
Locally bi-2-transitive graphs and cycle-regular graphs,
and the answer to a 2001 problem posed by Fouquet

and Hahn

Marston Conder
Department of Mathematics, University of Auckland

Private Bag 92019, Auckland 1142, New Zealand

Email: m.conder@auckland.ac.nz

Jin-Xin Zhou
Department of Mathematics, Beijing Jiaotong University

Beijing 100044, P.R. China

Email: jxzhou@bjtu.edu.cn

Abstract

A vertex-transitive but not edge-transitive graph Γ is called locally bi-2-transitive
if the stabiliser S in the full automorphism group of Γ of every vertex v of Γ has
two orbits of equal size on the neighbourhood of v, and S acts 2-transitively on each
of these two orbits. Also a graph is called cycle-regular if the number of cycles of a
given length passing through a given edge in the graph is a constant, and a graph
with girth g is called edge-girth-regular if the number of cycles of length g passing
through any edge in the graph is a constant.

In this paper, we prove that a graph of girth 3 is edge-girth-regular and locally bi-
2-transitive if and only if Γ is the line graph of a semi-symmetric locally 3-transitive
graph. Then as an application, we prove that every tetravalent edge-girth-regular
locally bi-2-transitive graph of girth 3 is cycle-regular. This shows that vertex-
transitive cycle-regular graphs need not to be edge-transitive, and hence resolves
the problem posed by Fouquet and Hahn at the end of their paper ‘Cycle regular
graphs need not be transitive’, in Discrete Appl. Math. 113 (2001) 261–264.
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1 Introduction

The main purpose of this paper is to resolve the problem posed by Fouquet and Hahn at
the end of their 2001 paper on cycle regular graphs [12].
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All graphs we consider are finite, connected, simple and undirected. For any graph
Γ, we let V (Γ), E(Γ) and Aut(Γ) be its vertex set, edge set, and full automorphism
group, respectively. Also we say that Γ is vertex-transitive if for any two vertices of Γ,
there exists an automorphism of Γ that sends one to the other. Note that every vertex-
transitive graph is regular, in the sense of having constant valency, but the converse does
not hold. Similarly, we say that Γ is edge-transitive if for any two edges of Γ, there exists
an automorphism of Γ that sends one to the other. If Γ is regular and edge-transitive but
not vertex-transitive, then we say that Γ is semi-symmetric.

Now let Γ be a graph with girth g. For each v ∈ V (Γ) and e ∈ E(Γ), and for each
integer k with g ≤ k ≤ |V (Γ)|, let ck(v) and ck(e) be the number of simple cycles of
length k in Γ that pass through v and e, respectively. We say that Γ is cycle-regular if ck
is constant on edges for every k (so that the value of ck(e) depends only on k), and say
that Γ is vertex-cycle-regular if ck is constant on vertices for every k (so that the value of
ck(v) depends only on k). It is easy to see that every cycle-regular graph having constant
valency is also vertex-cycle-regular, and that every edge-transitive graph is cycle-regular,
while every vertex-transitive graph is vertex-cycle-regular.

As pointed out by Fouquet and Hahn in [12], vertex-cycle-regular graphs that are
regular need not be vertex-transitive. Indeed every semi-symmetric graph is cycle-regular
and hence vertex-cycle-regular, but is not vertex-transitive. Moreover, there are infinitely
many finite counter-examples, because there are infinitely many finite semi-symmetric
graphs; see [4, 6, 7, 11] for example. Also Fouquet and Hahn constructed in [12] an
infinite tetravalent vertex-cycle-regular graph that is not vertex-transitive, but they could
not determine whether vertex-transitive cycle-regular graphs are edge-transitive, so they
posed the following problem:

Problem 1 [12, Problem] Is there a cycle-regular, vertex transitive but not edge transitive
graph, finite or infinite?

We will give a positive answer to this problem by investigating what we will call ‘locally
bi-2-transitive’ graphs. Recall that an arc in a graph is an ordered edge, or equivalently,
an ordered pair of adjacent vertices. Similarly, a 2-arc in a graph Γ is an ordered triple
(u, v, w) of three distinct vertices of Γ such that v is adjacent to both u and w.

A vertex-transitive graph Γ is said to be bi-arc-transitive if Aut(Γ) has two orbits of
equal size on the set of all arcs (ordered edges) of Γ, and similarly, bi-edge-transitive if
Aut(Γ) has two orbits of equal size on the edge set of Γ. Bi-arc-transitive graphs that
are edge-transitive are also called half-arc-transitive. Such graphs have been extensively
studied in the literature; see [8, 21, 25, 27, 33], for example. Analogously, a graph is
called half-edge-transitive if it is bi-arc-transitive and bi-edge-transitive. The latter kind
of graphs were introduced in [31], where the authors proved that tetravalent half-edge-
transitive graphs can have arbitrarily large vertex-stabilisers. We will show that every
bi-arc-transitive graph has even valency ≥ 4; see Lemma 2.1.

Now let Γ be a half-edge-transitive graph with valency 2k ≥ 4, and let E1 and E2

be the two orbits of Aut(Γ) on E. Then Γ1 = (V (Γ), E1) and Γ2 = (V (Γ), E2) are two
subgraphs of Γ, admitting Aut(Γ) as an arc-transitive automorphism group. We say that
Γ is locally bi-2-transitive if Aut(Γ) acts transitively on the 2-arcs of both Γ1 and Γ2.
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In this paper, we will characterise the locally bi-2-transitive graphs with girth 3 having
the property that the number of 3-cycles passing through any edge is a constant. (Actually,
a graph with girth g having the property that cg is constant on edges is called edge-girth-
regular. Such graphs were introduced in [15], where several of their basic properties were
given, and the trivalent and tetravalent cases were investigated systematically.)

Before stating our main results, we introduce some more definitions and notation.
For a permutation group G on a set Ω, we use Gα to denote the stabiliser in G of a

point α ∈ Ω, and we say that G is t-transitive on Ω if for any two ordered t-tuples of
pairwise distinct elements of Ω, there exists g ∈ G sending one to the other. Also we
denote by Zn the cyclic group of order n, and by Kn the complete graph with n vertices.

Next, let Γ be a graph. For u, v ∈ V (Γ), denote by {u, v} the edge incident to u and
v in Γ, and by Γ(u) the set of vertices adjacent to u in Γ, and for a subset S of V (Γ),
denote by Γ[S] the subgraph of Γ induced by S. The line graph L(Γ) of Γ is the graph
with vertex set E(Γ) where two edges of Γ are adjacent in L(Γ) if and only if they share a
vertex in Γ. It is easy to see that if Γ has at least one 2-arc, then Aut(Γ) acts transitively
on the 2-arcs of Γ if and only if Γ is vertex-transitive and Aut(Γ)u acts 2-transitively on
Γ(u) for some u ∈ V (Γ(u)). Finally, a semi-symmetric graph Γ is called locally 3-transitive
if Aut(Γ)u acts 3-transitively on Γ(u), for every u ∈ V (Γ).

Our first main theorem gives a characterisation of edge-girth-regular locally bi-2-
transitive graphs of girth 3.

Theorem 1.1 A graph Γ of girth 3 is locally bi-2-transitive and edge-girth-regular if and
only if Γ is the line graph of a semi-symmetric locally 3-transitive graph.

Applying this gives the following two theorems, and a positive answer to Problem 1.

Theorem 1.2 Every connected tetravalent edge-girth-regular locally bi-2-transitive graph
of girth 3 is cycle-regular.

Theorem 1.3 For every integer n ≥ 3, there exist infinitely many connected semi-symmetric
locally 3-transitive graphs of valency n.

By Theorems 1.1 and 1.3, there exist infinitely many connected tetravalent edge-girth-
regular locally bi-2-transitive graphs of girth 3, and by Theorem 1.2, there are infinitely
many connected vertex-transitive cycle-regular graphs that are not edge-transitive.

Finally, before proceeding, we point out that we have been unable to decide if there
exists a trivalent cycle-regular graph that is vertex-transitive but not edge-transitive. We
leave the existence or non-existence of such a graph as an open problem for future con-
sideration. (We know that there exists no such graph with girth less than 6, by using
the classification of cubic vertex-transitive graphs of girth at most 5 given in [10, Theo-
rems 6.1–6.3], and we believe there is also no such graph with girth equal to 6. Also we
have verified that every trivalent vertex-transitive cycle-regular graph of order at most 300
is edge-transitive, with the help of Magma [3] and the census of trivalent vertex-transitive
graphs of order up to 1280 (see [23, 24]).)
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2 Locally bi-2-transitive graphs of girth 3

In this section, we prove Theorem 1.1, using the following lemma that establishes some
basic properties of bi-arc-transitive graphs.

