
An energy efficient embedded processor for hard real-

time Java applications

Manish Tewary1, Avinash Malik2, Zoran Salcic3, and Morteza Biglari-Abhari4

Dept. of Electrical and Computer Engineering, University of Auckland, Auckland 1010, NZ
mtew005@aucklanduni.ac.nz, avinash.malik@auckland.ac.nz,

z.salcic@auckland.ac.nz, m.abhari@auckland.ac.nz

Abstract. Energy management is very important and sometimes critical for cer-

tain classes of hard real-time systems. In this paper, we present effective energy

reduction techniques for hard real-time systems developed in Java, which execute

on bare metal and run on a time-predictable specialized Java processor. We mod-

ified traditional clock gating and dynamic frequency scaling methods to include

the hardware-based run-time slack calculation in periodic tasks, thus reducing

energy consumption in hard real-time systems. Two methods for energy reduc-

tion are employed leading to Energy Aware Java Optimized Processor (EAJOP).

The first method includes task execution time monitoring and comparison with

the estimated worst-case execution time to calculate the slack and bringing the

processor to sleep for the slack duration upon task completion. The second

method introduces real-time residual slack calculation at so-called checkpoints

inside the periodic task, which are then used to lower the system frequency of the

rest of the task dynamically, resulting in lower energy consumption. We compare

EAJOP with baseline JOP when implemented on FPGA and demonstrate gains

in energy consumption.

Keywords: Real-Time and Embedded Systems, Processor, Compiler, Energy

Management.

1 Introduction

Java is a platform-independent object-oriented programming language used in the em-

bedded and real-time world, especially after the introduction of Real Time Specifica-

tion for Java (RTSJ) and Safety-Critical Java (SCJ). Using Java in embedded systems

suffered from a few inherent issues like the use of an extra software layer in the form

of the Java Virtual Machine (JVM) and unpredictability in execution time due to auto-

matic garbage collection. Few attempts have been made to solve the extra software

layer issue by architecting JVM directly in hardware. A prominent case is Java Opti-

mized Processor (JOP) [1] which also offers timing predictability of execution of Java

bytecodes and is open for research and modifications.

Energy consumption is an important concern in real-time embedded applications,

especially for battery powered devices. The energy consumption reduction of any pro-

mailto:mtew005@aucklanduni.ac.nz
mailto:z.salcic@auckland.ac.nz
mailto:m.abhari@auckland.ac.nz

2

cessor is achieved by using different techniques, which are based on processor archi-

tecture, static analysis of programs and run-time control, which, however consume ad-

ditional time and energy. We introduce an approach to energy management and reduc-

tion targeting hard real-time systems executing on bare metal processor, which relies

on compiler additions, analysis of Worst-Case Execution Time (WCET) of a task and

new hardware dedicated for run-time slack calculation, supported with small modifica-

tions (additions) of original time-predictable JOP processor in the form of energy man-

agement modes. The new processor called Energy Aware JOP (EAJOP) provides a

hardware-based mechanism for slack measurement at different points (called check-

points) in the program and it also implements energy reduction algorithms which use

hardware-based run-time slack calculation (RTSC). EAJOP together with the Energy

Aware Compiler Tool (EACT) constitutes the main contribution of this paper. Close

affinity with JOP enables the use of all JOP compilation tools, while the modified tool-

chain enables evaluation of the results of energy saving algorithms implemented in

EAJOP by comparing it with baseline programs which do not utilize energy manage-

ment.

The rest of the paper is organized as follows: Section 2 introduces our motivations,

task model and methods of energy consumption reduction. Section 3 explains the mod-

ifications that led to EAJOP. Section 4 explains EACT used to support energy con-

sumption reduction. Section 5 presents analysis and validation of the approach contain-

ing experimental setup and results. Section 6 presents related works. Section 7 con-

cludes the work and indicates some future research directions.

2 Preliminaries

2.1 Task Model and Energy Optimizations

A Java application may consist of one or more tasks which must execute with pre-

defined dependencies, where a task is a unit of work which can be scheduled and exe-

cuted on the processor. In this presentation, we focus on a single periodically executed

task, represented by a Java program and its control flow graph (CFG). The time interval

between two successive execution of the task is called the period of the task. A task

has many paths from the beginning to the end of its execution. A task T will take time

ET to execute with ET ∈ [LB, UB], where LB and UB are lower and upper bound on

the execution time, respectively. In hard real-time systems, ET must not exceed the UB,

which is considered as the Worst-Case Execution Time (WCET). This WCET can be

found by using static timing analysis of programs assuming time-analyzable execution

architecture [2].

