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Abstract
It is common practice in industry to deliver a Craig-Bampton (CB) reduced version of the SpaceCraft (S/C) Finite

Element Model (FEM) to the launch authorities to perform the Dynamic Coupled Load Analysis (DCLA). During
the DCLA, the FEM of the S/C is coupled with the FEM of the Launch Vehicle (LV) to predict the responses caused
by the vibration environment produced during the launch phases (e.g., lift-off, engine start-up, etc.). Before being
CB-reduced, the FEM needs to be correlated and validated against physical test results to guarantee its capability to
reproduce the actual behaviour of the physical hardware, which is essential to perform a meaningful DCLA. Given
the complexity and size of the FEM, the entire process can be very demanding. In this paper, an alternative to the
mathematical models usually used in the DCLA is investigated. The main idea is to synthesize a Craig-Bampton
equivalent model directly from the response data of a vibration test experiment. The system identification problem
is solved using a Particle Swarm Optimization (PSO) algorithm, tailored specifically for this type of application, the
hybrid PSO and Local Search (hPSO-LS). A mutation operator from Genetic Algorithm (GA) is used to improve the
solution and the local search method to refine the final result. The proposed method is numerically tested on a 5-Degree
of Freedoms (DoFs) lumped mass system, with full stiffness and damping matrices. A sensitivity analysis of the search
space size is also carried out to investigate its influence on the final results. The hPSO-LS is tested in both noise-free
and noisy scenarios.
Keywords: Testing, System Identification, Dynamic Coupled Load Analysis, Particle Swarm Optimization

Abbreviations
APSO Adaptive PSO
CB Craig-Bampton
CLA Coupled Load Analysis
CMS Component Mode Synthesis
COC Cross Orthogonality Check
DCLA Dynamic Coupled Load Analysis
DoF Degree of Freedom
EA Evoluationary Algorithm
ECSS European Cooperation for Space

Standardization
ESE Evolutionary State Estimation
FEM Finite Element Model
GA Genetic Algorithm
hPSO-LS hybrid PSO and Local Search
LS Local Search
LV Launch Vehicle
MAC Modal Assurance Criterion
NIA Nature-Inspired Algorithm
PSO Particle Swarm Optimization
S/C SpaceCraft
SBA Swarm-Based Algorithm
SI Swarm Intelligence

1. Introduction
The Dynamic Coupled Load Analysis (DCLA) is a

crucial task in the design and verification phase of a
SpaceCraft (S/C). Its main goal is to calculate the mech-
anical environment due to dynamic loads caused by the
launch transients and is carried out as part of the mis-
sion analysis. Depending on the status of the project, the
DCLA, also called the Coupled Load Analysis (CLA),
can be either a single indicator of compliance or an in-
tegrated tool in a S/C structure’s design process. In both
cases, the S/C and the Launch Vehicle (LV) substructure
mathematical models must be reduced and then merged
together to perform transient and harmonic dynamic ana-
lyses in the low-frequency range (from 0 to 100 Hz), ap-
plying the various launch events’ forcing functions. To
accomplish that, several reduction methods have been de-
veloped over the last decades. These methods are referred
to as the Component Mode Synthesis (CMS) and can be
subdivided into fixed-interface and free-interface meth-
ods, depending on the boundary conditions [1]. Gener-
ally, to dynamically reduce the S/C mathematical model,
the fixed interface Craig-Bampton (CB) method is used
[2]. In this paper, the possibility of obtaining an equi-
valent CB mathematical model of a generic structure dir-
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ectly from some experimental data (the nature of those is
clarified in the next sections) is explored.

In literature, the process of derivation of a mathemat-
ical model from the experiments is known as system iden-
tification [3] and it can be classified as an inverse prob-
lem. Following the categories mentioned by Bekey in [4],
the problem introduced in the present paper, is more spe-
cifically identified as a modelling problem: ”given a set
of inputs and corresponding outputs from a system, find a
mathematical description of the system” [5]. Problems of
this kind can be addressed using optimization techniques.
The selection of a method for a particular application de-
pends on the nature of the problem and what is desired.
Traditional methods, such as gradient-based optimization
algorithms, may not be suitable to address some com-
plicated engineering problems, e.g., multimodal, non-
convex, and large-scale. Moreover, they require a good
initial guess to start the process. The problem can be very
sensitive to the choice of these estimates, which makes
them difficult to apply if no a priori knowledge is avail-
able. Modern Nature-Inspired Algorithm (NIA)s have
been found to be effective at generating optimal or near-
optimal solutions for these types of problems. Among
these new generations of NIAs, the Evoluationary Al-
gorithm (EA)s and the Swarm-Based Algorithm (SBA)s
have emerged to be the most promising, and they have
been successfully applied in system identification prob-
lems. The idea of Swarm Intelligence (SI) derives from
the collective behavior of scattered and self-organized
systems. Its incorporation into the optimization meth-
ods led to the arrival of the SBAs. Among them, the
Particle Swarm Optimization (PSO) [6,7] has found to be
the most representative SI method. In fact, the PSO has
been successfully used to address problems of different
nature in the engineering structural field, such as struc-
tural reliability assessment [8], structural design optimiz-
ation [9–11] and composite structure optimization [12],
as well as system identification and parameter estima-
tion [13]. Specifically for the identification of the spa-
tial properties of a structure, various methodologies have
been proposed in noise-free and noisy scenarios. Com-
mon ground for all them is the type of experimental data
available: output accelerations and input forces. In [14]
a EA is adopted to solve the identification problem of a
three Degree of Freedoms (DoFs) lumped mass system if
no prior knowledge of mass, damping or stiffness is avail-
able, but increasing the number of DoFs, the mass distri-
bution is assumed to be known. Some techniques also
combine the EA with a Local Search (LS) to accelerate
the convergence to the optima points [15]. Large struc-
tural systems have also been tested, assuming the mass
matrix to be known, as well as the coefficient to define
the proportional damping matrix [16]. In [17], a PSO
strategy is used to solve identification problem for a two

