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Abstract

Appropriate scales are proposed for the mean flow of a turbulent vertical natural convection bound-
ary layer immersed in a stably stratified ambient medium. In the inner layer (near-wall flow), where
viscous diffusion is dominant, the mean streamwise velocity field scales with the friction velocity,
the outer Richardson number, viscous length scale and the friction Reynolds number. In the outer
layer, the mean streamwise velocity field scales with the friction velocity, outer Richardson number
and the boundary layer thickness. The mean potential temperature field in the inner layer scales with
the viscous length scale, friction temperature and the Prandtl number of the fluid, while in the outer
layer, friction temperature, boundary layer thickness and a non-dimensional stratification parameter
are found to be the appropriate scales for the mean potential temperature field. Numerical simula-
tions at several Reynolds numbers (800 ≤ Re ≤ 1400) for a Prandtl number of 0.71 demonstrate an
excellent collapse of the mean streamwise velocity and potential temperature fields with the proposed
scaling.

1 Introduction

Natural convection boundary layers immersed in a stably stratified medium are ubiquitous in sev-
eral natural and industrial flows, and through the years, several studies have been dedicated to inves-
tigating such boundary layers.

Some of the early studies on natural convection boundary layers immersed in stably stratified
media focused on the laminar flow (Gill & Davey 1969, Armfield et al. 2007, Lin et al. 2008). The
steady laminar flow was shown to feature regions of temperature deficit and flow reversal due to
ambient stable stratification (Gill & Davey 1969). For an evenly heated plate, it was shown that the
flow is independent of the streamwise coordinate after the initial flow development during the start-up
stage. The effect of the Prandtl number on the flow was quantified, and appropriate scaling laws were
developed for different regions of the natural convection boundary layer (Armfield et al. 2007, Lin et
al. 2008).

For a sufficiently high Reynolds/Grashof number, the initially steady laminar flow bifurcates and
transitions into a turbulent state. Considerably fewer studies have been dedicated to investigating the
flow dynamics of turbulent natural convection boundary layers immersed in stably stratified media,
with most of the studies dealing with the flow’s mean flow behaviour and one-point statistics at dif-
ferent Reynolds/Grashof numbers. It was shown that the turbulent mean flow exhibits a high level of
qualitative similarities with the laminar flow (Fedorovich & Shapiro 2009). Like its laminar coun-
terpart, the turbulent mean streamwise velocity field exhibits a velocity peak close to the wall and
a region of flow reversal away from it. A localised region of potential temperature deficit was also
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Figure 1. Geometric representation of the vertical buoyancy layer.

observed. A layered structure based on the turbulent kinetic energy for a natural convection boundary
layer immersed in a stably stratified environment was proposed (Giometto et al. 2017). However, to
date, there has not been any research concerning the scaling of turbulent natural convection boundary
layers immersed in stably stratified media, with most of the scaling analyses being focused on un-
stratified turbulent natural convection boundary layers (e.g. George & Capp 1979, Shiri and George
2008, Wei 2020, Wei et al. 2021).

This paper proposes appropriate scales for the mean streamwise velocity and the mean potential
temperature fields of a turbulent natural convection boundary layer immersed in a stably stratified
ambient environment.

2 Governing Equations and Numerical Methodology

We consider a natural convection boundary layer developed over a linearly-heated vertical surface
immersed in a stably stratified environment. If the rate at which the vertical surface is heated is
equal to the vertical temperature gradient, then an equilibrium boundary layer can develop on the
heated surface whose boundary layer thickness is constant in the downstream direction. This natural
convection boundary layer is referred to as the buoyancy layer and is used to model the turbulent
natural convection boundary layer immersed in a stably stratified medium. A schematic representation
of the vertical buoyancy layer is shown in figure 1.

