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Abstract

Due to advancements in quantum computer algorithms, the cryptographic community is ex-
ploring alternatives to traditional hardness assumptions, such as the discrete logarithm prob-
lem. One such assumption is the Multivariate Quadratic (MQ) problem, which is used by a
number of cryptographic primitives, including the Unbalanced Oil and Vinegar (UOV) signa-
ture scheme. Apart from MQ, UOV uses another, less understood, hardness assumption which
we call the polynomial equivalence problem. The reliance on an open problem and simplicity
of the scheme make UOV an excellent subject for cryptographic research.

This work studies the UOV construction and methods of solving multivariate systems of non-
linear equations that underlie the security of the scheme. The thesis is split into three parts: key
space of UOV, polynomial system solving, and the polynomial equivalence problem. The con-
tributions include a complete classification of sustaining transformations, a study of Gröbner
bases complexity estimation, and implementations of algorithms. Security assessment of UOV
is presented in the final chapter.
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Chapter 1

Introduction

Unbalanced Oil and Vinegar (UOV) is a digital signature scheme that belongs to a class of
cryptographic constructions collectively known as the Multivariate Public Key Cryptosystems
(MPKC). Among the main benefits of UOV are performance, short signature size, and pre-
sumed resistance to quantum algorithms.

In 2016, the National Institute of Standards and Technology initiated a collaborative process
to identify, study, and standardize a set of algorithms for Post-Quantum Cryptography (NIST
PQC) [Nat22]. Since MPKC is presumed to be resilient to attacks by quantum computers there
were a number of proposals from this class of cryptosystems. UOV has not been submitted as
a candidate signature algorithm, but there were several related constructions, such as Rainbow
[DS05] and LUOV [BPSV19]. These algorithms aimed to minimize the key lengths at the cost
of introducing additional complexity. As of this writing, both Rainbow and LUOV have been
broken [Beu22, DDVY21]. On the other hand, UOV remains unbroken for certain parameter
choices for over two decades. Perhaps we will see UOV in the future submissions to NIST
PQC.

As with other cryptographic constructions, the security of UOV is based on presumed hardness
of certain problems as well as a general assumption that P ̸= NP. In particular, there are two
hardness assumptions underlying the security of UOV:

1. The problem of finding solutions to multivariate systems of quadratic equations. This
problem has been demonstrated to be NP-complete for random systems of polynomial
equations [GJ79].

2. The Polynomial Equivalence Problem (PEP). Informally, given a system of multivariate
quadratic equations the goal is to find a decomposition of the system into a linear map and
a quadratic form of a certain structure. There are no known reductions of this problem
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6 CHAPTER 1. INTRODUCTION

to an NP-complete problem.

The motivation of this work is to study how the hardness assumptions above as well as the
specifics of the UOV construction correspond to claimed security levels. In particular, we
explore the following questions:

1. Does the structure of a UOV central map help to solve public keys directly? We noted
above that a randomly generated polynomial system cannot be solved efficiently using
currently known techniques. However, we do not know if the polynomial systems ob-
tained from central maps enjoy the same property.

2. Is PEP a sound security assumption? Despite being at the forefront of the security claims
of UOV this problem appears to be not well understood. At the same time, attacks on
certain parameter selections of UOV appear to be instantiations of PEP.

Organization of the Thesis

The thesis is split into five chapters with Chapters 2, 3, and 4 forming the main body of work.

Chapter 2 defines the Unbalanced Oil and Vinegar signature scheme and studies the structure
of the UOV key space. The main contribution is the complete classification of sustaining
transformations presented by Theorem 2.3.7.

Chapter 3 studies methods of solving multivariate polynomial systems. This is a large topic,
so we restrict our attention to developing complexity bounds on computing Gröbner bases
and studying two additional algorithms that are of interest to MPKC. One of the contributions
of Chapter 3 is the development of Gröbner basis complexity estimates from the ground up.
Since complexity of solving polynomial systems is still an active area of research, we bridge
the gap between the introductory material and the current research. Additionally, we present
an implementation of the Thomae-Wolf algorithm and provide a compact proof of existence of
the respective solutions. This algorithm suggests that the number of equations in UOV is the
defining parameter of the complexity.

Chapter 4 introduces the polynomial equivalence problem for UOV. We study three key results
in this field: Kipnis-Shamir attack, reconciliation attack, and intersection attack. The main con-
tributions of this chapter are the PEP framework and the implementation of the reconciliation
attack. The framework enables reductions of PEP to other problems. We develop a reduction to
the oil space Ox in Theorem 4.1.3 and show how the existing attacks fit into this category. Fur-
ther ideas of reductions include the stabilizer group stab(p) and permutation matrices briefly
discussed in Chapter 5 under future work.
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Chapter 2

Unbalanced Oil and Vinegar

Unbalanced Oil and Vinegar (UOV) is a digital signature scheme introduced by Aviad Kipnis,
Jacques Patarin, and Louis Goubin [KPG99]. We will provide the corresponding definitions
and introduce a suitable notation.

Definition 2.0.1 (Digital Signature). Let k be a field of positive characteristic, m,n ∈ N. A
digital signature is a tuple (Kp,Ks, Sign,Verify,KeyGen), where

(i) Kp is a set of public keys
(ii) Ks is a set of secret keys

(iii) Sign : Ks × km → kn is a map that produces digital signatures
(iv) Verify : Kp × km × kn → {0, 1} is a map that verifies digital signatures
(v) KeyGen is a probabilistic algorithm that produces key pairs (p, s) ∈ Kp × Ks such that

Verify(p, µ,Sign(s, µ)) = 1

for all messages µ ∈ kn. This is known as the correctness property.

A particular specification of the key space Kp × Ks and the corresponding maps Sign, Verify,
KeyGen is called a digital signature scheme. The corresponding components of UOV are based
on multivariate polynomials.

Definition 2.0.2 (Multivariate Polynomial). A multivariate polynomial f in indeterminates
x1, . . . , xn over a field k is a linear combination of monomials xα = xα1

1 · · ·xαn
n of the form

f =
∑
α∈A

cαx
α,

where cα ∈ k and A is a finite subset of Zn
≥0 = {(α1, . . . , αn) | αi ∈ Z≥0, 1 ≤ n ≤ n}. The

set of all multivariate polynomials in x1, . . . , xn over k is denoted by k[x1, . . . , xn].

9
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A polynomial f ∈ k[x1, . . . , xn] defines a map f : kn → k using polynomial evaluation
(a1, . . . , an) 7→ f(a1, . . . , an) for all (a1, . . . , an) ∈ kn. Similarly, an m-tuple of polynomials
g = (g1, . . . , gm) from k[x1, . . . , xn]

m defines a map g : kn → km via

(a1, . . . , an) 7→ (g1(a1, . . . , an), . . . , gm(a1, . . . , an)).

Finding a pre-image a ∈ kn such that g(a) = b for some b ∈ km is known to be NP-complete
for a randomly chosen g ∈ k[x1, . . . , xn]

m. This also applies to quadratic polynomials over
finite fields [GJ79, DPS20], which motivates the construction of UOV and other multivariate
public key cryptosystems.

Informally, the idea of UOV is to use polynomials of a certain structure, which is easily in-
vertible, then hide this structure via a linear change of variables to produce a public key. This
special form of polynomials is captured by the following definition.

Definition 2.0.3 (Central Map). Let n,m be positive integers with n > m. We say that an
ordered sequence of polynomials f = (f1, . . . , fm) in k[x1, . . . , xn]

m is a central map of
Unbalanced Oil and Vinegar if

fℓ =

n−m∑
i=1

n∑
j=i

ci,jxixj (2.1)

for all 1 ≤ ℓ ≤ m with ci,j ∈ k. The set of all polynomials of the form (2.1) is denoted by S.

Observe that the components fℓ of a central map are homogeneous of degree two, so we can
write them as upper triangular matrices in kn×n of quadratic forms

Fℓ =



c1,1 c1,2 · · · · · · · · · c1,n
0 c2,2 · · · · · · · · · c2,n
...

. . . . . .
...

0 · · · 0 cn−m,n−m · · · cn−m,n

0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0


.

Lemma 2.0.4 (Pre-image of a Central Map). Let n > m, f = (f1, . . . , fm) ∈ Sm, and µ =
(µ1, . . . , µm) ∈ km. Assume that the system of equations f(σ1, . . . , σn−m, xn−m+1, . . . , xn)
in k[xn−m+1, . . . , xn]

m behaves as a random system for randomly chosen values σ1, . . . , σn−m

in k. Then, there is a σ = (σ1, . . . , σn) ∈ kn such that f(σ) = µ with probability strictly
greater than 1− 1

q−1 , where q is the order of k.
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Proof. Choose (σ1, . . . , σn−m) ∈ kn−m uniformly at random and evaluate

fℓ(σ1, . . . , σn−m, xn−m+1, . . . , xn) =
n∑

i=n−m+1

dixi + d

for all 1 ≤ ℓ ≤ m, where di, d ∈ k. This produces a system of m linear equations f ′1, . . . , f
′
m

in m variables xn−m+1, . . . , xn. Next, we compose a linear system

f ′1 = µ1
...

f ′m = µm

and attempt to solve it for xn−m+1, . . . , xn. If a solution exists, we obtain the pre-image σ,
where the last m elements come from the solution σn−m+ℓ = xn−m+ℓ for ℓ = 1, . . . ,m. The
probability that a solution exists is determined by the probability that the coefficient matrix of f ′ℓ
is invertible, which occurs with a probability bounded below by 1− 1

q−1 by Corollary 2.1.3.

If a pre-image has not been found from the first attempt, it is possible to select a different
value for (σ1, . . . , σn−m) ∈ kn−m and retry. This is precisely what is done in practice. Due
to nonzero probability of finding a pre-image σ ∈ kn when the linear system of equations
f ′1, . . . , f

′
m behaves as a random system, we assume that central maps are invertible.

Definition 2.0.5 (Unbalanced Oil and Vinegar). Let k be a field of positive characteristic and
suppose n > m. The components of the Unbalanced Oil and Vinegar signature scheme are
defined as follows

(i) The public key space is Kp = k[x1, . . . , xn]
m

(ii) The secret key space is Ks = Sm ×GL(n, k)
(iii) Sign operation maps a secret key (f,A) ∈ Ks and a message µ ∈ km into a signature

σ = (A−1 ◦ f−1)(µ) in kn. This is a probabilistic algorithm as per Lemma 2.0.4.
(iv) Verify operation maps a public key p ∈ Kp, a message µ ∈ km, and a signature σ to 1 if

p(σ) = µ. Otherwise, Verify returns 0.
(v) KeyGen chooses a secret key s = (f,A) from Ks uniformly at random and composes a

public key p = f ◦A in Kp.

Note that the correctness property specified in Definition 2.0.1.(v) holds by Lemma 2.0.4 since

σ = (A−1 ◦ f−1)(µ) =⇒ p(σ) = (f ◦A) ◦ (A−1 ◦ f−1)(µ) = µ,

for all µ ∈ km. Therefore, UOV forms a digital signature scheme.



12 CHAPTER 2. UNBALANCED OIL AND VINEGAR

Remark 1 (Simplified UOV). The original definition of UOV [KPG99] is slightly different
from the one presented above. The secret transformation A is defined to be an invertible affine
map A(x) = Bx+ c for some B ∈ GL(n, k) and c ∈ kn. The central map f is defined to have
linear and constant terms, which makes the public key p also contain linear and constant terms.
Definition 2.0.3 is known as the “simplified UOV” and is commonly used in the analysis of the
signature scheme [KS98, KPG99, DPS20, Beu21]. An instance of UOV based on the original
definition can be transformed into the simplified form by homogenizing the public key p with
respect to a new variable x0. We will restrict our attention to the simplified UOV.

Remark 2 (Alternative Key Generation). Stanislav Bulygin, Albrecht Petzoldt, and Johannes
Buchmann proposed an alternative key generation algorithm for UOV [BPB10]. Instead of
choosing a random central map f ∈ Sm and a random transformation A ∈ GL(n, k), it is
possible to choose a subset of coefficients of a public key p ∈ Rm and a linear map A, then
compute a central map f using the relationships between the coefficients of p and the elements
of A. Once f is determined, the complete public key p is computed using f ◦A.

The name of the signature scheme is assumed to originate from a salad dressing that uses
oil and vinegar as ingredients. Oil and vinegar are mixed together, but they do not combine.
Extending this analogy to definitions above, the input variables to a central map f ∈ Sm are
split into two parts

a1, . . . . . . , an−m︸ ︷︷ ︸
Vinegar

, an−m+1, . . . , an︸ ︷︷ ︸
Oil

.

These variables are “mixed” by a secret linear transformation A but it is possible to recover the
variables using A−1.

Example 2.0.6 (Sign and Verify Operations).
We will generate a small UOV key pair, sign a message, and verify the signature. This example
was produced by the program uov.sage available in Appendix A.1.

Let k be a field of order 31, n = 5, m = 2. Even for such small parameter values the
polynomials contain too many terms to be readable. Therefore, we will use matrices of the
respective quadratic forms. A random linear transformation along with a random central map
are given by

A =


0 23 27 1 23
19 14 15 22 4
7 5 13 7 12
5 24 4 2 10
30 3 15 10 13

 F1 =


15 13 6 9 25
0 21 28 8 18
0 0 24 24 11
0 0 0 0 0
0 0 0 0 0

 F2 =


26 1 5 13 5
0 27 0 21 16
0 0 28 16 9
0 0 0 0 0
0 0 0 0 0


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and the respective public key is

P1 =


22 30 15 13 15
0 26 23 4 21
0 0 14 25 26
0 0 0 12 20
0 0 0 0 10

 P2 =


8 29 15 27 13
0 3 4 8 24
0 0 17 25 13
0 0 0 26 4
0 0 0 0 0

 .
Our goal is to sign the message µ = (7, 14). We choose (σ′1, σ

′
2, σ

′
3) = (18, 7, 29) at random

and substitute into f1 and f2 to obtain linear equations

f ′1 = 15x4 − 4x5 + 9

f ′2 = 8x4 − 2x5 + 9.

The corresponding matrix

B =

[
15 −4
8 −2

]
is invertible, so we can immediately solve the system of equations given by f ′1 = 7 and f ′2 = 14.
This yields solutions σ′4 = x4 = 12 and σ′5 = x5 = 30. The complete pre-image of the central
map f is thus σ′ = (18, 7, 29, 12, 30). Next, we compute a pre-image for the public key via
σ = A−1(σ′)⊺ and obtain the UOV signature σ = (26, 16, 17, 19, 26). To verify the signature,
we compute σ⊺P1σ = 7 and σ⊺P2σ = 14, which matches the message µ.

We will assume the following notation for the rest of the document. Some chapters may ex-
plicitly assign a different meaning to a symbol, but, if the meaning is not specified, it should be
assumed to be as follows.

Symbol Meaning
n Number of variables x1, . . . , xn
m Number of polynomials in a system p1, . . . , pm
R All homogeneous polynomials of degree two in k[x1, . . . , xn]
S All central maps in R
p Public key p = (p1, . . . , pm) ∈ Rm or a single component p ∈ R
f Central map f = (f1, . . . , fm) ∈ Sm or a single component f ∈ S.

2.1 Basic Counting of the Key Space

The set of all possible key combinations of UOV can be defined as a Cartesian product of
central maps with the invertible linear transformations

K = Sm ×GL(n, k).
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Note, there is no need to account for public keys separately since they are merely compositions
of elements of this set.

We will denote by M(x, n) the set of all monomials in k[x1, . . . , xn]. That is,

M(x, n) = {xα = xα1
1 · · ·xαn

n | α = (α1, . . . , αn) ∈ Zn
≥0}.

It is convenient to restrict monomials to a particular degree, so we additionally introduce the
following notation

Md(x, n) = {xα ∈M(x, n) : deg(xα) = d},
M≤d(x, n) = {xα ∈M(x, n) : deg(xα) ≤ d}.

When the number and names of the variables x1, . . . , xn is clear from the context we will
simply write M , Md, M≤d instead of M(x, n), Md(x, n), M≤d(x, n), respectively.

Lemma 2.1.1. The number of distinct monomials in n variables of degrees d and ≤ d is given
by

|Md(x, n)| =
(
n+ d− 1

d

)
and |M≤d(x, n)| =

(
n+ d

d

)
.

Proof. To determine |Md| we need to count the number of ways to split a d-element set into n
subsets, which is the same as choosing an arrangement of n− 1 separators in a set of d objects
and n− 1 separators. That is,

|Md| =
(d+ (n− 1))!

d!(n− 1)!
=

(
n+ d− 1

d

)
.

The second claim follows immediately by

|M≤d| =
d∑

i=0

(
n+ i− 1

i

)
=

(
n+ d

d

)
.

Let q denote the order of field k. For each distinct monomial, there are q choices for the value
of the coefficient in k. This yields a formula for the number of homogeneous polynomials of
degree two

|R| = q
1
2
n(n+1).

The number of possible public keys is then bounded above by |R|m, because we have m poly-
nomials in each public key.
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Input variables xi are split into two subsets called Oil and Vinegar variables respectively:

x1, . . . . . . , xn−m︸ ︷︷ ︸
Vinegar

xn−m+1, . . . , xn.︸ ︷︷ ︸
Oil

While any subset of m variables can be denoted as Oil variables, the common arrangements
are either the last m variables, as illustrated above, or the first m variables. We will use the
arrangement depicted above throughout this document.

Remark 3 (Permutations of Variables). By Kerckhoffs’s principle, a particular implementation
of UOV under investigation must be considered public, so the arrangement of indices does not
increase the key space. On the contrary, if the implementation uses indices 1, . . . ,m for Oil
variables, but a private key is found whose central map is linear in xn−m+1, . . . , xn, the key is
invertible using the same means as the standard signing procedure1.

Lemma 2.1.2. The cardinalities of the main constituents of the UOV key space are as follows:

(i) |GL(n, k)| =
∏n−1

i=0 (q
n − qi)

(ii) |R| = q
1
2
n(n+1)

(iii) |S| = q
1
2
(n−m)(n+m+1)

(iv) |S∁| = q
1
2
n(n+1)

(
1− q−

1
2
m(m+1)

)
, where the complement S∁ is taken with respect to

R.

Proof. (i) Since the linear transformations in GL(n, k) are invertible, they are onto and so must
be defined by n linearly independent vectors. There are qn − 1 choices for the first vector v1
because we must exclude 0. The i-th vector vi is chosen from qn vectors that are not in the
span of the preceding i− 1 vectors defined by W = span{α1v1 + · · ·+ αi−1vi−1 | αj ∈ k}.
Now |W | = qi−1 because there are q choices for each coefficient αj . Consequently, there are
qn − qi−1 choices for vi and the general result follows.

(ii) Follows by the monomial counting argument above.

(iii) Write a central map f ∈ S as a polynomial with distinct monomials and coefficients
αij ∈ k

f =
n−m∑
i=1

n∑
j=i

αijxixj =
n−m∑
i=1

n−m∑
j=i

αijxixj +
n−m∑
i=1

n∑
j=n−m+1

αijxixj .

On the right hand side, the first sum has (n−m)(n−m+1)/2 terms and the second sum has
(n−m)m terms, so there are

1

2
(n−m)(n−m+ 1) + (n−m)m =

1

2
(n−m)(n+m+ 1)

1Accounting for permutations of variables is further discussed in Chapter 5.
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terms in total.

(iv) Since S and S∁ are disjoint in R, we have |S∁| = |R| − |S|. Observe that the power of q in
the expression for |S| can be written as

1

2
(n−m)(n+m+ 1) =

1

2
n(n+m+ 1)− 1

2
nm− 1

2
m(m+ 1)

=
1

2
n(n+ 1)− 1

2
m(m+ 1).

(2.2)

Then the result follows by factoring |R| from the difference below:∣∣∣S∁
∣∣∣ = |R| − |S| = q

1
2
n(n+1) − q

1
2
n(n+1)− 1

2
m(m+1).

An immediate corollary that is worth highlighting is that random square matrices are invertible
with a fairly high probability.

Corollary 2.1.3. Let A be a matrix in kn×n chosen uniformly at random. Then the probability
that A is invertible is strictly greater than 1− 1

q−1 , where q is the order of the field k.

Proof. The probability that a randomly chosen matrix is invertible is determined by

|GL(n, k)|
|kn×n|

=

∏n−1
i=0 (q

n − qi)

qn2 =

n−1∏
i=0

(1− qi−n) = 1−
n∑

i=1

 1

qi

n∏
j=i+1

(
1− 1

qj

)
where the first equality is by Lemma 2.1.2.(i). The products

∏n
j=i+1(1− q−j) < 1, so

|GL(n, k)|
|kn×n|

> 1−
n∑

i=1

q−i > 1−
∞∑
i=1

q−i = 1− 1

q − 1

using geometric series and the fact that q ≥ 2 in Z.

The probability that a randomly chosen polynomial in R is a central map is now easy to com-
pute using Lemma 2.1.2 and Equation (2.2). It is defined by the following ratio

|S|
|R|

= q−
1
2
m(m+1).

Note that the probability is independent of whether we sample polynomials g ∈ R or compo-
sitions g ◦ A for some linear transformation A, provided the sampling is uniform. If we let
A ∈ GL(n, k) and define ψA : R → R by ψA(g) = g ◦ A, then the map is a bijection since A
is invertible. Therefore, the ratio of |S| to |R| is preserved by ψA for all A ∈ GL(n, k).
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2.2 Equivalent Keys

The size of the UOV key spaceK = Sm×GL(n, k) is given by |K| = |S|m|GL(n, k)|, which
can be easily expanded into a formula in q, n,m using Lemma 2.1.2. The subject of this section
is to study whether the elements in K are unique and to further breakdown the key space into
useful subsets.

Definition 2.2.1 (Equivalent Keys). We say that the private key (f,A) ∈ K is equivalent to a
private key (f ′, A′) ∈ K if f ◦A = f ′ ◦A′ as polynomials in R.

The definition above yields an equivalence relation on K

(f,A) ∼ (f ′, A′) ⇐⇒ f ◦A = f ′ ◦A′ in R.

