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a b s t r a c t 

This article describes a new method for estimating weekly incidence (new onset) of symptoms consistent with 

Influenza and COVID-19, using data from the Flutracking survey. The method mitigates some of the known self- 

selection and symptom-reporting biases present in existing approaches to this type of participatory longitudinal 

survey data. 

The key novel steps in the analysis are: 

1) Identifying new onset of symptoms for three different Symptom Groupings: COVID-like illness (CLI1+, 

CLI2+), and Influenza-like illness (ILI), for responses reported in the Flutracking survey. 

2) Adjusting for symptom reporting bias by restricting the analysis to a sub-set of responses from those 

participants who have consistently responded for a number of weeks prior to the analysis week. 

3) Weighting responses by age to adjust for self-selection bias in order to account for the under- and over- 

representation of different age groups amongst the survey participants. This uses the survey package [22] in R 

[30] . 

4) Constructing 95% point-wise confidence bands for incidence estimates using weighted logistic regression 

from the survey package [21] in R [28] . 

In addition to describing these steps, the article demonstrates an application of this method to Flutracking 

data for the 12 months from 27th April 2020 until 25th April 2021. 
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Specifications table 

Subject Area: Medicine and Dentistry 
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Method name: Calculating incidence of influenza and COVID-like symptoms from FluTracking 

participatory survey data 

Name and reference of original 

method: 

NA 

Resource availability: https://gitlab.com/cma- public- projects/flutracking- methods- article 

Method details 

This article describes a method that can be used to estimate the onset of new incidence of

Influenza-like (ILI) and COVID-like (CLI) symptoms from longitudinal participatory health survey data. 

The method mitigates some of the known biases in existing approaches for this type of data and

provides more robust estimates of symptom incidence over time. In this article we also demonstrate

an application of the methodology to Flutracking data for the 12 months from 27th April 2020 until

25th April 2021 in Aotearoa New Zealand. 

As part of this work, we define a range of Symptom Groupings that can be used to estimate

the incidence of symptoms consistent with COVID-19, and demonstrate the impact of the chosen 

Symptom Groupings on resulting estimates. Because multiple illnesses can lead to overlapping sets 

of symptoms, it is important to note that this method does not attempt to diagnose new onset of

a specific disease (e.g. COVID-19); rather it estimates the onset of new (sets of) symptoms that are

consistent with certain diseases, including COVID-19. 

The method and associated code presented here, and available at [1] , have been developed to

analyse data from the Flutracking survey [13] in Aotearoa New Zealand, but can be easily adapted

to similar longitudinal data, where self-selection biases and reporting biases are known issues. 

Background 

Flutracking [13] is a participatory health surveillance system for Australia and Aotearoa New 

Zealand that seeks to estimate the proportion of the population with new onset of symptoms

consistent with influenza [9] , and more recently symptoms consistent with COVID-19. The survey 

was developed by Hunter Population Health in collaboration with The University of Newcastle. The 

survey is administered online to volunteer participants from the public. Registered participants receive 

a weekly email asking them to report any cold, flu, or COVID-like symptoms experienced in the

previous week. The survey also allows for participants to report on behalf of family members in their

household, such as young children. 

Participatory health surveillance systems like Flutracking are a valuable resource for tracking 

outbreaks of infectious disease. They allow for analysis and reporting on how new onset of symptoms

differ over time and between seasons, as well as across different geographic regions. However, there

are several typical limitations that can reduce the utility of the results that they provide. 

Previous studies have shown that participatory health surveillance systems can be biased in terms 

of survey participants and response rates over time. Firstly, some participants may be more likely to

respond to a survey if they have experienced symptoms in a given week [4,20] (a form of reporting

bias ), and secondly, participatory samples rely on volunteers and are not representative of the general

population [10,14] (a form of self-selection bias ). In particular, people from lower socio-economic 

groups and minority ethnicities are found to be under-represented [23] . Within Aotearoa New Zealand,

https://gitlab.com/cma-public-projects/flutracking-methods-article
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e find that Flutracking respondents are disproportionately of P ̄akeha/NZ European ethnicity and

lder, with M ̄aori and Pacific Islanders, and people under 30 years old, being particularly under-

epresented (see Section 4.1). Both of these biases should be accounted for where possible to improve

he reliability of incidence estimates [5,6] . 

