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a b s t r a c t 

Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope 

with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning 

goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This 

creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards 

the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and 

empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. 

In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors 

shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and 

circular sorting of change scores are selection practices that result in artifactual changes even without circular 

data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in 

previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight 

the urgency for us researchers to make the validation of analysis pipelines standard practice. 
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1 Note that random noise is only one factor weakening the correlation between 

two variables (for more details, see Shanks, 2017 ). 
2 To be precise, regression towards the mean refers to standard scores ( 𝑧 - 
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. Introduction 

Data binning refers to grouping observations into bins or subgroups

nd calculating bin-wise summary statistics, such as the arithmetic

ean. It is often applied to large datasets in order to prevent overplot-

ing and control noise. As such, data binning has become commonplace

n population receptive field (pRF) modeling ( Dumoulin and Knapen,

018; Dumoulin and Wandell, 2008 ), where researchers are commonly

nterested in comparing visual field maps with thousands of observa-

ions between different (experimental) conditions. However, pRF mod-

ling is only one out of several research areas where some form of dif-

erential data binning has been adopted (e.g., Gignac and Zajenkowski,

020; Holmes, 2009; Kriegeskorte et al., 2009; Preacher et al., 2005;

hanks, 2017 ). 

Although data binning can help us see an overall pattern in the face

f an abundance of details, it goes awry if the same observations are

sed for binning (selection) and contrasting (selective analysis). This is

ecause dipping into noise-tainted data (i.e., most data) more than once

iolates assumptions of independence, favoring some noise components

ver others and eventually biasing descriptive and inferential statistics

 Kriegeskorte et al., 2009 ). As such, double-dipping in data binning pre-

ents us from – amongst other things – controlling for regression towards
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he mean (e.g., Galton, 1886; Gignac and Zajenkowski, 2020; Holmes,

009; Makin and De Xivry, 2019; Shanks, 2017; Stigler, 1997 ). 

Regression towards the mean is a statistical artifact occurring when

wo variables are imperfectly correlated (e.g., due to random noise 1 ). In

his case, extreme observations for one variable will on average be less

xtreme for the other 2 (e.g., Campbell and Kenny, 1999; Cohen et al.,

003; Galton, 1886; Shanks, 2017; Stigler, 1997 ). The magnitude of re-

ression towards the mean tends to be higher the lower the correlation

etween the variables (e.g., Campbell and Kenny, 1999 , for systematic

imulations, see Holmes 2009 ). 

Double-dipping and/or regression towards the mean are of particular

oncern in what is known as post hoc subgrouping ( Preacher et al., 2005 ),

ost hoc data selection ( Shanks, 2017 ), and extreme groups approach

 Preacher et al., 2005 ), all of which can be considered as subtypes of data

inning. Post hoc subgrouping refers to collecting two measures, defin-

ng extreme subgroups post hoc using one measure (e.g., the lower and

pper quantile), and then performing statistics on these measures for
cores; Campbell and Kenny, 1999; Kenny, 2005 ). 
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Fig. 1. Simulated post hoc binning analysis on fictive 

body weight data. Bin-wise fictive body weight data and 

means for Today and Tomorrow in the same group of adults 

and different data binning scenarios. Data for Today and To- 

morrow were either binned according data for Today (1 st col- 

umn) or an Independent test occasion (2 nd column). Fictive 

body weight data were simulated by sampling the body weight 

of 1000 adults from a Gaussian distribution ( 𝑀 = 70 kg; 𝑆𝐷 = 
10 kg) and disturbing each adult’s body weight with random 

Gaussian noise ( 𝑆𝐷 = 10 kg), separately for each test occa- 

sion (Today, Tomorrow, and Independent). The red horizon- 

tal lines indicate the location of the overall mean for Today 

and Tomorrow. Dark brown colors correspond to lower and 

dark blue-green colors to higher decile bins. The endpoints of 

the colorful lines represent individual data points and the col- 

orful dots with the black outline bin-wise means. Note that 

the graphs displayed here are referred to as Galton squeeze 

diagrams ( Campbell and Kenny, 1999; Galton, 1886; Shanks, 

2017 ). 
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Fig. 2. Population receptive field estimates. The large black square outline 

represents a cutout of the visual field and the black dashed arrows a Cartesian 

coordinate system. The two circles represent a pRF that changes its position 

(gray solid line) in an Interest (magenta) compared to a Baseline (gray) con- 

dition. The pRF was modeled as a 2D Gaussian function. The center of the 2D 

Gaussian (midpoint of the gray and magenta circles) represents the position of 

the pRF. PRF position can be expressed in terms of 𝑥 0 and 𝑦 0 coordinates (green 

arrow heads) or eccentricity (blue dashed line) and polar angles (orange solid 

line). Eccentricity corresponds to the Euclidean distance between the center of 

gaze (origin) and the center of the 2D Gaussian. Polar angle corresponds to the 

counter-clockwise angle running from the positive 𝑥 -axis to the eccentricity vec- 

tor. The standard deviation of the Gaussian (1 𝜎; black solid line) represents pRF 

size. Both pRF position and size are typically expressed in degrees of visual an- 

gle. Polar angles are typically expressed in degrees. Ecc = Eccentricity. pRF = 
Population receptive field. 
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he extreme subgroups ( Preacher et al., 2005 ). Post hoc data selection is

imilar but involves only one extreme subgroup ( Shanks, 2017 ). Both of

hese practices are different from the extreme groups approach, where

xtreme subgroups are selected a priori based on one measure; that is,

ithout collecting the whole range of the other measure ( Preacher et al.,

005 ). Here, we focus on a post hoc scenario where essentially all sub-

roups are considered, not just the extreme ones (see also Gignac and

ajenkowski, 2020; Holmes, 2009 ). We label this procedure including

ts subtypes post hoc binning analysis . 

