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Abstract

Motivated by an application in Computer Vision, we present an efficient QUBO
solution for the minimum multi-way cut problem. For an edge-weighted input graph
G = (V,E) and a set of terminals T = {t1, t2, . . . , tk} ⊂ V we want to find a subset
of edges Ec of minimum total cost such that G′ = G \ Ec separates T . QUBO rep-
resentations are useful for solving problems on an adiabatic quantum computer like
those produced by D-Wave Systems. Our reduction from the multi-way cut problem
requires only O(k|V |) binary variables/qubits. The main result of this paper is a proof
of correctness of this model. Furthermore, our reduction is small enough to be able to
empirically test it with an existing D-Wave hybrid quantum-classical solver, which is
illustrated at the end of this paper.

Keywords: Multi-way cut, Quantum Annealing, D-Wave, QUBO, Computer Vision,
Image Restoration.

1 Introduction

Generally, the minimum multicut problem is defined as follows. Let G(V,E,C) be an arbi-
trary undirected weighted graph, where V is the set of vertices, E is the set of edges, and
C : E → R is a weight function on the edges. Let (s1, t1), . . . , (sk, tk) be a collection of vertex
pairs in V . The minimum multicut problem is to find a subset of edges with minimum total
weight whose removal separates si from ti for 1 ≤ i ≤ k [2]. A special case of the minimum
multicut problem is the minimum multi-way cut problem. Let T = {t1, t2, . . . , tk} ⊂ V be a
set of terminals. A multi-way cut on G along with the set of terminals T is a subset of edges
Ec ⊂ E whose removal disconnects all the terminals in G(V,E/Ec). The cost of a multi-way
cut is the sum of the weights of its edges, and the minimum multi-way cut problem is to find
a multi-way cut with the minimum cost [8]. This problem is not particularly new and has
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been studied for many years for a wide range of applications such as Very Large Scale Inte-
gration (VLSI) system design, Parallel Computing, Distributed Computing, Clustering [27],
and Computer Vision [3, 24]. For k = 2, the minimum multi-way cut problem is referred as
the minimum cut problem which can be solved in polynomial time by flow algorithms such
as Ford-Folkerson [14], Dinic [11], and Push-relabel [15] algorithms (see [25] for the recent
updates). For k ≥ 3, the minimum multi-way cut problem is NP-Hard [8] for which sev-
eral approximation algorithms have been proposed [4,7,22,29] (see [27] for more information).

Despite having a long tradition, most of the research on the minimum multi-way cut
problem is aimed at approximating the optimal solution. With the advent of quantum
computations, recent studies have focused on leveraging quantum properties to possibly
overcome intractable classical problems. Quantum computers are known to have potentially
lower-time complexity on certain problems than the best-classical counterparts [9,16,28]. D-
Wave system was the first company to build a quantum computer that realizes the quantum
Ising-spin glass Hamiltonian on a special graph. The importance of Ising models is because
a variety of NP-Hard optimization problems can be solved by finding the ground state of
the corresponding Ising models [19]. D-Wave Quantum Processing Units (QPUs) naturally
approximate the ground state of an Ising model, and they have provided efficient solutions
for different instances of NP-hard problems [5, 6, 21]. Therefore, it would be of special in-
terest to have a quantum model to solve the minimum multi-way cut problem. In 2019,
Cruz-Santos et al. proposed two quantum models to solve the minimum multicut problem
on a family of connected trees. However, to the best of our knowledge, no study has so
far considered a quantum model to solve the minimum multi-way cut problem. The main
objective of this study is to investigate a quantum model to solve this NP-Hard problem for
arbitrary weighted graphs.

The rest of the paper is organized as follows: In Section 2, we provide a brief introduction
to Quantum Annealing computations. An equivalent quantum model to the minimum multi-
way cut and its proof of correctness are given in Section 3. In Section 4, we show an
application of the minimum multi-way cut problem in Computer Vision using the proposed
quantum model. Finally, we conclude with some comments and open problems in Section 5.