Participatory health surveillance studies have commonly focused on influenza tracking and have

elied on strict symptom definitions that only describe one experience of influenza-like illness (ILI).

or example, previous studies, including current weekly Flutracking reports [12] , focus solely on

xperiences of ILI defined as new onset of both cough and fever in the same week [7] . While these

ymptoms are commonly viewed as core components of ILI [9] , this criteria may be insufficient for

nvestigating the rates of a wider range of respiratory illnesses, and in particular, would miss the

ajority of COVID-19 cases [19,27,29] . 

In the context of Aotearoa New Zealand, during the year of data considered in this article (27th

pril 2020 to 25th April 2021), the COVID-19 Elimination Strategy advised anyone who experienced

ymptoms consistent with COVID-19 to seek a test, so as to promptly detect and stamp-out any

ew community outbreak of SARS-CoV-2. Monitoring the performance of such an approach requires

stimating the incidence of symptoms that are consistent with COVID-19, including those that do not

eet the strict ‘cough and fever’ ILI definition, in order to determine whether testing rates in a given

eek are commensurate with incidence of new COVID-like symptoms in the same week. 

In this article, we describe a methodology that seeks to address some of the limitations described

bove for data from the Flutracking survey from Aotearoa New Zealand. Despite this specific

pplication, the method can be applied equally to Flutracking data from Australia, or to similar

ongitudinal data collected elsewhere (e.g., the “Flu Near You” survey in the United States [24] , or

Influenzanet” in Europe [22] ). Our approach for determining a subset of responses that are classified

s ‘consistent’ in any given week, in order to reduce reporting bias and to maximise response numbers

etained, is also applicable to other datasets with similar issues. For example, it could be easily applied

o prevalence estimates calculated from ‘test-to-stay’ type surveillance data COVID-19 from Rapid

ntigen Test results by filtering to only consider results from individuals who were regularly reporting

negatives) in the weeks leading up to a positive test. 

lutracking data 

Raw data are obtained from Flutracking New Zealand [13] through the New Zealand Ministry of

ealth. Flutracking symptom data consists of a presence/absence indication for each respondent for

ach of six 1 symptoms: cough, fever, sore throat, shortness of breath, runny nose, and loss of taste or

mell. All of these symptoms are part of the New Zealand Ministry of Health’s definition of ‘COVID-like

ymptoms’ [16] . 

When respondents initially enrol in the Flutracking survey, they are asked to give demographic

nformation, including age, ethnicity, location (postcode), and gender. Participants are also asked about

heir vaccination status for COVID-19 and the annual influenza vaccine, and whether they have been

ested for COVID-19 in the previous week. An example of the weekly survey is shown in Fig. 1 . If a

espondent indicates that they are experiencing symptoms, they are then asked whether they sought

ealthcare or missed work/usual activities due to the illness, and whether they were tested for COVID-

9 or Influenza. 

ethod outline 

For each survey week in a period of interest, the following steps are applied: 

For each response that matches the Symptom Grouping of interest, classify whether that week is a

new onset of those symptoms. 
1 A seventh symptom — headache — was added to the survey in the second half of 2021, to capture better the reported 

ymptoms for the Delta variant of SARS-CoV-2. We do not include Headache in our analysis, even after it was added, in order 

o maintain consistency. 
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Fig. 1. Example of the Flutracking weekly survey, sent to participants via email. Retrieved from https://www.flutracking.net/ 

Demo/NZ [13] . 
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Determine which responses each week count as consistent responses , and remove those that do not.

Calculate an age weighting factor for each age group within the survey population, to match the

age distributions of the consistent responses each week with a known population distribution. 

This is done using the rake function within R’s survey package [21] . The age weighting factor

is calculated for each week, and can be calculated at either a whole-country level or for sub-

populations specified as sets of locations and ages. 

Construct 95% pointwise confidence bands around mean incidence estimates using the svyciprop 
function in R’s survey package [21] for specified sets of factors, including age group, Symptom

Grouping, location, and survey week. 

The following sections detail each of the steps of the method in more depth. 