An intuitive way to think about the link between double-dipping,

egression towards the mean, and post hoc binning are repeat data. As-

ume we measure body weight in a population of adults twice – Today

nd Tomorrow (see endpoints of colorful lines, Fig. 1 ; 1 st column). Fur-

her assume that any weight we measure involves a permanent and a

ransient component (true value + random noise). When determining

oday’s and Tomorrow’s overall mean weight, all things being equal,

he permanent component persists and the transient component cancels

ut (see red horizontal lines, Fig. 1 ; 1 st column). However, this is not the

ase when we select adults with extremely high measurements for To-

ay (relative to the overall mean) and compare these measurements to

omorrow’s in the same adults by calculating the means (see lines and

ots in dark green color, Fig. 1 ; 1 st column). This is because we used

oday’s measurements twice: for selection (binning) and selective anal-

sis (comparing bin-wise means). We therefore favored Today’s noise

omponents over Tomorrow’s. Why is this? The noise components of

ur selection criterion are not independent of the noise components of

oday’s measurements. This renders the subgroup we selected Today

n average heavier than it really is. This is not the case for Tomorrow’s

easurements. As a result, Tomorrow’s measurements for this subgroup

egress on average to Tomorrow’s overall mean (see dots in dark green

olor, Fig. 1 , 1 st column; for a similar example see Stigler, 1997 ). This

rtifactual change in average weight might look like a real phenomenon,

lthough – of course – it is not. 

The analysis we just performed can be regarded as an instantiation

f post hoc data selection involving one extreme subgroup. If we addi-

ionally select a subgroup of adults with extremely low measurements

or Today (see lines and dots in dark brown color, Fig. 1 ; 1 st column),

egression towards the overall mean from below occurs for this sub-

roup. Such an approach would qualify as post hoc subgrouping involv-

ng two extreme subgroups. If we incorporate additional less extreme

ubgroups, we perform a full-blown post hoc binning analysis (see lines

nd dots in various colors, Fig. 1 ; 1 st column), where the bin-wise means

or Tomorrow’s measurements regress towards the overall mean to vari-

us degrees. Importantly, this regression artifact is a statistical necessity

ot hinging upon body weight data. Once we use Independent data for
2 
inning purposes (e.g., body weight measurements collected for the day

fter tomorrow), we break the circularity, and the regression artifact

isappears ( Fig. 1 , 2 nd column). 

How does all of this relate to post hoc analyses involving pRF data?

magine we conduct a retinotopic mapping experiment ( Dumoulin and

andell, 2008 ), where we estimate pRF position and pRF size for each

oxel in the visual brain under a Baseline condition as well as a condi-

ion of Interest (see Fig. 2 for a single pRF). We can think of the Interest

nd Baseline conditions as repeat data (e.g., Benson et al., 2018; van

ijk et al., 2016; Senden et al., 2014 ), different attention conditions
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3 Note that when evaluating data distributions with unequal means, variances, 

or non-linearity, 𝑧 -standardization might be necessary to detect regression to- 

wards or away from the mean ( Campbell and Kenny, 1999; Shanks, 2017 ). In 

particular, 𝑧 -standardization makes data distributions directly comparable. As 

such, bin-wise means should regress to wherever they intersect the identity line. 

Here, we always display data in native space, as this is typically done in the pRF 

literature. However, we use crosshairs to indicate the location of the mean and 

thus provide a visual guideline. 
e.g, van Es et al., 2018; de Haas et al., 2014; 2020; Klein et al., 2014;

o et al., 2017 ), mapping sequences (e.g., Binda et al., 2013; Infanti

nd Schwarzkopf, 2020 ), mapping stimuli (e.g., Alvarez et al., 2015;

inda et al., 2013; Le et al., 2017; Yildirim et al., 2018 ), magnetic

eld strengths (e.g., Morgan and Schwarzkopf, 2020 ), scotoma condi-

ions (e.g., Barton and Brewer, 2015; Binda et al., 2013; Haak et al.,

012; Prabhakaran et al., 2020 ), and pRF modeling techniques (e.g.,

arvalho et al., 2020 ) – to name but a few examples. Similarly, apart

rom visual scenarios, we can also interpret the Baseline and Interest

ondition as adaptation conditions (e.g., Tsouli et al., 2021 ), different

nger movements (e.g., Schellekens et al., 2018 ), or uni- and multisen-

ory conditions (see Holmes, 2009 , for a discussion on non-pRF work). 

As a pRF model, we adopt a 2D Gaussian, where pRF position rep-

esents the center of a pRF in visual space (the center of the Gaussian)

nd pRF size its spatial extent (the standard deviation of the Gaussian;

ee Fig. 2 ). We then fit this model to the voxel-wise brain responses we

easured in the retinotopic mapping experiment ( Dumoulin and Wan-

ell, 2008 ). To compare pRF positions in the Interest and Baseline con-

ition voxel-by-voxel, we bin the pRF positions from both conditions ac-

ording to the pRF positions from the Baseline condition. Subsequently,

e quantify for each voxel the position shift from the Baseline to the

nterest condition (see Fig. 2 for a single pRF). Finally, we calculate the

in-wise mean shift. This is equivalent to calculating the bin-wise simple

eans for each condition and comparing them subsequently. 

Either way, by adopting such a post hoc binning analysis, we essen-

ially assume that binning voxels according to pRF positions from the

aseline condition and aggregating them subsequently for this condition

nsures that bin-wise noise components are unbiased on average (see

lso Shanks, 2017 ). This, however, is not the case. The underlying rea-

on is the same as for our body weight analysis further above: we dipped

nto the Baseline condition twice, namely to define bins (selection) and

o estimate bin-wise means for further comparison (selective analysis).

his circularity leads to a favoring of noise components, skewing the

in-wise means in the Baseline condition and eventually resulting in re-

ression towards the overall mean for the bin-wise means of the Interest

ondition. 

Here, we expose and explore this flaw in the scope of post hoc analy-

es of pRF data using (null) simulations and empirical repeat data from

he Human Connectome Project (HCP; Benson et al., 2018; 2020 ). Un-

ike empirical data, simulations allowed us to separate true values from

oise components. They also provided an excellent test bed for deter-

ining that the type of data analysis (change scores or simple scores,

D or 2D binning, equidistant or decile binning), data properties (pres-

nce or absence of heteroskedasticity or a true effect) and additional

ircular selection practices (presence or absence of circular data clean-

ng) influence the appearance of the regression artifact. Moreover, they

llowed us to pinpoint that circular data cleaning and circular sorting of

hange scores represent selection practices that yield artifactual changes

ven without circular data binning. Unlike empirical data from different

xperimental conditions, repeat data permitted us to assume a null ef-

ect between conditions, allowing for more straightforward conclusions

bout any systematic differences we might observe. 