The flow was modelled using the following non-dimensional incompressible Navier–Stokes equa-
tions,
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where p is the pressure field, ui is the velocity field, and ϑ is the potential temperature field, which
is the temperature difference between the heated surface and the ambient surrounding with respect
to the vertical temperature gradient (Gill & Davey 1969). The length is non-dimensionalised by
δl = (4να/gβγs)

0.25 and the velocity is non-dimensionalised by ∆T (gβα/νγs)
0.5. The temperature

difference between the vertical surface and the ambient surroundings is represented using ∆T . Here,
ν,α,β,γs,g are the kinematic viscosity, thermal diffusivity, coefficient of thermal expansion, stable
vertical temperature gradient and acceleration due to gravity, respectively.
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The Reynolds number Re is U∆T δl/ν = (gβ∆T δ3
l )/2ν2, which is half the Grahsof number. The

Prandtl number of the fluid is represented using Pr = ν/α, which is equal to 0.71.
An in-house collocated finite volume code was used to perform direct numerical simulation (Norris

2000, Armfield et al. 2003). A second-order Adams–Bashfort scheme and a second-order Crank–
Nicolson scheme were used to solve the advection and the diffusion terms, respectively. A second-
order central difference scheme was used to discretise the spatial terms. The code has been previously
used to simulate natural convection flows, and its verification and validation are well-documented
(Armfield et al. 2003, Maryada and Norris 2021). Periodic boundary conditions were imposed in the
streamwise and spanwise directions, a no-slip wall with ui = 0 and ϑ = 1 was imposed at the heated
wall, and an open-type boundary condition where the fluid was allowed to enter and exit the domain
was used at the wall-normal far-field boundary.

A uniform mesh was used in the streamwise and spanwise directions, while a semi-logarithmic
mesh with a stretching factor of 1.01 was used in the wall-normal direction. The domain sizes, the
number of cells (N) and the cell spacings (∆) used for the numerical simulations are shown in table
1. The domain sizes are normalised by the boundary layer thickness (δbl), while the cell sizes are
normalised by the viscous length scale (δν). The boundary layer thickness δbl is defined as the wall-
normal distance at which the mean streamwise velocity changes sign for the first time. The domain
sizes used are comparable to the domain sizes of Giometto et al. (2017). In table 1, ∆x+1min refers to
the wall-normal cell spacing adjacent to the wall, while ∆x+1bl refers to the cell spacing at the edge of
the boundary layer. The friction Reynolds number Reτ is defined as uτδbl/ν, where uτ is the friction
velocity, δbl is the boundary layer thickness and ν is the kinematic viscosity.

Re Reτ Size (x1×x2×x3) Nx1×Nx2×Nx3 ∆x+2 ×∆x+3 ∆x+1min ∆x+bl
800 279 6.8δbl ×7.6δbl ×6.8δbl 280×450×375 4.74×4.98 0.43 4.67

1000 336 7.0δbl ×8.6δbl ×8.6δbl 320×600×600 4.78×4.78 0.42 5.02
1200 394 6.4δbl ×7.8δbl ×7.8δbl 320×600×600 5.19×5.19 0.46 5.92
1400 454 7.0δbl ×9.7δbl ×9.0δbl 355×906×816 4.85×4.82 0.42 6.30

Table 1. Parameters of the numerical simulations.

It is well-known that large-scale streamwise-elongated structures are present in the outer layers
of natural convection boundary layers (Ke et al. 2021). Therefore, an additional simulation was
performed at Re = 800 by doubling the domain size in the streamwise direction to verify the domain
used in the current study. It was found that an increase in the streamwise domain size had a negligible
influence on the mean flow and one-point statistics, and therefore, the current domain was used for
further analysis at different Re.

The results of the numerical simulations reported in table 1 are used to validate the scaling laws
proposed in the following section.

3 Mean Flow Scaling of the turbulent vertical buoyancy layer

The turbulent vertical buoyancy layer is a one-dimensional zero pressure-gradient parallel flow.
Accordingly, for a fully-developed turbulent flow, the Reynolds-averaged momentum and buoyancy
transport equations for the vertical buoyancy layer can be written as (Fedorovich & Shapiro 2009),

∂〈u1u2〉
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= ν
∂2u2

∂x2
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+gβϑ, (2a)
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where 〈·〉 refers to streamwise, spanwise and temporal averaging and · refers to the mean flow. The
mean streamwise velocity and mean potential temperature fields are represented using u2 and ϑ,
〈u1u2〉 is the mean Reynolds shear stress, γs is the mean vertical temperature gradient (stratification
parameter) and 〈u1ϑ〉 is the mean wall-normal turbulent heat flux.