The time difference between the measured total execution time for the task in clock

cycles and WCET time in clock cycles is called slack. This slack can be utilized for

energy reduction: (1) by bringing the processor to sleep for the duration of slack, where

Sleep mode may be implemented using power gating or clock gating inside the proces-

sor or (2) by stretching the non-WCET path to WCET by continuously adjusting system

frequency, thereby increasing processor utilization to close to 100% on every path in

the task. Huang et al. [3] proposed a method for calculating intra-task DVFS schedules

3

called Checkpoint Insertion Method. Checkpoints are the points which serve as hints to

the run-time system for taking power/energy management actions. Checkpoints are

added to the program by the compiler after the static analysis of the program. In our

approach, each checkpoint is also annotated with Worst-Case Remaining Cycles

(WCRC) which is a static parameter computed by the compiler considering worst-case

execution cycles required from the checkpoint to the end of the task. During run-time,

processor calculates a dynamic parameter called Remaining Cycles (RC), by subtract-

ing current execution time (CET) at the checkpoint from the WCET. New system fre-

quency can be calculated at each checkpoint dynamically using the following equation:

 Fnext =(WCRC*Fmin)/RC (1)

where Fnext is new frequency and Fmin is the minimum frequency at which worst-case

execution times are satisfied. Since processor supports a finite set of frequencies, Fnext

is approximated to next higher frequency in the set of supported frequencies, which is

closest to calculated frequency.

Checkpointing method can be implemented in software, which calculates frequency

at the checkpoints and as explained in section 5.1, it results in a big overhead, motivat-

ing us to use a hardware solution. Processor changes frequency when it encounters

checkpoints by using frequency change instructions. Since the time taken by check-

pointing and frequency change instructions is fixed and pre-defined, the time-predicta-

bility of the original processor is preserved.

2.2 Hardware Based Run-time Slack Calculation and Energy

Management

In this section, we introduce two energy saving methods for a real-time embedded pro-

cessor, which use hardware-based run-time slack calculation (RTSC) either at the end

of the task or at different checkpoints in the code during program execution. Figure-1

shows CFG of a small program with four paths from start to finish of the program.

Execution times (ETi) of these paths in increasing order can be shown by the following

relation

ET1< ET4 < ET2 < ET3

where Path3 (ET3) is the WCET path and Path1 (ET1) is the best-case execution time

path. We will use CFG in Figure-1 for explaining the energy saving methods. Also, we

assume that Path1 to Path4, if taken, are executed in a sequence respectively and then

repeated ad-infinitum.

RTSC with Sleep Mode. Compiler’s static analysis tool calculates the WCET in clock

cycles for a task. This WCET is inserted in the program code at the start of the task by

the compiler. Also, the start and end of each task are marked in the program code. The

final slack (in clock cycles) is calculated by hardware at the end of the task execution

and the processor goes to Sleep mode for the duration of slack. Figure-2 illustrates the

RTSC-Sleep method for the CFG shown in Figure-1. When the processor completes

Path1, Path2 or Path4, it has slack which can be used to put the processor to sleep,

4

whereas when the processor is executing WCET path (Path3) it has no slack, so the

processor remains in Normal mode.

RTSC with DFS. In this method, the clock frequency for paths with slack is reduced

so that they finish at WCET time. Since the frequency of operation is chosen from a

finite set of frequencies, the program execution finishes at the nearest time to WCET

that is feasible with the available system frequencies. The task program code is marked

with checkpoints by compiler’s static analysis tool based on the algorithm given in [3].

Checkpoints are inserted on two types of edges in the CFG:

1. Forward branches

2. Outgoing edges from loop body

An example of checkpoint insertion is shown in the CFG of Figure-1. Compiler calcu-

lates WCRC for every checkpoint. Each checkpoint in the program code is annotated

by the compiler using a special instruction with the value of WCRC as an operand to

the instruction. Compiler re-calculates WCET after insertion of checkpoints and it also

inserts WCET at the start of the program code using a special instruction. During task

execution, when the processor encounters any checkpoint, it calculates RC using

WCET and CET and then calculates the new frequency of operation using Equation-1.

Figure-3 shows that after the application of this method, the execution time for all paths

is extended to a time closer to WCET.