. Methods 

.1. Post hoc binning using simulated data 

For the post hoc binning analysis involving simulations, we used an

mpirical V1 visual field map of a single human participant as a ba-

ic data distribution. This map originated from a functional magnetic

esonance imaging experiment (fMRI) aimed at mapping pRFs under

ifferent attention conditions using a drifting bar stimulus (2 sessions

ach with 4 runs per condition). One of these conditions was selected for

imulation purposes. The maximal eccentricity of the mapping area sub-

ended 8.5 degrees of visual angle (dva). We fit a 2D Gaussian function

o preprocessed fMRI responses projected onto the cortical surface. For
3 
ach vertex (gray matter node on the cortical surface), we obtained 6 es-

imates: pRF position ( 𝑥 0 and 𝑦 0 coordinates), pRF size ( 𝜎), pRF baseline

 𝛽0 ), pRF amplitude ( 𝛽1 ), and goodness-of-fit ( 𝑅 

2 ). We first smoothed the

esulting parameter maps and delineated V1 hemifield maps manually

for more details, see Supplementary methods, 1. Retinotopic mapping

xperiment). We then pooled the 𝑥 0 and 𝑦 0 coordinates across V1 hemi-

eld maps and removed empty data points. 

.1.1. 1D post hoc binning analysis on eccentricity 

To uncover the regression artifact, we first simulated a simplified

ontrast scenario with a null effect. To this end, we disturbed the 𝑥 0 and

 0 coordinates ( Fig. 2 ) 200 times with random Gaussian noise ( 𝑆𝐷 = 2

va). We repeated this to generate a Baseline, Interest , and Independent

ondition. We then converted the 𝑥 0 and 𝑦 0 coordinates to eccentricity

alues ( Fig. 2 ), as is often done in the pRF literature (see Fig. s1 for

nterpretational difficulties with eccentricity when it comes to position

hifts). This resulted in a gamma-like eccentricity distribution. Lastly,

e binned the eccentricity values in the Baseline and Interest condition

ccording to the eccentricity values of any of the 3 conditions using

eciles and calculated the bin-wise means. 3 A schematic workflow of

his simulated 1D post hoc binning analysis can be found in Fig. 3 . Bin-

ise eccentricity means were visualized as a color-coded scatter plot

long with individual observations per bin and marginal histograms (bin

idth = 0.5 dva) reflecting the simulated distributions. 

Building upon the simulated null effect, we performed the 1D post

oc binning analysis on 4 more simulation cases: a null effect with con-

ition cross-thresholding based on the Baseline condition, a null effect

ith condition cross-thresholding based on both the Baseline and Inter-

st condition, a null effect with eccentricity-dependent noise, and a true

ffect. We use the term ‘condition cross-thresholding’ to refer to the pair-

ise or list-wise deletion of data points across experimental conditions

see below). The selected simulation cases reflect analysis practices and

ata properties we consider characteristic of pRF studies. For all simu-

ation cases, the Independent condition consisted of a second draw (re-

ample) of the Baseline condition. Moreover, to ensure reproducibility

nd comparability, all simulation cases were based on the same seed for

andom number generation. However, our conclusions do not depend

n the choice of seed for random number generation. 

For the simulation cases involving condition cross-thresholding, we

emoved simulated observations falling outside a certain eccentricity

ange ( ≥ 0 and ≤ 6 dva) in the Baseline or Baseline and Interest condi-

ion from all conditions (i.e., Baseline, Interest, and Independent). For

he simulation case involving eccentricity-dependent noise, we used a

mall standard deviation ( 𝑆𝐷 = 0.25 dva) of random Gaussian noise to

isturb empirical observations with smaller eccentricities ( ≥ 0 and < 3

va) and a larger standard deviation ( 𝑆𝐷 = 2 dva) to disturb empirical

bservations with larger eccentricities ( ≥ 3 dva). For the simulation case

nvolving a true effect, we induced a radial increase in eccentricity of 2

va in the Interest condition. 

Apart from simple bin-wise means, we performed the 1D post hoc

inning analysis also on change scores. The change scores were obtained

y subtracting individual simulated observations or means in the Base-

ine condition from those in the Interest condition. Both simple means

nd mean change scores have been used for post hoc binning in previous

RF studies (e.g., Barton and Brewer, 2015; Binda et al., 2013; Carvalho

t al., 2020; Haak et al., 2012; de Haas et al., 2014; 2020; Prabhakaran

t al., 2020; Tsouli et al., 2021; Yildirim et al., 2018 ). Similarly, we re-
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Fig. 3. Schematic workflow of 1D post hoc binning analysis on simulated eccentricity data | Null effect. Ecc = Eccentricity. 
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a  
eated the binning analysis using equidistant instead of decile binning.

o this end, we used a constant bin width of 1.75 dva and an overall

inning range of 0 to 19.25 dva eccentricity. Unlike equidistant binning,

ecile binning ensures a roughly equal number of data points in each

in, which facilitates the interpretation of results. However, we consider

quidistant binning as the most common binning type in the pRF liter-

ture. For both the change score analysis and equidistant binning, we

sed the simulation case involving a null effect as a data basis. 

.1.2. 2D post hoc binning analysis on 𝑥 0 and 𝑦 0 
Apart from the 1D binning analysis on eccentricity, we also con-

ucted a 2D binning analysis on the simulated 𝑥 0 and 𝑦 0 values. To

his end, we converted the 𝑥 0 and 𝑦 0 values to polar coordinates; that

s, polar angle and eccentricity ( Fig. 2 ). We then binned the 𝑥 0 and 𝑦 0 
alues in the Baseline or Interest condition according to their polar coor-

inates in the Baseline, Interest, or Independent condition using equidis-

ant bins and calculated the bin-wise 𝑥 0 and 𝑦 0 means for each condition.

he condition-wise means were visualized as vector graphs along with

arginal histograms (bin width = 0.5 dva) illustrating the simulated dis-

ributions. Vector graphs have been used in prior pRF work (e.g., van

s et al., 2018; Klein et al., 2014; Vo et al., 2017 ). The 2D binning anal-

sis was performed for all aforementioned simulation cases. The polar

ngle bins ranged from 0 × to 360 × with a constant bin width of 45 ×.

he eccentricity bins ranged from 0 to 22 dva (for the simulation case

nvolving a true effect) or from 0 to 20 dva (for all other simulation

ases) with a constant bin width of 2 dva. 