Define Symptom Grouping criteria 

We define three different Symptom Groupings: 

CLI1+ : Responses indicate any one or more of the above COVID-like symptoms. CLI1+ meets the

Aotearoa New Zealand Ministry of Health advice to seek a COVID-19 test [16] . 

https://www.flutracking.net/Demo/NZ
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Fig. 2. Example of symptoms reported each week for one hypothetical respondent. This illustration shows a period of 8 survey 

weeks, with reported symptoms (or non-response) indicated for each week. The symptoms reported include A Asymptomatic 

(i.e. a response indicating no symptoms), C Cough, F Fever, N runny Nose, and T sore Throat. A dot indicates the respondent 

did not answer the survey that week. In this hypothetical case, we see how the responses given can fall under each Symptom 

Grouping and that these Incidents cover different survey weeks depending on the patterns of symptoms. As CLI1+ is the most 

inclusive Symptom Grouping, the criteria for this are met in most weeks shown here and it is considered a single Incident , while 

the Symptom Groupings ILI and CLI2+ would be split into two separate Incidents during the same time period. We can also see 

that CLI1+ and CL2+ (but not ILI) span a period including one week where no response was given. This is because we assume 

that the missing week would be a continuation of the same Incident , provided it meets the same Symptom Grouping criteria. 

The ∗ indicates which week will be included as the onset of the Incident , and will be included in the ‘Incidence’ calculations. 
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CLI2+ : Responses indicate two or more of the above COVID-like symptoms. CLI2+ allows us to be

slightly more discerning, given that many non-infectious illnesses such as allergies or asthma can

cause a new onset of the COVID-like symptoms in the survey. 

ILI : Responses indicate at least both cough and fever , which are symptoms of influenza-like illness .

This Symptom Grouping is used for public Flutracking reporting [13] . 

ncidence classification 

We wish to estimate ‘incidence’, not ‘prevalence’ from the Flutracking data. Specifically, we wish to

dentify any new onset of symptoms that meet the threshold for an ‘incident’ according to a chosen

ymptom Grouping. The method we use follows the same method employed by the Aotearoa New

ealand Ministry of Health and Flutracking Australia for estimating the incidence of ILI (cough and

ever), but extends to the Symptom Groupings CLI1+ and CLI2+ above, in addition to the Symptom

rouping for ILI. 

Flutracking data contains each respondent’s reported symptoms for a given survey week. For a

elected Symptom Grouping, we first check whether an individual’s symptoms in the given week meet

he criteria for that Symptom Grouping. If so, we mark it as an Incident. For example, if we wanted to

nvestigate the number of CLI1+ Incidents, we would record all weeks where an individual recorded

ne or more of the six COVID-like symptoms as an Incident. 

Fig. 2 provides a hypothetical example of a respondent who reported different sym ptoms over the

ourse of 8 weeks. 

To distinguish new onset of illness from the continuation of a previously reported Incident, each

ncident is assigned a unique ID, with this same Incident ID given to all consecutive weeks that

eet the Symptom Grouping. If there is no response for one week between two weeks in which the

ymptom Grouping was met, it is assumed that the interstitial week is a continuation of the previous

eek’s Incident and it is allocated the same Incident ID. For any gaps in responses between Incidents

onger than one week we allocate the second Incident a new Incident ID. This procedure is consistent

ith the existing methodology used by Flutracking Australia and Flutracking New Zealand. 

The incidence calculation is applied independently for each Symptom Grouping. This means that

f a respondent reported one symptom in their first week of illness and two or more symptoms in

he second week, the second week would be recorded as an ‘Incident’ of CLI2+, as though it were the

nset of a new illness. This means that if a participant met the criteria for CLI1+ for three consecutive
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Fig. 3. Curves showing the fraction of responses excluded and the relative change in weekly incidence rate estimates for 

different choices of window size (text labels on the plot) and missing weeks allowed (panels left to right), for each of the 

three Symptom Groupings (colour of points and lines). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

weeks, but met the criteria for CLI2+ only in the first and last weeks, this would be recorded as

two Incidents of CLI2+, as shown in Fig. 2 . This is capturing useful information, as the advice is that

someone with new or worsening symptoms should seek a COVID-19 test. 

While our approach allows for flexible Symptom Grouping criteria to be implemented within the 

methodology, future work may seek to apply more sophisticated, unsupervised learning approaches 

when defining Incidents. While not in the scope of the current research, previous work has

demonstrated that unsupervised learning approaches provide a useful technique for modelling 

heterogeneous symptom experiences among respondents [18] . 

Determining the set of consistent responses 

Flutracking participants are more likely to respond to the survey when they are experiencing

symptoms than when they are well [20] . This symptom reporting bias can lead to overestimating

symptom incidence rates if it is not accounted for. Consequently, it is important to define a subset

of consistent responses to use for incidence rate calculations. These are defined as being the responses,

in a given week, from participants who are deemed to have responded consistently to the survey, as

assessed at that week. 