and ten DoFs system. It is shown that the performance
of PSO is slightly better than Genetic Algorithm (GA).
Moreover, a damping model, e.g., proportional damping,
has been selected in all these methods.

To the best of the author’s knowledge, no technique
presently available in literature is capable of solving the
identification problem using only output and input accel-
erations. This study aims to tailor the well-known PSO
for the specific task of synthesizing a mathematical model
that can be used as an alternative to the currently used
CB reduced Finite Element Model (FEM). Around the
PSO logic, the hybrid PSO and Local Search (hPSO-LS)
is built. This multistage algorithm is developed in MAT-
LAB: the exhaustive exploration of the search space is
delegated to the global phase, and the final adjustment or
refining to the local phase.

2. Background and preliminaries
The excitation induced by the launcher on a space-

craft structure can be seen like the motion of the sup-
port (or shaker table). In this paper, the case of a single-
axis excitation is considered. The structure ’s’ is acceler-
ated at its base ’b’ by a seismic excitation of acceleration
üb and absolute accelerations are measured. The system
may be considered as placed on a fictitious shaking table
excited by an unknown force, but a known acceleration{
üb
}

. While this hypothesis could be released, as the
force could be measured, this paper investigates the iden-
tification with accelerations only.

The synthesized mathematical model should describe
the dynamic behaviour of the structure in the frequency
range of interest. To assess the quality of it, this paper
refers to the correlation criteria established by European
Cooperation for Space Standardization (ECSS) [18] and
shown in Table 1. They are defined as follows, with the
subscript t for target, and e for estimated:

• Eigenfrequency deviation.

f error
i = 100

f ti − fei
fei

(1)

where fi is the i-th natural frequency. The super-
script t refers to the natural frequencies obtained
from the target system and e to the ones obtained
from the optimized system.

• Modal Assurance Criterion (MAC): measure of the
degree of correlation between two mode shapes φe
and φt.

MACet =

[{
φ
}T
e

{
φ
}
t

]2
[{
φ
}T
e

{
φ
}
e

] [{
φ
}T
t

{
φ
}
t

] (2)

• Cross Orthogonality Check (COC): measure of the
mathematical orthogonality of mode shapes φt (tar-
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get) and φe (estimated) with respect to the numerical
mass matrix Mt.

COCet =

{
φ
}T
e

[
Mt

] {
φ
}
t√{

φ
}T
e

[
Mt

] {
φ
}
e

√{
φ
}T
t

[
Mt

] {
φ
}
t

(3)

Note that these criteria were established for correlation
between numerical, i.e., a FEM, and experimental results.
Therefore, they are here considered only as a reference to
assess the validity of the proposed methodology.

Before getting into the formulation of the problem, it
is necessary to introduce the CB reduced model and its
mathematical derivation.

2.1 Craig-Bampton
The equations of motion of linear dynamic systems

can be written in physical coordinates as:[
MLL MLR

MRL MRR

]{
üL
üR

}
+

[
CLL CLR

CRL CRR

]{
u̇L
u̇R

}
+[

KLL KLR

KRL KRR

]{
uL
uR

}
=

{
FL

FR

} (4)

where the subset L contains the internal DoFs and the
subset R the fixed, boundaries and retained DoFs. The
input forces FL applied to the internal DoFs are zero. In
the transformation process, the subset L is converted to
modal coordinates and it is then truncated to a smaller
set m (number of retained DoFs). The new hybrid co-
ordinates are related to the initial physical coordinates as
follows: {

uL
uR

}
=

[
φL φR
0 I

]{
qm
uR

}
(5)

where φR is the (L x R) matrix of the constraint modes,
φL is the (L x m) matrix of the normal mode shapes with
fixed boundary condition.

The CB-reduced mass, stiffness and damping
matrices can be expressed respectively as:

MCB =

[
Mmm MmB

MBm MBB

]
(6)

KCB =

[
Kmm 0

0 KBB

]
(7)

CCB =

[
Cmm 0

0 CBB

]
(8)

where the terms in Eq. (6) are:

MBB =MRR +MRLφR + φTRMLR + φTRMLLφR

Mmm =φTLMLLφL = µ

MBm =MT
mB = [MRL + φTRMLL]

(9)

Mmm = µ is the generalized mass matrix.

Terms in Eqs. (7) and (8) are:

Kmm =φTLKLLφL = µω2
0

Cmm =2ζµω0

(10)

ω2
0 is the diagonal matrix of the eigenvalues, ζ is the crit-

ical damping ratio. KBB and CBB are zero for statically
determinant interfaces.