2 Quantum Annealing

The first universal quantum model of computation was the Quantum Gate model developed
by Deutsch [10]. The main goal was to leverage quantum mechanical properties to show a
quantum speedup over the classical computation. In this model, a collection of quantum
logic gates, called quantum circuits, can compute any classical function [10]. An alternative
equivalent [1] to the Quantum Gate model is the Quantum Annealing model, which was
introduced by Farhi et al. [13]. In this model, quantum bits (qubits) are particles in a
quantum dynamical system that evolve over time based on special forces acting on them.
These forces are some sorts of constraints which are either external (from other sources) or
internal (from interactions among qubits). Each state of a register of n qubits {0, 1}n has
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an energy based on the applied forces. A time-dependent Hamiltonian is a mathematical
description of a system that gives the energy of the system and characterizes the forces at
any time [21]. Quantum Annealing is the process of finding a state of the system that has the
lowest energy based on the time-dependent Hamiltonian. Therefore, a Quantum Annealing
algorithm is to solve an optimization problem that is based on an objective function (see [21]
for more information). Practically, a quantum annealer (such as a D-Wave QPU) is needed
to accomplish this process. To prepare the objective function for the minimization by a
D-Wave QPU, it should be formulated as either Ising model or Quadratic Unconstrained
Binary Optimization (QUBO) model. Since there is a simple transition between these two
models [21], we only explain the latter. Given a column n-vector binary variables x =
(x1, x2, . . . , xn) ∈ {0, 1}n, a QUBO model is written as q(x) = xTQx, where Q is an n × n
matrix that can be chosen to be upper-diagonal. Therefore, q(x) can be reformulated as (1).

q(x) =
∑
i≤j

Qi,jxixj =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj. (1)

The diagonal terms Qi,i are the linear coefficients acting as the external forces (note xi
2 = xi),

and the off-diagonal terms Qi,j are the quadratic coefficients for the internal forces (e.g. xixj
for i < j) [21].
A D-Wave QPU is a collection of tiny metal loops accommodated on a special graph. These
loops are either physical qubits or couplers. The external and internal forces are applied to
the physical qubits and couplers, respectively, as magnetic fields. Each binary variable xi is
called a logical qubit, and it is embedded into the D-Wave QPU graph using an embedding
algorithm (several physical qubits could be chained together to represent a single logical
qubit in a QUBO model).

3 The minimum multi-way cut problem as a QUBO

In this section, we present an equivalent QUBO model to the minimum multi-way cut prob-
lem and prove its correctness.

Definition 1. Given an edge-weighted graph G along with a set of terminals T = {t1, t2, . . . , tk},
the minimum multi-way cut problem is to find a subset of edges of minimum total weight
whose removal separates ti from tj for 1 ≤ i < j ≤ k [2].

If G is not connected, it is sufficient to solve the minimum multi-way cut problem on
the components of G that contain at least two terminals of T . Therefore, without loss of
generality, we assume that G is a connected graph for the rest of the paper. Generally, the
minimum multi-way cut problem can be solved by a labeling problem [20, p. 6] as follows: A
valid multi-way cut corresponds to a labeling L : V → T such that for each t ∈ T , L(t) = t.
In this case, Ec = {{u, v} | L(u) 6= L(v)} is a multi-way cut, and its cost is computed by∑
{u,v}∈Ec

C({u, v}). Therefore, the minimum multi-way cut problem is to find a labeling
such that its corresponding valid multi-way cut has the minimum cost. In the following, we
partition the set of all vertices V (which also includes k terminal vertices) into k disjoint sets
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by a labeling such that each set of vertices including a terminal t ∈ T is labeled uniquely by
t. Any edge (u, v) ∈ E with u and v in different partition labels means we are deleting that
edge for the multi-way cut. Minimizing the sum of the costs of these deleted edges is our
optimization problem to find the minimum multi-way cut.

Initially, we allocate a set of k binary variables to each u ∈ V . Let x ∈ {0, 1}k|V | be
a set of k|V | binary variables as x = {xu,t | u ∈ V, t ∈ T}, where |V | is the number of
vertices. An equivalent QUBO to the minimum multi-way cut problem can be defined as
Hqubo : {0, 1}k|V | → R given in (2).

Hqubo(x) = α

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

+
∑
t∈T

∑
t′∈T
t6=t′

xt,t′

 (2)

+
∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ ,

where α >
∑
{u,v}∈E C({u, v}). Let x∗ = minxHqubo(x). The set of edges

Em = {{u, v} | x∗u,t = x∗v,t′ = 1, {u, v} ∈ E, t, t′ ∈ T, and t 6= t′}

is the minimum multi-way cut on G, and Hqubo(x
∗) is the minimum multi-way-cut cost.

3.1 Proof of correctness

The formulation Hqubo in (2) has two parts. The first part guarantees each vertex is assigned
a unique label from T , and the allocated label to each t ∈ T is t. The second part is used to
calculate the weight of the multi-way cut (the part that we want to optimize).

