis, this would 

have predicted the likelihood of the outcome, which would not have indicated the strength of 

association of the two variables. It is questionable whether regression analysis would have 

improved the positive associations but could be a future improvement to this study. 

This study was not powered because it had a relatively small sample size and involved 

a complex genetic assessment. However, this research will provide information to make 

predictions for developing hypotheses for future testing. If this experiment was performed 
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again, it would need to carry out a power analysis calculation and maintain a large-enough 

sample size throughout the trial to enable sufficient statistical power to maximise effect size 

(Hansen & Collins, 1994).  

Pretest conditions can influence food study measurements; thus, standardising the 

requirements before the study is essential. These include standardising the premeals eaten 2 

days before the study, controlling the amount of physical exercise performed before the 

study, the time of day the analysis is performed and rejecting participants with BMI kg/m2 

over 25 as they could have metabolic disorders (Lairon et al., 2007). 

When measuring appetite responses, this study only used an online visual analogue 

100-point scale, a subjective scale for appetite. It might have been more relevant to include 

objective measures of appetite in terms of appetite-related hormones (Thom et al., 2020). 

Only gene variants were measured, not gene expression, which would have quantified 

the amount of a specific gene expressed within a cell. Variation of gene expression could 

affect tissues and consequently cause pathological phenotypes (Ackermann et al., 2013). 

The physiological outcome measures did not necessarily reflect the kinetics and 

bioavailability of the dietary component and warrant caution when making an inference to 

digestion and absorption. The outcome measures can only be reported as the availability is 

higher or lower after consuming the standardised breakfast meal.  

Other confounding factors could have influenced the results, e.g., BMI or eating 

patterns of participants; therefore, caution must be taken when concluding a causal inference 

between physiological outcome and genetic variant. But more research and evidence will 

confirm any causal inference. 

Multinational RCTs focused on gene–nutrient interaction and postprandial digestive 

response must continue, ensuring enough statistical power so the results can be clinically 

significant. Therefore, conducting more extensive studies must continue with the aid of grant 

support as RCT postprandial research is costly and time consuming (Lairon et al., 2007). 

5.3 Clinical Significance 

The clinical significance of this trial could help clinicians, dietitians and nutritionists 

currently using genetic-test results to tailor nutrition advice. However, all registered 

practitioners need to be mindful of the strength of the relationships between SNPs and the 

physiological parameters. 
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5.4 Overview 

Nutrigenomics is helping explain the gene–nutrient interaction to maintain health and 

reduce disease through early detection intervention plans. By using GWA studies and 

identifying the risk-gene variants, the challenge now is interpreting results and implementing 

correct dietary recommendations. However, advancement has been slow due to insufficient 

evidence and low replication of studies (Corella et al., 2009). 

Biotechnology companies analysing an individual’s SNPs could help with dietary 

intervention to improve the health and well-being of individuals (M. N. Mead, 2007). But the 

interpretation of research data can prove onerous and expensive, and is accompanied by the 

ethical constraints of handling, management, storage, and data privacy. Therefore, more 

cooperation and sharing of findings amongst nutrigenomic research groups from several 

disciplines, including medicine, molecular biology, nutrition and diet, genomics and 

bioinformatics, needs to be established worldwide to reduce the workload. This sharing will 

be invaluable for the findings accumulated on different ethnic and population groups by using 

their nutritional and genetic variation data (Sterling, 2008). 

This study used a direct-to-practitioner biotechnology company Nutrigenomix (2020), 

to conduct the genetic-test analysis due to their secure data transfer, privacy, and security 

procedures when handling customers’ DNA samples. Nutrigenomix provides buccal swab 

kits for collecting samples for registered practitioners and analyses variations in 70 genes 

related to nutrient metabolism, eating habits, and food intolerances. Once analysed, a 

customised nutrition and lifestyle report becomes available to identify any genetic-risk 

variants. The reports can only be interpreted by a healthcare professional, ensuring the patient 

understands and can utilise the information in their best interest.  

Therefore, the increasing belief that nutrigenomics will be the “elixir” for health by 

introducing or reducing certain foods in one’s diet based on a person’s genotype is 

undoubtedly growing. Individualised personalised diets are “trendy,” and growth is 

exponential in the biotechnology industries such as Illumina. These companies can easily 

report on health problems and risk of disease based on an individual’s genotype. But caution 

is needed as not all biotechnology companies specifically detail their confidentiality 

procedures. Testing standards vary between companies meaning good judgement must be 

applied when interpreting results. Results from home-test kits could be of no value or harmful 

to an individual’s health. Therefore, interpreting results should require a nutrition expert who 

can explain them safely to the client (Sterling, 2008). 
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People have unique characteristics such as gender, age, ethnicity, physical activity, 

microbiome, dietary intake, metabolism, and genetic genome. Foods and supplements are 

highly diverse structures and have complex biological properties. Estimating the total 

bioavailability of foods or supplements or knowing their exact action mechanism in each 

individual is impossible (Manach & Donovan, 2004). Therefore, assessing the bioavailability 

of food in a person’s body differs depending on a person’s characteristics and genetic 

variation (Manach & Donovan, 2004). This makes the field of nutrigenomics intricate and 

complicated where the investigation of dietary metabolism is concerned and, ultimately, it 

faces several challenges. Challenges for the future include discovering how nutrients affect 

the early stages of a disease or health condition and how dietary intake affects an individual’s 

unique microbiome. Thus, more epidemiological research is needed to answer these questions 

(Pressman et al., 2017). 

Gene–nutrient interaction is currently a new field of food studies research 

encompassing precision nutrition. Therefore, it is important to carry out more population 

nutrient-based studies depending on genotypes. However, the problem with food studies that 

use questionnaires is that they are prone to memory mistakes, making them inaccurate 

accounts that may not reflect typical dietary intake (da Rocha et al., 2014). 

Several nutrigenomic epidemiological studies have demonstrated an association or 

statistical relationship between dietary nutrition, SNP genotyping and health (den Hoed, 

2008; den Hoed et al., 2009; Ellis et al., 2021; Grimm & Steinle, 2011). Many studies have 

demonstrated a robust statistical relationship, but this does not establish cause and effect and 

only suggests causality. There is a need to know more about digestive metabolism and 

responses to foods consumed by individuals, and this is what this thesis examined (Pressman 

et al., 2017). 

5.5 Conclusion 

The results of this study provide evidence to suggest a positive association for the 

insulin-signalling IRS1 gene variant rs2943641, the typical risk (TT) compared to the 

increased risk (CT or CC) in relation to postprandial insulin levels. The UCP1 gene variant -

3826 rs1800592, the typical risk (AA) compared to the increased risk (GG or GA), was 

positively associated (P = < 0.05) with the participants’ BMI. This study did not confirm 

statistically significant results of the other psychological measures despite scientific literature 

indicating associations exist between the risk variants and physiological outcomes. However, 

as a pilot study, the statistical power is insufficient to determine the strength of the 
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relationship between all the outcomes measures and the related SNP during the postprandial 

digestive response to a standardised breakfast meal. This limitation is due to the limited 

sample size and the complexity of the genetic assessment. However, it is a secondary 

outcome, and this study will provide information to help make predictions for developing 

hypotheses for future testing. This study has highlighted many known associations between a 

particular SNP and a change in a physiological outcome, whilst providing information on 

how a genetic-risk variant could increase health risks and implement treatment or behaviour 

modification proposals. In the future, there is a need for more nutrigenomic research to 

establish the robustness and positive associations between genetic variants and related 

psychological outcomes. Whether the science of nutrigenomics is the key to producing the 

“perfect diet,” the efficacy and utility of nutrient-related genetic markers are still under 

investigation. 
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Appendices 

Appendix A: Main Studies Used in the Literature Review Examining the Association 

Between the Gene and Risk Variant, Outcomes and Limitations.  

Study details Sample(n) 
& design 

Gene & 
variant and 
risk ref 
marker  

Risk variant 
genotype 

Measurement 
objectives 

Outcome 

Vitamin D 
Slater et al., 
2017 – USA 
cross-
sectional study 
on low vit D 
and associated 
gene variants: 
VDR 
(rs2228570), 
CYP2R1 
(rs10741657), 
DHCR7 
(rs12785878), 
and GC 
(rs2282679)  

180 (n) 
mainly 
Caucasian  
98 men 
and 82 
women 
with 
varying 
ages 
between 
21 and 80  

1. CYP2R1 
gene 
GG/GA  
rs10741657 
2. GC gene 
GG  
rs2282679 

MAF rs10741657 (OR 
3.67; 95% CI: 1.35, 
9.99)  
P= 0.011 
rs2282679  
(OR 0.42; 95% CI: 
0.18, 0.93)  
P = 0.037 

Binary logistic 
regression analysis 
was used to evaluate 
whether the variants 
and other potentially 
confounding factors 
were associated with 
the patient’s Vit D 
status. Adjusted 
confounding factors 
included age, gender, 
height, weight, BMI, 
eGFR, disease states, 
concomitant 
medications, and vit D 
supplements. 

For comparison, 
subjects were 
separated into two 
groups based on their 
Vit D level obtained at 
the time of enrollment 
and defined as either 
sufficient, total 
25(OH)D ≤ 30 ng/mL, 
or insufficient, 
25(OH)D < 30 ng/mL. 
Two genes, CYP2R1 
(rs10741657) and GC 
(rs2282679), 
demonstrated a 
significant association 
related to vitamin D 
status. Subjects with 
one or more variant 
alleles at rs10741657 
loci were almost 3.7 
times more likely to 
have low Vit D. 
Subjects with one or 
more variant alleles at 
rs2282679 loci were 
0.42 times as likely to 
have low Vit D. This 
study found a 
significant association 
with low Vit D for 
patients with variant 
alleles on genes 
CYP2R1 (rs10741657) 
and GC (rs2282679). 
Limitations: There 
were several 
potentially confounding 
variables as Vit D 
levels are dependent 
on biological non-
gentic factors and 
environmental 
condition. 