Lemma 2.1 A graph Γ is bi-arc-transitive if and only if Aut(Γ) is transitive on V (Γ) and
Aut(Γ)u has two orbits of equal size on Γ(u), for some u ∈ V (Γ(u)). In particular, every
bi-arc-transitive graph has even valency at least 4.

Proof For necessity in the first part, assume that Γ is bi-arc-transitive. Then Aut(Γ)
is transitive on V (Γ) and has two orbits of equal size on the arc set of Γ. Now take any
vertex u of Γ. Then Aut(Γ)u is intransitive on Γ(u), so take x, y ∈ Γ(u) such that

U1 := {(u, xg) | g ∈ Aut(Γ)u} ≠ {(u, yg) | g ∈ Aut(Γ)u} =: U2.

Then O1 = {(u, x)a | a ∈ Aut(Γ)}, so O2 = {(u, y)a | a ∈ Aut(Γ)} are the two orbits of
Aut(Γ) on the arcs of Γ, and it follows that |O1| = |O2|, and that U1 ∪ U2 = Γ(u). Since
Γ is vertex-transitive, also |Oi| = |V (Γ)||Ui| for i = 1, 2, and hence |U1| = |U2|. Thus
Aut(Γ)u has two orbits U1 and U2 of equal size on Γ(u), as required.

For sufficiency (in the first part), assume that B1 and B2 are two orbits of Aut(Γ)u
of equal size on Γ(u) for some vertex u of Γ, and take b1 ∈ B1 and b2 ∈ B2. As Aut(Γ)
is transitive on V (Γ), by hypothesis, A1 := {(u, b1)g | g ∈ Aut(Γ)} and A2 := {(u, b2)g |
g ∈ Aut(Γ)} are the two orbits of Aut(Γ) on the arcs of Γ. Then by an easy computation,
|A1| = |V (Γ)||B1| = |V (Γ)||B2| = |A2|, and so Γ is bi-arc-transitive.

The second part follows easily. □

Proof of Theorem 1.1

First, we establish sufficiency in the statement of Theorem 1.1. Let Γ be the line graph
of a semi-symmetric locally 3-transitive graph Π with valency d. Then Γ is edge-girth-
regular, and has girth 3. A well known theorem about the line graphs (for example, see
[1, p.1455]) states that if a connected graph X has at least 5 vertices then Aut(X) ∼=
Aut(L(X)), where L(X) is the line graph of X. Since Π is semi-symmetric, Π has more
than 5 vertices. Accordingly, if we view Aut(Π) as a permutation group on E(Π), then
we see that Aut(Γ) ∼= Aut(Π), and hence that Γ is vertex-transitive. Now take an edge
e = {x, y} of Π, and let Bx be the set of edges of Π incident with x, and By be the set
of edges of Π incident with y. Then Γ[{e} ∪ Bx] ∼= Γ[{e} ∪ By] ∼= Kd. Also because Π
is semi-symmetric, Aut(Π)e = Aut(Π)xy, and because Π is locally 3-transitive, Aut(Π)xy
acts 2-transitively on both Bx and By. Hence by Lemma 2.1, we find Γ is bi-arc-transitive.
To show that Γ is locally bi-2-transitive, we need only show that Γ is bi-edge-transitive.
If that is not the case, then Γ is edge-transitive. So now take any xa = {a, x} ∈ Bx and
any yb = {y, b} ∈ By. Then {xa, e} and {e, yb} are two edges of the line graph Γ, so there
exists some α ∈ Aut(Π) taking {xa, e} to {e, yb}. But these give 2-paths axy and xyb in
the graph Π, and it follows that α sends x to y. This, however, is impossible, because
Π is semi-symmetric and so no automorphism of Π can take a vertex of Π to one of its
neighbours. This establishes sufficiency.
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For necessity, suppose first that Γ is a locally bi-2-transitive edge-girth-regular graph
of girth 3 with valency 2k for some k > 1. Now every locally bi-2-transitive graph is also
bi-edge-transitive, and so Aut(Γ) has two orbits of equal size on E(Γ), say E ′ and E ′′.

Let Γ′ = (V (Γ), E ′) and Γ′′ = (V (Γ), E ′′). Then Aut(Γ) acts 2-arc-transitively on both
Γ′ and Γ′′. Take a vertex u in V (Γ). Then Γ(u) = Γ′(u) ∪ Γ′′(u) and |Γ′(u)| = |Γ′′(u)|,
and Aut(Γ)u acts 2-transitively on both Γ′(u) and Γ′′(u). Also because Γ is an edge-girth-
regular graph of girth 3, there exists at least one triangle passing through any given edge
of Γ, and hence that in any 3-cycle in Γ, there exist two incident edges that lie in the same
orbit of Aut(Γ) on E(Γ). Moreover, by vertex-transitivity of Γ, we may assume that Γ′(u)
contains two vertices that are adjacent in Γ, and then because Aut(Γ)u acts 2-transitively
on Γ′(u), it follows that Γ[{u} ∪ Γ′(u)] ∼= Kk+1.

Next we show that Γ[{u}∪Γ′′(u)] ∼= Kk+1. Since Aut(Γ)u acts 2-transitively on Γ′′(u),
it suffices to show that Γ′′(u) contains two vertices that are adjacent in Γ. By way of
contradiction, suppose that no two vertices of Γ′′(u) are adjacent in Γ. As Γ is edge-
girth-regular (by hypothesis), we know that c3({u, v}) ≥ k − 1 > 0 for any v ∈ Γ′(u).
Hence in particular, c3({u,w}) ≥ k − 1 > 0 for all w ∈ Γ′′(u). Then since no two
vertices of Γ′′(u) are adjacent in Γ, we have k − 1 ≤ c3({u,w}) ≤ k, and so u and w
share at least k − 1 common neighbours in Γ′(u). Without loss of generality, we may
assume that v is a common neighbour of u and w, and then because w ∈ Γ′′(u), it follows
that c3({u, v}) ≥ k. But c3({u,w}) ≤ k, so the edge-girth-regularity of Γ implies that
c3({u,w}) = k, and therefore w is adjacent to all vertices in Γ′(u). Then since w was an
arbitrary vertex in Γ′′(u), this shows that every vertex in Γ′(u) is adjacent to every vertex
in Γ′′(u). That, however, implies that c3({u, v}) = 2k − 1 > k = c3({u,w}), which is a
contradiction, allowing us conclude that Γ[{u} ∪ Γ′′(u)] ∼= Kk+1.

Now we shall show that both Γ′ and Γ′′ are unions of cliques isomorphic to Kk+1.
If k = 2, we can do this by showing that c3({u, v}) = 1 for every v ∈ Γ′(u) and

c3({u,w}) = 1 for every w ∈ Γ′′(u). First, if c3({u, v}) = 3 then Γ ∼= K5, which is arc-
transitive, a contradiction. Second, if c3({u, v}) = 2, then there are two exactly parallel
edges in Γ between Γ′(u) and Γ′′(u), and v has a unique neighbour, say w, which is not
adjacent to u. Moreover, again since c3({v, w}) = 2, we find that w shares at least three
common neighbours with u. If there exists a vertex x ∈ Γ(u) which is not adjacent to
w, then x has a neighbour, say y, which is not adjacent to u, but then y would share
at least three common neighbours with u, which is impossible because Γ has valency 4.
Thus Γ(w) = Γ(u), and Γ is the octahedron, which again is arc-transitive, a contradiction.
Thus, c3({u, v}) = 1. Next let z be the unique common neighbour of u and v. By vertex-
transitivity, some g ∈ Aut(Γ) takes u to v, and then {v, u} and {v, z} lie in the same
orbit of Aut(Γ) on E(Γ). This implies that Γ′ is a union of triangles. Similarly, we have
c3({u,w}) = 1 for any w ∈ Γ′′(u), and hence also Γ′′ is a union of triangles.

