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In the usual quantile regression setting, the distribution of the response given the explanatory variables is unspecified. In this
work, the distribution is specified and we introduce new link functions to directly model specified quantiles of seven 1–parameter
continuous distributions. Using the vector generalized linear and additive model (VGLM/VGAM) framework, we transform
certain prespecified quantiles to become linear or additive predictors. Our parametric quantile regression approach adopts
VGLMs/VGAMs because they can handle multiple linear predictors and encompass many distributions beyond the exponential
family. Coupled with the ability to fit smoothers, the underlying strong assumption of the distribution can be relaxed so as to
offer a semiparametric–type analysis. By allowing multiple linear and additive predictors simultaneously, the quantile crossing
problem can be avoided by enforcing parallelism constraint matrices. This article gives details of a software implementation called
the VGAMextra package for R. Both the data and recently developed software used in this paper are freely downloadable from the
internet.

1. Introduction

1.1. Background. Much of modern regression analysis for
estimating conditional quantile functions may be viewed
as starting from Koenker and Bassett [1], who offered a
systematic strategy for examining how covariates influence
the entire response distribution. The fundamental idea is
based on the linear specification of the 𝜏th quantile function𝑄�푦(𝜏 | 𝑥) = 𝛽�푇�휏𝑥 and finding 𝛽�휏 ∈ R�푝 that solves the
optimization problem

min
𝛽𝜏∈R

𝑝
∑𝜌�휏 (𝑦�푖 − 𝛽�푇�휏𝑥�푖) , (1)

for independent and identically distributed (i.i.d.) observa-
tions from a family of linear quantile regression models, say𝑦�푖 = 𝛽�푇𝜏𝑥+𝜀�푖,𝜏, 𝑖 = 1, . . . , 𝑛. Equation (1) can be reformulated
as a linear programming problem using the piecewise linear

function 𝜌�휏(𝑢) = 𝑢 ⋅ [𝜏 − 𝐼(𝑢 < 0)] for 𝜏 ∈ (0, 1). More details
can be found in Koenker [2].

In the spirit of quantile regression, the conditional dis-
tribution 𝑌 | 𝑥 is usually unspecified, although it relies on
normal–based asymptotic theory that is used for inference,
whilst the assumption of homoskedasticity of the error terms𝜀�푖,𝜏 is dropped. In this paper we use an alternative approach
of conditional–quantile regression based on assuming a pre-
specified distribution for the response. Parametric quantile
regression has some advantages over many nonparamet-
ric approaches, including overcoming the quantile crossing
problem. Two examples are Noufaily and Jones [3] which is
based on the generalized gammadistribution and generalized
additive models for location, scale, and shape (GAMLSS;
[4]). Further examples are the LMS-BCN method involving
the standard normal distribution and a three–parameter
Box–Cox transformation [5] and the classical method of
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Table 1: Some VGLM/VGAM link functions. The 4th row is implemented in VGAMextra.

Functions Links 𝑔�푗(𝜃�푗) Domain of 𝜃�푗 Link names
loge() log 𝜃�푗 (0,∞) Logarithmic
cloglog() log(− log(1 − 𝜃�푗)) (0, 1) Complementary log–log

logit() log
𝜃�푗1 − 𝜃�푗 (0, 1) Logit

logffMeanlink()‡ logit(𝜃�푗 ) − cloglog(𝜃�푗 ) (0, 1) logffMeanlink
rhobit() log((1 + 𝜃�푗)/(1 − 𝜃�푗)) (−1, 1) rhobit
‡This is the VGLM–link for the mean function of the logarithmic distribution.

quantile regression based on the asymmetric Laplace distri-
bution (ALD).

Our approach uses the vector generalized linear and addi-
tive model (VGLM/VGAM; [6, 7]) framework. We develop
new link functions, G, for the quantile regression model𝑌 | 𝑥 ∼ F (𝑥; 𝜃) , (2)𝜂𝜏 (𝜃) = G (𝑄�푦 (𝜏 | 𝑥, 𝜃)) , (3)

for a vector of quantiles 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇. Our methodology
relies on the prespecification of the distribution F. We will
also show that the quantile crossing problem canbe overcome
by this modelling framework. Equations (2)–(3) state that the
conditional distribution of the response at a given value of
𝑥 has a distribution involving a parameter 𝜃 and that the
transformed quantile of the distribution becomes a linear
predictor of the form (5). This can be achieved by defining
link functions that connect (3) to (5).The reason for the linear
predictors is that generalized linear modelling [8] is a very
well-established method for regression modelling. GLMs are
estimated by iteratively reweighted least squares (IRLS) and
Fisher scoring, and this algorithm is also adopted by VGLMs
and VGAMs.