Vitamin D 
Wang et al., 
2010 
GWAS,15 
cohorts from 
SUNLIGHT 
Consortium 
inc. Europe, 
Canada & USA 
to identify 
genetic variant 
that influence 
vit D 

33,996 (n) 
European 
descent. 
COHORTS 
= 5 
discovery 
(n=16,125)
,  
5 in-silico 
replication 
(n = 9,367)  
& 5 de-
novo 
replication  
(n = 8,504) 

1. CYP2R1  
GG/GA  
rs10741657  
2. GC  
GG  
rs2282679 

4p12-P = 2·9×10-109 
overall for rs2282679 
near GC 
11q12-P = 2·1×10-27 
for rs12785878, near 
DHCR7 
11p15-P = 3·3×10-20 
for rs10741657, near 
CYP2R1 

25(OH)D conc. was 
measured and 
adjusted p values for 
effects of mild 
population 
stratification and to 
prevent inflation of 
type I error. Combined 
results of GWAS 
across cohorts using 
Z-score-weighted 
meta-analysis. P value 
of < 5 × 10-8 
statistically significant. 

Three of the variant 
alleles in GC 
(rs2282679), DHCR7 
(rs12785878), and 
CYP2R1 (rs10741657) 
SNPs at three loci 
were SS to 25(OH)D 
concentration and 
explain 1-4% variation 
in 25(OH)D. The 
findings showed that 
all SNPs were 
associated with Vit D 
levels and linked to 
deficiency. Subjects 
with multiple variant 
alleles in the highest 
quartile were at a 
greater risk of 
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deficiency. Vit D 
deficiency was defined 
as < 75 nmol/L (OR 
2·47, 95% CI 2·20, 
2·78, P = 2·3×10–⁴⁸) or 
< 50 nmol/L (1·92, 
1·70, 2·16, P = 
1·0×10– ²⁶) in highest 
quartile than the lowest 
quartile. Risk of severe 
Vit D deficiency (25-
OH D < 20 nmol/L), 
with an adjusted OR in 
the top quartile of 1.43 
(95% CI, 1.13, 1.79; P 
= 0.02) compared to 
the lower quantile. The 
presence of risk alleles 
at the three loci more 
than doubled the odds 
of Vit D 
insufficiency. Limitatio
ns: There were 
several potentially 
confounding variables 
as Vit D levels are 
dependent on skin 
complexions, sunlight 
exposure, obesity 
suggesting the genetic 
variant may not be the 
only causal effect of 
low Vit D .  

Iron overload 
Allen et al., 
2008, 12 yrs 
Melbourne 
Collaborative 
Cohort Study 
Assessed for 
mutation HFE 
gene.  

31,192 (n) 
27–75 yrs 
(99% 40-
69) 
European 
descent. 
Stratified 
random 
sampling 
1,438(n) & 
203(n)  
C282Y 
Homozygo
us (19 
died)  

C282Y  
AA 
rs1800562 
see Low Fe 
for: 
research 
on 
SLC17A1 
rs17342717 
(iron 
overload) 
HFE 
AA 
rs1800562 
& 
rs1799945 
(iron 
overload) 

Subjects with C282Y 
AA homozygous gene 
– 21 men had iron 
overload 28.4% (95% 
CI, 18.8, 40.2) & 1 
female had iron 
overload 1.2% (95% 
CI, 0.03, 6.5)  

Genotype groups 
compared by analysis 
of variance for 
continuous measures, 
serum ferritin analysed 
on natural log. scale, 
or by chi-square test 
for proportions. The 
hazard ratio (HR) for 
death from any cause 
among C282Y 
homozygotes, as 
compared with 
subjects who had no 
C282Y mutation, was 
1.04 (95% CI, 0.67, 
1.62; P = 0.87). 

Genotyping of 29,676 
of 31,192 samples 
(95.1%) was 
successful. The 
stratified random 
sampling of 1,438 
included 203, C282Y 
homozygous carriers. 
Of the 74 men who 
completed the study 
and were C282Y 
homozygotes, 21 had 
iron overload related 
diseases. Of the 
women, 84 completed 
the study, and one had 
an iron overload. 
Therefore, 
homozygous C282Y 
carriers, especially 
men with serum ferritin 
levels of ≥ 1000 μg/L, 
are at greater risk of 
disease caused by the 
HFE gene. 
Limitations: 95% CI 
range in both males 
(18.8, 40.2) and 
females were too wide 
(0.03, 6.5) to give 
meaningful results. 
The study has high 
atrition rate and low 
power due to the small 
number of subjects 
with AA genotype who 
competed the study.  

Low Fe  
Pichler et al., 
2011 meta-
analysis of two 
(GWAS) 

5 
population-
based 
studies 
using 

1. 
TMPRSS6  
GG/GA  
rs4820268,  
2. TRF2  

GG genotype 
compared to the AA 
associated with a 
decrease in iron (P = 
1.3 x 10-9) and an inc. 

SNPs based on 
estimated power to 
replicate 
Fe, association TFR2 
rs7385804, (P = 

This meta-analysis 
GWAS 5 population-
based studies identify 
gene loci associated 
with variation in serum 
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European & 
USA, 
replicated top 
variants in 3 
cohorts 

European 
and USA 
GWAS 

CC  
rs7385804,  
A/C allele  
3. TF  
AA 
rs3811647 
4. SLC17A1 
rs17342717 
(iron 
overload) 
5. HFE 
AA 
rs1800562 
& 
rs1799945 
(iron 
overload) 

in transferrin (P = 
0.007) sTfR (P = 
1x10-4) and sTfR-
ferritin index (P 
+0.005). 

5.0×10-4) confirmed 
previous association in 
TMPRSS6 rs4820268, 
(P = 5.5×10-7) 
and HFE rs1799945, 
(P = 0.00). Direction 
and magnitude of 
effect sizes confirmed 
in all studies. 
Ferritin, association 
SLC17A1 rs17342717, 
(P = 8.0×10-6) and this 
signal likely reflects 
association with HFE. 
In fact, SLC17A1 
rs17342717 correlates 
with the HFE 
rs1800562, associated 
with HH. 
Transferrin, 
association of TS 
rs3811647 (P = 
1.2×10-10). 

levels of iron markers. 
Including iron, 
transferrin, ferritin, 
soluble transferrin 
receptor (sTfR) and 
sTfR–ferritin index. 
The study used the 
subject’s human liver 
samples data and 
analyses of hepcidin 
levels to find common 
variants in the 
TMPRSS6 gene. 
Forest plots estimated 
the genetic effects and 
were highly consistent 
across studies, with 
low I2 values (% of the 
observed 
heterogeneity in 
excess of what can be 
explained by chance 
alone) of 8 and 0%, 
respectively. TFR2, 
TMPRSS6 and HFE 
were all shown to be 
involved in hepcidin 
regulation in iron. The 
TMPRSS6 SNP 
rs4820268 showed the 
strongest association 
with Fe levels (effect 
size for each copy of G 
allele from the 
combined analysis: 
24.2 ug/ dl; 95% CI: -
5.5, -3.0). Limitations: 
To prove results study 
needs a large sample 
to improve overall 
power. 

Zinc 
da Rocha et 
al., 2014, 
cross-
sectional 
GWAS Brazil 
study 

56 women 
and 14 
men 
64.86 ± 
8.75 years 

SLC30A3 
CC 
rs11126936 

Results showed that 
the serum zinc levels 
in patients with the CC 
genotype of the 
rs11126936 
polymorphism was 
lower than non-CC 
carriers.  

Serum zinc measured 
by flame atomic 
absorption 
spectrophotometry, ref 
values 0.70 to 1.50 
mg/L. Age and sex 
adjustments made. 
Correlation between 
age and serum zinc 
was estimated by 
Pearson correlation 
coefficient. 

The study found age 
was negatively 
correlated with serum 
zinc levels (r = 
−0.25, P = 0.008). In 
addition, 29 subjects in 
the sample (26.4%) 
had a serum zinc level 
below the reference 
value. 
The SLC30A3 SNP 
rs11126936, after 
adjusting for age and 
sex, serum zinc mg/L 
were lower in the CC 
genotype (0.74 ± 0.30) 
than in the A carriers 
(0.89 ± 0.28, P 
= 0.014). When the 
subjects were grouped 
according to low or 
normal/high zinc 
levels, the low zinc 
levels (34.5%) were 
observed more 
frequently in the CC 
genotype carriers than 
the A allele carriers 
(18.2%, P = 0.024). 
Limitations: Small 
sample size, low 
power, no food-
frequency 
questionnaire, diet 
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recall, or 
anthropometric data. 
Therefore, this study 
needs to be read with 
caution.  

Omegas-6 
PUFA & 3 
PUFA 
Lu, Feskens, 
Dollé et al., 
2010 
Doetinchem 
(GWAS) 
Cohort study, 
Netherlands 

3575 (n), 
48% men. 
Mean age 
46.7 yrs 

FADS1  
CC/CT  
rs174547 

Total cholesterol 
differed significantly 
with the rs174546 
(complete linkage with 
the rs174547 variant) 
in genotype CC (P = 
0.02). C allele was 
associated with a 
statistically significant 
lower HDL-cholesterol 
concentrations in 
subjects with a high 
n−6 PUFA intake (P = 
0.004)  

The relations between 
variants and plasma 
total, HDL-, and non-
HDL cholesterol were 
explored with General 
Linear Models and 
adjusted for potential 
confounding effects.  

Three variants were 
measured in the 
FADS1 gene variant 
and analysed n-6 & n-
3 PUFA intake on 
plasma cholesterol. 
Subjects with high n-3 
PUFA intakes had 
significantly higher 
HDL cholesterol than 
those with low n-3 
PUFA intakes (P = 
0.02). No significant 
associations between 
n-6 PUFA intake and 
any lipid variables 
were observed. 
The C allele was 
associated with higher 
total cholesterol and 
lower HDL cholesterol. 
However, this 
association was more 
pronounced and only 
statistically significant 
(P = 0.006) in subjects 
with a high n−3 PUFA 
intake. Limitations: 
The P values for 
interaction between 
rs174546 genotypes 
(in linkage with 
rs174547) and n−3 
PUFA intake on total 
and low HDL-
cholesterol 
concentrations were 
not statistically 
significant. In 
comparison, no 
difference was 
observed in subjects 
with a low n−6 PUFA 
intake. PUFA intake 
did not modify the 
associations between 
the other two variants 
(rs174570 and 
rs482548).  
 