We start with the first part. For each u ∈ V , we have allocated a set of k binary
variables as {xu,t1 , . . . , xu,tk} where if xu,ti = 1 for 1 ≤ i ≤ k, then the allocated label to u
is ti. Therefore, we need to make sure that for each u ∈ V , {xu,t1 , . . . , xu,tk} has only one
value of 1 across all {xu,ti} for 1 ≤ i ≤ k. In other words,

∑
t∈T xu,t = 1.

Lemma 1.
∑

u∈V
(
1−

∑
t∈T xu,t

)2
= 0 if and only if

∑
t∈T xu,t = 1 for all u ∈ V .

Proof. (⇒) Suppose
∑

t∈T xu,t = 1 for all u ∈ V . Then,

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

= |V | (1− 1)2 = 0.

(⇐) Now, suppose that
∑

u∈V
(
1−

∑
t∈T xu,t

)2
= 0. Since

(
1−

∑
t∈T xu,t

)2
is non-negative

for all u ∈ V , to have
∑

u∈V
(
1−

∑
t∈T xu,t

)2
= 0, the term 1−

∑
t∈T xu,t must be equal to

zero. Therefore,
∑

t∈T xu,t = 1.
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Next, we want to make sure that a terminal vertex t ∈ T is labeled as t.

Definition 2. x is said to be a labeling if

(i) for each u ∈ V ,
∑

t∈T xu,t = 1;

(ii) for each t ∈ T , xt,t = 1, and xt,t′ = 0 where t′ ∈ T and t′ 6= t.

Lemma 2.
∑

u∈V
(
1−

∑
t∈T xu,t

)2
+
∑

t∈T
∑

t′∈T
t6=t′

xt,t′ = 0 if and only if x is a labeling.

Proof. (⇒) If x is a labeling,
∑

u∈V
(
1−

∑
t∈T xu,t

)2
= 0 by Lemma 1, and also due to the

second condition in Definition 2 we have
∑

t∈T
∑

t′∈T
t6=t′

xt,t′ = 0. Therefore,

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

+
∑
t∈T

∑
t′∈T
t6=t′

xt,t′ = 0.

(⇐) Now, suppose that
∑

u∈V
(
1−

∑
t∈T xu,t

)2
+
∑

t∈T
∑

t′∈T
t6=t′

xt,t′ = 0.

Since both terms are non-negative, to have sum of them equal to zero, they should be both

zero. By Lemma 1,
∑

u∈V
(
1−

∑
t∈T xu,t

)2
= 0 satisfies the first condition in Definition 2.

Since
∑

t∈T
∑

t′∈T
t6=t′

xt,t′ = 0, it adds no penalty when for each t ∈ T , xt,t = 1, and xt,t′ = 0

where t′ ∈ T and t 6= t′, which is the second condition in Definition 2. Therefore, x is a

labeling if
∑

u∈V
(
1−

∑
t∈T xu,t

)2
+
∑

t∈T
∑

t′∈T
t6=t′

xt,t′ = 0.

Definition 3. Let St ⊂ V be a subset of vertices labeled t ∈ T by x. x is said to be feasible
if and only if

(i) x is a labeling;

(ii) The induced subgraph G[St] contains t.

Lemma 3. The set of edges Ec = {{u, v} | xu,t = xv,t′ = 1, {u, v} ∈ E, t, t′ ∈ T, and t 6= t′}
is a multi-way cut on G if x is feasible.

Proof. If x is feasible, it partitions G into k induced subgraphs, and if an induced subgraph is
labeled by t ∈ T , then it contains t as well. Therefore, for each {u, v} ∈ E, if xu,t = xv,t′ = 1
and t 6= t′ for t, t′ ∈ T , then, u and v are not in the same induced subgraph. Hence, The
set of edges Ec disconnects all the induced subgraphs, and accordingly all the terminals. By
Definition 1, Ec is a multi-way cut.

Corollary 1. If x is feasible, then the cost of a multi-way cut on G is computed as |Ec|
given in (3).

|Ec| =
∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ . (3)
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Set α >
∑
{u,v}∈E C({u, v}). Recall the given QUBO model in (2):

Hqubo(x) = α

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

+
∑
t∈T

∑
t′∈T
t6=t′

xt,t′


+

∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ .

Theorem 1. Let x∗ = minxHqubo(x). x∗ is feasible.

Proof. To prove that x∗ is feasible, we need to consider the two conditions stated in Defini-
tion 3.