On the other hand, if k > 2, then Aut(Γ)u acts 2-transitively on Γ′(u) and on Γ′′(u),
and also E(Γ[Γ′(u)]) is contained in one orbit of Aut(Γ) on E(Γ), while E(Γ[Γ′′(u)]) is
contained in the other. As k > 2, there exists at least one triangle whose edges are
contained in the same orbits of Aut(Γ) on E(Γ). By vertex-transitivity of Γ, there exists
a triangle ∆ passing through u whose edges are contained in the same orbit of Aut(Γ) on
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E(Γ). Without loss of generality, we may assume that ∆ is contained in {u} ∪ Γ′(u), and
then all edges of Γ[{u} ∪ Γ′(u)] are contained in E ′. It now follows from Lemma 2.1 that
Γ′ = (V (Γ), E ′) has valency k, and so Γ′ is a union of cliques isomorphic to Kk+1.

Next recall that Γ[{u}∪Γ′′(u)] ∼= Kk+1, and E(Γ[Γ′′(u)]) ⊆ E ′′ or E(Γ[Γ′′(u)]) ⊆ E ′. If
E(Γ[Γ′′(u)]) ⊆ E ′′, then because Γ′′ has valency k, we find that Γ′′ is a union of copies of
Kk+1, as required. So suppose that E(Γ[Γ′′(u)]) ⊆ E ′. We will show this case is impossible.
As Γ′ is a union of copies of Kk+1, there exists w ∈ V (Γ) for which Γ′[{w}∪Γ′′(u)] ∼= Kk+1,
and so Γ′′(u) = Γ′(w). By vertex-transitivity of Γ, for any x ∈ V (Γ) there exists a unique
y ∈ V (Γ) such that Γ′(x) = Γ′′(y), and consequently c3(e) ≥ k for every edge e of Γ. Hence
for each x ∈ Γ′(u), there exists a unique y ∈ Γ′′(u) such that Γ′(x) = Γ′′(y). Moreover,
because Γ′(u) and Γ′′(u) are two orbits of Aut(Γ)u, each x ∈ Γ′(u) is adjacent (in Γ′′) to
k− 1 vertices in Γ′′(u). Now take x ∈ Γ′(u). Then there exists a unique z ∈ Γ(x) which is
not adjacent to u in Γ. Clearly x ∈ Γ′′(z), so Γ′′(z) = Γ′(u). Also |Γ′′(x) ∩ Γ′′(u)| = k − 1
and Γ[Γ′′(x)] ∼= Kk, and it follows that z is adjacent in Γ′ to k − 1 vertices of Γ′′(u). But
now if a ∈ Γ′′(u) is adjacent in Γ′ to z, then {z} ∪ {w} ∪ (Γ′′(u)\{a}) ⊆ Γ′(a), and clearly
z ̸= w because w is not adjacent in Γ′ to x, and therefore a has at least k + 1 neighbours
in Γ′, which is impossible because Γ′ has valency k.

Hence we know that both Γ′ and Γ′′ are unions of copies of Kk+1.
Furthermore, {u} ∪ Γ′(u) and {u} ∪ Γ′′(u) are two blocks of imprimitivity of Aut(Γ)

on V (Γ). As E = E ′ ∪ E ′′, there exist no edges between Γ′(u) and Γ′′(u) in Γ.
Now by a theorem of Krausz (see [14]), we know that a graph is a line graph if and

only if its edge-set can be partitioned into cliques such that every vertex is contained in
at most two cliques. In our context, let Π be the graph whose vertex set is the set of all
cliques Kk+1 of Γ, with two such cliques being adjacent if and only if they share a common
vertex in Γ. It is easy to see that Γ is isomorphic to the line graph of Π.

If we view Aut(Γ) as a permutation group on V (Π), then Aut(Π) ∼= Aut(Γ), and as
Aut(Γ) acts 2-arc-transitively on both Γ′ and Γ′′, we see that Aut(Γ) has exactly two
orbits on V (Π). Also there are exactly two copies of Kk+1 containing any given vertex of
Γ, and it follows that Aut(Γ) is edge-transitive on Π, and hence Π is semi-symmetric.

Moreover, Aut(Γ)u acts 2-transitively on Γ′(u), and so the subgroup H of Aut(Γ)
preserving the clique Γ[{u} ∪ Γ′(u)] set-wise acts 3-transitively on {u} ∪ Γ′(u), and hence
H acts 3-transitively on the neighbourhood of the clique Γ[{u} ∪ Γ′(u)] in Π. Similarly,
Aut(Γ){u}∪Γ′′(u) acts 3-transitively on the neighbourhood of the clique Γ[{u}∪Γ′′(u)] in Π,
and this establishes necessity in the statement of Theorem 1.1. □

3 Proof of Theorem 1.2

Lemma 3.1 Let Γ be a connected edge-girth-regular locally bi-2-transitive graph of girth 3.
Let E1, E2 be the two orbits of Aut(Γ) on E(Γ), and let {u, x} ∈ E1 and {u, y} ∈ E2. Then
for every k ≥ 4,

|
⋃

{x,a}∈E2

Ck(uxa)| = |
⋃

{y,b}∈E1

Ck(uyb)|,
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where Ck(uxa) and Ck(uyb) are the sets of k-cycles of Γ passing through the 2-paths uxa
and uyb, respectively.

Proof First we note that by Lemma 2.1, the graph Γ has valency 2d for some d > 1,
and then by Theorem 1.1, we know that Γ is the line graph of a semi-symmetric locally
3-transitive graph ∆ of valency d+1. Moreover, by the proof of Theorem 1.1, the edge set
of Γ can be partitioned into edge-disjoint copies of Kd+1, in such a way that every vertex
of Γ is contained in exactly two of these cliques.

Now let X and Y be disjoint subsets of Γ(u) whose union is Γ(u) and having the
property that Γ[{u} ∪X] ∼= Γ[{u} ∪ Y ] ∼= Kd+1. From the last paragraph in the proof of
Theorem 1.1, we know that X and Y are two orbits of Aut(Γ)u. Also let

Γ′ =
⋃

g∈Aut(Γ)

Γ[{ug} ∪Xg] and Γ′′ =
⋃

g∈Aut(Γ)

Γ[{ug} ∪ Y g].

As Γ is locally bi-2-transitive, the edge sets of Γ′ and Γ′′ are the two equal-length orbits
of Aut(Γ) on the E(Γ), and Aut(Γ)u acts 2-transitively on each of X and Y .

Next, let X(u) = {u} ∪ (X\{x}) and Y (u) = {u} ∪ (Y \{y}). Then X(u) is an orbit
of Aut(Γ)x on Γ(x), and Y (u) is an orbit of Aut(Γ)y on Γ(y).

Let A be the orbit of Aut(Γ)x on Γ(x) that is distinct from X(u), and let B be the
orbit of Aut(Γ)y on Γ(y) that is distinct from Y (u).

In order to prove our lemma, it suffices to show that

|
⋃
a∈A

Ck(uxa)| = |
⋃
b∈B

Ck(uyb)|.

By vertex-transitivity of Γ, there exists an automorphism δ′ of Γ taking x to y. This
automorphism δ′ takes every clique Kd+1 containing x to a clique Kd+1 containing y, and
so δ′ takes the two orbits of Aut(Γ)x on Γ(x) to the two orbits of Aut(Γ)y on Γ(y), in
some order; that is, {X(u), A}δ′ = {Y (u), B}. But the edges of Γ[X(u)] and Γ[Y (u)] are
contained in different orbits of Aut(Γ) on the edge set of Γ, and so it follows that δ′ takes
X(u) to B, and A to Y (u). Hence for every a ∈ A, we find that

(uxa)δ
′
= u′yb′ where u′ ∈ Y (u) and b′ ∈ B.

Also we know that Aut(Γ)y acts 2-transitively on both Y (u) and B, and so there exists
an automorphism α′ ∈ Aut(Γ)y taking u′ to u, and then (uxa)δ

′α′
= uy(b′)α

′
. Hence for

every a ∈ A, there exists some δ ∈ Aut(Γ) such that

(uxa)δ = uyb where b ∈ B.

By a similar argument, for every b′ ∈ B there exists some σ ∈ Aut(Γ) such that

(uyb′)σ = uxa′ where a′ ∈ A.

Now let a1 and a2 be two vertices that lie in different orbits of Aut(Γ)ux on A.
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The above argument shows that there exist δ1, δ2 ∈ Aut(Γ) and b1, b2 ∈ B such that

(uxa1)
δ1 = uyb1 and (uxa2)

δ2 = uyb2.