Reflexivity, symmetry, and transitivity hold since the map composition f ◦ A is well-defined
and polynomials are equal in R if and only if all the coefficients are equal. Therefore, the key
space is partitioned into equivalence classes

[p] = {(f,A) ∈ K | p = f ◦A},

where we identified a public key p = f ′ ◦A′ as a representative element of the class.

We are interested in estimating the size of the equivalence classes, which can be achieved using
the sustaining transformation framework of Christopher Wolf and Bart Preneel [WP05].

Definition 2.2.2 (Sustaining Transformation). A linear map A ∈ GL(n, k) is called a sustain-
ing transformation of Unbalanced Oil and Vinegar if f ◦A ∈ S for all f ∈ S.

A trivial example of a sustaining transformation is the identity element of GL(n, k). Let p =
f ◦ T be a public key. If A ∈ GL(n, k) is a sustaining transformation, then

p = f ◦ (AA−1T ) = (f ◦A) ◦ (A−1T ) = f ′ ◦ T ′,

where f ′ ∈ S and T ′ ∈ GL(n, k). That is, a sustaining transformation produces an equivalent
key. Therefore, we can determine the number of equivalent keys by estimating the number of
sustaining transformations. An invaluable tool in this respect is that a matrix of quadratic form
of a central map has a particular structure.

Lemma 2.2.3. Let f ∈ S and denote by F ∈ kn×n the matrix of quadratic form of f . Then F
has a zero submatrix of dimensions m ×m corresponding to the indices of the oil variables.
That is, for our choice of the indices,

f ∈ S ⇐⇒ F =

[
∗ ∗
∗ 0m×m

]
∈ kn×n.
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Proof. (⇐) Write a vector x = (x1, . . . , xn) ∈ k[x1, . . . , xn]
n and a matrix F ∈ kn×n of the

central map as

x =

[
xv
xo

]
and F =

[
F1 F2

F3 0m×m

]
,

where xv = (x1, . . . , xn−m) and xo = (xn−m+1, . . . , xn) denote the components of x corre-
sponding to vinegar and oil variables respectively. Then

f = x⊺Fx =
[
x⊺v x⊺o

] [F1 F2

F3 0

] [
xv
xo

]
= x⊺vF1xv + x⊺vF2xo + x⊺oF3xv.

Since oil and vinegar variables do not overlap in x, the resulting polynomial f is linear in the
oil variables xo and so f ∈ S.

(⇒) Given a polynomial f ∈ S that is linear in xo we can write it as

f = x⊺vG1xv + x⊺vG2xo =
[
x⊺v x⊺o

] [G1 G2

0 0

] [
xv
xo

]
= x⊺Gx

for some matrices G1 ∈ k(n−m)×(n−m) and G2 ∈ k(n−m)×m.

The first estimate of the number of equivalent keys was presented by Wolf and Preneel [WP05,
Theorem 3] based on the following observation

A⊺F =

[
A⊺

1 0
0 A⊺

4

] [
F1 F2

F3 0

]
=

[
A⊺

1F1 A⊺
1F2

A⊺
4F3 0

]
,

FA =

[
F1 F2

F3 0

] [
A1 0
0 A4

]
=

[
F1A1 F2A4

F3A1 0

]
.

Therefore,A⊺FA has the form of a central map, which makes matrices of the formA sustaining
transformations. The count of sustaining transformations of the form A follows immediately
by Lemma 2.1.2

m−1∏
i=0

(qm − qi)

n−m−1∏
i=0

(qn−m − qi),

since |A1| = |GL(m, k)| and |A4| = |GL(n−m, k)|. A better estimate can be obtained using
Theorem 2.3.7, which we will prove in the next section.

Theorem 2.2.4. For a fixed public key p ∈ Rm the number of equivalent keys is bounded below
by

m−1∏
i=0

(qn − qn−m+i)
n−m−1∏

i=0

(qn−m − qi).
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Proof. By Theorem 2.3.7, all matricesA of the following form yield sustaining transformations

A =

[
∗(n−m)×(n−m) 0(n−m)×m

∗m×(n−m) ∗m×m

]
.

Moving row by row from the top down and constructing linearly independent vectors as in the
proof of Lemma 2.1.2, we have |GL(n−m, k)| choices for the top left square submatrix. Once
this submatrix is fixed, the number of choices for the first vector that is not in the span of the
preceding n −m vectors is qn − qn−m. Then for the (i + 1)-th vector in the bottom m rows
we have qn − qn−m+i choices and the formula above follows.

We can now estimate the probability of making a poor choice of the secret linear transformation
during the key generation procedure.

Lemma 2.2.5. The probability that a randomly chosen central map f ∈ S remains linear in the
Oil variables after the linear change of variables f ◦ A for a randomly chosen A ∈ GL(n, k)
is bounded below by

n−m−1∏
i=0

qn−m − qi

qn − qi
.

Proof. Assuming uniform distribution, this probability is equal to the number of sustaining
transformations to the number of elements in GL(n, k). By Theorem 2.2.4 we have a lower
bound on the former value. Re-indexing the variables in the leftmost product of Theorem 2.2.4
to start with i = n−m and combining with Lemma 2.1.2 produces∏n−1

i=n−m(qn − qi)
∏n−m−1

i=0 (qn−m − qi)∏n−1
i=0 (q

n − qi)
,

and the result follows.

2.3 Further Insights Using Group Actions

The sections above were mainly concerned with GL(n, k) and Sm components of the UOV
key space K = Sm ×GL(n, k) independently of each other. Group actions provide means to
bridge this gap by considering how the elements of GL(n, k) act on the polynomials in Rm.

Recall that, given a set X and a group G, a map φ : X ×G→ X is called a right group action
of G on X if φ satisfies the following properties:

(i) Identity: φ(x, e) = x for all x ∈ X and the identity element e ∈ G,
(ii) Compatibility: φ(φ(x, g), h) = φ(x, gh).
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For our purposes we want to define φ via map composition h◦A of homogeneous polynomials
h of degree two and an invertible linear transformation A. Let φ : Rm × GL(n, k) → Rm be
defined by φ(h,A) = h ◦A. Expanding the components of h = (h1, . . . , hm), the image of φ
is as follows

φ((h1, . . . , hm), A) = (h1 ◦A, . . . , hm ◦A)

The map is well-defined since composition hi ◦ A is well-defined. Identity holds because
φ(h, 1) = h. Compatibility holds because φ(φ(h,A), B) = h ◦A ◦B = φ(h,AB) due to the
fact that A,B are linear. Therefore, φ is a right group action.

It is customary to work with left group actions as opposed to right group actions, so we want to
write φ(h,A) = A · h to be consistent with other sources. We can identify a left group action
with the right group action by considering the opposite group of GL(n, k) defined by the same
underlying set and the change of operation from (·) to (⋄) as follows A ·B = B ⋄A.

Lemma 2.3.1. The map φ : GL(n, k)×Rm → Rm defined by φ(A, f) = f ◦A for all f ∈ Rm

and all A ∈ GL(n, k) is a group action. We denote the image φ(A, f) by A · f .

Interpreting the elements of R as matrices of quadratic forms, the action of A on h ∈ R can
be written as A · h = A⊺HA, where H is the matrix corresponding to h. Therefore the three
operations are identical

A · h = h ◦A = A⊺HA.

Definition 2.3.2. The orbit of h ∈ Rm with respect to the general linear group is the set

orb(h) = {A · h ∈ Rm | A ∈ GL(n, k)}.

The stabilizer group of an element h ∈ Rm is a subset of GL(n, k) that fixes h. That is,

stab(h) =
m⋂
i=1

{A ∈ GL(n, k) | A · hi = hi}.

Even though we defined stab(h) as a set, it was called a group with some hindsight. The
name is well-deserved for any characteristic of k, because the set is closed under products and
contains inverse elements.

Orbits partition Rm into disjoint sets using the following equivalence relation

h ∼ h′ ⇐⇒ h′ = A · h,

for some A ∈ GL(n, k). Of particular interest are the orbits produced by the UOV central
maps f ∈ Sm. If p = A · f ∈ Rm is a public key, then p ∈ orb(f). Furthermore, if (A′, f ′) is
an equivalent private key, then p = A · f = A′ · f ′ implies f = A−1A′ · f ′. In other words, f
and f ′ must also share the orbit.
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Lemma 2.3.3. If p = A · f ∈ Rm is a public key and (A′, f ′) is an equivalent private key, then

orb(p) = orb(f) = orb(f ′).

The orbit of a central map f also contains all public keys that can be derived from f , so it is of
little use in cryptanalysis. However, there could be more than one orbit in Rm.

Lemma 2.3.4. If p = T · f ∈ Rm is a public key, then

|stab(p)| = |stab(f)| = |GL(n, k)|
|orb(f)|

.

Proof. Let ψ : stab(f) → stab(p) be defined by ψ(A) = TAT−1 for all A ∈ stab(f). The
map ψ is an inner automorphism of GL(n, k), so |stab(p)| = |stab(f)| will follow as soon as
we show that the image of ψ is in stab(p).

IfA ∈ stab(f) thenA ·f = f . On the other hand, f = T−1 ·p and p = TA ·f by compatibility
of the group action φ. Combining these results produces p = TAT−1 · p, so TAT−1 = ψ(A)
is in stab(p).

The last equality follows by the Orbit-Stabilizer Theorem [Hum96, Theorem 10.16].

Recall that a subset S of R is said to be invariant under I ⊆ GL(n, k) if I · S ⊆ S, where the
product I · S is defined by

I · S = {A · f | A ∈ I and f ∈ S}.

Note that, unlike a stabilizer group stab(f) ⊆ GL(n, k), the invariant I ⊆ GL(n, k) does not
require the elements of S to be fixed. That is, a weaker condition of A · h ∈ S suffices instead
of A · h = h. With this in mind, we make the following definition.

Definition 2.3.5. The set I is a subset of invertible linear transformations that preserve all
central maps. That is, I is the set of all sustaining transformations defined by

I = {A ∈ GL(n, k) | A · f ∈ S for all f ∈ S}.

The inclusion I · S ⊆ S follows from the definition, but the converse also holds because
1 ∈ GL(n, k) preserves all elements of S, so I · S = S.

Lemma 2.3.6. The set I is a subgroup2 of GL(n, k).

2However, I is not a normal subgroup of GL(n, k). See the discussion immediately after the proof of Theo-
rem 2.3.7.
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Proof. Since k is finite so is GL(n, k), so we only need to show that I is closed with respect
to multiplication. Fix f ∈ S and A,B ∈ I , then AB · f = A · f ′ = f ′′ for some f ′, f ′′ ∈ S be
the definition of I .

Theorem 2.3.7. Each sustaining transformation of Unbalanced Oil and Vinegar has a zero
submatrix in the top-right. That is,

A ∈ I ⇐⇒ A =

[
∗ 0(n−m)×m

∗ ∗

]
.

Proof. (⇐) Let f ∈ S and denote by F the matrix of quadratic form f . By Lemma 2.2.3, F
has a zero submatrix corresponding to the indices of the oil variables. Let A be of the form
above. Then

FA =

[
F1 F2

F3 0

] [
A1 0
A3 A4

]
=

[
F1A1 + F2A3 F2A4

F3A1 0

]
,

A⊺F =

[
A⊺

1 A⊺
3

0 A⊺
4

] [
F1 F2

F3 0

]
=

[
A⊺

1F1 +A⊺
3F3 A⊺

1F2

A⊺
4F3 0

]
.

Therefore, A⊺FA must have a zero submatrix in the bottom right. Applying Lemma 2.2.3 in
the opposite direction implies that f ◦A ∈ S. In other words,A is a sustaining transformation3.

(⇒) Suppose there is a matrix

A =

[
A1 A2

A3 A4

]
∈ I,

such that the submatrix A2 ̸= 0. Consider the matrix F of an arbitrary quadratic form f ∈ S.
By Lemma 2.2.3, F has a zero submatrix in the bottom right. Then,

A · f = A⊺FA =

[
∗ ∗
∗ 0

]
,

where the last equality follows by Lemma 2.2.3 in the opposite direction. Multiplying A⊺FA
produces[

A⊺
1 A⊺

3

A⊺
2 A⊺

4

] [
F1 F2

F3 0

] [
A1 A2

A3 A4

]
=

[
∗ ∗
∗ A⊺

2F1A2 +A⊺
2F2A4 +A⊺

4F3A2

]
.

In particular, the following holds for all F ∈ kn×n, since we have already taken into account
that F must have the structure of the central map

A⊺
2F1A2 +A⊺

2F2A4 +A⊺
4F3A2 = 0. (2.3)

3Direction (⇐) of Theorem 2.3.7 is an extension of [DPS20, Lemma 5.10] that additionally covers A⊺F from
an overview of the reconciliation attack by Ding et al. It appears that the authors were not aware that direction (⇒)
also holds, which provides a complete classification of sustaining transformations of UOV.
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Denote the elements of the (n − m) × n submatrix A2 by aij and the elements of the (n −
m) × (n −m) submatrix F1 by bij . Since A2 ̸= 0 there must be some nonzero element ars.
However, the equation (2.3) must hold for all F ∈ kn×n, so we set F2 = F3 = 0 and we set
all elements of F1 to zero except for brr = 1. But then the product A⊺

2F1A2 = (cij) must be
equal to zero, yet the element css = a2rs ̸= 0. This is a contradiction.

An interesting application of Theorem 2.3.7 is to show that I is not a normal subgroup of
GL(n, k). Suppose I is normal then B−1AB must be in I for all A ∈ I and all B ∈ GL(n, k).
But B−1AB is a change of basis and we can easily find a basis that moves some nonzero
elements into the top-right submatrix of A.

Lemma 2.3.8. The subgroup I ⊆ GL(n, k) preserves public keys:

I · S∁ = S∁.

Proof. Since 1 ∈ I , we only need to show that I · S∁ ⊆ S∁. Let A ∈ I and let P be a matrix
of quadratic form p ∈ S∁. By Theorem 2.3.7, the top-right submatrix of A is zero, so

A · p =
[
A⊺

1 A⊺
3

0 A⊺
4

] [
P1 P2

P3 P4

] [
A1 0
A3 A4

]
=

[
∗ ∗
∗ A⊺

4P4A4

]
.

SupposeA ·p ̸∈ S∁, thenA ·p ∈ S, which by Lemma 2.2.3 impliesA⊺
4P4A4 = 0. Now P4 ̸= 0

since p ∈ S∁, so A4 must either be zero or singular. However, both cases contradict that A is
invertible.

2.4 Key Space Statistics

Using the results from the discussion above we will now compute different statistics about the
UOV key space. This should illustrate how large the components of the key space are relative to
each other. The statistics is computed using a small selection of published UOV parameter sets
summarized in Table 2.1. We will augment the selection with a few small parameter values.

Table 2.2 provides counting statistics about the public keys and central maps. Table 2.3 shows
the effect of equivalent keys on the key space and compares the results obtained in this thesis
with prior work on sustaining transformations [WP05]. Table 2.4 shows the likelihood of
making a poor choices during the key generation process.

We conclude this section with Figure 2.1, which illustrates how all components of the UOV
key space uncovered in this section fit together. This summarizes our current knowledge about
the structure of the key space.
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m n q n = cm Comments
44 103 28 n ≈ 2.34m An optimistic parameter choice due to Czypek et al.

[CHT12]. It is no longer considered to provide 128
bits of security because of the intersection attack
(Section 4.4).

48 144 28 n = 3m A set of parameters for 128-bit security level pub-
lished by Ding et al. [DPS20, Table 5.1].

64 192 2 n = 3m A set of parameters from the sustaining transforma-
tion framework of Wolf and Preneel [WP05]. We
include this to simplify the comparison.

Table 2.1: A selection of published UOV parameters.

m n q log2 |Rm| log2 |Sm| log2 |GL(n, k)| log2 |K|
2 5 2 30 24 23 47
2 5 31 148 118 123 242
44 103 256 1 885 312 1 536 832 84 871 1 621 703
48 144 256 4 008 960 3 557 376 165 887 3 723 263
64 192 2 1 185 792 1 052 672 36 862 1 089 534

Table 2.2: Counts of different components using Lemma 2.1.2.

m n q log2 |K| K ′ red. log2 |K ′| K ′′ red. log2 |K ′′|
2 5 2 47 9 37 15 31
2 5 31 242 64 178 94 148
44 103 256 1 621 703 43 335 1 578 368 64 103 1 557 600
48 144 256 3 723 263 92 159 3 631 104 129 023 3 594 240
64 192 2 1 089 534 20 476 1 069 057 28 668 1 060 865

Table 2.3: Key space reductions via sustaining transformations. Column |K| indicates the size
of the key space via direct computation |Sm||GL(n, k)|. The key spacesK ′ andK ′′ correspond
to key space reductions via sustaining transformations using the estimates from [WP05] and
Theorem 2.2.4 respectively.
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GL(n, k)

I

Astab(f) stab(p)

R

orb(f) f ′ f p

S S∁

ψ

I · S = S I · S∁ = S∁

Figure 2.1: Key space of UOV. A public key p ∈ S∁ is a composition of f ∈ S with a secret
transformation A ∈ GL(n, k). The subset of GL(n, k) that contains A (dashed) contains
other solutions to PEP. The map ψ is the inner automorphism from Lemma 2.3.4. Note that I
preserves all central maps by definition, but a particular central map f might have stabilizers
outside of I .
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m n q log2 P[g ∈ S] log2 P[f ◦A ∈ S]

2 5 2 −3 −7
2 5 31 −14 −29
44 103 256 −7 920 −20 768
48 144 256 −9 408 −36 864
64 192 2 −2 080 −8 193

Table 2.4: Probability estimates. We denote by P[g ∈ S] the probability of a randomly chosen
polynomial g in R to be a central map. Column P[f ◦ A ∈ S] specifies the probability that a
randomly chosen matrix A ∈ GL(n, k) maps a central map f back to some other central map
as specified in Lemma 2.2.5.



Chapter 3

Polynomial Systems of Equations

After a brief introduction to Gröbner bases, we will study complexity estimates, restricting our
attention to case n = m. While such restriction is artificial, it allows us to produce a self-
contained exposition of this topic. We conclude this chapter with two additional algorithms
that are of interest to multivariate public key cryptography. We study Thomae-Wolf algorithm
in the case n > 2m and the XL method when n < m.

3.1 Solving Equations Using Gröbner Bases

Let I be an ideal in the polynomial ring k[x1, . . . , xn]. By the Hilbert Basis Theorem [CLO15,
Theorem 2.5.4] all ideals in a polynomial ring are finitely generated, so there are f1, . . . , fm ∈
k[x1, . . . , xn] such that

I = ⟨f1, . . . , fm⟩ =

{
m∑
i=1

fihi | hi ∈ k[x1, . . . , xn]

}
.

Informally, a Gröbner basis of an ideal I is a finite set of generators G ⊆ I such that division
of any element in k[x1, . . . , xn] by G produces a unique remainder irrespective of how the
generators are ordered during division1.

Before we formally define a Gröbner basis we need to review the ordering of terms in polyno-
mials. The following definition plays a crucial role in all that follows. Some statements below
may even assume that a monomial order is fixed without stating it explicitly.

1The equivalence of this definition to the one given below follows from the list of 10 characterizations of Gröbner
bases provided by Becker and Weispfenning [BW93, Theorem 5.35].

27
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Definition 3.1.1 (Monomial Order). A monomial order is a relation < on Zn
≥0 such that < is a

total order, a well-ordering, and satisfies the following implication for all γ ∈ Zn
≥0

α < β =⇒ α+ γ < β + γ. (3.1)

While the monomial order is defined on Zn
≥0 we will use it on monomials by means of the

following map. Recall from Section 2.1 that we denote by M(x, n) the set of all monomials
in k[x1, . . . , xn] and abbreviate it as M when the names and number of the variables are clear.
Let φ :M → Zn

≥0 be defined by

φ(xα1
1 · · ·xαn

n ) = (α1, . . . , αn).

The map φ is a bijection and it preserves multiplication of monomials via φ(xαxβ) = φ(xα)+
φ(xβ) = α + β. Consequently, we will write xα < xβ to mean φ(xα) < φ(xβ). Observe
that φ enables us to identify multiplication in M with addition in Zn

≥0, which is particularly
convenient for divisibility of monomials

xα | xβ ⇐⇒ β = α+ γ for some γ ∈ Zn
≥0.

Once the monomial order is fixed we can refer to leading terms of polynomials in k[x1, . . . , xn]
without ambiguity. Let f =

∑
α∈A cαx

α be a nonzero polynomial in k[x1, . . . , xn] and denote
by β = max{|α| : α ∈ A}. We define the leading monomial (LM), the leading coefficient
(LC), and the leading term (LT) of f by

LM(f) = xβ, LC(f) = cβ, LT(f) = LC(f)LM(f).

The purpose of property (3.1) should now become apparent. It ensures that monomial ordering
is compatible with multiplication in k[x1, . . . , xn]. That is, LT(fg) = LT(f)LT(g).

The standard monomial orders are lexicographic (<lex), degree lexicographic (<deglex), reverse
lexicographic (<revlex), and degree reverse lexicographic (<degrevlex) defined by

α <lex β
def.⇐⇒ the leftmost nonzero component of (β − α) in Zn is positive,

α <deglex β
def.⇐⇒ |α| < |β| or (|α| = |β| and α <lex β) ,

α <revlex β
def.⇐⇒ the rightmost nonzero component of (β − α) in Zn is negative,

α <degrevlex β
def.⇐⇒ |α| < |β| or (|α| = |β| and α <revlex β) ,

Any monomial order that satisfies α < β whenever |α| < |β| is called a graded order.
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Definition 3.1.2 (Gröbner Basis). Fix a monomial order and let I ̸= ⟨0⟩ be an ideal in
k[x1, . . . , xn]. A finite subset G of I is said to be a Gröbner basis for I if

⟨{LT(f) | f ∈ I}⟩ = ⟨{LT(g) | g ∈ G}⟩ .

We will denote ⟨{LT(h) | h ∈ H}⟩ by ⟨LT(H)⟩ for all nonempty subsets H of k[x1, . . . , xn],
so the Gröbner basis condition can be restated as ⟨LT(I)⟩ = ⟨LT(G)⟩. Note that we have
⟨LM(H)⟩ = ⟨LT(H)⟩ since k is a field.

There is a certain kind of a Gröbner basis that is unique for each ideal and monomial order by
[CLO15, Theorem 2.7.5].

