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Abstract

Globally, depression is a leading cause of disability and impaired quality of life.

The COVID-19 global pandemic has seen an increase of mental health disorders

particularly depression, which often goes untreated. Several key barriers contribute

to this, including social stigma, di�culty accessing mental health services as they

are overwhelmed, and lack of timely objective assessment approaches. A system

that helps monitor mood changes on a 24/7 basis will help identify when someone

may be starting to develop depression and therefore aid with earlier diagnosis and

relapse prediction.

The current literature has shown traditional machine learning techniques such

as regression and ensemble learning to be e�ective in tackling the problem of mood

classi�cation and prediction. In this work, we use deep learning and neural network

approaches to tackle this problem with the aim of improving we can improve the

accuracy and lowering the variance of existing methods.

We acquired a dataset from an existing study (of n = 14 participants) using

regression and ensemble learning techniques and developed our own Neural Net-

work model using multilayer perceptron models to tackle the classi�cation task.

We tried a neural network approach across multiple subsets of their dataset with

varying success. Our best model performed on par with the existing Shah et al

model with 17 out of 32 total measurements improving on that of Shah et al and

providing consistently provided lower variance than their model.

Additionally, where we collected a similar dataset using technology and sensors

from smartphones and smartwatches for one month. A total of 15 healthy individ-

uals participated in the study. This data was then used in traditional monolithic

and compositional neural network models to perform mood classi�cation using

smartphone-enhanced ecological momentary assessments and physiological data

collected from a Fitbit smartwatch.

The compositional and monolithic neural network approaches developed us-

ing Keras provided promising results with accuracies ranging from roughly 60 -

iii



iv

90%. However, there were limitations to our collected dataset as the distribution

of labels was limited and may have resulted in over-�tting. This was expected as

all participants were healthy controls, as it was challenging to recruit a depressed

group due to the COVID-19 pandemic. Future work can be done by adding ex-

tra features and samples to improve the neural network models but overall this

work showed that the deep learning approach has the potential for accurate mood

prediction.
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Chapter 1

Introduction

Globally, depression is highly prevalent and a leading cause of disability and im-

paired quality of life [1] [2]. Depression is the most prevalent mental health disor-

der in New Zealand [3] and is the second leading cause of disability globally [4].

Depression not only has a burden on people but also on the economy, with an

estimated cost of 210 billion USD per year [5].

Despite depression's broad reach and availability of e�ective treatments, it of-

ten goes untreated. Several key barriers contribute to this, including social stigma,

di�culty accessing mental health services, and lack of timely objective assessment

approaches. This has been further exacerbated by an increase in psychological

distress due to the COVID-19 pandemic [6] [7].

A system that helps monitor mood changes on a 24/7 basis will help iden-

tify when someone may be starting to develop mental health disorders, and then

immediately provide support and resources that could prove valuable for early di-

agnosis and detection of mental health disorders. Capable smartphones are being

more readily available, an average of 73.45% [8] of adults in the top 20 countries

owned a smartphone. Wearable technology has become more readily available

and with advancements in sensor technology wearables could aid in reshaping the

healthcare industry [9]. Smartwatch technology allows sensor data to be used for

the detection of di�erent health illnesses, both physical and mental [10].

Studies have shown there is a link between depression, anxiety and other men-

tal health disorders and a variety of di�erent biomarkers. Biomarkers such as

heart rate and heart rate variability have been known to re�ect sympathetic and

parasympathetic activity and mental illness tends to cause an imbalance in the

form of increased sympathetic activity [11]. This is re�ected in decreased HRV

and increased resting heart rate [12] [13] [14].
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2 Introduction

With a larger dataset machine learning can be an extremely powerful tool for

data processing. ML has been used for applied to areas such as natural language

processing, and time series forecasting. Recent developments in ML [15] and the

widespread adoption of a�ordable smartphones and smartwatches will facilitate

technology as a lever to support objective mental health diagnosis and monitoring

on a global scale [16].

1.1 Background

There are several terms and concepts that need to be de�ned and are essential in

understanding this thesis. These include the concepts of:

� Digital biomarkers and their relation to mental wellness

� Di�erent machine learning models and their applications

1.2 Digital Bio-markers

Digital bio-markers are measurable health indicators that can be used collected

and then analysed to infer di�erent physical and mental health conditions. Exist-

ing studies have explored the idea of using digital bio-markers for the classi�ca-

tion of depression and results indicate that they have been shown to be e�ective

[17]. Many studies have used emerging smartwatch technology to capture digital

biomarkers such as heart rate, heart rate variability, sleep activity, and physical

activity. A study conducted by Byun et al [18] in 2019 determined with a 74.4%

accuracy that participants with major depressive disorder could be di�erentiated

from healthy control participants. Some digital biomarkers that have been shown

to be predictors of depressive relapse include disrupted sleep, reduced sociability,

changes in mood, prosody and cognitive function [19]. Overall, digital biomarkers

can provide an scalable, unobtrusive, time-sensitive, and cost-e�ective method for

depression detection [20].

1.2.1 Heart Rate and Heart Rate Variability (HRV)

Heart rate is a well-known term that indicates how frequently your heart beats.

Heart rate is commonly measured in beats per minute (BPM) and can range from

60 - 100 BPM in normal human adults.
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Given a BPM heart rate measurement it is common to think that a human

heart beats at consistent intervals. This is untrue as there is in fact a variation in

the beat-to-beat interval and this is classi�ed as heart rate variability (HRV). Heart

rate and heart rate variability can provide great insights into the cardiovascular

health of a human [21].

There are two central nervous systems, the sympathetic nervous system com-

mands the body's �ght or �ight response, and the parasympathetic nervous system

which controls the body's rest and digest response. In a healthy individual, there

must be a balance between these two nervous systems [22]. Individuals with de-

pression and stress-related disorders tend to have an imbalance in the form of

increased sympathetic activity [11].

Literature has indicated a clear inverse relationship between long-term mental

health issues and HRV [23]. Athletes and individuals who are more physically �t

may have healthy heart rates that are lower than the normal 60. Unwell individu-

als, for example, those with chronic insomnia, will show an increased resting heart

rate [24].

A low heart rate variability indicates the heart's inability to respond quickly

and increases an individual's susceptibility to sickness and disease, both physio-

logical and psychological whereas a high heart rate variability indicates a strong

ability to adapt to physiological changes and helps to resist sickness and disease.

Both HR and HRV relate closely with mental health disorders such as depres-

sion and anxiety as generally individuals with mental health illnesses also show an

increase in resting HR and a decreased HRV [25]. This makes both HR and HRV

e�ective biomarkers for the detection of depression severity [26].

1.2.2 Physical Activity

Physical activity is a general measure of the exercise and steps an individual

performs each day. Physical activity is commonly broken down into step count,

intensive exercise, and sometimes calorie intake and expenditure. As discussed in

the heart rate and heart rate variability section, a higher level of physical activity

can help to improve heart rate variability and lower resting heart rate.

Similar to heart rate and heart rate variability physical activity has also been

shown to be negatively correlated with depressive symptoms [27]. Literature has

shown that a high level of physical activity reduces the risk of major depressive

disorder in an individual [28] [29] [30]. The connection between physical activity
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levels and depression symptoms could be related to heart rate and heart rate vari-

ability but may be due to the link between the level of sedentary behaviour which

is the inverse of physical activity and depressive symptoms [31]. These factors

make physical activity an e�ective digital bio-marker for determining depression

severity.

1.2.3 Sleep

Sleep is a measure of the number of hours and frequency of an individual's sleep.

This can be split into di�erent segments including, light, deep, and REM sleep.

Sleep plays an important part in staying healthy as it allows the brain to carry

out many important functions. Sleep is essential to every part of the body and it

helps the body �ght disease and develop immunity, and reduce the risk of disease.

Sleep disturbance is very common in depressed individuals [32] in particular

shortening of REM latency, lengthening of the duration of the �rst REM period

and heightening of REM density [33]. Sleep disturbance in depressed individuals

tends to occur in the early hours of the morning between 2 - 4 am [34]. Many

studies have already captured information about sleep duration and used them as

an e�ective digital bio-marker for depression severity detection.

1.3 Machine Learning (ML)

Machine learning is a �eld of computer science that focuses on the development of

computer systems that have the ability to learn to perform a task without being

explicitly programmed like traditional algorithms. The machine essentially draws

inferences that it learns from patterns in the data.

There are three main types of machine learning [35]. The �rst type is supervised

learning, this is when an ML model develops relationships based on looking at

a set of input-output examples. The second is unsupervised learning, where the

model tries to determine relationships on an input dataset without being provided

labels. The �nal type is reinforcement learning is when the model learns constantly

and learns based on feedback from an environment. Other types such as semi-

supervised learning, transduction, and learning to learn hybrid combinations of

the three base types.
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1.4 Regression

Regression in a mathematical context is a statistical way of measuring the re-

lationship between a set of inputs and outputs. In a machine learning context.

The most common form of regression is linear regression which tunes the simple

equation

y = mx+ c

to be able to as accurately as possible predict an output given a given input [36].

Other forms of regression include non-linear which tries to minimise the error

of a more complex function non-linear function given an input-output set. Some

common regression algorithms include support vector machines and K nearest

neighbours. Support vector machines are a supervised algorithm that creates a

plane in a 2D or 3D space given a set of training features and then creates a clear

plane that distinctly separates the two or more categories. K nearest neighbours is

a non-linear regression algorithm that looks at how new data points are related to

existing categories in the dataset. The output is determined by weighting already

classi�ed neighbouring points based on the distance of existing points to the new

point. These algorithms have been commonly used for classi�cation and market

prediction tasks.

1.5 Ensemble Learning

Ensemble learning is a form of machine learning where instead of having one

model that is trained to solve one problem, ensemble learning combines multiple

to provide better predictive performance [37]. The most common ensemble learning

algorithm is the random forest [38] algorithm. The random forest algorithm creates

decision trees that are generated on randomly selected data points, this is called

bootstrapping. Each tree will have its own output and the classi�cation with the

majority vote is then determined to be the result, this process is called aggregation.

The randomisation in the algorithm means trees will be trained on features which

may be really relevant and some which may not be so relevant, this helps to

reduce variance as if all trees had the same features then they would all perform

similarly. Generally, the size of the feature subset and the size of the forest result

in the algorithm being quite computationally intensive.
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1.6 Deep Learning (DL)

Deep learning is a sub-�eld of machine learning that enables machines to learn

from past experiences in order to learn patterns and identify abstract objects

[39]. Deep learning was inspired by training a computer to learn how a human

brain learns. It is often used interchangeably with Arti�cial Neural Networks.

Deep learning neural algorithms are much more computationally intensive to train

than traditional machine learning algorithms and they usually require powerful

machines such as high-performing GPUs to be trained.

1.7 Arti�cial Neural Networks (ANN)

Arti�cial neural networks are a sub-�eld of machine learning inspired by the abil-

ity of biological systems to process data. Neurons are electrically active cells in

the human brain that communicate with thousands of other neurons in the human

brain. ANNs create arti�cial neurons and assign numerical values to recreate bio-

logical neurons. The arti�cial neurons are activated using a range of mathematical

functions, these include a simple linear function, to more complex functions such

as Tanh, Recti�ed Linear Unit (ReLU)

Neural networks have shown to be successful in a wide range of applications

including classi�cation, pattern recognition, data analysis, and control [40].

The goal of a neural network is to solve complex problems by training and

analysing existing examples. A feedforward neural network is essentially a non-

linear mathematical function that is capable of mapping a set of inputs to outputs

[40] after learning o� a training set. A neural network learns from features in

the dataset to create a complex abstraction. Neural networks have been shown

to have the capability to excel where conventional algorithms could not develop

connections.

A limitation of neural networks is that they learn by observation, if there are

only limited examples of such classi�cation the neural network will not be able to

provide accurate predictions [39]. Another limitation is that ANNs are considered

black-box approaches as sometimes they are su�ciently complex that it is di�cult

to explain or interpret how the model work.
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1.8 Multilayer Perceptron (MLPs)

MLPs or also commonly known as deep feed-forward neural networks are the most

common type of arti�cial neural network. Each node in each layer is connected

to every node in the following layer. The way inputs are processed at each node

and then passed to the next node until the output is generated is why MLPs are

a feed-forward neural network.

Training an MLP involves generating outputs with input-output training data.

In the �rst few iterations, the model output will likely be quite di�erent to the

actual output, this is represented as some sort of error or loss. This is then fed

back via the process of back-propagation to each node so that it can adjust its

weight. Many iterations of this is done until the error in the output is minimal.

1.9 Recurrent Neural Networks (RNNs)

Recurrent neural networks are a form of arti�cial neural networks which involve

using the output of one step is provided alongside the inputs for the next step [41].

A simple RNN architecture (as shown in Figure 1.2) consists of an input layer, a

number of hidden layers (only one hidden layer in this example), and an output

layer (only one output in this example). The architecture of an RNN (See Figure

1.2) is very similar to that of an MLP as seen in Figure 1.1 but with additional

arrows in the hidden layer which indicate the outputs from one step being fed

back as input to the next time step [42]. Similar to other ANNs, RNNs have been

proven successful for tasks such as face detection, speech recognition, prediction

problems, and many more.

1.10 Long Short-Term Memory (LSTMs)

A long short-term memory is a type of recurrent neural network with a slight

di�erence where it maintains an internal state or memory so information can

be retrieved from relevant previous time steps [43]. The LSTM neural network

addresses the problem of the long-term dependency problem of RNNs, which is

when a lot of prior information starts piling up, RNNs become less e�ective at

learning new things. The current input, previous output, and the current state are

used in the node's calculation [44].

The architecture of an LSTM is similar to that of an RNN (see Figure 1.2 but

with the addition of an internal state. There are three gates that control what sort
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Figure 1.1: A Basic Multilayer Perceptron Neural Network

of information is maintained within the state and these are the forget gate, input

gate, and output gate. The forget gate determines what state information stored in

the internal state is no longer relevant. The input gate determines which incoming

information should be stored in the internal state. The output gate determines

what part of the internal state will be used as part of the output. These units

allow a neural network to remember the stu� it needs to retain the context of the

problem, while also forgetting things that are no longer applicable. LSTMs have

proven to be particularly e�ective in looking at time-series data, natural language

processing of text, handwriting and speech and also time series forecasting.
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Figure 1.2: A Simple Recurrent Neural Network

1.11 Compositional Neural Networks (CpNNs)

Traditionally neural networks are trained as a singular large monolithic model

to perform a certain task. A limitation of monolithic models is as the number

of features grows, the neural network model becomes exponentially hard to train,

understand, and explain. The premise of compositional neural networks is is break

down large compositional models into smaller models [45]. These smaller models

are trained separately and have their own individual outputs, then they are put

into a merge block to determine the �nal output.
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1.12 Cross-Validation

Cross-validation is a method of validating di�erent learning algorithms by divid-

ing the dataset into a chosen number of folds. Typically this is divided into k

segments and this method is called k-fold cross-validation. The learning algorithm

is trained using all combinations of K - 1 train folds and 1 test fold. The purpose

of performing cross-validation is to gauge the generalisability of the algorithm [46]

and to compare di�erent algorithms to the same dataset. Cross-validation allows

for the entire dataset to be used in model creation and is an e�ective method,

especially when working with smaller datasets.

1.13 Hyper-Parameter Optimisation

There is a wide range of hyper-parameter optimisation algorithms but the two

most simple and commonly used are grid search and random search [47]. Grid

search is a brute force method where hyper-parameters are assigned a range in

which the grid should search. The hyper-parameters are then adjusted between this

range with the desired step size. A model is then created for every combination of

every hyper-parameter wanting to be tuned. Grid search is an exhaustive method

and is extremely computationally intensive as it scales factorially with step size

and number of hyper-parameters to tune. Random search is a hyper-parameter

optimisation method that randomly picks parameters within a given space and it

does this a prede�ned amount of times. The idea behind random search is that we

don't need to be all points in a similar space as they will provide similar results.