Energy 
balance  
Nagai et al., 
2011 
Japan GWAS 
Cohort study 
using 
noninvasive 
genotyping 
method  
 
 

82 lean 
females. 
20-22 yrs 
from same 
university 
campus 
genotyped 
for the -
3826 GA of 
the UCP1 
gene 

UCP1  
GG/GA  
rs 1800592 

Diminished REE in G 
allele and reduced 
thermoregulatory SNS 
activity for GG 
genotype, suggest 
that attenuated UCP1-
linked thermogenesis 
has adverse effect on 
the regulation of 
energy balance 

Thermoregulatory 
SNS activity was 
assessed by heart rate 
variability power 
spectral analysis.  

To investigate whether 
UCP1 polymorphism 
was associated with 
resting energy 
expenditure (REE) and 
thermoregulatory 
sympathetic nervous 
system (SNS) activity 
in humans. The 
frequencies of AA, GA 
and GG genotypes 
were 0.27, 0.45 and 
0.28, respectively. No 
significant difference 
was found in 
anthropometric 
indexes among the 
three groups. 
However, in the GG 
group, the percentage 
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of fat energy 
consumed lower (AA: 
30.7 [+ or -] 1.1%, GA: 
31.3 [+ or -] 1.0%, GG: 
26.0 [+ or -] 1.2%, P < 
0.01), and energy 
intake tended to be 
lower (AA: 7209 [+ or -
] 310 kJ [d.sup.-1], GA: 
7075 [+ or -] 280 kJ 
[d.sup.-1], GG: 6414 [+ 
or -] 264 kJ [d.sup.-1], 
P = 0.16). 
Limitations: The 
study had low power 
and only performed on 
young healthy women 
therefore the study’s 
results are not reliable 
on their own. 

Total fat 
Grau et al., 
2010 Europe 
RCT parallel, 2-
arm, open-
label, 10-wk 
dietary 
intervention 

771(n) & 
739 
completed  
European 
obese  
75% 
women 
Aged 20–
50 yrs  

TCF7L2 
TT 
rs7903146  

Found significant 
interactions between 
genotype 
TT compared 
with CC and CT and 
diet in relation to 
weight. P for 
interaction: 0.023; n = 
622) 

Genotyping of the 
rs7903146 variant was 
performed by using 
the TaqMan SNP 
Genotyping Assays. 
Assessments of main 
effects was conducted 
by including the 
genotypes as 
covariates and as a 
separate covariate in 
the diet group. 

Participants consumed 
a high-fat diet (HFD) 
40-45 % fat energy 
(LFD) 20-25% fat 
energy. Both diets had 
15% protein and 60-65 
% carbohydrates and 
provided 600 kcal/d 
(2510 kJ/d). 
Anthropometric 
measures and body 
composition were 
assessed. The mean 
weight was 6.81 kg. 
There was no 
difference in weight 
loss for subjects with 
the CC/CT genotype 
between the HFD and 
LFD diet (P = 0.35). In 
individuals with 
the TT genotype, 
weight loss was 2.57 
kg smaller (P = 
0.0088) with the HFD 
than with the LFD diet. 
With the HFD diet, 
weight loss was 2.08 
kg smaller (P = 0.010) 
for the TT genotype 
than for 
the CC/CT genotype. 
The effects 
of TCF7L2 rs7903146 
on weight loss were 
larger than any effect 
found of 43 SNPs in 27 
genes. Limitations: 
When analysing diet-
related studies results 
participants change 
their behaviour 
(“Hawthorne Effect”) 
and maintaining strict 
adherence to the diets 
throughout the study 
period is difficult. Thus, 
this research used 
post hoc analysis, and 
interpretation can be 
skewed. 

Saturated fat 
Corella et al., 
2009 USA Meta 
analysis of 3 

FOS – 
1454 non-
Hispanic 
white 

APOA2 
CC 
rs5082 

The genotype CC 
recorded an OR 1.84 
(CI 95%, 1.38, 2.47, P 
< 0.001) 

All populations, logistic 
regression models, 
included main effects 
and interaction terms, 

Meta-analysis of study-
specific estimates of 
ORs for the two strata 
of saturated-fat intake 
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populations, 
FOS, GOLDN, 
BPR. Cohort 
study 

GOLDN 
1078 
European 
BPR 930 
Puerto 
Rican 
All 26 – 80 
yrs. 

compared to genotype 
TT and TC when 
consuming (> 
22g/day) high-
saturated-fat diet. 

fitted to test APOA2–
saturated fat 
interaction in 
determine the OR of 
obesity. Study-specific 
ORs and 95% CI were 
estimated for 2 strata 
of < or > 22g/day of 
saturated fat. 
Multivariate 
adjustments 
performed. 

< and > 20g of 
saturated-fat. The 
study’s power was 
80% and found that 
the APOA2 concentrati
ons were significantly 
lower in individuals 
with the CC genotype. 
When low-saturated-
fat intake, 
the APOA2 −265T>C 
SNP does not affect 
BMI. However, this 
SNP is significantly 
associated with BMI 
and obesity when high-
saturated-fat intake, 
with a cut-off point of 
22 g/d defining the two 
saturated fat strata. 
Different responses to 
saturated fat, 
depending on the 
individual genotype. 
The effect of saturated 
fat on BMI and obesity 
is highly dependent on 
the APOA2 −265T>C 
genotype. 
Limitations: Results 
only infer a gene–
nutrient interaction 
between BMI and 
obesity in individuals 
who carry the APOA2 
CC gene variant when 
consuming a saturated 
fat diet of > 22 g/day. 

Saturated and 
unsaturated fat 
Phillips et al., 
2012 France 
Case-control 
LIPIGENE 

1754 (n) 
men & 
women 
aged 51 - 
61yrs. 

FTO  
AT/AA 
rs9939609 

MS measurements 
are more elevated 
when on a high-
saturated-fat diet and 
participants are more 
at risk of obesity. 
Genotype AA or AT 
were more receptive 
to weight loss 
compared to genotype 
TT. 

To determine 
modulation by dietary-
fat consumption, 
logistic analyses were 
repeated using the 
median of control 
individuals to 
dichotomise intakes 
and to examine 
associations in low 
and high consumers. 
Generalised 
estimating equation 
linear regression. 
Potential confounding 
factors used in the 
adjusted multivariate 
analysis. 

This study investigated 
the FTO gene SNP 
rs9939609 links to 
obesity and metabolic 
syndrome (MS). MS 
was measured as 
having ≥ three of the 
following indicators of 
obesity, high-
saturated-fat intake, 
elevated waist 
circumference, TG, 
fasting blood sugar 
and BP and low HDL. 
Measurements were 
recorded over 2 
months and followed 
up at 7.5 years. The 
study concluded that 
the carriers of the A 
allele had higher MS 
measurements (OR = 
1.66; 95% CI: 1.07, 
2.57) P = 0.02 and 
carried a greater risk of 
obesity than the TT 
genotype. Waist 
circumference (P = 
0.04) and BMI of ≥ 25 
kg/m (P = 0.02) was 
higher in the AA and 
AT genotype 
participants whose 
saturated fat intake 
was ≥ 15.5 % and 
PUFA: the saturated 
fat ratio was < 0.38 
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compared to the TT 
genotype. Gender-
specific results were 
observed in the male 
risk allele carriers, but 
females were not 
significant (P = 0.09 
and P = 0.08, 
respectively). 
Limitations: Due to 
the study using self-
reporting 
questionnaires, it was 
prone to memory loss 
and inaccurate dietary 
accounts. 

Monounsaturat
ed fat  
Garaulet et al., 
2011 Spanish 
Treatment 
Programme 
cohort Study 
 

1456 (n) 
20 -65 yrs 
attended 
five out-
patient 
obesity 
clinics 
during 
2009–2010 
in the city 
of Murcia 
 

PPARγ2 
polymorphis
m Pro12Ala 
GG/GC 
rs1801282 

Minor allele G 
associated with 
the PPARγ2 
rs1801282 Pro12Ala 
SNP polymorphism 
and MUFA 

Logistic regression 
models were used to 
estimate the OR and 
95% CI of obesity and 
specific MetS 
components. 
Confounding 
controlled for and P = 
0.039 for BMI and 
0.02 for body fat 

The study found a 
gene–diet interaction 
between the PPARγ2 
Pro12Ala 
polymorphism and 
MUFA (% total fat) for 
BMI and body fat (%). 
Carriers of the Ala12 
variant minor allele G 
were significantly less 
obese than 
homozygous major 
subjects (CC) when 
the MUFA intake was 
high (≥ 56% of total 
fat) (P = 0.02). 
Limitations: The 
study used overweight 
and obese subjects 
and no significant 
differences between 
carriers and 
noncarriers were found 
in the low-MUFA 
intake group (P = 
0.75). Based on the 
results, it is still unclear 
whether PPARγ2 
influences weight 
reduction in response 
to a dietary treatment. 

Protein 
Zhang et al., 
2012 USA. 2 
years GWA 
POUNDS LOST 
study 
identified SNP 
& RCT 2x2 
factorial 
design 
 

742 (n) & 
642 
(86.5%) 
completed 
trial  
61% 
female, 
80% white, 
15% black, 
3% 
hispnic, 
2% asian 
Aged 30-
70 years 

FTO 
AA  
rs1558902 
genotype. 
has strong 
linkage 
disequilibriu
m with 
other 
obesity-
associated 
FTO 
variants 
such as the 
rs9939609 
genotype. 

Measures of total fat, 
FFM, FM%, and % of 
trunk fat and the risk 
allele (A) was 
significantly 
associated with a 
1.51kg greater weight 
loss in the high-
protein group (HPD) 
(P = 0.010), but not in 
the low-protein group 
(LPD) at the end of 2 
years.  