The non-dimensional form of the Navier–Stokes equations is no longer used for the scaling anal-
ysis presented in this section, as the analysis is independent of the nondimensionalisation used.

3.1 Scaling of the Mean Streamwise Velocity Field

First, appropriate scales are developed for the mean streamwise velocity field in the outer layer. To
this end, let us scale equation (2a) with the following differential scaling (Wei et al. 2021),

∂x1 ≡ lc∂x×1 , ∂u2 ≡ uc∂u2
×, ∂〈u1u2〉 ≡ Rc∂〈u1u2〉×, ϑ≡ ϑcϑ

×
, (3)

where variables with × refer to the outer-scaled variables, lc, uc, Rc and ϑc are the appropriate length,
velocity, Reynolds shear stress and potential temperature scales.

In the outer layer, the viscous effects are negligible, and the vertical buoyancy layer can be ap-
proximated as a balance between the gradient of the Reynolds shear stress and buoyancy. Therefore,
for an admissible scaling in the outer layer, the prefactors of the gradient of the Reynolds shear stress
and buoyancy must be O(1) and greater than the prefactor of viscous diffusion (Wei et al. 2021).

In the outer layer, as the effect of the wall is mimimal, it is reasonable to assume that the eddies
have length scales on the order of the boundary layer thickness and, therefore, δbl can be used for
the length scale lc. As a starting point, if the velocity uc, potential temperature ϑc and the Reynolds
shear stress Rc scales are assumed to be the friction velocity (uτ =

√
ν∂u2/∂x1), friction temperature

(θτ =(−α∂ϑ/∂x1)/uτ) and the square of friction velocity (u2
τ), then, equation (2a) with the differential

scaling in equation (3), after some manipulation to normalise the prefactor of the Reynolds shear stress
stress term, can be written as,

∂〈u1u2〉×
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Reτ
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+Rioϑ, (4)

where 1/Reτ = ν/δbluτ and Rio = gβθτδbl/u2
τ . It should be noted that Reτ is the friction Reynolds

number and Rio is the outer Richardson number, and 1/Reτ ≈ 0 for Reτ� 1. With this scaling, the
prefactor to the buoyancy force is the outer Richardson number and not O(1), invalidating our initial
assumption regarding uc, Rc and ϑc. As Rio appears in equation (4), it can be used as one of the
scaling variables to normalise the prefactor of buoyancy.

If we assume,
uc = uτRio, ϑc = θτ, Rc = u2

τRio, (5)

equation (2a) can be written as,

∂〈u1u2〉×

∂x×1
=

1
Reτ
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×

∂x2×
1

+ϑ, (6)

where the prefactors of the gradient of Reynolds shear stress and buoyancy are O(1), and the prefactor
of viscous diffusion is negligible for Reτ� 1. Therefore, the following scales are valid for the mean
streamwise velocity in the outer layer,

x×1 ≡ x1/δbl, u2
× ≡ u2/uτRio. (7)

It should be noted that including Rio in the proposed scaling can be thought of as introducing
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buoyancy force into the scaling variables. Using the Rio scaling implicitly incorporates the Re− (or)
Gr−dependence of natural convection boundary layers into the scales.

To develop appropriate scales for the mean streamwise velocity in the inner layer, let us now
introduce the following differential scaling,

∂x1 ≡ lc∂x∗1, ∂u2 ≡ uc∂u2
∗, ∂〈u1u2〉 ≡ Rc∂u2

∗, ϑ≡ ϑcϑ
∗
, (8)

where variables with ∗ refer to the inner-scaled variables, and lc, uc, Rc and ϑc now refer to the
appropriate length, velocity, Reynolds shear stress and potential temperature scales.

Close to the wall, for an admissible scaling in the inner layer, the prefactor of the diffusion term
is no longer negligible and should be O(1). Based on the inner scaling of several canonical boundary
layers flows, it would seem reasonable to use ν/uτ as the length scale in the inner layer. However,
Shiri and George (2008), while investigating the scaling of turbulent natural convection boundary
layers in a differentially heated channel, argue that the buoyancy force in the outer layer influences
the flow in the inner layer. This implies that the eddies that scale with δbl in the outer layer interact
with the eddies that scale with ν/uτ in the inner layer. This effect can be quantified using the friction
Reynolds number Reτ = uτδbl/ν.