(i) The second term adds a penalty as much as
∑
{u,v}∈E C({u, v}) and α has been set

greater than this penalty value. Therefore, for each u ∈ V and {x∗u,t1 , x
∗
u,t2
, . . . , x∗u,tk},

we have
∑

t∈T x
∗
u,t = 1, x∗t,t = 1, and x∗t,t′ = 0 for t, t′ ∈ T and t′ 6= t. x∗ is, therefore, a

labeling by Definition 2,.

(ii) Towards a contradiction, suppose that x∗ does not satisfy the second condition in
Definition 3, and there is a subset of vertices St ⊂ V labelled as t ∈ T by which the
induced subgraph G[St] does not contain t. For a subset of vertices St′ ⊂ V , let G[St′ ]
be a boundary induced subgraph labelled as t′ ∈ T , which contains t′ where t′ 6= t. We
set {u, v} ∈ E as an edge that connects G[St] and G[St′ ] such that u ∈ St and v ∈ St′ .
Since t 6= t′, the second term in Hqubo(x

∗) adds penalties as much as C({u, v}). In this
case, there exists a x that labels St by t′ with fewer penalties (with no penalty for {u, v}
since u and v both have the same label by x). In other words, Hqubo(x

∗) > Hqubo(x),
which is a contradiction.

Therefore, x∗ is feasible.

Corollary 2. The set of edges Em = {{u, v} | x∗u,t = x∗v,t′ = 1, {u, v} ∈ E, t, t′ ∈ T, and t 6=
t′} is a multi-way cut on G, and its cost shown by |Em| is defined as (4).

|Em| =
∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})x∗u,tx∗v,t′ . (4)

Proof. It follows Lemma 3, Corollary 1, and Theorem 1.

Theorem 2. Em is the minimum multi-way cut on G.

Proof. Suppose that Em is not the minimum multi-way cut on G, and |Em| is not the
minimum multi-way-cut cost. In this case, there exists a multi-way cut Ec obtained from a
feasible x such that |Ec| < |Em|. Therefore, by Corollary 1 and Corollary 2, we have
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∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ <
∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})x∗u,tx∗v,t′ . (5)

Since x and x∗ are feasible, they both are labeling. By Lemma 2, (2), and (5), we have
Hqubo(x) < Hqubo(x

∗), which is a contradiction. Thus, Em is the minimum multi-way cut on
G.

Theorem 3. Hqubo(x
∗) is the minimum multi-way cost in G; Hqubo(x

∗) = |Em|.

Proof. By Theorerm 1, x∗ is feasible and therefore x∗ is a labeling by Definition 3. By

Lemma 2, α

(∑
u∈V

(
1−

∑
t∈T x

∗
u,t

)2
+
∑

t∈T
∑

t′∈T
t6=t′

x∗t,t′

)
is zero. Hence, we have

Hqubo(x
∗) =

∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})x∗u,tx∗v,t′ .

By Corollary 2, Hqubo(x
∗) = |Em|.

3.2 Some examples

We now give a couple of concrete examples to illustrate our QUBO model.

Example 1. Figure 1a shows a simple undirected weighted graph G(V,E,C) where V =
{a, b, c, d, 1, 2}, and

E = {{a, b}, {b, d}, {d, c}, {a, c}, {a, 1}, {c, 2}}.

The set of terminals is T = {1, 2} where T ⊂ V and k = 2. Considering the given graph,
C({a, b}) = 1, C({b, d}) = 2, C({d, c}) = 2, C({a, c}) = 2, C({a, 1}) = 5, and C({c, 2}) =
4. We set α = 25 greater than

∑
{u,v}∈E C({u, v}). Let x ∈ {0, 1}12 be a set of 12 binary

variables such that

x = {xa,1, xa,2, xb,1, xb,2, xc,1, xc,2, xd,1, xd,2, x1,1, x1,2, x2,1, x2,2}.

The QUBO model (2) for this graph can be formulated as follows.

Hqubo(x) = 25

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

+
∑
t∈T

∑
t′∈T
t6=t′

xt,t′


+

∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ .
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(a) (b)

Figure 1: (a) A simple undirected weighted graph with two terminals. (b) The minimum
multi-way-cut edges are shown by red dashed lines.

Let H1(x) and H2(x) be the first and second terms, respectively. We start with H1(x).