Entry

B1

B2

B3

B4

B5

Exit

B

 Path1: B1D1B3D2B5
 Path2: B1D1B3D2B4B5
 Path3: B1D1B2B3D2B4B5
 Path4: B1D1B2B3D2B5

Checkpoint

Decision Block

Basic Block

Entry

WCET

Sleep Mode

Exit

Exit

Exit

Exit

Path1 Path2 Path3 Path4

Path1 Path2 Path3 Path4

Exit

Exit

Exit

Exit

Entry

WCET

Original Execution

Modified Execution

Fig. 1. CFG of a small program

Fig. 2. RTSC with Sleep

Fig. 3. RTSC with DFS

5

3 Energy Aware Java Optimized Processor (EAJOP)

EAJOP is a new energy-aware processor based on the JOP architecture, which intro-

duces three modes of processor operation and five new bytecodes for energy manage-

ment. Figure-4 shows the hardware layout of the EAJOP processor, with the following

additions to the original JOP:

1. New bytecodes and microcodes to the core for energy management.

2. A Power Control Circuit (PCC) which implements processor modes (Normal,

Sleep, DFS) for energy saving methods.

3. New logic in IO interface for holding (registering) the incoming external events

when the core is in Sleep mode.

4. Additional logic and memory in IO interface to store experimental data used in

energy measurements.

 EAJOP saves energy by either adjusting the frequency or gating clocks of the fol-

lowing processor blocks: EAJOP core, memory interface, and other system components

except for PCC and IO interface, which are always active.

EAJOP Core. Changes in JOP core were made to introduce energy management in the

architecture without losing its time analyzability. EAJOP core includes five new

bytecodes which can be used by the programmer and compiler for energy management

actions on PCC. They are supported by five new microcodes. Each energy management

bytecode is implemented using a sequence of microcodes. A new bus called power

management bus (PMB) connecting the core to the power control circuit (PCC) was

added, as shown in Figure-4. New bytecodes are explained below.

System
Clock

ByteCode
Fetch

Fetch

Decode

Stack/
Execute

EAJOP CORE

ByteCode
Cache

Multiplier

P
C
C

Memory
Interface

Extension

IO Interface
Wake

WakeAck

ControlData

PMB

BcDat
a

BcAddress

Busy

TOS

NOS

Interrupt

Control

Data

ControlData

Memory Bus

C
L
K

C
T
R
L

System
Clk

Counter

Clk
Divider

Mux

Clk
Gating
Mux

Sleep
Block

CCI
Block

DFS
Block

M
E
S
S
A
G
E

D
E
C
O
D
E
R

PMB

WCET

EOT

WCET

EOT

CP

WCRC

CCI

Freq

White

Grey

On SOC Clock

On System Clock

System Clock

Clk1

Clk2

Clk3

Clk4

Clk5

Clk6

Clk7

Clk8

Fig. 4. EAJOP Architecture Fig. 5. PCC Architecture

6

Mode Bytecode (Mode). The processor has three modes of operation, Sleep, DFS and

Normal mode. Each mode can be chosen by executing Mode bytecode with a specific

operand.

Clock Change Bytecode (CCI). CCI bytecode changes the frequency of the EAJOP

processor where the frequency is given as an operand to the bytecode.

Worst Case Execution Time Bytecode (WCET). WCET bytecode is dual purpose, it

marks the start of a task and it is also used to transmit WCET value (which it takes as

an operand) to the PCC.

End of Task Bytecode (EOT). End of each task can be marked by EOT bytecode.

Check Point Bytecode (CP). CP bytecode is used to mark each checkpoint in the pro-

gram code and it takes WCRC as an operand.

Checkpoint Minimum Distance Filter (CMDF). CP bytecode adds a time and energy

overhead which can be bigger than the effects of lowering frequency, if the execution

time between two checkpoints is too short. To circumvent this issue, we have included

a CMDF in the Bytecode Fetch block to do a forced hardware abort of CP bytecode, if

the last occurrence of CP bytecode was within a pre-defined number of cycles.

Power Control Circuit (PCC). PCC changes the processor’s mode of operation and it

also implements the energy management logic. The three modes of operation are Nor-

mal, Sleep and DFS modes. In Normal mode, no energy optimization technique is used.

In Sleep mode, when EOT instruction is encountered then PCC deducts system clock

counter value from WCET to calculate slack and then goes to sleep mode for the dura-

tion of slack. A counter in PCC decrements the slack value until it reaches zero, the

clock gating is removed at this point and processor resumes normal operation. In DFS

mode, when CP instruction is encountered then the new frequency is calculated and

applied as per the logic given in section 2.2. Figure-5 shows the functional organization

of the PCC block.