Definition 3.1.3 (Reduced Gröbner Basis). A finite subset G of an ideal I in k[x1, . . . , xn] is
said to be a reduced Gröbner basis for I if

(i) G is a Gröbner basis for I with respect to some monomial ordering
(ii) For all g ∈ G, LC(g) = 1

(iii) For all g =
∑

α∈A cαx
α ∈ G and all α ∈ A, xα ̸∈ ⟨LT(G \ {g})⟩.

We need one more definition before we can discuss the use of Gröbner bases for the purposes
of solving multivariate systems of equations.

Definition 3.1.4. (Affine Variety and Ideal of a Variety) Let I ⊆ k[x1, . . . , xn] be an ideal. A
subset V(I) ⊆ kn is said to be an affine variety of I if

V(I) = {a ∈ kn | f(a) = 0 for all f ∈ I}.

Let V ⊆ kn be an affine variety. We define the ideal I(V ) ⊆ k[x1, . . . , xn] to be

I(V ) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ V }.

Suppose we are given a consistent system of equations f1, . . . , fm in k[x1, . . . , xn] and we
want to find a point a ∈ V(f1, . . . , fm). We start with computing a Gröbner basis for I =
⟨f1, . . . , fm⟩ in lexicographic order, which is particularly convenient for solving polynomial
systems of equations.

Theorem 3.1.5 (Elimination Theorem). LetG be a Gröbner basis of an ideal I in k[x1, . . . , xn]
with respect to lexicographic ordering. Then

G ∩ k[xi, . . . , xn] = I ∩ k[xi, . . . , xn],

for all i = 1, . . . , n.

Proof. [CLO15, Theorem 3.1.2]
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The set I ∩ k[xi+1, . . . , xn] forms an ideal in k[xi+1, . . . , xn] that is called the i-th elimination
ideal. IfG∩k[xn] ̸= ∅ then we expect to find univariate polynomials in the intersection. These
polynomials can be factored using Berlekamp’s algorithm [Ber67] to find a set of solutions
an ∈ k. Once a solution an is obtained, we would like to extend it to (an−1, an). The existence
of such extensions is established by the following theorem.

Theorem 3.1.6 (Extension Theorem). Suppose k is algebraically closed. Let I = ⟨f1, . . . , fm⟩
be an ideal in k[x1, . . . , xn] and let J = I ∩ k[x2, . . . , xn] be the first elimination ideal of I .
Denote by di ∈ Zn

≥0 the maximum degree of x1 among all monomials in fi and write the
generators of I as

fi =

di∑
j=0

hi,jx
j
1

for some hi,j ∈ k[x2, . . . , xn]. Then a′ = (a2, . . . , an) ∈ V(J) and a′ ̸∈ V(h1,d1 , . . . , hm,dm)
imply the existence of a1 ∈ k such that (a1, a′) ∈ V(I).

Proof. [CLO15, Theorem 3.6.8].

These theorems produce an algorithm for solving polynomial systems of equations. Let I =
⟨f1, . . . , fm⟩ be an ideal in k[x1, . . . , xn] and suppose k is algebraically closed. We compute
a Gröbner basis G for I in lexicographic order. Starting with an empty solution, as i ranges
from n to 1 we maintain an intermediate solution from the previous step (ai+1, . . . , an) ∈
V(I ∩ k[xi+1, . . . , xn]). At each step i we proceed as follows:

1. Denote by {g1, . . . , gt} the intersectionG∩k[xi, . . . , xn] and substitute the intermediate
solution to obtain g′j = gj(ai+1, . . . , an) ∈ k[xi].

2. Solve the univariate system by factoring the greatest common divisor of g′1, . . . , g
′
t.

3. Check the solutions ai ∈ k using the extension theorem:
(a) If there is a solution, we update the intermediate solution to (ai, ai+1, . . . , an) and

continue to i+ 1.
(b) If there are no solutions, we choose an alternative intermediate solution (ai+1, . . . , an)

or terminate if there are none.

For finite fields, we can work over an algebraic closure of k and exclude the solutions of no
interest by adding field equations into a system at Step 2.

3.2 Complexity of Gröbner Basis Computation

The goal of time complexity estimation is to express the number of operations required to
compute a Gröbner basis as a function of input parameters, such as the number of variables
n, the number of polynomials m, and the order of the field k. The operations are counted in
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the base field k and reported using the big O notation. We will develop the estimates from the
ground up.

3.2.1 Hilbert Polynomial of a Monomial Ideal

Gröbner basis complexity estimation uses Hilbert functions, Hilbert polynomials, and other ob-
jects defined in the following sections. In this section we will prove the existence and unique-
ness of Hilbert polynomials for the case of monomial ideals (Theorem 3.2.4). The definition
of a Hilbert polynomial for an arbitrary ideal is postponed until the next section.

Recall that a monomial ideal is an ideal generated by monomials. If I =
〈
{xα | α ∈ A ⊆ Zn

≥0}
〉

is such an ideal, we can test whether a monomial is in I using divisibility

xβ ∈ I ⇐⇒ xα | xβ for some α ∈ A.

Definition 3.2.1 (Complement of Monomial Ideal). Let I be a monomial ideal in k[x1, . . . , xn].

(i) A subset C(I) ⊆ Zn
≥0 is called a complement of the monomial ideal I if

C(I) = {α ∈ Zn
≥0 | xα ̸∈ I}.

(ii) Let E ⊆ {1, . . . , n}. We say that [E] is a coordinate subspace of Zn
≥0 if

[E] = {(a1, . . . , an) ∈ Zn
≥0 | ai = 0 for all i ̸∈ E}.

(iii) A subset T ⊆ Zn
≥0 is called a translate of the coordinate subspace [E] if

T = α+ [E] = {α+ β ∈ Zn
≥0 | β ∈ [E]},

where α ∈ Zn
≥0 is such that the dot product α · β = 0 for all β ∈ [E].

The following lemma summarizes the main properties of the complements.

Lemma 3.2.2. Let I ⊆ k[x1, . . . , xn] be a proper monomial ideal, E ⊆ {1, . . . , n}, and
α = β + γ in Zn

≥0. Then

(i) V({xi | i ∈ E}) ⊆ V(I) ⇐⇒ [E∁] ⊆ C(I),
(ii) α+ [E] ⊆ C(I) =⇒ β + [E] ⊆ C(I).

Proof. (i) [CLO15, Proposition 9.2.2.(i)]

(ii) Suppose β + [E] ̸⊆ C(I), then there must be δ ∈ [E] such that xβ+δ ∈ I . Since I
is an ideal, we can multiply by xγ to obtain xγxβ+δ = xα+δ ∈ I , which contradicts that
α+ [E] ⊆ C(I).



32 CHAPTER 3. POLYNOMIAL SYSTEMS OF EQUATIONS

A variety of a monomial ideal can be written as a finite union of linear subspaces in kn. Suppose
I ⊆ k[x1, . . . , xn] is a proper monomial ideal. We can write I =

〈
xα(1), . . . , xα(r)

〉
for some

α(i) ∈ Zn
≥0. Using the fact that V(I + J) = V(I)∩V(J), we rewrite it as a finite intersection

V(I) = V(xα(1)) ∩ · · · ∩ V(xα(r)).

Since V(IJ) = V(I) ∪ V(J), each V(xα(i)) can further be broken down into a finite union

V(xαi1
i1

· · ·xαis
is

) = V(xαi1
i1

) ∪ · · · ∪ V(xαis
is

),

where V(x
αij

ij
) = V(xij ) by V(I) = V(

√
I). Applying the distributivity property of unions

with respect to intersections, we rewrite the original variety as

V(I) = V({xi | i ∈ A1}) ∪ · · · ∪ V({xi | i ∈ Ar}),

for some Aj ⊆ {1, . . . , n}. Next, we eliminate all V({xi | i ∈ Ap}) ⊆ V({xi | i ∈ Aq}) for
p ̸= q to obtain the unique minimal decomposition of V(I) into irreducible varieties. Observe
that varieties V({xi | i ∈ Aj}) form linear subspaces in kn. This motivates the following
definition

dimV({xi | i ∈ Aj}) = n− |Aj |.

Similarly, we can break down the complement of the monomial ideal C(I) into translates of
the coordinate subspaces of Zn

≥0.

Theorem 3.2.3. If I ⊆ k[x1, . . . , xn] is a proper monomial ideal, then there are finitely many
translates T1, . . . , Tr ∈ Zn

≥0 such that C(I) = T1 ∪ · · · ∪ Tr

Proof. [CLO15, Theorem 9.2.3].

We are now ready to state the main result.

Theorem 3.2.4. Let I ⊆ k[x1, . . . , xn] be a proper monomial ideal and let d ∈ Z≥0 be
the maximal dimension of the linear subspace in V(I). Denote by C≤t(I) the exponents of
monomials not in I of degree at most t.

(i) There is p ∈ Q[t] of degree d such that p(t) = |C≤t(I)| for all t ≥ t0 in Z≥0.
(ii) The polynomial p can be written as

p =
d∑

i=0

ai

(
t

i

)
,

where the coefficients ai ∈ Z are unique and ad > 0.
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Proof. By Theorem 3.2.3 we can writeC(I) = T (1)∪· · ·∪T (r) for some translates T (i) ⊆ Zn
≥0

such that T (i) ̸⊆ T (j) for i ̸= j. If we restrict to monomials of degree at most t, we also have

C≤t(I) = T
(1)
≤t ∪ · · · ∪ T (r)

≤t ,

where T (i)
≤t are subsets of the respective translates with the monomial degrees restricted accord-

ingly. To count the elements in C≤t(I) we apply the Inclusion-Exclusion Principle

|C≤t(I)| =
r∑

i=1

∣∣∣T (i)
≤t

∣∣∣+ r∑
i=2

(−1)i−1
∑

1≤j1<···<ji≤r

∣∣∣T (j1)
≤t ∩ · · · ∩ T (ji)

≤t

∣∣∣
 . (3.2)

However, first we need to develop several auxiliary results. We define the dimension of T (j),
denoted dimT (j), to mean the number of components in the span of the respective coordinate
subspace in Zn

≥0.

Claim 1: Each T (j) is of dimension at most d with at least one translate of dimension equal to
d. Suppose there is T (ℓ) = α+[Aℓ] such that dimT (ℓ) > d. By Lemma 3.2.2.(ii), [Aℓ] ⊆ C(I)
and by Lemma 3.2.2.(i), there is some linear subspace V = V({xi | i ∈ A∁

ℓ}) in V(I). Then
dimV = n − |A∁

ℓ | = |Aℓ| > d, which contradicts that d is the maximal dimension of the
linear subspace in V(I). Let P = V({xi | i ∈ E}) be the linear subspace in V(I) of maximal
dimension, then dimP = n− |E| = d. Applying Lemma 3.2.2.(i) implies that there is [E∁] of
dimension |E∁| = n− |E| = d in C(I).

Claim 2: If A = α + [U ] and B = β + [V ] are such that A ̸= B, then dimA ∩ B <
max{dimA,dimB}. If A ∩ B = ∅, the dimension of A ∩ B is zero, which is strictly less
than the maximum of dimA and dimB because A ̸= B. Suppose that A ∩ B ̸= ∅. If
[U ] = [V ], then A ̸= B implies α ̸= β, but then A ∩ B = ∅ because α and β are orthogonal
to [U ] = [V ]. It must be that [U ] ̸= [V ] and hence dim[U ] ∩ [V ] < max{dim[U ],dim[V ]}.
Fix a monomial order and let γ = min{A ∩ B}, then A ∩ B = γ + [U ] ∩ [V ]. Therefore,
dimA ∩B = dim[U ] ∩ [V ] < max{dim[U ],dim[V ]} = max{dimA,dimB}.

Claim 3: If T = α + [E], then there is g ∈ Q[t] of degree e = dim[E] with LC(g) > 0
such that g(t) = |T≤t| for all t ≥ |α|. Observe that e = |E|. The number of points β ∈ [E]
satisfying |β| ≤ t is

(
e+t
t

)
by Lemma 2.1.1. Accounting for translation by α and expanding the

binomial coefficient, the number of points in T corresponding to monomials of degree at most
t is given by

g(t) =

(
e+ t− |α|
t− |α|

)
=

1

e!
te + q(t),

whenever t ≥ |α|. Note that q ∈ Q[t] is such that deg(q) < e and therefore LC(g) > 0.
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(i) Consider the equation (3.2). By Claim 1, the first sum on the right-hand side

g(t) =

r∑
i=1

∣∣∣T (i)
≤t

∣∣∣
contains at least one translate of dimension d and all other translates are of dimension ≤ d.
By Claim 3, each |T (i)

≤t | is a polynomial in Q[t] of degree ≤ d and the leading coefficients
are positive. Consequently, no cancellations of leading terms may occur in g. We thus obtain
g ∈ Q[t], deg(g) = d, and LC(g) > 0.

Bringing our attention to the second sum on the right-hand side of equation (3.2)

h(t) =

r∑
i=2

(−1)i−1
∑

1≤j1<···<ji≤r

∣∣∣T (j1)
≤t ∩ · · · ∩ T (ji)

≤t

∣∣∣
 ,

we see that each T = T (j1) ∩ · · · ∩ T (ji) is an intersection of at least two distinct translates.
Therefore, by Claim 2, dimT < max{dimT (j1), . . . ,dimT (ji)} ≤ d. Invoking Claim 3
again, we see that the polynomials counting |T≤t| for t large enough, must all be of degree
strictly less than d. Therefore

p(t) = g(t) + h(t) ∈ Q[t]

is such that deg(p) = d, LC(p) = LC(g) > 0, and p(t) ∈ Z for all t ≥ t0 in Z≥0.

(ii) Let b0 = p(t0), b1 = p(t0+1), . . . , bd = p(t0+d) ∈ Z≥0 and construct a Newton-Gregory
interpolating polynomial q ∈ Q[t] using

q =

d∑
i=0

∆i

(
t

i

)
, ∆i =

i∑
j=0

(−1)j
(
i

j

)
bi−j ,

so that q(i) = bi = p(t0 + i) for all i = 0, . . . , d. Since
(
i
j

)
∈ Z and bi−j ∈ Z, each ∆i is also

in Z. Polynomials
(
t
i

)
∈ Q[t] are of degree i and

(
t
i

)
(Z) ⊆ Z. Therefore, q satisfies q(Z) ⊆ Z

and has degree at most d. Translating by t0, we obtain a polynomial p′ ∈ Q[t] defined by

p′ =

d∑
i=0

∆i

(
t− t0
i

)
.

We claim that p = p′ in Q[t]. Suppose p − p′ ̸= 0 in Q[t]. Since (p − p′)(t0 + i) = 0
for i = 0, . . . , d, the polynomial p − p′ must have at least d + 1 roots. This implies that
deg(p− p′) ≥ d+ 1, which contradicts that p− p′ has degree at most d.
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Since p is merely a translation of q by an integer t0, q(Z) ⊆ Z implies p(Z) ⊆ Z. We repeat
the process of constructing a Newton-Gregory interpolating polynomial, but this time starting
with c0 = p(0), . . . , cd = p(d). By a similar argument, we obtain

p =
d∑

i=0

ai

(
t

i

)
, (3.3)

where ai are in Z because they correspond to ∆i in the argument above and ad > 0 by part (i).
The expression (3.3) is unique because polynomials

(
t
i

)
are of degree i and so they are linearly

independent.

3.2.2 Index of Regularity

Index of regularity plays an important role in complexity estimation. However, it depends on a
number of auxiliary definitions, which we provide below. While our main interest is in homo-
geneous systems, in this section we will temporarily work with both affine and homogeneous
cases. Theorem 3.2.9 enables transition between these cases.

The polynomial ring R = k[x1, . . . , xn] forms a vector space over k spanned by monomials
M(x, n). If we restrict the degree of polynomials, we obtain a finite dimensional vector space

R≤t = spanM≤t(x, n) = {f ∈ k[x1, . . . , xn] | deg(f) ≤ t} ∪ {0}.

The dimension of R≤t, as a vector space over k, is given by

dimk R≤t = |M≤t(x, n)|.

An ideal I in R forms a vector subspace of R because ideals are closed under addition and
multiplication by elements of R ⊇ k. This enables us to define

I≤t = I ∩R≤t,

which is a vector subspace of R≤t, because multiplication by scalars and addition of polyno-
mials do not increase the degree.

For the homogeneous polynomials and ideals, we denote byRh the polynomial ring k[x0, . . . , xn]
of n+ 1 variables over k. The corresponding degree restrictions are defined by

Rh
t = {f ∈ Rh | f is homogeneous of degree t} ∪ {0},
It = I ∩Rh

t ,

where I is assumed to be a homogeneous ideal. Because addition of homogeneous polynomials
of degree t produces a homogeneous polynomial of degree t or zero, the sets Rh

t and It form
the respective vector subspaces. Consequently, we can also talk about quotient subspaces and
their dimension.
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Definition 3.2.5 (Hilbert Function). Let I be an ideal in R. We say that f : Z≥0 → Z≥0 is an
affine Hilbert function of R

/
I if

f(t) = dimk

(
R≤t

/
I≤t

)
.

If I is a homogeneous ideal inRh, we define a Hilbert function ofRh
/
I by f(t) = dimk

(
Rh

t

/
It
)
.

Since a Hilbert function is always used in the context of a particular polynomial ring and an
ideal, we introduce the following notation

HFR/I(t) = dimk

(
R≤t

/
I≤t

)
,

HFRh/I(t) = dimk

(
Rh

t

/
It

)
,

where the second line (non-affine case) assumes that the ideal I is homogeneous.

To compute a value of the Hilbert function we need to subtract the respective dimensions

HFR/I(t) = dimk R≤t − dim I≤t.

It is easy to compute dimk R≤t = |M≤t(x, n)| =
(
n−t
t

)
using Lemma 2.1.1. However, it is not

immediately obvious how to handle dimk I≤t.

Lemma 3.2.6. If I is an ideal inR and ⟨LT(I)⟩ is obtained with respect to a graded monomial
order, then

HFR/I = HFR/⟨LT(I)⟩.

The same result holds with respect to any monomial order if I is a homogeneous ideal in Rh.

Proof. Affine case [CLO15, Proposition 9.3.4]; homogeneous case [CLO15, Proposition 9.3.9].

When I ⊊ R is a monomial ideal, the corresponding Hilbert function counts the number of
elements in the complement

HFR/I(t) = |C≤t(I)|.

Now if I is an ideal in R, which is not necessarily a monomial ideal, we can fix a graded
monomial order such as <deglex and compute a monomial ideal ⟨LT(I)⟩. Then, By Lemma
3.2.6, we have

HFR/I(t) = |C≤t(⟨LT(I)⟩)|.

If we now invoke Theorem 3.2.4, we are assured that there is a unique polynomial p ∈ Q[t] and
t0 ∈ Z≥0 such that p(t) counts the number of monomials not in ⟨LT(I)⟩ of degree at most t for
all t ≥ t0. Note that the Hilbert polynomial of R

/
I is uniquely determined for each monomial

ideal and a monomial ideal, in turn, has a unique minimal basis [CLO15, Proposition 2.4.7].
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Definition 3.2.7 (Hilbert Polynomial). Let I be an ideal in R. We say that p ∈ Q[t] is an affine
Hilbert polynomial of R

/
I if there is t0 ∈ Z≥0 such that

p(t) = HFR/I(t),

for all t ≥ t0. If I is a homogeneous ideal in Rh, we require that p(t) = HFRh/I(t) for all
t ≥ t0.

Similarly to Hilbert functions, we denote an affine Hilbert polynomial and a Hilbert polyno-
mial by HPR/I and HPRh/I respectively with the assumption that the ideal I in HPRh/I is
homogeneous. We can now define the primary object of this section.

Definition 3.2.8 (Index of Regularity). Let I be an ideal in R. An integer t0 ∈ Z≥0 is called
the index of regularity of I if t0 is the smallest integer such that

HFR/I(t) = HPR/I(t),

for all t ≥ t0.

The following results allows us to pass between homogeneous and inhomogeneous cases when
working with Hilbert functions and polynomials.

Theorem 3.2.9. Let I be an ideal in R and suppose Ih is its homogenization in Rh. Then

HFR/I(t) = HFRh/Ih(t) and HPR/I(t) = HPRh/Ih(t),

for all t ∈ Z≥0.

Proof. [CLO15, Theorem 9.3.12].

We define the dimension of a variety as follows.

Definition 3.2.10 (Dimension of a Variety). The dimension of a nonempty affine variety V ⊆
kn is the degree of the Hilbert polynomial of the ideal I(V ). Similarly, the dimension of a
nonempty projective variety W ⊆ Pn(k) is defined by dim W = deg

(
HPRh/I(W )

)
.

3.2.3 Gröbner Basis up to Degree d

Instead of developing a complete Gröbner basis algorithm with the corresponding termination
conditions, we can obtain results about complexity of computing Gröbner bases using simpler
methods developed in this section.

To streamline the discussion below we will introduce the following two definitions. We will
denote by MC(f, xα) the monomial coefficient of xα in a polynomial f .
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Definition 3.2.11 (Macaulay Matrix). Fix a monomial order and let f1, . . . , fm ∈ k[x1, . . . , xn].
Set d = max{deg(fi) | 1 ≤ i ≤ m}. We say that M(f1, . . . , fm) = (ci,j) is a Macaulay ma-
trix of f1, . . . , fm if

ci,j = MC(fi, x
α(j)),

as α(j) ranges over M≤d(x, n) \ {1} in decreasing order of the specified monomial order. The
dimensions of M(f1, . . . , fm) are m× (|M≤d(x, n)| − 1).

If the polynomials f1, . . . , fm are homogeneous, we assume that the matrix M(f1, . . . , fm) is
in km×|Md| and α(j) ranges over Md as opposed to M≤d. We now extend the definition of
the Macaulay matrix to take into account all products xαfi such that deg(xαfi) = d for some
fixed degree d.

Definition 3.2.12 (Macaulay Matrix of Degree d). Fix a monomial order and let f1, . . . , fm ∈
k[x1, . . . , xn] be homogeneous polynomials. We say that Md(f1, . . . , fm) is a Macaulay matrix
of degree d ∈ N if it is a Macaulay matrix M(f) of an ordered sequence of homogeneous
polynomials f defined by

f = (xαfi | (α, i) ∈ Fd) ,

where the index set Fd is defined by

Fd = {(α, i) | 1 ≤ i ≤ m, e = d− deg(fi) > 0, α ∈Me}.

