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Abstract

We construct a class of 3-dimensional photonic quantum random number
generators and prove that each generates maximally unpredictable digits via
measurements that are robust to errors. In particular, every sequence gener-
ated is strongly incomputable; hence its quality is provable better than that
of every pseudo-random sequence. We also briefly contrast 2-dimensional
and 3-dimensional quantum random number generators, discuss photonic
implementations and show the superiority of the latter ones. These results
suggest that incomputability in physics is real and practically useful.

1 Introduction
Quantum random number generators (QRNGs) have increased in the last decade
because higher quality of randomness is required in many areas, from cryptog-
raphy, statistics, and information science to medicine, physics, politics and reli-
gion, and the many pitfalls of pseudo-random number generators (PRNGs) are
sometimes catastrophic [49]. QRNGs are generally considered to be “better than
PRNGs" because they are based on the “fundamental unpredictability of well-
chosen and controlled quantum processes" [39], a statement which requires more
scientific arguments than a simple assertion, particularly because the notion of
“true randomness” is mathematically vacuous [18].

The first photonic QRNG called Quantis was produced by ID Quantique in 2001,
and it is based on the standard beamsplitter experiment, see Figures 1 and 2
in [40]. For an experimental analysis of the quality of Quantis see [19, 1, 38, 52].

Linear optical quantum computing (LOQC) [43] is a photonic paradigm of quan-
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tum computing which can simulate small quantum systems. Rather than tensor
together the Hilbert spaces for multiple particles, LOQC uses the Hilbert spaces
associated to the spatial modes, or paths of a single photon. For example, the state
of a 3-dimensional quantum particle (e.g. spin-1 particle) can be represented by a
photon that can be on one of three paths and design a one-qutrit gate with a col-
lection of beamsplitters and mirrors with three input ports and three output ports.
Attenuated lasers [30] and photon multiplier tubes [27] are affordable, reliable
single-photon sources and detectors.

In this paper, we present a uniform method to construct a class photonic 3D
QRNGs and a method to derive the optimal preparation of quantum value indef-
inite states (that satisfy the Located Kochen-Specker Theorem [3]) whose mea-
surements produce outcomes with a pre-given probability distribution.

The new method generalises the constructions of 3D QRNGs described in [44,
10], where two natural probability distributions have been considered. The new
method uses a fixed universal unitary operator – obtained as a composition of
2-dimensional unitary operators – and an optimal value indefinite state which is
repeatedly measured; the outcomes obtained by the measurements have a pre-
given probability distribution. In this way, the Located Kochen-Specker Theo-
rem [6] applies and guarantees that every sequence of quantum random ternary
digits obtained in this manner is maximally unpredictable and robust to errors. In
particular, every quantum random sequence generated is strongly incomputable
(bi-immune [28]), that is, no algorithm can compute more than finitely many exact
values of the sequence; this property, which is much stronger than incomputabil-
ity, implies that the quality of the photonic 3D QRNG is provably better than that
of any pseudo-random generator.

Some QRNGs, like those based on a classical beamsplitter, have no certification
and rely instead on statistical analysis of experimental outcomes. Other QRNGs,
like [9], are certified by Bell Theorem [14] or a located variant of Kochen-Specker
Theorem [3]. The strength of a certification depends on its assumptions. The cer-
tification of the QRNGs discussed in this article is unique because i) the assump-
tions used have been experimentally validated, ii) the robustness of measurements
was proved theoretically [5, 8], and iii) the quality of very long strings of quantum
random digits generated with the QRNGs was experimentally shown to be better
than that of the best PRNGs using pragmatic randomness tests [4]. No other
QRNG, among the many reviewed in the recent survey of the state-of-the-art of
QRNGs [41], is certified in this way.

Finally, the Kochen-Specker Theorem is valid only for Hilbert spaces of dimen-
sion at least 3, the certification given in this paper does not work for the 2D beam-
splitter used by Quantis [39].
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The paper is organised as follows. Section 2 is devoted to notation and defini-
tions; Section 3 presents the classical and located Kochen-Specker Theorems; in
Section 4 we construct a universal photonic unitary operator and in Section 5 we
construct the value indefinite observable; Section 6 presents the formal certifica-
tion of the 3D QRNG and Section 7 we contrast photonic 2D and 3D implemen-
tations. Section 8 includes conclusions and three open questions.

2 Notation and definitions
The sets of positive integers, reals and complex are denoted by N, R, and C,
respectively. Consider the alphabets A2 = {0, 1}, A3 = {0, 1, 2}. Strings over
the alphabet A3 are denoted by x, y, u, w. Infinite sequences over the alphabet A3

are denoted by x = x1x2 . . . ; the prefix of length m of x is the string x(m) =
x1x2 . . . xm. Sequences can be also viewed as A3-valued functions defined on N.