All the new energy management bytecodes add fixed execution time as shown in

Table-1. Each bytecode is made up of new microcode instructions and a fixed sequence

of nop’s. New microcode instructions take fixed defined hardware actions (register

transfers). This fact keeps EAJOP’s WCET analyzable just like JOP. Though the real

processor implementation would contain both the methods, but for comparison EAJOP

was synthesized in two different flavors, the first one called EAJOP-Sleep implements

RTSC-Sleep technique and the second one called EAJOP-DFS implements RTSC-DFS

technique.

4 EACT – Energy Aware Compiler Tool for EAJOP

EACT is an EAJOP energy aware compiler tool written in Java, which takes standard

Java compiled class file as input and generates an energy-aware memory and executable

files for EAJOP as output. The baseline of EACT tool is the original JOP WCET tool

(WCA) [2]. WCA uses freely available LpSolve Mixed Integer Linear Programming

7

(MILP) solver (available as a Java library) to get the worst-case execution time esti-

mates. EACT extends WCA functionality by adding the capability to get WCET esti-

mates for checkpoints (called WCRC). A CMDF was implemented in the EACT to

reduce the number of checkpoints in the application. Figure-6 shows the compilation

steps involved in the generation of Jop executable files for three different execution

platforms.

5 Analysis and Validation

5.1 Comparison with software-based implementation of bytecodes

Hardware actions implemented for the bytecodes and algorithms explained in section 3

may be implemented in software (Java), which can calculate frequency at the check-

points and switch to new frequency using clock change instruction with current execu-

tion time calculated by a software routine. A comparison between software implemen-

tation and EAJOP-DFS bytecode implementation is shown in Table-1, it shows that

hardware implementation for checkpointing is around a thousand times less expensive

than the software implementation.

5.2 EAJOP – Two execution platforms

As mentioned before, we synthesized EAJOP in two flavors, thus developing two dif-

ferent energy aware platforms. The results of synthesis for a Cyclone-V Altera (Intel)

chip are shown in Table-2.

Java Source
Files Java Compiler

EACT Checkpoint Insertion

EACT WCRC Calculation

EACT Checkpoint WCRC Update

EACT WCET Calculation

EACT WCET/EOT Insertion

JOPIZER

EAJOP-DFS

EAJOP-Sleep/JOP

EAJOP-Sleep / EAJOP-DFS

JOP

.Jop output files
For

EAJOP/JOP

Fig. 6. Compilation steps for three processor platforms

8

Bytecode EAJOP Hardware Clock Cycles Software Based Implementation

Mode 7 2

CCI 16 28

WCET 7 17

EOT 16 17350

CP 19 22784

Platform JOP EAJOP-Sleep (%inc) EAJOP-DFS (%inc)

Total Memory Bits 3265536 3265536 (0%) 3265536 (0%)

ALMs 3034 3241 (6%) 3732 (23%)

Registers 1680 1817 (8%) 2288 (36.2%)

PLLs 1 1 3

EAJOP-DFS implementation increases the resource utilization by more than 20% as

it uses many adders, counters, and frequency selection logics.

5.3 EAJOP – Power Measurement and Energy Estimation

Vijay et. al. [4] give a dynamic power estimation technique for FPGA based designs.

We use a reference value for JOP in Nanowatts per MHz for single ALM in targeted

FPGA. To get the estimated value for complete design, we multiply reference value

with the number of ALM used by the design. This total value can be multiplied by the

frequency in MHz to get the power consumption estimates at different frequencies of

operation. We use the same technique to estimate value for EAJOP-Sleep and EAJOP-

DFS platforms. Maximum frequency was constrained to 50MHz in our current imple-

mentation. Table-3 gives the estimated average dynamic power consumption for three

platforms, where P is average dynamic power consumption for one ALM.

Different power and energy estimation techniques have been explained in [5]. We

chose the instruction level power/energy estimation technique for our research. To cal-

culate the energy consumed by the program of a task, program was converted to a se-

quence of Java bytecodes and then each bytecode was converted to a sequence of mi-

crocodes. Since each microcode takes a fixed number of clock cycles to execute, we

could calculate the total time taken for execution at different frequencies and the dy-

namic component of energy consumed then is simply found by multiplication of aver-

age dynamic power consumed per unit of time with the total time taken by application

to execute.