A dual-energy X-ray 
absorptiometry 
(DEXA) scan was 
performed on 50% of 
a random sample. The 
allele frequency in two 
major ethnic groups 
(white and black) was 
compatible with 
Hardy-Weinberg 
equilibrium (P > 0.05). 
The Hardy-Weinberg 
equilibrium and 
comparison of 
categorical variables 
at baseline were 
assessed with chi-
square test and 
adjusted for age, sex, 
and ethnicity.  

Random assignment of 
the subject’s to one of 
four diets. The primary 
outcomes were 
changes in body 
weight and weight 
circumference. 
Secondary outcomes 
were changes in body 
composition, including 
total fat mass, FFM, 
FM% and percentage 
of trunk fat, and fat 
distribution (TAT, VAT, 
SAT, and DSAT). Low 
protein versus high 
protein and low fat 
versus high fat were 
compared. Tests for 
genotype-diet protein 
interaction were 
significant on changes 
in FFM and FM% (for 
interactions, P = 0.034 
and 0.049, 
respectively). There 
was no significant 
genetic effect or 
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interaction between 
the FTO variant and 
dietary fat. 
Limitations: The lack 
of association with 
baseline BMI is 
probably largely 
because the 
participants were 
overweight or obese. 
The groups had 
relatively smaller 
variances in BMI than 
the general population. 
The study found that 
the FTO gene and a 
HPD were linked but 
not to the HFD. The 
study had 80% white 
participants, whilst 
overadjusted statistical 
comparisons increased 
the type II error. 

Total 
cholesterol 
Lu, 
Feskens,Boer,
et al., 2010 
Netherlands 
11 years 
Longitudinal 
GWAS study 

1,668 (n) 
European 
descendan
t 20–59 
years 
 

APOA5 
CC/TC 
rs662799  
 

Adjusted for potential 
confounding the 
APOA5 SNP rs 
662799 genotype CC 
and TC had total 
average cholesterol 
reading of 0.18 
mmol/L higher 
compared to genotype 
TT participants. 

The intake of total fat 
and cholesterol was 
averaged over the 
second and third 
surveys and the 
medians (34.9% 
energy and 224.9 
mg/day, respectively) 
were used to 
categorise the 
subjects into low or 
high intake of fat or 
cholesterol. 

1,668 European 
participants were 
followed over 11 years, 
and the study took 
three nonfasting 
cholesterol blood 
readings. The APOA5 
variant rs662799 was 
statistically significant 
and associated with 
total blood cholesterol 
or LDL levels. When 
analysing only 
genotype CC carriers, 
the magnitude of their 
reading doubled (P = 
0.0066) compared to 
genotype TC and TT. 
Limitations: The 
study did not prove 
clear evidence for the 
relationship between 
the APOA5 SNP 
rs662799 and its 
association to total 
cholesterol levels as 
environmental 
exposures of the 
participants could have 
influenced the results. 
Therefore, future 
studies performed on 
different ethnic groups 
and controlled for 
environmental 
exposures are needed. 

LDL-C & HDL-
C & TG 
Kathiresan et 
al., 2009 
European 
Ancestry 
Meta-analysis 
using 7 GWA 
(The 
Framingham 
Heart, 
LOLIPOP, 
SUV1MAZ, 
inCHIANTI, 
DGI, FUSION 
and SardiNIA) 

GWAS 
screened 
19,840 (n) 
and 
replication 
in up to 
20,623 (n)  

LDL-C 
ABCG8 
TT/TC 
rs6544713 
HDL-C 
ABCA1 
TT/TC 
rs1883025 
TG 
ANGPTL3 
AA/AC 
Rs1088935
3 

it is hypothesised that; 
ABCG8 - T allele 
leads to lower ABCG8 
function resulting in 
higher levels of LDL-
C, uptake of 
cholesterol and lipids, 
and a reduced 
secretion of lipids into 
the liver and bile.  
ABCA1 - T allele 
leads to lower ABCG1 
function resulting in 
lower levels of HDL-C 
uptake of cholesterol 
and lipids. 

Variance-weighted 
meta-analysis and 
additional analysis 
applied a uniform 
analysis strategy to all 
sample sets to 
estimate regression 
coefficients 
(measuring 
association between 
each SNP and lipid 
levels). Test for 
association in each 
replication study using 
linear regression and 

This study identified 30 
distinct loci associated 
with lipoprotein levels 
(each with P < 5 x 
[10.sup. -8]), including 
11 loci that reached 
GW significance for 
the first time. This 
meta-analysis used 
GWAS and a large-
scale replication 
approach, mapping 30 
loci that contribute to 
variation in lipoprotein 
concentrations in 
humans. The 11 newly 
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and large-scale 
replication 
study 

ANGPTL3 – A allele 
leads to lower 
ANGPTL3 function 
resulting in higher 
levels of TG in the 
blood plasma. 

adjusting for 
covariates. 

defined loci included 
common variants 
associated with LDL-C 
near ABCG8, HDL-C 
near ABCA1 and TG 
near ANGPTL3 gene. 
The research 
concluded that the T 
allele carriers (TT and 
TC) were more at risk 
of high LDL-C than CC 
carriers. That TT and 
TC carriers had a 0.08 
standard deviation 
lower HDL-C levels (P 
= 0.001) than 
individuals with the CC 
genotype. That carriers 
of the A allele (AA and 
CA) had 0.05 standard 
deviation higher TG 
levels (P < 0.0001) 
than the CC genotype. 
Limitations: Further 
investigations involving 
different ethnicities and 
population groups with 
rigorous experiment 
procedures using RCT 
are needed  

Fat-taste 
perception  
Melis et al., 
2015 Italy 
GWAS RCT 
 

64 (n) 
Caucasian 
subjects 
(23 males, 
41 
females, 
age 27.6 ± 
0.85 years) 

CD36 
GG/GA  
rs1761667 

Genotype AA had 
reduction in the CD36 
gene expression and 
classed “typical 
tasters.” Genotype 
GG were supertasters 
to detecting oleic acid 
and GA were 
considered 
intermediate tasters. 

Homozygous for the G 
allele rs1761667 exhib
ited a 5-fold lower 
threshold for oleic acid 
than AA subjects (P = 
0.041, Fisher LSD 
test). 

Three sessions 
separated by 1 month; 
subjects were 
assessed for PROP 
taster status in the first 
two sessions. In the 
third session, 
sensitivity to oleic acid 
flavour was assessed. 
The study used a 
randomised taste test 
to examine if there was 
an association 
between oro-sensory 
exposure to oleic acid 
and CD36 genetic 
variant rs1761667. The 
study concluded a 
reduction of CD36 
gene expression in 
genotype AA carriers. 
Limitation: the study 
had low power due to 
the small number of 
participants and more 
research is needed to 
investigate if this is 
linked to supertasters 
reducing dietary-fat 
intake due to earlier 
satiation. 

Sugar 
preference  
Eny et al., 2008 
Canada GWAS 
Cohort Study 

2 
population
s 
P1-50 
men,50 
women 
BMI 30.7 ± 
4.2 
42-75 
years 
P2-182 
men, 405 
women, 

GLUT2 
CT/TT 
rs5400 

In P1 and P2 
individuals with the 
SNP rs5400 genotype 
CT or TT had a higher 
consumption of sugar 
compared to genotype 
CC. 
 

Unpaired t-tests 
assuming unequal 
variances were used 
to compare 
characteristics and 
dietary intakes 
between genotypes, 
and Wilcoxon tests 
were used if variables 
were skewed. The χ2-
test was used for 
categorical variables. 
Multiple linear 
regression adjusted 

P1 - individuals with 
the GLUT2 genetic 
variant rs5400 
genotype CT or TT 
had a more significant 
daily sugar 
consumption. Sugar 
consumption was 
assessed over a three-
day food diary collated 
during two visits 2 
weeks apart (visit 1: 
112 ± 9 vs 86 ± 4 
g/day, P = 0.01; visit 2: 
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young and 
healthy  
20-29 
years 
 
 

used to test for 
differences in nutrients 
and food groups 
consumed. 

111 ± 8 vs 82 ± 4 
g/day, P = 0.003) 
compared to genotype 
CC. 
P2 - individuals with 
the SNP rs5400 
genotype CT or TT 
had a higher sugar 
consumption over 1 
month analysed from a 
food-frequency 
questionnaire (FFQ) 
(131 ± 5 vs. 115 ± 3 
g/day, P = 0.007) 
compared to genotype 
CC. Carriers of the T 
allele consumed more 
sucrose (55 ± 3 vs. 47 
± 1 g/day, P = 0.01), 
fructose (28.0 ± 1.3 vs. 
25.4 ± 0.7 g/day, P = 
0.04), and glucose 
(26.0 ± 1.2 vs. 23.7 ± 
0.6 g/day, P = 0.03). 
Limitations: sugar 
craving have links to 
other factors, including 
mood, environment, 
culture, lifestyle, and 
pleasure-generated 
response. Further 
RCT-type research is 
needed to control 
individual food intake 
as FFQ are sometimes 
unreliable. 

Susceptibility 
for hunger  
Bouchard et 
al., 2004 
Quebec 
Prospective 
GWA study 

274 males 
and 386 
females 
aged 27-58 
years with 
BMI of 
20.3 kg/m2 
to 37.9 
kg/m2 

NMB 
TT 
rs1051168 

Results show a 
significant relationship 
between the NMB 
genetic variant 
rs1051168 genotype 
TT and eating 
behaviour with 
predisposition to 
obesity 

A χ2 test was applied 
to compare genotypic 
frequencies between 
groups with low, 
intermediate, and high 
scores on the 3FEQ 
susceptibility to 
hunger scores, there 
were no difference 
between sex. Genetic 
associations were 
assessed by analysis 
of covariance 
comparing mean 
phenotypic values 
across NMB genotype
s. If significant 
differences were 
detected, Tukey’s test 
was used to determine 
differences among 
genotypes. 