If there exists σ ∈ Aut(Γ)uy taking b1 to b2, then (uxa1)
δ1σ = (uxa2)

δ2 and it follows that

(uxa1)
δ1σδ

−1
2 = uxa2, and so δ1σδ

−1
2 fixes x, but then since Aut(Γ)x preserves both X(u)

and A set-wise, we find that δ1σδ
−1
2 fixes u and takes a1 to a2. This, however, contradicts

the assumption that a1 and a2 lie in different orbits of Aut(Γ)ux on A. Thus b1 and b2
must lie in different orbits of Aut(Γ)uy on B.

Similarly, if b′1 and b′2 are two vertices that lie in different orbits of Aut(Γ)uy on B,
then there exist σ1, σ2 ∈ Aut(Γ) and a′1, a

′
2 ∈ A such that

(uyb′1)
σ1 = uxa′1 and (uyb′2)

σ2 = uxa′2,

and it follows that a′1 and a′2 lie in different orbits of Aut(Γ)ux on A.

We summarise the observations just made, as follows:

Fact 1. Let A1, A2, ..., At be the distinct orbits of Aut(Γ)ux on A, with representatives
ai ∈ Ai for 1 ≤ i ≤ t. Then for 1 ≤ i ≤ t, there exists δi ∈ Aut(Γ)ux such that
(uxai)

δi = uybi, and moreover, the vertices b1, b2, . . . , bt are representatives of the t distinct
orbits B1, B2, . . . , Bt of Aut(Γ)uy on B, with bi ∈ Bi for 1 ≤ i ≤ t.

Before proceeding, note that for any two paths of the same length in Γ, if there exists
an automorphism of Γ sending one to the other, then the numbers of k-cycles passing
through these two paths are equal.

By Fact 1, we have

|
⋃
a∈A

Ck(uxa)| =
t∑

i=1

|Ai||Ck(uxai)|

and

|
⋃
b∈B

Ck(uyb)| =
t∑

i=1

|Bi||Ck(uybi)|.

If Aut(Γ)ux is transitive on A, then t = 1 and we have

|
⋃
a∈A

Ck(uxa)| = |A||Ck(uxa)| = |B||Ck(uyb)| = |
⋃
b∈B

Ck(uyb)|,

as required, and similarly, if Aut(Γ)uy is transitive on B, then we have

|
⋃
a∈A

Ck(uxa)| = |
⋃
b∈B

Ck(uyb)|,

as required.
In what follows, assume that t > 1, so that Aut(Γ)ux is intransitive on A, and Aut(Γ)uy

is intransitive on B. For any subset D of V (Γ), let Aut(Γ)(D) be the subgroup of Aut(Γ)
fixing D point-wise. Then Aut(Γ)(X(u)) ⊴ Aut(Γ)x and Aut(Γ)(X(u)) ≤ Aut(Γ)ux. Also
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because Aut(Γ)x acts 2-transitively on A, we find that Aut(Γ)(X(u)) acts trivially on A
and so Aut(Γ)(X(u)) ≤ Aut(Γ)(A).

By Fact 1, for every b ∈ B there exists σ ∈ Aut(Γ) such that (uyb)σ = uxa for some
a ∈ A, and then (u, y, b)σ = (a, x, u), and so (Aut(Γ)uy)

σ = Aut(Γ)ax is intransitive on
Bσ = X(u). Now 2-transitivity of Aut(Γ)x onX(u) implies that Aut(Γ)(A) ≤ Aut(Γ)(X(u)),
and so Aut(Γ)(A) = Aut(Γ)(X(u)).

Next, let G be the set-wise stabiliser in Aut(Γ) of {u} ∪ X set-wise, and H set-wise
stabiliser in Aut(Γ) of {x}∪A. Then Aut(Γ)(X(u)) is normal in each of G and H. Note also
that G andH are stabilisers of the two end-vertices of an edge of the graph ∆ (of which Γ is
the line graph), and so Aut(Γ) = ⟨G,H⟩, and since ∆ is edge-transitive, Aut(Γ)(X(u)) = 1.

Thus, Aut(Γ)x acts faithfully on both X(u) and A. Similarly, Aut(Γ)y acts faithfully
on both Y (u) and B. We now make a second key observation, as follows:

Fact 2. Assume that Aut(Γ)ux has two orbits on A, say A1 and A2. If there exists a vertex
a1 ∈ A1 such that Aut(Γ)a1x has also two orbits on X(u), say X1 and X2, with u ∈ X1

and |X1| = |A1|, then |
⋃

a∈A Ck(uxa)| = |
⋃

b∈B Ck(uyb)|.
To see this, note that by Fact 1 there exists δ ∈ Aut(Γ) taking (u, x, a1) to (b1, y, u)

for some b1 ∈ B, with b1 = uδ ∈ Xδ
1 , and then Xδ

1 and Xδ
2 are two orbits of Aut(Γ)uy =

(Aut(Γ)a1x)
δ on B. Clearly |Xδ

1 | = |X1| = |A1|, and |Xδ
2 | = |X2| = |A2| = d− |A1|. Next

let a2 ∈ A2. Then by Fact 1 there exists δ′ ∈ Aut(Γ) such that (u, x, a2)
δ′ = (b2, y, u) for

some b2 ∈ Xδ
2 , and it follows that

|
⋃

a∈ACk(uxa)| = |A1||Ck(uxa1)|+ |A2||Ck(uxa2)|
= |A1||Ck(uxa1)|+ (d− |A1|)|Ck(uxa2)|
= |Xδ

1 ||Ck(uyb1)|+ |Xδ
2 ||Ck(uyb2)|

= |
⋃

b∈B Ck(uyb)|,

as required.

Now we are ready to finish the proof of our lemma.

Suppose the actions of Aut(Γ)x on X(u) and A are equivalent. Then there exists a ∈ A
such that Aut(Γ)ux = Aut(Γ)xa. Clearly, {a} and A\{a} are two orbits of Aut(Γ)ux on A,
while {u} and X(u)\{u} are two orbits of Aut(Γ)xa on X(u). Hence by Fact 2, we have
|
⋃

a∈A Ck(uxa)| = |
⋃

b∈B Ck(uyb)|, as required.
Suppose (on the other hand) that the actions of Aut(Γ)x on X(u) and A are inequiva-

lent. Then letting G = Aut(Γ){u}∪X , which acts faithfully and 3-transitively on {u} ∪X,
we may deduce from [5, Theorem 5.3] and [16, Appendix 1] that G is isomorphic to one
of the following permutation groups of degree d+ 1:

(a) Sd+1 when d ≥ 3;

(b) Ad+1 when d ≥ 4;

(c) AGL(n, 2) when d = 2n − 1 ≥ 3;

(d) Z4
2 : A7 when d = 15;

(e) one of the five Mathieu simple groups Md+1 when d = 10, 11, 21, 22 or 23,
or M11 when d = 11, or Aut(M22) ∼= M22.Z2 when d = 21;
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(f) a 3-transitive group G satisfying PGL(2, d) ≤ G ≤ PΓL(2, d) for some prime-power
d ≥ 3; noting that PGL(2, 4) ∼= PGL(2, 5) ∼= A5.

In cases (a) and (b), we have d = 6 because the vertex stabiliserGx has two inequivalent
2-transitive representations, but then Gux is transitive on A, a contradiction which rules
out these two cases.

In case (c), we have Gx = SL(n, 2). Here we may assume that X(u) and A are the
set of points and the set of hyperplanes of the projective space PG(n−1, 2), respectively.
Then the hyperplanes containing u form an orbit A1 of Gxu on A, while the hyperplanes
not containing u form another orbit A2 of Gxu on A. It is easy to see that |A1| = 2n−1−1,
and if a1 ∈ A1, then the set X1 of points contained in hyperplane a1 is an orbit of Gxa1

on X(u), and the set X2 of points not contained in a1 is another orbit of Gxa1 on X(u).
Moreover, by a direct computation we have |X1| = 2n−1−1, and hence by Fact 2, it follows
immediately that |

⋃
a∈A Ck(uxa)| = |

⋃
b∈B Ck(uyb)|, as required.

In case (d), we have Gx = A7. Also a computation using Magma [3] shows that Gux

has two orbits on A, say A1 and A2, with |A1| = 7 and |A2| = 8, and furthermore, there
exists a ∈ A1 such that Gxa has two orbits on X(u), say X1 and X2, with |X1| = 7 and
|X2| = 8, and u ∈ X1. Again by Fact 2 it follows that |

⋃
a∈A Ck(uxa)| = |

⋃
b∈B Ck(uyb)|.