A sequence x over the alphabet A3 is called 3-bi-immune if there is no partial
computable function ' : N ! A3 such that its domain dom(') is infinite and
'(i) = xi for every i 2 dom('), [20].

We assume knowledge of elementary computability theory and algorithmic infor-
mation theory over different size alphabets [18] and quantum optics [33].

Finally, we use 2D and 3D for “two" and “three" dimensionalities, respectively.

3 Kochen-Specker Theorems
In contrast with Bell Theorem [14, 15] which gives only bounds on probability
distributions under the assumption of locality, Kochen-Specker Theorem shows
that assuming non-contextuality1, it is impossible to assign “classical” definite
values to all possible quantum observables in a consistent manner. A definite
value is precisely a (deterministic) hidden variable specifying, in advance, the
result of the measurement of an observable. Consequently, if the conditions for
the Kochen-Specker Theorem are satisfied, the outcomes of all quantum measure-
ments on a system cannot be simultaneously predetermined.

In what follows we denote the observable projecting onto the linear subspace
spanned by a vector | i as P = | ih |

|h | i| . We then fix a positive integer n > 2

1Informally, by “context" we understand the details that surround an event. A quantum mea-
surement of an observable is non-contextual if its outcome is independent of the “context", i.e. is
independent on how the observable is measured.
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and let O ✓ {P | | i 2 Cn
} be a nonempty set of one-dimensional projection

observables on the Hilbert space Cn.

Definition 1 A set C ⇢ O is a context of O if C has n elements and for all
P , P� 2 C with P 6= P�, h |�i = O.

Definition 2 A value assignment function (on O) is a partial function v : O !

{0, 1} assigning values to some (possibly all) observables in O.2

Definition 3 An observable P 2 O is value definite (under the assignment func-
tion v) if v(P ) is defined; otherwise, it is value indefinite (under v). Similarly, we
call O value definite (under v) if every observable P 2 O is value definite.

We assume the following hypotheses:

• Admissibility: Let O be a set of one-dimensional projection observables
on Cn and let v : O ! {0, 1} be a value assignment function. Then v is
admissible3 for O if for every context C of O, we have that

P
P2C v(P ) = 1,

i.e. only one projection observable in a context can be assigned the value 1.

• Non-contextuality of definite values: The outcome obtained by measur-
ing a value definite observable (a pre-existing physical property) is non-
contextual, i.e. it does not depend on other compatible observables which
may be measured alongside it.

Theorem 1 (Kochen-Specker [42, 16, 17, 51]) Let n � 3. Then there exists a
(finite) set of one-dimensional projection observables O on the Hilbert space Cn

such that there is no value assignment function v satisfying the following three
conditions: i) every element in O is value definite under v, ii) v is admissible for
O, iii) v is non-contextual.

It has been shown that for every set of observables, there exists an admissible
assignment function under which the set of observables is value definite, and at
least one observable is non-contextual [7]. Hence the incompatibility between the
Kochen-Specker assumptions is not maximal: not all observables need to be value
indefinite. However, the set of value indefinite has constructive Lebesgue measure
one, that is, with probability one, every observable is value indefinite [5].

Value indefinite observables are essential because, as we will show, measuring
one such observable produces a “random" outcome. To measure a value indefinite
observable, we have to “effectively find" one, so the existential Kochen-Specker
Theorem is not enough.4 Motivated by Einstein, Podolsky and Rosen’s definition

2The partiality of the function v means that v(P ) can be 0, 1 or indefinite.
3That is, in agreement with quantum mechanics predictions.
4Even in case the finite set has two elements.
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of physical reality [29, p. 777]:

If without in any way, disturbing a system, we can predict with cer-
tainty the value of a physical quantity, then there exists a definite value
before observation corresponding to this physical quantity.

we adopt the following [8]:

• Eigenstate principle: If a quantum system is prepared in the state | i, then
the projection observable P is value definite.

In detail, if a quantum system is prepared in an arbitrary state | i 2 Cn, then the
measurement of the observable P should yield the outcome 1, hence, if P 2 O,
then v(P ) = 1.

The main result used here is:

Theorem 2 (Located Kochen-Specker [3, 5, 8] ) Consider a quantum system de-
scribed by state | i in a Hilbert space Cn, n � 3. Choose a state |�i that is
neither orthogonal nor parallel to | i (0 < |h |�i| < 1). If the following three
conditions are satisfied: i) admissibility, ii) non-contextuality and iii) eigenstate
principle, then the projection observable P� is value indefinite.

According to Theorem 2, if a quantum system is prepared in state | i, a one-
dimensional projection observable can only be value definite if it is an eigenstate
of that observable. More generally,

Corollary 1 Let O be an observable with spectral decomposition O =
Pn

i=1 �iP�i ,
where �i denotes each distinct eigenvalue with corresponding eigenstate |�ii.
Then, O has a predetermined measurement outcome if and only if each projec-
tor in its spectral decomposition has a predetermined measurement outcome.