The study aimed to 
identify numerous trait 
loci involved in eating 
behaviours. They 
found that the most 
significant linkage 
between locus and 
susceptibility to hunger 
(P < 0.0001) was the 
NMB genetic variant 
rs1051168 genotype 
TT compared to 
genotype GG or GT. 
The rs1051168 
revealed a missense 
mutation resulting in a 
genetic variation within 
the NMB gene and 
was statistically 
significant (OR: 1.9; 
95% CI: 1.15, 3.06; P 
= 0.01). After 6-year 
genotype carriers, TT 
gained more than 
twice as much body fat 
than noncarriers GG or 
GT genotype (3.6 
compared with 
1.5kg; P < 0.05). 
Limitations: Food-
frequency studies are 
prone to recording 
errors of participants. 
For complex 
behaviours such as 
eating, it is unlikely 
that a single SNP 
could account for the 
results fully. Therefore, 
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more research is 
needed to identify 
other mutations in the 
NMB gene or in that 
location. 
  

Fasting 
glucose  
Dupuis et al., 
2010 Europe 
meta-analysis 
study of 21 
GWAs 

46,186 
European 
nondiabeti
c subjects 
that 
included 
loci 
associated 
with fasting 
glucose 
near the 
ADCY5 
gene 

ADCY5  
GA/AA 
rs11708067 

The A allele carriers 
had elevated fasting 
glucose levels and 
increased risk of 
T2DM compared to 
those that carried the 
G allele 

Measured expression 
of the genes mapping 
closest to lead SNPs 
in DGKB/TMEM195, 
ADCY5, MADD. 

This study was part of 
the Glucose and 
Insulin-related traits 
Consortium (MAGIC), 
which conducts large-
scale meta-analyses 
using GW data for 
continuous diabetes-
related traits in 
nondiabetic 
participants. After 
adjustments for BMI, 
the results 
demonstrated that the 
ADCY5 gene was 
associated with 
elevated fasting 
glucose levels of 0.027 
mmol/L in A allele 
carriers (P = 0.0001). 
Therefore, A allele 
carriers had an 
increased risk of T2DM 
compared to G allele 
carriers. Limitations: 
The study’s findings 
could have been due 
to other factors 
influencing the results, 
such as diet or lifestyle 
of the patients, and a 
cause-and-effect 
relationship may not 
be solely due to the 
rs11708067 SNP. 

Fasting insulin 
Almgren et al., 
2017 Swedish, 
Finish 
population-
based cohort  

3,344 
Swedish 
male & 
female 
subjects 
born 1923–
1950. 
Results 
meta-
analysed 
with 4,905 
Finnish 
subjects 

IRS1  
CT/CC 
rs2943641 

CT or CC genotypes 
had greater levels of 
fasting insulin 
concentrations 
compared to TT 
genotype carriers 

Serum insulin was 
assayed with an 
ELISA kit (K6219, 
Dako) and had no 
significant cross 
reactivity to proinsulin 
(range 0.5–206 U/l). 
Serum insulin was 
measured by an 
AutoDelfia 
fluoroimmunometric 
assay (B080-101, 
PerkinElmer). 
Association of SNPs 
with insulin levels was 
analysed using linear 
regression models 
and, for prediction of 
risk of T2DM using 
Cox regression 
models and adjusted 
for sex and age. 

The study searched for 
a link between 
nondiabetic 
participants and fasting 
insulin levels. They 
found that a location 
near the IRS1 gene 
variant rs2943641 
showed a significant 
association (P = 2.4 x 
10-7). Almgren et al. 
concluded that 
participants who 
carried the CT or CC 
genotypes had greater 
fasting insulin levels 
than TT genotype 
carriers. Limitation: T
he study’s findings 
could have been due 
to other factors 
influencing the results, 
such as diet or lifestyle 
of the patients, and a 
cause-and-effect 
relationship may not 
be solely due to the 
rs2943641 SNP. 
 

Note. Gene name and reference SNP, frequency of the minor allele (MAF), risk variant (RV) effect size using 

beta coefficients (estimated results from regression analysis) odds ratios (OR) or confidence intervals (CI) are 

used to describe the strength of an association, and a P < 0.05 is statistically significant (SS).  
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Appendix B: Baseline Data of Participants Before Food Consumption 

ID BMI BMI kg/m² Weight (kg) Height (cm) Systolic 
pressure 
(mm Hg) 

Diastolic 
pressure 
(mm Hg) 

HR 
(beat/min) 

1 21.6 Healthy 61.00 168.0 116 66 71 

2 22.7 Healthy 77.58 184.9 108 62 72 

3 21.9 Healthy 69.18 177.7 115 71 90 

4 22.3 Healthy 69.42 176.3 101 71 74 

5 24.6 Healthy 71.32 170.1 108 72 69 

6 26.8 Overweight 83.60 176.7 119 84 70 

7 22.1 Healthy 70.98 179.2 122 76 61 

8 27.6 Overweight 80.00 170.3 130 79 59 

9 24.7 Healthy 74.80 173.9 113 68 65 

10 22.5 Healthy 66.60 172.0 96 66 59 

11 22.6 Healthy 72.04 178.5 117 71 68 

12 24.7 Healthy 71.38 170.1 110 71 53 

13 25.9 Overweight 88.38 184.7 120 74 64 

14 24.9 Healthy 82.14 181.7 124 80 63 

15 23.8 Healthy 78.32 181.5 106 72 58 

16 25.2 Overweight 92.70 191.8 120 77 63 

17 29.1 Overweight 91.18 177.0 114 78 63 

18 22.6 Healthy 69.70 175.7 141 94 92 

19 23.3 Healthy 75.64 180.0 140 88 61 

20 31.3 Obese 100.76 179.4 122 82 74 

21 23.3 Healthy 75.04 179.6 131 87 60 

22 25.3 Overweight 82.76 181.0 130 90 71 

23 22.3 Healthy 69.06 175.8 122 82 64 

24 29.5 Overweight 83.52 168.2 138 89 71 

25 25.6 Overweight 80.20 177.0 99 57 80 

26 24.1 Healthy 76.52 178.3 111 62 56 

27 20.3 Healthy 55.68 165.6 101 80 79 

28 23.7 Healthy 66.62 167.6 112 72 63 

29 21.6 Healthy 68.12 177.7 114 70 49 

30 29.2 Overweight 92.62 178.2 120 79 80 

Mean 24.5  76.6 176.6 117.3 75.7 67.4 

SD 2.7  10.0 5.8 11.7 9.0 10.0 

Note. BMI Categories (kg/m2): Underweight < 18.5, Healthy/Normal 18.5–24.9, Overweight 25–29.9, Obese > 30 
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Appendix C: Ethics Approval 

Health and Disability Ethics Committees 
 Ministry of Health 

133 Molesworth Street 

PO Box 5013 

   Wellington 

     6011

hdecs@health.govt.nz 

30 November 2020 

Dr Andrea Braakhuis   

The University of Auckland 

Private Bag 92019  

Auckland Mail Centre  

Auckland 1142  

Dear Dr Braakhuis, 

Re: Ethics ref: 19/STH/226/AM02 

Study title: Acute Clinical Evidence of Digestive, Metabolic and Nutritional 

Differences in  Beef and Meat-Alternative Meals 

I am pleased to advise that this amendment has been approved by the Southern 

Health and Disability Ethics Committee.  This decision was made through the 

HDEC Expedited Review pathway.  

Please don’t hesitate to contact the HDEC secretariat for further information.  We 

wish you all the best for your study.  

Yours sincerely, 

Mrs. Helen Walker  

Acting Chairperson  

Southern Health and Disability Ethics Committee 



 

104 

Encl:  Appendix A: documents submitted  

          Appendix B: statement of compliance and list of 

members 

Appendix A  

Documents submitted and approved  

 Document   Version   Date   

Declined letter for previous application in respect of the same 

(or substantially similar) study: Amendment decline letter   

1   02 October 2020   

Covering letter: Memo   1   02 November 

2020   

PIS/CF: Updated PISCF   6   02 November 

2020   

Protocol: Updated protocol document   6   02 November 

2020   

Post Approval Form   AM02   02 November 

2020   

PIS/CF: Updated PISCF   7   23 November 

2020   

Covering letter: Ethics Memo for amendment 2   1   23 November 

2020   

Response to Request for Further Information         

Appendix B Statement of compliance and list of members  

Statement of compliance 

The Southern Health and Disability Ethics Committee:   

⎯ is constituted in accordance with its Terms of Reference  

⎯ operates in accordance with the Standard Operating Procedures for Health 

and Disability Ethics Committees, and with the principles of international 

good clinical practice (GCP)  

⎯ is approved by the Health Research Council of New Zealand’s Ethics 

Committee for the purposes of section 25(1)(c) of the Health Research Council 

Act 1990  

⎯ is registered (number 00008713) with the US Department of Health and 

Human Services’ Office for Human Research Protection (OHRP).  

List of members  
Name    Category    Appointed    Term Expires    

Mrs Helen Walker   Lay (consumer/community 

perspectives)   
19/08/2020   19/08/2021   

Dr Pauline Boyles   Lay (consumer/community 

perspectives)   
05/07/2019   05/07/2022   

Dr Paul Chin   Non-lay (intervention studies)   27/10/2018   27/10/2021   

Mr Dominic Fitchett   Lay (the law)   05/07/2019   05/07/2022   

Dr Sarah Gunningham   Lay (other)   05/07/2016   05/07/2022   

Assc Prof Mira Harrison-Woolrych   Non-lay (intervention studies)   28/06/2019   28/06/2020   



 

105 

Professor Jean Hay-Smith   Non-lay (health/disability service 

provision)   
31/10/2018   31/10/2021   

Dr Devonie Waaka   Non-lay (intervention studies)   18/07/2016   18/07/2019   

Unless members resign, vacate or are removed from their office, every member of 

HDEC shall continue in office until their successor comes into office (HDEC Terms 

of Reference)  
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Appendix D: Participant Information Sheet 

 
PARTICIPANT INFORMATION SHEET 

 

Project title: Acute Evidence of Digestive, Metabolic and Nutritional Differences in Beef, 

Lamb and Meat-Alternative Meals 

Principal Investigator: Dr Andrea Braakhuis (The University of Auckland) 

Research Team: Dr Matt Barnett (The Liggins Institute), Dr Toan Pham (The University of 

Auckland), Ms Julie Brown (The University of Auckland) 

Research introduction and aim 

There has been much discussion about the nutritional value of eating red meat, however very 

few scientific studies have been conducted on red meat arising from different feeding systems 

(grain versus grass) and on meat-alternatives. The aim of this study is to investigate what 

nutrients end up in the bloodstream after consuming a grass-, grain-fed beef, or grass-fed lamb, 

or plant-based meat alternative containing meal. 