The order in which the index set Fd is enumerated defines the order of rows in the Macaulay
matrix. We assume that this order is fixed to some enumeration of Fd so that we can read the
polynomials corresponding to rows of Md(f1, . . . , fr) by specifying the row index (α, i) in Fd.

On the other hand, the order of columns in a Macaulay matrix is defined by listing monomials
in Md in decreasing order with respect to the fixed monomial order. This plays an important
role in the results below.

Theorem 3.2.13. Let I = ⟨f1, . . . , fm⟩ be an ideal in k[x1, . . . , xn] generated by homoge-
neous polynomials fi. Then the nonzero rows of the echelon form of Md(f1, . . . , fm) yield a
vector space basis of Id for all d ∈ Z≥0.

Proof. Fix d ∈ Z≥0 and re-index the polynomials f1, . . . , fm so that deg(f1) < deg(fj)
whenever i < j.

We first claim that the polynomials xαfi corresponding to the rows of Md(f1, . . . , fm) span
Id. Let f ∈ Id, then f is homogeneous of degree d and

f = f1g1 + · · · frgr
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for some gi ∈ k[x1, . . . , xn] and r ≤ m with deg(fr) ≤ d. The polynomials gi are not
necessarily homogeneous. For i = 1, . . . , r, write gi in terms of its homogeneous components
and group the terms of degree different from ei = d− deg(fi) together. That is,

gi = gi,ei + hi,

where deg(gi,ei) = ei and no term of hi has degree ei. Then

f =
r∑

i=1

fi(gi,ei + hi) =
r∑

i=1

figi,ei +
r∑

i=1

fihi.

Now each term fihi has degree different from d, for if deg(fihi) = d, then deg(hi) = d −
deg(fi) = ei. Since f if of degree d, we must have

∑r
i=1 fihi = 0. On the other hand, the

terms figi,ei are all of degree d since ei + deg(fi) = d. Therefore,

f =
s∑

i=1

figi,ei =
∑

(α,i)∈Fd

cα,ix
αfi

for some cα,i ∈ k.

Let p1, . . . ps ∈ k[x1, . . . xn] be polynomials corresponding to nonzero rows 1, . . . , s of the
echelon form of Md(f1, . . . fm). We need to show that pi are linearly independent and that
they span Id.

Since the columns of Md(f1, . . . , fm) are ordered in decreasing order and the matrix is in
reduced echelon form, we must have LM(pi) > LM(pj) whenever i > j. If a1p1+· · ·+asps =
0 for some ai ∈ k, not all zero, then there is the least index j such that aj = 0. Then
LT(ajpj) ̸= 0 and there is no other term to cancel it out. Therefore, p1, . . . , ps are linearly
independent.

Let A denote the row-reduced echelon form of Md(f1, . . . , fm). Then there are elementary
row matrices E1, . . . Eq such that

Md(f1, . . . , fm) = E−1
q · · ·E−1

1 A.

In other words, the polynomials in Md(f1, . . . , fm) are linear combinations of polynomials in
A with coefficients in k. That is,

xαfi =

s∑
j=1

bα,i,jpj
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for all (α, i) ∈ Fd where bα,i,j ∈ k. Recall that we first showed that xαfi span Id, so if f ∈ Id,
then

f =
∑

(α,i)∈Fd

aα,ix
αfi =

s∑
j=1

 ∑
(α,i)∈Fd

aα,ibα,i,j

 pj ,

by distributivity and the fact that the sums are finite. Therefore, p1, . . . , ps form a basis of
Id.

Definition 3.2.14 (Gröbner Basis of Degree ≤ d). Fix a monomial order and let I be a ho-
mogeneous ideal in k[x1, . . . , xn]. A finite subset G≤d of I is called a Gröbner basis of I up
to degree d if for all homogeneous f ∈ I with deg(f) ≤ d there is a g ∈ G≤d such that
LT(g) | LT(f).

Lemma 3.2.15. Let f1, . . . , fm ∈ k[x1, . . . , xn] be homogeneous polynomials and let d ∈ N.
For i = 1, . . . , d, denote by gi,1, . . . , gi,si the nonzero polynomials of the echelon form of
Mi(f1, . . . , fm). Then

G≤d =
d⋃

i=1

{gi,j | j = 1, . . . , si}

is a Gröbner basis of I = ⟨f1, . . . , fm⟩ up to degree d.

Proof. Fix d ∈ N and let f ∈ I be homogeneous of degree e ≤ d. Then f ∈ Ie, so we can
write

f =

se∑
j=1

cjge,j , (3.4)

for some cj ∈ k by Theorem 3.2.13. Assuming the index j runs top-down over nonzero rows
of the echelon form of Me(f1, . . . , fm), we have LM(ge,1) > · · · > LM(ge,se). Therefore, the
least index ℓ ∈ {1, . . . , se} such that cℓ ̸= 0 in equation (3.4) must satisfy LM(f) = LM(ge,ℓ).
In other words, there is ge,ℓ ∈ G≤d such that LT(ge,ℓ) | LT(f), which is precisely the definition
of a Gröbner basis up to degree d.

Corollary 3.2.16. Assume the notation of Lemma 3.2.15. Let H be a reduced Gröbner basis
for a homogeneous ideal I ⊆ k[x1, . . . , xn]. If dmax = max{deg(h) | h ∈ H}, then G≤dmax

is also a Gröbner basis for I .

Proof. Since G≤dmax is a subset of I , ⟨LT(G≤dmax)⟩ ⊆ ⟨LT(I)⟩, so we only need to prove the
opposite inclusion.
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The set H consists of homogeneous polynomials, because H is a reduced Gröbner basis and I
is a homogeneous ideal [CLO15, Theorem 8.3.2.(iii)]. By Lemma 3.2.15, G≤dmax is a Gröbner
basis for I up to degree dmax. Therefore, if h ∈ H , then h ∈ I and h is homogeneous of
degree ≤ dmax, so there is gdeg(h),ℓ ∈ G≤dmax such that LT(gdeg(h),ℓ) | LT(h). Therefore,
⟨LT(I)⟩ = ⟨LT(H)⟩ ⊆ ⟨LT(G≤dmax)⟩.

3.2.4 Estimating Complexity When n = m

We restrict our attention to the case n = m. This is required in order to ensure the regularity
of the system (Definition 3.2.19), which allows us to connect the results above to the recent
results in complexity analysis (Theorem 3.2.21, Lemma 3.2.22).

Corollary 3.2.16 provided means to compute a Gröbner basis of a homogeneous ideal I in
k[x1, . . . , xn] using Macaulay matrices. If we know the maximum degree dmax of polynomials
in the reduced Gröbner basis of I , all we need is to compute G≤dmax using the results from the
previous section. This produces an immediate result discussed in Lemma 3.2.18.

The main operation involved in computing a Gröbner basis using the linear algebra approach
is to bring a matrix into a reduced row echelon form. The complexity of this operation is
equivalent to computing an inverse of a matrix.

Lemma 3.2.17 (Complexity of Computing a Matrix Inverse). If a matrix A ∈ kn×n is invert-
ible, its inverse can be obtained inO(nω) operations in the field k for some constant ω ∈ [2, 3).

Proof. Strassen showed that matrix inversion can be performed for ω = log2 7 ≈ 2.8 [Str69,
Fact 4]. The best known result as of this writing is ω ≈ 2.37286 due to Alman and Williams
[AW20].

Lemma 3.2.18. Let I be a homogeneous ideal in k[x1, . . . , xn] and let dmax ∈ N be the
maximum degree of the reduced Gröbner basis for I . Then G≤dmax can be obtained in

≈ O

(
dmax

(
n+ dmax − 1

dmax

)ω)
field operations.

Proof. Since I is homogeneous there are homogeneous generators f1, . . . , fm. By Corollary
3.2.16 we need to compute i = 1, . . . , dmax echelon forms of Macaulay matrices Mi(f1, . . . , fm)
to obtain a Gröbner basis for I .

A Macaulay matrix of degree dmax has dimensions less than |Mdmax | × |Mdmax | and all other
Macaulay matrices involved in the computation are of smaller dimensions. Therefore, by
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Lemma 3.2.17, we need O(
(
n+dmax−1

dmax

)ω
) operations in k to compute the reduced row ech-

elon form of Mdmax . The result follows since there are dmax such computations involved.

The next question is how to determine dmax without actually computing a reduced Gröbner
basis. We cannot get an exact value, so we will work towards obtaining an upper bound. There
is a particular family of polynomial systems that yields good estimates of dmax and is assumed
to represent a randomly chosen system of equations.

Definition 3.2.19 (Regular System). A sequence f1, . . . , fm of homogeneous polynomials in
k[x1, . . . , xn] is called a regular system if fi is not a zero divisor in

k[x1, . . . , xn]
/
⟨f1, . . . , fi−1⟩

for all i = 1, . . .m.

When working with a system of equations I = ⟨f1, . . . , fm⟩ in R = k[x1, . . . , xn], it is
convenient to consider the values of the Hilbert function all at once. This is done using the
Hilbert series, which is a formal power series given by

HSR/I(z) =
∞∑
t=0

HFR/I(t)z
t.

Regular systems can be characterized by the form of the respective Hilbert series.

Lemma 3.2.20. Let f1, . . . , fm be homogeneous polynomials in R = k[x1, . . . , xn].

(i) The system f1, . . . fm is regular if and only if the Hilbert series have the following form

HSR/I(z) =

∏n
t=1

(
1− zdeg(fi)

)
(1− z)n

.

(ii) Suppose m = n. The system f1, . . . , fm is regular if and only if the Hilbert series is a
polynomial in Q[z].

Proof. [BFS13, Proposition 4].

Note that if m = n and the degree of the Hilbert series is d, then HFR/I(t) = HPR/I(t) = 0
for all t > d. Then the Hilbert polynomial HPR/I = 0 in Q[t] and so the index of regularity is
given by ireg = d+ 1.

Theorem 3.2.21. Suppose m = n and let f1, . . . , fn be a regular system of homogeneous
polynomials in k[x1, . . . , xn]. If G is a reduced Gröbner basis for I = ⟨f1, . . . , fn⟩ with
respect to <degrevlex, then the maximum degree of a polynomial in G is bounded by

dmax ≤
n∑

i=1

(deg(fi)− 1) + 1.
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Proof. [BFS13, Corollary 5].

The sum from Theorem 3.2.21 is knows as the Macaulay bound. It was introduced by Macaulay
[Mac02] as part of his work on resultants and adapted to Gröbner bases in<degrevlex by Lazard
[Laz83].

In cryptographic literature (e.g., [DPS20], [Beu21]), it is common to see complexity estimates
of Gröbner bases computations stated in terms of degree of regularity for semi-regular systems,
denoted dreg [BFS04]. A semi-regular system is a generalization of a regular system tom ≥ n;
dreg is a generalization of ireg to semi-regular systems. When m = n and the system is of
dimension zero, both definitions match2. Consequently, we can reuse the estimate for some of
the most efficient Gröbner basis algorithms known as the F5 family3.

Lemma 3.2.22. Suppose m = n, I = ⟨f1, . . . , fn⟩ is a regular system in k[x1, . . . , xn], and
dim V(I) = 0. Then a Gröbner basis for I can be obtained with respect to a fixed monomial
order using

O

((
n+ ireg

n

)ω)
operations in k.

Proof. [BFS04, Theorem 7].

It is interesting to observe that the complexity estimate presented in Lemma 3.2.18 is relatively
close to the result above and that the use of linear algebra in F5 is indicated by ω.

Example 3.2.23 (Complexity of Solving UOV).
This example was produced by stats.sage from Appendix A.4. Consider a public key
p1, p2 in k[x1, . . . , x5] for q = 31. The respective matrices of polynomials p1 and p2 are given
by

P1 =


30 10 12 15 12
10 14 29 0 6
12 29 19 17 29
15 0 17 21 28
12 6 29 28 17

 P2 =


8 4 0 14 7
4 7 20 13 24
0 20 8 16 16
14 13 16 13 6
7 24 16 6 29

 .
Let I = ⟨p1, p2⟩. Since m ̸= n, the estimates from the discussion above cannot be used, so we
want to add some constraints on I . The dimension dim V(I) = 3, so we randomly generate 3

2See the note after [BFS04, Definition 5] and observe that the first coefficient ≤ 0 in HSR/I is the index of
regularity. This, in turn, matches the classification of [BFS04, Proposition 6].

3There are several variants of F5. For example, there is the original F5 introduced by Faugère [Fau02] and
Matrix-F5 of Bardet-Faugère-Salvy [BFS03].
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dim V(I) dmax

m n min avg max min avg max

2 4 2 2.00 2 2 2.97 3
2 6 4 4.00 4 2 2.97 3
3 6 3 3.00 3 3 3.99 4
3 9 6 6.00 6 3 3.97 4
5 10 5 5.00 5 5 5.97 6
5 12 7 7.00 7 5 5.98 6
5 14 9 9.00 9 5 5.95 6
5 15 10 10.00 10 5 5.95 6

Table 3.1: Statistics of UOV public keys. The test runs 100 times for each parameter set m,n
with q = 31. On each run the test generates a random key pair and computes dim V(I)
and dmax. The ideal I is generated by the public polynomials. The maximum degree of a
polynomial in a reduced Gröbner basis dmax is computed with respect to <degrevlex.

linear constraints

p′3 = 27x1 + 18x2 + x3 + 17x4 + 28x5

p′4 = 5x1 + 16x2 + 22x3 + 19x4 + 13x5

p′5 = 26x1 + 12x2 + 7x3 + 20x4 + 13x5

and define a new ideal J = ⟨p1, p2, p′3, p′4, p′5⟩. The ideal J is homogeneous, m = n, and
dim V(J) = 0. By Lemma 3.2.20, we can determine if J is a regular system by considering
the form of the Hilbert series

HSJ/R(z) = z2 + 2z + 1.

Since the series is a polynomial we conclude that J is a regular system. Furthermore, HPJ/R =
0 and so ireg = 3. By Theorem 3.2.21, the maximum degree of the Gröbner basis of J with
respect to <degrevlex should be dmax = 3. We confirm this by computing the Gröbner basis
explicitly, but omit it below due to long output. The cumulative stats for different parameter
sets over 100 test runs are provided in Tables 3.1 and 3.2. The choice of parameters in these
tables is motivated by making the experiments easy to reproduce on a modern computer.

3.3 Thomae-Wolf Algorithm (n > 2m)

Suppose we are given a system of equations p = (p1, . . . , pm) ∈ k[x1, . . . , xn]
m, where pi are

homogeneous of degree two. Our goal is to find an element a ∈ kn such that p(a) = 0. Note
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m n Dmax dmax ̸= Dmax ireg ̸= Dmax dim V(J) ̸= 0 HSR/J ∈ Q[z]

2 4 3 5 4 4 96
2 6 3 8 5 5 95
3 6 4 12 9 9 91
3 9 4 6 2 2 98
5 10 6 9 6 6 94
5 12 6 5 5 5 95
5 14 6 9 5 5 95
5 15 6 6 2 2 98

Table 3.2: Complexity indicators of random UOV public keys. For each parameter set
(m,n, q = 31) we compute the maximum degree bound Dmax using Theorem 3.2.21. The
remaining columns specify how many occurrences of the respective condition were observed
among 100 randomly generated public keys. The ideal J is a public key I with dim V(I)
linear constraints imposed (see Example 3.2.23). The values of dmax and ireg are computed
directly from the ideal J . The last column specifies how many times the Hilbert series was a
polynomial, which gives a lower bound on how frequently J is regular by Lemma 3.2.20.(ii).
See Appendix A.4 for details.

that because we operate in a cryptographic setting, we may assume that the system of equations
p always has a solution. Also, if the system is non-homogeneous, we can homogenize it at the
cost of adding another variable.

We further assume that n = cm for some constant c > 2 and set t = ⌊c⌋ − 1. Thomae and
Wolf algorithm [TW12][DPS20, Section 8.7.5] transforms p into a system of m − t quadratic
equations in m − t variables, whose solution ag ∈ km−t can be lifted to a complete solution
a ∈ kn. The outline of the algorithm is as follows:

1. Map p1, . . . , pm to f1, . . . , fm of the form (3.5) below
2. Map fi1 , . . . , fim−t to quadratic polynomials g11 , . . . gim−t ∈ k[xt+1, . . . , xm]
3. Find ag ∈ V(gi1 , . . . , gim−t) ⊆ km−t

4. Lift ag ∈ km−t to a complete solution a ∈ kn.

An implementation of this algorithm can be found in the appendix under tw.sage. We will
now study each step in detail.
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Step 1. Our goal is to find a linear transformation B ∈ GL(n, k) such that the polynomials
(f1, . . . , fm) = p ◦B have the following form

fi =
t∑

j=1

ci,jx
2
j︸ ︷︷ ︸

F1

+
t∑

j=1

xjLi,j(xm+1, . . . , xn)︸ ︷︷ ︸
F2

+Qi(xt+1, . . . , xn)︸ ︷︷ ︸
F4

, (3.5)

where Li,j are linear and Qi are quadratic equations in the specified variables. Fix i ∈
{1, . . . ,m} and let Fi ∈ kn×n be the matrix of the quadratic form fi corresponding to equation
(3.5). Assuming that Fi is in upper triangular form, we can write it as follows

Fi =



c1 · · · 0 0 · · · 0 ℓ1,m+1 · · · ℓ1,n
...

. . .
...

...
...

...
...

0 · · · ct 0 · · · 0 ℓt,m+1 · · · ℓt,n
0 · · · 0 q1,1 · · · · · · · · · · · · q1,n−t
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
0 · · · 0 0 · · · · · · · · · · · · qn−t,n−t



, (3.6)

for some c∗, ℓ∗, q∗ ∈ k. The elements ℓ∗ and q∗ correspond to coefficients in Li,j and Qi

respectively. It is helpful to breakdown the matrix Fi into blocks as follows

Fi =

[
Fi1 Fi2

0 Fi4

]
=

[
∗t×t ∗t×(n−t)

0(n−t)×t ∗(n−t)×(n−t)

]
.

The submatrix Fi2 can be further decomposed into

Fi2 =
[
Fi2,1 Fi2,2

]
=

[
0t×(m−t) ∗t×(n−m)

]
.

Using this notation, the goal of Step 1 is to sets Pi2,1 = 0 and diagonalizes Pi1 for all matrices
Pi ∈ kn×n of the quadratic forms corresponding to pi.

Lemma 3.3.1. There is B ∈ GL(n, k) such that p ◦B produces the system of equations of the
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form (3.5). Furthermore, we can write B =
∏m

d=2Bd where each Bd is of the following form

Bd =



1 · · · 0 b1,d 0 · · · 0
...

. . .
...

...
... 1 bd−1,d

...
... 1

...
... bd+2,d 1

...
...

...
. . .

...
0 · · · 0 bn,d 0 · · · 1


.

Proof. We will show the existence of B by following m − 1 steps d = 2, . . . ,m. Let P (1)
i

denote the matrix of the quadratic form pi. At step d, we compute new matrices

P
(d)
i = B⊺

dP
(d−1)
i Bd

that satisfy the following criteria for all i = 1, . . . ,m:

(a) Entries in column d above row min{d, t+1} of matrix P (d)
i are set to zero. This ensures

that the corresponding entries match the form of Fi illustrated in (3.6).
(b) The top-left submatrix P

(d)
i of dimension (d − 1) × (d − 1) is equal to the top-left

submatrix of P (d−1)
i of the same dimension. This ensures that the relevant changes from

the previous step are preserved.

Note, we are only concerned with the form of submatrices corresponding to Fi1 and Fi2,1 from
the discussion preceding the lemma, so all other entries may change.

It remains to show that the above criteria hold at each step. Let d ∈ {2, . . . ,m} be arbitrary.

(a) Consider the decomposition of the matrix Bd into blocks of the following dimensions

Bd =

[
Bd1 0
Bd3 1

]
=

[
∗m×m 0m×(n−m)

∗(n−m)×m 1(n−m)×(n−m)

]
.

For each i ∈ {1, . . . ,m}, the composition of the quadratic form P
(d−1)
i with the linear trans-

formation Bd is given by

B⊺
dP

(d−1)
i Bd =

[
B⊺

d1
B⊺

d3
0 1

][
P

(d−1)
i1

P
(d−1)
i2

0 P
(d−1)
i3

][
Bd1 0
Bd3 1

]

=

[
B⊺

d1
P

(d−1)
i1

Bd1 +B⊺
d1
P

(d−1)
i2

Bd3 +B⊺
d3
P

(d−1)
i4

Bd3 ∗
∗ ∗

]
.

(3.7)
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Recall that in our setting we have 1 ≤ t < m < n. When d < t, we want to set the d-th
column above the diagonal of pi ◦ Bd to zero. This corresponds to diagonalizing Fi1 from the
discussion above. When t ≤ d < m we want to set the first t elements in the d-th column of
pi ◦Bd to zero, which corresponds to setting Fi2,1 = 0.

We setup a system of equations in variables b∗ by setting the corresponding elements in column
d of (3.7) to zero. Due to the fact that Bd contains 1 at position (d, d), all equations are linear.
We thus obtain a system of (up to) mt linear equations in n− 1 variables. Since

mt = m(⌊c⌋ − 1) < mc−m < n− 1, (3.8)

the system has a non-trivial solution.

(b) If we split the matrix Bd into blocks of the following dimensions, we will have an identity
matrix in the top-left

Bd =

[
1 B̃d2

0 B̃d4

]
=

[
1(d−1)×(d−1) ∗(d−1)×(n−d+1)

0(n−d+1)×(d−1) ∗(n−d+1)×(n−d+1)

]
.

Then the composition of quadratic form P
(d−1)
i with the linear transformation Bd in terms of

the new block dimensions is

B⊺
dP

(d−1)
i Bd =

[
1 0

B̃⊺
d2

B̃⊺
d4

] [
P̃

(d−1)
i1

P̃
(d−1)
i2

0 P̃
(d−1)
i3

][
1 B̃d2

0 B̃d4

]
=

[
P̃

(d−1)
i1

∗
∗ ∗

]
.