Table 1. Comparison between EAJOP and software-based implementation

Table 2. Resource utilization across platforms

9

Let ET be execution time, ST be slack time, Pf be power at frequency f, Pcg the power

consumed at clock gated state, fmax be the maximum frequency supported by processor

and Pfmax be average power consumed at fmax. Let fs be the set of feasible frequencies

 fs = {f1, f2, f3, ……., fmax}

 Then consumed energy can be defined by following equations:

 Energy_EAJOP_Sleep = (ET*Pfmax) + (ST*Pcg)

Energy_EAJOP_DFS = ∑ ETf ∗ Pf

fϵfs

Platform Operational Freq

(MHz)

Average Power Consumption

(NanoWatts)

JOP 50 (3034 x 50) x P

EAJOP-Sleep (Pfmax) 50 (3241 x 50) x P

EAJOP-Sleep (Pcg) Clock Gated (184 x 50) x P

EAJOP-DFS (Pf) f (3732 x f) x P

5.4 Experimental Setup and Case Study

We used four applications (Bubble-Sort, Matrix-Multiplication, Sieve, and Lift-Con-

trol) from Jembench suite from Java embedded benchmarks [6] for proof of concept.

Sixty input patterns were used for each application, each pattern chosen randomly by

the test program which calls the applications. WCET was calculated by the EACT tool.

Java compiled program was processed by EACT and JOP tools to produce energy

aware JOP executable files for experiments on all three platforms as shown in Figure-

6. EAJOP stores the execution time (in clock cycles) of each code section with its op-

eration frequency inside a RAM. Java programs were written as wrappers around ap-

plications to read data from EAJOP data RAM and calculate energy consumed for every

data point which can then be either stored in a text file or displayed on standard output.

5.5 Experimental Results

Baseline energy consumption, calculated for the specific WCET of the program, re-

mains constant for every input pattern as the program is made to run for WCET cycles

irrespective of its ET. Each program has a different WCET, resulting in different base-

line energy consumption. Output file size across different platforms is shown in Table-

4. WCET comparisons for the four experimental applications normalized to JOP are

Table 3. Average Dynamic Power Consumption across platforms

10

shown in Table-5. Normalized energy consumption for the four experimental applica-

tions is shown in Table-6. RTSC Sleep method tends to save more energy than RTSC

DFS on an average execution path but on some paths with extremely high slacks, RTSC

DFS saves more energy.

Platform Lift Bubble Sieve Matrix

EAJOP-Sleep 1.001 1.006 1.005 1.005

EAJOP-DFS 1.010 1.076 1.041 1.037

Platform Lift Bubble Sieve Matrix

EAJOP-Sleep 1.0023 1.0023 1.0023 1.0023

EAJOP-DFS 1.32 1.31 1.41 1.19

Platform Lift Bubble Sieve Matrix

Min Energy (EAJOP-Sleep) 0.59 0.12 0.04 0.06

Max Energy (EAJOP-Sleep) 0.66 0.52 0.21 1.018

Avg Energy (EAJOP-Sleep) 0.64 0.40 0.14 0.36

Min Energy (EAJOP-DFS) 0.782 0.09 0.024 0.009

Max Energy (EAJOP-DFS) 0.785 0.58 0.228 1.184

Avg Energy (EAJOP-DFS) 0.783 0.43 0.123 0.378

Saving in the RTSC Sleep is nearly directly proportional to the ratio of slack to

WCET, this is due to near negligible time overhead in the RTSC Sleep which is fixed

at 25 clocks irrespective of complexity and length of the program code. We observed

that average time overhead added by the RTSC DFS was 1100, 1800, 1500, 5000 cycles

in Bubble, Lift, Sieve, Matrix respectively, which on an average is about 1.5% to 13%

of WCET. Savings in the RTSC DFS was found to be proportional to left-over slack in

the execution path as some slack is consumed by time overheads. For paths with negli-

gible slack, EAJOP consumes more energy than JOP, this is due to higher average

power in EAJOP as compared to JOP.