Project description and invitation 

You have been invited to participate because you are a male between the age of 20 and 34 years 

who eat red meat. This study will involve you visiting the Research Facility at The University 

of Auckland on four separate occasions in the morning. Each visit you will be required to 

consume a red meat or meat alternative containing meal and bloods will be taken for 4 hours 

after the meal. Before any meal, your saliva sample will be also taken only in the first visit. 

Project Procedures 

There will be four study visits in total with at least one week between meals. Any questions or 

concerns about the study will be discussed via email or phone prior to commencing. You will 

be asked to complete pre-screening documentation prior to be invited to participate. If you are 

satisfied with everything and agree to take part, we will ask you to sign the consent form 

(below) prior to testing. The study includes four test clinical visits. The four test occasions will 

occur on mutually agreed upon days, with at least one week, but no more than one month apart. 

Each test day you will be joined with other participants.  

All interested participants will be asked to complete a screening questionnaire which will ask 

for weight, height, physical activity, ethnicity, education, and eating habits. Participants will 

be excluded if they are smokers, have previously tested with high cholesterol or blood lipids 

or demonstrated disordered eating habits.  

Procedures for Test Days 

The procedures for all four visits will be the same. Before each clinical visit, you will be asked 

to avoid eating foods high in fat and fibre as well as alcohol and caffeine. You are not to eat 

after 10 pm as this will affect your digestion in the morning. Except for water, you will be 

required to fast overnight and then come to the Clinical Research Centre as scheduled in the 

morning. You will be asked to provide informed consent and will have your height and weight 

measured. During each visit, we will ask you to rest quietly for 20 minutes before we measure 

your blood pressure. You will be asked to provide your saliva sample into a test-kit tube before 

having a test meal and this sample will be used to measure your specific nutrition-related 

genetic markers (only in the first visit). A small needle will be also placed into your arm vein. 

This can be slightly painful and can cause discomfort. The needle has a plastic cannula (thin 

tube) that will be left in your arm vein. This too is a little uncomfortable and you will not be 
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able to fully bend your arm. The researcher will then take 30 mL of blood, and this will be used 

to measure your resting amino acids and lipids.  

After the first blood sample, you will be given a meat-containing meal to consume within 15 

minutes. You will also be asked to complete a visual analogue scale (VAS) questionnaire to 

score your appetite and digestive symptoms, before consuming the meal, and at regular 

intervals during the trial. We will also ask you to record digestive symptoms as they happen 

with a separate questionnaire. Blood samples will be repeated every hour for 4 hours after your 

meal (in total 150 mL per visit). These blood samples will assess your digestion, metabolism 

and inflammatory responses. 

After the 4 hours, the cannula will be removed which may cause mild discomfort. You will be 

offered lunch and you are free to go. Before departing we will invite you to make an 

appointment for the next clinical visits. We appreciate that this takes four visits to our research 

centre and approximately 20 hours of your time and would like to offer you a $400 gift voucher 

in total to reimburse for your time and efforts.  

Blood and Saliva 

Your blood will be used in the analysis of proteins, lipids, and sugars and markers of 

inflammation. These will provide vital insights into whether there are differences in the 

digestive responses to the four meals. We will be measuring metabolites (digested products of 

the meat and markers of your body’s metabolic process) including amino acids (the digested 

products of proteins), lipids (the digested products of fats), sugars such as glucose (digestion 

products of carbohydrates), and hormones involved in digestion and absorption such as insulin. 

Some analysis techniques will take place in the laboratories of the Liggins Institute (University 

of Auckland). Your samples will also be sent to AgResearch Limited (Palmerston North, New 

Zealand) for analysis of things that we are unable to do in Auckland. After these analyses have 

been performed, it will not be possible to return any unused samples to you. You can request 

the return of your saliva or blood prior to any analysis; this would mean we would not use your 

information in the study. 

Different versions of a gene can make us response differently to certain components in food 

such as the gluten in bread, the lactose in milk, the caffeine in coffee along with various 

proteins, fats, minerals and vitamins found in various foods. The differences between 

individuals can be explained by gene variations within the population. Some individuals may 

benefit from limiting their consumption of nutrient component (e.g. caffeine, gluten…) or 

increasing their intake of other nutrient components (e.g. omega-3 fat, zinc…). Understanding 

our genetic profile and its complications on our unique response to the foods, supplements and 

beverages we consume will provide us with the tools needed to make the best dietary choices. 

We will take gene samples from your saliva. Your saliva sample will be used in analysis of 

various genetic markers related to nutrition and physical activity. The sample will be sent to 

the Nutrigenomix laboratory (Nutrgenomix Australia, Level 10 & 11, 20 Martin Place, Sydney, 

Australia, 2000) for the genetic test. Nutrigenomix testing is a safe and noninvasive saliva 

collection kit or buccal swab developed for use by healthcare professionals. The Nutrigenomix 

test kit involves saliva or buccal swab collection, testing of the client’s DNA for specific 

nutrition-related markers, and generation of a personalised nutrition and fitness report. The test 

analyses variations in 70 genes that impact nutrient metabolism, eating habits, weight 

management and body composition, food intolerances and physical activity. The accuracy of 

the genetic-test results is between 99.7 – 100%. 

The information collected in this study will be kept for a total of 10 years. Your samples will 

be kept until the end of the analysis. At the end of this time a medical waste contractor will 

dispose of your tissue. If you would like a karakia said at this time, please indicate so in the 

consent portion of this form. Cremation and karakia ceremonies take place through the 

Auckland District Health Board, and occur every 2 months during the year. 
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Many iwi, hapu, and whānau disagree with transport of blood samples due to issues with the 

loss of rights to your whakapapa. However, it is acknowledged that individuals have the right 

to choose. These concerns may also apply to non-Māori. We encourage you to consult with 

your family or whānau before agreeing to participate, if you think this might apply to you. As 

the saliva samples are sent overseas they will be destroyed upon the completion of the testing 

for this trial. 

Detection of Abnormalities 

Some blood markers analysed in this research can be early indicators of diseases such as 

diabetes and heart disease. Any blood results outside of the normal healthy range will be 

provided to you. We will also inform your usual doctor of any results that might be significant 

for your health, so follow-up can be arranged if appropriate. The genetic test (Nutrigenomix) 

does not assess genetic predisposition to certain diseases. The test only includes genes related 

to nutrition and physical activity. Nevertheless, if an individual has a Nutrigenomix test, he/she 

is required to answer ‘yes’ on any legal forms or questionnaires that ask whether they have had 

a genetic test. 

What if Something Goes Wrong?  

This clinical trial is to be conducted principally for the benefit of the manufacturer or distributor 

of the medicine or item being trialled. Section 32 of the Accident Compensation Act 2001 

provides that participants injured as a result of treatment received as part of this trial will not 

be eligible for publicly-funded compensation through the Accident Compensation Corporation 

(ACC). However, compensation may be available from the study’s sponsor, Auckland 

UniServices Ltd., in line with industry guidelines. We can give you a copy of these guidelines 

if you wish. You would be able to take action through the courts if you disagreed with the 

amount of compensation provided. 

If you have private health or life insurance, you may wish to check with your insurer that taking 

part in this study won’t affect your cover. 

You may have your friend, family, or whānau support help you understand the risks and/or 

benefits of this study or any other explanation you require. You are also welcome to have a 

friend, family, or whānau support with you during every session. 

Right to Withdraw from Participation 

You have the right to withdraw from this study at any time. Your contribution is entirely 

voluntary and if you chose to withdraw any remaining samples and data will be destroyed at 

that point, but data or samples that have already been collected and processed will continue to 

be used. 

Anonymity Confidentiality and Risks 

All samples and the measurements will be coded and recorded against this code to keep your 

identity confidential. Coding will be numerical and you will not be identifiable by this code. 

Each saliva sample is anonymized using a barcode and this is entered into a password protected 

online system. Nutrigenomix uses a Secure Socket Layer (SSL) protocol to encrypt information 

that is transmitted over the Internet. This technology uses 256‐bit encryption, which ensures 

that confidential information and transactions cannot be viewed, intercepted or altered. 

Nutrigenomix will never reveal client information or genetic data to a third party except as 

required to provide the services requested, or as required by law. The only person able to link 

the code with your name is Dr Andrea Braakhuis who will keep the coding list in a locked 

filing cabinet. When the analysis is completed the researchers will analyse the whole group’s 

data and report on averages. This data will be used for scientific publication and presentations. 

No person will be identifiable from the analysis. Although efforts will be made to protect your 

privacy, absolute confidentiality of your information cannot be guaranteed. Even with coded 

and anonymised information, there is no guarantee that you cannot be identified. The risk of 
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people accessing and misusing your information is currently very small but may increase in the 

future as people find new ways of tracing information. 

Contact Details  

For more information please contact either:  

Dr Andrea Braakhuis  

Discipline of Nutrition,  

Faculty of Medical and Health Science,  

The University of Auckland, New Zealand 

Telephone: 09-923 6251  

Email: a.braakhuis@auckland.ac.nz 

Dr Toan Pham 

Discipline of Nutrition,  

Faculty of Medical and Health Science,  

The University of Auckland, New Zealand 

Email: toan.pham@auckland.ac.nz 

APPROVED BY THE HEALTH AND DISABILITY ETHICS COMMITTEE ON 

Approved Amendment – 18th November 2020. Reference Number 19/STH/226 AM02 

  

mailto:a.braakhuis@auckland.ac.nz
mailto:toan.pham@auckland.ac.nz
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Appendix E: Consent Form 
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Appendix F: Raw Data for Individual Participant for Physiological Outcome Measures 

and the Corresponding Qualitative Genetic Risk  

Individual plasma measures at baseline for vitamin D, iron (iron overload and low 

iron), zinc, total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), 

triglycerides (TG), glucose and insulin and the corresponding qualitative genetic-risk 

statement. 