.2. Post hoc binning using empirical repeat data 

For the post hoc binning analysis on repeat data, we used

ublicly available pRF estimates from the HCP 7 T Retinotopy

ataset ( Benson et al., 2018; 2020 ). These estimates stem from

 split-half analysis where a 2D isotropic Gaussian with a sub-

dditive exponent ( Kay et al., 2013 ) was fit to fMRI time series

rom the first and second half of 6 pRF mapping runs. For each

alf, 6 estimates were obtained for each grayordinate (vertex;

ttps://wiki.humanconnectome.org/display/WBPublic/Workbench+ 

lossary ); that is, pRF polar angle, pRF eccentricity, pRF size, pRF

ain, percentage of 𝑅 

2 , and mean signal intensity. The maximal eccen-

ricity of the mapping area subtended 8 dva. For further details, see

enson et al. (2018) . 

Following Benson et al. (2018) , we analyzed complexes of visual ar-

as across hemispheres for the 25 th and 75 th percentile participants of
4 
he 𝑅 

2 distribution using delineations from Wang et al.’s (2015) atlas.

enson et al. (2018) generated the 𝑅 

2 distribution by calculating the

edian 𝑅 

2 for each participant across grayordinates from both corti-

al hemispheres within all areas of Wang et al.’s (2015) atlas. For our

urposes, we focused on the posterior complex (V1-V3) and the dor-

al complex (V3A/B and IPS05), as those came with a larger number

f available data points (which was, amongst other things, necessary to

erform the 2D post hoc binning analysis and generate vector graphs). 

To obtain 𝑥 0 and 𝑦 0 values, polar angle and eccentricity estimates

ere converted to Cartesian coordinates. The eccentricity, 𝑥 0 , and 𝑦 0 
alues of the first half were used as a Baseline condition and those of

he second half as an Interest condition. Similar to the simulation-based

nalyses, binning was either based on the Interest or Baseline condition

nd bin-wise means were calculated. Moreover, binning was either per-

ormed without or with condition cross-thresholding. As for the latter

ase, we removed observations outside a certain eccentricity range ( ≥

 and ≤ 8 dva) or below a certain 𝑅 

2 cut-off ( ≤ 2.2%) in the Baseline

r Baseline and Interest condition from both conditions. The 𝑅 

2 cut-off

as adopted from Benson et al. (2018) . 

We then performed a 1D binning analysis on eccentricity and a 2D

inning analysis on 𝑥 0 and 𝑦 0 as we did for the simulated data. How-

ver, here, the eccentricity bins for the 2D analysis ranged from 0 to

8 dva with a constant bin width of 2 dva. All binning analyses and

isualizations (including those on simulated data) were implemented

n Matlab 2016b (9.1; https://uk.mathworks.com/ ) using custom code

 Data and code availability ). The color scheme used for color-coding

as an adapted version of the BrBG palette from ColorBrewer (2.0;

rewer et al., 2021 ) retrieved via R (3.5.3; R Core Team, 2018 ) and

he package RColorBrewer (1.1-2; Neuwirth, 2014 ). 

. Results and discussion 

.1. The many faces of regression towards the mean and other problems 

To expose the regression artifact, we repeatedly perturbed the 𝑥 0 
nd 𝑦 0 values of an empirical visual field map with random Gaussian

oise to generate a Baseline and Interest condition. We then converted

he 𝑥 0 and 𝑦 0 values to eccentricity. Subsequently, we binned the ec-

entricity values of either condition according to eccentricity values in

he Baseline condition using deciles and calculated bin-wise means. The

in-wise means from both conditions were plotted against one another

long with individual observations per bin and marginal histograms re-

https://wiki.humanconnectome.org/display/WBPublic/Workbench+Glossary
https://uk.mathworks.com/
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ecting the simulated distributions 4 ( Fig. 4 , 1 st column). Since there was

o true difference between conditions, the bin-wise means should lie

n the identity line. Contrary to this prediction, they systematically di-

erged from the identity line. Strikingly, when using the Interest instead

f the Baseline condition for binning, this systematic pattern of diver-

ence flipped ( Fig. 4 , 2 nd column). This bidirectionality is a typical sign

f regression towards the mean ( Campbell and Kenny, 1999; Shanks,

017 ) and due to circularity. This leads to asymmetric bins (see bin-wise

anges of observations for the Baseline and Interest condition, Fig. 4 , 1 st 

nd 2 nd columns) and on average biases bin-wise noise components for

he condition that was used for contrasting and binning (henceforth cir-

ular condition). On the contrary, for the other condition (henceforth

on-circular condition), this is not the case. 

The skew in average noise renders the bin-wise eccentricity means

f the circular condition more extreme, especially for lower and higher

ecile bins. As a result, the bin-wise eccentricity means for the non-

ircular condition regress – by statistical necessity – to the overall mean 5 

or this condition (red crosshair); that is, they are less extreme. This be-

omes clear when looking at the different ranges of bin-wise means for

he circular and non-circular conditions ( Fig. 4 , 1 st and 2 nd columns).

f the Interest condition is then contrasted to the Baseline condition,

 mean increase in eccentricity for lower deciles and a mean decrease

or higher deciles or vice versa occurs, depending on whether the data

re binned on the Baseline or Interest condition ( Fig. 4 , 1 st and 2 nd 

olumns). This artifact arises because we did not always use indepen-

ent conditions for binning and contrasting; that is, conditions with in-

ependent noise components. 

Apart from simple means (e.g., Binda et al., 2013; Carvalho et al.,

020; Haak et al., 2012; Yildirim et al., 2018 ), post hoc binning analyses

ave also been performed on change scores in previous pRF studies (e.g.,

arton and Brewer, 2015; de Haas et al., 2014; 2020; Prabhakaran et al.,

020; Tsouli et al., 2021 ). Here, the difference between the Interest and

aseline condition is typically plotted against the binning (i.e., circular)

ondition ( Fig. 5 , A., 1 st and 2 nd columns). Consequently, the bin-wise

eans now regress to the overall mean of the change score distribution

see also Gignac and Zajenkowski, 2020; Holmes, 2009 ) and bin-wise

oise components are neither unbiased for the change scores nor the

inning conditions. This is because the noise components of the change

cores are not independent of those in either binning condition. What is

ore, scatter plots of change scores disguise important aspects readily

vailable with scatter plots of simple scores. Specifically, they prevent

s from directly appreciating the larger bin-wise range of eccentricity

eans for the circular as compared to the non-circular condition (see

xplanations further above and compare Fig. 5 , A., and Fig. 4 , 1 st and

 

nd columns). This makes it difficult to spot the source of the problem

raphically when only looking at a single plot. On the other hand, since

oth the 𝑥 - and 𝑦 -axis feature the Baseline or Interest condition and

ither of these conditions are used for data binning, the act of double-

ipping becomes much more obvious. 