The method presented in this paper differs from conven-
tional quantile regression [1] in that we assume F is known
whereas the conventional case does not but use an empirical
method instead to obtain the quantiles 𝜉�휏: the expectation of
the check function 𝜌�휏(𝑢) results in the property 𝜏 = 𝐹(𝜉�휏)
which defines the 𝜏-quantile (𝐹 is the cumulative distribution
function (CDF) ofF). In this paper we consider theFs listed
in Table 2.

1.2. VGLMs and VGAMs. VGLMs/VGAMs provide the
engine and overall modelling framework in this work—
the VGAM R package described below fits over 150 mod-
els and distributions—therefore we only sketch the details
here. VGLMs are defined in terms of 𝑀 linear predictors,
𝜂 = (𝜂1, . . . , 𝜂�푀)�푇, as any statistical model for which the
conditional density of 𝑦 given a 𝑑–dimensional vector of
explanatory variables, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥�푑)�푇 has the form

F (𝑦 | 𝑥;B) = ℎ (𝑦, 𝜂1, . . . , 𝜂�푀;𝑥) , (4)

for some known function ℎ(⋅), with B = (𝛽1 𝛽2 ⋅ ⋅ ⋅ 𝛽�푀), a𝑑×𝑀matrix of unknown regression coefficients. Ordinarily,𝑥1 ≡ 1 for an intercept.

In general, the 𝜂�푗 of VGLMs may be applied directly to
the 𝑀 parameters, 𝜃�푗, of any distribution, transformed if
necessary, as the 𝑗th linear predictor

𝜂�푗 = 𝑔�푗 (𝜃�푗) = 𝜂�푗 (𝑥) = 𝛽�푇�푗 𝑥 = �푑∑
�푘=1

𝛽(�푗)�푘𝑥�푘,
𝑗 = 1, . . . ,𝑀, (5)

where 𝑔�푗 is a VGLM–parameter link function, as in Table 1
(see [6] for further choices) and 𝛽(�푗)�푘 is the 𝑘th element of
𝛽�푗. Prior to this work the 𝜃�푗 were ‘raw’ parameters such as
location, scale, and shape parameters; however, in this present
work we define them to be quantiles or a very simple function
of quantiles.

In matrix form one can write 𝜂 = 𝜂(𝑥) =
(𝜂1 (𝑥)...𝜂�푀 (𝑥)) =(𝛽�푇1𝑥...

𝛽�푇�푀𝑥

) =(𝛽(1)1 ⋅ ⋅ ⋅ 𝛽(1)�푝... d
...𝛽(�푀)1 ⋅ ⋅ ⋅ 𝛽(�푀)�푝) 𝑥

= �푑∑
�푘=1

𝛽(�푘)𝑥�푘 = B�푇𝑥,
(6)

where 𝛽(�푘) = (𝛽(1)�푘, 𝛽(2)�푘, . . . , 𝛽(�푀)�푘)�푇, 𝑘 = 1, . . . , 𝑑.
Sometimes, for some 𝑗, it may be required to model 𝜂�푗 as
intercept–only, that is, 𝜂�푗 = 𝛽(�푗)1, and 𝛽(�푗)�푘 ≡ 0 for 𝑘 =2, . . . , 𝑑.

VGAMs are a nonparametric extension of VGLMs, that
is, (6) is generalized to

𝜂 (𝑥) = 𝛽(1) + �푑∑
�푘=2

𝑓�푘 (𝑥�푘) = H1𝛽
∗
(1) + �푑∑
�푘=2

H�푘𝑓
∗
�푘 (𝑥�푘) (7)

with 𝑓∗�푘 (𝑥�푘) = (𝑓∗(1)�푘(𝑥�푘), . . . , 𝑓∗(R𝑘)�푘(𝑥�푘))�푇. Usually the com-
ponent functions are estimated by splines. Here, H1, . . . ,H�푑
are known full–column rank constraint matrices, and 𝛽(1) is
a vector of unknown intercepts. With no constraints at all,
H1 = ⋅ ⋅ ⋅ = H�푑 = I�푀 (the order-𝑀 identity matrix). For
VGLMs, the 𝑓�푘 are linear so that, cf. (6),

B = (H1𝛽⋆(1) | H2𝛽⋆(2) | ⋅ ⋅ ⋅ | H�푑𝛽⋆(�푑)) . (8)

TheH�푘 can enforce a wide range of linear constraints such as
parallelism and exchangeability.
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Table 2: New link functions for the quantiles of some 1–parameter distributions. The selectedG function is also shown.