Previous studies have determined consistent respondents by only considering responses from those 

participants who have completed more than some minimum fraction of all surveys (e.g., [7,10] ). We

improve on this approach by determining a subset of consistent responses for each week of the

analysis, based on the response history of each survey participant for a defined window prior to

the week under consideration. This allows a respondent’s ‘consistent’ status to change from week 

to week. We implement this by looking back over a specified number of weeks (the ‘window size’)

and requiring the participant to have responded in all those weeks, with an allowance for a certain

number of ‘missing weeks’ within the window. This makes it possible to adjust for the known

reporting bias at any given point in time, while still maximising the sample size at the corresponding

time. Our approach also means that analysis can be performed on a weekly basis throughout the year,

rather than only at the end of a year (or season) of data collection. 

In Fig. 3 we plot trade-off curves showing the median fraction of responses excluded and the

median relative change in the weekly incidence estimates as a function of ‘Window size’ and ‘Missing

weeks allowed’. This helps us to determine suitable parameter values for the selection criteria of

consistent responses. For more information on how these effects vary throughout the year, see Figs. 3

and 4 in section B of the Supplementary Material. 

Increasing the number of prior weeks for which a participant must have previously responded

(the response window size) reduces the number of participants included in the ‘consistent response’ 
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Fig. 4. Hypothetical examples for the selected window size of ‘the previous 4 weeks’, and allowing 1 missing response in 

that window. The illustration above shows survey response series for hypothetical respondents A and B . Any weeks with ‘no 

response’ are left uncoloured. For weeks with a response, that response is defined as ‘not consistent’ (pink), or ‘consistent’ 

(green). We can see that for respondent A , the highlighted survey week is considered ‘consistent’ as 3 of the previous 4 survey 

weeks contain a response (even if for each of those previous survey weeks, a response was considered not consistent). For 

respondent B , we can see that the highlighted survey week is considered ‘not consistent’ because 2 out of the previous 4 

survey weeks did not contain a response. ∗ indicate that the survey weeks covering the respondents first three weeks of 

participation are considered not consistent, due to the fact that they have not yet answered enough surveys to meet the 

threshold of consistency. 
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ubset for any given week — that is, the fraction of responses excluded increases with increasing

indow size. Allowing respondents to have skipped some of the weeks in the consistent response

indow means that the responses of some participants are re-included in the consistent response

ubset. 

When we consider the impact of window size and missing weeks allowed on the incidence

stimate we find that a more stringent (i.e. larger) window size reduces the rate of symptom

ncidence calculated for any given week. This is expected from previous work looking at the impact

f reporting bias [20] . The biggest jump is seen when requiring any response in the window prior

o reporting symptom onset (i.e. a one-week window, or a two-week window with one missing

eek allowed, or a three-week window with two missing weeks allowed). Imposing this minimal

onsistent response window results in an immediate decrease of approximately 5% in the incidence

stimate for all Symptom Groupings. We attribute this initial decrease to a correction for the known

ymptom reporting bias — if participants were equally likely to respond in a given week, independent

f symptom incidence, then applying this criterion would not affect the estimated incidence rate. 

Increasing the consistent response window, beyond the minimum, initially causes a decrease in

he number of consistent responses but does not significantly change incidence estimates. However,

urther increasing the window size beyond about four weeks causes both the number of consistent

esponses and the estimated incidence rate to decrease. We attribute this to the more stringent

onsistent response window introducing a different form of bias by increasing the over-representation

f some groups of participants in the sample population — specifically older P ̄akeh ̄a/NZ European

ohorts who tend to have lower incidence rates — see for example Fig. 5 . 

While our method allows for the user to choose any consistent respondent window size and any

umber of missed weeks within that, we have chosen in our subsequent analysis to use a window size

f four weeks with up to one missing week. This defines a consistent response subset where small

hanges in the window size do not result in significant changes in the resulting incidence rate and

here the fraction of responses included in the sample population for a given week is not too severely

educed, in part due to the fact that the Flutracking survey allows respondents to retrospectively enter

esults for up to four weeks into the past. We provide two examples of the selected values for window

ize and allowed missing responses using hypothetical response series illustrated in Fig. 4 . 

ccounting for self-selection biases: age weighting 

There are several demographic biases in the Flutracking cohort with registration rates differing by

ge, ethnicity and location of respondents, see section A of the Supplementary Material for more
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Fig. 5. Average number of new incidents per person for the year between 27th April 2020 and 25th April 2021, by five-year 

age groups (error-bars represent 95% confidence intervals). This only considers respondents who submitted at least 50 surveys 

over the year. In terms of Symptom Groupings, overall we see that incidents of CLI1+ are more common than CLI2+ and ILI. We 

can also see that the highest level of incidence, across all three Symptom Groupings, is experienced by those in the 0–4 year 

old age group. 