2.2 Mathematical Formulation
The partitioning of the DoFs and therefore the trans-

formation matrix used to formulate the CB equivalent
model is slightly different from Eq. (5). Since the struc-
tural vibrations occur as motions relative to the rigid-
body movements, it is necessary to divide displacements,
velocities, and accelerations into their absolute and relat-
ive components. The required linearized kinematic rela-
tion is shown in [19, 20] and leads to:{

üs
}

=
{
v̈s
}

+
[
G
] {
üb
}

(11)

where [G] is a time-independent geometry matrix that
can be interpreted as rigid body displacements due to the
translational and rotational base motions.

{
üs
}

is the
absolute acceleration vector for all the structural points,{
v̈s
}

is the relative acceleration vector and
{
üb
}

is the
base acceleration vector.

The s-set is referred to all the measured physical DoFs
on the structure. The b-set is the physical DoF where the
input is applied. Note that in the present formulation, the
subset L and part of the subset R of the CB model are
included in the s-set. Therefore the equations of motion
result as follows:[

Mss Msb

Mbs Mbb

]{
üs
üb

}
+

[
Css Csb

Cbs Cbb

]{
u̇s
u̇b

}
+[

Kss Ksb

Kbs Kbb

]{
us
ub

}
=

{
Fs

Fb

} (12)

It is assumed that the DoFs related to both the struc-
ture and base can be modelled by lumped masses, i.e.,[
Msb

]
=
[
0
]

and
[
Mbs

]
=
[
0
]
. It is also assumed that

the base is stiff, i.e.,
{
vb
}

=
{

0
}

, and that there are not
external forces

{
Fs

}
acting on the structure. The equa-

tion of interest for the s-set can be derived from Eqs. (11)
and (12) and it results in:[

Mss

] {
v̈s
}

+
[
Css

] {
v̇s
}

+
[
Kss

] {
vs
}

=

−
[
Mss

] [
G
] {
üb
} (13)

This equation shows that the structural vibrations are in-
duced by inertia forces which are caused by the multi-
axial base excitation

{
üb
}

.
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Table 1. Test-analysis correlation criteria, ECSS [18]

Item Quality Criterion

Fundamental bending modes of a S/C MAC: > 0.9
Eigenfrequency deviation: < 3%

Modes with effective masses > 10% of the total mass MAC: > 0.85
Eigenfrequency deviation: < 5%

For other modes in the relevant frequency range MAC: > 0.8
Eigenfrequency deviation: < 10%

Cross-orthogonality check Diagonal terms: > 0.9
Off-diagonal terms: < 0.10

In Section 4, the mathematical formulation is formal-
ized for a single-axis excitation, but it can be expanded
for a more general case. Note that the Eq. (13) is ex-
pressed in physical coordinates, whereas the CB model is
built in hybrid coordinates, i.e., physical and modal co-
ordinates.

3. Particle Swarm Optimization Algorithm
The first PSO algorithm has been introduced by

Kennedy and Eberhart in [6, 7]. The idea comes from
the behaviour of fish schooling and bird flocking. Birds
and fish adjust their movements to avoid predators, seek
food, optimize environmental parameters, etc. Potential
solutions in the PSO are called particles. Contrary to the
individuals of the GA [21], the particles do not compete
with each other, but share helpful information. At each
iteration t, each particle n is associated with the vector
of the current position and current velocity,

{
Pn
t

}
and{

V n
t

}
respectively:{

Pn
t

}
=
{
pn,1t , pn,2t , ..., pn,Dt

}{
V n
t

}
=
{
vn,1t , vn,2t , ..., vn,Dt

} (14)

Each particle keeps track of the best position it has visited
so far, the so-called local attractor or personal best, Ln,d

t ,
as well as the global best position so far achieved by the
swarm, the so-called global attractor or global best, Gn

t .
During their journey, the velocity in the next iteration, is
computed as a function of the best position of the swarm,
the best personal position and its previous velocity. The
movement of the particles, in terms of velocity and posi-
tion, is governed by the following equations:

V n,d
t+1 = ωV n,d

t + c1r
n,d
t

(
Ln,d

t − Pn
t

)
+ c2s

n,d
t (Gn

t − Pn
t )

(15)
Pn,d
t+1 = Pn,d

t + V n,d
t+1 (16)

where t defines the iteration, n the number of the particle
that is moved and d the component. The swarm is then
responding by the combination of the quality factors Ln,d