That is, the top-left submatrix of P (d−1)
i of dimensions (d − 1) × (d − 1) is preserved by the

composition. Therefore, we can transform Pi into the desired form by computing each Bd

separately for d = 2, . . . ,m.

We have seen that each Bd can be obtained by solving a system of linear equations, which,
combined with the discussion in the previous paragraph, states that

B⊺
m · · ·B⊺

2PiB2 · · ·Bm

has the form of equation (3.5). Since each Bd ∈ GL(n, k), the product
∏m

j=1Bd = B is also
in GL(n, k).

Step 2. Now that the transformation B is found, we apply it to p and obtain the equations
f1, . . . , fm in the form of (3.5). The goal of this step is to map a subset of polynomials f ∈
k[x1, . . . , xn]

m into a system of equations g ∈ k[xt+1, . . . , xm]m−t.
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Fix an arbitrary4

aℓ ∈ V({Li,j(xm+1, . . . , xn) | 1 ≤ i ≤ m, 1 ≤ j ≤ t}).

The variety above is produced by mt linear equations in n − m variables each. By (3.8),
mt < n−m, so there is a non-trivial solution aℓ.

Now aℓ ∈ kn−m and corresponds to the values of xm+1, . . . , xn that annihilate the terms
containing Li,j in equation (3.5). For i = 1, . . . ,m we set

gi = fi(aℓ) =
t∑

j=i

ci,jx
2
j +Gi(xt+1, . . . , xm), (3.9)

where Gi is a polynomial in the specified variables. Note that Gi and gi are no longer guaran-
teed to be homogeneous.

Let gi1 , . . . , git be t arbitrarily polynomials from g1, . . . , gm. Fix a graded monomial order
and bring the Macaulay matrix M(gi1 , . . . , git) into row-reduced echelon form. For illustration
below, we assume that all squares x2i appear before any combination xixj for i ̸= j, but in
actuality any graded order will work since we do not have any combinations xixj for 1 ≤ i <
j ≤ t in equations (3.9). We can visualize the resulting echelon form as follows

H =

1 · · · 0 r1,t+1 · · · r1,n
...

. . .
...

...
...

0 · · · 1 rt,t+1 · · · rt,n

 .
By reading the polynomials off the rows of H we obtain t substitutions

x21 = S1(xt+1, . . . , xm),

...

x2t = St(xt+1, . . . , xm),

(3.10)

where Si are quadratic polynomials in the specified variables with coefficients r∗ ∈ k. As
i ranges over {1, . . . ,m} \ {i1, . . . , it} we substitute x2j → Sj in each polynomial gi. As
evident from the form of gi in equation (3.9) and the set of substitutions above, the resulting
polynomials gi are in k[xt+1, . . . , xm]. This produces a system of m − t quadratic equations
in m− t variables.

4In what follows, we will need to compute square roots over finite fields, which are not guaranteed to exist for
fields of odd characteristic (see Lemma 3.4.1). Therefore any arbitrary choice of a parameter, such as this one, can
be used to our advantage to increase the chance of obtaining the square roots.
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Step 3. We now solve the system of equations obtained at the previous step. If a solution
exists, we set

ag ∈ V({gi | i ∈ {1, . . . ,m} \ {i1, . . . , it}})

to an arbitrary element. If there is no solution we may try to choose an alternative solution
aℓ ∈ V(Li,j) and repeat.

The value ag ∈ km−t is a partial solution of the original system of equations p corresponding
to the variables xt+1, . . . , xm. Note, this is the most resource intensive step of the algorithm.

Step 4. It remains to lift the partial solutions from the previous steps to a complete solution
a ∈ kn of p(a) = 0. Recall, we have aℓ ∈ kn−m and ag ∈ km−t both of which combined
cover xt+1, . . . , xn, so we are only missing a solution for x1, . . . , xt.

We can obtain a solution a√ = (a1, . . . , at) from the equations (3.10), by computing aj =√
Sj(ag) for all j = 1, . . . , t. When k is of odd characteristic, by Lemma 3.4.1, the solution

exists with the probability ≈ 1
2t . Despite this setback, recall that there were several places

where we made an arbitrary choice:

• Selection of aℓ ∈ V(Li,j) at Step 2
• Selection of i1, . . . , it at Step 2
• Selection of ag ∈ V(gj1 , . . . , gjm−t) at Step 3

By making a different selection and re-executing the algorithm approximately 1
2t times we can

increase the likelihood of obtaining the square roots a√. Then, the complete solution is given
by a = B−1(a√, ag, aℓ).

3.4 Relinearization Techniques and XL (n < m)

In this section we assume that n < m and that we are given a quadratic system p ∈ k[x1, . . . , xn]
m

and some b = (b1, . . . , bm) ∈ km. Our goal is to find a = (a1, . . . , an) ∈ kn such that
p(a) = b. Recall that we operate in a cryptographic setting, where we may assume that the
system of equations p is consistent.

Suppose thatm = |M≤2(x, n)|−1 and that the polynomials in p have no constant coefficients.
If there are constant coefficients, we move them into b. For each monomial in M≤2 \ {1} we
introduce a variable yi and substitute the corresponding monomials in p with variables yi. This
produces a system of linear equations p′ ∈ k[y1, . . . , ym]m. Observe that if we fix a monomial
order, then the Macaulay matrix M(p) corresponds to the coefficient matrix of p′. Furthermore,
there is a bijection between yi and monomials xα ∈M≤2 \{1} defined by the monomial order.
We will use M(p) instead of the coefficient matrix of p′ going forward.
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If M(p) is invertible, then the system of equations p′ has a unique solution. We compute the
inverse and obtain the solution in yj via a = M(p)−1 · b⊺. From this, we can easily determine
the solution to the quadratic system p in xi by reading it off the elements of a at positions
corresponding to monomials xi.

If M(p) is singular, we eliminate all linearly dependent equations and obtain M(q) of dimen-
sions r ×m for some r < m. Next, we compute the right inverse M(q)−1 ∈ km×r and obtain
a solution in yj via a′ = M(q)−1 · (b1, . . . , br)⊺ in km. However, the solution a′ might not
correspond to a viable solution in xi. We may enumerate the remaining solutions via a′ + w
as w ranges over the kernel of M(q), but it could be too inefficient. There could be as many
as qm−r solutions by Rank-Nullity theorem, where q is the order of k. The relinearization
technique, discussed below, introduces additional constraints in the form of equation (3.11) to
reduce the search space. Before we discuss it, we shall briefly review the case of homogeneous
polynomials.

Let the polynomials in p be homogeneous of degree two. Then the Macaulay matrix

M(p) =

MC(p1, x
2
1) MC(p1, x1x2) · · · MC(p1, x

2
n)

...
...

...
MC(pm, x

2
1) MC(pm, x1x2) · · · MC(pm, x

2
n)


is in k|M2|×|M2|. Assuming M(p) is invertible, the unique solution in yj is obtained as above.
However, in order to map the solution from yj back to xi we will need to take square roots in
k. This is because variables yj correspond to monomials in xα of degree two and so we would
need to solve x2i = ai for some ai ∈ k.

Lemma 3.4.1. Let k be a finite field and let a ∈ k be randomly chosen using a uniform
distribution. If the characteristic of k is even, then there is r ∈ k such that r2 = a. For k of
odd characteristic, such element r exists with probability ≈ 1

2 .

Proof. If the order of k is 2t, we can choose r = a2
t−1

to obtain r2 = (a2
t−1

)2 = a2
t
= a.

If the order of k is a power of an odd prime, then the squares of the group k× form a subgroup
of index two [Ser73, Theorem I.3.4]. Hence, the probability is approximately 1/2.

Consequently, recovering a solution for homogeneous p over a field of odd characteristic may
be problematic. Provided M(p) is invertible, a complete solution exists with a probability of
≈ (1/2)n. Nevertheless, a partial solution is likely to exist, which can be substituted into p to
obtain a new system of equations p′ with fewer variables. Then the linearization process can
be repeated for a smaller system p′.

For the rest of this section we assume that k is of characteristic two, p is homogeneous, and
that M(p) is of full rank. So far, the most efficient way to obtain a solution involved having
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m = |M2| and computing the inverse of M(p). However, we can obtain a similarly efficient
algorithm when m ≈ 1

10 |M2|. This result is due to Aviad Kipnis and Adi Shamir [KS99] who
introduced the algorithm known as the relinearization technique.

We start with the linearization of p = (p1, . . . , pm) via the Macaulay matrix M(p) as described
above. This yields a system of linear equations q in variables yi,j corresponding to xixj ∈M2

q = (q1, . . . , qm) ∈ k[y1,1, . . . , yi,j , . . . , yn,n]
m, where 1 ≤ i ≤ j ≤ n.

Due to the change of variables via linearization, we obtain a number of equations in yi,j , which
always hold in the ring k[x1, . . . , xn]

ya,byc,d = ya,cyb,d = ya,dyb,c ⇐⇒ (xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc). (3.11)

Lemma 3.4.2. Let E be the set of equations (3.11) then |E| = 2
(
n
4

)
and all equations in E are

linearly independent.

Proof. [KS99, Section 5.2].

If we consider the system of equations q′ = q∪E, we have more equations but we also changed
the system from linear to quadratic. The idea of the relinearization technique is precisely as
the name suggests. We linearize the system again by considering the Macaulay matrix M(q′).
Since the system q is linear in yi,j and E is quadratic, we can be certain that the equations in E
do not appear in q and vice-versa. Therefore, the relinearization yields a system of equations

r = (r1, . . . , rm+|E|) ∈ k[z1, . . . , zt]
m+|E|,

where the number of variables zi is given by t = |M2(z, s)| for s = |M2(x, n)|. If the number
of equations m + |E| ≥ t we can solve the system using Gaussian elimination in polynomial
time using the same approach as above.

Lemma 3.4.3 (Relinearization Technque). Let char(k) = 2, b ∈ km, p ∈ k[x1, . . . , xn]
m.

Suppose p is homogeneous of degree two, m ≈ 1
10 |M2(x, n)| and M(p) is of full rank. Then

the solution a ∈ kn satisfying p(a) = b can be found in ≈ O(mω) operations in k.

Proof. Correctness of the algorithm is shown in [KS99]. Since the computation of the matrix
inverse is the dominant operation, the time complexity follows by Lemma 3.2.17.
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Extended Linearization It is possible to continue the relinearization of a system by adding
more equations of higher degrees. For example, we can add

ya,byc,dye,f = ya,cyb,dye,f ⇐⇒ (xaxb)(xcxd)(xexf ) = (xaxc)(xbxd)(xexf ).

However, not all of the placements of parenthesis in the equations above yield linearly inde-
pendent equations. Due to this fact, the complexity analysis of the relinearization technique for
higher degrees becomes difficult [CKPS00, TW10]. Nevertheless, the ideas of the relineariza-
tion technique have been extended into an algorithm called eXtended Linearization or XL for
short [CKPS00].

Lemma 3.4.4 (XL). Let p ∈ k[x1, . . . , xn]
m be homogeneous of degree two and let b ∈ km.

Then the algorithm below terminates for some D ∈ N and yields a solution a ∈ kn such that
p(a) = b. The complexity of the algorithm is O

((
n+D+2
D+2

)ω)
.

For i = 1, . . . , n. Fix a monomial order such that monomials xdi are strictly greater than any
other monomials. Set D = 1 and proceed as follows

1. Set ID =
⋃D

i=0{xαfj | 1 ≤ j ≤ m,α ∈Mi(x, n)}
2. If rank(M(ID)) < |MD(x, n)|, set D = D + 1 and go back to step 1
3. Bring M(ID) into row-reduced echelon form
4. Solve the univariate polynomial in xi specified in the first D rows of M(ID)
5. Substitute solution xi into p and proceed to next i

Proof. Algorithm and initial analysis [CKPS00]; complexity analysis and a proof that relin-
earization is a special case of XL [TW10].

Extended linearization and in particular its variant known as Wiedemann XL [Moh11] is among
the most popular polynomial system solving algorithms in the cryptographic community. How-
ever, as demonstrated by Gwénolé Ars et al. [AFI+04], XL algorithms are equivalent to Gröbner
basis algorithms. The popularity of Wiedemann XL is motivated by low memory requirements,
which makes practical applications more convenient.
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Chapter 4

Polynomial Equivalence Problem

The goal of this chapter is to study the Polynomial Equivalence Problem (PEP) for the Un-
balanced Oil and Vinegar (UOV) signature scheme. Informally, the goal of the PEP is to find
a private key from the specified public key. Once the private key is found it can be used for
signing arbitrary messages, so the difficulty of solving PEP has a direct impact on the security
of UOV. We will now state this problem formally.

Definition 4.0.1 (Polynomial Equivalence Problem). Let p ∈ Rm be a public key of Unbal-
anced Oil and Vinegar signature scheme. We say that T ∈ GL(n, k) is a solution to the
polynomial equivalence problem if p ◦ T is a central map.

Observe that a solution to PEP produces an equivalent private key (p ◦ T, T−1), which can
be used to sign messages in the same way as the original private key. That is, the alternative
central map f = p ◦ T is easily invertible and so is T . The computation of the alternative
central map f is efficient since p ◦ T is obtained by a linear change of variables p(T (x)) for
x = (x1, . . . , xn) ∈ k[x1, . . . , xn]

m.

The definition of the PEP above is closely related to the Isomorphism of Polynomials (IP)
problem proposed by Jacques Patarin along with a multivariate quadratic system called Hidden
Field Equations [Pat96]. The difference between PEP and IP is that the former assumes the
central map to be a part of the private key, while the latter assumes that the central map is
known to the attacker. In case of UOV the central map is private so the IP problem is not
applicable1.

1A more general version of PEP, called Extended Isomorphism of Polynomials (EIP), is defined by Ding et al.
[DPS20, Definition 2.16]. The difference with Definition 4.0.1 is that EIP has two linear transformations while PEP
uses one (UOV only has one). To avoid confusion with IP, whose central maps are public, we will use the name
PEP.

55
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There are three known solutions of the polynomial equivalence problem, which are better
than direct approaches for certain parameter choices. The solutions are: Kipnis-Shamir at-
tack [KS98], reconciliation attack [DYC+08], and intersection attack [Beu21]. We will discuss
all three attacks below.

4.1 Solving PEP Using Ox

In order to make the central map of UOV efficiently invertible, the polynomials are required
to be linear in the oil variables. However, in the public key, this relationship is concealed by
the secret linear transformation. If we consider the inputs to the central map as elements of the
vector space kn, we can think of each vector in terms of its oil and vinegar components

(u1, . . . . . . , un−m︸ ︷︷ ︸
Vinegar

, un−m+1, . . . , un︸ ︷︷ ︸
Oil

) ∈ kn.

These components form so-called oil and vinegar subspaces, which are formally defined below.
The inputs to the public key are also vectors of kn, but we can no longer discern the difference
between oil and vinegar components since they were mixed by the secret linear transformation

(v1, . . . . . . , vn−m, vn−m+1, . . . , vn︸ ︷︷ ︸
Mixed Oil and Vinegar

) ∈ kn.

However, since the linear transformation must be invertible, it is onto and so there is still an oil
subspace of dimension m hiding in the inputs to the public key. Kipnis-Shamir attack (Section
4.2) shows how to determine a basis of this subspace for n = 2m. In this section we will focus
on a more general result – how to obtain a solution to PEP from a basis of Ox.

Definition 4.1.1 (Oil Space). LetA ∈ GL(n, k) be a secret linear transformation of the private
key of UOV. We will denote the public variables by xi, the secret variables by yi, and define
the oil and vinegar subspaces, O∗ and V∗ respectively, as follows:

y = Ax = (y1, . . . , yn), Oy = span{en−m+1, . . . , en}, Vy = span{e1, . . . , en−m},
x = (x1, . . . , xn), Ox = A−1Oy, Vx = A−1Vy,

where e1, . . . , en is the standard basis of kn.

Observe that the vector space kn can be written as a direct sum of the oil and vinegar subspaces.
Since the linear map A is invertible, this relationship is preserved under the linear change of
variables. In particular, the following holds

y = Oy ⊕ Vy = A(Ox ⊕ Vx),
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x = Ox ⊕ Vx = A−1(Oy ⊕ Vy).

Our goal is to show that a solution to PEP can be obtained by determining a basis of a vector
subspace Ox. This result may seem fairly intuitive if we consider an extension of the basis
from Ox to kn. We will provide a constructive proof in Theorem 4.1.3 below to establish that
basis extension is all that is required. However, there is also an interesting observation about
what such extensions might look like.

Let u1, . . . , um be a basis of Ox. Suppose we managed to superimpose the components (uji)
of the basis ui onto an identity matrix and obtained a linear transformation of the following
form2

B =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · 0 u11 · · · u1m
...

...
...

...
0 · · · 0 um1 · · · umm


.

Can this be a solution to PEP?

Lemma 4.1.2. Let p ∈ Rm be a public key such that p ̸∈ Sm. Then no matrix B ∈ GL(n, k)
of the following form is a solution to the polynomial equivalence problem

B =

[
B1 0
0 B4

]
.

Proof. Without loss of generality we may assume that m = 1. If we write the matrix of
quadratic form p as

P =

[
P1 P2

P3 P4

]
,

then the submatrix P4 of dimension m×m cannot be zero by Lemma 2.2.3. Suppose there is
a solution B to PEP of the form above. Then

B⊺PB =

[
B⊺

1 0
0 B⊺

4

] [
P1 P2

P3 P4

] [
B1 0
0 B4

]
=

[
∗ ∗
∗ B⊺

4P4B4

]
.

Since we assume B⊺PB to be a central map we must have B⊺
4P4B4 = 0 by Lemma 2.2.3, but

B4 is invertible so we multiply by (B⊺
4)

−1 on the left and by B−1
4 on the right. Then P4 = 0,

which is a contradiction.
2It is worth comparing matrix B with the form of the matrix (4.3) recovered by the reconciliation attack.
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Theorem 4.1.3. Let e1, . . . , en be the standard basis of kn. If u1, . . . , um ∈ kn is a basis of
Ox, then there is B ∈ GL(n, k) such that B · en−m+i = ui for all i = 1, . . . ,m and B is a
solution to the polynomial equivalence problem.

Proof. Let p = f ◦A be a public key. We are given the basis u1, . . . , um ∈ kn of the oil space
Ox. First, we extend this basis to a new basis v1, . . . , vn ∈ kn so that vn−m+i = ui for all
i = 1, . . . ,m. Note that vi’s span kn = Vx ⊕Ox. Second, we define the linear transformation
B ∈ GL(n, k) by B · ei = vi. Observe that B · en−m+i = ui.

Claim 1: Subspaces Oy and Vy are invariant under AB ∈ GL(n, k). Let w ∈ Oy, then
w = α1en−m+1+· · ·+αmen and soB ·w = α1u1+· · ·+αmum is inOx. SinceOx = A−1Oy

there is some w′ ∈ Oy such that B · w = A−1 · w′. Then AB · w = w′ ∈ Oy. The result for
Vy follows by a similar argument.

Let C = AB. Since kn = Vy ⊕ Oy, CVy = Vy and COy = Oy, the matrix of C has the
following form

C =

[
C1 0
0 C4

]
,

where C4 ∈ km×m.

Claim 2: The linear transformation B is a solution to PEP. We need to show that the composi-
tion p ◦ B is in S. Fix i ∈ {1, . . . ,m} and let P, F ∈ kn×n denote the matrices of quadratic
forms pi and fi respectively. Since pi(x) = fi(A·x) we have pi(x) = x⊺Px = x⊺(A⊺FA)x =
fi(A · x), and therefore P = A⊺FA. Then

p ◦B = B⊺PB = (AB)⊺F (AB) = C⊺FC.

The bottom-right submatrix of F is zero by Lemma 2.2.3, so the product

C⊺FC =

[
C⊺
1 0
0 C⊺

4

] [
F1 F2

F3 0

] [
C1 0
0 C4

]
=

[
C⊺
1F1C1 C⊺

1F2C4

C⊺
4F4C1 0

]
.

Applying Lemma 2.2.3 in the opposite direction, we obtain that p ◦ B is a central map and
hence B is a solution to PEP.

4.2 Kipnis-Shamir Attack

Linear transformations and quadratic forms behave differently under the linear change of vari-
ables y = Ax for some A ∈ GL(n, k). If T,Q ∈ kn×n are matrices of a linear map and a
quadratic form respectively, then the former is transformed byA−1TA and the latter byA⊺QA.
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Aviad Kipnis and Adi Shamir observed [KS98] that if we consider products of matrices of
quadratic forms P−1Q, then they will behave similarly to linear transformations

(A⊺PA)−1(A⊺QA) = A−1P−1(A⊺)−1A⊺QA = A−1P−1QA. (4.1)

Applied to the public keys of the Oil and Vinegar signature scheme this observation leads to an
efficient procedure to recover the oil space Ox. It is precisely because of this attack that the Oil
and Vinegar signature scheme, originally proposed by Jacques Patarin [Pat97], is now called
Unbalanced Oil and Vinegar [KPG99] and we require n > 2m.

Lemma 4.2.1. Let n = 2m. Suppose that p = (p1, . . . , pm) ∈ Rm is a UOV public key and
Pi, Pj ∈ kn×n are matrices of quadratic forms pi and pj for some i ̸= j. If Pi and Pj are
invertible, then

(P−1
i Pj)Ox = Ox.

Proof. Since p is a public key, there is f = (f1, . . . , fm) ∈ Sm and A ∈ GL(n, k) such that
p = f ◦ A. Fix i ̸= j in {1, . . . ,m}. Let Fi, Fj ∈ kn×n be matrices of quadratic forms fi and
fj . By Lemma 2.2.3, these matrices have a zero submatrix at the bottom right. Furthermore,
Fi and Fj must be invertible because Pi and Pj are invertible. If v ∈ Oy, then

Fjv =

[
Fj1 Fj2

Fj3 0

] [
0
v2

]
=

[
Fj2v2
0

]
∈ Vy, (4.2)

so FjOy = Vy, because Fj is onto and dimOy = dimVy when n = 2m. Similarly, F−1
i Vy =

Oy. Therefore, (F−1
i Fj)Oy = Oy.