Thus, Theorem 2 works also for the outcome of the measurement of an observable
with non-degenerate spectra. Furthermore, let C = {P1, . . . , Pn} be a context,
i.e. a maximal set of compatible projection observables and let v be a value as-
signment function such that v(P1) = 1 under C. It then follows that, if any pair
(P1, Pi) is measured, then the system will collapse into the eigenstate |�i of the
projection observable P1 with eigenvalue 1. As all observables in C are physi-
cally co-measurable and

Pn
j=1 Pj = 1, we deduce that |�i is an eigenstate of Pi

with corresponding eigenvalue 0, hence v(Pi) = 0. Similarly, if v(Pi) = 0 for
all i 6= 1, then v(P1) = 1. Hence, the property of admissibility of v serves as
a generalisation of the sum rule that corresponds to the physical interpretation of
the measurement process.
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4 A universal photonic unitary operator
In this section, we present a setup satisfying the conditions of Theorem 2 that
guarantees the value indefiniteness of the observables, does not rely on proba-
bilistic results, and ensures maximal unpredictability and robustness to errors (as
in the case of multiple photon emission).

To fulfil the Hilbert space dimensional requirement, we can use a collection of the-
oretical beamsplitters representing the state of a spin-15 particle [3] as described
by its corresponding unitary decomposition, where the desired probability distri-
bution can be achieved with a careful state preparation.

4.1 A generalised spin-1 observable
The property denoted by spin (S) is the intrinsic form of angular momentum char-
acteristic of elementary particles. By deriving the spin state operator Sx we can
analyse the effect of the preparation state |Szi on the outcome probabilities. We
consider the description of states that point in arbitrary directions specified by the
unit vector u = (ux, uy, uz) = (sin ✓ cos#, sin ✓ sin#, cos ✓), where ✓,# are the
polar and azimuthal angles; we then define the spin observable operator S as a
triplet of operators S = (Sx, Sy, Sz) = ~���, where ��� corresponds to the gener-
alised Pauli matrices for a spin-1 particle. Then, by adopting units in which ~ is
numerically equal to unity, we obtain the generalised observable that describes the
measurement context:

S(✓,#) = u · S =

0

BB@

cos(✓) e�i# sin(✓)p
2

0
ei# sin(✓)p

2
0 e�i# sin(✓)p

2

0 ei# sin(✓)p
2

� cos(✓)

1

CCA . (1)

Note that Sz is given by S(0, 0) and Sx by S(⇡2 , 0).

4.2 Unitary decomposition
By considering the orthonormal Cartesian standard basis |1i = (1, 0, 0), |0i =
(0, 1, 0) and |�1i = (0, 0, 1), and the eigenvalues {�1, 0, 1} of Sx we obtain the
unitary matrix Ux corresponding to the spin state operator Sx:

5Many results in this section hold for an arbitrary 3-dimensional particle.
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Ux =
1

2

0

@
1

p
2 1

p
2 0 �

p
2

1 �
p
2 1

1

A . (2)

There is a well-known relationship between the set of 2⇥ 2 unitary matrices with
determinant one, SU(2), and the physical observables of quantum spin in a 2-

dimensional Hilbert space. Every matrix A =

✓
↵ �

� �

◆
in SU(2) satisfies A† =

A
�1 by definition, thus, we can express the linear transformation of a vector by

the matrix A as follows:

✓
u
0

v
0

◆
=

✓
↵ �

��
⇤
↵
⇤

◆✓
u

v

◆
. (3)

This relation plays an essential role in the formulation of a transformation pro-
duced by a lossless beamsplitter and external phase shifter to represent the annihi-
lation operators of the quantum harmonic oscillator [33]. Here, the transmittance
and reflectivity parameters are described within the unitary matrix, and the input
and output states are represented with modes (u, v) and (u0

, v
0) respectively:

✓
u
0

v
0

◆
=

✓
cos ✓ ie

i# sin ✓
i sin ✓ e

i# cos ✓

◆✓
u

v

◆
.

As demonstrated in [54], given an arbitrary unitary operator, we can represent a
generalised rotation through the decomposition of the unitary matrix Ux using a
series of phase shifters and beamsplitters implemented in an optical experiment.
To this end, ✓ describes the square root of the reflectivity and transmittance given
by sin ✓ and cos ✓ respectively, and # represents the phase of an external phase
shifter on the second input port.

As unitary decompositions are not unique, the unavoidable imperfections in every
experimental setup mean that not every choice is suitable for physical implemen-
tation. Consequently, a unitary decomposition must be carefully constructed to
reduce internal loss, minimise the physical footprint, and make the implemented
transformation as close as possible to the ideal one.