Distribution 𝜃 Support of 𝑦 Quantile function 𝜉𝜏 FunctionG Quantile link [𝜂(𝜃; 𝜏)]
Exponential 𝜆 (0,∞) − 1𝜆 log(1 − 𝜏) log–link log log[(1 − 𝜏)−1/�휃]
Benini 𝑠 (𝑦0,∞) 𝑦0 exp(√− log(1 − 𝜏)𝑠 ) log–link log𝑦0 + √log[(1 − 𝜏)−1/�휃]
Rayleigh 𝑏 (0,∞) 𝑏√−2 log(1 − 𝜏) log–link log 𝜃 + 12 log log[(1 − 𝜏)−2]
Gamma 𝑠 (0,∞) No closed–form log–link log qgamma(𝜏, shape = 𝜃)
Maxwell† 𝑎 (0,∞) √ 2𝑎 ⋅ qgamma(𝜏, 1.5)) log–link 12 log(2 qgamma(𝜏, 1.5)𝜃 )
Topp–Leone‖ 𝑠 (0, 1) 1 − √1 − 𝜏1/�푠 logit logit(1 − √1 − 𝜏1/�휃)
1–par Normal‡ 𝜎 R 𝜇0 ± √2 ⋅ 𝜃2𝜅(𝜏)) identity 𝜇0 ± √2 ⋅ 𝜃2𝜅(𝜏)
†qgamma() is the quantile function of the standard gamma distribution in R.
‖logit(�휃) = log(�휃/(1 − �휃)).
‡�휅(𝜏) = erf−1(2𝜏 − 1), with erf() denoting the error function.

1.3. Estimation. VGLMs are estimated by maximum likeli-
hood performed by IRLSusing the expected information.The
VGLM log–likelihood is given by

ℓ (𝜂) = �푛∑
�푖=1

𝑤�푖ℓ�푖 {𝜂1 (𝑥�푖) , . . . , 𝜂�푀 (𝑥�푖)} , (9)

for known fixed positive prior weights𝑤�푖, and a Newton–like
algorithm for maximizing (9) has the form 𝛽(�푎) = 𝛽(�푎−1) +
I(𝛽(�푎−1))−1𝑈(𝛽(�푎−1)), whereI is the overall expected infor-
mation matrix (EIM), 𝑈 is the score vector, and 𝑎 is the
iteration number. The vector 𝛽(�푎) is obtained as the solution
of the generalized least squares problem 𝛽(�푎) = argmin𝛽RSS,
where the quantity minimized at each IRLS iteration is the
weighted (or residual) sum of squares, RSS =

�푛∑
�푖=1

𝑤�푖 {𝑧(�푎−1)�푖 − 𝜂(�푎−1)�푖 }�푇𝑊(�푎−1)�푖 {𝑧(�푎−1)�푖 − 𝜂(�푎−1)�푖 } . (10)

The (𝑀×𝑀)𝑊�푖 are known as the working weight matrices
and they have (𝑗, 𝑘)th element given by

[𝑊�푖]�푗,�푘 = −𝑤�푖E( 𝜕2ℓ�푖𝜕𝜂�푗𝜕𝜂�푘) . (11)

The use of individual EIMs instead of observed information
matrices means that Fisher scoring is used rather than the
Newton–Raphson algorithm.

VGAMs are also estimated by IRLS, where the difference
with respect to VGLMs is that a vector additive model is now
fitted to the pseudo–response 𝑧�푖 with explanatory variables
𝑥�푖 and working weight matrices 𝑊�푖 at each IRLS iteration.
Two approaches are currently used by VGAM to estimate
the component functions 𝑓∗: regression splines and vector
smoothing methods with vector backfitting. Rudimentary P-
splines [9] are almost operational, albeit this work is not yet
complete. Compared to VGLMs, the VGAM log–likelihood

includes a penalty if used with vector smoothing splines.
In VGAM the objective function maximized isℓ�푖 {𝜂1 (𝑥�푖) , . . . , 𝜂�푀 (𝑥�푖)}

− 12 �푑∑
�푘=1

ncol(H𝑘)∑
�푗=1

𝜆(�푗)�푘 ∫�푏𝑘
�푎𝑘

{𝑓∗�耠�耠(�푗)�푘 (𝑡)}2 d𝑡. (12)

Here, the 𝜆(�푗)�푘 are nonnegative smoothing parameters, and𝑎�푘 ≤ 𝑥�푖�푘 ≤ 𝑏�푘 are endpoints covering the values of
each covariate. The basic penalty approach adopted here is
described in Green and Silverman Green and Silverman [10].