Critically, scattering change scores against one of the conditions in-

olved in change score calculation also results in a biased visualization

f individual change scores. This is because the noise components of the

ariables on the 𝑥 - and 𝑦 -axis are not independent, rendering this sort-

ng procedure circular. When plotting individual change scores against

he Baseline condition, this results in a downwards sloping data cloud,

uggesting an effect although there is none ( Fig. 5 , A., 1 st column). Why
4 Note that apart from the visualizations provided here, it might be beneficial 

o additionally look at Galton squeeze diagrams to detect regression towards 

r away from the mean (see Fig. 1 , Campbell and Kenny, 1999; Galton, 1886; 

hanks, 2017 ). 
5 Note that for skewed distributions (such as the gamma-like distribution 

ere), the regression effect might be actually towards the mode and away from 

he mean of the overall distribution ( Schwarz and Reike, 2018 ). If the location 

f the overall mode and mean are sufficiently close, our visualizations would be 

nable to distinguish these two cases. 

t  

c

o

H

c

d

5 
oes this happen? Owing to noise, the change scores are more likely

o be positive for lower Baseline eccentricities and negative for higher

aseline eccentricities ( Fig. 5 , A., 1 st column). When plotting individual

hange scores against the Interest condition, the reverse is true ( Fig. 5 ,

., 2 nd column). This means visualizing or analyzing the data using such

 circular sorting procedure is misleading irrespective of circular data

inning (for more details on circular data sorting, see Holmes, 2009;

riegeskorte et al., 2009 ). 

The fact that circular sorting of change scores and circular data bin-

ing are separate issues can be further appreciated by imagining what

appens when we plot the individual change scores against the Baseline

ondition, but bin on the Interest condition (instead of the Baseline con-

ition as before). In this case, the individual change scores are sorted

n a way (downwards sloping; just like in Fig. 5 , A., 1 st column) that is

pposite to the trend implied by the bin-wise means (upwards sloping).

How the regression artifact induced by circular data binning mani-

ests can change when data are thresholded across conditions; that is,

eleted in a pair- or list-wise fashion ( Fig. 5 , B. and C., 1 st and 2 nd 

olumns). In fact, in the event of condition cross-thresholding, noise

omponents are reshaped and might thus not necessarily be unbiased

n average even for the non-circular condition ( Fig. 5 , B., 2 nd column

s well as Fig. 5 , C., 1 st and 2 nd columns). Condition cross-thresholding

s common practice in the pRF literature where data are cleaned across

onditions according to eccentricity, goodness-of-fit ( 𝑅 

2 ), pRF size, miss-

ng data or other criteria from one or multiple conditions. 

Here, we cross-thresholded the eccentricity values in the Interest and

aseline condition using the eccentricity values from the Baseline con-

ition ( Fig. 5 , B., 1 st and 2 nd columns) or both the Baseline and Interest

ondition ( Fig. 5 , C., 1 st and 2 nd columns). This cross-thresholding pro-

edure is circular whenever the noise components of the data used for

ross-thresholding are not independent of the noise components of the

ata involved in contrasting. This is evidently true even without cir-

ular data binning. As such, the reason why the noise components in

ur cross-thresholding scenarios are sometimes biased even for the non-

ircular condition 6 ( Fig. 5 , B., 2 nd column as well as Fig. 5 , C., 1 st and

 

nd columns) is because we introduced another layer of circularity. 

The fact that circular cross-thresholding and circular data binning

re somewhat distinct but also highly similar issues can, for instance, be

ppreciated when comparing the overall instead of the bin-wise means.

ithout circular cross-thresholding, the overall mean in both the Base-

ine and Interest condition amounts to 4.66 dva ( Fig. 4 , 1 st and 2 nd 

olumns). With circular cross-thresholding based on the Baseline condi-

ion, the overall mean in the Baseline condition amounts to 3.40 dva,

hereas it amounts to 3.97 dva in the Interest condition ( Fig. 5 , B.,

 

st and 2 nd columns). Here, the introduced bias for the Baseline condi-

ion can be appreciated by directly comparing the overall means in the

aseline and Interest condition. With circular cross-thresholding based

n both the Baseline and Interest condition, the overall means in the

aseline and Interest condition amount to 3.24 dva and 3.25 dva, re-

pectively ( Fig. 5 , C., 1 st and 2 nd columns). Here, the introduced bias for

he Baseline and Interest condition can be appreciated by comparing the

verall means in these conditions to the overall mean of an Independent

ondition (retest of the Baseline condition) that was cross-thresholded

ased on both the Baseline and Interest condition. This overall mean

mounts to 3.66 dva. We will return to the usefulness of such an In-

ependent condition further below ( 3.2 ). In any case, circular cross-

hresholding biases the overall means as compared to when no such

ircular cross-thresholding is performed. 
6 For reasons of clarity and simplicity, we use the term ‘circular condition’ 

r ‘non-circular condition’ exclusively when referring to circular data binning. 

owever, other circular selection procedures, such as circular data sorting or 

leaning, might of course render a condition circular above and beyond circular 

ata binning. 
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Fig. 4. Simulated 1D post hoc binning analysis on eccentricity | Null effect . Bin-wise eccentricity values and means in the Interest and Baseline condition for a 

simulated null effect and different data binning scenarios. The eccentricity values in the Baseline and Interest condition were either binned according to eccentricity 

values in the Baseline (1 st column), Interest (2 nd column), or an Independent condition (equivalent to repeat data of the Baseline condition; 3 rd column). The 

gray marginal histograms (bin width = 0.5 dva; 𝑦 -axis: relative frequency) show the simulated eccentricity distributions for each condition, obtained by repeatedly 

disturbing the 𝑥 0 and 𝑦 0 values of an empirical visual field map with random Gaussian noise ( 𝑆𝐷 = 2 dva) and subsequently converting them to eccentricity values. 