t

and Gn
t , weighted by the constants c1 and c2, called

personal acceleration coefficient and social acceleration

coefficient respectively [7]. They control the influence
of the personal memory of a particle and the common
knowledge of the swarm. Some randomness is added us-
ing rn,dt and sn,dt , which are drawn uniformly at random
in [0,1] and are all independent of each other [6]. The
so-called inertia weight ω [22, 23], is introduced in the
updating equation to avoid the phenomenon of explosion
[24]. Therefore, the second and third term of the updating
equation of the velocity in Eq. (15) can be seen as and ex-
ternal forceFt acting on the particle, then the acceleration
of the particle can be written as ∆Vt = Ft − (1 − ω)Vt,
and so ω can be interpreted as the fluidity of the medium
in which the particle moves. The representation of the
PSO model is shown in Fig. 1. By adjusting the paramet-
ers ω, c1 and c2, it is possible to influence the trade-off
between the exploration (the capability to search in areas
that have not been visited before) and the exploitation (the
capability to refine already good search points). Experi-
ments have shown that both acceleration coefficients are
essential to the success of the PSO [25], as well as the in-
ertia coefficient. Among all the existing strategies, the
most promising to optimally control these coefficients,
seems to be the adaptation technique based on the Evolu-
tionary State Estimation (ESE) and presented in [26], the
Adaptive PSO (APSO). During the iterations, the pop-
ulation distribution varies, as well as the information it
carries. The APSO uses this information to estimate the
evolutionary state of the process, subsequently used to
adapt the accelerations coefficients. The inertia weight
changes according to the distribution of the particles.

Fig. 1. Schematic illustration of the particle’s dynamics
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The concept of ESE was first introduced in [27, 28],
where, instead of having a fixed probabilities of cros-
sover and mutation, the evolutionary state was used to
vary them accordingly. Evolution state is defined as one
the states that a particle might be in, depending on which
one, the following strategies are adopted:

• Exploration: it is important to explore as many op-
tima as possible, hence increasing c1 and decreas-
ing c2 can help particles explore individually and
achieve their own historical best position.

• Exploitation: the particles are making use of local
information and grouping toward possible local op-
timal regions indicated by the best personal position
visited so far. c1 is increased and c2 slightly de-
creased.

• Convergence: the swarm seems to find the glob-
ally optimal region; hence, c2 is slightly increased
to lead other particles to the probable globally op-
timal region and c1 should is slightly decreased to
let the swarm converge fast.

• Jumping out: the global best particle is jumping out
of a local optimum toward a better optimum; there-
fore a large c2 together with a relatively small c1 is
set.

4. Proposed algorithm
The hPSO-LS is divided in two main steps: the

Global Phase and Local Phase. The Global Phase imple-
ments the adaption of the acceleration and inertia coeffi-
cients of the APSO. The mutation operator from the GA
is also used on the Global Best to explore better solu-
tions, as well as on some particles as a ’healing process’.
The Local Phase focuses on finding the local minimum
in the basin of attraction given by the Global Best of the
previous phase.

4.1 Problem Statement
The identification of mass, stiffness and damping

matrices of the system under consideration is obtained
by solving a minimization problem in the frequency do-
main. Hence, Eq. (13) is transformed into the frequency
domain by use of the steady state response solution, in
case of harmonic excitation. The transformation yields:(
−ω2

[
MSS

]
+ jω

[
CSS

]
+
[
KSS

]) {
v̈s
}

=

ω2
[
MSS

] [
G
] {
üb
} (17)

The following identification equation is used to build the
cost function:

−
[
Mss

] [
V̈s
] [

Ω2
]

+ j
[
Css

] [
V̈s
] [

Ω
]

+

+
[
Kss

] [
V̈s
]

=
[
Mss

] [
G
] [
Üb

] [
Ω2
] (18)

where
[
V̈s
]

is the n by nf matrix of the relative accel-
erations, with n number of physical DoFs, e.g., number
of measuring locations, and nf number of excitation fre-
quencies.

[
Ω
]

is the nf by nf diagonal excitation fre-
quency matrix and j is the imaginary number. The entries
of the mass, stiffness and damping matrices are grouped
in a vector x = {xd}, for d = 1, 2, . . . , D. Define a func-
tion F(x) as:

F(x) = −
[
Mss(x)

] [
V̈s

] [
Ω2
]

+ j
[
Css(x)

] [
V̈s

] [
Ω
]

+

+
[
Kss(x)

] [
V̈s

]
−
[
Mss(x)

] [
G
] [
Üb

] [
Ω2
]

(19)

The optimization problem requires finding a vector x ∈
S, where S is the search space, so that the error norm of
F :S → R, defined in Eq. (20), is minimized.

‖F‖ =

√√√√ n∑
i=1

nf∑
j=1

| fij |2 (20)

The solution of the minimization term will be called x∗ if
F(x∗) is the global minimum of F in S, or:

x∗ ∈ S | F(x∗) ≤ F(x) ∀x ∈ S (21)

The search space S is defined by a set of maximum and
minimum values that the parameters can assume. It con-
sist in two vectors of size D values, xmax and xmin, re-
spectively, such that:

S =
{

x ∈ RD|xmin,d ≤ xd ≤ xmax,d ∀d ∈ 1, 2, . . . , D
}

(22)
Not all the particles in the search space might provide
physically plausible solutions. The physically possible
solutions are a subset of the obtainable values of the para-
meters in S. However, restricting the search space to
the feasible region is almost impossible, given the nature
of the constrictions. Therefore a strategy is implemen-
ted a strategy to prevent the particle from following non-
physical solutions, starting from the settings of the initial
swarm. Specifically, the constraints taken into account
are:

• Total mass of the structure

• Symmetry of the stiffness and damping matrices

• Positive definiteness of the mass matrix

• Semi-positive definiteness of the stiffness matrix

The first two constraints are easy to handle since they can
be considered built-in within the formulation of the cost
function. Both help to reduce the number of variables.
The total mass constraint allows considering 4 unknowns
instead of 5 in the mass matrix. The symmetry of the stiff-
ness and damping matrices reduces the variables from 25
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to 15 in each matrix. Regarding the positive and semi-
positive definiteness, the implemented strategy is differ-
ent in the Global and Local Phase. In the first part of the
algorithm, a label is assigned to each particle of the initial
swarm, stating its status of ’health’. In Section 4.3 it is
shown how this information is used to drive the process.
General settings for the Global and Local Phases are
shown in Table 2.