In case (e), we find that d = 21 because the vertex stabiliser Gx has two inequivalent
2-transitive representations, and then either G = M22 and Gx = PSL(3, 4), or G = M22.Z2

and Gx = PSL(3, 4).Z2. A computation using Magma [3] shows that Gux has two orbits
on A, say A1 and A2, with |A1| = 16 and |A2| = 5, and there exists a ∈ A1 such that Gxa

has two orbits on X(u), say X1 and X2, with |X1| = 16 and |X2| = 5, and u ∈ X1. Once
again by Fact 2 it follows that |

⋃
a∈A Ck(uxa)| = |

⋃
b∈B Ck(uyb)|.

Finally, in case (f), we have AGL(1, d) ≤ Gx ≤ AΓL(1, d), but then Gx has only one
2-transitive representation, a contradiction which rules out that case.

This completes the proof of Lemma 3.1. □

Proof of Theorem 1.2 Let Γ be a connected tetravalent edge-girth-regular locally bi-
2-transitive graph of girth 3. By Theorem 1.1, we know that Γ is the line graph of
a semi-symmetric locally 3-transitive graph ∆ of valency 3. Moreover, by the proof of
Theorem 1.1, the edge set of Γ can be partitioned into edge-disjoint copies of K3, such
that every vertex of Γ is contained in exactly two of these cliques.

Now take any vertex u in V (Γ), and let Γ(u) = {x, x′, y, y′} be such that Γ[{u, x, x′}] ∼=
Γ[{u, y, y′}] ∼= K3. Set X = {x, x′} and Y = {y, y′}. From the last paragraph in the proof
of Theorem 1.1, we know that X and Y are two orbits of Aut(Γ)u. Also let

Γ′ =
⋃

g∈Aut(Γ)

Γ[{u, x, x′}g] and Γ′′ =
⋃

g∈Aut(Γ)

Γ[{u, y, y′}g].

As Γ is locally bi-2-transitive, the edge sets of Γ′ and Γ′′ are the two equal-length orbits
of Aut(Γ) on the E(Γ), and Aut(Γ)u acts transitively on each of X and Y .

It is easy to see that ck(e) = ck({u, x}) or ck({u, y}) for any edge e of Γ and for
3 ≤ k ≤ |V (Γ)|, since E(Γ′) and E(Γ′′) are the edge-orbits of Aut(Γ).
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To show that Γ is cycle-regular, we will extend the cycle-count notation by letting
Ck(P ) be the set of k-cycles of Γ containing a given path P (of length 1 or more) or single
vertex P = {v}, and prove the following.

Claim: ck({u, x}) = ck({u, y}) and ck(uxx
′) = ck(uyy

′) for 3 ≤ k ≤ |V (Γ)|.
We shall prove this claim by using induction on k. It is clearly true for k = 3, so we

may assume that k > 3.
Suppose Ck(uxx

′) ̸= ∅, and let C be any k-cycle in Ck(uxx
′). We may consider C as

suxx′∪P , where P is a (k−3)-path x′ · · · s with s ∈ Y , and then C ′ = sux′∪P is a (k−1)-
cycle containing the edge {u, x′}. Conversely, for any C ′′ ∈ Ck−1({u, x′}), if C ′′ does not
pass through x, then we may assume that C ′′ = sux′∪P , where P = x′ · · · s is a (k−3)-path
with s ∈ Y and x /∈ P . So C ′′′ = suxx′ ∪ P is a k-cycle passing through the 2-path uxx′.
This gives a bijection between Ck(uxx

′) and Ck−1({u, x′})\(Ck−1({u, x′}) ∩ Ck−1({x})).
For an arbitrary C ∈ (Ck−1({u, x′})∩Ck−1({x})), if C /∈ Ck−1(ux

′x)∪Ck−1(xux
′), then

we have C = C1 ∪ C2, where C1 is an ℓ1-path x · · ·u and C2 is an ℓ2-path x′ · · ·x such
that V (C1) ∩ V (C2) = {x}, ℓ1, ℓ2 ≥ 2 and ℓ1 + ℓ2 = k − 2. Then C1x ∈ Cℓ1+1({x, u}) and
C2x

′ ∈ Cℓ2+1({x, x′}). On the other hand, if C is an s-cycle passing through {u, x} and
C ′ is a t-cycle passing through {x′, x} with s + t = k and V (C) ∩ V (C ′) = {x}, then we
have C = Qx and C ′ = Q′x, where Q is an (s− 1)-path from x to u and Q′ is (t− 1)-path
from x′ to x. Then QQ′ is a (k − 1)-cycle belonging to ((Ck−1({u, x′}) ∩ Ck−1({x})) \
(Ck−1(ux

′x) ∪ Ck−1(xux
′)).

It follows that

|Ck(uxx
′)| = |Ck−1({u, x′})| − |Ck−1(ux

′x)| − |Ck−1(xux
′)| − |U |,

where

U = {{C,C ′} : C ∈ Cs({u, x}), C ′ ∈ Ct({x′, x}), s+ t = k, V (C) ∩ V (C ′) = {x}}.

Note that Aut(Γ){u,x,x′} acts 3-transitively on {u, x, x′}. It follows that |Ck−1({u, x′})| =
|Ck−1({u, x})| and |Ck−1(ux

′x)| = |Ck−1(uxx
′)| = |Ck−1(xux

′)|, giving

|Ck(uxx
′)| = |Ck−1({u, x})| − 2|Ck−1(uxx

′)| − |U |.

By a similar argument to the one above, we also find that

|Ck(uyy
′)| = |Ck−1({u, y})| − 2|Ck−1(uyy

′)| − |W |,

where

W = {{D,D′} : D ∈ Cs′({u, y}), D′ ∈ Ct′({y′, y}), s′ + t′ = k, V (D) ∩ V (D′) = {y}}.

Also we can make an inductive hypothesis that |Ck−1({u, x})| = |Ck−1({u, y})| and
|Ck−1(uxx

′)| = |Ck−1(uyy
′)|, and then to show that |Ck(uxx

′)| = |Ck(uyy
′)|, it suffices to

prove that |U | = |W |. Since Γ is vertex-transitive, there exists g ∈ Aut(Γ) sending x to y.
Take an arbitrary {C,C ′} ∈ U . We may assume that C ∈ Cs({u, x}) and C ′ ∈ Ct({x′, x}),
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where s + t = k and V (C) ∩ V (C ′) = {x}. Let c ∈ V (C) \ {u}, c′ ∈ V (C ′) \ {x′}
be adjacent to x. Then Γ(x) = {c, c′, u, x′}. Furthermore, {c, x}, {c′, x} ∈ E(Γ′′), and
so {c, x}g, {c′, x}g ∈ E(Γ′′). Since xg = y, one has Γ(y) = Γ(xg) = {cg, (c′)g, ug, (x′)g}
and {y, ug}, {y, (x′)g} ∈ E(Γ′). Note that u, y′ ∈ Γ(y) and {y, u}, {y, y′} ∈ E(Γ′′). It
follows that {u, y′} = {cg, (c′)g}, and so either Cg ∈ Cs({u, y}) and (C ′)g ∈ Cs({y′, y}),
or Cg ∈ Cs({y′, y}) and (C ′)g ∈ Ct({u, y}). Clearly, V (Cg) ∩ V ((C ′)g) = {xg} = {y},
so {Cg, (C ′)g} ∈ W . This implies that g induces a map, say ϕ, from U to W . Since
g ∈ Aut(Γ), ϕ is injective.

To see ϕ is also surjective, take an arbitrary {D,D′} ∈ W . We may assume that
D ∈ Cs′({u, y}), D′ ∈ Ct′({y′, y}), where s′ + t′ = k and V (D) ∩ V (D′) = {y}. Let
d ∈ V (D) \ {u} and d′ ∈ V (D) \ {y′} be adjacent to y. Then Γ(y) = {u, y′, d, d′}. Since
we already have Γ(y) = Γ(xg) = {cg, (c′)g, ug, (x′)g} and {u, y′} = {cg, (c′)g}, one has
{d, d′}g−1

= {u, x′}. This implies that eitherDg−1 ∈ Cs′({u, x}) and (D′)g
−1 ∈ Ct′({x′, x}),

or Dg−1 ∈ Cs′({x′, x}) and (D′)g
−1 ∈ Ct′({u, x}). Furthermore, V (Dg−1

) ∩ V ((D′)g
−1
) =

{yg−1} = {x}. So {Dg−1
, (D′)g

−1} ∈ U . Clearly, {Dg−1
, (D′)g

−1}ϕ = {D,D′}. Thus, ϕ is a
bijection between U and W , and hence |U | = |W |. Thus, we have shown that

|Ck(uxx
′)| = |Ck(uyy

′)|. (1)

Next, let X(u) = {u, x′} and Y (u) = {u, y′}. Then X(u) is an orbit of Aut(Γ)x on
Γ(x), and Y (u) is an orbit of Aut(Γ)y on Γ(y).