Note that the range of the marginal 𝑦 -axis is the same for all histograms. The red crosshair indicates the location of the overall mean for the Interest and Baseline 

condition. The red dashed line corresponds to the identity line. Dark brown colors correspond to lower and dark blue-green colors to higher decile bins. The smaller 

colorful dots represent individual data points and the larger colorful dots with the black outline bin-wise means. The maximal eccentricity of the stimulated visual 

field area subtended 8.5 dva. Dva = Degrees of visual angle. Ecc = Eccentricity. 
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Importantly, however, only circular cross-thresholding based on the

aseline condition results in artifactual differences between the over-

ll means. Why is this? Given that the level of noise in the Interest and

aseline condition was equivalent ( 2.1 Post hoc binning using simulated

ata), circular cross-thresholding based on both the Baseline and Interest

ondition on average skewed the noise components for these conditions

imilarly, resulting in biased overall means, but a valid difference of

round 0 between them. However, as for empirical data, the assumption

f equivalent noise levels can probably only be safely made for repeat

ata (and even then, this needs to be justifiable). In any case, conceptu-

lly, circular cross-thresholding without data binning can be regarded

s a single bin or region-of-interest analysis ( Kriegeskorte et al., 2009 ),

ssentially constituting another subtype of a post hoc binning analysis. 

The appearance of the regression artifact arising from circular data

inning can furthermore change when the level of noise depends on ec-

entricity – a property better known as heteroskedasticity ( Fig. 6 , A., 1 st 

nd 2 nd columns; see also Holmes, 2009 ). In fact, the case of eccentricity-

ependent noise shows that the artifact can include some clear regres-

ion away from the mean – a phenomenon referred to as egression 7 

 Fig. 6 , A., 1 st and 2 nd columns; see e.g., Campbell and Kenny, 1999;

chwarz and Reike, 2018 ). Eccentricity-dependent noise might arise

rom fitting errors that differ across visual space. This could be due

o partial stimulation of pRFs (especially near the edge of the stimu-

ated mapping area), higher variability in pRF position estimates for

ider pRFs as well as fluctuations in the signal-to-noise ratio of brain

esponses from the central to the peripheral visual field or as a result of

anipulating attention. 

The regression artifact due to circular data binning also manifested

hen simulating a true effect ( Fig. 6 , B., 1 st and 2 nd columns). The same

as true for equidistant binning ( Fig. 6 , C., 1 st and 2 nd columns), which

s frequently applied in the pRF literature. However, unlike decile bin-

ing (which we used further above), equidistant binning resulted in a

ower number of observations for higher equidistant bins (due to the

amma-like eccentricity distribution; Fig. 6 , C., 1 st and 2 nd columns).

onsequently, for higher equidistant bins, the skew in average noise

or the circular condition was generally larger here (compare Fig. 6 , C.,
7 Note that the regression was presumably towards the nearest modes of the 

imulated bimodal distribution (see marginal histograms in Fig. 6 , A., 1 st and 

 

nd columns; Schwarz and Reike, 2018 ). 

s

o

t

2

6 
nd Fig. 4 , 1 st and 2 nd columns). Similarly, for higher equidistant bins,

oise components were not always unskewed on average for the non-

ircular condition (see Fig. 6 , C., 1 st and 2 nd columns, where the pattern

f bin-wise means is not entirely mirror-symmetric). This is because for

andom noise to be unskewed on average, the number of observations

eeds to be sufficiently large. 

Critically, both true effects and equidistant binning can substan-

ially modify the appearance of the regression artifact. Along with circu-

ar condition cross-thresholding and eccentricity-dependent noise, this

eaches us an important lesson: the regression artifact can take pretty

uch any form. 8 

For all presented simulation cases (null effect, null effect with cross-

hresholding or eccentricity-dependent noise, and true effect), the re-

ression artifact likewise manifested for another kind of binning analy-

is, namely, when binning the 𝑥 0 and 𝑦 0 values according to both eccen-

ricity and polar angle (i.e., 2D segments) and computing shift vectors

 Fig. 2 as well as Fig. 7 and Fig. S2-S5, 1 st row). Here, the bin-wise

eans regressed towards and away from the overall means of the 𝑥 0 
nd 𝑦 0 distribution. The calculation of shift vectors is not uncommon in

RF studies (e.g., van Es et al., 2018; Klein et al., 2014; Vo et al., 2017 ).

Notably, for empirical repeat data from the HCP ( Benson et al.,

018; 2020 ), both kinds of binning analyses produced patterns con-

istent with the regression artifact (Fig. S6-S13). This establishes its

ractical relevance. Moreover, some of us recently retracted an arti-

le on attention-induced differences in pRF position and size in V1-V3

 de Haas et al., 2014 ) because an in-house reanalysis suggested that cir-

ular post hoc binning along with circular condition cross-thresholding

nd heteroskedasticity yielded artifactual results in the form of egression

rom the mean ( de Haas et al., 2020 ). In this case, the apparent signif-

cant effect was an increase in eccentricity and pRF size in the Interest

s Baseline condition (expressed as change scores) for eccentricity bins

based on the Baseline condition) in the middle of the tested range. Im-

ortantly, the inferential statistical analysis in this study ( de Haas et al.,

014; 2020 ) was based on unbinned data, and thus the overall means.
8 Note that floor/ceiling effects (due to physiological and methodological con- 

traints on the minimum and maximum observable value) and/or the calculation 

f absolute (raw) vs proportional (%) differences are further factors influencing 

he appearance of the regression artifact ( de Haas et al., 2014; 2020; Holmes, 

009 ). 
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Fig. 5. Simulated 1D post hoc binning analysis on eccentricity | Null effect – Change score and cross-thresholding. A. The same as in Fig. 4 , although here, 

the change score (Interest vs Baseline) is plotted against the respective binning condition. B. The same as in Fig. 4 , although here, condition cross-thresholding was 

applied, i.e., simulated observations falling outside a certain eccentricity range ( ≥ 0 and ≤ 6 dva) in the Baseline condition were removed from all conditions. C. The 

same as in B., although here, condition cross-thresholding was based on both the Baseline and Interest condition. (Condition) cross-thresholding = The pair-wise or 

list-wise deletion of observations across conditions. 
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s such, the apparent significant effect was likely driven by or inflated

ue to circular cross-thresholding. 