2. Methodology

Let F(𝜂; 𝑦,𝑥) be a 1-parameter statistical model as in (4)
parametrized by 𝜃 ∈ Θ ⊂ R for some parameter
space Θ residing in (−∞,∞). Also let 𝑄�푦(𝜏 | 𝑥) be the
corresponding quantile function with 𝜏 ∈ (0, 1). Crucially,
note that (5) handles suitable transformations of 𝜃 in the
linear predictor by parameter link functions. In contrast our
proposal focusses on directly modelling 𝑄�푦(𝜏 | 𝑥, 𝜃) via a
smooth and one–to–one function G, in the form of𝜂�휏 = G (𝑄�푦 (𝜏 | 𝑥, 𝜃)) = G

∗ (𝜃 | 𝑥, 𝜏) , (13)

which is to be incorporated in the VGLM/VGAM log–
likelihood, namely, (9) and (12). Here, 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇 is a
prespecified vector of quantiles of interest. Examples of (13)
are log 𝜉�휏, logit 𝜉�휏, and 𝜉�휏.

Equation (13) is central to this work. It allows modelling
choices via G for the quantile function 𝑄�푦, and it represents
a new modification to the VGLM/VGAM framework. Note
that G resembles a link function within the VGLM/VGAM
framework as in Table 1. Two notes: first, without any loss of
generality, (13) can be seen (strictly) as a function of 𝜃 since
the quantiles 𝜏 and the covariates 𝑥 are known. Secondly, G∗
is monotonic and one–to–one, as a result of the composite of
G and 𝑄�푦 which also hold such properties. However, during
the fitting process, the IRLS algorithm internally requires
the inverse of G∗. Working with 1–parameter distribution
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at this stage eases the implementation via Fisher scoring
because the inverse (G∗)−1 can be derived manually and
then incorporated in the IRLS algorithm. In a few cases,
the inverse of G∗ does not have a closed form, such as
the 1–parameter gamma distribution, and an alternative
iterative method is employed to approximate (G∗)−1. To
achieve this efficiently, two choices are available. These are
(a) newtonRaphson.basic() from VGAMextra and (b)
VGAM::bisection.basic(), two vectorized implementa-
tions of the well-known Newton–Raphson and bisection
algorithms, to solve the roots of a real-valued function in a
given interval (𝑎, 𝑏). Further details are given in Section 2.2.

One advantage of this work is that the VGLM/VGAM
framework can circumvent the quantile crossing problem
(e.g., [2, 11], Sect. 2.5) by choosing H1 = I�푀 and H2 = H3 =⋅ ⋅ ⋅ = H�푑 = 1�푀 (an𝑀-vector of ones). Under this parallelism
assumption the method borrows strength across the entire
data set so that the additive models for 𝜂�푗 with respect to𝑥2, . . . , 𝑥�푑 are parallel. Each family function in Tables 2 and
3 has a parallel argument which is FALSE by default.
Using the syntax of VGAM based on Chambers and Hastie
[12], setting parallel = TRUE (or parallel = FALSE ∼ 1)
results inH1 = I�푀 andH2 = H3 = ⋅ ⋅ ⋅ = 1�푀; i.e., it is false for
only the intercept.

It is noted that for some distributions such as the
exponential and Maxwell the 𝜂�푗 are naturally parallel with
respect to 𝑥2, . . . , 𝑥�푑 because log 𝜉�휏 has the form ℎ1(𝜏) +ℎ2(𝑥2, . . . , 𝑥�푑). If this is so then only the intercepts will change
as a function of 𝜏 and the MLEs for ℎ2 are the same. Other
distributions such as the 1-parameter gamma do not possess
this property, and then it is necessary to constrain H2 =⋅ ⋅ ⋅H�푑 = 1�푀 to avoid the quantile crossing problem.

2.1. Two Derivations. Ideally the link transforms the support
of 𝑌 to R because 𝜂�푗 should be unbounded. The three most
common cases are as follows. For 𝑌 ∈ (0,∞) a log link is
recommended, for 𝑌 ∈ (0, 1) a logit link is a good choice,
and 𝑌 ∈ (−∞,∞) means that an identity link is natural.
These cases have been implemented for seven 1–parameter
distributions. The selection of the function G for each 𝑄
is shown in the 5th column of Table 2, whilst the resulting
quantile links as functions of 𝜃 are shown in the last column.