Let A = {a1, a2} be the orbit of Aut(Γ)x on Γ(x) that is distinct from X(u), and let
B = {b1, b2} be the orbit of Aut(Γ)y on Γ(y) that is distinct from Y (u).

Because k > 3, every k-cycle of Γ containing the edge {u, x} must contain the 2-path
uxa1, uxa2 or uxx′. Hence we find that

Ck({u, x}) ⊆ Ck(uxa1) ∪ Ck(uxa2) ∪ Ck(uxx
′).

Also every k-cycle in Ck(uxa1) ∪ Ck(uxa2) ∪ Ck(uxx
′) contains the edge {u, x}, and

therefore
Ck({u, x}) = Ck(uxa1) ∪ Ck(uxa2) ∪ Ck(uxx

′), (2)

and similarly, we have

Ck({u, y}) = Ck(uyb1) ∪ Ck(uyb2) ∪ Ck(uyy
′). (3)

Now clearly ck({u, x}) = |Ck({u, x})| = |Ck(uxa1) ∪ Ck(uxa2)| + |Ck(uxx
′)| and

ck({u, y}) = |Ck({u, y})| = |Ck(uyb1) ∪ Ck(uyb2)| + |Ck(uyy
′)|. By Equation (1), we

have |Ck(uxx
′)| = |Ck(uyy

′)|, and by Lemma 3.1, we see that

|Ck(uxa1) ∪ Ck(uxa2)| = |Ck(uyb1) ∪ Ck(uyb2)|.

Now by Equations (2) and (3), we obtain the proof of Theorem 1.2. □

Note. The method for proving |U | = |W | does not always work for the case where Γ has
valency 2d > 4. Indeed for any {C,C ′} ∈ W , let c ∈ V (C) \ {u} and c′ ∈ V (C ′) \ {x′}
be vertices adjacent to x. When 2d > 4, it might happen that {x, c} or {x, c′} belongs to
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E(Γ′), and then at least three of the four edges in C ∪ C ′ incident with x are in E(Γ′).
But on the other hand, for any {D,D′} ∈ W , at least two edges in D ∪D′ incident with
y are in E(Γ′′), and this would imply that the automorphism g of Γ sending x to y will
not send {C,C ′} to some element in U .

4 A class of semi-symmetric locally 3-transitive graphs

In this final section, we prove Theorem 1.3 and thereby solve Problem 1, by constructing
a family of semi-symmetric locally 3-transitive graphs. Our construction is based on
assumptions and notation given in the following definition:

Definition 4.1

(1) n is an integer greater than 2;

(2) Ω = {1, 2, . . . , n, n+ 1, . . . , 2n− 1, 2n, . . . , 3n− 1} ;

(3) a, b, c, x, y and z are six permutations on Ω, defined as follows:

a = (1, 2, 3, . . . , n− 1, n),
b = (1, 2, 3, . . . , n− 2, n− 1),
c = (1, 2),
x = (n+ 1, n+ 2, . . . , 2n− 2, 2n− 1)(2n+ 1, 2n+ 2, . . . , 3n− 2, 3n− 1),
y = (n+ 1, n+ 2)(2n+ 1, 2n+ 2),
z = (n, n+ 1, n+ 2, . . . , 2n− 2, 2n− 1)(2n, 2n+ 1, 2n+ 2, . . . , 3n− 2, 3n− 1);

(4) G = ⟨a, b, c, x, y, z⟩, H = ⟨a, b, c, x, y⟩ and K = ⟨b, c, x, y, z⟩ ;

(5) ∆ = {1, 2, . . . , n}, Π = {n, n+1, . . . , 2n−1} and Λ = {2n, 2n+1 . . . , 3n−2, 3n−1}.

Before giving the construction (in Theorem 4.4 below), we make two key observations.

Observation 4.2 G ∼= Sym(∆ ∪ Π)× Sym(Λ) ∼= S2n−1 × Sn.

First G has two orbits on Ω, namely ∆ ∪ Π and Λ, which have lengths 2n− 1 and n,
respectively. Also ⟨a, b, c⟩ = Sym(∆), because the conjugates of c by elements of ⟨a, b⟩
include a set of transpositions that generate Sn.

Now let
x1 = (n+ 1, n+ 2, . . . , 2n− 2, 2n− 1),
y1 = (n+ 1, n+ 2),
z1 = (n, n+ 1, n+ 2, . . . , 2n− 2, 2n− 1),
x2 = (2n+ 1, 2n+ 2, . . . , 3n− 2, 3n− 1),
y2 = (2n+ 1, 2n+ 2),
z2 = (2n, 2n+ 1, 2n+ 2, . . . , 3n− 2, 3n− 1).

Then ⟨x1, y1, z1⟩ = Sym(Π), ⟨x2, y2, z2⟩ = Sym(Λ), and ⟨a, b, c, x1, y1, z1⟩ = Sym(∆ ∪ Π),
by similar arguments. Also because x = x1x2, y = y1y2 and z = z1z2, it follows that
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G = ⟨a, b, c, x, y, z⟩ induces a 2-transitive group on ∆ ∪ Π, and moreover, G induces
Sym(∆ ∪Π) on ∆ ∪Π because (1, 2) = c ∈ G. In particular, some element g ∈ G induces
the permutation (1, 2, 3, . . . , n, n+ 1, . . . , 2n− 1) on ∆ ∪ Π.

Next, G contains cg
i−1

= (1, 2)g
i−1

= (i, i+1) for 1 ≤ i ≤ 2n− 2, and hence G actually
contains Sym(∆∪Π). In particular, G contains x1, y1, z1, and so also contains x2 = x−1

1 x,
y2 = y−1

1 y and z2 = z−1
1 z, and therefore G contains ⟨x2, y2, z2⟩ = Sym(Λ) as well. Thus

G ∼= Sym(∆ ∪ Π)× Sym(Λ), as claimed. □

Observation 4.3 If n > 5, then every automorphism of G that preserves H ∩K is an
inner automorphism of G induced by an element of H ∩K; that is, if α ∈ Aut(G) satisfies
(H ∩K)α = H ∩K, then there exists g ∈ H ∩K such that α : u 7→ g−1ug for all u ∈ G.

To justify this, we first note that G ∼= M × N where M = Sym(∆ ∪ Π) ∼= S2n−1 and
N = Sym(Λ) ∼= Sn, by Observation 4.2, and furthermore,

M = ⟨a, b, c, x1, y1, z1⟩ ∼= S2n−1, in its single-orbit action on ∆ ∪ Π = {1, 2, . . . , 2n− 1},
N = ⟨x2, y2, z2⟩ ∼= Sn, in its single-orbit action on Λ = {2n, 2n+ 1 . . . , 3n− 2, 3n− 1},
H = ⟨a, b, c⟩ × ⟨x, y⟩ ∼= Sn × Sn−1, in its 3-orbit action on Ω = {1, 2, . . . , 3n− 2, 3n− 1},
K = ⟨b, c⟩ × ⟨x, y, z⟩ ∼= Sn−1 × Sn, in its 3-orbit action on Ω\{1}, and
H ∩K = ⟨b, c⟩ × ⟨x, y⟩ ∼= Sn−1 × Sn−1, in its 3-orbit action on Ω\{n, 2n},

noting that the effect of each of x, y and z on Λ = {2n, 2n + 1 . . . , 3n − 2, 3n − 1} is
analogous to its effect on Π = {n, n + 1, . . . , 2n− 1}, in that if it takes n + j to n + k in
Π, then it takes 2n+ j to 2n+ k in Λ.