This makes the random search much less computationally intensive and has shown

to be su�ciently e�ective for neural network training.

1.14 Thesis Outline

The remainder of this thesis is as follows. Chapter 2 presents a review of existing

literature and studies which have applied forms of ML in the mental health space.

This is followed by analysing three studies in particular which are some of the

most recent and relevant work in the space. Finally, we discuss a summary of the

existing work and the needs gaps that this thesis attempts to �ll.

Chapter 3 explains in detail the MoodAI study design procedure and method-

ology undertaken in the development of the MoodAI study. This ranges from study
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recruitment, ethics approval, study goals, participant screening and the develop-

ment of all the tools required to reproduce the study.

Chapter 4 presents a comparison between the methodology and results of the

Shah et al [48] work and a MoodAI DL and NN model. We explore the idea

of whether or not NNs are able to provide better performance over traditional

regression and ensemble learning ML models.

Chapter 5 presents the data collection and ML pipeline performed using data

collected from the MoodAI study. We train compositional and monolithic ML

models with the goal of being able to perform accurate mood classi�cation.

Finally, chapter 6 concludes the work by presenting, strengths and limitations

of the work, re�ections on the results of the work as well any potential future

directions for related research relating to the work presented in this thesis.





Chapter 2

Literature Review and Existing

Work

2.1 Existing Work

Many existing studies from all around the world have tried to perform some form

of depression prediction with ML models using a variety of digital biomarkers such

as sleep, step activity and heart rate along with clinical instruments. Three papers

by Jacobson et al [20] [49] [50] utilised digital biomarkers to monitor the severity

of MDD and anxiety. Jacobson et al used regression and ensemble learning-based

ML models such as extreme gradient boosting, support vector machines ridge

regression, random forest, and KNN to predict severity with an 80% accuracy.

Ghandeharioun et al [51] conducted a similar study using features collected from

smartphone sensors and wristbands to predict the participant's HAM-D. To do

this lasso, ride, and elastic net regression models and random forest ensemble

learning processes. A 10-fold cross-validated model achieves an RMSE of 7 points

with the max score on the HAM-D being 52 points on the 17-item version [52].

Tazawa et al [53] is a paper published in 2020 used ML algorithms to screen for

depression and the severity of depression symptoms. Tazawa et al used wearable

data from smartwatches such as step activity, calorie expenditure, sleep time,

heart, and skin temperature. The study recruited a total of 45 depressed partici-

pants and 41 healthy controls. Participants were screened by a clinician using the

17-item HAM-D instrument. Regression and ensemble learning models such as

SVM, random forest, and XGBoost were considered, but XGBoost appeared to be

13
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the most e�ective model. 10-fold cross-validation was used to validate the model

and the model was able to identify symptomatic patients with a 76% accuracy.

Sano et al [54] conducted a study to identify high stress and poor mental health

in participants using wearable sensors and smartphones. Physiological, phone and

mobility data proved to be e�ective predictors of stress and mental health. The

ML models used were similar to those in Ghandeharioun et al [51] being LASSO,

and SVM. The best models achieved results of 78.3% accuracy for classifying high

and low-stress groups, 87% accuracy for classifying high and low mental health

groups, 73.5% accuracy for stress classi�cation, and 79% accuracy for mental

health classi�cation.

All the aforementioned studies utilised regression and ensemble learning-based ML

models. DL and NNs are some of the most recent developments in AI technology

and recent work using DL and NNs in healthcare suggest that there is potential

to apply DL and NNs in mental health diagnosis and treatment [15].

The following studies will be discussed in detail as they are the most recent and

closely related to the work discussed in this thesis:

2.2 Shah et al

2.2.1 Introduction

The Shah et al work was a study conducted by a team from the University of

California, San Diego, USA. The study is titled "Personalized machine learning of

depressed mood using wearables" [48] published in June 2021.

2.2.2 Study Design

The Shah et al study was designed around determining the predictors of depressed

mood in depressed adult humans by leveraging smartphone-based EMAs together

with smartwatches and neurocognitive assessments combined with EEG measure-

ments. They then applied ML models to the collected data to try to predict de-

pressed mood ratings and also determine the most impactful features to guide

personal intervention.
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2.2.3 Study Recruitment

The study recruited adult human subjects from the University of California

San Diego College Mental Health Program. No structured clinical interview was

conducted as part of recruitment for this study.

All participants needed to meet the following inclusion/exclusion criteria:

� Experiencing moderate depression symptoms determined by a PHQ-9 as-

sessment scoring between 10 and 17 inclusively.

� Absence of any suicidal behaviours determined by the use of the C-SSRS.

� Be stable on any current psychotropic medications.

A total of 14 participants took part in the study and the mean age of the re-

cruited participants was 21.6 ± 2.8 years including a majority of 72% (10) of

those participants being female.

2.2.4 Study Procedures

Participants were monitored and assessed for a period of 1 month. All data

collected by the Shah et al study were in the years prior to the emergence of the

COVID-19 global pandemic.

Participants in the Shah et al study were tasked to complete were the following:

� Neurocognitive Assessments

Neurocognitive assessments are assessments that are designed to test certain

brain functions. A total of six assessments were used in the study; these in-

cluded inhibitory control, interference processing, working memory, emotion

bias, internal attention, and reward processing. These assessments were done

a total of three times during the study duration, at the beginning, middle

and end of the one-month duration.

� EEGs

The neurocognitive assessments were done simultaneously with the EEGs.

The EEGs were used to record brain activity during the neurocognitive

assessments.
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� EMAs

EMAs were done using an app called BrainE [55]. This app would prompt

participants at 8 am, 12 pm, 4 pm, and 8 pm to complete depression and

anxiety ratings on a 7-point Likert scale.

� Stress Assessment

Stress assessments in the form of 30-second breathing assessments were done

at the same time and frequency as the EMAs.

� Diet Reporting

Fats, sugars, and ca�eine were recorded on a 0-6 scale at the same time and

frequency as the EMAs.

� Smartwatch data

Lifestyle data such as sleep, physical activity, and stress were captured using

a Samsung Galaxy smartwatch. The smartwatch was expected to be worn

for the entire duration of the study except when charging.

2.2.5 Study Methodology

Shah et al extracted a total of 43 features from the collected multidimensional

data to be used in their ML models. Supplementary information provided by

Shah et al including a complete list and description of all 43 features can be found

in Appendix A. The ML models were trained on the 43 di�erent features using

the depressed mood rating as the label. A total of seven regression and ensemble

learning-based ML models were used, these included the following:

� Elastic Net

� Random Forest

� Gradient Boosted Trees

� Ada Boosted Trees

� Poisson Regressor

� Support Vector Regressor

� Voting Regressor

A nested cross-validation technique and hyperparameter tuning was performed to

improve the performance of each of the ML models.
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2.2.6 Study Results

Results from all the di�erent ML models showed that there was no one model

which performed the best among all participants. Table 2.1 shows the best results

achieve from the best machine learning model for every participant. Results us-

ing the SHapley Additive exPlainations (SHAP), a game theory-based algorithm

indicated that the top �ve most relevant features to the ML models [56] from

most important to least important were anxiety, diet, physical activity, breathing

& stress, neurocognition, and sleep in that order. Overall the Shah et al work re-

sulted in an average MAPE of 27.9 ± 10.3% and an MAE of 0.77 ± 0.27% across

all participants.

Subject ID MAPE MAE
Mean Std Mean Std

1 7.55% 5.55% 0.358 0.291
10 25.45% 10.13% 0.900 0.248
12 26.27% 14.44% 0.650 0.330
14 40.88% 11.87% 1.007 0.335
15 10.24% 2.53% 0.378 0.088
18 24.05% 11.80% 0.882 0.356
19 29.11% 6.24% 0.651 0.202
20 31.55% 6.22% 1.055 0.485
21 33.28% 11.59% 0.824 0.372
23 35.12% 15.30% 0.812 0.167
24 6.40% 6.91% 0.208 0.267
26 36.41% 9.63% 1.152 0.217
28 21.23% 7.56% 0.657 0.131
29 63.14% 26.13% 1.274 0.322

Table 2.1: Results of the Shah et al's best machine learning model for each par-
ticipant

2.2.7 Conclusions

Overall the work of Shah et al showed promising results using regression and

ensemble learning-based ML models using data collected with smartphones and

smartwatches. Certain participants such as subjects id 1 & 24 show models with

single-digit MAPE and correspondingly low MAE. Although the average MAPE

and MAE can still be improved given the limitations in the quantity of collected

dataset it is not always possible to generalise the prediction models. This thesis

furthers the work of Shah et al by applying DL and NN-based ML techniques
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using the Shah et al dataset to try to improve on the results from Shah et al (see

Chapter 4).

2.3 Bai et al (Mood Mirror)

2.3.1 Introduction

Mood Mirror [57] was a study conducted by Beijing's Capital Medical University.

This study was published under the title "Tracking and Monitoring Mood Stability

of Patients With Major Depressive Disorder by Machine Learning Models Using

Passive Digital Data: Prospective Naturalistic Multicenter Study" published in

March 2021.

2.3.2 Study Design

The Mood Mirror study was conducted as a multisite, noninterventional prospec-

tive study at 4 di�erent psychiatric hospitals in Beijing, China. The study utilised

an in-house designed app called Mood Mirror installed on Android smartphones

along with a Mi Band 2 which recorded sleep, heart rate, and step count data.

The Mood Mirror app also facilitated the capture of daily EMAs and Biweekly

PHQ-9 assessments. The study was designed to determine the correlation between

all these features for patients with depression.

2.3.3 Study Recruitment

Participants were recruited from the 4 clinics across Beijing. The recruitment

period was from February 2019 to April 2020.

Participants of the Mood Mirror study needed to meet the following inclu-

sion/exclusion criteria to be admitted into the study:

� Be within the ages of 18 to 60 years

� Diagnosed with MDD determined by a clinician using the DSM IV [58]

� No current diagnosis of substance abuse

� Own an Android phone capable of installing the Mood Mirror app
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2.3.4 Study Procedures

Participants were observed for a total of 12 weeks. Participants were reimbursed

a total of ¥500 for completing the entire 12-week observation period.

Participants of the Mood Mirror study were required to complete the following

tasks over their 12-week observation period:

� Bi-weekly physician-administered HAM-D assessments [52]

The HAM-D is one of the most common clinician-administrated depression

rating scales.

� Bi-weekly PHQ-9 assessments

The PHQ-9 is a self-administered instrument for diagnosing and measuring

the severity of depression in an individual.

� Daily mood ratings

Essentially an EMA using a visual 7-point Likert scale completed via the

Mood Mirror app.

� Passive smartphone usage data capture

Consent to providing phone interaction and usage data such as call and text

logs, GPS location, and screen status.

� Wristband physiological data capture

Wear the provided wristband capturing data about a participant's sleep,

step and heart rate.

2.3.5 Study Methodology

Data collected from the Mood Mirror app and wristband were separated into

feature groups. These groups were sleep, step count, heart rate, and phone data.

Di�erent regression and ensemble learning-based ML approaches were applied to

each of the di�erent features individually as well as all the features as a whole

to predict between two di�erent groups of participants. The following ML models

were used:

� Support Vector Machines

� K-nearest Neighbours
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� Decision Trees

� Naive Bayes

� Random Forest

� Logistic Regression

2.3.6 Study Results

Accuracies of the best model for all binary classi�cation task showed promising

results with greater than 70%. The best classi�cation group was between steady-

remission and swing-moderate achieving an accuracy of above 80%. Similar to

Shah et al, there was no one ML model which was best across the di�erent classi-

�cation categories. The most e�ective features used in the model were sleep, step

count and heart rate data. See Table 2.2 for a more detailed breakdown for the

Mood Mirror results.

Di�erent class of mood states Best Model Average
Percentage
Accuracy

Average Std
Percentage

Steady and Swing KNN 76.67% 8.47%
Steady-remission and Swing-
drastic

Naïve
Bayes

74.29% 9.27%

Steady-remission and Swing-
moderate

KNN 80.56% 15.28%

Steady-depressed and Swing-
drastic

Logistic Re-
gression

75.91% 13.18%

Steady-depressed and Swing-
moderate

SVM 74.73% 8.44%

Table 2.2: Best Mood Mirror Results using all collected features

2.3.7 Conclusions

Results of Mood Mirror models appear to be promising, with most models showing

accuracies greater than 70% using data collected passively from smartphones and

smartwatches. The Mood Mirror study's main strength was the high participant

count of 334, largely due to the collaboration with 4 di�erent psychiatric hospitals.

While the participant count was high compared to other studies this may explain

why accuracies were lower than in some of the other studies discussed. Similar to
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that of Shah et al [48] the models being used are also regression and ensemble

learning-based ML models. This once again poses the question of whether DL and

NN approaches are able to provide improvements in accuracy and variance over

traditional ML models.

2.4 Rykov et al

2.4.1 Introduction

Rykov et al is a study published under the title "Digital Biomarkers for Depression

Screening With Wearable Devices: Cross-sectional Study With Machine Learning

Modeling" [34]. The study was designed to be a cross-sectional study of n = 290

healthy working adults. The goal of the study was to utilise digital biomarkers

and sensor data from a Fitbit smartwatch to determine the correlation between

depression symptoms and digital biomarkers in a general population.

2.4.2 Study Recruitment

The 290 healthy working adults over the age of 21 years old were recruited from

Nanyang Technological University in Singapore. The average age of participants

was 33 years old with ages ranging from 21 to 64 years. There was a slight bias of

female participants with n=170 or 63.7%.

2.4.3 Study Procedures

Participants were involved with the study for two weeks and required to complete

PHQ-9 assessments as a self-reported depression screening at the start and end

of the study period. During the study period, they were provided and required to

wear a Fitbit Charge 2 smartwatch. The smartwatch captured di�erent biomarkers

such as physical activity, sleep patterns, and circadian rhythms.

2.4.4 Study Methodology

The averaged scores from PHQ-9 assessments were used to determine the clas-

sify the participants into di�erent groups based on depression symptom severity.

Pre-processing was done on the lifestyle data collected from the Fitbit Charge 2

smartwatch. This involved excluding any data from participants that were not ac-

tively wearing the smartwatch for more than 20 hours a day and also if there were

not at least 10 days worth of complete data. There were participants (n=24) that



22 Literature Review and Existing Work

scored 0 for their PHQ-9 assessment and they were also excluded. Supervised ML

models were used to predict symptom severity to determine the predictive ability

of the captured digital biomarkers. 4 fold cross-validation was used to validate the

machine learning model.

2.4.5 Study Results

Regression analysis showed three digital biomarkers that were highly correlated

with depression symptom severity. These markers were step count, variation in

nighttime heart rate, and interday stability. Their best model which was detecting

participants with a high risk of depression had an accuracy of 80%, a sensitivity

of 82%, and a speci�city of 78%. Unfortunately, the types of machine learning

models used were not explicitly disclosed.

2.4.6 Conclusions

Overall the work by Rykov et al indicates that physiological data from the latest

consumer wearables can help aid in the depression screening, but existing models

are unable to achieve accuracies greater than 80%. The major limitation of the

Rykov et al work was the low sampling frequency, participants were only monitored

for 2 weeks using a singular label for the entire set of biomarkers. Additionally,

there was a heavy bias in the number of individuals with PHQ-9 scores between

0 and 4 as the recruited participants were healthy adults.

Digital biomarkers from consumer-grade wearable sensors appear to be viable

for use early detection and diagnosis of depression, but future work can be done by

using smartphone enriched data and applying di�erent ML models could provide

improved results.

2.5 Current Gaps

There has been a large body of work done using traditional statistical ML meth-

ods such as regression and ensemble learning [34] [20] [49] [50] [51] [48] [57]. These

studies have proven the e�ectiveness of ML for diagnosis and prediction of men-

tal health disorders. Review of existing studies indicated that the regression and

ensemble learning models were unable to consistently achieve accuracies above

80%.