The example of de Haas et al. (2014, 2020) illustrates that data visu-

lizations and associated inferential statistical analyses do not necessar-

ly suffer from the same pitfalls. It is also possible that only one but not

he other produces artifactual changes. This potential divergence adds

nother layer of complexity to the issues we discussed here. 

Taken together, the heterogeneity in manifestation we exposed here

akes it hard to spot the regression artifact by visual inspection alone

nd highlights its dependency on the type of analysis, additional circular

election practices as well as exact distributional properties of the data

t hand (see Campbell and Kenny, 1999; Holmes, 2009; Schwarz and

eike, 2018 , for similar points). Importantly, circular data binning is
7 
nly but one pitfall resulting in artifactual changes. Other pitfalls, such

s circular sorting of change scores and circular cross-thresholding are

qually problematic. 

.2. Potential mitigation strategies 

How can we omit double-dipping and control for regression towards

he mean? We could, for instance, use an Independent condition for bin-

ing (such as repeat data or odd or even runs for the Baseline condition;

ig. 4 and Fig. 5 –6 , A.-C., 3 rd column as well as Fig. 7 and Fig. S2-S5,

 

nd row) or an anatomical criterion ( Kriegeskorte et al., 2009 ), such

s cortical distance or anatomical atlases ( Benson et al., 2014; 2012 ).
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Fig. 6. Simulated 1D post hoc binning analysis on eccentricity | Null or true effect – Eccentricity-dependent noise, radial shift, and equidistant binning. 

A. The same as in Fig. 4 , although here, original observations having smaller eccentricities ( ≥ 0 and < 3 dva) were disturbed by random Gaussian noise with a smaller 

standard deviation ( 𝑆𝐷 = 0.25 dva) and those having larger eccentricities ( ≥ 3 dva) by random Gaussian noise with a larger standard deviation ( 𝑆𝐷 = 2 dva). B. The 

same as in Fig. 4 , although here, we simulated a true effect; that is, a radial increase in eccentricity of 2 dva in the Interest as compared to the Baseline condition. C. 

The same as in Fig. 4 , although here, equidistant binning was used. The equidistant bins ranged from an eccentricity of 0 dva to an eccentricity of 19.25 dva with a 

constant bin-width of 1.75 dva. Please note the different number of bins here relative to the other figure panels (11 vs 10, respectively). 
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his way, noise components should be unbiased on average in both the

aseline and Interest condition. 

Unbiased bin-wise noise components are of course less likely for

parsely populated bins ( Fig. 6 , C., 3 rd column as well as Fig. 7 and

ig. S2-S5, 2 nd row), which can be captured by quantifying uncer-

ainty. Critically, however, for scatter plots of change scores, bin-wise

oise components are not unbiased for the Independent binning con-

ition ( Fig. 5 , A., 3 rd column). The reason for this is the same as be-

ore: non-independence of noise components. Thus, only the bin-wise

hange scores can be readily interpreted here. Moreover, given that

ross-thresholding reshapes noise components, they might not be un-

iased when binning on an Independent condition ( Fig. 5 , B. and C.,
8 
 

rd column as well as Fig. 5 , C., 2 nd row). The same can evidently also

appen with an anatomical criterion if the Baseline and/or the Inter-

st condition are subjected to cross-thresholding. Consequently, unless

ross-thresholding can be omitted or demonstrated to be unbiased (see

elow for further considerations), binning on an Independent condition

ight not be a safe option. 

Of note, for the discussed cross-thresholding case where circular

ross-thresholding was performed based on both the Interest and Base-

ine condition, binning on the Independent condition ensured that the

in-wise noise components for the Interest and Baseline condition are

imilarly biased ( Fig. 5 , C., 3 rd column). As mentioned earlier, this is be-

ause cross-thresholding of this sort biases the noise components in the
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Fig. 7. Simulated 2D post hoc binning analysis on 𝑥 0 and 𝑦 0 | Null effect. Bin-wise 𝑥 0 and 𝑦 0 means in the Interest and Baseline condition for a simulated null 

effect and different data binning scenarios. The 𝑥 0 and 𝑦 0 values in the Baseline and Interest condition were either binned according to eccentricity and polar angle 

values in the Baseline (1 st column, 1 st row), Interest (2 nd column, 1 st row), or an Independent condition (equivalent to repeat data of the Baseline condition; 2 nd 

row). The marginal histograms (bin width = 0.5 dva; 𝑦 -axis: relative frequency) show the simulated 𝑥 0 and 𝑦 0 distributions for each condition, obtained by repeatedly 

disturbing the 𝑥 0 and 𝑦 0 values of an empirical visual field map with random Gaussian noise ( 𝑆𝐷= 2 dva). Magenta histograms correspond to the Interest condition 

and gray histograms to the Baseline condition. Note that the range of the marginal 𝑦 -axis is the same for all histograms. The large magenta dots (arrow tip) correspond 

to the means in the Interest condition and the endpoint of the gray line (arrow knock) to the means in the Baseline condition. The gray line itself (arrow shaft) 

depicts the shift from the Baseline to the Interest condition. The magenta crosshair indicates the location of the overall 𝑥 0 and 𝑦 0 means for the Interest condition 

and the gray crosshair the location of the overall means for the Baseline condition. Note that if there is no systematic difference between the Baseline and Interest 

condition, the histograms and crosshairs coincide (as is the case here). The light gray polar grid demarks the bin segments. Polar angle bins ranged from 0° to 360°

with a constant bin width of 45° and eccentricity bins from 0 to 20 dva with a constant bin width of 2 dva. The maximal eccentricity of the stimulated visual field 

area subtended 8.5 dva. Dva = Degrees of visual angle. 
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aseline and Interest condition similarly ( 3.1 .) and binning on an Inde-

endent condition introduces no further biases. Moreover, given that the

oise components of both the Interest and Baseline condition were in-

ependent of those in the Independent condition, cross-thresholding did

ot bias the noise components in the Independent condition. As such, al-

hough the simple bin-wise means in the Baseline and Interest condition

re biased, the difference between those amounts to around 0 ( Fig. 5 ,

., 3 rd column). 