6 Related Works

A survey of system level power-aware design techniques was done in [7]; this work is

directed towards real-time systems and provides foundations for our research. The work

Table 5. WCET across platforms normalized with JOP WCET

Table 6. Energy Consumption across platforms normalized with JOP Energy

Table 4. Output file size across platforms normalized with JOP output file Size

size

11

in [8] was one of the seminal works utilizing compiler and OS assisted power manage-

ment in the program code to hint the processor on choosing the correct frequency for a

real-time system. Their work utilizes slack in the intra-task optimizations, but their

treatment uses OS to control and apply frequency changes. The work in [3] defined the

checkpoint insertion method for generating a Dynamic Voltage and Frequency Scaling

(DVFS) schedule. This method improves average energy savings by 3% to 15% de-

pending upon the process technology. The research in [9] covers both inter-task and

intra-task power optimizations using both static and run-time optimizations applied to

real-time systems. The work in [10] presents the improvements upon the checkpoint

insertion method by implementing a technique to find the correct place to insert check-

points in the code. They proposed a method for estimating remaining worst-case exe-

cution cycles at checkpoints by using execution trace mining for applications. The work

in [11] proposes a new online voltage scaling (VS) technique for battery-powered em-

bedded systems with real-time constraints and a novel rescheduling/remapping tech-

nique for DVFS schedules. All the above-mentioned research works used OS or super-

visory-task controlled energy management whereas our current research focuses on en-

ergy management in real-time systems running on bare metal without any controlling

software task or OS.

7 Conclusions

In this paper, we presented a brief overview of real-time power aware Java processor

called EAJOP and discussed techniques of energy management for a hard-real-time

system based on EAJOP architecture. We compared the energy savings of RTSC Sleep

and RTSC DFS with baseline JOP platform and found that higher the slack in the pro-

grams, more energy is saved by energy management methods implemented in EAJOP.

For current implementation and experiments, RTSC Sleep gives better savings than

RTSC DFS on low slack paths but on the path with very high slacks RTSC DFS per-

forms better. For any real-time application, selection of the correct platform could be

made based on desired WCET, FPGA size, and energy constraints. Our future efforts

are directed towards using EAJOP architecture and EACT tool for developing new al-

gorithms for energy optimizations, some of these are:

1. Extending the current work (on single task applications) to systems with multiple

periodic tasks.

2. Using the design space exploration technique to find the optimum hardware and

compiler solution considering energy, cost and performance for an application.

3. Using the methods in multicore NoC-based architecture context.

12

References

[1] M. Schoeberl, "A Java Processor Architecture for Embedded Real-Time Systems,"

Journal of System Architectures, vol. 54, no. 1-2, pp. 265-286, Jan-Feb 2008.

[2] M. Schoeberl and R. Pedersen, "WCET analysis for a Java processor," in

Proceedings of JTRES 4th international workshop on java technologies for real time

and embedded systems, Paris, 2006.

[3] P. K. Huang and S. Ghiasi, "Efficient and scalable compiler directed energy

optimizations for real time applications," ACM Transactions on Design Automation of

Electronic Systems, vol. 12, no. 3, 2007.

[4] D. Vijay and T. Tim, "Methodology for High Level Estimation of FPGA Power

Consumption," in Proceedings of the 2005 Asia and South Pacific Design Automation

Conference, Shanghai, 2005.

[5] H. Sultan, G. Ananthanarayanan and S. R. Sarangi, "Processor power estimation

techniques: a survey," International journal of high performnace system architecture,

vol. 5, no. 2, 2014.

[6] M. Schoeberl, T. B. Preusser and S. Uhrig, "The embedded Java benchmark suite

JemBench," in JTRES '10 Proceedings of the 8th International Workshop on Java

Technologies for Real-Time and Embedded Systems, Prague, 2010.

[7] O. S. Unsal and I. Koren, "System-level power-aware design techniques in real-time

systems," in Proceedings of the IEEE, 2003.

[8] N. Aboughazaleh, D. Mosse, B. R. Childers and R. Melhem, "Collaborative

operating system and compiler power management for real-time applications," ACM

Transactions on Embedded Computing Systems, vol. 5, no. 1, pp. 82-115, 2006.

[9] H. Takase, G. Zeng, L. Gautheir and H. Kawashima, "An integrated optimization

framework for reducing the energy consumption of embedded real-time applications,"

in Proceedings of the 17th IEEE/ACM international symposium on Low-power

electronics and design, 2011.

[10] T. Tatematsu, H. Takase, J. Gang and H. Tomiyama, "Checkpoint extraction using

execution traces for intra-task DVFS in embedded systems," in Sixth IEEE

International Symposium on Electronic Design, Test and Application, 2011.

[11] C. Yuan, M. T. Schmitz, B. M. Al-hashimi and S. M. Reddy, "Workload-ahead-

driven online energy minimization techniques for battery-powered embedded systems

with time-constraints," ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 12, no. 1, 2007.