Imperfect parameter settings describing the optical elements of a photonic quan-
tum circuit and propagation losses due to manufacturing errors are the main fac-
tors impeding an ideal physical realisation. In what follows, we use the method [22]
because the analysis in [32] concluded that it achieves a more balanced mixing of
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the optical modes, a reduced propagation loss and a better scaling of fidelity than
the method [54].6

This arrangement can be achieved by left and right multiplying theoretical beam-
splitter matrices Bm,n and B

�1
m,n to nullify successive diagonals of Ux while ensur-

ing that no null element of Ux is affected by subsequent operations.

Let

B1,2 =

0

BB@

q
2
3

1p
3

0

ip
3

�i

q
2
3 0

0 0 1

1

CCA , B2,3 =

0

@
1 0 0

0 1
2 �

i
p
3

2

0 i
p
3

2 �
1
2

1

A ,

B
�1
1,2 =

0

BB@

q
2
3 �

ip
3

0

1p
3

i

q
2
3 0

0 0 1

1

CCA , D =

0

@
1 0 0
0 �1 0
0 0 �1

1

A ,

and note that B�1
2,3 = B2,3.

We then obtain the following decomposition:

B2,3 · B1,2 · Ux · B
�1
1,2 =

0

@
1 0 0
0 �1 0
0 0 �1

1

A = D. (4)

Thus, from (4) we get

Ux = B
�1
1,2 · B

�1
2,3 ·D · B1,2 = B

�1
1,2 · B2,3 ·D · B1,2. (5)

In particular, with D consisting of single mode phase-shifts, there exists a diagonal
matrix D

0 and a beamsplitter matrix B
0
1,2 such that B�1

1,2 ·D = D
0
· B

0
1,2. Indeed,

setting

D
0 =

0

@
1 0 0
0 i 0
0 0 �1

1

A , B
0
1,2

0

BB@

q
2
3

ip
3

0

�
ip
3

�

q
2
3 0

0 0 1

1

CCA ,

6The improvements are due to a more compact and symmetric interferometric structure.
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hence we have

B
�1
1,2 ·D =

0

BB@

q
2
3 �

ip
3

0

1p
3

i

q
2
3 0

0 0 1

1

CCA ·

0

@
1 0 0
0 �1 0
0 0 �1

1

A =

0

BB@

q
2
3

ip
3

0

1p
3

�i

q
2
3 0

0 0 �1

1

CCA

=

0

@
1 0 0
0 i 0
0 0 �1

1

A ·

0

BB@

q
2
3

ip
3

0

�
ip
3

�

q
2
3 0

0 0 1

1

CCA = D
0
· B

0
1,2.

Observing that B2,3 ·D = D · B2,3 we get:

Ux = B
�1
1,2 · B2,3 ·D · B1,2 = D

0
· B

0
1,2 · B2,3 · B1,2,

which allows us to set the reflectivity, transmittance and phase shift values for a
physical realization via Mach-Zehnder interferometers:

Bm,n ✓ #

B
0
1,2 �

⌘
2 ⇡

B2,3
2⇡
3 ⇡

B1,2
⌘
2

3⇡
2

with ⌘ = 2 arccos
⇣q

2
3

⌘
. This yields the correspondence between the equation

(4) and its physically realisable optical implementation in Fig. 1.

4.3 Invariance of value-indefinite observables
To justify the use of the 2-dimensional matrices representing beamsplitters to con-
struct the 3-dimensional unitary operator, we have to prove that the 2-dimensional
decomposition induces a mapping that preserves the 3-dimensionality, hence value
indefiniteness. In other words, we have to prove that the constructed system is
genuinely in the Hilbert space C3. That is, Kochen-Specker Theorem applies; it
is known this theorem is false in dimension two.

Recall that the group O(3) formed by the orthogonal transformations in a 3-
dimensional vector space establishes significant results closely related to the con-
servation of angular momentum; in particular, the representation theory of the ro-
tation group SO(3) is strongly associated with the theory of the spin of elementary
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Figure 1: Physical realization of the universal unitary decomposition Ux by means
of 3-mode multiport interferometer. An arrangement of Mach-Zehnder interfer-
ometers consisting of phase shifters and balanced directional couplers illustrate
its construction. Here, ⌘ = arccos

⇣q
2
3

⌘
.

particles [48] allowing the derivation of the generalised spin-1 observable. Fur-
thermore, there is an essential relationship between the groups SU(2) and SO(3),
which is established by a bijective and continuous group homomorphism � – the
Lie group homomorphism – mapping SU(2) onto SO(3) with a corresponding
continuous inverse map ��1, see [35].