 

 

 

 

details. If any of these self-selection biases also align with a corresponding variation in incidence rates

along the same demographic factor, then it will contribute to an under- or over-estimate of incidence

for the total population. 

The strongest factor affecting incidence estimates is age (see Fig. 5 ), with younger ages, particularly

0–4 years, tending to have higher incidence across CLI1+, CLI2+, and ILI Symptom Groupings. 

Therefore, we adjust our incidence estimates to account for the relative number of respondents in

the survey population according to age each week. 
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Although there is a relationship between ethnicity and incidence of several respiratory illnesses

n Aotearoa New Zealand [2,3] , it can be unhelpful to treat ethnicity as a predictive factor for these

llnesses. Research has found that factors including socioeconomic deprivation, household crowding,

nd housing quality, are all associated with increased incidence of respiratory infections [3,17,31] , and

hat these are highly correlated with ethnicity [17] . These same underlying factors are also likely to

ontribute to a participant selection bias within the Flutracking survey. Under-representation of lower

ocio-economic groups has also been noted within similar participatory surveys for Influenza. [23] 

The low response rate in Aotearoa New Zealand Flutracking data for ethnic groups other than

 ̄akeha/NZ European, combined with the under-representation of lower socio-economic groups, mean

hat it is unlikely that the sampled population of non-P ̄akeh ̄a ethnicities in Flutracking is truly

epresentative of those groups in the wider population. Therefore, weighting based on ethnicity alone

ay actually amplify selection biases rather than mitigating them. For this reason, although it is

ossible using our method, we do not calculate or re-weight symptom incidence by ethnicity. We

ote that the current re-weighting methodology is easily able to be applied to ethnicity or socio-

conomic status, should Flutracking enrolment be sufficiently broad that responses are representative

f these groups. In order to avoid this limitation in future studies, we point to previous research on

est practice for participatory surveillance data collection [8,25] . 

The reference population used for the age weightings presented in this method is the 2021

stimated Residential Population, calculated by Statistics NZ with 5-year age groups and spatial units

f District Health Board (DHB) of residence [26] . However, any other source of reference population

ata can be used, provided that it can be mapped on to the age (1-year age bands) and location

Aotearoa New Zealand postcode) groupings used in the Flutracking data. In general, it is better to

se higher levels of aggregation (e.g. 5-year age groups) and DHB. This is in order to avoid the low

esponse numbers per analysis unit, and consequent lower statistical power and increased uncertainty,

hat a more granular aggregation will lead to. 

In order to weight survey responses according to participant age, we use the rake function

rovided in R’s survey package [21] to assign a weighting coefficient to each response. The process

f raking matches the marginal distribution of ages from the survey respondents with those of a

eference population. 2 The raking can be applied at any level of aggregation appropriate to the

eported results, with the caveat that fine-grained aggregation can lead to small cell sizes which may

imit the statistical power of results in some cases. 

When analysing responses for sub-national spatial units (e.g. DHBs), we calculate the age weighting

actor for each age group with respect to the age distributions for each of the corresponding

ub-national units. However, for analysis at a national level, we calculate only national level age

eightings, rather than combining sub-national weighting factors. This avoids the pit-fall of national

evel weighting factors inheriting lower statistical power and increased uncertainty from small cell

izes for some location-age combinations. 

onstructing mean incidence estimates with 95% confidence intervals 

Constructing confidence intervals for weighted survey data is non-trivial. We construct estimates

f mean incidence with 95% confidence intervals for each survey week for a given set of demographic

actors and Symptom Groupings using the survey package in R [21] , incorporating the age weighting

reviously computed in Section 1 . The 95% confidence intervals for each survey week can be turned

nto 95% pointwise confidence bands across survey weeks. 