Table 2. Parameters setting for Global Phase and Local
Phase

Parameter Global Phase

Initial c1 2

Initial c2 2

Initial w 0.9

Mutation Rate µ 0.4

Swarm Size N 100

Max. Iterations 5000

Parameter Local Phase

Max. Iterations 1000

Step Tolerance 1e-16

Constraint Tolerance 1e-2

4.2 Global Phase: Initialization Strategy
The first step of the iterative process starts with the

initialization of the swarm, or population. Recall that x is
the vector of D parameters, corresponding to the entries
of the mass, stiffness and damping matrices. These
entries are grouped in P (see Eq. (16)), representing the
position of the particle in the search space. The initializ-
ation is carried out picking N particles at random from S,
so that the initial swarm is defined by:

P = xmin +R(xmax − xmin) (23)

R denotes a realisation of uniformly distributed random
variable in the interval [0,1] that is sampled for each para-
meter d individually (d = 1, 2, . . . , D). The number N of
particles defines the size of the swarm and it is kept fixed
to 100 during the iterations.

4.3 Global Phase: Main
The core of the proposed algorithm is developed

around the APSO. Hence, the acceleration coefficients
are adjusted during the iteration according to the evol-
utionary state, as summarized in Table 3. The inertia
weight is instead updated based on the population dis-
tribution. Initial values of these coefficients, as well as

the number of particles and the maximum iterations are
shown in Table 2.

Table 3. Adaptation strategies for the variation of the ac-
celeration coefficients c1 and c2, [26]

State c1 c2

Exploration Increase Decrease

Exploitation Increase slightly Decrease slightly

Convergence Increase slightly Increase slightly

Jumping-out Decrease Increase

Each particle is labelled to keep record of its ’health’
status. Depending on which constraint fails, the label
might refer to the mass or stiffness matrices. Hence, a
’healing process’ is implemented. If the components of
the particle related to either the mass or stiffness fail to re-
spect the constraints, the particle is marked as ’sick’. Fol-
lowing the spirit of cooperation among the swarm mem-
bers, the mutation operator is here applied to heal the
’sick’ particles. Hence, it can be considered as a tar-
geted mutation, operating only on the entries that make
the particle ’sick’. A mutation rate µ of 0.4 defines the
mutation probability: high genetic variation in the begin-
ning to ’heal’ as many particles as possible, and as the
algorithm approaches the end, it is probable that the al-
gorithm has entered the convergence phase, in which the
particles are all gathered around the Global Best. Note
that only ’healthy’ particles can be considered for the up-
dating of the Global Best. The mutation is also applied
on the Global Best when it gets stuck in a local minimum.
The idea is to give it a push to improve itself.

Although the evaluation of the cost function is the
most used termination criteria, it is unlikely to achieve
a very low cost function, especially with noise-corrupted
data. Therefore, a maximum number of iterations is al-
lowed, and set here to 5000. Moreover, in order to ac-
celerate the process, an eigenproblem is solved every 200
iterations with the current Global Best to check the qual-
ity of the solution in terms of natural frequencies in the
frequency range of interest. If satisfactory results are
achieved, the Global Phase stops, and the Local Phase
starts. The quality on the solution is given by the pres-
ence of m modal DoFs, with m being the number of the
expected natural frequencies in the considered frequency
range, and a 5% of deviation is allowed.

4.4 Local Phase: Refining Solution
The Local Search is the last part of the algorithm,

in which the Global Best found in the previous phase,
the GN , is given as an initial guess to an interior-point
constrained convex optimizer for the final refining of the
solution [29]. The MATLAB implementation of this al-
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gorithm is here used with the function fmincon1. The
function nonlcon is used to handle the constraints pre-
viously mentioned.

5. Numerical experiments
A 5-DoFs system with lumped masses and full stiff-

ness and damping matrices is considered. No damping
model is assumed to be known; therefore, the algorithm
aims to find the damping matrix’s entries directly. The
structure is assumed to be excited by a known accelera-
tion at the base, and five output accelerations are meas-
ured. The system’s dynamics are modelled by Eq. (13).
The entries of the matrices

[
MSS

]
,
[
CSS

]
and

[
KSS

]
define the set of parameters that fully describes the sys-
tem:

{
x
}

=


m11,m22,m33,m44, k11, k12, k13, k14,
k15, k22, k23, k24, k25, k33, k34, k35, k44,
k45, k55, c11, c12, c13, c14, c15, c22, c23,
c24, c25, c33, c34, c35, c44, c45, c55


(24)

Call M the total mass of the structure, the last entry in the
diagonal mass matrix is set to:

m55 = M − (m11 +m22 +m33 +m44) (25)

For a total of system variables of 34.
The definition of the search space is not trivial, es-

pecially in a real case situation where no prior know-
ledge of the system is available, and only guesses are pos-
sible. The search space influences the evolutive process
since it might or might not include a local minimum in
a constrained optimisation problem. Moreover, assum-
ing that local minima are included, the search space size
influences the paths a particle can take to get to a local
minimum. Therefore, a sensitivity analysis of the search
space is carried out as a side study to understand whether
or not a large space might influence the final result.