We now describe the quantile links for the exponential
and the Topp–Leone distributions as examples. Firstly, for𝑌 ∼ exponential(𝜃), with a rate parameter 𝜃 > 0, the density
and CDF are given by 𝑓(𝑦; 𝜃) = 𝜃𝑒−�휃�푦 and 𝐹(𝑦; 𝜃) = 1 − 𝑒−�휃�푦.
With a slight change in notation, the quantile function is
given by 𝐹−1, i.e.,

𝑄�푌 (𝜏; 𝜃) = −1𝜃 log (1 − 𝜏) , (14)

which lies in (0,∞) regardless of the values of 𝜏 and 𝜃. Given
that values of 𝜏 are known (prespecified by the user), (14)
becomes a function of 𝜃. Thus, the new quantile link for
the exponential distribution as shown in Table 2 is simply

obtained by taking G as the logarithmic transformation, as
follows: 𝜂 (𝜃; 𝜏) = log [−1𝜃 log (1 − 𝜏)]

= log log [(1 − 𝜏)−1/�휃] . (15)

This quantile link has been implemented in VGAMextra via
the function expQlink(), as shown in Table 3. Its inverse
(denoted as 𝜃(𝜂; 𝜏)) can be manually obtained from the
inverse of (15). Note that the corresponding family func-
tion (exponential()) implemented in VGAM includes a
(known) location parameter 𝐴, which gives the density𝑓(𝑦; 𝜃) = 𝜃𝑒−�휃(�푦−�퐴). By default 𝐴 = 0, and it is handled by
the argument location.

Secondly, consider the Topp–Leone distribution 𝑌 ∼
Topp − Leone(𝑠) whose support is (0, 1) and𝑄�푌 (𝑠; 𝜏�푗) = 1 − √1 − 𝜏1/�푠�푗 , (16)

with 0 < 𝜏�푗 < 1. Here, 𝜃 = 𝑠. To verify this restriction note
that 1/𝑠 > 1, for any shape parameter 𝑠 ∈ (0, 1), and hence for
any 𝜏�푗 ∈ (0, 1), 0 < 𝜏1/�푠�푗 < 1 ⇐⇒0 < 1 − 𝜏1/�푠�푗 < 1 ⇐⇒

0 < 1 − √1 − 𝜏1/�푠�푗 < 1. (17)

Thus, to allow the quantile function to be modelled by
covariates, we take the logit transformation as G. The result-
ing quantile link for this distribution is simply 𝜂(𝑠; 𝜏) =
log𝑄�푌(𝑠; 𝜏), shown in Table 2. The distribution has CDF𝐹(𝑦; 𝑠) = [𝑦 ⋅ (2 − 𝑦)]�푠 for 0 < 𝑦 < 1, and density 𝑓(𝑦; 𝑠) =2𝑠(1 − 𝑦) ⋅ [𝑦(2 − 𝑦)]�푠−1. The quantile function derives from
solving the equation 𝜏0 = 𝐹(𝑦; 𝑠) = [𝑦⋅(2−𝑦)�푠], for 0 < 𝜏0 < 1,
which leads to the quadratic equation 𝑦2 − 2𝑦 + 𝜏1/�푠0 = 0. The
solution must lie in (0, 1) and is in fact (16), as a function of𝑠. The family function topple() from VGAM estimates 𝑠,
where the default link is 𝜂(𝑠) = logit(𝑠).
2.2. Software Implementation. For practical use by others,
we have implemented seven VGLM–quantile links, 𝜂�휏
in the R package VGAMextra. They are summarized
in Table 2. The package VGAM is a requirement
of VGAMextra because the modelling functions vglm()
and vgam(), and all but the last family function of
Table 2, reside there. For this paper VGAMextra 0.0-
2 and VGAM 1.1-0 or later are required; they are
available at www.stat.auckland.ac.nz/∼vmir178 and
www.stat.auckland.ac.nz/∼yee/VGAM/prerelease/
whilst older versions of both are available on CRAN
(http://CRAN.R-project.org).

One special case is gamma1Qlink(), for the 1–parameter
(shape) gamma distribution, defined as𝜂 (𝜃; 𝜏) = log gamma (𝜏,shape = 𝜃) , (18)
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Table 3: Inverse of the quantile links and names in VGAMextra. “Approximate” means that Newton–Raphson or bisection is used to
approximate the inverse. All family functions except for normal1sdff(), which is in VGAMextra, are in VGAM.

Distribution 𝜃 Inverse𝐿[𝜃(𝜂; 𝜏)] Family function Link in VGAMextra

Exponential 𝜆 − log(1 − 𝜏)𝑒�휂 exponential() expQlink()

Benini 𝑠 − log(1 − 𝜏)(𝜂 − log𝑦0)2 benini1() benini1Qlink()

Rayleigh 𝑏 exp(𝜂)√−2 log(1 − 𝜏) rayleigh() rayleighQlink()

Gamma 𝑠 Approximate gamma1() gamma1Qlink()

Maxwell 𝑎 2qgamma(𝜏, 1.5)
exp(2 𝜂) maxwell() maxwellQlink()

Topp–Leone† 𝑠 log 𝜏
log{1 − [1 − logit−1(𝜂)]2} topple() toppleQlink()