Using the above assumptions, let,

uc = uτRio, lc =
√

Reτν/uτ, ϑc = θτ, (9)

be the scaling variables for the inner layer. It should be noted that the velocity scale is identical to
the outer layer velocity scale (see equation (7)). For convenience,

√
Reτ is used instead of Reτ in the

length scale lc.
Then, equation (2a) with the differential scaling in equation (9), after some manipulation to nor-

malise the prefactor of the diffusion term, can be written as,

√
ReτRc

u2
τRio

∂〈u1u2〉∗

∂x∗1
=

∂2u2
∗

∂x2∗
1

+ϑ. (10)

Close to the wall, in the inner layer of the turbulent vertical buoyancy layer, there is a balance be-
tween viscous diffusion and buoyancy. Therefore, for an appropriately scaled equation, the prefactors
of viscous diffusion and buoyancy must be O(1), and this is true in equation (10). The gradient of the
Reynolds shear stress is not a dominant term, and its prefactor must be O(1) or lower (Wei 2020,Wei
et al. 2021). Rc should be appropriately chosen for this to be true; however, it is not investigated as
the scaling of Reynolds shear stress is outside the scope of this paper.

From equation (10), the valid scales for the streamwise velocity field in the inner layer are,

x∗1 ≡ x1uτ/ν
√

Reτ, u2
∗ ≡ u2/uτRio. (11)

Figures 2(a) and (b) show the inner- and outer-scaled mean streamwise velocity at different Reynolds
numbers in the inner and the outer layers, respectively. In figure 2(a), the mean streamwise velocity
field at different Reynolds numbers collapses onto a single curve until the velocity maximum with the
proposed scaling shown in equation (11). In figure 2(b), the proposed Rio scaling, shown in equation
(7), also collapses the mean streamwise velocity onto a single curve in the outer layer. This validates
the proposed scaling for the mean streamwise velocity field. Also, the figure clearly shows that the
outer layer scaling is valid from the velocity maximum to the bulk flow, including the flow reversal.

It should be noted that the proposed Rio scaling for the mean streamwise velocity field is equivalent
to the scaling based on the velocity maximum developed for unstratified natural convection boundary
layers (Wei 2020, Wei et al. 2021). This is the case as the velocity maximum is directly proportional
to the outer Richardson number.
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Figure 2. (a) Inner and (b) outer scaling of the mean streamwise velocity field.

3.2 Scaling of the Mean Potential Temperature Field

Let us introduce the following differential scaling to develop appropriate scales for the potential
temperature field close to the wall (Wei et al. 2021),

∂x1 ≡ lc∂x∗1, ∂ϑ≡ ϑc∂ϑ
∗
, ∂〈u1ϑ〉 ≡ Hc∂〈u1ϑ〉∗, u2 ≡ ucu2

∗, (12)

where the variables with ∗ refer to the inner-scaled variables, and lc, uc, Hc and ϑc refer to the appro-
priate length, velocity, wall-normal turbulent heat flux and potential temperature scales.

Close to the wall, ∂〈u1ϑ〉/∂x1 → 0 and u2 → 0, and only the diffusion term is dominant. This
reduces equation (2b) to,

αϑc

l2
c

∂2ϑ
∗

∂x2∗
1
≈ 0, (13)

which is equivalent to appropriately scaled near-wall equation for an unstratified turbulent vertical
natural convection boundary layer if lc = α/uτ = ν/uτPr and ϑc = θτ (George & Capp 1979, Wei
2020, Wei et al. 2021).