A search space, as described in Eq. (22), is defined
by the two vectors of the lower and upper plausible val-
ues that the particle position can assume during the it-
erations, and successively in the refining process. Two
test cases are considered, Case 1 and Case 2. Concern-
ing the bounds of the mass matrix entries, no differences
are implemented between the two cases since xmin val-
ues are kept to 0 and xmax values are set equal to the total
mass of the structure, which is always part of the a pri-
ori knowledge. Upper and lower bounds of the stiffness
and damping matrices are instead defined based on the
desired solution x∗ as follows:

• xmax = 3x∗ for Case 1 and xmax = 7x∗ for Case 2
1fmincon is a non-linear programming solver implemented in MAT-

LAB which finds the minimum of constrained non-linear multivariate
function

• xmin = -xmax for Case 1 and Case 2

Both cases are considered in noise-free and noisy scen-
arios. Given the stochastic nature of the adopted method,
20 independent runs are performed for each test case to
show its effectiveness, and their mean and maximum res-
ults are used in the comparison. All the experiments
are carried out on the same machine with an Intel(R)
Core(TM) i7-9700 CPU 3.00 GHz, 32 GB memory and
Windows 10 operating system. The average CPU time for
a noise-free simulation is 600 s, whereas for a simulation
using noise-corrupted data, it is 900 s.

5.1 Noise-free scenario
Increasing the search space is not necessarily a deficit

for the optimization problem. Tables 4 and 5 show the
mean and maximum errors over the 20 runs for mass and
stiffness entries, respectively. The maximum absolute er-
rors are listed below:

• Max. absolute error of the mass entries is 1.08% for
Case 1 and 1.04% for Case 2

• Max. absolute error of the stiffness entries is 1.15%
for Case 1 and 1.11% for Case 2

The absolute errors for the mass and the stiffness vari-
ables are comparable, as well as the results for Case 1
and Case 2. Given the minor errors on the entries of the
mass and stiffness matrices, the solution of the undamped
eigenproblem results in a maximum deviation of the first
natural frequency of 0.07% for Case 1 and Case 2. The
errors on the other frequencies are negligible.

The damping matrix gives slightly larger errors com-
pared to the mass and stiffness’s, but for the ninth variable
c25 (= c52) (see Table 6). Its maximum absolute error is
two orders of magnitude bigger than the other entries in
that matrix. The mean maximum error is 10.17% and
25.72%, for Case 1 and Case 2, respectively. Further
studies must be conducted to investigate if the large error
observed for c25 is a problem-related situation. However,
the damping matrix is generally considered in a modal
environment, or a model is assumed a priori, e.g., pro-
portional damping. Whether or not the implementation
of such a model may improve the accuracy of the solu-
tion will be analysed in future works. The results of the
damped eigenproblem are shown in Table 7. Although
the large maximum errors observed in that specific entry
of the damping matrix, the maximum damping deviation
does not exceed 0.84% for Case 1 and 1.85% for Case
2. However, the large errors observed in Case 2 com-
pared to Case 1, result in a larger damping deviation, al-
though contained. The eigenfrequencies deviation shows
the same situation as for the undamped problem.

The identification results for Case 1 and Case 2 are
summarized in Fig. 2, where the ratios of the estimated
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Table 4. Mean and maximum absolute error on the mass
entries of 20 runs for Case 1 (xmax = 3x∗) and Case 2
(xmax = 7x∗)

Variable Mean Value (%) Max. Value (%)
Case 1 Case 2 Case 1 Case 2

m11 0.64 0.66 0.94 0.91
m22 0.66 0.68 0.98 0.94
m33 0.32 0.33 0.46 0.49
m44 0.76 0.75 1.08 1.04

Table 5. Mean and maximum absolute error on the stiff-
ness entries of 20 runs for Case 1 (xmax = 3x∗) and Case
2 (xmax = 7x∗)

Variable Mean Value (%) Max. Value (%)
Case 1 Case 2 Case 1 Case 2

k11 0.64 0.66 0.94 0.91
k12 = k21 0.66 0.68 0.97 0.95
k13 = k31 0.49 0.50 0.70 0.71
k14 = k41 0.43 0.44 0.66 0.69
k15 = k51 0.15 0.16 0.22 0.28
k22 0.68 0.70 1.00 0.96
k23 = k32 0.01 0.02 0.04 0.08
k24 = k42 0.79 0.81 1.15 1.11
k25 = k52 0.22 0.21 0.31 0.31
k33 0.42 0.42 0.59 0.63
k34 = k43 0.32 0.33 0.46 0.49
k35 = k53 0.30 0.31 0.43 0.45
k44 0.76 0.75 1.08 1.04
k45 = k54 0.20 0.21 0.31 0.36
k55 0.19 0.20 0.30 0.35

values from the optimization process to the exact values
are shown, together with the indication of the standard
deviation for each variable. As shown before, the mass
and stiffness matrices behave in the same way, and no dif-
ference is observed between the two cases. The proposed
algorithm is therefore robust with respect to increase of
search space.