We first create a ‘survey design’ object using our set of consistent responses, their incidence

lassification and weighting, and other relevant factors such as their survey week, age group, and

ocation. This survey design object is then passed to the svyby function, which independently

alls the svyciprop function for each subset in a set of factors and outputs the estimated mean

ncidence and 95% confidence intervals for each subset. svyciprop has several methods of producing

onfidence intervals; we use its logistic regression method ( logit ). An example set of factors

ould be Symptom Grouping and survey week, as in Fig. 6 . One independent subset used in these
2 Since this is specified in 5-year age groups, sets of ages must also consist of combinations of 5-year age groups. 
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Fig. 6. Weekly incidence estimates for the whole of Aotearoa NZ, for three different Symptom Groupings (CLI1+, CLI2+, and ILI) 

for the year between 27th April 2020 and 25th April 2021 (shaded areas represent 95% pointwise confidence bands). Alert levels 

[15] (AL2 and AL3 — AL3 is stronger restrictions than AL2) are shaded. We observe periods of reduced incidence during these 

elevated Alert Levels periods, as well as some spikes in incidence when the Alert Level is set at 1 (no restrictions), including in 

July 2020 — during the winter in Aotearoa New Zealand). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculations is the Symptom Grouping ‘CLI1+’ and the Survey Week ending on Sunday the 31st of May

2020. 

The process used by svyby and svyciprop is equivalent to fitting a weighted logistic regression

model, where every subset in a set of factors is fitted independently such that the fitted value of any

subset in the set of factors is equal to the weighted mean incidence of that subset. Thus the same

model could have been fitted using the svyglm function from the survey package and then fitting

interaction effects between all factors. In order to do this, a quasi-binomial model family needs to be

used in svyglm [21] because the use of survey weights may make the number of ‘Incidents’ non-

integer. However, as we were mainly concerned about the fitted means and confidence intervals for

each subset rather than fitted values of regressors and their significance, we did not do this in general.

Additionally, our process makes it very simple to extract confidence intervals for our estimates, which,

while not too difficult (e.g. using a non-parametric bootstrap [11] ), is not nearly as straightforward to

do with the fitted model returned by svyglm . 
The only exception to this, is that in order to consider the significance of differences in incidence

for a given Symptom Grouping, as seen in Fig. 9 , we did need to use svyglm to test whether the

difference in the estimated mean incidence between two locations on a given week was statistically

significant (i.e. if the p-value for the Auckland Metro DHBs coefficient was less than 0.05). 

Method demonstration 

We demonstrate the method outlined above by applying it to Flutracking data from Aotearoa New

Zealand for the period from the survey week ending Sunday 3rd May 2020 to the survey week

ending Sunday 25th April 2021. During this period there was no widespread community transmission 

of SARS-CoV-2 (the virus that causes COVID-19 disease) in Aotearoa New Zealand. The Elimination 

Strategy the country employed during this period meant that any detection of SARS-CoV-2 in the

community was immediately followed by a system of transmission reduction measures known as Alert 

Levels [15] , which included school closures and stay-at-home orders. 

R code and supporting example data that demonstrates the application of this methodology 

can be found at https://gitlab.com/cma- public- projects/flutracking- methods- article [1] . All plots are

generated using the ggplot2 package [30] in R [28] , with the code used to generate the figures

available at [1] . 

Fig. 6 presents the weekly incidence estimates for the whole of Aotearoa New Zealand and for the

CLI1+, CLI2+, and ILI Symptom Groupings after adjusting for consistent responses and age weighting. 

https://gitlab.com/cma-public-projects/flutracking-methods-article
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Fig. 7. Change in weekly incidence estimates, due to adjusting for symptom reporting bias by considering only ‘consistent 

responses’ (top), adjusting using age re-weighting (middle), and adjusting for both (bottom), relative to baseline (naive) weekly 

incidence estimates where all responses are used and there is no age re-weighting. 

C  

o  

i  

i  

p  

i

 

a  

r  

t  

s  

o  

 

i  

F  

h  

t  

o  

i  

r  

w  

I  

i

 

m  
onsistent responses were weighted by age at a national level, as per Section 1 . Survey week was the

nly variable used to explain incidence for each Symptom Grouping. The effect of elevated Alert Level

nterventions (indicated on the chart as shaded regions) are clearly seen in the reduction of symptom

ncidence for all Symptom Groupings. That is, the transmission reduction measure put in place to

revent the spread of SARS-CoV-2 also reduced the incidence of other symptoms for respiratory

llnesses in general. 