If v ∈ Ox, then there is w ∈ Oy such that v = A−1w. Applying (4.1), we obtain

(P−1
i Pj)v = (A−1F−1

i FjA)A
−1w = A−1w′,

for some w′ ∈ Oy. Consequently, (P−1
i Pj)Ox = Ox.

The lemma above suggests that the oil space could be found by considering invariant subspaces
with respect to the linear transformations P−1

i Pj , where both Pi and Pj are invertible. To aid
with the search for the invariant subspace we would like to obtain more linear transformations
with the desired property. This can be achieved using the following result [KS98, Theorem 7].

Theorem 4.2.2. Let n = 2m and let p ∈ Rm be a public key. Discard all singular matrices
Pℓ corresponding to quadratic forms of the public key components pℓ. Let I ⊆ kn×n be the
closure of products (P−1

i Pj) with respect to addition, multiplication, and scalar multiplication.
If I ̸= ∅, then Ox is invariant under all elements of I . We say that Ox is a common invariant
subspace under I .
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Proof. By Lemma 4.2.1, the generators P−i
i Pj ∈ I map Ox into itself. Since Ox is a subspace

of kn, linear combinations of elements of I also map Ox into itself. The product of elements
of A,B ∈ I has the same property because (AB)v = A(Bv).

Invariant subspaces of kn with respect to a linear transformation can be found from character-
istic polynomials using methods similar to obtaining the Jordan form. However, in this case,
we do not need all characteristic roots to be in k. The following result serves most of our needs.

Theorem 4.2.3. Let T ∈ kn×n be a linear transformation whose minimal polynomial g ∈ k[x]
is factored into g = gd11 · · · gdss , where gi ∈ k[x] are irreducible over k. Then we can write

kn = V1 ⊕ · · · ⊕ Vs,

where each Vi = ker gi(T )
di is invariant under T and gdii is the minimal polynomial of a linear

map induced by T on Vi.

Proof. [Her75, Theorem 6.6.1].

Let n = 2m and B ∈ I from Theorem 4.2.2. If g is the characteristic polynomial of B with
two distinct irreducible factors g1 and g2 such that deg(g1) = deg(g2) = m. Then ker g1(B)
or ker g2(B) must be Ox by Theorem 4.2.3. It remains to figure out which one. The following
lemma provides means to distinguish vectors of Ox from those of Vx.

Lemma 4.2.4. Let n > m. If p ∈ Rm is a public key, then p(Ox) = 0.

Proof. Since p is a public key, there is A ∈ GL(n, k) and f ∈ Sm such that p = f ◦ A.
Fix i ∈ {1, . . . ,m} and consider the matrices Pi, Fi ∈ kn×n of quadratic forms pi and fi
respectively.

Recall that y = Ax and Oy = span{en−m+1, . . . , en}. Then, given v ∈ Oy, we have

fi(v) = v⊺Fiv =
[
0 v⊺2

] [Fi1 Fi2

Fi3 0

] [
0
v2

]
=

[
0 v⊺2

] [Fi2v2
0

]
= 0.

Let u ∈ Ox be arbitrary. Since Ox = A−1Oy there is some w ∈ Oy such that u = A−1w.
Therefore,

pi(u) = u⊺Piu = (A−1w)⊺(A⊺FiA)(A
−1w) = w⊺Fiw = 0.

Combining the results above leads to the original Kipnis-Shamir attack on balanced Oil and
Vinegar with n = 2m. Let p ∈ Rm be a public key and suppose the set I from Theorem 4.2.2
is not empty.

1. Compute a random element B ∈ I .
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2. Compute the characteristic polynomial g of B.
3. If g does not factor into g1 and g2 of degree m, then go back to Step 1.
4. Find bases of g1(B) · kn and of g2(B) · kn.
5. Apply Lemma 4.2.4 to determine which basis corresponds to Ox.
6. Extend the basis of Ox to kn. By Theorem 4.1.3 we obtain a solution to PEP.

If an element B satisfying the condition of Step 3 is found on the first attempt, the complexity
of the algorithm is dominated by Steps 2 and 3. A simple way to compute the characteris-
tic polynomial g = det(x − A) in k[x] is to perform Gaussian elimination and to multiply
the diagonal. This can be done in time O(n3) or less [KG85]. To factor a polynomial g of
degree n over k, we can apply Berlekamp’s algorithm [Ber67][DPS20, Theorem 8.10] using
O (nω + n(log n log(log n)) log q) operations in k. We estimate the complexity of a single step
of the Kipnis-Shamir algorithm to be approximately O(n3) operations.

The authors of the attack argued that such an element B can be found with sufficiently high
probability, but the details were left unspecified at the time [KS98]. This has been addressed
by Aviad Kipnis, Jacques Patarin, and Louis Goubin in the same article that also introduced
Unbalanced Oil and Vinegar to the world [KPG99].

Lemma 4.2.5. Let n ≥ 2m and suppose p = (p1, . . . , pm) ∈ Rm is a public key. If Pi and Pj

are invertible matrices in kn×n corresponding to quadratic forms pi and pj , then

dim (PiOx ∩ PjOx) ≥ 3m− n.

Proof. Let U,W be subspaces of a finite dimensional vector space V and denote by U+W the
subspace of V defined by {u + w | u ∈ U,w ∈ W}. By [Her75, Corollary to Lemma 4.2.6],
the following holds

dim(U ∩W ) = dimU + dimW − dim(U +W ).

Let f ∈ Sm and A ∈ GL(n, k) be such that p = f ◦ A. Denote the matrices of central maps
fi, fj by Fi and Fj , respectively. Note that (4.2) holds even when n > 2m, so FOy ⊆ Vy
for any matrix of the central map F . Because dimOy = m, dimVy = n −m, and Fi, Fj are
invertible we obtain

dimFjOy = m, dimF−1
i FjOy = m, dimF−1

i Vy = n−m,

FjOy ⊆ Vy, F−1
i FjOy ⊆ F−1

i Vy, F−1
i Vy ⊇ Oy.

Let X = F−1
i FjOy. Observe that the vector space F−1

i Vy contains subspaces X and Oy.
Since X +Oy is also a subspace of F−1

i Vy, we must have dim(X +Oy) ≤ n−m. Applying
the result from the first paragraph of this proof yields

dim(X ∩Oy) = dimX + dimOy − dim(X +Oy) ≥ m+m− (n−m) = 3m− n.
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We can now consider the intersection of PiOx and PjOy. By Definition 4.1.1 and Equa-
tion (4.1), we have

P−1
i PjOx ∩Ox = A−1F−1

i FjOy ∩A−1Oy = A−1(X ∩Oy),

therefore dim (PiOx ∩ PjOx) ≥ 3m− n.

Theorem 4.2.6 (Kipnis-Patarin-Goubin). Let n > 2m and suppose p ∈ Rm is a public key
such that some of the matrices Pℓ are invertible. A solution B ∈ kn×n to the polynomial
equivalence problem can be found in approximately

O(q−(2m−n+1)n4)

operations in the field k of order q.

Proof. Let Pi, Pj ∈ kn×n be invertible matrices of the public key. If w ̸= 0 in Ox is an
eigenvector of P−1

i Pj , then the subspace W = {αw ∈ kn | α ∈ k} is invariant under P−1
i Pj .

Therefore, we can estimate the probability that P−1
i Pj has a nontrivial invariant subspace that

is also a subspace of Ox using the expected number of eigenvectors in Ox.

Claim: The probability that the linear map P−1
i Pj has a nontrivial invariant subspace that is

also a subspace of Ox is approximately q2m−n+1. Let w ̸= 0 in Ox. The probability that Pjw
is in PiOx ∩ PjOx is determined by the number of elements in the intersection divided by the
number of elements in the image PjOx. By Lemma 4.2.5, this is

|PiOx ∩ PjOx|
|PjOx|

≥ q3m−nq−m.

If Pjw ∈ PiOx ∩ PjOx, the probability that P−1
i Pjw = λw for some λ ̸= 0 in k is

q − 1

|Ox|
≈ q1−m,

because P−1
i Pjw must be in Ox. There are qm − 1 nonzero w ∈ Ox, so the expected number

of eigenvectors in Ox is approximately

q3m−nq−mq1−mqm = q2m−n+1.

We can now adjust the algorithm above to work with invariant subspaces of dimension 1.
Instead of choosing B ∈ I at Step 1, we set B = L−1

1 L2, where L1 and L2 are random linear
combinations of invertible matrices Pℓ. At Step 3, we no longer require the characteristic
polynomial to factor into two polynomials of degree m. Any factorization will work. Then,
to find m eigenvectors in Ox we estimate that the algorithm needs to be run approximately
q−(2m−n+1)n times with each execution taking O(n3).
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4.3 Reconciliation Attack

The problem statement of the reconciliation attack matches exactly the statement of the poly-
nomial equivalence problem. That is, given p ∈ Rm, the reconciliation attack searches for a
B ∈ GL(n, k) such that p ◦ B has the form of a central map. Instead of looking for a generic
transformation B, Jintai Ding et al. [DYC+08][DPS20, Section 5.3] observed that there are
secret maps B of a particularly convenient form specified in (4.3). While such solutions are
not guaranteed to exist for all public keys p, the probability that there is such a solution for an
arbitrarily chosen public key is fairly high3.

Theorem 4.3.1. Let p ∈ Rm be a public key and denote by q the order of the field k. With
probability strictly greater than 1− 1

q−1 , there is B ∈ GL(n, k) of the form

B =

[
1 B2

0 1

]
=

[
1(n−m)×(n−m) ∗(n−m)×m

0m×(n−m) 1m×m

]
, (4.3)

such that p ◦B is a central map. Furthermore, B−1 has the same form as B.

Proof. The argument below is independent of m, so for simplicity we assume that the public
key has only one component (i.e., m = 1). Since p is a public key, there is f ∈ S and
A ∈ GL(n, k) such that p = f ◦A.

Write the secret linear transformation A in terms of submatrices of the respective dimensions

A =

[
A1 A2

A3 A4

]
.

If the submatrix A1 is invertible, we can write A = CB by setting B2 = A−1
1 A2 and choosing

the matrix C as follows

C =

[
A1 0
A3 A4 −A3B2

]
.

Then

CB =

[
A1 0
A3 A4 −A3B2

] [
1 B2

0 1

]
=

[
A1 A1B2

A3 A3B2 +A4 −A3B2

]
= A.

Since C has a zero submatrix in the top-right, by Theorem 2.3.7, C is a sustaining transfor-
mation. In other words, C⊺FC is some central map F ′. Denote by F and P the matrices of
quadratic forms corresponding to f and p respectively. Then

P = A⊺FA = B⊺(C⊺FC)B = B⊺F ′B,

3We only give a lower bound but the probability is equivalent to a randomly chosen matrix of dimensions
(n−m)× (n−m) being invertible.
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so B is a solution to PEP.

The existence of B stems from the fact that the submatrix A1 is invertible. Therefore, the
probability of having a solution to PEP of the form (4.3) is strictly greater than 1 − 1

q−1 by
Corollary 2.1.3.

To see that B is invertible and its inverse has precisely the same form as B, observe that

1 =

[
1 B2 −B2

0 1

]
=

[
1 B2

0 1

] [
1 −B2

0 1

]
= BB−1 = B−1B.

If p = f ◦ A ∈ Rm is a public key and the submatrix A1 of A is invertible, then, by Theorem
4.3.1, there is B−1 ∈ GL(n, k) of the form (4.3) such that p = f ′ ◦B−1 for some central map
f ′ ∈ Sm. That is, (f ′, B) is an equivalent key. Let Pi, F

′
i be the matrices of quadratic forms

corresponding to components pi and f ′i respectively. We do not know F ′
i , but we know that

the bottom-right submatrix of any central map must be zero by Lemma 2.2.3. Consequently, to
find B we can setup m equations of the form below by comparing the bottom-right submatrix
of pi ◦B to zero

pi ◦B = B⊺PiB = F ′
i =

[
∗ ∗
∗ 0m×m

]
. (4.4)

For each i = 1, . . . ,m we would get m2 equations, so there are m3 equations in total. The
number of variables is determined by the size of the submatrix B2, which is strictly greater
than m2 when n > 2m.

Instead of searching for an equivalent key B ∈ GL(n, k) by considering all unknown elements
of the submatrix B2 at once, it is possible to split the procedure into m steps. Observe that if
we have two matrices B′, B′′ ∈ GL(n, k) of the following form

1 · · · 0 0 · · · b1,j · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · bn−m,j · · · 0
0 · · · 0 1 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1


, (4.5)
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then their product is

B′B′′ =

[
1 B′

2

0 1

] [
1 B′′

2

0 1

]
=

[
1 B′′

2 +B′
2

0 1

]
.

Therefore, we can writeB as a product ofmmatrices of the form (4.5) whose nonzero columns
b∗,j are precisely the nonzero columns of B2. Specifically, we write B = B(1)B(2) · · ·B(m)

and substitute this into equation (4.4) to obtain

F ′
i = B⊺

(m) · · ·B
⊺
(2)B

⊺
(1)PiB(1)︸ ︷︷ ︸

P
(1)
i

B(2)

︸ ︷︷ ︸
P

(2)
i

...

· · ·B(m)

︸ ︷︷ ︸
P

(m)
i =F ′

i

.

Then, at each step d = 1, . . . ,m, we seek a matrix B(d) such that the bottom-right submatrix
of dimension d × d equal to zero. This produces d equations in n − m unknowns b∗,n−d+1,
depicted in (4.5), for each component of the public key i.

To recapitulate, we split the procedure into m steps, denoted by d, and at each step we solve
the following system for all i = 1, . . . ,m simultaneously

P
(d)
i = B⊺

(d)P
(d−1)
i B(d) =

[
∗ ∗
∗ 0d×d

]
, (4.6)

where P (0)
i = Pi and P (m)

i = F ′
i . The types of equations obtained at each step are outlined in

the following result.

Lemma 4.3.2. Let P be a symmetric matrix in kn×n corresponding to the public key. For a
fixed d ∈ {1, . . . ,m} the equation (4.6) produces one quadratic equation in n −m variables
and up to d− 1 distinct linear equations.

Proof. Denote P by P (0) and let d ∈ {1, . . . ,m}. We are interested in the bottom rightm×m-
submatrix of P (d)

B⊺
(d)P

(d−1)B(d) =

[
1 0
B⊺

2 1

] [
P1 P2

P3 P4

] [
1 B2

0 1

]
=

[
∗ ∗
∗ B⊺

2P1B2 +B⊺
2P2 + P3B2 + P4

]
,

where

P4 =

[
∗ ∗
∗ 0(d−1)×(d−1)

]
and B2 =

0 · · · b1,n−d+1 · · · 0
...

...
...

0 · · · bn−m,n−d+1 · · · 0

 .
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The first term B⊺
2P1B2 = (αij) is the only one contributing quadratic equations, which, due to

the structure of B2, has all elements except for αn−d+1,n−d+1 set to zero. Therefore, we only
have one quadratic equation.

Since P is symmetric, we have P2 = P ⊺
3 and thus B⊺

2P2 = (P3B2)
⊺. Consequently, the

equations in the column n − d + 1 and row n − d + 1 are the same, which yields d − 1
linear equations. Due to zeros in B2 and P4, the bottom right submatrix of P (d) of dimension
(d− 1)× (d− 1) is zero, so all equations are accounted for.

The complexity of the attack is dominated by step d = 1 because there are only quadratic
equations and no linear equations by Lemma 4.3.2. The system of equations (4.6) produces m
quadratic equations g1, . . . , gm in k[b1, . . . , bn−m]. Assuming gi behave as a random system
and there is a solution B of the required form, we can impose n − 2m linear constraints as in
Example 3.2.23 to obtain a system of n−m equations in n−m variables. If the system is regular
and if it has a solution, we can estimate the complexity of the attack using Lemma 3.2.22.

Lemma 4.3.3. Let n ≥ 2m, p ∈ Rm and suppose there is B ∈ GL(n, k) of the form (4.3)
such that p ◦ B ∈ Sm. Let g1, . . . , gm and ℓ1, . . . , ℓn−2m in k[b1, . . . , bn−m] be such that gi
correspond to quadratic equations of (4.6) for d = 1 and ℓi are random linear equations. If
dimV(g1, . . . , gm) = n− 2m and the system of equations J = ⟨g1, . . . , gm, ℓ1, . . . , ℓn−2m⟩ is
regular with dim V(J) = 0 and V(J) ̸= ∅, then B can be found in time

O

((
n−m+ ireg

n−m

)ω)
.

Example 4.3.4 (Reconciliation Attack).
We will now work through an example of the reconciliation attack for small values of UOV
parameters. The implementation of the attack with further commentary is available in the
appendix (see ra.sage).

Fix n = 5, m = 2, and let the order of the base field be q = 31. Despite n and m being so
small we have an unbalanced version with n > 2m. The first step is to generate a new UOV
key p = f ◦A. The matrices of the private key are given by

A =


7 23 6 5 1
12 29 28 4 8
8 24 22 5 27
12 10 14 17 26
26 28 25 16 9

 F1 =


19 16 24 7 23
16 17 14 0 21
24 14 13 29 18
7 0 29 0 0
23 21 18 0 0

 F2 =


21 21 14 29 14
21 4 0 30 0
14 0 25 2 11
29 30 2 0 0
14 0 11 0 0

 ,



4.3. RECONCILIATION ATTACK 67

and the public key is then

P1 =


26 27 8 7 11
27 27 8 28 18
8 8 1 9 0
7 28 9 23 21
11 18 0 21 26

 P2 =


1 2 30 14 26
2 25 27 18 8
30 27 4 8 8
14 18 8 15 0
26 8 8 0 14

 .

Since the top-left submatrixA1 ∈ k(n−m)×(n−m) ofA is invertible, there is an alternative secret
transformation A′ of the form (4.3). By Theorem 4.3.1 this transformation can be computed
by superimposing A′

2 = A−1
1 A2 on top of the identity matrix. This leads to the following

equivalent key

A′ =


1 0 0 24 10
0 1 0 17 27
0 0 1 11 9
0 0 0 1 0
0 0 0 0 1

 F ′
1 =


26 27 8 14 4
27 27 8 11 1
8 8 1 11 5
14 11 11 0 0
4 1 5 0 0

 F ′
2 =


1 2 30 29 2
2 25 27 23 0
30 27 4 25 28
29 23 25 0 0
2 0 28 0 0

 .

We will now recover an alternative private key (g,B) ∈ K directly from the public key p using
reconciliation attack. Let d = 1. We setup a system of equations (4.6) in b∗ to determine the
matrix

B(1) =


1 0 0 0 b0
0 1 0 0 b1
0 0 1 0 b2
0 0 0 1 0
0 0 0 0 1

 .

By equating the bottom-right submatrix of B⊺
(1)PiB(1) to 01×1 we obtain the following system

of equations{
26b20 + 23b0b1 + 16b0b2 + 22b0 + 27b21 + 16b1b2 + 5b1 + b22 + 26 = 0
b20 + 4b0b1 + 29b0b2 + 21b0 + 25b21 + 23b1b2 + 16b1 + 4b22 + 16b2 + 14 = 0

.

The system of equations is then solved using the methods of Elimination Theory. Since
there could be many solutions4, we pick one and compute the intermediate matrices P (1)

i =

4The current version of Sage [SD22] does not allow iterating through a variety of dimension greater than zero,
so we add linear constraints to reduce the dimension.
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B⊺
(1)PiB(1), which produces

B(1) =


1 0 0 0 20
0 1 0 0 30
0 0 1 0 23
0 0 0 1 0
0 0 0 0 1

 P
(1)
1 =


26 27 8 7 6
27 27 8 28 2
8 8 1 9 20
7 28 9 23 30
6 2 20 30 0

 P
(1)
2 =


1 2 30 14 21
2 25 27 18 24
30 27 4 8 22
14 18 8 15 12
21 24 22 12 0

 .

There are no guarantees that the chosen solution for d = 1 will yield a complete solution for
matrix B. On one hand, there are no guarantees that there is matrix B of the expected form
(see the probability estimate of Theorem 4.3.1); on the other hand, the chosen solution for
d = 1 might not be extendable to d = 2. Therefore, we have to try all solutions for different
values of d. The solution for d = 1 above is known to produce a complete solution for B, but
unsuccessful candidates were excluded from the example.

We now move to d = 2 and setup a system of equations to determine the coefficients of the
matrix

B(2) =


1 0 0 b0 0
0 1 0 b1 0
0 0 1 b2 0
0 0 0 1 0
0 0 0 0 1

 .

For each component of the intermediate public key P
(1)
i we now have one linear and one

quadratic equation, which matches the statement of Lemma 4.3.2. The equations are as follows
26b20 + 23b0b1 + 16b0b2 + 14b0 + 27b21 + 16b1b2 + 25b1 + b22 + 18b2 + 23 = 0
6b0 + 2b1 + 20b2 + 30 = 0
b20 + 4b0b1 + 29b0b2 + 28b0 + 25b21 + 23b1b2 + 5b1 + 4b22 + 16b2 + 15 = 0
21b0 + 24b1 + 22b2 + 12 = 0

.

Upon solving this system of equations we obtain the vector (b0, b1, b2) = (8, 19, 19) which is
then substituted intoB(2). The alternative private key is given by the matrixB = (B(1)B(2))

−1

and the components of the central map Gi = B⊺
(2)B

⊺
(1)PiB(1)B(2). The recovered key is as

follows

B =


1 0 0 23 11
0 1 0 12 1
0 0 1 12 8
0 0 0 1 0
0 0 0 0 1

 G1 =


26 27 8 12 6
27 27 8 10 2
8 8 1 27 20
12 10 27 0 0
6 2 20 0 0

 G2 =


1 2 30 10 21
2 25 27 30 24
30 27 4 0 22
10 30 0 0 0
21 24 22 0 0

 .
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4.4 Intersection Attack

The intersection attack of Ward Beullens [Beu21] builds on the Kipnis-Shamir and the rec-
onciliation attacks discussed in the previous sections. We will briefly summarize the attack
below.

Definition 4.4.1 (Polar Form). Let g ∈ k[w1, . . . , wn] be of degree two. The polynomial g′ in
k[w1, . . . , wn, z1, . . . , zn] is said to be a polar form of g if

g′(w, z) = g(w + z)− g(w)− g(z) + g(0),

where w = (w1, . . . , wn) and z = (z1, . . . , zn).