Consider the vector space V spanned by the orthonormal basis

{�1, �2, �3} ⌘

⇢✓
0 1
1 0

◆
,

✓
0 i

�i 0

◆
,

✓
1 0
0 �1

◆�
.

formed with the Pauli matrices �x, �y, �z. Note that

�i�j = �ijI +
X

k

✏ijk�k,

where

✏ijk =

8
><

>:

1, if ijk is an even permutation,
�1, if ijk is an odd permutation,
0, otherwise,
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with the inner product defined by hA,Bi = 1
2 Tr(AB), for A,B in the basis. The

orthonormality of the chosen basis for V yields the correspondence with C3. If
U 2 SU(2) and A 2 V , then

UAU
�1 = (U�1)⇤AU⇤ = (UAU

�1)

and
Tr

�
UAU

�1
�
= Tr

�
U

�1
UA

�
= Tr(A) = 0,

thus UAU
�1

2 V . Furthermore,

U1U2AU
�1
2 U

�1
1 = (U1U2)A(U1U2)

�1

and
Tr

�
UAU

�1
UBU

�1
�
=

1

2
Tr(AB) = hA,Bi,

where A,B 2 V and U,U1, U2 2 SU(2). The linear map �U : V ! V defined
by �U(A) = UAU

�1 satisfies the following conditions:

�U1U2 = �U1�U2 ; h�U(A),�U(B)i = hA,Bi.

In particular, �U is an orthogonal transformation of V . Hence � is a homomor-
phism from SU(2) to O(3). Finally, note that �I equals the identity I . In partic-
ular, since SO(3) restricts the elements of O(3) to the ones with determinant one,
it follows that � maps SU(2) into SO(3).7

Thus, the action of the 2-dimensional decomposition of Ux on a spin-1 observable
is a Lie group preserving mapping to the measurement of a spin-1 system along
the x axis as described by Ux (see Section 4 4.1).

Furthermore, as Ux preserves the measurement context described by the spin state
operator Sx = S(⇡2 , 0), if the projection observable P� is value indefinite, then the
projection observable PUx(�) is also value indefinite. We have proved:

Theorem 3 The operator Ux defined by (5) preserves 3-dimensionality, hence
value indefiniteness.

5 Construction of a value indefinite quantum state
In this section we construct a value indefinite quantum state which by measure-
ment produces outcomes with a given probability distribution (p1, p2, p3) where

7An alternative derivation can be obtained by noting that SU(2) is isomorphic to unit quater-
nions.
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P
i pi = 1 and 0 < pi < 1. Consider the standard Cartesian basis and the spin

state operator Sx from Section 4 4.2.

The desired probability distribution is

P(Sx, 1) = |h1x|�
⇤
i|

2 = p1,

P(Sx, 0) = |h0x|�
⇤
i|

2 = p2,

P(Sx,�1) = |h�1x|�
⇤
i|

2 = p3,

(6)

were |1xi , |0xi and |�1xi represent the eigenvectors of Sx with respect to the
standard Cartesian basis and |�i is the preparation state. A preparation state is
valid if the conditions in (6) are satisfied.

Thus, for a selection of valid preparation states |�⇤
i we use Corollary 1 to obtain:

P(Sx, 1) =

����
1

2
h1|�⇤

i+
1
p
2
h0|�⇤

i+
1

2
h�1|�⇤

i

����
2

= p1,

P(Sx, 0) =

����
1
p
2
h1|�⇤

i �
1
p
2
h�1|�⇤

i

����
2

= p2,

P(Sx,�1) =

����
1

2
h1|�⇤

i �
1
p
2
h0|�⇤

i+
1

2
h�1|�⇤

i

����
2

= p3.

(7)

Then, if we choose

x = ±
p
2
p
p2 + z = h1|�⇤

i, y = ±
p
p2 ⌥

p
2
p
p3 + z

p
2 = h0|�⇤

i,

z = ±

p
p1

2
⌥

p
p2

p
2

±

p
p3

2
= h�1|�⇤

i,

we obtain

P(Sx, 1) = |h1x|�⇤
i|

2 = p1,P(Sx, 2) = |h0x|�⇤
i|

2 = p2,

P(Sx,�1) = |h�1x|�⇤
i|

2 = p3.

We have proved:

Theorem 4 The following quantum states are value indefinite with respect to the
standard Cartesian basis:
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|�i
⇤ =

h
±
p
2
p
p2 + z

i
|1i

+
h
±
p
p2 ⌥

p
2
p
p3 + z

p
2
i
|0i+


±

p
p1

2
⌥

p
p2

p
2

±

p
p3

2

�
|�1i .

(8)

for every combination of the signs + and �.

According to Theorem 4, given a probability distribution (p1, p2, p3), every quan-
tum states in (8) is a valid preparation state for the 3D QRNG and this is obtained
by choosing a combination of signs for |�⇤

i.

Example 1 For the probability distribution (14 ,
1
2 ,

1
4), by setting

(+
p
p1,+

p
p2,+

p
p3) =

✓
1

2
,
1
p
2
,
1

2

◆
,

we can obtain the valid preparation state

|�i = [1 + z] |1i+

"
1
p
2
�

p
2

2
+ z

p
2

#
|0i+


1

4
�

1

2
+

1

4

�
|�1i = |1i .