DL and NNs have had proved successful in a wide range of applications from

computer vision to applications in healthcare [59] [15]. The viability of DL has not



Problem Statement 23

yet been fully explored in area of digital biomarkers and mood state prediction

but recent applications in related �elds such the use of audio and visual data for

depression prediction and severity recognition [60] [61] [62].

2.6 Problem Statement

Depression is one of the leading causes of disability and impaired quality of life.

Smartphone and smartwatch technology is now at a stage where we are able to

use the data collected from their sensors to make judgments about mental health.

There have been existing work using regression and ensemble learning-based ap-

proaches with limited success. The concepts of DL and NN have still yet to be

applied in the context of mood classi�cation. This thesis will explore whether or

not it is possible to use digital biomarkers and DL and NN methods to classify

mood state more accurately than existing regression and ensemble learning ML

models.

2.7 Research Contributions

The main contribution of this thesis is:

� Designing a longitudinal observational study to capture digital biomarkers

and EMAs from healthy controls using smartphones and smartwatches.

� Applying DL and NN approaches to the existing Shah et al dataset and

comparing the e�ectiveness of regression and ensemble learning models with

DL models.

� Applying monolithic and compositional approaches to the collected

(MoodAI) dataset to determine ability of models to predict mood state using

collected EMAs and digital biomarkers.
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MoodAI Study

The MoodAI study was conducted as a collaboration between the University of

Auckland Faculty of Engineering Department of Electrical, Computer, and Soft-

ware and the University of Auckland Faculty of Medical and Health Sciences,

Department of Psychological Medicine. The MoodAI study was separated into

two distinct stages. Firstly, the development of the protocols and infrastructure

such as the development of the MoodAI web app and backend services. Secondly,

was the study involvement stage where we recruited and monitored participants

each for a period of one month. The study utilises a Fitbit Sense smartwatch - one

of Fitbit's high-end consumer-grade �tness trackers. The accuracy and validity of

Fitbit smartwatches have been investigated by many studies and have been deter-

mined to provide a suitable accuracy for the measurement of physical activity [63]

[64] [65] [66] [67], heart rate [68] [69] [70], sleep [71] [69], HRV, and Breathing rate

[72]. As a result, Fitbit smartwatches have been utilised in many observational

studies.

The entire study process is described in detail in this Chapter. A summary of

the entire process can be seen in Figure 3.1.

3.1 Ethics Committee Review and Approval

The MoodAI study protocol was approved by the Auckland Health Research

Ethics Committee under the project title: "Real-time assessment of mood changes

and machine learning" (Ref AH22436). Participants were required to provide in-

formed consent in order to participate in the study. All participant data was de-

identi�ed and a randomly generated 28-digit Universal Unique Identi�er (UUID)

25
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Figure 3.1: Summary of entire study process
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was used to represent them in the collected dataset. Only the primary investi-

gator and other researchers approved by the primary investigator had access to

the identifying table. Collected data was stored securely on a study-managed web

server securely hosted on the Google Cloud Platform. Participants were able to

withdraw from the study at any point during the one-month observation period

as mentioned in the provided participant information sheet (see Appendix B), but

data collected up until then was still able to be included for analysis.

3.2 Registration with the Australian New Zealand

Clinical Trials Registry

MoodAI was registered with the Australian New Zealand Clinical Trials Registry

(ANZCTR) under the title: "Real-time assessment comparing mood changes and

machine learning in adults with mild-moderate depression and a group of healthy

volunteers" (ACTRN12621000803897) [73]. The ANZCTR is an online registry

of clinical trials managed by the National Health and Medical Research Coun-

cil (NHMRC) Clinical Trials Centre, University of Sydney. The registry provides

research transparency, facilitates trial participation, promotes research collabora-

tion, and overall enhanced the quality of the study.

3.3 Study Funding

The MoodAI work discussed in this thesis is linked to a Health Research Council of

New Zealand research project titled "Real-time assessment of mood changes and

machine learning" (project number: 3722256) [74]. The Health Research Council

did not have a further role in the study design process, collection of data, analysis,

development of machine learning models, or writing of any reports and literature

relating to the study.

3.4 Study Design

The study was developed to be a case-control longitudinal study to monitor both

mood and physiological features over a one-month period. To achieve this, smart-

phones and smartwatches were utilised to digitally capture ecological momentary

assessments (EMAs) [75] and physiological biomarkers such as heart rate, sleep,

and physical activity. The study design methodology was to keep required tasks
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as simple and accessible as possible. Many studies in this �eld have previously

consisted of invasive and time-demanding tasks to complete. These demanding

tasks reduce participant engagement over time and result in missing data. Addi-

tionally, the study also captures daily audio diaries which will be used for future

work in the area of speech and vocal features in classifying mood. These features

have been shown to have links to mood and mood disorders [76]. The observation

period for participants was one-month and participants were provided a total of

$100 worth of supermarket vouchers as compensation for their time.

3.5 Study Recruitment

The study consisted of two populations; mild to moderate depression population

and a healthy control population. Study recruitment was conducted in slightly dif-

ferent ways depending on the population. For participants with mild-moderate de-

pression, recruitment was intended to be via primary healthcare providers around

the Auckland region, one provider, in particular, was Tamaki Health. We needed

to ensure our observation methods were approved by their General Practitioner

(GP) to minimise if not avoid any unexpected risks to their health. Due to COVID-

19 disruptions, we were unable to recruit any participants in the mild-moderate

depression group, this is further discussed in Chapter 3.12.

Healthy controls did not require such approval from their GP and were re-

cruited via either advertisements sent through the University of Auckland Depart-

ment of Electrical, Computer and Software Engineering mailing lists, in-person

lecture advertisements or by word of mouth from the research team and partici-

pants.

3.6 Study Inclusion/Exclusion Criteria

In order to participate in the study, participants needed to meet a series of in-

clusion/exclusion criteria. The inclusion/exclusion criteria help establish an ideal

pool of participants for the monitoring task. The inclusion/exclusion criteria are

as follows:

Inclusion Criteria:

� Participants are male or female, aged between 18 to 60 years
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� Participants are willing and able to give informed consent for participation

in the study

� Participants are willing to undergo a detailed clinical screening interview by

a clinician and member of the research team

� Participants are willing to use the study-provided smartwatch and smart-

phone(if needed) for the duration of the study

� Have a recent depression diagnosis (Only applicable to the depressed group)

Exclusion Criteria:

� Inability to speak or read English to a level that enables informed consent

and/or participation in the study

� Unable or disinterested in using the study provided technology

� Substance abuse or dependence in the last six months

� Any other unstable medical or neurological condition

� Any other condition judged by the research team as likely to impact the

ability to complete the study

3.7 Pre-screening Process

After a potential participant has shown interest in participating in the study,

a member of the research team would conduct the pre-screening process. This

process consists of asking a series of questions about relevant past and present

medical history and certain daily activities. The purpose of the pre-screening

process was to ensure that participants meet the study's inclusion and exclusion

criteria. The questions help to identify if there are any immediate health concerns

with the participant before proceeding further with recruitment. The detailed

screening process is very resource-intensive on the research team and also very

detailed from the participant's point of view as many clinical measurement tools

are used so the pre-screening process helps to e�ciently �lter out potentially

unsuitable participants.

The �rst set of pre-screening questions are as follows:
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� How did you hear about the study?

� What is your main reason for taking part in the study?

� Would you be willing to use the technology in the study?

� Are you currently attending your GP or specialist mental health services for

depression?

� Are you currently on any medication for your mental health?

� Do you consume alcohol daily?

� Are you currently suicidal?

� Are you between the ages of 18 to 60?

If there were no major concerns with the participant following their answers to the

�rst set of questions, demographic and contact details were collected to contact

and arrange delivery of the device to the participant.

The second set of pre-screening questions are as follows:

� Date of birth/Age:

� Weight and Height:

� COVID-19 Vaccine Status:

� Name and Address:

� Contact phone number and email address:

� Would you prefer to use the study-provided phone or your own personal

phone? If you choose to use your personal phone, please specify the model.

� Need a study-provided smartphone and SIM card?
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3.8 Study Screening

If participants passed all the required pre-screening checks they would then pro-

ceed to a detailed clinical screening session before being accepted to the study.

The purpose of this detailed screening session was to look into any past physical

and mental health that may impact their ability to participate in the study and

to ensure that they are in the correct study group.

The clinical screening session was originally planned to be in person in the

University of Auckland Grafton Campus but needed to be transitioned to be done

via Zoom due to lockdown restrictions. The clinical screening session with the

participant was conducted with a total of two people from the research team - A

clinician performing the clinical assessments and myself to help with data entry

and demonstrating and answering questions about the technology utilised in the

study.

Details and results from clinical assessments collected during the participant

screening session were collected on REDCap (Research Electronic Data Capture)

which is a browser-based surveying platform designed speci�cally for research use

and is commonly used by studies in the medical �eld [34] [77].

The study screening involved a study clinician assessing any past and present

physical or mental health conditions they may have had. The structured as-

sessments listed below assessed suicidality, psychiatric comorbidities, depression

screening, depression severity and alcohol use.

The instruments used in the clinical screening were as follows:

� Patient Health Questionnaire 9 (PHQ-9) See Appendix [78] [79]

The PHQ-9 is a well-recognised clinical instrument used for depression

screening utilised by many studies [80] [34] [48]. It consists of a total of

9 items each ranging from 0 to 3 points, for a total of up to 27 points. It

is used in the MoodAI study to determine whether or not participants are

in the right population group. The guideline for participants in the mild-

moderate depression group is 10 - 19 inclusive. Scores of 20 and above indi-

cate potentially severe depression and participation may not be suitable for

the participant. Healthy controls are expected to have scored less than 10

otherwise they may have an undiagnosed major depressive disorder and will

be advised to seek the relevant help. The full PHQ-9 instrument used in the

screening can be found in Appendix C.
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� Alcohol Use Disorders Identi�cation Test (AUDIT) See Appendix [81]

A participant's alcohol consumption was essential to ensuring the physio-

logical data collected from the study was a fair representation of a healthy

participant. Alcohol has been known to decrease heart rate variability and

also may also result in increased heart rate [82] [83] [84]. The AUDIT is a

questionnaire designed by the World Health Organisation as a simple method

of screening for excessive alcohol consumption. The AUDIT is an e�ective

means of screening for the spectrum of alcohol use disorder [85]. The AUDIT

consists of a total of ten questions with varying answers worth up to 4 points

each, the AUDIT score ranges from 0 to 40. In order to be considered eligible

for the study, the participant needed to have an AUDIT score of less than

16. AUDIT scores greater than 16 may indicate potentially harmful drinking

alcohol or alcohol dependence [86]. The full AUDIT instrument used in the

screening can be found in Appendix D.

� Columbia-Suicide Severity Rating Scale (C-SSRS) [87]

The C-SSRS is a detailed questionnaire that is used to determine the pres-

ence of suicidal intentions or behaviour. Unlike the AUDIT and PHQ-9, there

is no score and explicit guideline for acceptance, but instead, the screening

clinician needed to determine whether or not the participant had a history

of suicidal ideations/intents/acts or is currently suicidal. The full C-SSRS

instrument used in the screening can be found in Appendix E.

� Mini-International Neuropsychiatric Interview (M.I.N.I) See Appendix [88]

The M.I.N.I is a structured diagnostic clinical interview that determines the

presence of comorbidities. Comorbidities are any other disease or condition

which may be present.

Certain comorbidities such as chronic heart comorbidities or breathing-

related comorbidities could limit a participant's ability to perform exercise

and thus impacted the data collected from the smartwatch. It is at the dis-

cretion of the examining clinician and research team to determine if the

presence of a comorbidity could potentially impact data collection. If the

comorbidity is determined to be relevant, the participant was excluded from

the study. The full M.I.N.I instrument used in the screening can be found

in Appendix F.

� Montgomery�Åsberg depression rating scale (MADRS) See Appendix [89]

[90]
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The MADRS is a clinical instrument used by clinicians to determine the

presence and severity of depression. The MADRS consists of a total of 10

items; Apparent sadness, Reported sadness, Inner tension, Reduced sleep,

Reduced appetite, Concentration di�culties, Lassitude, Inability to feel, Pes-

simistic thoughts, and Suicidal thoughts. Depending on the severity, each of

the aforementioned items is assigned a value from 0 to 6. A total MADRS

score is then calculated as the total of the scores for each item. This score

ranges from 0 to 50 and the score requirement for the mild-moderate depres-

sion population was between 7 to 34 inclusive, and for the healthy control

population, the total score should be no more than 6. The full MADRS

instrument used in the screening can be found in Appendix G.

� Technology Acceptance Model Questionnaire (TAM-Q) See Appendix

The purpose of TAM-Q is to determine a participant's acceptance of the

technology provided in the study. Similar to [91] the TAM-Q adapter for the

MoodAI study utilised a �ve-point Likert scale with the following set points:

(1) Strongly disagree, (2) Disagree, (3) Neutral, (4) Agree, (5) Strongly

agree. The TAM-Q consisted of questions about the usefulness of wearable

technology and whether the participant had any data security concerns. The

full TAM-Q questionnaire used in the screening can be found in Appendix

H.

3.9 Choice of devices

Many other studies limited smartphone usage to only Android smartphones [57]

[92] rather than giving participants a choice. The MoodAI Study hoped to be able

to include a wider variety of participants regardless of their smartphone ownership

or preference. This was further re�ected in the choice of the Fitbit Sense smart-

watch and web app approach which is compatible with both Android and iOS

operating systems.During this study observation period participants were loaned

a Fitbit Sense smartwatch (see Figure 3.3) and a OnePlus Nord smartphone (if

they wanted or needed a separate phone to participate in the study)(see Figure

3.2).
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Figure 3.2: Study provided OnePlus Nord Smartphone

Figure 3.3: Study provided Fitbit Sense Smartwatch

3.10 Study Procedure

Participants were observed for up to a period of one month. Participants were

provided with a $50 supermarket voucher as reimbursement for the time spent

participating in the pre-screening and screening process. Participants were re-

quired to complete daily tasks on their provided smartphone and also expected to

wear the smartwatch for the entire monitoring period (excluding charging, show-

ering and cleaning). The tasks included EMAs, a daily journal, and a daily audio

diary. These tasks and their frequency will be discussed in more detail in Section

3.14.

A team member would check in with each participant weekly to ensure there

are no issues with data collection or the study in general. Additonally, an initial

check-in would be performed after the �rst day of the study to ensure there are

no immediate issues.
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At the study conclusion, a team member would scheduled a short session to

discuss device return and the completion of end-of-study TAM-Q and PHQ-9

questionnaires. Participants were required to complete an end-of-study PHQ-9

and TAM-Q to determine if there were any changes in the presence or severity of

depression and their thoughts on technology acceptance respectively. Participants

were also provided the opportunity to give any additional feedback relating to any

part of the study. Participants were provided with a $50 supermarket voucher as

reimbursement following their conclusion of the study.

3.11 Recruitment Results

As of 31 May 2022, the study recruited and completed the observational period for

a total of 15 participants. All participants were healthy controls and at that stage,

no participants with mild-moderate depression had been recruited, for reasons

discussed further in the limitations section of this thesis. Of those 15 participants,

6 were female (40%) and the rest were male. The ages of participants in the study

ranged from 19 to 52 with the mean age being 29 years old. All 15 participants that

were recruited were recruited via the channels mentioned in the Study Recruitment

section. There was a diverse spread of cultures of participants from Indian, NZ

European, Chinese, M	aori, and other European backgrounds. Participants from a

Paci�c Island background were under-represented in this study despite e�orts to

recruit.

3.12 COVID-19 Disruptions

We planned on observing both a depressed group and a healthy control group.

We did not manage to recruit any participants for the depressed group despite

our best e�orts. Our primary healthcare referrer Tamaki Health was overwhelmed

with providing resources during the COVID-19 pandemic and was facilitating the

vaccine roll-out.