Table F.1 

Individual Participant Plasma Measures for Nutrients at Baseline and Corresponding 

Qualitative Genetic-Risk Statement 

 SNP ref. 
marker 

Plasma 
measure 

SNP ref. 
marker 

Plasma 
measure 

SNP ref. 
marker 

Plasma 
measure 

SNP ref. 
marker 

Plasma 
measure 

ID Vit D 
rs10741657 rs 

2282679 
  

t-pre Vit D Iron Overload 
rs17342717 
rs1800562 
rs1799945 

t-pre Fe 
umol/L 

Low Iron 
rs4820268 
rs7385804 
rs3811647 

t-pre Fe 
umol/L 

Zinc 
rs11126936 

t-pre Zinc 
mg/L 

1 Elevated  12.35 low 14.25 typical 14.25 elevated 0.82 

2 elevated 19.81 low 20.89 typical 20.89 typical 0.81 

3 elevated 9.69 low 16.05 typical 16.05 elevated 0.91 

4 typical 20.85 low 19.62 elevated 19.62 elevated 0.79 

5 elevated 13.16 low 17.44 elevated 17.44 typical 0.80 

6 elevated 12.72 low 16.62 elevated 16.62 elevated 0.74 

7 elevated 20.53 low 9.36 elevated 9.36 elevated 0.85 

8 elevated 24.11 low 16.84 typical 16.84 typical 0.74 

9 elevated 16.99 low 15.83 typical 15.83 typical 0.80 

10 elevated 8.40 low 14.37 typical 14.37 typical 0.93 

11 elevated 21.54 low 12.61 typical 12.61 elevated 0.79 

12 elevated 17.02 low 12.53 elevated 12.53 elevated 0.92 

13 elevated 20.57 low 19.26 elevated 19.26 typical 1.10 

14 elevated 25.73 low 13.72 elevated 13.72 typical 0.82 

15 elevated 17.22 low 30.95 typical 30.95 typical 0.85 

16 elevated 34.43 low 24.04 typical 24.04 typical 1.00 

17 elevated 13.87 low 13.45 elevated 13.45 typical 0.69 

18 elevated 13.27 low 25.37 typical 25.37 elevated 1.10 

19 elevated 17.30 low 19.37 typical 19.37 elevated 0.92 

20 elevated 28.65 low 17.26 typical 17.26 elevated 0.93 

21 elevated 15.13 medium 18.11 elevated 18.11 typical 0.95 

22 typical 19.72 medium 29.03 typical 29.03 typical 0.79 

23 elevated 35.79 low 29.91 elevated 29.91 typical 1.00 

24 elevated 11.81 low 9.06 typical 9.06 elevated 0.89 

25 elevated 13.62 low 9.94 elevated 9.94 elevated 0.83 

26 typical 48.86 low 21.18 typical 21.18 typical 0.86 

27 elevated 10.54 low 7.52 elevated 7.52 typical 0.69 

28 elevated 27.41 low 14.49 elevated 14.49 typical 0.94 

29 elevated 17.12 low 17.64 typical 17.64 typical 0.97 

30 elevated 22.77 low 9.87 typical 9.87 elevated 0.80 
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Median 
 

17.26 
 

16.73 
 

16.73 
 

0.85 

SDa 
 

8.76 
 

6.09 
 

6.09 
 

0.10 

Mean 
 

19.70 
 

17.22 
 

17.22 
 

0.87 

Note. aSD, standard deviation 

Table F.2 

Individual Participant Plasma Measures at Baseline for Cholesterols, Triglycerides, Fats, 

Glucose and Insulin and Corresponding Qualitative Genetic-Risk Statement 

 SNP 
ref. 

mark
er 

Plas
ma 

conc 

SNP 
ref. 

marke
r 

Plas
ma 

conc 

SNP 
ref. 

marke
r 

Plas
ma 

conc 

SNP 
ref. 

marke
r 

Plas
ma 

conc 

SNP ref. 
marker 

Plas
ma 

conc 

SNP 
ref. 

marke
r 

Plasm
a 

conc 

SNP 
ref. 

marke
r 

Plas
m 

conc 

ID Tot. 
Chol 
rs662
799 

t-pre 
Tot. 
chol 

mmol/
L 

LDL 
rs6544

713 

t-pre 
LDL 

mmol/
L 

HDL 
rs1883

025 

t-pre 
HDL 

mmol/
L 

TG 
rs1088
9353 

t-pre 
TG 

mmol/
L 

Saturated 
Fat rs5082  

t-pre 
LDL 

mmol/
L 

Glucos
e 
rs1170
8067  

t-pre 
glucos

e 
mmol/L 

Insulin 
rs2943

641 

t-pre 
Insuli

n 
µU/m

L 

1 typic
al 

5.13 typical 3.47 typical 1.43 elevat
ed 

0.85 typical 3.47 elevat
ed 

4.89 elevat
ed 

8.63 

2 elev
ated 

4.06 typical 2.81 typical 1.31 elevat
ed 

1.14 typical 2.81 elevat
ed 

3.64 elevat
ed 

3.94 

3 typic
al 

3.21 elevat
ed 

1.58 elevat
ed 

1.52 typical 0.66 typical 1.58 elevat
ed 

4.89 elevat
ed 

10.2
3 

4 typic
al 

4.74 elevat
ed 

3.46 elevat
ed 

1.43 elevat
ed 

0.80 typical 3.46 elevat
ed 

5.22 elevat
ed 

8.69 

5 elev
ated 

4.55 elevat
ed 

3.30 elevat
ed 

1.23 elevat
ed 

0.61 typical 3.30 elevat
ed 

4.42 elevat
ed 

9.63 

6 typic
al 

5.26 typical 3.71 elevat
ed 

1.29 elevat
ed 

1.02 typical 3.71 elevat
ed 

5.59 elevat
ed 

17.2
5 

7 typic
al 

3.77 typical 2.49 elevat
ed 

1.21 elevat
ed 

0.72 typical 2.49 elevat
ed 

4.83 elevat
ed 

4.89 

8 typic
al 

5.43 typical 3.62 typical 1.25 elevat
ed 

1.67 typical 3.62 elevat
ed 

5.11 typical 5.76 

9 typic
al 

4.4 typical 2.87 elevat
ed 

1.45 elevat
ed 

0.60 typical 2.87 elevat
ed 

4.67 elevat
ed 

8.1 

10 typic
al 

4.03 typical 2.41 elevat
ed 

2.41 elevat
ed 

1.06 typical 2.41 elevat
ed 

5.23 elevat
ed 

6.32 

11 typic
al 

5.24 typical 2.90 typical 2.47 elevat
ed 

0.57 typical 2.90 elevat
ed 

4.56 elevat
ed 

4.76 

12 typic
al 

6.17 typical 4.49 elevat
ed 

1.48 elevat
ed 

1.05 typical 4.49 elevat
ed 

5.10 elevat
ed 

10.8 

13 typic
al 

3.87 typical 2.12 elevat
ed 

1.69 elevat
ed 

0.81 typical 2.12 elevat
ed 

4.83 elevat
ed 

13.1
5 

14 typic
al 

4.3 elevat
ed 

2.20 typical 2.06 elevat
ed 

0.59 elevated 2.20 elevat
ed 

4.81 typical 6.22 

15 elev
ated 

4.39 typical 2.47 typical 1.39 elevat
ed 

1.90 typical 2.47 elevat
ed 

5.46 typical 1.52 

16 typic
al 

4.67 elevat
ed 

3.00 typical 1.68 elevat
ed 

0.57 typical 3.00 typical 5.03 elevat
ed 

7.46 

17 elev
ated 

5.05 elevat
ed 

3.48 elevat
ed 

1.08 elevat
ed 

1.79 typical 3.48 elevat
ed 

5.05 elevat
ed 

16.4
3 

18 typic
al 

5.59 elevat
ed 

4.01 typical 1.06 elevat
ed 

1.68 typical 4.01 elevat
ed 

4.69 typical 3.28 

19 elev
ated 

3.96 typical 2.38 elevat
ed 

1.59 elevat
ed 

0.50 typical 2.38 elevat
ed 

4.57 elevat
ed 

5.01 

20 elev
ated 

6.06 elevat
ed 

4.42 typical 1.21 elevat
ed 

1.25 typical 4.42 elevat
ed 

5.13 typical 6.19 

21 typic
al 

3.85 elevat
ed 

2.40 typical 1.19 elevat
ed 

1.16 typical 2.40 elevat
ed 

4.86 elevat
ed 

7.59 

22 typic
al 

5.05 typical 3.27 typical 1.30 elevat
ed 

1.95 typical 3.27 typical 5.04 elevat
ed 

11.5 

23 elev
ated 

5.78 typical 2.88 elevat
ed 

2.14 elevat
ed 

1.43 typical 2.88 elevat
ed 

5.28 elevat
ed 

5.92 

24 elev
ated 

4.42 typical 2.94 elevat
ed 

0.97 elevat
ed 

1.80 typical 2.94 elevat
ed 

5.32 elevat
ed 

12.8
3 

25 elev
ated 

4.08 typical 2.62 typical 1.11 elevat
ed 

1.33 typical 2.62 elevat
ed 

5.06 elevat
ed 

6.22 

26 elev
ated 

4.22 typical 2.49 typical 1.65 elevat
ed 

0.54 elevated 2.49 elevat
ed 

4.41 typical 1.29 

27 typic
al 

4.25 typical 2.35 typical 1.73 elevat
ed 

0.98 typical 2.35 elevat
ed 

5.45 elevat
ed 

9.06 

28 elev
ated 

4.25 typical 2.15 typical 1.85 elevat
ed 

0.73 typical 2.15 elevat
ed 

5.17 typical 1.32 
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29 typic
al 

3.8 typical 2.41 typical 1.17 elevat
ed 

0.83 typical 2.41 typical 4.84 elevat
ed 

4.49 

30 typic
al 

4.55 elevat
ed 

2.59 elevat
ed 

0.66 elevat
ed 

3.59 typical 2.59 elevat
ed 

5.65 elevat
ed 

13.1
2 

Me
dia

n 

 4.41 
 

2.84 
 

1.41 
 

1.00 
 

2.84 
 

5.04 
 

6.89 

SD  0.73 
 

0.69 
 

0.41 
 

0.65 
 

0.69 
 

0.41 
 

4.13 

Me
an 

 4.60 
 

2.91 
 

1.47 
 

1.14 
 

2.91 
 

4.96 
 

7.72 

 

Postprandial changes in long-chain polyunsaturated fatty acid (LCPUFA) (18:2 n-6, 

18:3 n-6, 18:3 n-3,) concentrations in the CMRF for dietary intake of omega-6 and -3 and the 

corresponding quantitative genetic-risk statement. 