H1(x) = 25 (−xa,1 − xa,2 + 2xa,1xa,2 + 1) + 25 (−xb,1 − xb,2 + 2xb,1xb,2 + 1)

+ 25 (−xc,1 − xc,2 + 2xc,1xc,2 + 1) + 25 (−xd,1 − xd,2 + 2xd,1xd,2 + 1)

+ 25 (−x1,1 − x1,2 + 2x1,1x1,2 + 1) + 25 (−x2,1 − x2,2 + 2x2,1x2,2 + 1)

+ 25x1,2 + 25x2,1.

H1(x) = −25xa,1 − 25xa,2 − 25xb,1 − 25xb,2 − 25xc,1 − 25xc,2 − 25xd,1

− 25xd,2 − 25x1,1 − 25x2,2 + 50xa,1xa,2 + 50xb,1xb,2 + 50xc,1xc,2

+ 50xd,1xd,2 + 50x1,1x1,2 + 50x2,1x2,2 + 150.

Next, we compute the second term.

H2(x) = xa,1xb,2 + xa,2xb,1 + 2xb,1xd,2 + 2xb,2xd,1 + 2xd,1xc,2

+ 2xd,2xc,1 + 2xa,1xc,2 + 2xa,2xc,1 + 5xa,1x1,2

+ 5xa,2x1,1 + 4xc,1x2,2 + 4xc,2x2,1.

Adding both terms together, we have

Hqubo(x) = H1(x) +H2(x)

− 25xa,1 − 25xa,2 − 25xb,1 − 25xb,2 − 25xc,1 − 25xc,2 − 25xd,1

− 25xd,2 − 25x1,1 − 25x2,2 + 50xa,1xa,2 + 50xb,1xb,2 + 50xc,1xc,2

+ 50xd,1xd,2 + 50x1,1x1,2 + 50x2,1x2,2 + xa,1xb,2 + xa,2xb,1

+ 2xb,1xd,2 + 2xb,2xd,1 + 2xd,1xc,2 + 2xd,2xc,1 + 2xa,1xc,2

+ 2xa,2xc,1 + 5xa,1x1,2 + 5xa,2x1,1 + 4xc,1x2,2 + 4xc,2x2,1

+ 150.
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By minimizing Hqubo(x) over x using an exact solver, we get the following results with
Hqubo(x

∗) = 3: x∗1,1 = 1, x∗1,2 = 0, x∗2,1 = 0, x∗2,2 = 1, x∗a,1 = 1, x∗a,2 = 0, x∗b,1 = 0,
x∗b,2 = 1, x∗c,1 = 0, x∗c,2 = 1, x∗d,1 = 0, x∗d,2 = 1.

Next, we create the minimum multi-way cut Em = {{u, v} | x∗u,t = x∗v,t′ = 1,∀{u, v} ∈
E,∀t, t′ ∈ T, and t 6= t′} based on the results. Given E = {{a, b}, {b, d}, {d, c}, {a, c}, {a, 1},
{c, 2}} as the set of edges, Em = {{a, b}, {a, c}}. We also have |Em| = C({a, b}) +
C({a, c}) = 2 + 1 = 3, which is equal to Hqubo(x

∗). Figure 1b illustrates the minimum
multi-way cut for the given graph in Figure 1a.

Example 2. Figure 2a shows an undirected weighted graph G(V,E,C) where V = {a, b, c, d, e,
1, 2, 3}, and E = {{a, b}, {a, 1}, {a, 2}, {b, d}, {b, c}, {c, 3}, {d, 1}, {e, 1}, {1, 2}, {2, 3}}. The
set of terminals is T = {1, 2, 3}, where T ⊂ V and k = 3. Considering the given graph,
C({a, b}) = 2, C({a, 1}) = 1, C({a, 2}) = 5, C({b, d}) = 2, C({b, c}) = 1, C({c, 3}) = 1,
C({d, 1}) = 2, C({e, 1}) = 1, C({1, 2}) = 1, and C({2, 3}) = 2. Let α = 20 greater than
the total sum of the weights. We need a set of 24 binary variables x ∈ {0, 1}24. The QUBO
model (2) for this graph can be written as follows:

Hqubo(x) = 20

∑
u∈V

(
1−

∑
t∈T

xu,t

)2

+
∑
t∈T

∑
t′∈T
t6=t′

xt,t′


+

∑
{u,v}∈E

∑
t∈T

∑
t′∈T
t6=t′

C({u, v})xu,txv,t′ .