N(𝜇 = 0, 𝜎) 𝜎 |(𝜂 − 𝜇0)/√2 ⋅ 𝜅(𝜏)| normal1sdff() normal1sdQlink()
†logit−1() denotes the inverse of the logit() transformation.

whose primary arguments are 𝜏 and 𝜃. Its inverse (Table 3)
does not admit a closed form and it is approximated by
the functionVGAM::newtonRaphson.basic(), a vectorized
implementation of the Newton–Raphson algorithm. Almost
all implementations elsewhere of this are for a scalar argu-
ment, but we operate on vectors of length 𝑛. It works as
follows. Our data is effectively 𝑦�푖 = {𝑦�푖,𝑥�푖,�푑}, 𝑖 = 1, . . . , 𝑛,
whilst the quantiles of interest, 𝜏 or 𝑝, must be entered
by the user. The shape parameter 𝜃 is estimated by IRLS
and therefore it is available at each iteration. Thus, for
each 𝜂(𝜃;𝑝)0, the ‘inverse’ is given by the root, 𝜃, of the
function

𝑓 (𝜃;𝑝, 𝜂) = 𝜂 (𝜃;𝑝)0 − log gamma (𝜏, shape = 𝜃) . (19)

Finally, the inverse of all the VGLM–quantile links is
shown in Table 3, as well as the name of the correspond-
ing implementation in VGAMextra. The inverse–links are
required at different stages of the IRLS by Fisher scor-
ing, which internally switches between 𝜂(𝜃; 𝜏) (namely,
Table 2) and 𝜃(𝜂; 𝜏) (namely, Table 3). Specifically, the
algorithm requires the score vector and the EIMs at each

IRLS iteration, which are given by the following chain–rule
formulas: 𝜕ℓ𝜕𝜂 = 𝜕ℓ𝜕𝜃 ⋅ 𝜕𝜃𝜕𝜂 ,

−E[𝜕2ℓ𝜕𝜂2 ] = −E[𝜕2ℓ𝜕𝜃2 ](𝜕𝜃𝜕𝜂)2 . (20)

Internally, the functions utilized to compute the
inverse are VGAM::eta2theta() or VGAM::theta2eta().
The VGAMextra Manual and Miranda-Soberanis [13]
give further details about the derivation of the quantile
links, whilst Yee [6] describes in the IRLS and Fisher
scoring algorithms for estimating VGLMs and VGAMs.
Complements at the second author’s homepage give
additional details on link functions.

2.3. Software Use. For the user, this methodology runs as
usual by calling the modelling functions VGAM::vglm()
and VGAM::vgam(), except for two modifications that are
described below.

To start with, we give the following output that shows the
central arguments handled by VGAM::vglm():

The first adjustment takes place with the argument
formula, a symbolic description of the model to be fit.
Usually, an expression like y ∼ x2 + x3 should suffice

for a response y and covariates x2 and x3. This effec-
tively works for univariate and even for multiple responses
say y1, y2, and y3, where the only change is to set
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Table4:Arguments handledby the functionVGAMextra::Q.reg().

Argument Description

y

Numeric, a vector or a matrix. It is
the response or dependent variable
in the formula of the model to be

fitted.

pvector

A prototype vector. Entries are the
conditional p-quantiles in the fitting

process.

length.arg

A unit-length positive integer. It is
the number of p-quantiles to be

modelled.

cbind(y1, y2, y3) ∼ x2 + x3. Here, the right hand side
(RHS) of the formula is applied to each linear predictor.

For quantile modelling using VGLMs and VGAMs,
Q.reg()must be incorporated in the formula, whose argu-
ments are shown in Table 4. For a given set of quantiles
of interest, entered through 𝜏 = (𝜏1, . . . , 𝜏�퐿)�푇, Q.reg()
replicates the response matrix Y into𝑁𝑂𝑆 ⋅ dim(𝜏) columns,
where𝑁𝑂𝑆 denotes the number of columns of Y. Then, the

RHS of the formula applies to every set of columns according
to the number of quantiles of interest. Ordinarily the response
is a vector so that𝑁𝑂𝑆 = 1 and 𝐿 = 𝑀.

As an example, suppose thatwe have two responses𝑌1 and𝑌2 sampled from a prespecified distributionF, as per Table 3,
and the quantiles of interest are 𝑝 = (0.25, 0.50, 0.75)�푇.
Then Q.reg(cbind(Y1, Y2), pvector = p) will return a
matrix with six columns, with the first three columns being𝑌1, one for each quantile, and similarly the last three columns
equal 𝑌2. Thus vglm() handles this model as a multiple
responses fit.