Recruitment began in August 2021 and during that period, there were multiple

lockdowns put in place by the New Zealand government restricting our ability to

interact with participants. Study screening was unable to continue in person and

thus the study transitioned to online screening sessions via Zoom and devices were

couriered to suitable participants.

Since we were unable to recruit any participants in the depressed group we

Instead reached out to a research group from the University of San Diego [48]
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and utilised their published dataset as a substitute and means of comparing the

e�ectiveness of the di�erent methods, this is discussed further in Chapter 4.

3.13 MoodAI Website Design

3.13.1 Purpose

The purpose of the MoodAI website was to create "a one place �nd all" solution

for participants to be able to access anywhere and on any device. The use of a

web platform meant that it was accessible on both Android and iOS smartphones

as well as PCs and laptops if desired. Many studies utilised multiple third-party

app[93] [48], this adds an extra burden on participants to complete required tasks.

A study-controlled website also provides extra con�dence to participants the data

is managed directly by the research team. This is re�ected in the participant

feedback and acceptability section 3.15.

3.13.2 Framework

The MoodAI web app was developed and hosted using the BaaS provided by

Google titled Firebase. Firebase provides resources for users to create mobile and

web applications quickly as they provide useful features that would normally re-

quire a lot of development time to build. Firebase's features include security, au-

thentication, No-SQL database, cloud storage, cloud functions and Hosting. Other

clinical studies have utilised a multitude of features such as the No-SQL database

[94]. These features allow for creating a highly e�ective and scalable web app with

minimal cost. Utilising the Firebase JavaScript SDK, the web app was developed

using standard HTML, CSS and JavaScript.

3.13.3 Participant Access

As discussed in section 3.1 all participant data were de-identi�ed and they were

provided unique randomly generated details to use to log into the website. Figure

3.4 shows the MoodAI logo and design of the login page. Firebase utilises industry-

leading security authentication provided by Google. Security rules are put in place

are handled by the server and put in place so participants are not able to access

any data not belonging to them [95].
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Figure 3.4: MoodAI website login page
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3.14 Data collected

3.14.1 Ecological Momentary Assessments (EMAs)

EMAs are user-generated self-ratings about their mood or stress captured at mul-

tiple periods in time [75]. EMAs can provide clinicians a good insight into how a

patient is progressing throughout the day. The EMA collection process is able to

be enhanced through the use of smartphones [96]. Smartphones allow for EMAs

to be captured multiple times a day and remotely at the convenience of the par-

ticipant [30] [97] [98] [48]. The captured EMAs could then be used to determine

the presence of many mood disorders such as [99] bipolar disorder [100] [92], and

depression [101].

Researchers are increasingly utilising EMAs in depression studies as they pro-

vide valuable insights in hard-to-monitor behaviours and mood changes [101] [102]

[48]. There have been variations in Likert scales used in study administered EMAs.

The most commonly used were 5-point [92] [103], 7-point [57] [30] [48] [104], and

10-point [105] Likert scales.

The �nal decision for the MoodAI study was to utilise a 5-point Likert scale.

The main reason behind this decision was to make it as simple as possible for

participants. A 5-point Likert scale will reduce the trouble of deciding between too

many options, while also allowing for enough granularity to distinguish between

di�erent mood states.

Participants were expected to submit EMAs a total of 5 times a day. Partic-

ipants received SMS reminders on their study phones at 9 am, 12 pm, 3 pm, 6

pm, and 9 pm to instruct them to complete the EMA as soon as possible. The

assessment was then done on the MoodAI website accessible via their smartphone.

Figures 3.5, 3.6, 3.7 show the �nal designs of the EMAs included in the MoodAI

web app. Although the EMA utilised a 5-point Likert scale in the background,

a visual slider and emojis were created to disguise the 5-point Likert scale [92].

Many studies have utilised a visual scale [57] as it is more engaging and enjoyable

from the point of view of the participant, thus increasing the likelihood of the task

being completed and therefore an improved completion percentage.

3.14.2 End of Day Journal

The end-of-day journal is a short questionnaire to be completed by participants

daily following the daily audio diary. The purpose of this journal is for the par-
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Figure 3.5: MoodAI Neutral Ecological Momentary Assessment

ticipant to inform the research team of any changes in mental or physical health

that might have arisen during the course of the monitoring period.

As discussed in Chapter 3.8 Study Screening, the presence of a comorbidity

could potentially impact data collection. This journal would be checked prior to

performing weekly check-ins with participants.

The end-of-day journal as it appears on the MoodAI web app can be seen

in Figure 3.8. It consisted of three questions and an optional �eld for any other

health issues that might have arisen impacting the data collected or their ability

to continue participating in the study.

The purpose of each of the questions is as follows:

� Have you consumed any Alcohol and/or Drugs within the last 24 hours?

As stated in Chapter 3.8 Alcohol consumption is known to decrease HRV

and potentially increase heart rate [82] [83] [84]. Similar to alcohol drug use
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Figure 3.6: MoodAI Negative Ecological Momentary Assessment

has also been shown to decrease HRV [106] [107]. This question allows us

to get a timestamp which we can refer back to if there were any signi�cant

dips in any given participant's physiological measures.

� Have you had a large meal within the last 3 hours?

High intakes of fats and high carbohydrates have been found to reduce HRV

[108]. Large meals can potentially suppress HRV in the short term and have

long-term baseline impacts if increased intakes persist over a period of time.

Therefore, this question allows us to determine if a decrease in HRV may

have been due to a large meal temporarily suppressing HRV. Participants

had �nal judgement but were instructed a large meal was a meal that was

greater than the quantity of what they would normally consume for that

meal.

� Have you done any intensive exercise within the last 3 hours?

Exercise and physical activity has shown to have a direct link to HRV [109].
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Figure 3.7: MoodAI Positive Ecological Momentary Assessment

Studies have found that increased physical activity results in an increased

HRV compared to a similar individual who engages in less physical activity.

Physical activity has also been shown to be linked to depression [28] [29]and

those who exercise frequently are less likely to have a major depressive disor-

der [27] [30]. This question was subject to the participant's judgement, but

Intensive exercise was de�ned to participants as any exercise which would

elevate your heart rate over normal levels. Examples included but were not

limited to running or swimming.

Data collected from the end-of-day journal was stored securely on the MoodAI

Firestore database located on the Firebase BaaS.

3.14.3 Physiological Data

Fitbit wearables are becoming more accessible and an important tool to assess

physiological features such as heart rate, sleep and activity. The links between
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Figure 3.8: MoodAI Daily End of Day Journal
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these physical activity, sleep, and the heart with mental health is clear [28] [29]

[28] [110]. Many studies have been adding smartwatches [48] such as Fitbit smart-

watches as a means of enhancing their study [51] [34] [69].

The data collected from the provided Fitbit Sense is passively done. The Fitbit

was pre-paired to the participant's phone and syncs data to the Fitbit cloud on

a regular basis. Data is able to be stored for up to 30 days to ensure no data

loss when out of internet connectivity for a prolonged period of time. A lot of

di�erent data is collected on the Fitbit, in particular, we focused on activity,

sleep, and heart-based data. Data is then extracted via a Python Fitbit API and

Fitbit REST APIs to be pre-processed for the machine learning models discussed

in chapter 5.

3.14.4 Audio diaries

Speech characteristics of those with mental health issues di�er from those of

healthy individuals [76]. Features extracted from voice diaries provide valuable

insight into the presence and severity of mental health disorders [111]. Existing

studies have already tried utilising smartphones to record audio logs and extract

prosodic, spectral and, cepstral features to determine the presence of mental health

illnesses [19] [112] [113].

For the MoodAI study, we took inspiration from Dickerson et al [113] and Place

et al [114] to developed a daily audio diary consisting of three questions in total.

The user interface of the audio diary questions as seen on the MoodAI web app as

seen by participants can be seen in the �gures 3.9, 3.10, and 3.11 respectively. The

�rst question was a stock sentence that provided a common ground for a trend to

be developed from vocal features. The second question asked about a positive part

of the participant's day by getting them to describe things they found enjoyable.

The third and �nal question was the opposite of that and asked about any negative

or things they disliked about their day. The audio diary was to be completed once

a day together with the End of Day Journal. The total length of the audio diary

was expected to be between 2 to 5 minutes in length.

3.14.5 MoodAI Architecture Summary

The �gure 3.12 provides a summary of the entire MoodAI architecture from the

type of data captured from the smartphone and smartwatch to how the data is

stored and managed.
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Figure 3.9: MoodAI Daily Audio Diary Question 1

3.15 Participant Feedback and Acceptability

At the end of the study, participants were required to complete an end-of-study

TAM-Q and PHQ-9. Notable trends in the TAM-Q were that participants were

not worried about the data security of the MoodAI platform or that of Fitbit. All

15 participants either answered strongly agree or agree to the study system being

easy to use. 12 out of the 15 recruited participants thought the platform would

provide bene�t to those with depression, with the remaining 3 answering neutral

for that question. There was a greater split in the acceptance of the smartwatch

where 10 participants answered that wearables would use useful in their everyday

life, 4 participants were neutral and, 1 participant was concerned about wearing

the smartwatch overnight.

Between the start of study PHQ-9 and the end of study PHQ-9, there were no

signi�cant di�erences in PHQ-9 score, all di�erences were within ± 2 points and

did not cross any major thresholds.
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Figure 3.10: MoodAI Daily Audio Diary Question 2

Figure 3.11: MoodAI Daily Audio Diary Question 3
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Figure 3.12: Overview of the MoodAI System Architecture

Additionally, participants were encouraged to provide any additional feedback

about any aspect of the study. Table 3.1 indicates some notable feedback points.
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Participant Id Feedback
0 Mood ratings provided a good re�ection opportunity
1 Found it uncomfortable to sleep at night with smartwatch
3 De�nitely recommend this study to anyone willing to

monitor their physical and mental health
4 Weekly stats about how you are doing would be useful
5 Would be useful to show you how many you've done dur-

ing the day
7 Not too many things happened daily to be discussed in

the audio diary
8 Would be useful to show you how many you've done dur-

ing the day.
9 E�ects on own mental health were positive, the audio

diaries allowed the participant to re�ect on what to be
grateful for. There were far more things to be thankful
for than negative. Found the negative things were quite
minor.

10 Completing the mood ratings at the exact time was di�-
cult at times. Good, there was �exibility.

11 Thought the study was a good experience, the �rst real
study that I've been a part of. Struggled to meet the 5
times a day requirement for EMAs because it didn't �t
my schedule.

12 MoodAI system was simple and easy to use. Fitbit sys-
tem provided too much detail, and this could overwhelm
depressed individuals

Table 3.1: Participant feedback about MoodAI Study
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Shah et al dataset

4.1 Introduction

Data collected and analysed as part of the paper "Personalised machine learning

of depressed mood using wearables" [48] written by Shah et al was provided under

a co-authorship agreement for any future publications resulting from work done

with their dataset. The dataset was collected from 14 participants with moderate

depressive symptoms assessed using the PHQ-9. As stated in Section 2.2 this

data was collected in the years prior to the emergence of the COVID-19 global

pandemic.

I would like to thank the team of Shah et al, for providing the data used in

this analysis. This data collected from depressed participants allowed us to test

deep learning models on depressed data despite not having recruited any depressed

participants in the MoodAI study due to the COVID-19 pandemic.

4.2 Data preparation

Shah et al provided their raw and featurised datasets in zip �les. After examining

the �les supplied by Shah et al, the featurised dataset was the ideal choice for

use in the ML models as it included all the features pre-processed by Shah et al

into the 43 di�erent features as shown in the paper's supplementary information

(see Appendix A). The featurised dataset consisted of CSVs �les containing data

collected from 14 participants throughout a one-month study participation period.

Before the data from the provided �les can be used in the ML models pre-

processing steps were needed to remove any issues with the dataset. Python was

used to analyse and pre-process the data. We used Pandas [115] [116] one of the

49
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most popular software libraries in Python for data manipulation and operations.

These CSV data is read in and stored as a DataFrame data structure. After con-

ducting preliminary exploratory data analysis the following issues were found in

the dataset.

Firstly, for some participants, the HRV feature titled "ppg_std" contained

what appeared to be a missing or invalid value. The HRV feature indicates the

standard deviation of PPG values captured from the Samsung Galaxy smart-

watch's sensor within a ± 15-minute window around each depressed mood EMA.

The value shown was consistently 999, which we deemed to be the default value

recorded if an error or missing value scenario occurred. It would not have been

possible to train using varying amount of features for each sample. As a result, all

data from �ve participants (ids 10, 15, 18, 21, and 23) were removed due to the

aforementioned issues with the HRV feature.

Secondly, we removed rows within the DataFrame of each participant which

contained values that were considered NaN. These values would cause errors if

used to train the models and thus needed to be removed.

Thirdly, we removed participant id 24 from the dataset as there were issues

with the values recorded from the 2 physical activity and sleep-based features

titled "exercise_calorie", "exercise_duration", and "prev_night_sleep" which all

recorded a value of 999 for every entry. Similar to the �rst issue relating to HRV

the value of 999 seems to indicate a missing or invalid value. For some participants,

only part of the data was missing for the sleep feature and we did not want to

remove any more data as there was already a limited quantity. Instead of removing

the a�ected rows, we calculated a mean sleep duration for that participant using

all non-zero values and assigned that as the missing or invalid sleep value. The

most common method is last value carried forward [117], but in the context of

sleep we felt it was more appropriate to calculate a mean as it would be more

representative of a typical night.

Finally, the dataset was not arranged chronologically, so we sorted the

DataFrames using the "datestamp" column as the sorting key.

After pre-processing the dataset, we were left with 8 participants with varying

sample lengths as shown in Table 4.1. Assuming the duration of one month and an

EMA frequency of 4 times a day, the maximum amount of samples per participant

is 120. Notable participants are ids 14, 20, and 29, who have workable samples of

less than 50% of the expected amount. It is expected that the models for these

participants may not perform as well as the models for other participants due to

the lack of training data available.
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Participant ID Number of samples
1 82
12 98
14 33
19 99
20 55
26 105
28 105
29 59

Table 4.1: Number of samples for each participant after data preparation

4.3 Study Methodology Comparison

As discussed separately in Chapter 2 and 3, there are several key di�erences be-

tween the studies. Firstly, there was no structured clinical interview conducted

as part of the Shah et al study and depression symptom diagnoses' were done

solely using the PHQ-9. In the MoodAI study, we performed detailed participant

recruitment and a clinician administered several clinical instruments (See Chap-

ter 3). The Shah et al study captured neurocognitive assessment combined with

EEGs which were performed in a lab environment, which the MoodAI study did

not capture. MoodAI developed a custom web app that collected the necessary

data whereas, Shah et al utilised a third-party app called MindLog. HRV was also

measured di�erently, Shah et al calculated the standard deviation of values from

the smartwatch's PPG sensor around a ± 15-minute window, whereas MoodAI

calculated the RMSSD around a ± 15 minute window, a more robust HRV mea-

surement [118].

The idea of combining the provided Shah et al dataset and the MoodAI dataset

was something that was explored. Upon further investigation, there were signi�-

cant di�erences in sensor data and methodology. Firstly, the sampling frequency

for EMA was 4 times a day for Shah et al and 5 times a day for MoodAI. The

format of the EMAs was also di�erent as Shah et al split it into anxiety and

depression and used a 7-point Likert scale, whereas MoodAI only assessed gen-

eral mood and used a 5-point Likert scale. Shah et al use an older Samsung

Galaxy smartwatch whereas, MoodAI utilises a newer Fitbit Sense smartwatch.

The sensors and algorithms used by these two companies are di�erent and are not

disclosed/proprietary, it would have been di�cult if not impossible to account for

these di�erences.
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Given these di�erences, we came to the conclusion that given the di�culty in

adapting the datasets and the fact that it may not be fair for either dataset to

combine as there were di�erences in sensors, we decided to analyse them separately

in this Chapter and in Chapter 5.