This definition naturally extends to m-tuples of polynomials p = (p1, . . . , pm) in Rm

p′(w, z) = (p′1(w, z), . . . , p
′
m(w, z)).

Since the elements ofR are homogeneous, pi(0) = 0, so the polar forms simplify to p′i(w, z) =
pi(w + z) − p(w) − p(z). A polar form defines a symmetric and bilinear map [Beu21, Theo-
rem 1], which leads to a number of interesting applications.

Remark 4 (Alternative Characterization of UOV). Recall that if p ∈ Rm is a UOV public key,
then p(Ox) = 0 by Lemma 4.2.4. Beullens observed that this property could be used to give an
alternative definition of the signature scheme [Beu21, Section 3]. The secret key could be any
description ofOx ⊆ kn and the public key p ∈ Rm could be any polynomial tuple that vanishes
on Ox. To sign a message b ∈ km one fixes v ∈ kn and composes a system of equations for
o ∈ Ox

p(v + o) = p(v) + p(o) + p′(v, o) = b.

Since p(v) is a constant, p(o) = 0, p′(v, o) is linear in o, and dimOx = m, we have a system
ofm linear equations inm variables. If a solution exists, the signature is the vector v+o ∈ kn.

Intersection Attack Let p = (p1, . . . , pm) ∈ Rm be a UOV public key and denote by
Pℓ ∈ kn×n the matrices of quadratic forms corresponding to pℓ. If Pi, Pj are invertible, then
Lemma 4.2.5 states that

dim (PiOx ∩ PjOx) ≥ 3m− n.

When n < 3m the intersection of these subspaces is nontrivial. If we find a vector v in this
intersection, then P−1

i v and P−1
j v are in the Ox. Having found two vectors in Ox is equivalent

to carrying out the reconciliation attack for d = 1 and d = 2, provided there is a solution of
the form (4.3). By Lemma 4.3.2, the remaining steps of the reconciliation attack are easier
because we obtain up to m(d− 1) linear constraints at each step. Therefore, the complexity is
dominated by finding a vector in the intersection, which gives the name to the attack.
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Let n < 3m. To find a vector z = (z1, . . . , zn) ∈ PiOx ∩ PjOx we compose a system of
equations in k[z1, . . . , zn] defined by

p(P−1
i z) = 0,

p(P−1
j z) = 0,

p′(P−1
i z, P−1

j z) = 0.

(4.7)

The first two equalities must hold because P−1
i z and P−1

j z are in Ox and the third one must
hold because we also have P−1

i z+P−1
j z inOx. This yields a system of 3m quadratic equations

in n variables. We know that the solution space has dimension at least 3m−n, so we can impose
3m − n linear constraints to obtain a system of n equations in n variables. While this is not
better than solving the PEP directly, this idea can be generalized.

Let n < 2.5m. To optimize the attack we want to increase the number of intersections. For
s > 1 and n < 2s−1

s−1 m, the author estimates that

dim (L1Ox ∩ · · · ∩ LsOx) ≥ sm− (s− 1)(n−m) > 0,

where Li are linear combinations of invertible matrices Pℓ. This yields a system of equations
similar to (4.7) withM =

(
s+1
2

)
m−2

(
s
2

)
quadratic equations inN = ns−(2s−1)m variables.

The complexity of the attack is estimated using Wiedemann XL algorithm (see Section 3.4) to
be

3

(
N + dreg
dreg

)2(N + 2

2

)
operations in k. It is precisely because of this attack that the security of parameters of Czypek et al.
in Table 2.1 was reduced from 128 to 95 bits.



Chapter 5

Conclusions

A digital signature scheme must prevent signature forgery by parties who do not have access
to the private key. This is achieved by employing a computationally hard problem at the foun-
dation of the respective construction. In case of UOV this is the Multivariate Quadratic (MQ)
problem, which posits that solving a random system of multivariate quadratic equations is NP-
complete [GJ79]. However, using a solid hardness assumption to build a signature scheme does
not guarantee the security of the scheme.

There are three security concerns that motivated the study outlined in this work. All of them
could render an instantiation of UOV less secure than expected. Informally, the concerns are:

(I) Key space is too small.
(II) Public key leaks information about the central map.

(III) Private key could be recovered by means other than MQ.

The expectation of security is stated in terms of the number of operations in the base field k
required to forge a signature for a particular choice of parameters. UOV has three parameters:
the number of polynomials m, the number of variables n, and the order q of the field k. Ta-
ble 2.1 provides several such expectations found in published works. Table 5.1 summarizes
complexity of the attacks discussed in this work. Let us review each concern in order.

(I) The key space is studied in Chapter 2. Theorem 2.3.7 provides a complete classification of
sustaining transformations of UOV. Counting sustaining transformation identifies redundancies
in the key space in the form of equivalent keys. Our result improves on the previous work
[WP05] as outlined in Table 2.3. However, even with the increased number of equivalent keys,
the key space is still large enough to fulfill the expectations.

(II) The relationships between public and private keys are studied in Section 2.3. We break-
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down the GL(n, k) component of the key space into smaller subsets and illustrate the new
components along with the respective relationships in Figure 2.1. While no new attacks have
been uncovered, it is perhaps not too surprising. Faugère and Perret have experimentally con-
cluded that UOV public keys behave like semi-regular systems [FP09]. Bulygin, Petzoldt, and
Buchmann established a lower bound on the complexity of solving UOV using Gröbner bases
[BPB10]. The experiment produced in this work indicates that small UOV instances behave
like regular systems (see Table 3.2 and Section 3.2.4). In other words, the UOV public keys
appear to hide the structure of the central map reasonably well.

(III) Definition 4.0.1 (PEP) captures the essence of the relationship between the public and
private keys of UOV without alluding to the MQ problem. The attack of Kipnis and Shamir
(Section 4.2) laid the foundations for solving PEP by showing that elements of Ox can be re-
covered by considering invariant subspaces of linear maps P−1

i Pj . Kipnis, Patarin, and Goubin
showed that the intersection P−1

i PjOx ∩ Ox is nontrivial for n < 3m (Lemma 4.2.5), which
motivates the recommendation to set n ≥ 3m. Reconciliation attack (Section 4.3) provides
a general method for solving PEP. While its complexity is not much different from a direct
approach, the value of the reconciliation attack is in showing that the complexity of PEP is
determined by recovering the first vector in Ox. As of this writing, there appears to be no
published solutions to PEP for n ≥ 3m. This makes UOV one of the few MPKC signature
schemes that managed to resist cryptanalysis to date. However, the are also no known reduc-
tions of PEP to common complexity classes, which means there could be efficient solutions to
this problem. This is a fascinating direction for future research.

Future Research

There are several directions for future work that are worth highlighting:

1. Explore methods of finding vectors in Ox that are not derived from Lemma 4.2.5. By
Theorem 4.1.3, a basis of Ox solves PEP. One possible direction is to study the connec-
tion between a stabilizer group of a public key stab(p) and Ox discussed in Sections 2.3
and 4.1 respectively. There is a connection between f andOx as well as between stab(f)
and stab(p), but it is unclear if this could be combined into a method for solving PEP.
The classification of the UOV key space illustrated in Figure 2.1 is aimed to highlight
possible paths.

2. Generalization of the Thomae-Wolf algorithm. This algorithm (Section 3.3) has a po-
tential to provide general means of converting underdetermined systems into determined
systems. There are two aspects that limit its applicability:

(a) Some solutions aℓ to the linear systems Li,j produce V(gj1 , . . . , gjm−t) = ∅. If
there are no solutions to gj = 0, the most time consuming step has to be re-
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Condition Complexity Algorithm

n ≥ m O
((

n+ireg
n

)ω)
Solving p(a) = 0 using Gröbner bases, provided p
is a regular system with n − m linear constraints
imposed (Example 3.2.23)

n > cm O
((m−⌊c⌋+1+ireg

n−⌊c⌋+1

)ω)
Solving p(a) = 0 using the Thomae-Wolf algorithm
for c > 2, provided all partial solutions a∗ are found
from the first attempt (Section 3.3)

n ≈
√
m O (mω) Solving p(a) = b using relinearization technique

(Lemma 3.4.3)
n = 2m O

(
n3

)
Executing the Kipnis-Shamir attack, provided B
meets the requirements from the first attempt (Sec-
tion 4.2)

n > 2m O
(
q−(2m−n+1)n4

)
Kipnis-Patarin-Goubin estimate for solving PEP
(Theorem 4.2.6)

n ≥ 2m O
((

n−m+ireg
n−m

)ω)
Executing the reconciliation attack, provided there
is a solution B of the required form (Lemma 4.3.3)

n < 2.5m O
((N+dreg

dreg

)2(N+2
2

))
Executing the intersection attack for n < 2s−1

s−1 m,
where s > 1 and N = ns− (2s−1)m (Section 4.4)

Table 5.1: Complexity of algorithms discussed in this work. The estimate in the “Complexity”
column assumes that all prerequisites outlined in the respective sections are met for the supplied
input to the algorithm.
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executed, which makes complexity analysis difficult.

(b) Some constraints on m, n, q must be able to yield guaranteed solutions even for
fields of odd characteristic. We have identified three places of arbitrary choice in
Section 3.3 that could be used for estimating the bounds.

3. Accounting for permutations of the variables. In order for a system of equations to be
invertible using the method of Lemma 2.0.4, the system should be linear in m variables
xi. However, the choice of m indices corresponding to the Oil variables can be arbitrary,
provided it is consistent for all polynomials in the system. For instance, consider a matrix
F of a central map f with respect to parameters m = 2, n = 5, q = 31. Let Mπ be a
permutation matrix that swaps x2 with x4, and let Fπ be the composition Fπ =M⊺

πFMπ

F =


16 7 30 7 10
7 19 17 7 21
30 17 20 4 25
7 7 4 0 0
10 21 25 0 0

 Mπ =


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 Fπ =


16 7 30 7 10
7 0 4 7 0
30 4 20 17 25
7 7 17 19 21
10 0 25 21 0

 .
Observe that, by Lemma 2.2.3, Fπ is no longer a central map, yet the polynomial fπ,
corresponding to Fπ, is linear in variables x2 and x5. This is easy to see if we fix the
Vinegar variables in the respective polynomials

f(1, 1, 1, x4, x5) = 5x4 − 12x5 + 8, fπ(1, x2, 1, 1, x5) = 5x2 − 12x5 + 8.

Furthermore, by Definition 2.2.2, Mπ is not a sustaining transformation because it maps
F to Fπ, which is not a central map. The results of Chapters 2 and 4 could be extended
to take into account permutations of the variables:

(a) Study the effect of permutations on further reduction of the key space. Theo-
rem 2.2.4 counts the number of equivalent keys. If p = f ◦A and B is a sustaining
transformation, then p = (f ◦ B) ◦ (B−1A) is easy to solve because f ◦ B is a
central map. However, the decomposition p = (f ◦Mπ) ◦ (M−1

π A) is also easy to
solve, yet it is not counted by the results from Chapter 2.

(b) Study if there is any advantage to solving PEP when the definition of a central map
also includes matrices such as Fπ. By Definition 4.0.1, C = (M−1

π A)−1 is not a
solution to PEP, yet p ◦ C = f ◦Mπ is easy to invert.
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[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto
Sugita. Comparison between XL and Gröbner basis algorithms. In Advances in
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Appendix A

SageMath Programs

The programs below are written in SageMath [SD22] using a dialect of the Python program-
ming language. To run the experiments:

1. Save the respective files into a directory on your computer,
2. Open a new session in SageMath,
3. Load the program of interest.

For example, to run the reconciliation attack experiment, save uov.sage and ra.sage into
a directory, then run the following from a command line:
$ cd path/to/programs
$ sage
sage: load("ra.sage")
sage: # paste examples from ra.sage

A.1 Unbalanced Oil and Vinegar

The following program implements the UOV key generation, signing, and signature verifica-
tion. Since uov.sage implements common procedures used by other programs this file must
be available on disk for examples to work.

uov.sage
# Key generation and common procedures for Unbalanced Oil and Vinegar.
reset()

# generate_keys returns a random UOV instance (P, F, T) for the specified
# field k, number of variables n, and number of polynomials m.
def generate_keys(k, n, m, order="deglex"):

R = PolynomialRing(k, ["x%d" % i for i in range(1,n+1)], order=order)
M = MatrixSpace(k, n)

81
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# Generate central maps.
F = []
for i in range(m):

x = R.gens()
f = 0
for i in range(n - m):

start_index = i
for j in range(start_index, n):

f += k.random_element() * x[i] * x[j]
F.append(f)

# Generate the secret transformation T.
T = M.random_element()
while not T.is_invertible():

T = M.random_element()

# Compose the central maps with T.
P = [T.act_on_polynomial(f) for f in F]

return P, F, T

# is_central_map returns true if all elements of the specified list of
# matrices Q have zero submatrix corresponding to the oil variables.
def is_central_map(Q, m):

for M in Q:
n, _ = M.dimensions()
if not M.submatrix(n-m, n-m).is_zero():

return False
return True

# poly_to_matrix takes a homogeneous polynomial f of degree two and returns a
# matrix corresponding to the quadratic form f. When characteristic of k is
# odd, the returned matrix is symmetric, provided the flag is set to True.
def poly_to_matrix(f, symmetric=True):

assert f.is_homogeneous() and f.degree() == 2, "f is not homogeneous"

R = f.parent()
k = R.base_ring()
n = len(R.gens())

rows = []
for i in range(n):

row = [0] * n
for j in range(i, n):

m = R.gen(i) * R.gen(j)
c = f.monomial_coefficient(m)
row[j] = c

rows.append(row)

Q = matrix(k, rows)
if symmetric and k.characteristic() != 2:

Q = (Q + Q.transpose()) / 2

# The symmetric matrix for fields of characteristic 2 is defined by
# Q = Q + Q.transpose(), but the operations of poly_to_matrix and
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# matrix_to_poly become incompatible. So we only return symmetric
# matrices for fields of odd characteristic for now.
return Q

# matrix_to_poly returns the polynomial corresponding to the quadratic form
# Q, where variables are formed by the generators of the polynomial ring R.
def matrix_to_poly(R, Q):

x = vector(R.gens())
return x * Q * x

# compose_qf returns a composition of the quadratic form Q with the linear
# transformation A.
def compose_qf(Q, A):

if "matrix" in dir(A):
A = A.matrix()

return A.transpose() * Q * A

# subs replaces the variables of f with the components of the vector v. f can
# either be a polynomial or a matrix.
def subs(f, v):

s = {}
gens = f.parent().gens()
if "submatrix" in dir(f):

gens = f.base_ring().gens()
for i in range(len(gens)):

s[gens[i]] = v[i]
return f.subs(s)

# polar_form returns the value of the polar form at (x, y).
def polar_form(f, x, y):

return subs(f, x + y) - subs(f, x) - subs(f, y)

# find_solutions solves the multivariate quadratic system of equations
# specified by ideal I. All solutions are returned when dim I = 0. If
# dim I = 1 random linear constraints are added to reduce the dimension and
# the operation is retried. An empty list is returned when dim I > 1 or dim I
# < 0 (no solutions).
def find_solutions(I):

dim = I.dimension()
if dim < 0 or dim > 1:

# print("find_solutions with dim(I) = %d; returning []" % dim)
return []

elif dim == 0:
return I.variety()

# dimension 1
sols = []
R = I.gen(0).parent()
x_i = R.gen(randint(0, len(R.gens())-1))
for val in I.base_ring():

J = ideal(I.gens() + [x_i + val])
sols += find_solutions(J)

return sols

# invert_central_map returns a pre-image value a such that F(a) = b.



84 APPENDIX A. SAGEMATH PROGRAMS

def invert_central_map(F_polys, b, debug=False):
R_x = F_polys[0].parent()
k = R_x.base_ring()
n = len(R_x.gens())
m = len(F_polys)

# It should be possible to invert the central map in qˆ(n-m) attempts.
for _ in range(k.order()ˆ(n-m)):

a = []
fixed_vars = {}
for i in range(n-m):

v = k.random_element()
fixed_vars[R_x.gen(i)] = v
a.append(v)

if debug: print("fixed_vars =", fixed_vars)

F_prime = [f.subs(fixed_vars) for f in F_polys]
if debug: print("F_prime =", F_prime)

M = []
for f in F_prime:

row = []
for i in range(n-m, n):

row.append(f.monomial_coefficient(R_x.gen(i)))
M.append(row)

M = matrix(M)
if debug:

print("M =")
pretty_print(M)

if M.is_invertible():
b_prime = []
for i in range(len(F_prime)):

v = F_prime[i].constant_coefficient()
b_prime.append(b[i] - v)

b_prime = vector(b_prime)
if debug: print("b_prime =", b_prime)

M_inv = M.inverse()
sol = M_inv * b_prime
a.extend(sol)

return vector(a)

# This may happen for small values of q, m, n.
assert false, "failed to invert the central map (try a different key)"

# verify returns true if P(a) == b for all components of the public key P.
def verify(P, a, b):

b_prime = vector([subs(p, a) for p in P])
return b_prime == b

# sign returns a signature vector a such that P(a) = b, where P is the
# public key (P = F o T).
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def sign(F, T, b):
a = invert_central_map(F, b)
return T.inverse() * a

# oilspace_y returns O_y = span(e_{n-m}, ..., e_n).
def oilspace_y(k, n, m):

basis = []
for i in range(m):

v = [0 for j in range(n)]
v[n - i - 1] = 1
basis.append(v)

return span(k, basis)

# oilspace_x returns O_x, which is a pre-image of O_y with respect to T.
def oilspace_x(n, m, T):

k = T.base_ring()
T_inv = T.inverse()

basis = []
for b in oilspace_y(k, n, m).basis():

basis.append(T_inv * b)

return span(k, basis)

# test_central_map ensures that the central map vanishes on O_y.
def test_central_map(F, num_tests=10):

R = F[0].parent()
k = R.base_ring()
n = len(R.gens())
m = len(F)
O_y = oilspace_y(k, n, m)

for i in range(num_tests):
o = O_y.random_element()
subs = {}
for i in range(len(R.gens())):

subs[R.gen(i)] = o[i]

for i in range(len(F)):
# print("F_%d(%s) = %s" % (i, subs, F[i].subs(subs)))
assert F[i].subs(subs) == 0

# test_public_key ensures that the public key vanishes on the O_x.
def test_public_key(P, O_x, num_tests=10):

R = P[0].parent()
k = R.base_ring()

for i in range(num_tests):
v = O_x.random_element()
subs = {}
for i in range(len(v)):

subs[R.gen(i)] = v[i]
for i in range(len(v), len(R.gens())):

subs[R.gen(i)] = 0
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for i in range(len(P)):
# print("P_%d(%s) = %s" % (i, subs, P[i].subs(subs)))
assert P[i].subs(subs) == 0

# test_poly_matrix verifies that the matrix to poly conversion works as
# expected.
def test_poly_matrix(polys):

R = polys[0].parent()
k = R.base_ring()
n = len(R.gens())

G = GL(n, k)
for f in polys:

# test poly/matrix conversions
R = f.parent()
Q = poly_to_matrix(f)
g = matrix_to_poly(R, Q)

assert f == g, "poly_matrix 1"

# test group actions
A = G.random_element()
f = A.matrix().act_on_polynomial(f)
Q = compose_qf(Q, A)
g = matrix_to_poly(R, Q)

assert f == g, "poly_matrix 2"

# define and execute a test suite for the UOV programs.
def run_tests():

n = 5
m = 2
for q in [2, 3, 31]:

k = GF(q, "z")
P, F, T = generate_keys(k, n, m)

O_x = oilspace_x(n, m, T)
test_central_map(F)
test_public_key(P, O_x)
test_poly_matrix(F + P)
Q = [poly_to_matrix(f) for f in F]
assert is_central_map(Q, m)

b = vector(k, [k.random_element() for i in range(m)])
a = sign(F, T, b)
assert verify(P, a, b), "sign/verify failed"

run_tests()

# sign_verify_example generates a new set of keys, signs a message, and
# verifies the signature. It prints all the intermediate results.
def sign_verify_example():

# Generate a new key pair
P_polys, F_polys, A = generate_keys(GF(31), 5, 2)
P = [poly_to_matrix(p, symmetric=False) for p in P_polys]
F = [poly_to_matrix(f, symmetric=False) for f in F_polys]
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print("Central map")
pretty_print(F)
print("Public key")
pretty_print(P)
print("Secret linear transformation")
pretty_print(A)

# Invert the central map.
mu = [7, 14]
sigma_prime = invert_central_map(F_polys, mu, True)

# Confirm the central map inverted correctly.
print("Message =", mu)
print("Pre-image of the central map =", sigma_prime)
print("Evaluating F_polys at sigma_prime")
for i in range(len(F)):

res = sigma_prime * F[i] * sigma_prime
print(" F_%d%s = %d" % (i, sigma_prime, res))

# Invert the public key and confirm the inversion is successful.
sigma = A.inverse()*sigma_prime
print("Pre-image of the public key =", sigma)
print("Evaluating P_polys at sigma")
for i in range(len(P)):

res = sigma * P[i] * sigma
print(" P_%d%s = %d" % (i, sigma, res))

# permutation_example illustrates that a different choice of oil variables
# produces a polynomial with the properties similar to UOV central maps.
def pemutation_example():

# Generate a random central map.
k = GF(31)
_, F_polys, _ = generate_keys(k, 5, 2)

f = F_polys[0]
F = poly_to_matrix(f)
R = F_polys[0].parent()

print("A randomly generated central map is given by")
print("f =", f)
print("The matrix form of f is F =")
pretty_print(F)

# The oil variables from Definition 2.0.3 are x_4 and x_5. We swap x_4
# with x_2 using the following permutation matrix.
M_pi = matrix(k, [[1, 0, 0, 0, 0],

[0, 0, 0, 1, 0],
[0, 0, 1, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 0, 1]])