The second adjustment is related to the argument
family, a function that describes the statistical model
to be fitted. Each family has at least one argument for
the link functions to be used in the fitting process (the
name changes from family to family). For example, for
VGAM::exponential() this is called link, whilst for the
family function VGAM::benini1() (see the third column of
Table 3), it is called lshape. When VGLM–quantile mod-
elling is to be performed, the corresponding link (last column
of Table 3) must be entered into the family accordingly. All
the quantile links manage the same arguments, including p,
the vector of quantiles, except by benini1Qlink() which
has the additional argument y0.

With both modifications, a typical call has the following
form:

Further fitting variants can be incorporated here, e.g., cate-
gorical covariates and the use of smoothers such as regression
splines. These and a few other features are illustrated in the
following section.

3. Examples

3.1. Maxwell Data. We use simulation to generate 𝑛 = 200
random variates from a Maxwell distribution whose rate
parameter is a function of a single covariate 𝑥2. To account
for a nonlinear trend in the dataset, additive models with
cubic smoothing splines appear to be a better choice over
linear schemes such as with VGLMs. In this example we
perform the following steps to confirm the performance of
the methodology.

(1) Generate random deviates from the Maxwell distri-
bution.

(2) Run conditional VGAM–quantile modelling using
maxwellQlink() based on the VGAM family
function VGAM::maxwell(), which estimates the
Maxwell distribution by Fisher scoring.

(3) Perform ordinary quantile regression using
VGAM::alaplace1() that estimates the 1–parameter
ALD by Fisher scoring. Here, the special argument
tau will be employed.

(4) Plot the artificial data with the estimated quantile
functions, 𝑄�푦(𝜏 | 𝑥, 𝜃) (from (2)), and the estimated
quantile curves (from (3)) superimposed.

We will consider the quantiles 25%, 50%, and 75% for
simplicity, so that 𝜏 = (1/4, 1/2, 3/4)�푇.

Regarding (1), the data is generated byVGAM::rmaxwell(),
which gives random deviates from the Maxwell distribution
whose density is 𝑓(𝑦; 𝑎) = √2/𝜋𝑎3/2𝑦2exp(−𝑎𝑦2/2). We use
the rate function

𝑎 = exp{2 − 6 sin (2𝑥�푖2 − 1/5)(𝑥�푖2 + 1/2)2 } , (21)

where 𝑋�푖2 i.i.d∼ Unif(0, 1), 𝑖 = 1, . . . , 𝑛. The following code
chunk sets things up and the dataset is saved as maxdata.
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Figure 1: Simulated Maxwell data (21) including (a) the fitted quantile functions from fit.Qmodelling (VGAMextra) and (b) the fitted
quantile curves from fit.Qregression (VGAM). The quantile curves in both cases derive from vector smoothing spline fits.

The following code chunk performs steps (2) and (3).
Note the fitting of additive models via VGAM::vgam()
with smooth terms defined by VGAM::s() where 𝑥2 is

to be smoothed. To compare both fits, they are saved in
fit.Qmodelling (from (2)) and fit.Qregression (from
(3)).

Figure 1 shows the simulated data, the estimated
quantile functions, and the fitted quantile curves from
fit.Qmodelling and fit.Qregression, obtained from
vector smoothing spline fits [14]. The results are similar for𝑥2 > 0.3, but our present work performs better at the bottom
LHS tail. The data coverage from each modelling framework

is summarized in Table 5. Once again our work outperforms
the ALD method.

We conclude with a few remarks.

(1) The argument p is available for all quantile links
in Table 3 and not only for maxwellQlink().
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It can be assigned any vector of percentile
values.

(2) Under the conditional VGAM–quantile modelling
framework, the arguments to handle the parallelism
assumption such as the arguments parallel.locat
and parallel.scale in family functions are no
longer required. This is internally managed by the
new quantile links rather than being managed by the
family function.

(3) If fit is a Qlink fit, then fitted(fit) returns the
fitted quantiles. This is in the form of a 𝑛 × (𝐿 ⋅ 𝑁𝑂𝑆)
matrix. Similarly, predict(fit) returns a 𝑛 × 𝑀
matrix where the 𝑖th row is 𝜂�푇�푖 .

3.2. Comparison with the Quantreg Package. For checking
purposes, the results are compared with quantreg too. Fig-
ure 2 gives the results based on the following code.

The results should be the similar to Section 3.1 because
the ALD and the classical quantile regression method are
essentially the same. It can be seen that the bottom LHS
corner is not modelled well with quantreg either. Once again
our method performs best, which is not surprising given the
strong distributional assumption.