4.4 Machine Learning Models

The goal of the DL models was to replicate the steps taken by Shah et al but

utilise a di�erent analytical approach so we can create a head-to-head comparison

between the two di�erent approaches.

The ML Models discussed in this Chapter and in Chapter 5 were developed

using the Python DL API Keras [119] which utilises the open source machine

learning software library developed by Google TensorFlow [120].

We developed a MLP model architecture with an input layer, 2 hidden lay-

ers, and an output layer. A set seed was used when training models so that any

random number generation (for example during the random generation of model

weights) can be reproduced. Due to the low quantity of sampled data, we utilised

an approach called strati�ed k-fold for cross-validation [121]. Similar to the regu-

lar k-fold, data is split into k segments where k-1 segments are used for training

and 1 segment is used for testing the model. The di�erence with the strati�ed

k-fold is that data is split such that the folds preserve the percentage of samples

for each class. This method is particularly useful when the dataset is small as it

allows samples which are uncommon to both be present in the train and learn

set, resulting in better model performance [122]. Shah et al used a nested k-fold

cross validation method to improve the performance of a small dataset, whereas

our models used strati�ed k-fold to accomplish the same result.

Hyper-parameter tuning was also done to the model optimise model [123] by

tuning parameters such as batch size, epochs, and number of neurons. This was

done using a grid search approach using the Python itertools library by training

models on a set of possible combinations of hyper-parameters.

The DL model was trained to predict depressed mood ratings by using two

di�erent sets of data, one using the entire 43 feature data set and another using

a subset of 14 features which were easily attainable using the currently MoodAI

system architecture as described in Figure 3.12 and Chapter 5. These included

features were features that were easily completed and acquirable remotely such

as EMAs and lifestyle data captured from smartphone and smartwatch sensors.
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The excluded features were features acquired from the neurocognitive assessment

and EEG measurements which were conducted by Shah et al. Still, since these

features needed to be during a scheduled laboratory visit, we deemed this was too

inaccessible for the average participant.

A brief description of the chosen 14 feature subset can be seen in Table 4.2, a

more detailed explanation of all 43 features can be found in Appendix A.

Feature
Number

Feature Name Feature Description

1 Anxious How anxious the participant was at the
time of EMA on a scale of 1-7

2 Distracted How distracted the participant was at
the time of EMA on a scale of 1-7

3 Past day fats Total fatty items consumed in last 24
hours prior to EMA rating

4 Past day sugars Total sugary items consumed in the last
24 hours prior to EMA rating

5 Past day ca�eine Total cups of ca�eine consumed in the
last 24 hours prior to each EMA rating

6 Mean heart rate ± 30
mins

Mean heart rate from smartwatch
within 15 minute window of EMA rat-
ing

7 PPG standard devia-
tion ± 15 mins

Standard deviation of PPG data from
smartwatch within 15 minute window
of EMA rating

8 Cumulative step calorie Total steps taken in the last 12 hours
prior to EMA rating

9 Cumulative step speed Average velocity of all walking in the
last 12 hours prior to EMA rating

10 Cumulative step dis-
tance

Total step distance travelled in last 12
hours prior to EMA rating

11 Exercise calorie Total calories burnt from exercise in the
last 24 hours prior to EMA rating

12 Exercise duration Total exercise duration performed in
the last 24 hours prior to EMA rating

13 Previous night sleep Hours slept in the night previous to
EMA rating

14 Time of day Hour when the EMA was taken

Table 4.2: Table of selected subset of features and description
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4.5 Model Results Comparison

Shah et al created 7 di�erent regression and ensemble learning-based ML models

with varying accuracies. The best ML method for each participant was compared

to the DL models developed in this thesis. The models were compared using 4 dif-

ferent metrics being mean MAPE, std MAPE, mean MAE, and std MAE. MAPE

(formula shown in Equation 4.1) indicates the percentage di�erence between the

model's predicted output and the actual output. MAE indicates the di�erence be-

tween the model's predicted output and the actual output but in absolute terms.

We recreated these metrics using the same methods as Shah et al. The MAPE and

MAE is calculated for each fold of the k-fold cross validation and an average and

standard deviation is computed using the list of MAPE and MAE values. Results

from the MLP were outputted from 0-6 and needed to be adjusted to match the

7-point Likert scale used by Shah et al otherwise there would be inconsistencies

in the MAPE equation (see Equation 4.1).

MAPE =
1

n

n∑
k=1

∣∣∣∣Pk −Ak

Ak

∣∣∣∣ (4.1)

Where Ak is the actual value and Pk is the predicted value

MAE =
1

n

n∑
i=1

|yi − xi| (4.2)

We compared our DL approach to the best model for each of the participants in

the Shah et al dataset. Shah et al used a nested k-fold cross validation method with

4 outer folds and 10 inner folds. In our models, we explored a variety of di�erent

folds for each participant to determine what number of folds would provide the

best model results. There were 4 metrics across 8 di�erent participants for a total

of 32 total comparisons between the DL model and the best Shah models. The

following sections discuss in detail the results of the two di�erent datasets.

4.5.1 Entire Data Set Results

The best performing folds were the 3 and 4 fold implementation, Tables 4.3 4.4

show a side by side comparison of the MAPE and MAE metrics from a these folds

against the best models from the Shah et al dataset. Results from other folds can

be found in Appendix A Tables I.1 I.2 I.3.

The di�erence row for each participant represents the di�erence between the

result from the Shah et al model and DL models. A positive di�erence value
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 6.56% 1.44% 0.317 0.045
Di� 0.99% 4.11% 0.041 0.246

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 31.62% 5.27% 0.682 0.116
Di� -5.35% 9.17% -0.032 0.214

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 74.62% 50.68% 1.667 0.758
Di� -33.74% -38.81% -0.660 -0.423

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 31.45% 5.99% 0.808 0.151
Di� -2.34% 0.25% -0.157 0.051

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 31.63% 10.08% 1.006 0.265
Di� -25.23% -3.17% -0.798 0.002

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 56.02% 3.07% 1.644 0.041
Di� -19.61% 6.56% -0.492 0.176

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 29.20% 11.27% 0.895 0.340
Di� -7.97% -3.71% -0.238 -0.209

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 65.12% 10.16% 1.175 0.174
Di� -1.98% 15.97% 0.099 0.148

Table 4.3: Comparison of best Shah et al regression based machine learning models
using 3 fold cross validation MoodAI deep learning model using Shah et al data
set

indicates that the DL model performed better than that of the best Shah et al

model in that metric whereas a negative value represents the opposite.

Results from tuned 3 and 4-fold models appeared to perform the best among

all tested folds. Both these folds performed better than the Shah et al model in

14 out of 32 total metrics. Something notable about our DL models was that

the standard deviation of MAE and MAPE for 7 out of 8 participants was lower

than that of the Shah et al model. Where the DL model failed was achieving a

consistently lower mean MAPE.
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 8.28% 1.50% 0.402 0.047
Di� -0.73% 4.05% -0.044 0.244

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 32.45% 4.50% 0.672 0.115
Di� -6.18% 9.94% -0.022 0.215

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 70.34% 4.56% 1.788 0.223
Di� -29.46% 7.31% -0.781 0.112

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 37.56% 11.21% 0.862 0.245
Di� -8.45% -4.97% -0.211 -0.043

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 25.76% 12.63% 0.760 0.306
Di� -19.36% -5.72% -0.552 -0.039

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 38.87% 5.29% 1.288 0.140
Di� -2.46% 4.34% -0.136 0.077

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 23.33% 4.35% 0.725 0.094
Di� -2.10% 3.21% -0.068 0.037

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 59.81% 14.04% 1.210 0.230
Di� 3.33% 12.09% 0.064 0.092

Table 4.4: Comparison of best Shah et al regression based machine learning models
using 4 fold cross validation MoodAI deep learning model using Shah et al data
set

4.5.2 Subset Results

Multiple di�erent folds evaluated to determine the best performing model. The

four fold method appeared to be the best among the folds. Table 4.5 provides a

head-to-head comparison of MAPE and MAE metrics of the 4 fold implementation

against the best models from the Shah et al paper. Tables from other folds can

be found in Appendix I Tables I.4 I.5 I.6 I.7. Similar to the resultant tables from

the entire dataset, the di�erence row for each participant represents the di�erence

between the result from the Shah et al model and DL models. A positive di�erence

indicates that the DL model performed better than that of the best Shah et al

model in that metric.



Shah et al Conclusions 57

Results from the tuned 4 fold appeared to be the best among all the di�erent

folds. The 4-fold model proved better than the best Shah et al models in 17 out

of 32 metrics. Except for participants 20 and 14, in all other instances where the

4-fold model performed worse, the di�erence was within a small margin of error

(see Table 4.5). We notice a trend in the standard deviation metrics where the DL

model performed better in 14 out of 16 metrics. This is the opposite with mean

MAE and MAPE metrics where Shah et al perform better in 13 out of 16 metrics.

One consideration that needs to be made with the results from participants 14 and

20 is that their sample sizes are considerably lower than that of the other samples

with only 33 and 55 samples respectively. The lack of samples may have negatively

impacted the ability of the DL model to draw any conclusive relationships between

the features and depressed EMA rating.

Graphs showing a direct comparison between di�erent folds can be seen in

Appendix I Figures I.1 I.2 I.3 I.4. The graphs reinforce the conclusions drawn from

the tables about the standard deviation of MAE and MAPE being consistently

lower than that of the best Shah et al results and the mean MAE and MAPE

being consistently higher than that of the best Shah et al results.

4.6 Shah et al Conclusions

In conclusion, the deep learning approach we developed appeared to perform on

par with that of the best models from the Shah et al work. Results from the reduced

feature set indicated that it performed better than the full feature set. It is possible

that in the full feature set there may only be a handful of features with high

importance, other less relevant features may be hindering the model and making

it harder for the model to make the correct inferences. The deep learning models

showed consistent reductions in model variance but were overall worse in terms

of mean MAPE and MAE. Although the accuracy of our models perform slightly

worse than that of Shah et al, the lower variance means that the consistency of the

DL model is greater than that of the Shah et al mode. The range of error values

from the model remains in a smaller range given di�erent combinations of training

data. Since deep learning models require a large amount of data to properly train,

the limited quality of samples in the Shah et al dataset may be an explanation for

these results. Given more data, results indicate that deep learning models could

potentially improve on traditional regression and ensemble learning methods.
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 7.47% 2.05% 0.364 0.081
Di� 0.08% 3.50% -0.006 0.210

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 31.96% 4.98% 0.721 0.174
Di� -5.69% 9.46% -0.071 0.156

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 67.68% 4.20% 1.535 0.302
Di� -26.80% 7.67% -0.528 0.033

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 36.07% 5.03% 0.850 0.095
Di� -6.96% 1.21% -0.199 0.107

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 26.06% 12.03% 0.777 0.337
Di� -19.66% -5.12% -0.569 -0.070

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 38.80% 9.55% 1.240 0.179
Di� -2.39% 0.08% -0.088 0.038

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 25.91% 5.78% 0.821 0.120
Di� -4.68% 1.78% -0.164 0.011

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 56.07% 15.33% 1.138 0.174
Di� 7.07% 10.80% 0.136 0.148

Table 4.5: Comparison of best Shah et al regression based machine learning models
using 4 fold cross validation MoodAI deep learning model using a subset of the
Shah et al data set



Chapter 5

MoodAI Data set and Machine

Learning Pipeline

5.1 Data Retrieval

As discussed in Chapter 3 participants underwent a one-month study observation

period. During the one month, data was collected from their study provided One-

Plus Nord smartphone (as seen in Figure 3.2) and Fitbit Sense smartwatch (as

seen in Figure 3.3).

The MoodAI architecture (as seen in Figure 3.12) collected data from various

sources. Firstly, the MoodAI web app facilitated the capture and storage of EMAs,

audio diaries, and end-of-day journals. EMAs and end-of-day journals were stored

as documents in the Firebase Firestore database. We created two separate collec-

tions for EMAs and end-of-day journals, with documents for each separate entry.

Audio dairies were stored in Firebase's Cloud storage. Data was pulled from these

sources using custom Python scripts created using the Firebase Admin Python

SDK [124]. Participant EMAs were stored in CSV �les whereas audio diaries were

stored as WAV �les.

Secondly, participants were given a study Fitbit Sense smartwatch data to wear

over the one-month observation period. Data from the smartwatch was regularly

synced with the study-provided smartphone via Bluetooth and sent directly to

Fitbit servers for storage. Fitbit servers' data were retrieved using the Python

Fitbit API [125] and Fitbit Web API [126]. Data was extracted using RESTful

requests based on the submission times for each EMA.

59
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5.2 Feature Extraction

Data from Fitbit included a variety of lifestyle features, we grouped closely re-

lated features into clusters. For the MoodAI dataset, we split the lifestyle data

into activity, sleep, and heart clusters. We were unable to understand the imple-

mentation of all features fully. This was due to Fitbit keeping many formulas and

algorithms con�dential. The subset of features selected in the cluster was selected

from the list of features available on the Fitbit Web API [126], excluding those

that required hardware not present on the Fitbit Sense smartwatch.

5.2.1 Activity Cluster

The activity cluster groups together various features related to a participant's level

of physical activity. Table 5.1 indicates the selected activity cluster features and

descriptions of what they represent. All features in the activity cluster relate to

any activity undertaken on the day of the EMA rating. A study conducted by Lu

et al [69] using a Fitbit Charge HR includes many of the same activity features.

5.2.2 Sleep Cluster

The sleep cluster includes features relating to each participant's quality and quan-

tity of sleep. These features include the breakdown of sleep stages, sleep duration

and time spent in bed. Table 5.2 shows the complete list and description of the

features included in the sleep cluster. All features in the sleep cluster relate to the

sleep session on the day before each EMA rating. A study conducted by Lu et al

[69] selected similar sleep features to features included in this cluster.

5.2.3 Heart Cluster

The heart cluster includes features relating to measurements taken about the heart

for each participant. These features include heart rate and heart rate variability.

Features from this cluster are calculated within a window around each EMA rating.

5.3 Data Preparation

After successfully collecting the raw data, several steps needed to be undertaken

such that the dataset could be used to train the ML models.
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Feature
Number

Feature Name Feature Description

1 Time of Day Hour of the day when the EMA rating
was taken (0 - 23)

2 Daily Steps Number of steps reported by Fitbit
Sense smartwatch for the day of the
EMA rating

3 Very Active Minutes Total minutes the participant where the
Fitbit Sense smartwatch reported the
participant was very active on the day
of the EMA rating

4 Fairly Active Minutes Total minutes the participant where the
Fitbit Sense smartwatch reported the
participant was fairly active on the day
of the EMA rating

5 Lightly Active Minutes Total minutes the participant where the
Fitbit Sense smartwatch reported the
participant was lightly active on the
day of the EMA rating

6 Sedentary Minutes Total minutes the participant where the
Fitbit Sense smartwatch reported the
participant was sedentary on the day
of the EMA rating

Table 5.1: Table of MoodAI Activity Cluster features and descriptions

Firstly, it was expected that there would be errors and missing values in the

dataset. This may have been due to participants missing submissions or unex-

pected errors with the Fitbit smartwatch. Therefore, rows containing NaN values

were removed from the dataset.

Secondly, the time of day feature was generated as part of the data prepara-

tion process, this was done by extracting the hour component from each EMA

submission date time stamp.

HRV was only provided from Fitbit during hours when the participant was

asleep, instead, we calculated an extrapolation of HRV using an RMSSD formula

(See Equation 5.1). We calculated RMSSD in 1-minute segments and then calcu-

late the average HRV using all 1-minute seconds in a ± 15-minute window around

each EMA rating.