Fig. 7 shows the effect of adjustments to the incidence estimates in Fig. 6 for consistent responses

nd age weighting. Adjusting incidence estimates to include only the population of consistent

esponses shows an almost universal reduction in incidence rates, by around 5%. This is due to

he removal of respondents who are preferentially (or exclusively) completing the survey when

ymptomatic, as has been observed in previous analysis [20] . This effect decreased in February–April

f 2021, and coincides with a very stable population of Flutracking survey respondents in this period.

When (national level) age-weightings are applied to the incidence estimates, we see an increase

n the calculated incidence rate. This is due to younger participants being under-represented in

lutracking responses, relative to the reference population. Younger participants also tend to have

igher rates of symptom incidence ( Fig. 8 ), hence up-weighting their responses to follow those of

he underlying population increases the overall symptom incidence estimates. The size of the effect

ver the survey period is shown in Fig. 7 . The size of this effect is not constant over time. The

nitial half of the survey period saw a higher number of responses from younger participants. When

esponses from younger participants fell in the latter half of the survey period, the effect due to age-

eighted adjustment increased. This is most pronounced in the relative change in incidence rate for

LI symptoms in the age-weighted effect shown in Fig. 7 (middle panel), due to the much higher

ncidence of ILI symptoms in younger age groups. 

Finally, we note that while the relative adjustments for the CLI1+ and CLI2+ incidence rates are

ostly smoothly varying over time, the weighting factors applicable to the ILI Symptom Grouping
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Fig. 8. Weekly incidence estimates by selected age bands, for the whole of Aotearoa New Zealand, for the CLI1+, CLI2+, and 

ILI Symptom Groupings (shaded areas represent 95% pointwise confidence bands). Alert Levels (AL2 and AL3) are indicated by 

shaded regions, where grey shaded regions are when the restrictions were applied nationwide, and green shaded regions are 

where they were applied only to the Auckland region. Black lines indicate the beginning of school term periods. 

Fig. 9. Weekly incidence estimates for the ILI Symptom Grouping split by location (Auckland Metro DHBs and Rest of New 

Zealand, shaded areas represent 95% pointwise confidence bands). Stars indicate weeks when the difference in incidence 

estimate is statistically significant for the Auckland Metro DHBs, relative to the Rest of New Zealand. Alert levels (AL2 and 

AL3) are indicated by shaded regions. 
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re more volatile due to low total rates of ILI symptoms in Aotearoa New Zealand from early 2020

nward. 

Fig. 8 shows the incidence of CLI1+, CLI2+, and ILI symptoms, broken down by age. Responses

rom consistent responses were weighted by age at a national level, per Section 1 . Survey week, age

and and the interaction effects between the two were used to explain incidence for each Symptom

rouping. The higher rates of incidence for younger age bands is strongest for ILI symptoms. Under-

ves have 1.5–2 times the incidence rate of the next highest incidence age band for the CLI2+

ymptom Grouping, and 3–4 times higher for ILI symptoms. 

Fig. 9 shows weekly incidence estimates for ILI split by location for Auckland Metro DHBs and

he Rest of New Zealand. Consistent responses were weighted by age using the age distributions

n the Auckland Metro DHBs and the Rest of New Zealand separately, as per Section 1 . Survey

eek, location and the interaction effects between the two were used to explain incidence for ILI.

lert Level interventions designed to prevent the spread of SARS-CoV-2 [15] , including those that

ere principally applied to Auckland alone, are indicated by shaded green regions. The effect of

hese regional interventions is clearly seen in the difference in incidence estimates. The Auckland

etro DHBs have much lower incidence numbers during periods of elevated Alert Levels (stronger

estrictions) relative to the rest of the country. 

onclusion 

In this article, we have described an approach for calculating incidence estimates and

orresponding confidence intervals for longitudinal participatory health survey data, such as that

roduced by Flutracking . Our method allows for analysis of arbitrary Symptom Groupings — including

wo Symptom Groupings developed here for relevance to the COVID-19 response in Aotearoa

ew Zealand. Our method has several advantages over existing methods for analysis of similar

ata; namely that it defines a subset of consistent responses for use in calculating incidence

stimates; and that it uses re-weighting of responses by participant sub-group in order to account

or registration bias. Both of these adjustments increase the rigour and accuracy of the resulting

ncidence calculations, compared with methods in current use. We have demonstrated our method

nd quantified the effect of our methodological improvements by applying it to Flutracking data for

otearoa New Zealand over a period where symptom incidence was affected by a range of COVID-

elated behavioural changes and government interventions. 
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