Now let D be the subgroup of Aut(G) preserving H∩K. Since M ∼= S2n−1 and N ∼= Sn

are characteristic subgroups of G ∼= M × N ∼= S2n−1 × Sn, we know that M and N are
invariant under Aut(G), and it follows that M ∩ (H ∩ K) is invariant under D. In fact
M ∩ (H∩K) = ⟨a, b, c, x1, y1, z1⟩∩⟨b, c, x, y⟩ = ⟨b, c⟩ ∼= Sn−1 because M fixes Λ and H∩K
fixes n (and the effect of each of x, y and z on Λ is analogous to its effect on Π), and so D
preserves ⟨b, c⟩. Then since ⟨b, c⟩ ∼= Sn−1 has trivial centre, it follows that D also preserves
CH∩K(⟨b, c⟩) = ⟨x, y⟩.

Now let α be any element of D. Then since α preserves M ∼= S2n−1, it induces an inner
automorphism of M, and hence its effect on M can be represented by a permutation π
of ∆ ∪ Π = {1, 2, . . . , 2n − 1}. Also α preserves ⟨b, c⟩ and ⟨x, y⟩, and so π must preserve
their non-trivial orbits {1, 2, . . . , n − 1} and {n + 1, n + 2, . . . , 2n − 1} on ∆ ∪ Π, and
therefore π fixes n. Moreover, as π preserves ⟨x, y⟩ ∼= Sn−1, we find that α must induce a
permutation π′ on Λ = {2n, 2n+ 1 . . . , 3n− 2, 3n− 1} analogous to the one it induces on
Π = {n, n+ 1, . . . , 2n− 1}, in that if π takes n+ j to n+ k in Π, then π′ takes 2n+ j to
2n+ k in Λ. Hence in particular, π′ must fix the point 2n, because n and 2n are the fixed
points of ⟨x, y⟩ on Π and Λ.

It follows that the automorphism α is completely determined by the effects of π and
π′ on the sets {1, 2, . . . , n−1} and {n+1, n+2, . . . , 2n−1}, and hence by the effects of α
on ⟨b, c⟩ and ⟨x, y⟩. As these are determined by inner automorphisms of ⟨b, c⟩ and ⟨x, y⟩,
we find that α itself is an inner automorphism of ⟨b, c⟩ × ⟨x, y⟩ = H ∩K, as claimed. □
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We can now state and prove the following:

Theorem 4.4 Under the notation set out in Definition 4.1, let Γ = Cos(G,H,K) be a
graph with vertex set {Hu : u ∈ G} ∪ {Kv : v ∈ G}, and with edges all pairs {Hu,Kv}
of these cosets having non-empty intersection Hu ∩ Kv in G. Then Γ is a connected
semi-symmetric locally 3-transitive graph of valency n.

Proof First, Γ is bipartite, with parts P = {Hu : u ∈ G} and Q = {Kv : v ∈ G}, and
as G is generated by H = ⟨a, b, c, x, y⟩ and K = ⟨b, c, x, y, z⟩, we see that Γ is connected.
Also G acts naturally as a group of automorphisms of Γ, with P and Q as its orbits, by
right multiplication on the (right) cosets of H and K, respectively. Moreover, since H and
K are core-free subgroups of G (each being isomorphic to Sn × Sn−1), the action of G is
faithful on each of P and Q and hence on V (Γ).

Next, H is adjacent to K in Γ (because H ∩ K contains b and hence is non-empty),
and then since H ∩K ∼= Sn−1 × Sn−1 has precisely n right cosets in H ∼= Sn × Sn−1, the
neighbours of H in Γ are the n cosets of the form Kx where x ∈ H (corresponding to the
fact that H ∩ Kx = Hx ∩ Kx = (H ∩ K)x ̸= ∅). Similarly, the neighbours of K in Γ
are the n cosets of the form Hy where y ∈ K. Thus Γ is regular with valency n, and
moreover, each of the subgroups H and K acts transitively on its neighbourhood in Γ,
and then since G acts transitively on each of its two parts, Γ is both edge-transitive and
locally arc-transitive.

In fact, the stabiliser of the arc (H,K) is H ∩ K ∼= Sn−1 × Sn−1, so the action of
H ∼= Sn × Sn−1 on its neighbourhood Γ(H) is equivalent to the action of Sn × Sn−1 on
right cosets of Sn−1 × Sn−1, which is 3-transitive. The analogous property holds for the
action of K on Γ(K), and so Γ is locally 3-transitive.

All that remains for us to do is prove that Γ is not vertex-transitive (and is therefore
semi-symmetric). This can be verified easily using Magma [3] for the cases where n = 3, 4
or 5, and so we may assume that n > 5 and that Γ is vertex-transitive. Indeed under this
assumption, Γ will be 2-arc-transitive.

Now let A = Aut(Γ), let u = H and v = K (as vertices of Γ), let A∗
u be the subgroup

of Au fixing all the neighbours of u, and A∗
v be the subgroup of Av fixing all the neighbours

of v, and define G∗
u and G∗

v in the same way. As noted above for the actions of H and K
on Γ(H) and Γ(K), we have Gu/G

∗
u
∼= Sn

∼= Gv/G
∗
v, with Guv/G

∗
u
∼= Sn−1

∼= Guv/G
∗
v, and

in fact G∗
u = ⟨x, y⟩ ∼= Sn−1 and G∗

v = ⟨b, c⟩ ∼= Sn−1, and G∗
u ∩G∗

v is trivial. It then follows
that also Au/A

∗
u
∼= Sn

∼= Av/A
∗
v and Auv/A

∗
u
∼= Sn−1

∼= Auv/A
∗
v, since Γ has valency n.

Next, as G∗
v fixes u ∈ Γ(v), we find that G∗

v ∩A∗
u ≤ Gu ∩A∗

u ≤ G∗
u, which implies that

G∗
u = G∗

u(G
∗
v ∩A∗

u) = G∗
uG

∗
v ∩A∗

u, and so by the Second Group Homomorphism Theorem,

G∗
vG

∗
u/G

∗
u = G∗

vG
∗
u/(G

∗
uG

∗
v∩A∗

u)
∼= (G∗

vG
∗
u)A

∗
u/A

∗
u = G∗

v(G
∗
uA

∗
u)/A

∗
u ≤ A∗

vA
∗
u/A

∗
u ≤ Auv/A

∗
u.

On the left-hand, we have G∗
vG

∗
u/G

∗
u
∼= G∗

u/(G
∗
u ∩ G∗

v)
∼= G∗

u
∼= Sn−1, while at the right-

hand, we have Auv/A
∗
u
∼= Sn−1, and hence the inequalities are equalities. Thus A∗

u/A
∗
uv =

A∗
u/(A

∗
u ∩ A∗

v)
∼= A∗

vA
∗
u/A

∗
u
∼= Sn−1, and by the analogous argument, also A∗

v/A
∗
uv

∼= Sn−1.
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Furthermore, by the Thompson-Wielandt theorem described in [13, 26, 30] (for ex-
ample), we know that A∗

uv = A∗
u ∩ A∗

v is a p-group for some prime p, and as the quo-
tients A∗

u/A
∗
uv and A∗

v/A
∗
uv are isomorphic to Sn−1 and hence almost-simple, A∗

uv is the
unique maximal normal p-subgroup of each of A∗

v and A∗
u, and therefore characteristic

in both of them, and hence is normal in each of Au and Av. But ⟨Au, Av⟩ contains
⟨Gu, Gv⟩ = ⟨H,K⟩ = G and so ⟨Au, Av⟩ is transitive on the edges of Γ, and it follows that
the normal subgroup A∗

uv of ⟨Au, Av⟩ is trivial.
Thus A∗

u
∼= Sn−1

∼= A∗
v, from which it follows that |Au| = |Sn||Sn−1| = |H| = |Gu|

and similarly |Av| = |Sn||Sn−1| = |K| = |Gv|, so Au = Gu and Av = Gv. Then since G
has two orbits on V (Γ) while A has just one, we find that |A : G| = 2, and in particular,
G is normal in A. Moreover, because Γ is arc-transitive, there exists some t ∈ A\G
such that t interchanges u and v, and then conjugation by t gives an automorphism
α of G that interchanges H = Gu with Gv = K. This automorphism of G preserves
Guv = H ∩K, and so by Observation 4.3, we find that α induces an inner automorphism
of H ∩K = Guv, the same as conjugation by some element g ∈ Guv. But then it follows
that K = Gv = Gα

u = Gg
u = Gu = H (because g ∈ Guv ≤ Gu), a contradiction.