By minimizing Hqubo(x) over x using an exact solver, we get 6 optimal solutions with
the minimum possible energy. Let these solutions be x∗b , x∗c, x∗d, x∗e, x∗f and x∗g. We have
Hqubo(x

∗
b) = Hqubo(x

∗
c) = Hqubo(x

∗
d) = Hqubo(x

∗
e) = Hqubo(x

∗
f ) = Hqubo(x

∗
g) = 7. Based on the

results shown in Table 1, we can define 6 minimum multi-way cuts as follows:

1. Eb
m = {{a, 1}, {1, 2}, {a, b}, {2, 3}, {c, 3}},

2. Ec
m = {{a, 1}, {1, 2}, {a, b}, {2, 3}, {b, c}},

3. Ed
m = {{a, 1}, {1, 2}, {2, 3}, {b, c}, {b, d}},

4. Ee
m = {{a, 1}, {1, 2}, {2, 3}, {c, 3}, {b, d}},

5. Ef
m = {{a, 1}, {1, 2}, {2, 3}, {b, c}, {d, 1}},

6. Eg
m = {{a, 1}, {1, 2}, {2, 3}, {c, 3}, {d, 1}}.

Figure 2 shows the corresponding minimum multi-way cuts for the graph given in Figure 2a.
The total cost of all the minimum multi-way cuts is 7.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2: (a) A simple undirected weighted graph with three terminals. (b-g) The minimum
multi-way cuts obtained from x∗b , x∗c , x∗d, x∗e, x∗f , and x∗g, respectively. The minimum multi-
way-cut edges are shown by red dashed lines.

4 An application of the minimum multi-way cut in

Computer Vision

Computer Vision is aiming at inferring high-level perception about the real world from
digital images in a way similar to the human vision system for tasks such as image content
and context description including image filtering (e.g. noise removal), image segmentation,
objects detection and classification, and 3D perception tasks such as depth estimation and or
3D scene reconstruction from a single or multiple images. Both the human vision system and
computer vision tend to perform well on different subset of the above tasks. For example,
computers still struggle to interpret and perceive the real world through images although
humans perform this task effortlessly. Early vision problems often use perception model
based on a labeling paradigm where a set of image features is described using distinct markers
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Table 1: The optimal solutions of minimizing Hqubo(x) in Example 2.

u ∈ V x∗ x∗b x∗c x∗d x∗e x∗f x∗g
x∗1,1 1 1 1 1 1 1

1 x∗1,2 0 0 0 0 0 0

x∗1,3 0 0 0 0 0 0

x∗2,1 0 0 0 0 0 0

2 x∗2,2 1 1 1 1 1 1

x∗2,3 0 0 0 0 0 0

x∗3,1 0 0 0 0 0 0

3 x3,2 0 0 0 0 0 0
x3,3 1 1 1 1 1 1
x∗a,1 0 0 0 0 0 0

a x∗a,2 1 1 1 1 1 1

x∗a,3 0 0 0 0 0 0

x∗b,1 1 1 0 0 0 0

b x∗b,2 0 0 1 1 1 1

x∗b,3 0 0 0 0 0 0

x∗c,1 1 0 0 0 0 0

c x∗c,2 0 0 0 1 0 1

x∗c,3 0 1 1 0 1 0

x∗d,1 1 1 1 1 0 0

d x∗d,2 0 0 0 0 1 1

x∗d,3 0 0 0 0 0 0

x∗e,1 1 1 1 1 1 1

e x∗e,2 0 0 0 0 0 0

x∗e,3 0 0 0 0 0 0

Figure 2 2b 2c 2d 2e 2f 2g

also known as labels. Generally, a labeling problem in Computer Vision is defined over a set
of image features which consider local variations of pixel intensities around a given location.
Such concepts have allowed to mathematically define (real world) edges or segments in
images. Labeling problems can be resolved through an energy minimization scheme based
on an energy function derived from probabilistic graphical models such as Markov Random
Field. For a detailed explanation of how this energy function is defined, we refer the interested
reader to [17, 18, 26]). This energy function is usually composed of terms: the first term
penalizes the solutions when they are inconsistent with the observed data, and the second
one is a regularisation term that imposes some constraints for the spatial inconsistencies [23].
In the following section, we first represent a pixel-labeling problem namely image restoration
by an energy function, and then explain how it can be minimized by solving the minimum
multi-way cut problem on a certain graph.