Lastly, the estimated response computed using the op-
timized parameters is compared with the target response
in Fig. 3. It can be seen that the estimated responses
agree very well with the actual ones. Given the simil-
arity between the results of Case 1 and Case 2, only the
comparison for Case 1 is shown.

Overall, very satisfactory results are obtained for the
free-noise scenario. It is proven that a big search space
does not negatively influence the final result but it is
rather a trade-off between the possibility of encounter-
ing more local minima and the possibility of exploring
more promising paths. Therefore the two cases are com-
parable. The quality criteria defined in Table 1 in terms

Table 6. Mean and maximum absolute error on the damp-
ing entries of 20 runs for Case 1 (xmax = 3x∗) and Case
2 (xmax = 7x∗) in a noise-free scenario

Variable Mean Value (%) Max. Value (%)
Case 1 Case 2 Case 1 Case 2

c11 0.75063 0.77 1.17 1.30
c12 = c21 0.91 2.11 2.68 4.60
c13 = c31 0.76 0.80 1.28 1.24
c14 = c41 0.62 0.63 0.93 0.96
c15 = c51 1.44 5.34 5.24 10.30
c22 0.74 1.07 1.35 2.12
c23 = c32 0.34 0.31 1.25 0.85
c24 = c42 0.66 0.68 0.98 0.95
c25 = c52 41.99 84.20 133.48 357.54
c33 0.42 0.43 0.78 0.87
c34 = c43 0.30 0.23 0.70 0.55
c35 = c53 0.42 1.06 0.86 2.15
c44 0.74 0.74 1.07 1.02
c45 = c54 0.20 0.21 0.34 0.37
c55 0.13 0.41 0.48 0.91

Table 7. Damped Problem: Mean and maximum damp-
ing and eigenfrequency deviations of 20 runs for Case 1
(xmax = 3x∗) and Case 2 (xmax = 7x∗) in a noise-free
scenario

Quality Mean Value % Max. Value %
Criterion Case 1 Case 2 Case 1 Case 2

1st Damp. dev. 0.12 0.12 0.61 0.25
1st Freq. dev. 0.04 0.04 0.07 0.07

2nd Damp. dev. 0.22 0.82 0.84 1.85
2nd Freq. dev. 0.00 0.00 0.00 0.01

3rd Damp. dev. 0.13 0.24 0.27 0.48
3rd Freq. dev. 0.00 0.00 0.00 0.00

4th Damp. dev. 0.06 0.06 0.09 0.14
4th Freq. dev. 0.00 0.00 0.00 0.00

5th Damp. dev. 0.01 0.01 0.02 0.02
5th Freq. dev. 0.00 0.00 0.00 0.00

of eigenfrequencies deviations are therefore respected.

5.2 Noisy scenario
The hPSO-LS is now tested in a noisy scenario. The

input and output (I/O) data are polluted with Gaussian,
zero mean, white-noise sequences, whose root mean
square (RMS) value is kept to 5%. The noise is added
to the absolute accelerations and to the base acceleration.
Eq. (11) is used to derive the relative accelerations from
the polluted data. The results of the parameters identifica-
tion are shown in Fig. 4 for Case 1 and Case 2. As expec-
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Fig. 2. Results of the identification problem for Case 1 (xmax = 3x∗) and Case 2 (xmax = 7x∗) in a noise-free scenario

Fig. 3. Comparison of the synthesized absolute acceleration derived from the optimized hPSO-LS solution with the
target absolute response for each physical degree of freedom for Case 1 (xmax = 3x∗) in a noise-free scenario
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ted, both the mean and maximum errors of the individual
parameters are larger than those in the noise-free scen-
ario. The mean error of the entries varies between 2.59%
and 28.53% for the mass matrix, 1.55% and 57.98% for
the stiffness matrix and between 0.28% and 212.49% for
the damping matrix, for Case 1. Similar results increas-
ing the search space, but for the damping entries whose
mean errors vary between 5.21% and 497.36%. Although
the larger errors on the mass and stiffness matrices com-
pared to the noise-free scenario, the solution of the un-
damped problem, presented in Table 8, shows a max-
imum eigenfrequency deviation of 3.38% for Case 1 and
3.9% for Case 2, therefore comparable with the previous
results. Different results for the solution of the damped
eigenproblem, shown in Table 9. The large error in the
damping matrix results in a maximum error on the damp-
ing of 21.29% for Case 1 and 14.78% for Case 2. It
seems the noisy scenario overestimates the values of the
mass matrix, whereas stiffness and damping entries float
around the exact values.

In Fig. 5 the comparison between the estimated re-
lative acceleration from the hPSO-LS and the noise-
corrupted target response is shown. The noise-free tar-
get is also shown to have a full picture of the situation.
As it can be seen, a good agreement is achieved in the
frequency range of interest. Although the noisy target is
given to hPSO-LS, the estimated response seems to fol-
low the noise-free target. It is perfectly possible to match
the resonance frequencies in a noisy scenario, as already
shown with the solution of the damped and undamped
eigenproblem. The larger error compared to the noise-
free scenario seems to influence the antiresonance in the
low frequency range. Further studies must be conducted
to investigate the correlation between this behaviour and
matrices’ entries.