The RMSSD formula utilises Inter-beat Interval (IBI), but since Fitbit does not

provide access to individual IBI, we extrapolate it using HR data that has up to

1-second granularity (see Equations 5.3 and 5.2). We also performed a weighted
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Feature
Number

Feature Name Feature Description

1 Time of Day Hour of the day when the EMA rating
was taken (0 - 23)

2 Light Sleep Duration The length of time in seconds the par-
ticipant was in the light sleep stage

3 Deep Sleep Duration The length of time in seconds the par-
ticipant was in the deep sleep stage

4 REM Sleep Duration The length of time in seconds the par-
ticipant was in REM sleep stage

5 Wake Duration The total number of minutes the par-
ticipant was awake

6 Minutes After Wake up The total number of minutes it took for
a participant to get back to sleep after
waking up during a sleep session

7 Minutes to Fall Asleep The number of minutes the participant
took to fall asleep

8 Time in Bed The total number of minutes the par-
ticipant was in bed

9 Minutes Asleep The total number of minutes the par-
ticipant was asleep

Table 5.2: Table of MoodAI Sleep Cluster features and descriptions

Feature
Number

Feature Name Feature Description

1 Time of day Hour of the day when the EMA rating
was taken (0 - 23)

2 Average Heart Rate Average Heart rate taken from all
recorded heart rate values within ± 30-
minute window around EMA

3 Average HRV Average 1 min RMSSD HRV values
from all recorded heart rate values
within ± 15 minute window around
EMA

4 Resting Heart Rate Resting heart rate from the day of EMA
rating

Table 5.3: Table of MoodAI Heart Cluster features and descriptions
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Participant No. Number of samples
0 155
1 79
3 155
4 35
5 35
6 131
7 157
8 133
9 154
10 116
11 141
12 153
14 131
15 118

Table 5.4: Number of samples for each participant in the MoodAI dataset after
data preparation

average by multiplying each IBI by the time di�erence till the next heart rate

measurement and then dividing by 60 seconds to �ll in any missing data.

After data preparation, one participant (Participant No. 13) was removed due

to errors with heart rate and sleep data from their smartwatch, leaving us with

data from 14 participants. Table 5.4 shows the number of samples per participant.

RMSSD =

√√√√ 1

N − 1

N∑
i=1

(|IBIi+1 − IBIi|)2 (5.1)

HeartRate(bpm) =
60

IBI
(5.2)

IBI =
HR

60
(5.3)

K-fold cross-validation techniques shu�e the data removing any sort of tempo-

ral component from the dataset. To retain a temporal component to the dataset,

instead of training the model on 1D rows of features, we created a 2D row of

features using a sliding window technique, this gives the model a small window of

historical values to look back on. The Matrix shown below indicates how each 2D

input matrix was constructed. x represents di�erent features numbered 0 to n and

t represents the timestamp of the feature from i to the total number of samples.
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Figure 5.1: Distribution of EMAs across all participants



xt,0 . . . . . . xt,n

xt−1,0 . . . . . . xt−1,n

...
...

...
...

...
...

...
...

xt−i,0 . . . . . . xt−i,n


Where n = number of features and i = size of sliding window

5.4 Exploratory data analysis

We performed an exploratory data analysis on the labels to determine the distri-

bution of samples. As shown in Figure 5.1 we found that there was a heavy bias

towards the EMA score of 4 for most participants which one participant showing

a bias towards the EMA score of 3. Despite wanting a more bell-shaped distri-

bution, we recognise that all participants were healthy controls and thus it was

expected that mood states would tend towards higher scores. Table 5.5 shows the

percentage distribution of submissions across all EMA scores. We can see that 10

out of 14 participants have a heavy bias toward the 4 EMA score, with over 50%

of all their ratings being 4s. Participant 11 prefers the EMA score of 3 with a 78%

frequency for that score. Whereas participants 3 and 9 had a bias towards the

EMA score of 5 with over 50% of all their ratings being 5s.
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Participant No. 1 2 3 4 5
0 0.00% 0.00% 9.6% 84.75% 5.65%
1 0.00% 0.00% 1.27% 96.20% 2.53%
3 0.00% 1.94% 7.10% 36.13% 54.94%
4 0.00% 20.13% 38.26% 41.61% 0.00%
5 1.41% 3.52% 16.90% 74.65% 3.52%
6 0.00% 1.96% 6.54% 84.31% 7.19%
7 0.00% 3.70% 32.72% 62.96% 0.62%
8 0.00% 0.72% 16.55% 64.75% 17.99%
9 0.64% 1.28% 16.67% 27.56% 53.85%
10 0.00% 3.17% 22.22% 65.87% 8.73%
11 0.00% 0.69% 77.93% 19.31% 2.07%
12 0.00% 3.27% 45.75% 49.02% 1.96%
14 0.00% 0.00% 8.27% 91.73% 0.00%
15 0.00% 0.00% 9.02% 82.79% 8.20%

Table 5.5: Distribution of EMA scores across all participants

5.5 Machine learning models

Similar to the models discussed in Chapter 4 The ML Models discussed in this

Chapter were developed using the Python DL API Keras [119] which utilises the

open source machine learning software library developed by Google TensorFlow

[120]. As discussed below, we explored multiple di�erent model architectures, but

one common point among all models trained was the same EMAs as the labels.

For the following models, we used similar k-fold cross validation and hyper-

parameter tuning methods. Hyper-parameter tuning was also done to optimise

the model [123] by adjusting model parameters [123]. In the MoodAI models, we

adjusted parameters such as neurons, epochs, batch size, and sliding window size.

Similar to the Shah et al models discussed in Chapter 4 this was done using a

grid search approach on the Python itertools library by training models on a set

of possible combinations of hyper-parameters. Grid search is more computation-

ally intensive but provides a more comprehensive search space when compared to

random search.

Nested within each iteration of hyper-parameter tuning was strati�ed k-fold

cross-validation. Strati�ed k-fold cross validation splits the dataset into k segments

where k-1 segments are used for training and 1 segment is used for testing the

model [121]. Strati�ed k-fold allows us to preserve the percentage of samples for

each class among the folds. This is particularly useful for the MoodAI dataset

as there is a bias towards the EMA score of 4 and samples of other classes are
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infrequent. Similar to what we used for the Shah et al dataset, we used 4-fold

strati�ed cross-validation for all models discussed below.

We created two models using the collected dataset, a monolithic model and a

compositional model. Separate models were created for each participant using only

their data, making each model participant-speci�c. The monolithic model consists

of far more features than each cluster model, making it inherently more compli-

cated to understand and more computationally intensive to train. The composi-

tional model splits features into smaller models [45], trains and tunes each model

separately, and then combined using an additional MLP. Although the compo-

sitional model has more individual components, each component is much easier

to understand and explain. The goal of this work was to determine which model

architecture performed better.

5.5.1 Multi-feature Monolithic Model

5.5.1.1 Model Architecture

We used an LSTM model with an input layer, 1 hidden layer, and an output layer

for the multi-feature monolithic model. We used set seeds for any random number

generation in model training so that results would be reproducible. The monolithic

model includes all features from each cluster (except only one instance of the time

of day feature) for a total of 17 features.

5.5.1.2 Results

Test accuracies from the tuned multi-feature monolithic model appear to be pos-

itive. Table 5.6shows the test accuracies of the model ranging from 65% to 100%,

averaging 87% across all participants in the dataset. Although the accuracies are

high there are a few notable observations. Firstly, participants 9 only achieved an

accuracy of 65.71%. If we refer to Table 5.5 we can see that participant 9 was

one of the two participants to show a bias towards the EMA score of 5. Secondly,

participants 1, 5, and 6 achieved extraordinarily high accuracies of 100%. Accura-

cies of 100% are generally not possible in a real-world environment that the test

set is intended to simulate. These participants have shown to have the highest

percentage of 4 EMA ratings; thus, our models may have also developed such

bias.
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Participant No. Model Test Accuracy
0 94.44%
1 100.00%
3 80.00%
4 83.33%
5 100.00%
6 100.00%
7 82.05%
8 80.65%
9 65.71%
10 88.89%
11 85.71%
12 77.14%
14 96.77%
15 89.66%

Table 5.6: Results from Tuned MoodAI Monolithic LSTM Model

5.5.2 Multi-feature Compositional Model

The compositional model consisted of 3 separate clusters; activity, sleep, and heart

clusters. Three separate LSTMs one for each cluster trained. Each LSTM was then

optimised using strati�ed k-fold and hyper-parameter tuning to optimise each

model. The best model parameters were then used to train a �nal decision layer.

Figure 5.2 shows the implemented compositional neural network architecture.

Looking at the results from each cluster's LSTM as shown in Tables 5.7, 5.2,

and 5.9 we see similar results to the multi-feature monolithic model. Model accu-

racies range from 60% to 100% with the average model accuracy across all three

clusters being approximately 86%. Similar to the multi-feature monolithic model,

there still exists the problem of the large variations in model accuracy among

participants. Participants 1, 5, and 6 showed 100% model accuracy in some of the

LSTMs, this may be due to their high concentration of EMA scores of 4 result-

ing in the model over�tting. The lack of samples limited the ability of strati�ed

k-fold to generate su�ciently di�erent test samples while preserving class sample

percentage. Participant number 5 has shown consistently high accuracies among

all the models, one potential reason may be the lack of samples compared to other

participants. However, participant 6 also achieves similarly high accuracies while

having approximately 4x the samples of participant 5.
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Participant No. Model Accuracy
0 96.97%
1 100.00%
3 76.67%
4 68.97%
5 88.89%
6 100.00%
7 90.32%
8 80.77%
9 67.74%
10 91.67%
11 96.30%
12 79.31%
14 93.10%
15 88.89%

Table 5.7: Results from Tuned MoodAI Activity Cluster LSTM Model

Participant No. Model Accuracy
0 96.97%
1 100.00%
3 76.67%
4 62.96%
5 88.89%
6 96.55%
7 90.32%
8 84.00%
9 66.67%
10 91.67%
11 96.30%
12 75.86%
14 89.66%
15 92.59%

Table 5.8: Results from Tuned MoodAI Sleep Cluster LSTM Model
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Figure 5.2: Proposed MoodAI Compositional Neural Network Model

5.5.2.1 Model Architecture

The �nal decision layer was a simple MLP with an input layer, a single hidden

layer, and an output layer. The inputs to this model were the predicted EMAs from

the models of each cluster (3 in total). We then trained the model using the actual

participant EMAs as the labels. Table 5.10 indicates the model accuracies achieved

from the decision layer MLP. Results appear to show that the compositional model

performs better than the monolithic model. However, there were signs of over�tting

for each cluster's LSTM. The over�tting in each of the clusters has likely been

magni�ed as the input to the compositional decision MLP were the predicted
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Participant No. Model Accuracy
0 94.44%
1 100.00%
3 72.97%
4 85.71%
5 100.00%
6 100.00%
7 76.92%
8 80.65%
9 63.16%
10 92.59%
11 84.38%
12 75.00%
14 96.88%
15 89.66%

Table 5.9: Results from Tuned MoodAI Heart Cluster LSTM Model

Participant No. Model Accuracy
0 96.23%
1 100.00%
3 91.23%
4 95.01%
5 100.00%
6 100.00%
7 71.88%
8 82.23%
9 64.69%
10 80.00%
11 72.41%
12 82.49%
14 98.21%
15 91.98%

Table 5.10: Results from Tuned MoodAI Compositional Decision MLP Model

EMA values from each of the separate models. This is due to limitations in the

spread of samples contained in the dataset.



Chapter 6

Conclusions and Future Work

6.1 Limitations

The original study intention was to recruit a total of 20 participants with mild-

moderate depression and 20 healthy controls. The recruitment of participants

with mild-moderate depression was intended to be done via primary healthcare

providers in Auckland such as Tamaki Health. This is because, of the need for a

clinical con�rmation of a present or past depression diagnosis. Additionally, this

depressed population is potentially at risk and therefore there was a necessity to

get con�rmation from their general practitioner.

Recruitment for the MoodAI study began in August 2021 and continued

through to May 2022. This period was the peak of the COVID-19 global pan-

demic in New Zealand. With the emergence of the delta and omicron variants

of COVID-19 and the urgent vaccine roll-out, primary healthcare providers such

as Tamaki Health needed to focus on meeting community needs. As a result, no

participants with mild-moderate depressive symptoms were recruited.

Additionally, there were multiple lockdowns and social distancing measures

put in place by the New Zealand government. Study screening was unable to con-

tinue in person without breaking the procedures put in place by the New Zealand

government and the University of Auckland. The study adapted accordingly to

lockdown restrictions and after conducting one in-person screening session, the

study transitioned to online screening sessions via zoom and devices were couri-

ered to suitable participants.

We supplemented the lack of participants in the depressed group by retrieving

a data sample from Shah et al 4 which consisted entirely of participants with

self-diagnosed depression.

71



72 Conclusions and Future Work

Machine learning models require large amounts of data to be able to better per-

form classi�cation tasks. As of June 2022, a total of 15 participants were recruited

and completed a one-month monitoring period. Each participant was monitored

for approximately 4 weeks and entered 5 ecological momentary assessments per

day. This results in a maximum of 150 samples per person.

We were hoping for a normal distribution of EMA scores closely representing

a bell curve. Since we were unable to recruit any participants with mild-moderate

depression, we were unable to achieve the desired distribution. Instead we observed

a heavy bias towards the EMA score of 4 in our healthy controls. This result was

not unexpected as the healthy controls were determined to be mentally healthy

during their clinical screening sessions.

Similar to many other studies in this area, we needed to build a larger dataset

to improve the performances of our models [69]. However, building such a large

dataset is di�cult due to the nature of the data and the amount of time and

resources required.

6.2 Strengths

Although we were unable to recruit a depressed group for the MoodAI study due to

COVID restrictions, we acquired a published data set from a research group from

the University of San Diego, California. This data set referred to as the Shah et al

data set [48] consisted of similar bio-markers captured in the MoodAI study but

was made up entirely of participants with moderate depression symptoms. This

data helped to supplement the inability to collect data from depressed participants

as part of the MoodAI study. The work done by Shah et al used only regression and

ensemble learning-based machine learning methods so we were able to explore if

there were any bene�ts to using deep learning approaches. We trained models using

both the entire feature set and also a limited subset of the features. Results from

the subset were on par with the best results reported by Shah et al. Although our

MAPE and MAE were generally worse than that of Shah et al, our deep learning

model did manage to consistently output a lower standard deviation in both MAE

and MAPE measures.

Despite the results from our models being somewhat inconclusive, this thesis

was able to provide a framework as to how deep learning models can be constructed

using di�erent digital bio-markers. The compositional neural network approach

where we broke down features into di�erent clusters and trained separate smaller
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neural networks before combining them in a �nal decision layer to determine the

overall outcome is something that to the best of my knowledge has not yet been

applied in the context of depression classi�cation poses some promising future

research questions.

Overall, despite all the aforementioned limitations, the work discussed in this

thesis successfully explores the idea of predicting mood states using bio-physical

data collected from smartphones and smartwatches.

6.3 Future Work

6.3.1 Mood Index

Due to COVID-19 disruptions, we were unable to recruit any depressed partici-

pants as part of the MoodAI dataset. The EMAs were heavily clustered towards

a certain rating and thus resulted in over�tting. Our research team has developed

a mood index that is calculated by taking into account a trend in consecutive

EMAs. A rolling mood index could then be used as the label to train and tune

the ML models. This could show improvements over the current confusion matrix

which is heavily biased towards the 4 EMA rating.

6.3.2 Audio and Speech Analysis

A current body of literature has shown speech patterns recorded on smartphones

can be used to predict and monitor mood states [76]. As part of the MoodAI study,

audio diaries were collected on a daily basis. Common prosodic features such as

frequency and speaking rate along with cepstral features (Mel-frequency cepstral

coe�cients) can be analysed and included in future machine learning models.