4.1 Image restoration

Image restoration is a family of inverse problems to recover an original high-quality image
from a corrupted input image (see Figure 3). There are some reasons that corruption may
occur such as the image capture process (e.g., noise, lens blur), post-processing (e.g., JPEG
compression), or photography in non-ideal conditions (e.g., haze, motion blur) [12]. Image
restoration can be modeled by a labeling problem where a set of pixels is labeled by some
quantities. Since image restoration consists in recovering as much as possible the image
original pixel intensities, the set of labels should contain the original intensities. We will
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(a) (b)

Figure 3: (a) The original image, (b) The noisy image.

introduce the problem notations before defining an image restoration energy function.

In the most general form, a digital image is a function I : P → H where P = {(i, j) | 0 ≤
i < n, 0 ≤ j < m} is a set of two-dimensional spatial coordinates, H = {0, . . . , h − 1} is a
set of signal values, and n,m, h ∈ N. The coordinate (i, j) ∈ P is referred to as a pixel, and
I(i, j) is called intensity of the image at pixel location (i, j). In fact, a digital image consists
of n lines of m pixels with intensities varying between 0 and h−1 (typically, gray-scale image
intensities are encoded as 8-bit integers and up to 16-bit integers for medical applications).
The pixels in P are related to each other based on a neighborhood system. Let N defined
in (6) be a 4-neighborhood system by which each pixel has at most four neighboring pixels.

N ={{(i, j), (i′, j′)} | (i, j) ∈ P, (6)

(i′, j′) ∈ {(i± 1, j), (i, j ± 1)}, 0 ≤ i′ < n, 0 ≤ j′ < m}.

Let’s define L = {0, . . . , h − 1} as the set of labels. The main goal here is to label each
pixel in P with a value in L. Therefore, we define w as a vector of integer variables such
that w = (wi,j)(i,j)∈P where wi,j ∈ L. Given I as the input noisy image, image restoration
can be represented by the energy function F : Ln×m → R as follows [3].

F (w) =
∑

(i,j)∈P

(I(i, j)− wi,j)
2 + λ

∑
{(i,j),(i′,j′)}∈N

δ(wi,j, wi′,j′), (7)

δ(wi,j, wi′,j′) =

{
0, if wi,j = wi′,j′ ;
1, otherwise,

where λ is a positive integer, and I(i, j) is the observed intensity of pixel (i, j) on the noisy
image I. The first term is to compute the cost of choosing the label wi,j for the pixel (i, j),
and the second term is for the contextual constraint which encodes a preference about the
labels of the neighboring pixels. Here, δ insures that the intensities of a neighborhood of
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pixels present some coherence and generally do not change abruptly. In 2001, Boykov et
al. [3] showed that the problem of minimizing such energy function, which is known as Potts
Model, can be solved by finding the minimum multi-way cut on a certain graph (Theorem
7.1 [3, p.1231]).

Algorithm 1 (Input: P , N and L; Output: G(V,E,C))

1: for each pixel (i, j) ∈ P do . 0 ≤ i < n, 0 ≤ j < m
2: V ← V ∪ {(i, j)}
3: for each {(i, j), (i′, j′)} ∈ N do
4: E ← E ∪ {(i, j), (i′, j′)}
5: C({(i, j), (i′, j′)}) = λ

6: for l ∈ L do
7: V ← V ∪ {l}
8: for (i, j) ∈ V do
9: for l ∈ L do

10: E ← E ∪ {l, (i, j)}
11: C({l, (i, j)}) = Ki,j − (I(i, j)− l)2
12: . Ki,j is a constant greater than (I(i, j)− l)2 for all l ∈ L

Algorithm 1 shows how to create such graph for image restoration tasks. Let’s define an
image I : {0, . . . , 3}, {0, . . . , 3} → {0, 1, 2} as an example to show how Algorithm 1 works.
We first define L, P , and N as follows.

L ={0, 1, 2}.
P ={(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.
N ={{(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 1), (0, 2)}, {(0, 1), (1, 1)},
{(0, 2), (0, 3)}, {(0, 2), (1, 2)}, {(0, 3), (1, 3)}, {(1, 0), (1, 1)},
{(1, 1), (2, 0)}, {(1, 1), (1, 2)}, {(1, 1), (2, 1)}, {(1, 2), (1, 3)},
{(1, 2), (2, 2)}, {(1, 3), (2, 3)}, {(2, 0), (2, 1)}, {(2, 0), (3, 0)},
{(2, 1), (2, 2)}, {(2, 1), (3, 1)}, {(2, 2), (2, 3)}, {(2, 2), (3, 2)},
{(2, 3), (3, 3)}, {(3, 0), (3, 1)}, {(3, 1), (3, 2)}, {(3, 2), (3, 0)}}.