Similarly, for the probability distribution (13 ,
1
3 ,

1
3), we get the following valid

preparation states

±
1
p
3
(|1i+ |�1i)±

1
p
6
(|1i � |�1i) ,

1
p
6
|1i±

r
2

3
|0i �

1
p
6
|�1i ,

�
1
p
6
|1i±

r
2

3
|0i+

1
p
6
|�1i .

6 Certification
First, we discuss the formal property of the proposed 3D QRNGs, which guaran-
tees that the quality of their quantum random bits is provable better than the one
produced by any pseudo-random number generator. Mathematically, the property
guarantees that every sequence produced by such 3D QRNG is incomputable, that
is, no sequence produced by such a 3D QRNG can be reproduced exactly by any
algorithm. In detail, consider a process that algorithmically repeats the process
of state preparation and measurement, as described in Sections 4 and 5 4.2, and
let x = x1x2 . . . be the infinite sequence produced by the measurement outputs;
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here each xi is 0 or 1 or 2. Let O, C be two fixed sets of observables and contexts,
whose respective components Oi, Ci denote the observable and the corresponding
context of the i-th measurement. Let f : N⇥O⇥C ! A3 be the function defined
by f(i, Oi, Ci) = xi for every i. The incomputability of x, which is equivalent to
the incomputability of f , follows from the non-contextuality of definite values.

A stronger result can be obtained by using the non-probabilistic model for unpre-
dictability [6, 7]. To this end, we consider an experiment E producing a single-
digit x 2 A3. With a particular trial of E, we associate the parameter � (the state
of the universe), which fully describes the trial; � is a resource from which one
can extract finite information to predict the outcome of the experiment E. The
trials of E generate a succession of events of the form “E is prepared, performed,
the result recorded, E is reset”, algorithmically iterated finitely many times.

Definition 4 An extractor is a physical device selecting a finite amount of infor-
mation from � without altering the experiment E; the outcome is a string of digits
h�i over A3.

Definition 5 A predictor for E is an algorithm PE which halts on every input and
produces and element of A3 or prediction withheld.

The predictor, PE , can use the information h�i as input but must be passive, that
is, it must not disturb or interact with E in any way.

Definition 6 A predictor PE provides a correct prediction using the extractor h i
for an instantiation of E with parameter � on the input h�i, in case it outputs an
element of A3 (that is, it does not refrain from making a prediction) that is equal
to x, the result of the experiment.

Definition 7 Fix an extractor h i and a positive integer k. The predictor PE is
k, h i-correct if there exists an n � k such that when E is repeated n times with as-
sociated parameters �1, . . . ,�n and produces the outputs x1, x2, . . . , xn, then PE

outputs the sequence PE(h�1i), PE(h�2i), . . . , PE(h�ni) with the following two
properties: (i) no prediction in the sequence is incorrect, and (ii) in the sequence
there are k correct predictions.

If PE is k, h i-correct the probability that PE is in fact operating by chance and
may not continue to give correct prediction is bounded by 3�n

�
n
k

�
<

2n

3n 
�
2
3

�k.
This probability tends exponentially to 0 when k ! 1, so the confidence we have
in a k, h i-correct predictor increases exponentially with k.

If PE is k, h i-correct for all k, then PE never makes an incorrect prediction, and
the number of correct predictions can be made arbitrarily large by repeating E

enough times. If PE is not k, h i-correct for all k, then we cannot exclude the
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possibility that every correct prediction PE makes is simply due to chance. Con-
sequently, we can define the predictability of a single trial:

Definition 8 The outcome x of a single trial of the experiment E performed with
parameter � is predictable (with certainty) if there exist an extractor h i and a
predictor PE which is k, h i-correct for all k, and PE(h�i) = x.

In this case, if the predictor PE outputs x, then PE never makes an incorrect pre-
diction no matter how many times it is used, practically finitely many, theoretically
infinitely many.

Theorem 5 A sequence x 2 A
!
3 is 3-bi-immune if and only if no single digit of x

can be predicted by any predictor.

Proof. Let x 2 A
!
3 be a 3-bi-immune sequence and assume that a digit xi of

x can be predicted. Fix an extractor h i,�, and assume that there exists a pre-
dictor PE for x which is k, h i-correct for all k 2 N and PE(h �ii) = xi. De-
fine the partial function ' : N ! A3 with the domain dom(') = {j 2 A3 |

PE(h �ji) is not withheld} and '(j) = PE(h �ji), j 2 N.

By definition, PE is an algorithm which halts on every input and for infinitely
many j 2 N,'(j) = xj , hence the set {j 2 N | '(j) = xj} is computable,
contradicting the 3-bi-immunity of x. Accordingly, j 62 dom(') if and only if
PE(h �ji) is withheld.