To conclude with the quality criteria shown in Table 1,
the COC and MAC results are shown in Table 10,
precisely the worst situation, meaning the biggest off-
diagonal terms and the smallest diagonal terms. The solu-
tion obtained from the hPSO-LS is in line with the re-
quired standard in both a noise-free and noisy scenario.
The authors would like to highlight that these comparis-
ons are only possible in this phase, where the capability
of hPSO-LS to synthesize a spatial model of a generic
structure wants to be investigated.

Given the compliance of the estimated mathematical
model with the quality criteria, it is possible to consider
its transformation into an CB-equivalent model that in-
cludes the modal properties it is intended to keep and the
desired physical coordinates. This is intended as the next
stage of development of the proposed methodology.

Table 8. Undamped Problem: Mean and maximum ei-
genfrequency deviations of 20 runs for Case 1 (xmax =
3x∗) and Case 2 (xmax = 7x∗) in a noisy scenario

Quality Mean Value % Max. Value %
Criterion Case 1 Case 2 Case 1 Case 2

1st Freq. dev. 1.16 1.19 3.38 3.90

2nd Freq. dev. 0.74 0.76 0.75 0.95

3rd Freq. dev. 0.01 0.01 0.04 0.04

4th Freq. dev. 0.03 0.02 0.03 0.02

5th Freq. dev. 0.00 0.00 0.00 0.00

Table 9. Damped Problem: Mean and maximum damp-
ing and eigenfrequency deviations of 20 runs for Case 1
(xmax = 3x∗) and Case 2 (xmax = 7x∗) in a noisy scenario

Quality Mean Value % Max. Value %
Criterion Case 1 Case 2 Case 1 Case 2

1st Damp. dev. 20.47 14.23 21.29 14.78
1st Freq. dev. 1.16 1.19 3.38 3.90

2nd Damp. dev. 8.94 16.48 9.31 17.81
2nd Freq. dev. 0.74 0.76 0.75 0.95

3rd Damp. dev. 7.59 5.62 7.95 6.46
3rd Freq. dev. 0.01 0.01 0.04 0.04

4th Damp. dev. 1.04 0.97 7.95 7.32
4th Freq. dev. 0.03 0.02 0.03 0.02

5th Damp. dev. 2.96 2.85 3.21 2.95
5th Freq. dev. 0.000 0.00 0.00 0.00

6. Conclusion
A hybrid strategy has been presented for the problem

of structural identification of the spatial properties of a
5 DoFs system, knowing the base and the output accel-
erations. This methodology combines the ability of the
APSO to explore possible solutions in the search space,
with the final refining of the local search. A healing pro-
cess has been also introduced to handle physical con-
straints on the mass and stiffness matrices.

Based on the research work thus far, the following
observations and conclusions are drawn:

1. The implementation of the presented algorithm is
relatively straightforward. The used cost function
does not require the inversion of any matrices, there-
fore avoiding a possible ill-conditioned situation.

2. The algorithm has been shown to work well in a
noise-free scenario, where small errors are observed
for the mass, stiffness, and damping variables. Only
one entry in the damping matrix shows a large er-
ror. The mean maximum errors are 0.87%, 0.62%
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Fig. 4. Results of the identification problem for Case 1 (xmax = 3x∗) and Case 2 (xmax = 7x∗) in a noisy scenario

Fig. 5. Comparison of the synthesized relative acceleration derived from the optimized hPSO-LS solution with the
noise-free target and noisy target relative response for each physical degree of freedom for Case 1 (xmax = 3x∗) in a
noisy scenario
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Table 10. COC and MAC worst result of 20 runs for Case 1 (xmax = 3x∗) and Case 2 (xmax = 7x∗) in noise-free and
noisy sceneries

Quality Criterion Case 1 Case 2
Noise-free Noisy Noise-free Noisy

COC Smallest diagonal term 1 0.99 1 0.99
Biggest off-diagonal term 0.00 0.02 0.00 0.01

MAC Smallest diagonal term 1 0.99 1 0.99
Biggest off-diagonal term 0.04 0.04 0.04 0.04

and 25.72% for mass, stiffness, and damping. re-
spectively. Both undamped and damped problems
present a maximum deviation of the eigenfrequen-
cies of 0.07%. The maximum damping deviation is
1.85%.

3. Although the process is driven by random changes,
the results appear robust and converge to the right
solution all the times in a noise-free scenario.

4. Adding the noise, the function appears to have more
local minima, and therefore the particles might get
stuck in those. The check strategy does not al-
ways seem to work in this scenario. Further work
is underway to improve the numerical efficiency of
the method. Although very satisfactory agreements
have been achieved regarding modal properties, the
spatial properties show large errors. The mean max-
imum errors are 16.94%, 41.27% and 135%, for
mass, stiffness, and damping, respectively. The
maximum eigenfrequency and damping deviation is
3.90% and 21.29% respectively.

5. A sensitivity analysis on the search space size has
been carried out. As shown, no significant dif-
ferences in the results have been observed, indic-
ating the potential of getting good results even in
a real-case situation, where no prior knowledge of
the structure is available, and therefore, large search
space must be considered to try to include the global
optimum.
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