6.3.3 Platform Agnostic

The MoodAI work utilised Fitbit Sense smartwatches for bio-physical data col-

lection. For better accessibility, expanding supported smartwatches to support of-

ferings from Apple, Garmin, Samsung, Huawei and other Google Wear OS-based

smartwatches would provide a much further reach. This way participants could

volunteer using their own personal smartwatches. This extra data could be used

to improve the accuracy of the machine learning model.
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6.3.4 Embedded Implementation

The compositional neural network (CpNN) approach discussed in the paper by

Yang, Xin, et al titled "A compositional approach using Keras for neural networks

in real-time systems" [45] greatly inspired the neural network models discussed

in this thesis. Future work be done to utilise the developed semantics proposed

by Yang, Xin, et al [45] to convert the CpNN to C code using their CpNN2C

compiler which builds on top of the Keras2C tool developed by Conlin, Rory, et al

[127]. This could then be run on an embedded wearable device like a smartwatch,

thus providing further features and improving the mental health capabilities of

smartwatches.

6.3.5 MoodAI Platform Availability

Rates of access to mental health services are currently inequitable with numerous

factors contributing including stigma, cost, lack of time and di�culties with access.

Digital technologies provide advantages such as 24-hour accessibility, low cost, and

familiarity for users. The MoodAI platform could be further re�ned and could be

made widely/freely available to help monitor/track depression as part of self-

management or to aid clinicians with monitoring trends. This work could also

be adapted for use in other mental health or physical health conditions such as

chronic pain.

6.4 Summary of Thesis

In this thesis, we developed a longitudinal observational study where we acquired

ethics approval, performed clinical screenings, and collected a variety of lifestyle

and ecological momentary assessment data from human participants. A total of

15 participants were recruited and monitored over one month. We developed the

MoodAI app for participants to interact with and capture EMAs, audio diaries,

and daily journals. The MoodAI system architecture provides a framework for

others conducting similar observational studies to follow.

From the system architecture, we constructed a dataset consisting of 17 fea-

tures relating to physical activity, sleep, and heart rate. From this, a machine

learning pipeline was developed to predict mood states using LSTM neural net-

works. While on the surface results from both the monolithic and compositional

models appear promising with accuracies ranging from 60 to 100%. The inability
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to recruit a depressed group due to the global pandemic resulted in limitations in

the distribution of dataset labels. Healthy participants proved to have consistent

mood ratings. The dataset's skew and the limited samples seemed to indicate the

model su�ered from over�tting issues.

We attempted to supplement the lack of depressed participants by collabo-

rating with a research team from the University of San Diego, California, USA.

This team collected a depressed dataset in the years before the pandemic. This

collaboration yielded fruitful results as we were able to perform a head-to-head

comparison of their regression and our deep learning-based approach. Using only

a subset of the dataset we showed that the deep learning models discussed in this

thesis performed similarly in terms of accuracy but performed better in terms of

model variance when compared to their regression-based models.

In conclusion, although this thesis did not provide conclusive results on

whether or not deep learning can be successfully used to perform mood classi-

�cation, we developed a scalable framework upon which future research can build

on.
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Shah et al Supplementary

Information

For copyright purposes the supplementary information by Shah et al has been

removed.

It can be found online here:

https://static-content.springer.com/esm/art%3A10.1038%2Fs41398-021-01445-0/

MediaObjects/41398_2021_1445_MOESM1_ESM.pdf
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Department of Psychological Medicine                Postal address: 
Level 3, Building 507,         Department of Psychological Medicine 
22-30 Park Avenue,        Faculty of Medical and Health Sciences 
Grafton,               The University of Auckland  
Auckland 1023, New Zealand            Private Bag 92019 
+64 (0) 9 923 6531                  Auckland 1142 

New Zealand 

PARTICIPANT INFORMATION SHEET 

Study title: Real-time assessment of mood changes and machine learning  

Name of researchers: Drs Frederick Sundram, Amy Chan and Partha Roop 

Contact email address for primary researcher: f.sundram@auckland.ac.nz 

Voluntary Invitation to Participate 

You are invited to participate in this study because you are between the ages of 18 and 60 and 
interested in using smartphones and smartwatches to help us understand more about depression. 
Your general practitioner (GP) has either informed you about this study or contacted the study 
investigators about your interest to participate. Alternatively, you may have found out about 
this this study via email distribution lists, social media (e.g., Facebook), word of mouth or 
advertisements. This study involves monitoring physiological health using a provided 
smartwatch (Fitbit Sense) and a series of audio recordings using the provided smartphone 
(OnePlus Nord). There will be a demonstration by the team of how to use these devices. 
Participation will result in data from these devices being collected over a month. This study is 
funded by the Health Research Council of New Zealand. 

Overview of this study 

Aim: This project aims to gather data from smartphones and smartwatches over a one-month 
duration. Most of the data captured will be passive without a need for you to do anything. 
However, there will also be data captured that would need your interaction either with the 
smartphone or smartwatch. The data captured will be used to develop a future system that can 
detect changes in mood in people with depression. Eventually, the data will inform the 
development of algorithms which can be used to automatically detect low mood in real-time 
and generate appropriate prompts to help individuals access mental health support more 
quickly.  

Rationale: Depression is extremely common in New Zealand and across the world but there 
are problems with accessing mental health support in a timely way because mental health 
services are often stretched. Additionally, people tend not to present early for help with their 
depression. A system that helps monitor changes in mood on a 24/7 basis will help identify 
when someone may be becoming depressed and aid with accessing mental health support 
earlier.  
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Duration: Should you be willing to participate, your involvement in the study will be for up to 
one month. During this timeframe, most data will be acquired without the need for your 
interaction with the smartwatch and smartphone. Some of this data will be acquired when you 
are asleep at night while other data will be acquired when you are awake. 

Benefits: The smartwatch can provide you with detailed insight into your physiological 
wellbeing. Readings such as heart rate, breathing rate, heart rate variability and sleep quality 
may offer insight into your health. Also, your data will help develop a system that will help 
others in addressing their depression and accessing mental health supports earlier. 

Study Design 

In this study, we will be recruiting people with depression and healthy individuals. All the data 
from the smartwatches will be gathered passively i.e., without your interaction with the device 
and will be acquired during sleep and during awake hours. Data gathered will include 
physiological measures such as heart rate, breathing rate, heart rate variability, sleep quality, 
number of footsteps taken during the day and distance travelled. However, data from 
smartphones will require interaction including ecological momentary assessments (mood 
ratings) and daily audio diaries. To recruit the number of participants we require, the project's 
expected duration will be one year; however, each participant will only be involved for up to 
one month. As part of assessing suitability to participate, there will be clinical screenings taking 
place at the start of the study via interview at the Clinical Research Centre at the University of 
Auckland in Grafton. This would ideally be done in person, but should there be any Covid-19 
related disruptions, this may need to occur remotely via Zoom. 

What will participating in the study involve?  

Participation in the study will require the completion of an initial screening in person to assess 
suitability to participate. There will be one visit to the Clinical Research Centre at Grafton, at 
the beginning of the study when you will be provided with the required devices and instructions 
after undergoing screening. It is expected that this visit would take up to three hours. If 
considered suitable, there will be a demonstration of how to use the devices (both smartwatch 
and smartphone). You will then be provided with the devices (Fitbit Sense and OnePlus Nord) 
and a SIM card for the study-supplied smartphone. The Fitbit Sense is to be worn during sleep 
and for most of the day. Exceptions are made for wearing the Fitbit Sense for example when 
charging of this device and when having a shower or when there is any discomfort in your 
wrist. Participants are also expected to record short audio diaries (2-5 mins in length) once a 
day via the study-provided smartphone. These audio diaries will be completed through a web 
application called MoodAI. 

Of note, all the data captured through the Fitbit Sense is passively acquired without any 
interaction whereas the acquisition of audio diaries will require interaction with the 
smartphone.  You do not need to create any user accounts for Fitbit, this will be done for you 
and you will be provided with details of the account. This account will sync your physiological 
health data with the Fitbit Health App. To allow transfer of data from your Fitbit device or 
smartphone, the smartphone will need to be connected to the internet. Audio diaries will be 
done through the MoodAI web application daily and well as ecological momentary assessments 
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up to four times daily – these are mood ratings on a scale from happy to sad. There will be 
notifications to prompt you to complete these tasks during the day. 

At the end of the study, we can arrange to collect the study-provided devices from your home 
to minimise travel disruption.  

Inclusion criteria 

- Participants are male or female, aged 18 to 60 years.  
- Participants are willing and able to give informed consent for participation in the study. 
- Participants are willing to undergo a clinical screening interview by a member of the 

research team. 
- Participants are willing to use the smartphone and smartwatch for the duration of the 

study. 

Exclusion criteria 

- Inability to speak or read English to a level that enables informed consent and/or 
participation in the study.  

- Those who are unable or disinterested in using the technology.  
- Any other condition judged by the research team as likely to impact on the ability to 

complete the study.  
- Substance abuse or dependence in the last six months.  
- Any other unstable medical or neurological condition.  

Risks and Incidental findings 

There are no immediate risks from participating in this study. We do not expect any incidental 
findings to arise because of this study. However, the research team will advise your general 
practitioner (GP) of your participation if the level of your depression is deemed safe for 
participation in this study. Should you experience any worsening of your mood during the 
study, you should speak with your GP - clinical supports are additionally available for you to 
access should your mood worsen during the study while you might be awaiting an appointment 
with your GP (see support hotline numbers in the contact details section). The research team 
may exclude you from participation should your depression levels worsen at the start or over 
the course of the study and the research team is not providing clinical care or support to you. 
Should you not have depression, the research team will not be contacting your GP. 

Compensation and Reimbursement  

You will be reimbursed with $100 worth of supermarket vouchers and up to $20 for transport 
costs. Supermarket voucher reimbursement will be split into two stages. $50 at the beginning 
of the study and a following $50 if you remain till the end of the one-month study. We will 
cover your transport costs at the start of the study. 
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Withdrawal from the study 

Your participation is entirely voluntary, and you may decline the invitation to participate. If 
you choose not to participate, you may contact any of the investigators found in the contact 
details section. You are free to withdraw from the study after this initial clinical screening 
without giving any reasons. Of note, the data collected from the time you consented to 
participate in the study till the time you withdraw from the study may be used. If you withdraw 
from this study, you must return any devices provided to you as part of the study. These include 
the Fitbit Sense smartwatch and the OnePlus Nord smartphone. They must be returned timely, 
and in good condition, otherwise, you may be liable for the device.  

Data Collection Procedures 

You will be provided with the choice of up to two pieces of hardware:  

1) a Fitbit Sense smartwatch and;  
2) a OnePlus Nord Android smartphone 

The Fitbit Sense smartwatch will be provided, but the OnePlus Nord Android smartphone 
will be offered to participants who do not wish to use their personal phone for the study, or 
for those who do not have a smartphone that is able to pair with the provided smartwatch or 
submit audio diaries.  

You will also be provided account details which will be used to access the different services 
required for this study.   

GPS functionality of provided devices will be always enabled. This is solely to ensure that the 
devices are not stolen and to aid with recovery. 

At the end of the study, you must return all devices provided to you for the purpose of the 
study. A researcher will contact you to organise the most convenient way for you to return the 
devices. The default is for a researcher to schedule a delivery pickup.  

Data Collected 

Your physiological health data will be collected over a one-month period and will be sent to 
our data collection server without needing your input.  

Fitbit data: 

You are required to wear a Fitbit Sense smartwatch throughout the day and night. This device 
monitors physiological wellbeing. The data captured are:  

- Resting Heart Rate  
- Instantaneous Heart Rate  
- Heart Rate Variability – During sleep 
- Breathing Rate – During sleep 
- Skin Temperature – During sleep  
- Oxygen Saturation – During sleep  
- Sleep Score – During sleep 
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The OnePlus Nord smartphone and Fitbit Sense smartwatch provided through this study will 
already be pre-paired via Bluetooth. The OnePlus Nord smartphone will have the Fitbit app 
preinstalled. This app will periodically transfer the physiological data captured/stored on the 
smartwatch to the OnePlus Nord smartphone and onwards to online Fitbit servers. This data 
will be stored under the participant’s provided Fitbit account.  

The study-provided Fitbit account will be created through Google services and the name and 
email address will be de-identified so you will not be identifiable. Fitbit data will be retrieved 
manually by the research team. This data will be exported at the end of the first week and 
month/end of study.  

MoodAI web app: 

The MoodAI web application will be hosted on the Firebase Google Cloud Platform. This web 
application has security/authentication built in via the Google Cloud Platform and participants 
can sign in using their provided Google account. This web app will be maintained by members 
of this study who are part of the Department of Computer Engineering at the University of 
Auckland. 

The purpose of the web app is for participants to be able to upload daily self-recorded audio 
diaries and complete mood ratings (ecological momentary assessments). This web app will 
prompt users to complete these items daily using notifications either via text messaging/SMS 
or native notifications on the phone. 

Audio diaries: 

You are required to record a daily audio diary of 2-5 minutes in duration. This will be done 
through the study specific MoodAI web app. Access to this web app will be via a web link 
using a web browser. Authentication and access will be via the study-provided Google account 
(do not use your own personal Google account if you have one). Instructions on what you 
should record will be provided by the web app. Audio diaries must be done in English and not 
any other language, as a result a level of proficient English is a requirement to participate in 
this study. These audio diaries will be stored on a secure Google database managed by 
researchers of the study.  

Ecological momentary assessments (EMAs):  

EMAs are regular mood ratings over the course of the day. EMAs will also be completed via 
the MoodAI web app and should be done up to 4 times daily and at the time audio diaries are 
completed. It will be a simple scale indicating how you are feeling at the time of capture. This 
data will also be stored on a secure Google database managed by researchers of the study.  

Study conclusion  

The study-provided smartphone and smartwatch will be collected by the research team. There 
will be a final export of Fitbit data and check if EMA and audio diaries have been successfully 
acquired. The study-provided Google account will be discontinued, and the OnePlus Nord 
smartphone and Fitbit smartwatch will be reset to factory settings with deletion of your data on 
these devices.  
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Data storage, retention, destruction, and future use 

During this study, the research team will record information about you and your study 
participation. This includes the results of any study assessments. If needed, further information 
from your hospital records and your GP may also be collected.  

Identifiable Information 

Identifiable information is any data that could identify you (e.g., your name, date of birth, or 
address).  Only the research team will have access to your identifiable information.  

De-identified (Coded) Information 

To make sure your personal information is kept confidential, information that identifies you 
will not be included in any report generated by the research team. Instead, you will be identified 
by a unique code. The research team will keep a list linking your unique code with your name, 
so that you can be identified by your coded data if needed. The results of the study may be 
published or presented, but not in a form that would be expected to identify you. 

Future Research Using Your Information. 

If you agree, your coded information may be used for future research performed by members 
of this research team related to interventions for depression. If you agree, your coded 
information may also be used for other medical and/or scientific research that is unrelated to 
the current study. The primary investigator will review the study to determine ethical viability 
before any information is provided.   

Your information may be used for 10 years after the study conclusion for future research unless 
you withdraw your consent. After that point, your information will be destroyed. However, it 
may be extremely difficult or impossible to access your information, or withdraw consent for 
its use, once your information has been shared for future research. 

Security and Storage of Your Information. 

Your identifiable information is held on a private web server named MoodAI during the study. 
This webserver will be hosted on the Google Cloud Platform and designed and maintained by 
researchers involved in this project and affiliated with the Computer Engineering Department 
at the University of Auckland. After the study, it is transferred to a dedicated Dropbox file 
storage system created for this project and maintained by the University of Auckland, and 
stored for at least 10 years, then destroyed. All storage will comply with local and/or 
international data security guidelines.  

Risks. 

Although every effort will be made to protect your privacy, absolute confidentiality of your 
information cannot be guaranteed. Even with coded and anonymised information, there is no 
guarantee that you cannot be identified. The risk of people accessing and misusing your 
information (e.g., making it harder for you to get or keep a job or health insurance) is currently 
very small, but may increase in the future as people find new ways of tracing information. 

