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An Algorithmic Heat Engine

Michael Stay

Abstract

We construct an algorithmic heat engine and use it to increase the aver-
age runtime of programs in a distribution.

This note is in honor of Cristian Calude’s 70th birthday.

1 Introduction

Calude and Stay [2] pointed out that Tadaki’s parametrization [5] of Chaitin’s
Omega number [3] was formally equivalent to the partition function of a statisti-
cal mechanical system where temperature played the role of the compressibility
factor, and studied various observables of such a system. Tadaki [6] then explicitly
constructed a system with that partition function: given a self-delimiting universal
Turing machine U, a total length E, and a number of programs N, Tadaki defined
the entropy of the system to be the log of the number of E-bit strings in dom(U)N;
the corresponding “temperature” is
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In follow-up papers [6, 7], Tadaki showed that various other quantities like the
free energy shared the same compressibility properties as ΩD. Baez and Stay
[1] considered multiple variables, which is necessary for thermodynamic cycles,
chemical reactions, and so forth.

We can choose our favorite programming language and consider the set of
programs that take no input, run for a while, then stop. We call this set “the set
of halting programs”. For technical reasons, we also assume that the programs
are “prefix-free". Most real programming languages are prefix-free because there
is something like a “makefile" that describes how to combine the files together,
and the source code itself lives on a file system that describes the length of each
file. What we call “the program" is really all the data necessary to build the result,
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assembled in such a way that the execution of the program reads neither too few
nor too many bits.

There are sensible questions one can ask about such a program, like, “How
long is it?" “How many instructions of the CPU did it take to finish?" “What
did it print?" or “How much memory did it use?" We can take these to be our
observables and do everything just as one does in physical systems, getting a
partition function for a Turing machine.

The arbitrary analogy we will use here is laid out in the following table:

Computer Piston Variable Conjugate Conjugate variable
runtime energy E temperature β = 1/T
length volume V pressure γ = P/T

In this note, we choose a universal machine, lay out an explicit thermodynamic
process, and compute exactly how much work is being done on each cycle.

The alpha Stirling engine is a heat engine with two pistons, one connected to
a hot reservoir and the other to a cold one:

First, the vanes cool the gas in the lower piston, lowering the pressure and
allowing the upper piston to move to the right. The gas continues to cool, allowing
the lower piston to move down. The flywheel turns, moving the upper piston to
the left, drawing all the gas into the upper piston, where it heads and expands.
The expanding gas pushes the lower piston up and returns the engine to the initial
configuration.

Given the ability to sample from a large cool distribution and a large hot one,
we can build an algorithmic Stirling engine with a piston distribution that does
“work" on a fourth distribution, the system. In each cycle of the engine above, the
flywheel makes a full revolution; it could be attached to a cable to lift something
or attached to a magnet to generate electricity.

1. (Isometric) We put the piston system into thermal contact with the cool
system. For the program analogy, this means that we sample the set of pairs
of programs subject to the constraint that the average total runtime is the
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sum of the average runtimes of the cool reservoir and the piston, and the
length of the piston program does not change. Since the “cool” reservoir
has programs with much less total runtime than the piston, this will tend to
decrease the runtime of the piston distribution.

2. (Isothermic) We sample the set of programs subject to the constraint that
the average runtime does not change. Since the piston is at low pressure,
the length of the programs will decrease.

3. (Isometric) We put the piston into thermal contact with the hot system.
Again, we sample the set of pairs of programs subject to the constraint that
the average total runtime is the sum of the average runtime of the cool reser-
voir and the piston, and the length of the piston program does not change.
Since the “hot” reservoir has programs with much more total runtime than
the piston, this will tend to increase the runtime of the piston distribution.

4. (Isothermic) We sample the set of programs subject to the constraint that the
average runtime does not change. Since the piston is under high pressure,
the average length of the piston distribution will increase.

Because the increase in runtime in step 3 is greater than the decrease in step 1,
the runtime of the piston distribution will increase over time.

2 The SK combinator calculus

We use the SK combinator calculus [4] for our universal machine. The S combina-
tor obeys the rule (((Sx)y)z) -> ((xz)(yz)) while the K combinator obeys
((Kx)y) -> x. The smallest programs halt immediately because the combina-
tors do not have enough inputs to trigger reduction:

S (S(KK))

K (K(SS))

(SS) (K(SK))

(SK) (K(KS))

(KS) (K(KK))

(KK) ((SS)S)

(S(SS)) ((SS)K)

(S(SK)) ((SK)S)

(S(KS)) ((SK)K)

Figure 1: Shortest programs that halt immediately
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The first programs that reduce all involve the K combinator applied to two
others.

((KS)S) -> S

((KS)K) -> S

((KK)S) -> K

((KK)K) -> K

Figure 2: Shortest programs that reduce

The first identity is ((SK)S) because (((SK)S)x) -> ((Kx)(Sx)) -> x.
The first program that does not halt is

(((S(S((SS)S)))(SS))S),

much smaller than

(((S((SK)S))((SK)S))((S((SK)S))((SK)S))),

the encoding of the smallest looping λ-calculus term ((λx.(xx))(λx.(xx))).