For the other implication suppose no single digit of x can be predicted and assume
for the sake of contradiction that x is not 3-bi-immune. Hence there exists a partial
computable function ' : N ! A3 with infinite domain and '(i) = xi for every
i 2 dom('). Algorithmically we can extract an infinite computable subset S of
dom(') and set �j = j for the experiment which consists in the computation of
'(j), j 2 S. Thus, we can construct the predictor PE which is k-correct for all
k 2 N by the formula:

PEh�ji) = PE(j) =

(
'(j), if j 2 S,
“prediction withheld”, otherwise.

This is a contradiction as all xj with j 2 S are correctly predicted by PE . ⇤
Assuming the Eigenstate principles, and the

epr principle: If a repetition of measurements of an observable gen-
erates a computable sequence, then this implies these observables
were value definite.

the following results follow from Theorem 3 in [7]:
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Theorem 6 Let x be an infinite sequence obtained by measuring a quantum value
indefinite observable in C3 in an algorithmic infinite repetition of the experiment
E. Then no single-digit xi can be predicted.

From Theorem 5 we get:

Corollary 2 Let x be an infinite sequence obtained by measuring a quantum
value indefinite observable in C3 in an algorithmic infinite repetition of the ex-
periment E, then x is 3-bi-immune.

Given Theorem 4, every quantum state in (8) is value indefinite and measuring it
with the universal unitary operator Ux produces a quantum random ternary digit.

Corollary 3 Every 3D QRNG that uses a value indefinite observable (8) and the
universal unitary operator (5) always generates sequences for which no single
digit can be predicted. In particular, every such sequence is 3-bi-immune.

7 Photonic implementations
In this section we discuss 2D and 3D photonic implementations of QRNGs.

7.1 Spin and dimensionality of photons
Although photons are a spin-1 particle, they are considered massless. Thus, the
description of the projector of the spin operator onto the momentum operator is
referred to as helicity. Hence, one of the spin states would be symmetric to a
rotation about an axis that is normal to the direction of travel for the photon,
indicating zero momentum. One can think of this as acting in the rest frame where
the velocity is zero, and since a photon travels at the speed of light, this state is
usually dismissed.

Nonetheless, the mathematical peculiarities of photons indicate that there is valu-
able 3-dimensional information encoded in the traditionally dismissed state. A
2-dimensional view of the photonic structure does not fulfil the dimensional re-
quirements imposed by Theorem 1, but, a 3-dimensional analysis allows the use
of this result to localise value indefiniteness within a photonic quantum process.
To illustrate the relevance of the underlying 3-dimensional structure of photons,
consider the case of virtual photons, which can be described as "light that passes
between two particles of matter without explicit measurement of its properties".
In the case of virtual photons, the helicity state zero has to be considered since we
can no longer think of them as massless. Rather than regarding photons as being
real or virtual, one can argue that all photons are virtual photons or that they occur
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in a continuum of those terms; this continuum can be observed as virtual attributes
exhibited by real photons, which are evident in the case of nanophotonics [12], or
in a vacuum where "virtual photons can be transformed into real ones that can be
observed experimentally". The structure and behaviour of virtual and real pho-
tons are complex phenomena that are not yet fully understood. Its peculiarities
in its dimensionality, as described mathematically and observed experimentally,
make it necessary to preserve this dimensionality in a quantum system that utilises
photons to guarantee value indefiniteness.

7.2 A 2D vs. 3D QRNG
Recent literature uses Bell-type inequalities to assert the unpredictability of quan-
tum measurements and formulate random number generation protocols. These
protocols rely on correlations that violate the constraints described by Bell’s The-
orem to certify that there is no local hidden variable describing the measurement
outcomes. Thus, extracting statistical randomness from the local measurement of
entangled states.

Other physical implementations use a 2-dimensional beamsplitter, relying on the
assumption that a photon going through a beamsplitter will act as a “quantum bit
flip" (or “quantum coin" [57]).

Several variants of Bell’s Theorem, Bell-type inequalities and protocols based
on these results have been used throughout the years. A notable example is the
GHZ approach, referred to as Bell’s Theorem Without Inequalities [34], because it
avoids statistical averaging and inequalities, and the CHSH inequality [21], which
includes Bell’s inequality as a particular case.

Despite their popularity to certify the quality of quantum random bits gener-
ated by 2D QRNGs, see [53, 55], the choice of probability space, among other
parameters used to derive Bell-type inequalities, may lead to ambiguity when
analysing the probabilities of finding correlations among the measurement out-
comes which, in some experimental circumstances, may lead to relaxation or for-
mulation of additional assumptions when taking into account experimental im-
perfections [56, 46, 26, 37]. Due to its probabilistic framework and in some
cases, its inability to meet the criteria for value indefiniteness as a consequence of
its dimensionality [58], this type of certification does not guarantee the maximal
unpredictability of its measurement outcomes.