3.3. Exponential Data. Feigl and Zelen [15] fit an exponential
distribution to a data set comprising the time to death

(in weeks) and white blood cell counts for two groups of
leukaemia patients, and a binary variable for AG-positive and
AG-negative. The two groups were not created by random
allocation. The variable AG is the morphological variable, the
AG factor; a numeric vector where 1 means AG-positive and
2 means AG-negative. We create AG01 which is AG - 1. We
take the log of the white blood cell count (WBC) because it
is very highly skewed. The data are found in GLMsData on
CRAN, which supports Dunn and Smyth [16].

One benefit of quantile modelling with VGLMs is that it
easily allows comparisons of the effect of AG01 or any other

indicator variable, at different quantiles. First note that, for
AG-positive patients with logWBC= 9, the 25% percentile for
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Figure 2: Simulated Maxwell data (21) including (a) the fitted quantile functions from fit.Qmodelling (VGAMextra) and (b) the fitted
quantile curves from qrfit50, etc. from quantreg.

time to death is around exp 2.848 ≈ 17.25 weeks, whilst the
75% percentile is about exp 4.42 ≈ 83.1 weeks. Secondly, the
coefficient of AG011measures the influence of the AG factor
on the time to death. Keeping the levels of WBC constant, for
patients at either the 25%or 75%percentiles, the time to death
for AG–negatives compared to AG–positives is multiplicative
by a factor of exp(−1.02) ≈ 0.361, i.e., a 63.9% reduction in
lifetime.

For further illustration’s sake, we fit a 1-parameter
gamma distribution to these data and interpret the results.
Unlike the Maxwell and exponential distributions, where
simple mathematics shows that different quantiles are
parallel because their logarithm is additive with respect
to 𝜏, the 1-parameter gamma does not possess this
property.

Here, keeping the level of WBC constant, for patients at the
25%percentile, the time to death for AG–negatives compared
to AG–positives is multiplicative by a factor of exp(−1.46) ≈0.232, i.e., a 76.8% reduction. In comparison, for patients
at the 75% percentile, the time to death for AG–negatives
compared to AG–positives is multiplicative by a factor of

exp(−1.27) ≈ 0.281, i.e., a 71.9% reduction.This suggests that
the effect of AG is greater for more severe cases than those
who live longer in general.

Finally, just to check, we obtain the constraint matrices
for each predictor:
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Table 5: Empirical data coverage from quantile–modelling using
VGAMextra (QM–VGAMextra) and quantile–regression from
VGAM (QR–VGAM), after fitting (21).𝜏�푗 QM–VGAMextra coverage QR–VGAM coverage25% 26% 28.5%50% 50% 54%75% 73.5% 78.5%

There is a parallelism assumption made for logWBC but not
for any of the other explanatory variables.

4. Discussion and Future Work

This work in parametric quantile regression is blighted by
the strong assumption of the assumed distribution. In theory,
this might be ameliorated somewhat by implementing as
many distributions as possible. Some of the distributions

listed in Table 2 have real applications, for example, in
kinetic-molecular theory the speed of individual molecules
of idealized gases follows the Maxwell distribution and the
average kinetic speed is directly related to Kelvin tempera-
ture. In experiments that do not satisfy the various postulates
made (such as the effects of the container) one might model
the median particle speed with 𝑥 comprising temperature
and other covariates such as volume of the container and
density of the container walls. Different forms of gases, such
as plasmas and rarefied gases, could be modelled as such
too. Another example is the Rayleigh distribution which
is similar to the Maxwell distribution. In two-dimensions,
and in applications of magnetic resonance imaging (MRI),
complex images are often viewed in terms of the background
data, which is Rayleigh distributed.Nonstandard background
information could be included in 𝑥 and their effects on the
distribution examined.

In the current software implementation there are limita-
tions due to its internal design. For example, it would be good
if

worked like many other VGAM models. The difficulty here
is that the @linkinv S4 slot of a VGAM family function has
eta as an argument, and in our implementation this could
only possibly be created by supplying the new percentiles to
predict() beforehand.

Another minor deficiency in our software implementa-
tion is that the response vector is replicated dim(𝜏) times so
that is a form of recycling. Possibly this could be avoided
because the memory requirement might be excessive when
either dim(𝜏) or 𝑛 are very large.

At present, the VGAM framework has infrastructure to
afford 1–parameter quantile links. For quantile functions
depending on 2 or more parameter, such as the two-
parameter gamma distribution, the quantiles will be bivariate
functions whose inverse would probably not admit a closed
form. Nevertheless, future work includes being able to write
links for two-parameter distributions, of which the normal
distribution would be the most important. For this, the
methodology behind Yee and Miranda-Soberanis [17] could
be employed; they solve a decades-old problem implementing
the two-parameter canonical link function log(𝜇/(𝜇 + 𝑘)) of
the negative binomial distribution. We have already com-
menced work in this direction, e.g., with the 2-parameter
gamma distribution.
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available in the Supplementary Materials.
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