Table F.3 

Individual Participant Postprandial Changes in Long-Chain Polyunsaturated Fatty Acid and 

the Corresponding Qualitative Genetic-Risk Statement 

 SNP ref. marker LCPUFA conc LCPUFA conc LCPUFA conc 

ID Omega-6&-3 (rs 174547) AUC C18:2n-6 AUC C18:3n-6 AUC C18:3n-3 

1 elevated 123.00 0.57 5.53 

2 typical 253.10 1.9 16.44 

3 typical 153.90 0.97 7.83 

4 typical 323.80 2.05 13.71 

5 elevated 174.30 1.29 19.51 

6 elevated 439.70 2.80 10.20 

7 typical 162.70 0.65 7.47 

8 elevated 278.70 3.28 18.12 

9 elevated 135.40 1.57 7.95 

10 typical 176.10 1.54 8.87 

11 elevated 158.10 0.67 8.47 

12 typical 192.10 0.73 22.24 

13 typical 117.20 2.74 8.54 

14 elevated 235.70 3.39 8.98 

15 typical 26.18 0.76 2.80 

16 typical 167.40 1.88 7.38 

17 elevated 475.70 8.53 23.93 

18 typical 349.10 4.99 15.32 

19 elevated 27.10 0.33 2.57 

20 typical 534.80 7.61 27.43 

21 typical 398.80 7.24 25.90 

22 typical 200.00 5.41 14.42 

23 elevated 319.40 2.47 16.94 

24 typical 234.40 2.09 19.59 

25 elevated 172.70 1.34 10.21 

26 elevated 113.10 0.46 2.94 

27 elevated 75.27 0.59 4.65 
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28 elevated 221.00 0.74 7.00 

29 typical 136.20 1.03 8.03 

30 elevated 287.60 2.83 30.50 

Median  184.10 1.72 9.59 

SD  125.18 2.22 7.74 

Mean  222.09 2.41 12.78 

BMI to assess energy balance, protein, total fat, saturated and unsaturated fat,  

monounsaturated fat and the corresponding qualitative genetic risk statement. The categories 

of BMI were: Underweight < 18.5 kg/m2, Healthy/Normal 18.5–24.9 kg/m2, Overweight 25–

29.9 kg/m2, Obese > 30 kg/m2 (BMI retrieved from National Heart Foundation of New 

Zealand, 2022).  

Table F.4 

Individual Participant BMI and the Corresponding Qualitative Genetic Risk Statement 

 BMI BMI SNP ref. marker SNP ref. 
marker 

SNP ref. 
marker 

SNP ref. marker SNP ref. marker 

ID BMI 
kg/m2 

BMI Energy Balance 
rs1800592 

Protein 
rs9939609 

Total Fat 
rs7903146 

Saturated & 
Unsaturated Fat 

rs9939609 

Monounsaturated Fat 
rs1801282 

1 21.6 Healthy diminished enhanced typical enhanced typical 

2 22.7 Healthy diminished typical typical typical typical 

3 21.9 Healthy diminished typical typical typical typical 

4 22.3 Healthy diminished enhanced typical enhanced typical 

5 24.6 Overweight typical typical typical enhanced typical 

6 26.8 Overweight diminished typical typical typical typical 

7 22.1 Healthy diminished typical typical enhanced typical 

8 27.6 Overweight diminished typical typical enhanced typical 

9 24.7 Healthy diminished typical typical typical typical 

10 22.5 Healthy diminished typical typical typical typical 

11 22.6 Healthy diminished typical typical typical typical 

12 24.7 Overweight diminished typical enhanced enhanced typical 

13 25.9 Overweight typical typical typical typical typical 

14 24.9 Overweight diminished typical typical enhanced typical 

15 23.8 Healthy typical enhanced typical enhanced enhanced 

16 25.2 Overweight typical typical typical typical typical 

17 29.1 Overweight typical typical typical enhanced typical 

18 22.6 Healthy diminished enhanced typical enhanced typical 

19 23.3 Healthy diminished typical typical enhanced typical 

20 31.3 Obese typical typical typical enhanced enhanced 

21 23.3 Healthy typical typical typical typical typical 

22 25.3 Overweight typical typical typical typical enhanced 

23 22.3 Healthy diminished typical typical typical typical 

24 29.5 Overweight diminished typical typical typical enhanced 

25 25.6 Overweight diminished typical typical typical typical 

26 24.1 Healthy diminished typical typical enhanced typical 
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27 20.3 Healthy diminished typical typical typical typical 

28 23.7 Healthy diminished typical typical typical typical 

29 21.6 Healthy diminished typical typical enhanced typical 

30 29.2 Overweight typical enhanced typical enhanced typical 

Med 24.0 
      

SD 2.69 
      

Mean 24.5 
      

Postprandial changes in an online visual analogue 100-point scale to assess fat-taste 

perception, sugar preference and hunger (using hunger, satisfaction, fullness, desire to 

consume sweet, or fatty-food appetite scores) and the corresponding qualitative genetic risk 

statement.  

Table F.5 

Individual Participant Postprandial Changes in an Online Visual Analogue 100-Point Scale 

and the Corresponding Qualitative Genetic Risk Statement 

 SNP ref. marker Appetite score SNP ref. marker Appetite score SNP ref. 
marker 

Appetite score 

ID Fat-Taste 
Perception 
rs1761667 

AUC Fat Taste - 
yes 0 no 100 

Sugar Preference 
rs5400 

AUC Sweet 
craving - yes 0 no 

100 

Hunger 
rs1051168 

AUC Hungry - no 
0 yes very 100 

1 enhanced 199.80 typical 66.09 typical 368.00 

2 enhanced 112.50 elevated 87.00 typical 58.92 

3 enhanced 0.00 typical 0.00 typical 207.00 

4 typical 80.25 typical 36.75 typical 347.50 

5 enhanced 152.80 typical 13.50 typical 185.30 

6 enhanced 273.00 typical 40.10 typical 96.67 

7 enhanced 76.08 typical 180.30 typical 55.26 

8 enhanced 122.30 elevated 150.50 typical 182.00 

9 enhanced 94.25 typical 314.00 typical 183.00 

10 enhanced 355.00 typical 248.50 typical 224.30 

11 enhanced 65.00 typical 321.80 typical 346.50 

12 enhanced 75.39 elevated 154.30 typical 251.80 

13 enhanced 234.30 typical 225.00 typical 265.00 

14 enhanced 229.00 typical 23.75 typical 114.20 

15 enhanced 262.50 typical 136.80 elevated 98.47 

16 enhanced 176.30 typical 61.76 elevated 229.30 

17 enhanced 44.25 typical 32.25 typical 126.70 

18 enhanced 39.00 elevated 260.00 typical 46.85 

19 enhanced 250.50 typical 28.34 typical 95.50 

20 typical 124.70 typical 101.50 typical 143.50 

21 enhanced 35.00 typical 373.50 typical 265.50 

22 typical 87.50 typical 55.00 typical 205.80 

23 enhanced 182.30 typical 167.80 typical 273.50 

24 enhanced 126.00 typical 123.50 typical 124.00 
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25 enhanced 218.50 typical 20.88 typical 261.80 

26 enhanced 58.29 elevated 130.50 elevated 281.50 

27 enhanced 265.50 elevated 66.75 typical 337.50 

28 enhanced 37.50 typical 29.69 typical 158.80 

29 enhanced 44.25 typical 23.02 typical 97.75 

30 typical 25.97 typical 21.77 typical 106.00 

Median 
 

117.40 
 

76.88 
 

184.15 

SD 
 

92.68 
 

104.07 
 

94.03 

Mean 
 

134.92 
 

116.49 
 

191.26 
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Appendix G: Nutrient Reference Values for Dietary Components by Australian 

Government, National Health and Medical Research Council, New Zealand Ministry of 

Health (2006). Including Recommended Dietary Intakes (RDI) and Upper Limit (UL).  

Dietary 

component 

Men / years RDI /day Women / years RDI /day Upper Limit 
(UL)/day men & 
women 19+ 

Vitamin D 19-50  
51-70  

5.0 µg 
10.0 µg 

19-50  
51-70  

5.0 µg 
10.0 µg 

80 µg 

Iron  19-70  8 mg 19-50  
50-70  

18 mg 
8 mg (assumed 
over 50 
postmenopausal) 

45 mg 

Protein 19-70  
70+  

52 g 
65 g 

19–70  
70+  

46 g 
57 g 

25% protein 
energy 

PUFA - Omega 3 
- Alpha-linolenic 
acid (ALA) 

ALA - 19+  1.3 g 
(Total 
Omega 3 – 
160 mg) 

ALA - 19+  0.8 g  
(Total Omega 3 
– 90 mg) 

Omega 3 - 3000 
mg 

PUFA - Omega 6 
- Linoleic Acid 
(LA) 

19+ 13 g 19+  8 g No upper limit 
effects known 

Saturated & 
trans-fat 

19+  8-10%  
 (2000 
calories = 
22g of fat) 

19+  18-10% 10%  

Total Fat (aim for 
balance 
saturated, MUFA, 
PUFA) 

19+  20-35% 19+ 20-35%  20-35% 35%  

Zinc 19-70 14 mg 19-70 8 mg 40 mg 
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Appendix H: Results of Findings 

 

Energy balance and the 

UCP1 gene variant 

 

 

 

 

Elevated insulin levels 

and the IRS1 gene 

variant 

 

 

 

 

Sugar preference and the 

GLUT2 gene variant 

 

 

 

 