Although your coded information is maintained by researchers here in New Zealand, it will be 
hosted on the Google Cloud Platform which is located overseas.   
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Rights to Access Your Information. 

You have the right to request access to your information held by the research team. You also 
have the right to request that any information you disagree with is corrected.   

Please ask if you would like to access the results of your clinical screening and safety 
assessments during the study.  

If you have any questions about the collection and use of information about you, you should 
contact the research team.  

Rights to Withdraw Your Information. 

You may withdraw your consent for the collection and use of your information at any time, by 
informing the research team.   

If you withdraw your consent, your study participation will end, and the research team will 
stop collecting information from you.  

Information collected up until your withdrawal from the study will continue to be used and 
included in the study. This is to protect the quality of the study. 

Ownership Rights. 

Information from this study may lead to discoveries and inventions or the development of a 
commercial product. The rights to these will belong to the study’s Primary Investigator, Dr 
Frederick Sundram. You and your family will not receive any financial benefits or 
compensation, nor have any rights in any developments, inventions, or other discoveries that 
might come from this information.  

Use of New Technologies (e.g., Artificial Intelligence, Health Apps). 

The study will involve the use of the Fitbit Health App. This is necessary as it enables the 
retrieval of data from the Fitbit Sense smartwatch. Participants will be assigned Fitbit accounts 
that are de-identified. Anyone outside of the research team cannot use the data gathered and 
cannot be used to identify you. The data will be synced to Fitbit servers and is encrypted by 
Fitbit. You are not expected to subscribe to any paid Fitbit app features.  

Results of the study 

At the end of the study, you may request a copy of the physiological data recorded from the 
Fitbit Sense smartwatch and the audio recordings you would have recorded on the OnePlus 
Nord smartphone. The audio diaries as well as any physiological data captured by the Fitbit 
Sense can be accessed via the study-provided smartphone at any time. Guidance on how to 
view this data will be provided and demonstrated at the start of the study. Once produced, any 
journal articles outlining the study’s outcome will be offered to participants who have opted 
into receiving study results on the consent form.  
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Study Funding  

This study is funded by the Health Research Council (HRC) of New Zealand. The webpage 
containing details about this project is found here: https://www.hrc.govt.nz/resources/research-
repository/real-time-assessment-mood-changes-and-machine-learning  

Contact Details 

If you have any questions, concerns, or complaints about the study at any stage, you can 
contact:  

 Dr Frederick Sundram, Primary Investigator 

 +64 9 923 7521 

 f.sundram@auckland.ac.nz 

 Dr Amy Chan, Co-investigator 

 +64 9 923 5524 

 a.chan@auckland.ac.nz  

 Dr Partha Roop, Co-investigator 

 +64 9 923 5583 

 p.roop@auckland.ac.nz  

If you want to talk to someone who is not involved with the study, you can contact an 
independent health and disability advocate on: 

Phone:  0800 555 050 
Fax:   0800 2 SUPPORT (0800 2787 7678) 
Email:   advocacy@advocacy.org.nz 
Website:  https://www.advocacy.org.nz/ 
 

If you require Māori cultural support, talk to your whānau in the first instance. You may also 
contact the administrator for He Kamaka Waiora (Māori Health Team) by telephoning 09 486 
8324 ext 2324, or contact the Auckland and Waitematā District Health Boards Māori Research 
Committee or Māori Research Advisor by phoning 09 4868920 ext 3204 to discuss any 
questions or complaints about the study. 
 
For concerns of an ethical nature, you can contact the Chair of the Auckland Health Research 
Ethics Committee at: 

Email: ahrec@auckland.ac.nz 
Phone: 09 373 7599 x 83711 
Address: Auckland Health Research Ethics Committee, The University of Auckland, 
Private Bag 92019, Auckland 1142. 

 
If you require free counselling services, please try some of the following helplines: 
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Need to talk? Free call or text 1737 any time. 
 
Talk to a trained counsellor or call: 

• the Depression helpline – 0800 111 757 
• Alcohol drug helpline – 0800 787 797 
• Gambling helpline – 0800 654 655 
• Healthline – 0800 611 116 – to get help from a registered nurse 24/7. 
• Lifeline – 0800 543 354 
• Samaritans – 0800 726 666 

 
Approved by Auckland Health Research Ethics Committee on 03/06/2021 for 3 years. 
Reference Number AH22426. 
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Patient Health Questionnaire 9

(PHQ-9)

For copyright purposes the exact PHQ 9 Questionnaire used in the study has

been removed.

It can be found online here:

https://www.healthnavigator.org.nz/tools/p/patient-health-questionnaire-9-phq-9/
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Alcohol Use Disorders

Identi�cation Test (AUDIT)

For copyright purposes the exact AUDIT Questionnaire used in the study has

been removed.

It can be found online here:

https://auditscreen.org/check-your-drinking/
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Columbia-Suicide Severity Rating

Scale (C-SSRS)

For copyright purposes the exact C-SSRS Questionnaire used in the study has

been removed.

It can be found online here:

https://cssrs.columbia.edu/wp-content/uploads/C-SSRS_Pediatric-SLC_

11.14.16.pdf
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Mini-International

Neuropsychiatric Interview

(M.I.N.I)

For copyright purposes the exact M.I.N.I Questionnaire used in the study has

been removed.

It can be found online here:

https://harmresearch.org/mini-international-neuropsychiatric-interview-mini/
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Montgomery�Åsberg depression

rating scale (MADRS)

For copyright purposes the exact MADRS Questionnaire used in the study has

been removed.

It can be found online here:

https://www.mdcalc.com/calc/4058/montgomery-asberg-depression-rating-scale-madrs
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Technology Acceptance Questionnaire – MoodAI (Baseline) 

Below are some statements that other people have made about wearables such as their FitBit and the 

Mood AI platform. Please tick below how much you agree with these statements. There are no right or 

wrong answers, we are simply interested in your experience and your views. 

 

Statement Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

Wearable devices are very useful to 
my life in general 

     

Wearable devices provide very useful 
services and information to me 

     

Overall, I find wearables easy to wear      

Using wearable devices is worthwhile      

I don’t use a wearable device, 
because I am concerned about being 
observed 

     

I am afraid of my health data being 
tracked by wearable devices 

     

Using wearable devices fits into my 
lifestyle 

     

Using a wearable device makes me 
feel uncomfortable due to potential 
data security issues 

     

Overall, wearable devices look 
attractive 

     

I think the wearable device will be 
helpful to those with depression 

     

I think the wearable device is more 
relevant to physical health rather 
than mental health 

     

I am concerned about having to wear 
the wearable device most of the day 

     

 

  



Technology Acceptance Questionnaire – MoodAI (End of study) 

Below are some statements that other people have made about their FitBit and the Mood AI platform. 

Please tick below how much you agree with these statements. There are no right or wrong answers, we 

are simply interested in your experience and your views. 

Statement  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

Wearable devices are very useful to 
my life in general 

     

Wearable devices provide very useful 
services and information to me 

     

Overall, I find wearables easy to wear      

Using wearable devices is worthwhile      

I don’t use a wearable device, 
because I am concerned about being 
observed 

     

I am afraid of my health data being 
tracked by wearable devices 

     

Using wearable devices fits into my 
lifestyle 

     

Using a wearable device makes me 
feel uncomfortable due to potential 
data security issues 

     

Overall, wearable devices look 
attractive 

     

I think the wearable device will be 
helpful to those with depression 

     

I think the wearable device is more 
relevant to physical health rather 
than mental health 

     

I am concerned about having to wear 
the wearable device most of the day 

     

 

Wearable experience Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

I find it easy/convenient to wear the 
wearable device to sleep 

     

I worry about losing/misplacing the 
wearable device 

     

I recommend others to use wearable 
devices 

     



I am happy wearing my wearable 
devices around other people 

     

Using a wearable device is enjoyable 
to me 

     

I can do my daily tasks even when 
wearing my wearable 

     

System/platform experience      

The system was very useful for my 
mental health 

     

The system provided very useful 
services and information to me 

     

Overall, I found the system easy to 
use 

     

I found the system worthwhile      

I would recommend others to use 
this system 

     

Using the system was enjoyable to 
me 

     

Using this system makes me feel 
uncomfortable due to potential data 
security issues 

     

Using the system fits into my lifestyle      

I think this system will be helpful to 
those with depression 
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108 Shah et al Model Comparisons

Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 7.22% 0.67% 0.353 0.038
Di� 0.33% 4.88% 0.005 0.253

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 29.12% 4.76% 0.637 0.086
Di� -2.85% 9.68% 0.013 0.244

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 56.84% 27.45% 1.467 0.665
Di� -15.96% -15.58% -0.460 -0.330

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 32.72% 5.55% 0.869 0.211
Di� -3.61% 0.69% -0.218 -0.009

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 18.39% 5.79% 0.618 0.210
Di� -11.99% 1.12% -0.410 0.057

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 45.20% 12.27% 1.428 0.248
Di� -8.79% -2.64% -0.276 -0.031

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 25.01% 9.21% 0.762 0.186
Di� -3.78% -1.65% -0.105 -0.055

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 64.37% 27.11% 1.308 0.429
Di� -1.23% -0.98% -0.034 -0.107

Table I.1: Comparison of best Shah et al regression based machine learning models
using 5 fold cross validation MoodAI deep learning model using Shah et al data
set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 6.46% 3.46% 0.325 0.166
Di� 1.09% 2.09% 0.033 0.112

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 34.91% 15.08% 0.794 0.292
Di� -8.64% -0.64% -0.144 0.038

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 51.10% 22.70% 1.300 0.631
Di� -10.22% -10.83% -0.293 -0.296

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 29.34% 9.29% 0.801 0.231
Di� -0.23% -3.05% -0.150 -0.029

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 23.58% 8.69% 0.804 0.257
Di� -17.18% -1.78% -0.596 0.010

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 39.70% 10.78% 1.365 0.243
Di� -3.29% -1.15% -0.204 -0.026

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 24.87% 8.46% 0.752 0.220
Di� -3.64% -0.90% -0.095 -0.089

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 80.27% 29.93% 1.692 0.641
Di� -7.14% -3.80% -0.418 -0.319

Table I.2: Comparison of best Shah et al regression based machine learning models
using 8 fold cross validation MoodAI deep learning model using Shah et al data
set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 8.52% 4.97% 0.399 0.211
Di� -0.97% 0.58% -0.041 0.080

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 30.93% 19.45% 0.648 0.331
Di� -4.66% -5.01% 0.002 -0.001

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 65.21% 33.57% 1.467 0.734
Di� -24.33% -21.70% -0.460 -0.399

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 27.66% 9.01% 0.770 0.283
Di� 1.45% -2.77% -0.119 -0.081

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 21.22% 11.21% 0.660 0.332
Di� -14.82% -4.30% -0.452 -0.065

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 4.05% 12.53% 1.295 0.214
Di� 32.36% -2.90% -0.143 0.003

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 23.04% 7.17% 0.725 0.319
Di� -1.81% 0.39% -0.068 -0.188

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 56.81% 44.83% 1.157 0.665
Di� 6.33% -18.70% 0.117 -0.343

Table I.3: Comparison of best Shah et al regression based machine learning models
using 10 fold cross validation MoodAI deep learning model using Shah et al data
set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 7.27% 0.68% 0.354 0.015
Di� 0.28% 4.87% 0.004 0.276

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 27.58% 4.86% 0.564 0.035
Di� -1.31% 9.58% 0.086 0.298

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 62.87% 7.32% 1.788 0.429
Di� -21.99% 4.55% -0.781 -0.094

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 31.58% 5.24% 0.788 0.089
Di� -2.47% 1.00% -0.137 0.113

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 19.40% 7.18% 0.675 0.230
Di� -13.00% -0.27% -0.467 0.037

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 41.75% 7.56% 1.367 0.158
Di� -5.37% 2.07% -0.215 0.059

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 24.88% 5.24% 0.800 0.168
Di� -3.65% 2.32% -0.143 -0.037

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 57.75% 4.62% 1.316 0.324
Di� 5.39% 21.51% -0.042 -0.002

Table I.4: Comparison of best Shah et al regression based machine learning models
using 3 fold cross validation MoodAI deep learning model using a subset of the
Shah et al data set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 6.29% 0.39% 0.305 0.009
Di� 1.26% 5.16% 0.053 0.282

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 32.45% 6.32% 0.803 0.083
Di� -6.18% 8.12% -0.153 0.247

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 69.88% 16.56% 1.500 0.425
Di� -29.00% -4.69% -0.493 -0.090

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 43.94% 9.67% 0.992 0.158
Di� -14.86% -3.43% -0.341 0.044

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 26.73% 18.56% 0.745 0.370
Di� -20.33% -11.65% -0.537 -0.103

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 41.29% 8.61% 1.361 0.272
Di� -4.88% 1.02% -0.209 -0.055

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 22.47% 6.72% 0.676 0.129
Di� -1.24% 0.84% -0.019 0.002

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 65.37% 33.53% 1.303 0.486
Di� -2.23% -7.40% -0.029 -0.164

Table I.5: Comparison of best Shah et al regression based machine learning models
using 5 fold cross validation MoodAI deep learning model using a subset of the
Shah et al data set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 8.52% 3.80% 0.385 0.157
Di� -0.97% 1.75% -0.027 0.134

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 30.59% 12.29% 0.636 0.176
Di� -4.32% 2.15% 0.014 0.154

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 68.40% 55.80% 1.681 0.677
Di� -27.52% -43.93% -0.674 -0.342

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 37.48% 13.86% 0.967 0.191
Di� -8.37% -7.62% -0.316 0.011

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 20.43% 9.65% 0.631 0.305
Di� -14.03% -2.74% -0.423 -0.038

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 40.44% 7.43% 1.365 0.199
Di� -4.03% 2.20% -0.213 0.018

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 24.09% 6.92% 0.731 0.185
Di� -2.86% 0.64% -0.074 -0.054

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 55.78% 19.80% 1.190 0.230
Di� 7.36% 6.33% 0.084 0.092

Table I.6: Comparison of best Shah et al regression based machine learning models
using 8 fold cross validation MoodAI deep learning model using a subset of the
Shah et al data set
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Mean absolute % error Mean absolute error
Participant ID Model Mean Std Mean Std
1 Shah et al 7.55% 5.55% 0.358 0.291

Deep Learning 8.52% 3.80% 0.385 0.157
Di� -0.97% 1.75% -0.027 0.134

12 Shah et al 26.27% 14.44% 0.650 0.330
Deep Learning 30.59% 12.29% 0.636 0.175
Di� -4.32% 2.15% 0.014 0.155

14 Shah et al 40.88% 11.87% 1.007 0.335
Deep Learning 68.40% 55.80% 1.681 0.677
Di� -27.52% -43.93% -0.674 -0.342

19 Shah et al 29.11% 6.24% 0.651 0.202
Deep Learning 37.48% 13.86% 0.961 0.191
Di� -8.37% -7.62% -0.310 0.011

20 Shah et al 6.40% 6.91% 0.208 0.267
Deep Learning 20.43% 9.65% 0.631 0.305
Di� -14.03% -2.74% -0.423 -0.038

26 Shah et al 36.41% 9.63% 1.152 0.217
Deep Learning 40.44% 7.43% 1.365 0.199
Di� -4.03% 2.20% -0.213 0.018

28 Shah et al 21.23% 7.56% 0.657 0.131
Deep Learning 24.09% 6.92% 0.731 0.185
Di� -2.86% 0.64% -0.074 -0.054

29 Shah et al 63.14% 26.13% 1.274 0.322
Deep Learning 55.78% 19.80% 1.190 0.230
Di� 7.36% 6.33% 0.084 -0.0092

Table I.7: Comparison of best Shah et al regression based machine learning models
using 10 fold cross validation MoodAI deep learning model using a subset of the
Shah et al data set
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