Therefore, the appropriate scales for the potential temperature field close to the wall are,

x∗1 ≡ x1uτPr/ν, ϑ
∗ ≡ ϑ/θτ. (14)

Far away from the wall, in the outer layer, thermal diffusion has a negligible contribution to the
flow. In this region, the gradient of the wall-normal turbulent heat flux and the stratification term are
the dominant terms, and the boundary layer in this region can be approximated as a balance between
these two terms. Therefore, for an admissible scaling, the prefactors of these terms can no longer be
ignored and must be O(1). To achieve this, let us introduce the following differential scaling,

∂x1 ≡ lc∂x×1 , ∂ϑ≡ ϑc∂ϑ
×
, ∂〈u1ϑ〉 ≡ Hc∂〈u1ϑ〉×, u2 ≡ ucu2

×, (15)

where the variables with × refer to the outer-scaled variables, and lc, uc, Hc and ϑc refer to the
appropriate length, velocity, wall-normal turbulent heat flux and potential temperature scales.

The length scale lc in the outer layer is assumed to be δbl/Pr to incorporate the effect of the Prandtl
number into the scaling variables. Further, let us assume that ϑc = θτ, uc = uτRio and Hc = uτθτ. With
this scaling, in the outer layer, uc is the same for the mean momentum and mean buoyancy equations.
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Then, substituting these scales into equation (2b), after some manipulation to normalise the prefactor
of the gradient of the wall-normal turbulent heat flux term, results in the following equation,

∂〈u1ϑ〉×

∂x×1
=

1
Reτ

∂2ϑ
×

∂x2×
1
−σu2

×, (16)

where Reτ = δbluτ/αPr and 1/Reτ ≈ 0 for Reτ� 1. The nondimensional stratification parameter is
represented using σ = γsδblRio/θτPr. Equation (16) only reinforces the fact that thermal diffusion is
negligible in the outer layers of turbulent natural convection boundary layers (Ke et al. 2021, Wei et
al. 2021).

The prefactors of the stratification and the gradient of the wall-normal turbulent heat flux are not
O(1) in equation (16), and therefore the assumed scales are not accurate. As equation (16) includes
the non-dimensional parameter σ, it can be used as a valid scaling variable. One way of normalising
the prefactor of the stratification term to O(1) is by assuming ϑc = ϑc/σ and Hc = uτθτ/σ. With this
correction, the following scales are proposed for the potential temperature field in the outer layer,

x×1 ≡ x1Pr/δbl, ϑ
× ≡

(
ϑamb−ϑ

)
/θτσ, (17)

where ϑamb is the potential temperature of the ambient medium. It should be noted that a deficit law
is proposed for the mean potential temperature field in the outer layer, similar to the deficit law often
used for unstratified turbulent natural convection boundary layers (Wei 2020, Wei et al. 2021).

Figures 3(a) and (b) show the mean potential temperature field using the proposed inner and the
outer scaling for the inner (near-wall) and outer layers, respectively. In figure 3(a), the mean potential
temperature field collapses onto a single curve at several Re until x×1 ≤ 10, demonstrating the validity
of the proposed scaling close to the wall. The mean potential temperature field also collapses onto a
single curve in the outer layer (0.2≤ x×1 ≤ 2.0) with the proposed deficit-law scaling. This validates
the proposed scaling of the mean potential temperature field for the inner and the outer layers.
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Figure 3. (a) Inner and (b) outer scaling of the mean potential temperature field.

4 Conclusions

This paper proposes appropriate scales for the mean streamwise velocity and the mean potential
temperature of a turbulent vertical natural convection boundary layer immersed in a stably stratified
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environment. At Pr = 0.71, for the Reynolds numbers (800 ≤ Re ≤ 1400) investigated, data from
numerical simulations demonstrate an excellent collapse of the mean streamwise velocity and the
mean potential temperature field when scaled with the proposed scaling parameters.

The mean streamwise velocity field can be scaled using the friction velocity and the outer Richard-
son number in the inner (near-wall) and the outer layers. In the outer layer, the length scale for the
mean streamwise velocity is the boundary layer thickness, defined as the wall-normal location where
the mean streamwise velocity changes sign for the first time. In the inner layer, an appropriate length
scale is the viscous length scale and the friction Reynolds number.

Close to the wall, the mean potential temperature field can be scaled with the friction temperature,
the viscous length scale and the Prandtl number of the fluid. Away from the wall, in the outer layer,
the mean potential temperature field scales with the boundary layer thickness, friction temperature
and a nondimensional parameter σ, which is a function of the mean vertical temperature gradient
(stable stratification) and the Prandtl number.
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