Hence Γ cannot be vertex-transitive, and is therefore semi-symmetric, as required. □

Based on the construction of this family of graphs, we can now prove Theorem 1.3,
and hence solve the problem posed by Fouquet and Hahn in 2001.

Proof of Theorem 1.3

Let n be any integer ≥ 3, and let Γ be the semi-symmetric locally 3-transitive graph
of valency n given in Theorem 4.4, with Aut(Γ) ∼= S2n−1 × Sn.

Next let p be any prime > 81. Then by [9, Theorem 2.11] (see also [2, 17, 18]), there
exists a connected covering graph Σ of Γ such that Aut(Σ) has an edge-transitive subgroup
X satisfying the following conditions:

(a) the subgroup X has an elementary abelian normal p-subgroup N which acts semi-
regularly on V (Σ) and has order pβ(Γ), where β(Γ) = |E(Γ)| − |V (Γ)|+ 1 (the Betti
number of Γ);

(b) the graph Γ is isomorphic to the quotient graph ΣN , the vertices of which are the
orbits of N on V (Σ), with two such orbits adjacent in ΣN whenever there exists an
edge in Σ between a pair of vertices lying in those two orbits;

(c) Aut(Γ) ∼= Aut(ΣN) = X/N .

For notational convenience, write X = X/N , and g = gN ∈ X for any g ∈ X, and
also denote by v the vertex of ΣN representing the orbit vN of any vertex v ∈ V (Σ). Then
the neighbourhood ΣN(v) of v consists of all the vertices w representing some w ∈ Σ(v),
and because N is semi-regular on V (Σ), the stabiliser Xv in X of v is XvN/N , which is
isomorphic to Xv.

Now let ϕ be the isomorphism from Xv to Xv, given by ϕ : g 7→ g for g ∈ Xv. If we
label the vertices in Σ(v) as w1, w2, . . . , wk, say, then for any wi, wj ∈ Σ(v) and g ∈ Xv,

we see that w g
i = wj if and only if w g

i = (wN
i )

gN = w gg−1NgN
i = (w g

i )
NN = wN

j = wj,
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and so the action of Xv on ΣN(v) is permutationally isomorphic to the action of Xv on
Σ(v). Thus Xv

∼= XvN/N ∼= Sn × Sn−1, and it follows that Σ is locally 3-transitive.

Hence to complete the proof, all we have to do is show that Σ is semisymmetric.

So assume to the contrary that Σ is vertex-transitive, and therefore arc-transitive. Also
let A = Aut(Σ), let {u, v} be any edge of Σ, and for any subgroup L of A and any vertex
w of Σ, let L∗

w be the the subgroup of Lw fixing the neighbourhood Σ(w) of w point-wise.
By equations (2) and (3) in Section 3 and the argument in the last four paragraphs of

our proof of Theorem 4.4 above, we find that

Au/A
∗
u
∼= Av/A

∗
v
∼= Sn and A∗

uA
∗
v/A

∗
u
∼= A∗

uA
∗
v/A

∗
v
∼= Sn−1,

and also by the Thompson-Wielandt theorem (as mentioned in [13, 26, 30]), we know that
A∗

u ∩ A∗
v is a q-group for some prime q.

Now if n > 5, then A∗
u/(A

∗
u ∩A∗

v)
∼= A∗

uA
∗
v/A

∗
v
∼= Sn−1 is almost simple, and so A∗

u ∩A∗
v

is a unique maximal normal q-subgroup of A∗
u, and therefore characteristic in A∗

u and so
normal in Au. The same argument shows that A∗

u ∩A∗
v is normal in Av, and so A∗

u ∩A∗
v is

normal in ⟨Au, Av⟩, and then since ⟨Au, Av⟩ is transitive on the edges of Σ, we find that
A∗

u ∩ A∗
v = 1. Similarly, because X/N ∼= Aut(Γ) ∼= S2n−1 × Sn, which is insoluble, the

p-subgroup N is the unique maximal normal p-subgroup of X, and so N is characteristic
in X. Next, because Xv

∼= Xu
∼= Sn × Sn−1, it follows that Au = Xu and Av = Xv, and

therefore X = ⟨Xu, Xv⟩ = ⟨Au, Av⟩, which is a normal subgroup of A with index 2. Hence
N is normal in A, but that makes A/N a vertex-transitive subgroup of Aut(ΣN), and so
Γ ∼= ΣN is vertex-transitive, contradiction.

Thus 3 ≤ n ≤ 5. Here we need some other information before we can proceed along
the same lines. First note that Xv ≤ Av, and that Xv

∼= Sn × Sn−1 as above. If n = 3,
then by Tutte’s theory of arc-transitive cubic graphs [28, 29], we find that |Av| divides
24 · 3 = 48 and then |Av : Xv| divides 4. Similarly, if n = 4, then |Av| divides 36 · 24
(by [20, Theorem 4]), and then |Av : Xv| divides 34 = 81, while if n = 5, then |Av|
divides 29 · 32 · 5 and then |Av : Xv| divides 23 = 8 (by [19, Table 2]). But we know
that |⟨Au, Av⟩| = 1

2
|V (Γ)||Av| (since Σ is bipartite), and |X| = 1

2
|V (Γ)||Xv|, and it follows

that |⟨Au, Av⟩ : X| divides either 8 or 81. Moreover, X/N ∼= Aut(Γ) ∼= S2n−1 × Sn (the
order of which is divisible only by primes ≤ 7), and so N is a characteristic p-subgroup
of X. Hence the index of the normaliser of N in ⟨Au, Av⟩ divides |⟨Au, Av⟩ : X|, and
so cannot be greater than 81, but p > 81, and therefore by Sylow theory N is a normal
Sylow p-subgroup of ⟨Au, Av⟩. Again it now follows that N is characteristic in ⟨Au, Av⟩
and hence normal in A, which leads to the same contradiction as in the case n > 5. □

Final note: One of the referees of this paper kindly suggested two alternative ways to
prove Theorem 1.3, and we summarise these as follows.

For one way, by [4, Corollary 3], we know that there is a semisymmetric locally 3-
transitive graph Υ with valency n for every n ≥ 3. The stabiliser in Aut(Υ) of a vertex
v of Υ acts as the full symmetric group on the neighbourhood Υ(v), and as Υ is 2-arc-
transitive, the order of this vertex-stabiliser is bounded by a function of n (see [32]).
Using this fact and a similar argument to the one in our proof of Theorem 1.3, we see that
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for every large enough prime p, there exists a semi-symmetric locally 3-transitive pb-fold
regular cover Υ̃ of Γ, where b = |E(Υ)| − |V (Υ)|+ 1.

For the second way, take any regular bipartite graph Γ admitting an edge-transitve and
locally 3-transitive but not vertex-transitive group G. (For example, let Γ be the complete
bipartite graph Kn,n, and take G = Sn×Sn.) By Theorem 6 of [22], for every prime p ≥ 3
there exists a q-fold regular cover Γ̃ of Γ for some power q of p, such that the maximal lifted
group of automorphisms of Γ is G. In this case, the lift G̃ = P.G of G (with P being a
group of order q) acts as a non-vertex-transitive locally 3-transitive group on the covering
graph Γ̃. Again, using the bound on the order of the vertex-stabiliser in 2-arc-transitive
graphs (see [32]) and the Sylow theorem (as in the proof of Theorem 1.3), one can see that
for every large enough prime p, the covering graph Γ̃ will be semi-symmetric and locally
3-transitive.

Acknowledgements
This work was partially supported by the N.Z. Marsden Fund (UOA2030) and the

National Natural Science Foundation of China (12071023,1211101360). The authors also
thank Luke Morgan for his helpful advice about the valency 5 case and reference [19], as
well as the anonymous referees for their valuable comments and suggestions.

References

[1] L. Babai, Automorphism groups, isomorphism, reconstruction. Handbook of Combi-
natorics, vol. 2, pp. 1447–1540, Elsevier Sci. B. V., Amsterdam, 1995.

[2] N.L. Biggs, Homological coverings of graphs, J. London Math. Soc. 30 (1984), 1–14.

[3] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), 235–265.

[4] I.Z. Bouwer, On edge but not vertex transitive regular graphs, J. Combinatorial
Theory Ser. B 12 (1972), 32–40.

[5] P.J. Cameron, Finite permutation groups and finite simple groups, Bull. London
Math. Soc. 13 (1981), 1–22.
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