Apart from binning on an Independent condition, we could use anal-

ses without binning that control for circularity and regression arti-

acts or effects could be evaluated against appropriate null distributions

hat take into account all statistical dependencies (e.g., Holmes, 2009;

riegeskorte et al., 2009 ). For instance, errors-in-variables models (e.g.,
9 
eming regression) might be an option. Such models account for the

oise in both the Baseline and Interest condition as well as for the fact

hat we often have no clear separation between independent and de-

endent variables in post hoc analyses of pRF data. However, as with

ny statistical approach, the underlying assumptions need to be checked

arefully. 

Just like circular data binning, circular sorting of change scores can

e counteracted by plotting individual change scores against an Inde-

endent condition ( Fig. 5 , A., 3 rd column). Similarly, one way to deal

ith circular cross-thresholding might be to cross-threshold all data ac-

ording to an Independent condition/the Independent binning condi-

ion. However, condition-specific systematic errors, such as artifacts and

utliers, might survive such independent data cleaning. As such, the us-
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ge of robust estimators might be advisable. Future research is necessary

o evaluate this point more comprehensively. 

A combination of the discussed approaches might prove most fruit-

ul. Regardless of the specific mitigation strategy, we believe that in light

f the many layers of complexity in our analysis pipelines, we need to

ake it common practice to perform sanity checks using (null) simu-

ations and empirical repeat data. This is because such sanity checks

rovide a means for us researchers to ensure the validity of our analysis

rocedures. 

.3. The bigger picture 

Circular post hoc binning analyses come in many flavors (e.g., cen-

roids, shift vectors, eccentricity differences, 𝑥 0 and 𝑦 0 differences, and

D or 2D bins) and cannot be assumed to be restricted to pRF posi-

ion estimates. For instance, partial stimulation of pRFs likely results in

eteroskedasticity and positively correlated errors for pRF size and po-

ition. This would, for instance, bias bin-wise pRF size vs pRF position

r pRF size vs pRF size comparisons where binning is based on non-

ndependent eccentricity values. Likewise, fitting errors due to partial

timulation should be more pronounced whenever pRF size is larger,

eading to stronger artifactual effects (for simulations using different

evels of noise, see Holmes, 2009 ). The same is to be expected based

n a higher variability in pRF position estimates for wider pRFs. These

actors might potentially explain why changes in pRF position and/or

ize have been reported to be tendentially larger in higher-level areas

here pRFs are wider (e.g., Barton and Brewer, 2015; van Es et al.,

018; de Haas et al., 2014; 2020; Klein et al., 2014 ). 

Moreover, the distribution of errors likely depends on the toolbox

hat was used for fitting ( Lerma-Usabiaga et al., 2020 ), making it hard

o generalize across studies. And lastly, delineations of visual areas in

ost hoc binning analyses should ideally also be based upon indepen-

ent criteria as this is where selection starts. Importantly, the intricacies

e just discussed do not only apply to circular data binning, but also cir-

ular sorting of change scores and circular condition cross-thresholding.

The application of circular data binning, circular sorting of change

cores, and/or circular cross-thresholding in the pRF literature might

ave led to spurious claims about changes in pRFs (see de Haas et al.,

014; 2020 , for an example). Consequently, we encourage researchers

ho used such procedures to check for the severity of biases in their

nalyses by running adequate simulations and reanalyzing the original

ata wherever possible. Likewise, we urge them to take into account

he issues discussed here when conducting future studies, reviewing

anuscripts, and when teaching and mentoring. 

.4. Limitations 

Our simulations were designed to encapsulate a given issue suc-

inctly and cannot be interpreted as reflecting the exact properties of

mpirical pRF data. For this, we would need to have a good understand-

ng of the underlying noise components. Similarly, the level of random

aussian noise we adopted for most simulations ( 𝑆𝐷 = 2 dva) might

e more reminiscent of higher than lower visual areas (although this

epends on many factors, such as mapping stimulus and magnetic field

trength). For the present purposes, it appeared important to settle on

 level allowing for clear exposition. Moreover, as alluded to further

bove ( 1. Introduction), unless there is a perfect correlation between

wo variables (and thus no random noise), double-dipping and regres-

ion towards or away from the mean likely pose issues to post hoc anal-

ses. 

To fully parallel our simulations, the analyses of the HCP data would

ave benefited from binning on an Independent condition; that is, a sec-

nd set of repeat data. PRF estimates for such an Independent condition

re currently not publicly available ( Benson et al., 2018; 2020 ), leaving

his sanity check for future research. Moreover, unlike our simulations,
10 
he condition cross-thresholding applied to the HCP data not only in-

olved pRF position, but also goodness-of-fit ( 2.1 Post hoc binning using

imulated data and 2.2 Post hoc binning using empirical repeat data).

his is because such multivariate data cleaning is frequently applied in

RF studies. It is challenging to simulate these more complex scenarios

nd thus best addressed in a separate article. 

Some post hoc binning analyses in the pRF literature are con-

ucted in a hemifield-specific fashion, whereas others mirror observa-

ions across hemifields or quadrants. Our analyses do not capture these

pecificities. However, there is no reason to believe that they would al-

eviate the expression of the regression artifact. The primary component

hat might change when applying such procedures is the location of the

verall mean and the shape of the data distribution and thus how exactly

he artifact manifests (for preliminary analyses, see Stoll et al., 2022 ).

f course, if data points are not mirrored based on an Independent con-

ition but, for instance, the Baseline condition, data mirroring in com-

ination with circular data binning and/or circular cross-thresholding

ight favor noise components in multiple ways. Importantly, circular

ata mirroring is also problematic for analyses that do not involve any

ircular data binning and/or circular cross-thresholding, as are other

rocedures, such as circular data weighting ( Kriegeskorte et al., 2009 ). 

. Conclusions 

Without doubt, circularity and regression towards the mean are

horny and omnipresent problems that can manifest subtly and diversely

e.g., Ball et al., 2020; Barnett et al., 2005; Campbell and Kenny, 1999;

riksson and Häggström, 2014; Gignac and Zajenkowski, 2020; Holmes,

009; Kilner, 2013; Kriegeskorte et al., 2009; Preacher et al., 2005;

hanks, 2017; Stigler, 1997; Vul et al., 2009 ). As such, we need to en-

ure that the validation of analysis procedures becomes part and parcel

f the scientific process. 
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