In contrast, localising value indefiniteness enables a photonic 3D QRNG to certify
the maximal unpredictability of its outcomes in a non-probabilistic fashion (as de-
tailed in Section 6). Thus, this type of QRNG offers a provable security advantage
over any PRNG used as an entropy source for cryptographic systems.
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7.3 Single-photon sources and detectors
The effects of the inherent imperfections in the physical implementation of a
QRNG have to be carefully studied since the choice of theoretical certification
has a fundamental impact on the error sensitivity of the experimental implemen-
tation. To illustrate this point, we consider the case of single-photon sources and
detectors.

In an ideal case, a stream of single photons emitted at controlled intervals will
traverse the beamsplitter setup, and an ideal single-photon detector will detect its
final trajectory. However, every experimental realisation of such a device faces
various limitations that depend on the specific implementation.

There are several flavours of single-photon sources available to date. The diffi-
culties involved in the experimental realisation of a single-photon source lead to
attenuated lasers as an alternative. Weak laser light can produce a proxy for single-
photon states via a coherent state approximation and a low enough intensity. In
particular, an attenuated light (e.g. generated by a light-emitting diode) offers a
sufficient, inexpensive and straightforward alternative when accounting for a pho-
ton generation with a more significant separation than the coherence time of the
source; here, separation does not represent a problem as the limiting factor tends
to be the dead time of the detector (the time interval after a detection when the
detector is unable to perceive incoming photons) [50, 36].

In this case, the number of photos emitted fluctuates around a particular mean
value following the Poisson distribution: multiple photons could be emitted at
once, or one could get an empty pulse. If the mean number of photons per pulse
is reduced to ensure the probability of emitting more than one photon at once is
negligible, so most pulses will be empty, which implies a decrease in bit rate and
a disruption of the system performance (as the detectors must be active for every
pulse [11, 31]). Thus, a delicate balance is required for practical applications.

For QRNGs reliant on Bell-type certification, multiple photon emission is a severe
problem. Successively emitted photon pairs may overlap within the detection time
window, simultaneously triggering a detection event that contributes to an artifi-
cial rate of photon count coincidences, hence the possibility of falsely satisfying
Bell’s inequality; the higher the frequency of multiple photon emission, the greater
the chances of this occurring [13].

This is not a problem for the implementation presented in this paper, which is
based on uncorrelated states. Moreover, Theorem 2 provides robustness against
non-ideal preparation state fidelity (via the condition 0 < |h |�i| < 1). The cer-
tification method discussed in Section 6 guarantees the maximal unpredictability
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and strong incomputability, properties distinguishing the QRNGs discussed in the
paper from all others [?, 41]. As the quality of the generated random digits re-
mains unaffected, the outcomes corresponding to photon count coincidences can
be discarded to reduce bias or included to increase the number of extractable bits.
In the latter case, an un-biasing technique would be required as a post-processing
step. This solution is prone to the adverse effects of normalisation techniques on
other symptoms of randomness, not yet fully understood [2]

8 Conclusion
We have described a class of 3D QRNGs based on a universal photonic unitary
operator and proven that it generates maximally unpredictable digits via mea-
surements that are robust to errors. In particular, every sequence generated is
strongly incomputable; hence its quality is provable better than that of every
pseudo-random sequence.

Next, we briefly contrasted 2D and 3D QRNGs, discussed photonic implementa-
tions and showed the superiority of the latter ones. The strong incomputability
of every sequence generated by the 3D QRNGs studied in this paper contributes
to the much-studied and debated problem of incomputability in physics [24, 47,
23, 25]. This paper argues that incomputability in physics is real and practically
applicable, a fundamental phenomenon for understanding nature.

As many applications require binary random strings, the following computable
alphabetic morphism ' : A3 ! A2

'(a) =

8
><

>:

0, if a = 0,

1, if a = 1,

0, if a = 2,

transforms by sequential concatenation ternary strings/sequences into binary ones
and preserves the certification discussed in Section 6 for the probability distribu-
tion 1/4,1/2,1/4; for proofs see Section 7 in [10].

Are the main assumptions, Admissibility, Non-contextuality, Eigenstate and epr
principles, used in the proof of Theorem 2, physically “acceptable”? A cautiously
affirmative answer to this question comes from the results obtained by testing
the incomputability of quantum random strings of length 232 (obtained with the
implementation of the 3D QRNG [44]) using Chaitin-Schwartz Theorem in [4].
We conjecture that better results will be obtained with a similar implementation
of the 3D QRNG in [10].
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Finally, we conjecture that i) the certification of the 3D QRNGs presented in this
paper can be strengthened to Martin-Löf randomness [18, 45], and ii) in contrast to
3D beamsplitters, 2D beamsplitters “lose” information, hence they do not generate
maximally unpredictable random sequences.
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