Next, we construct the discussed graph based on Algorithm 1. Figure 4a shows this graph.
Let Em be the minimum multi-way cut on this graph. Based on the weight initialization
in Algorithm 1, in G(V,E/Em) each pixel vertex is connected to exactly one label vertex,
which can be interpreted as the associated label to the corresponding pixel [3]. Figure 4b
provides an illustration to show how the minimum multi-way cut for the structured graph
in Figure 4a would determine the associated labels to each pixel.

In the next section, we show some experimental results to restore different noisy images
using the QUBO model (2) based on a D-Wave hybrid quantum-classical solver.

13



(a) (b)

Figure 4: (a) The graph structure for a noisy image with n = 4, m = 4 and a set of labels
as L = {0, 1, 2}. Each vertices ”0”, ”1” and ”2” are connected to each pixel (i, j) ∈ P . To
simplify the illustration, we show only a small number of these edges. The edges between
pixels have been added based on N . (b) An illustration for the minimum multi-way cut by
which each pixel could be labeled uniquely.

4.2 Image restoration based on a D-Wave hybrid solver

Due to the scarcity of physical qubits on D-Wave QPUs, in some cases, input data are too
large to fit onto the QPU and be solved directly by Quantum Annealing. For this reason,
D-Wave company has prepared different hybrid solvers to overcome such size limitations by
combing classical and quantum approaches for problem-solving. These solvers run multiple
solvers in parallel and return the best solution from a pool of results. In our experiment, we
used a D-Wave hybrid solver for image restoration based on finding the minimum multi-way
cut on a certain graph as discussed earlier. We created an image with size 100× 100 pixels
with 10 colors where n = m = 100 and h = 10. Therefore, we needed a set of 10 labels
as L = {0, . . . , 9}. We used salt-and-pepper noise with different intensities to make various
levels of noise on the original image. Sharp and sudden disturbances in the image signal
can make such noise, and it randomly changes the original intensities to white and black
pixels. Figure 5 shows the original image and the noisy images. The noise percentage has
been shown by pn (eg., when pn = 20%, it means 20 percent of the original pixel intensities
have been randomly changed into white and black pixels to simulate the salt-and-pepper
noise). Next, for each input noisy image, we created an undirected weighted graph based on
Algorithm 1, and then formulated the QUBO model (2) to find the minimum multi-way cut
on the graph. After minimizing the QUBO model by the D-Wave hybrid solver, we changed
noisy pixel intensities to the obtained labels to restore the original pixels. Figure 5 shows
the image restoration results for the corresponding noisy images. To compare the original
intensities with the restored ones, we define root-mean-squared (rms) defined in (8) which
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Figure 5: Image restoration results from the D-Wave hybrid solver. The first row shows
the defined noisy images with different levels of noise, and the second row represents the
corresponding restored images.

Table 2: rms results for comparing the original intensities with the restored intensities

Noisy images pn = 3% pn = 6% pn = 10% pn = 20% pn = 40%
rms 0 4.04 4.53 12.75 23.44

shows the percentage of intensity variation (bad restored intensities).

rms =

√√√√ 1

nm

n−1∑
i=0

m−1∑
j=0

(IO(i, j)− IR(i, j))2, (8)

where IO is the original image before applying the noise, IR is the restored image, and nm
is the total number of pixels. Table 2 shows the rms results for our benchmark.

5 Conclusion

We have provided an efficient QUBO formulation for the minimum multi-way cut problem
that requires only O(k|V |) logical binary variables, where k is the number of terminals
that need to be edge-separated in a graph of order |V |. Our problem has applications to
Computer Vision where the input sizes are quite large so minimizing the problem size for
a quantum annealing computer is of importance. To model one of these applications, we
showed how a noisy image can be restored based on the minimum multi-way cut problem
and our QUBO model. We defined an image with 10 color intensities and applied salt &
pepper noise to it. Our experimental implementation on a D-Wave hybrid quantum-classical
solver resulted in acceptable restored images with respect to the amount of applied noise. In
the future, we hope to find good logical-to-physical embeddings of our QUBOs onto existing
quantum hardware (e.g. D-Wave Chimera, Pegasus, or Zephyr architectures). We also want
to experiment further with hybrid-quantum computations using our QUBO formulation and
compare them against state-of-the-art classical algorithms.
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