# F_pi is no longer a central map as per Definition 2.0.3.
F_pi = compose_qf(F, M_pi)
print("Matrix of the central map F with x_4 and x_2 swapped is F_pi =")
pretty_print(F_pi)
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# However, F_pi is linear in x_2, x_4, which can be inverted using
# the same procedure as in Lemma 2.0.4.
f_pi = matrix_to_poly(R, F_pi)
print("The polynomial corresponding to F_pi is")
print("f_pi =", f_pi)
V = R.gens_dict()
print("f_pi(1, x_2, 1, 1, x_5) =",

f_pi.subs({V["x1"]: 1, V["x3"]: 1, V["x4"]: 1}))
print("f (1, 1, 1, x_4, x_5) =",

f.subs({V["x1"]: 1, V["x2"]: 1, V["x3"]: 1}))

# Example 1: generate keys, sign a message, verify the signature.
#
# sign_verify_example()

# Example 2: different choice of oil variables x_{n-m+1}, ..., x_n.
#
# pemutation_example()

A.2 Thomae-Wolf Algorithm

The program below implements the Thomae-Wolf algorithm as described in Section 3.3.

tw.sage
# Thomae-Wolf algorithm for solving MQ systems for m = c*n with c > 2.
reset()
load("uov.sage")

# For enumerating monomial degrees.
from itertools import combinations_with_replacement

def poly_to_vector(f, b):
row = []
for g in f.parent().gens():

row.append(f.monomial_coefficient(g))
b.append(-f.constant_coefficient())
return row

# decompose finds a matrix B such that BˆT P B = F, where F is a matrix
# suitable for Thomae and Wolf algorithm.
def decompose(R_x, P):

m = len(P)
n, _ = P[0].dimensions()
R_b = PolynomialRing(k, n-1, "b", order="lex")

B = identity_matrix(k, n)
for d in range(1, m):

B_d = identity_matrix(R_b, n)
col = list(R_b.gens())
col.insert(d, 1)
B_d.set_column(d, col)
print("B_d")
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pretty_print(B_d)

M = []
b = []
eqs_per_p = min(t, d)
eqs = []
for p in P:

P_d = compose_qf(p, B_d)
for i in range(eqs_per_p):

eq = P_d[i, d]
eqs.append(eq)
# print("P_d[%d, %d] = %s" % (i, d, eq))
M.append(poly_to_vector(eq, b))

M = matrix(M)
b = vector(b)
print("M =")
pretty_print(M)
print("b =")
pretty_print(b)

sol = M.solve_right(b)
ker = M.right_kernel()
sol = sol + ker.random_element()

assert M*sol == b, "wrong solution B_d (1)"
for eq in eqs:

assert subs(eq, sol) == 0, "wrong solution B_d (2)"
print("sol =", sol)

B_d = subs(B_d, sol)
print("B_(%d)" % d)
B = B*B_d
pretty_print(B)

P_d = [compose_qf(p, B_d).change_ring(k) for p in P]
print("P_(%d)" % d)
pretty_print(P_d)

P = P_d
return P, B

# linear_eqs returns the system of linear equations L_{i,j} in a matrix form.
def linear_eqs(F):

m = len(F)
n, _ = F[0].dimensions()
t = floor(n/m) - 1
L = []

for f in F:
for i in range(t):

eq = f.row(i).list()
eq = eq[m:n]
L.append(eq)

return matrix(L)
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# macaulay_matrix converts the specified list of polynomials to the Macaulay
# matrix using monomial order of the underlying polynomial ring.
def macaulay_matrix(polys):

R_x = polys[0].parent()

M = []
for g in polys:

assert g.degree() == 2, "g is not of degree 2"

row = []
for d in [2, 1]:

for c in combinations_with_replacement(R_x.gens(), d):
m = prod(c)
row.append(g.monomial_coefficient(m))

row.append(g.constant_coefficient())
M.append(row)

return matrix(M)

# macaulay_matrix_to_polys returns a list of polynomials corresponding to rows
# of the specified Macaulay matrix M using the monomial order and generators
# from the polynomial ring R_x.
def macaulay_matrix_to_polys(R_x, M):

num_eqs, _ = M.dimensions()
eqs = []
for i in range(num_eqs):

j = 0
g = 0
for d in [2, 1]:

for c in combinations_with_replacement(R_x.gens(), d):
m = prod(c)
g += M[i, j]*m
j += 1

# constant term
g += M[i, j]
eqs.append(g)

return eqs

# Example execution of the algorithm.
k = GF(order=31, name="z", repr="int")
n = 17
m = 5
t = floor(n/m) - 1
P_polys, central_map_polys, A = generate_keys(k, n, m)

# P = [poly_to_matrix(p, symmetric=False) for p in P_polys]
P = [poly_to_matrix(p) for p in P_polys]

print("Public key P")
pretty_print(P)
print("Central map F")
pretty_print([poly_to_matrix(f) for f in central_map_polys])
print("Secret transformation A")
pretty_print(A)

R_x = P_polys[0].parent()
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R_y = PolynomialRing(k, m-t, "y", order="lex")

F, B = decompose(R_x, P)
for i in range(len(P)):

assert compose_qf(P[i], B) == F[i], "decomposition of P"

# if m divides n, we might get an invertible L, then there’s only a trivial
# solution.
L = linear_eqs(F)
print("Linear equations L")
pretty_print(L)

sol = L.right_kernel().random_element()
a_linear = {}
for i in range(m, n):

a_linear[R_x.gen(i)] = sol[i-m]
print("Using the following solution to L x = 0: ", sol)

F_polys = [matrix_to_poly(R_x, g) for g in F]
print("Polynomials F")
pretty_print(F_polys)

F_polys = [g.subs(a_linear) for g in F_polys]
print("Polynomials F after substituting a solution to L")
pretty_print(F_polys)

print("Matrices of homogeneous components of F after substitution")
pretty_print([poly_to_matrix(g.homogeneous_components()[2]) for g in F_polys])

# Randomly select t polynomials from F
idx = [0 .. (len(F_polys)-1)]
shuffle(idx)
G_polys = [F_polys[idx[i]] for i in range(t)]

M = macaulay_matrix(G_polys)
M = M.echelon_form()
G_polys = macaulay_matrix_to_polys(R_x, M)
print("Polynomials G in reduced row echelon form")
pretty_print(G_polys)

# Prepare the substitutions x_iˆ2 = Q(...)
quad_subs = {}
for i in range(t):

mon = R_x.gen(i)ˆ2
g = G_polys[i]
assert g.monomial_coefficient(mon) == 1, ("invalid g[%d]" % i)
quad_subs[mon] = mon - g

print("Quadratic substitutions")
pretty_print(quad_subs)

# Substitute into remaining F_polys to obtain the system of equations in y
var_subs = {}
inv_var_subs = {}
for i in range(t, m):

x = R_x.gen(i)
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y = R_y.gen(i-t)
var_subs[x] = y
inv_var_subs[y] = x

I = []
for i in range(t, len(F_polys)):

g = F_polys[idx[i]]
for mon in quad_subs:

c = g.monomial_coefficient(mon)
print("g =", g)
if c != 0:

g -= c*mon
print("g’ =", g)
g += c*quad_subs[mon]
print("g’’ =", g)

# Map g to a polynomial in y
g = R_y(g.subs(var_subs))
I.append(g)

print("System I of (m-t) eqs in (m-t) variables")
pretty_print(I)
I = ideal(I)
a_g_sols_in_y = I.variety()
print("V(I) =", a_g_sols_in_y)

a_complete = {}
for a_g_y in a_g_sols_in_y:

# Map a candidate solution of V(I) in y_i vars to x_i vars
a_g = {}
for y in a_g_y:

a_g[inv_var_subs[y]] = a_g_y[y]

a_sqrt = {}
for mon in quad_subs:

v = quad_subs[mon].subs(a_g)
if is_square(v):

a_sqrt[sqrt(mon)] = sqrt(v)

if len(a_sqrt) == len(quad_subs):
print("a_sqrt =", a_sqrt)
# The complete solution a_complete is a concatenation of
# 1. Square roots a_sqrt x_0, ..., x_t
# 2. Solution to V(I) a_g x_{t+1}, ..., x_m
# 3. Linear solution a_linear x_{m+1}, ..., x_n
for x in a_sqrt:

a_complete[x] = a_sqrt[x]
for x in a_g:

a_complete[x] = a_g[x]
for x in a_linear:

a_complete[x] = a_linear[x]
break

if len(a_complete) != n:
# Square roots might not exist for partial solutions, so it is likely
# we will end up here when working over fields of odd characteristic.
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print("No solutions found")
else:

print("Solution to F(a) = 0")
pretty_print(a_complete)

print("Evaluating F(a)")
for i in range(len(F_polys)):

print(" F[%d](a) = %s" % (i, F_polys[i].subs(a_complete)))

print("Solution to P(a’) = 0")
sol = []
for i in range(n):

sol.append(a_complete[R_x.gen(i)])
sol = vector(k, sol)
B = matrix(k, B)
sol = B*sol
pretty_print(sol)

print("Evaluating P(a’)")
for i in range(len(P_polys)):

print(" P[%d](a’) = %s" % (i, subs(P_polys[i], sol)))

A.3 Reconciliation Attack

The program below implements the reconciliation attack described in Section 4.3. It uses the
same notation as the discussion above.

ra.sage
# Reconciliation attack on UOV.
reset()
load("uov.sage")

# equations_for_B returns an ideal containing the equations in b_ij variables
# of matrix B_d. The input parameters are:
#
# R_b - polynomial ring in b_ij variables
# d - current iteration 1..m
# P - matrices P[0],...,P[m] of quadratic forms from the previous step d-1
#
def equations_for_B(n, m, R_b, d, P):

B_2 = zero_matrix(R_b, n-m, m)
B_2.set_column(m-d, R_b.gens())

B_2_T = B_2.transpose()

eqs = []
for e in range(len(P)):

P_1 = P[e][0:n-m, 0:n-m]
P_2 = P[e][0:n-m, n-m:n]
P_3 = P[e][n-m:n, 0:n-m]
P_4 = P[e][n-m:n, n-m:n]
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BPB_4 = B_2_T*P_1*B_2 + B_2_T*P_2 + P_3*B_2 + P_4

# Since P is symmetric, we only need to read row m-d.
for j in range(m-d, m):

eqs.append(BPB_4[m-d,j])

return R_b.ideal(eqs)

# reconciliation_attack searches for an alternative secret linear
# transformation B for the specified public key P.
def reconciliation_attack(R_x, R_b, P, d):

k = R_x.base_ring()
n = len(R_x.gens())
m = len(P)

# The attack works for UOV by iterating over the solution space
# of equations for B. This iteration is inefficient for n > 2m
# and large values of n and m due to the number of solutions to
# consider.
I = equations_for_B(n, m, R_b, d, P)
V = find_solutions(I)
print(" d = %d found %d solutions" % (d, len(V)))

for sol in V:
B_d = identity_matrix(k, n)
for i in range(len(sol)):

B_d[i, n-d] = sol[R_b.gen(i)]

P_d = [B_d.transpose() * p * B_d for p in P]

# Stop the recursion.
if len(P) == d and is_central_map(P_d, m):

return P_d, [B_d], [I]

# Proceed with recursion.
P_m, B_m, I_m = reconciliation_attack(R_x, R_b, P_d, d+1)
if len(P_m) != 0 and len(B_m) != 0:

return P_m, B_m + [B_d], I_m + [I]

return [], [], []

def test_reconciliation_attack(q, n, m):
k = GF(order=q, name="z", repr="int")
P_polys, F_polys, A = generate_keys(k, n, m)

P = [poly_to_matrix(p) for p in P_polys]
F = [poly_to_matrix(f) for f in F_polys]
print("Public key P")
pretty_print(P)
print("Central map F")
pretty_print(F)
print("Secret transformation A")
pretty_print(A)

R_x = P_polys[0].parent()
R_b = PolynomialRing(k, n-m, "b", order="lex")
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A_1 = A[0:n-m, 0:n-m]
A_prime = None
if not A_1.is_invertible():

print("Warning: A_1 is not invertible")
else:

A_2_prime = A_1.inverse() * A[0:n-m, n-m:n]
A_prime = matrix.identity(k, n)
A_prime[0:n-m, n-m:n] = A_2_prime
print("Alternative secret transformation A’ (computed from A)")
pretty_print(A_prime)
print("Alternative central map F’")
pretty_print([compose_qf(p, A_prime.inverse()) for p in P])

print("Executing the reconciliation attack ...")
G, B_ds, I = reconciliation_attack(R_x, R_b, P, 1)
G_polys = [matrix_to_poly(R_x, g) for g in G]
B = mul(B_ds).inverse()

print("Recovered central map G")
pretty_print(G)
print("Recovered secret transformation B")
pretty_print(B)
print("B_ds =")
pretty_print(B_ds)
print("Equations for B")
for J in I:

pretty_print(J.gens())

# Test that the recovered private key enables signature forgery.
b = vector(k, [k.random_element() for i in range(m)])
print("Test message b =", b)
a = sign(G_polys, B, b)
print("Forged signature a =", a)
assert verify(P_polys, a, b), "signature forgery failed"

return P, F, A, A_prime, G, B_ds, I

P, F, A, A_prime, G, B_ds, I = test_reconciliation_attack(31, 5, 2)

A.4 UOV Statistics

The following program computes statistics presented in Section 2.4 and Section 3.2.4.

stats.sage
# UOV statistics.
reset()
load("uov.sage")
from numpy import mean

# Tuples (m, n, q).
uov_params = [

(2, 5, 2),
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(2, 5, 31),
(44, 103, 2ˆ8), # Czypek 2012
(48, 144, 2ˆ8), # Ding 2020
(64, 192, 2), # Wolf 2005

]

# Tuples (m, n). Parameters are chosen to be easily computable on a relatively
# modern computer.
toy_params = [

(2, 4), (2, 6),
(3, 6), (3, 9),
(5, 10), (5, 12), (5, 14), (5, 15),

]

# Counts of the respective components of the UOV key space.
def num_R(m, n, q):

return qˆ((1/2)*n*(n+1))

def num_S(m, n, q):
return qˆ((1/2)*(n-m)*(n+m+1))

def num_GL(n, q):
return prod([(qˆn - qˆi) for i in range(n)])

# Number of equivalent keys using Wolf 2005 estimate.
def wolf_reduction(m, n, q):

p1 = prod([(qˆm - qˆi) for i in range(m)])
p2 = prod([(qˆ(n-m) - qˆi) for i in range(n-m)])
return p1*p2

# Number of equivalent keys using Theorem 2.2.4.
def theorem224_reduction(m, n, q):

p1 = prod([(qˆn - qˆ(n-m+i)) for i in range(m)])
p2 = prod([(qˆ(n-m) - qˆi) for i in range(n-m)])
return p1*p2

# Statistics provided in Table 2.2.
def key_space_count(params):

fmt = "%-4s%-4s%-4s%-12s%-12s%-12s%-12s"
print(fmt % ("m", "n", "q", "log_2 |Rˆm|", "log_2 |Sˆm|",

"log_2 |GL|", "log_2 |K|"))
for m, n, q in params:

Rm = num_R(m, n, q)ˆm
Sm = num_S(m, n, q)ˆm
GL = num_GL(n, q)

log_Rm = int(log(Rm, 2))
log_Sm = int(log(Sm, 2))
log_GL = int(log(GL, 2))
log_K = int(log(Sm*GL, 2))
print(fmt % (m, n, q, log_Rm, log_Sm, log_GL, log_K))

print()

# Statistics provided in Table 2.3.
def key_space_with_reductions(params):

fmt = "%-4s%-4s%-4s%-12s%-16s%-12s%-16s%-12s"
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print(fmt % ("m", "n", "q", "log_2 |K|", "log_2 (K’ red)", "log_2 |K’|",
"log_2 (K’’ red)", "log_2 |K’’|"))

for m, n, q in params:
Rm = num_R(m, n, q)ˆm
Sm = num_S(m, n, q)ˆm
GL = num_GL(n, q)
K = Sm * GL
wolf_red = wolf_reduction(m, n, q)
t224_red = theorem224_reduction(m, n, q)

log_K = int(log(K, 2))
log_wolf_red = int(log(wolf_red, 2))
log_t224_red = int(log(t224_red, 2))
log_wolf_K = int(log(K / wolf_red, 2))
log_t224_K = int(log(K / t224_red, 2))
print(fmt % (m, n, q, log_K, log_wolf_red, log_wolf_K,

log_t224_red, log_t224_K))
print()

# Statistics provided in Table 2.4.
def prob_count(params):

fmt = "%-4s%-4s%-4s%-12s%-12s"
print(fmt % ("m", "n", "q", "P[g in S]", "P[f o A in S]"))

for m, n, q in params:
S = num_S(m, n, q)
R = num_R(m, n, q)
P_g_in_S = qˆ((-1/2)*m*(m+1))
assert P_g_in_S == S/R, "S/R"

P_fA_in_S = prod(
[(qˆ(n-m) - qˆi)/(qˆn - qˆi) for i in range(n-m)]
)

log_P_g_in_S = int(log(P_g_in_S, 2))
log_P_fA_in_S = int(log(P_fA_in_S, 2))
print(fmt % (m, n, q, log_P_g_in_S, log_P_fA_in_S))

print()

# Compute the index of regularity ireg by comparing the value of the Hilbert
# polynomial at i with the respective value of the Hilbert function. We use the
# Hilbert series to obtain the values of the Hilbert function and consider the
# first ˜20 terms (this value is determined by the precision of HS as returned
# by HS.prec()).
def index_of_regularity(I):

PSR = PowerSeriesRing(QQ, "z")
HP = I.hilbert_polynomial(algorithm="singular")
HS = PSR(I.hilbert_series())
# print("I =", I)
# print("Hilbert series =", HS)
# print("Hilbert polynomial =", HP)

ireg = 0
HF = HS.list() # returns HS.prec() terms in a list
for i in range(len(HF)):

if HF[i] != HP(i):
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ireg = i + 1

return ireg

# Statistics provided in Table 3.1.
def dim_dmax_stats(params, q, num_tests):

fmt = "%-4s%-4s%-12s%-12s%-12s%-12s%-12s%-12s"
print("Using q=%d and num_tests=%d for the table below"

% (q, num_tests))
print(fmt % ("m", "n", "dim_min", "dim_avg", "dim_max",

"dmax_min", "dmax_avg", "dmax_max"))

for m, n in params:
dim_vals = []
dmax_vals = []
for _ in range(num_tests):

P_polys, F_polys, A = generate_keys(GF(q), n, m, "degrevlex")
I = ideal(P_polys)
G = I.groebner_basis()
I = ideal(G)
dim = I.dimension()
dmax = max([g.degree() for g in G])
dim_vals.append(I.dimension())
dmax_vals.append(dmax)

print(fmt % (m, n, min(dim_vals), "%.2f" % mean(dim_vals),
max(dim_vals), min(dmax_vals), "%.2f" % mean(dmax_vals),
max(dmax_vals)))

# gen_random_constr returns "count" homogeneous linear constraints over R. The
# constraints are linearly independent.
def gen_random_constr(R, count):

k = R.base_ring()
n = len(R.gens())
c = GL(n, k).random_element().matrix()

constr = []
for i in range(count):

# c_1 x_1 + ... + c_n x_n = 0
eq = sum([c[i][j]*R.gen(j) for j in range(n)])
constr.append(eq)

return constr

def _constr(m, n, k):
P_polys, _, _ = generate_keys(k, n, m, "degrevlex")

R = P_polys[0].parent()
I = ideal(P_polys)
dim_I = I.dimension()

# Impose dim V(I) random constraints
constr = gen_random_constr(R, dim_I)

J = ideal(P_polys + constr)
dim_J = J.dimension()
ireg_J = index_of_regularity(J)
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dmax_J = max([g.degree() for g in J.groebner_basis()])
hs_poly = 0
if J.hilbert_series() in QQ["t"]:

hs_poly = 1
dmax_est = sum([g.degree() - 1 for g in J.gens()]) + 1

return dim_J, ireg_J, dmax_J, dmax_est, hs_poly

# Statistics provided in Table 3.2.
def stats_with_constr(params, q, num_tests):

fmt = "%-4s%-4s%-6s%-16s%-16s%-12s%-16s"
print("Using q=%d and num_tests=%d for the table below"

% (q, num_tests))
print(fmt % ("m", "n", "D_max", "dmax_J != D_max", "ireg_J != D_max",

"dim_J != 0", "HS_J is poly"))

k = GF(q)
for m, n in params:

dim_J_vals = []
ireg_J_vals = []
dmax_J_vals = []
dmax_est_vals = []
hs_poly_vals = []
for _ in range(num_tests):

dim, ireg, dmax, dmax_est, hs_poly = _constr(m, n, k)
dim_J_vals.append(dim)
ireg_J_vals.append(ireg)
dmax_J_vals.append(dmax)
dmax_est_vals.append(dmax_est)
hs_poly_vals.append(hs_poly)

assert min(dmax_est_vals) == max(dmax_est_vals), "unexpected D_max"
D_max = dmax_est_vals[0]

print(fmt % (m, n,
D_max,
len(dmax_J_vals) - dmax_J_vals.count(D_max),
len(ireg_J_vals) - ireg_J_vals.count(D_max),
len(dim_J_vals) - dim_J_vals.count(0),
sum(hs_poly_vals),
))

# Example 3.2.23.
def example_uov_complexity():

P_polys, _, _ = generate_keys(GF(31), 5, 2)
print("Public key P")
pretty_print([poly_to_matrix(p) for p in P_polys])

I = ideal(P_polys)
dim_I = I.dimension()
print("dim V(I) =", dim_I)

R = P_polys[0].parent()
constr = gen_random_constr(R, dim_I)
print("Random constraints")
pretty_print(constr)
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J = ideal(P_polys + constr)
dim_J = J.dimension()
print("dim V(J) =", dim_J)
print(" V(J) =", J.variety())

HS = J.hilbert_series()
HP = J.hilbert_polynomial()
print("HS_J =", HS)
print("HP_J =", HP)
print("ireg =", index_of_regularity(J))
print("dmax est =", sum([g.degree() - 1 for g in J.gens()]) + 1)
print("dmax act =", max([g.degree() for g in J.groebner_basis()]))

# Example 1: complexity of solving UOV.
#
# example_uov_complexity()

# Statistics provided in tables of Chapter 2.
#
# key_space_count(uov_params)
# key_space_with_reductions(uov_params)
# prob_count(uov_params)

# Statistics provided in tables of Chapter 3.
#
# dim_dmax_stats(toy_params, 31, 100)
# stats_with_constr(toy_params, 31, 100)
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