3 Convergence and computability of the partition

function

We consider any invalid program x to run forever. In that case, E(x) = ∞ and the
relative probability of x at any β > 0 is zero.

We work over the alphabet {(, S ,K, )}. Given n ≥ 0 left parentheses, there are
Cn ways to create a full binary tree of applications, where Cn is the nth Catalan
number. In a valid program there will be n left parentheses, n + 1 combinators,
and n right parentheses, for a total of 3n + 1 characters. There are 2n+1 ways to
choose the combinators.

Therefore, the value of the partition function is bounded above by

Z(β, γ) =
∑

x

exp(−βE(x) − γV(x))

≤ Z(0, γ) =
∑

x

exp(−γV(x))

=

∞
∑

n=0

Cn2n+1

exp(γ(3n + 1))

which converges provided γ ≥ ln(2) to
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√
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)

)
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However, Z(0, γ) is not the limit of the partition function as β approaches zero
from above. As β gets very small, the product βE(n) is effectively zero for halt-
ing programs but still infinite for non-halting programs. The total contribution
of a program x to the partition function in that case is exp(−γV(x)) for halting
programs and zero for non-halting programs. The limit itself is the generalized
halting probability of the calculus, which is asymptotically partially random [2].

Since there are an infinite number of programs that halt immediately, Z(β, γ)
diverges as γ approaches zero; the particular point at which it diverges depends
on β.

When both β and γ are nonzero and computable, the value of the partition
function is computable when it converges: to compute the value to a particular ac-
curacy, we simply run long-running programs long enough that their contribution
is too small to matter.

4 Stirling cycle

We arbitrarily choose 10−8 as our accuracy for the partition function and β, γ ∈
{2, 3} as the four corners of the cycle in β, γ space. Given those parameters, we
find that we only need to consider programs up to length 10:

Z(0, 2) =
1
2

(

e2·2 −

√

e2
(

e3·2 − 8
)

)

≈ 0.272

Z>10(0, 2) = Z(0, 2)
−(1 · 2)e−1·2

−(1 · 4)e−4·2

−(2 · 8)e−7·2

−(5 · 16)e−10·2

≈ 2.32 × 10−9.

Z>10(0, 2)
Z(0, 2)

≈ 8.53 × 10−9 < 10−8.

The approximation only gets better for β > 0.
All terms with one or two combinators halt immediately. Twelve of the terms

with three combinators halt immediately, while the four of the form ((Kx)y) take
one step. Forty-eight terms with four combinators halt immediately. Twenty-eight
terms halt after one step, those of the forms (((SS)x)y), (((Kx)y)z), ((K(xy))z), and
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((Kx)(yz)). Four terms halt after two steps, those of the form (((SK)x)y). There-
fore,

Z(β, γ) = 2e−β·0−γ·1

+ 4e−β·0−γ·4

+ 12e−β·0−γ·7

+ 4e−β·1−γ·7

+ 48e−β·0−γ·10

+ 28e−β·1−γ·10

+ 4e−β·2−γ·10

+ Z4(β, γ).

The entropy of the distribution is

S (β, γ) = −
∑

x

p(x) ln(p(x))

= −
1

Z(β, γ)

∑

x

e−β·E(x)−γ·V(x)(−β · E(x) − γ · V(x)).

The total work done is −
∮

TdS . The temperature T is just 1/β, and

dS =
∂S (β, γ)
∂β

dβ +
∂S (β, γ)
∂γ

dγ.

The work done on each step is as follows.

1. The piston is placed in thermal contact with the cool reservoir. The coolness
β increases from 2 to 3 while γ remains constant, so the work done is

−

∫ 3

2

1
β

∂S (β, 2)
∂β

dβ ≈ −0.82311843.

2. The piston contracts, increasing the internal pressure and compressing the
system. The coolness beta remains constant at 3, so the work done is

−

∫ 3

2

1
3
∂S (3, γ)
∂γ

dγ ≈ −0.83693331.

3. The piston is placed in thermal contact with the hot reservoir. The coolness
β increases from 2 to 3 while γ remains constant, so the work done is

∫ 3

2

1
β

∂S (β, 3)
∂β

dβ ≈ 1.21729648.
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4. The piston expands, decreasing the internal pressure and compressing the
system. The coolness beta remains constant at 2, so the work done is

∫ 3

2

1
2
∂S (2, γ)
∂γ

dγ ≈ 1.25540125.

The total work per cycle is approximately 0.81264599, or in other words, the
average runtime of a program in the piston distribution increases by about 0.81
steps per cycle.

5 Conclusion

Maxwell’s relations let us reason about the expected value of observables over
large collections of programs in a market where exchanges of programs between
collections are allowed subject to constraints on the observables; for example,
an isometric step preserves the length of the piston program and the sum of the
average runtimes of the piston and the reservoir programs. We computed the run-
time value of an arbitrage cycle, moving programs between a “hot” and a “cold”
reservoir. One can do similar computations analogous to any engine.
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