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On lightmyography based 
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Conventional muscle‑machine interfaces like Electromyography (EMG), have significant drawbacks, 
such as crosstalk, a non‑linear relationship between the signal and the corresponding motion, 
and increased signal processing requirements. In this work, we introduce a new muscle‑machine 
interfacing technique called lightmyography (LMG), that can be used to efficiently decode human 
hand gestures, motion, and forces from the detected contractions of the human muscles. LMG utilizes 
light propagation through elastic media and human tissue, measuring changes in light luminosity 
to detect muscle movement. Similar to forcemyography, LMG infers muscular contractions through 
tissue deformation and skin displacements. In this study, we look at how different characteristics of 
the light source and silicone medium affect the performance of LMG and we compare LMG and EMG 
based gesture decoding using various machine learning techniques. To do that, we design an armband 
equipped with five LMG modules, and we use it to collect the required LMG data. Three different 
machine learning methods are employed: Random Forests, Convolutional Neural Networks, and 
Temporal Multi‑Channel Vision Transformers. The system has also been efficiently used in decoding 
the forces exerted during power grasping. The results demonstrate that LMG outperforms EMG for 
most methods and subjects.

Rapid breakthroughs in robotics have highlighted the importance of effective interaction and communication 
between humans and machines, with various robotic devices being introduced to a range of industries such 
as housing, hospitality, and medical  devices1–3. Traditionally, a user makes a decision and communicates it to 
the device via an interface, and the device responds only to the provided command. More advanced systems, 
on the other hand, only need raw data from the user to make decisions automatically using machine learning 
(ML) techniques 4. This makes the human-machine interface (HMI) a crucial part of the system both for data 
acquisition and communication.

Various HMIs have been developed employing various methods and concepts based on the specific needs 
of the  user5–7. Handheld controllers are the most prevalent type of HMI, and they are widely used in various 
applications due to their ease of learning and  operation8,9. However, they occupy the user’s hands, can induce 
fatigue with long-term use, and may not be practical and intuitive enough for devices such as prostheses. Another 
method of controlling a robotic device is by using vision-based  systems10,11. Such systems are relatively reliable 
and typically do not interfere with the user’s workspace; nonetheless, they are susceptible to occlusion and 
changes in environment lighting. Human-machine interaction is also possible through voice  commands12,13. 
This is a popular interface, although, as with vision-based systems, noise from the surroundings can interfere 
with communication. Wearable devices such as eyeglasses, gloves, and electroencephalography (EEG) helmets 
are other types of HMIs that can control a machine based on the user’s movements or biological  signals14–17. 
They also exist in the form of armbands that capture data from the user’s forearm and use machine learning 
techniques to predict the intended gestures of the user. Recent research has applied Deep Learning approaches 
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to analyze several biological signals. These methods rely on Deep Learning’s ability to extract high-level features 
and learn hierarchical representations from many low-level input  samples18, resulting in an increasingly complex 
and robust  system19.

Surface electromyography (sEMG) can be used in wearable devices to measure the electrical activity of the 
user’s  muscles20. The sEMG sensors are able to detect tiny amounts of generated electricity in a target muscle 
group during the execution of a task. EMG-based interfaces generally need complex electronics for data acquisi-
tion and processing, the use of gel-based electrodes, appropriate muscle group selection, and precise placement 
of the EMG sensors, making their integration into portable devices  complicated21. Alternatively, human-machine 
interfacing armbands can use forcemyography (FMG) to capture the skin displacement generated by the muscle 
contraction and predict the corresponding hand  gestures22–25. Compared to EMG-based devices, FMG is less 
prone to the confounding effects of sweating and moisture. The primary disadvantage of FMG is that it does not 
detect muscular activation directly; relying instead on muscle volume changes during contraction and relaxation, 
which results in a force difference between the sensor and the  muscle26.

In this research paper, we investigate and propose a new human-machine interfacing technique called Light-
myography (LMG) and we assess its applicability in capturing the muscle activity of the human forearm muscles. 
An LMG interface employs light emitting diodes (LEDs) that release light through a silicone medium towards 
the skin, and the reflected light is measured using appropriate photodetectors that are located next to the LEDs. 
When the targeted muscle group contracts during a gesture, it compresses or decompresses the surrounding tis-
sue and the silicone medium attached to the skin on top of it. This compression/decompression of the tissue and 
the silicone medium changes the light luminosity recorded by the photodetectors. Then, appropriate machine 
learning methods can be used to decode the gestures that the user wants to execute or the forces exerted based 
on the signals recorded by the different photodetectors.

Moreover, in this paper, we also investigate the effects of light wavelength, reflecting surfaces, silicone color, 
and silicone stiffness and thickness on the performance of the LMG-based decoding models. The outcomes of 
these comparisons and analyses are then used for the design and development of a complete LMG armband that 
can detect various user hand gestures and force exertion patterns. The armband is produced using 3D printing 
and molding, and consists of five green LEDs, five IR LEDs, and five photodiodes. Various machine learning 
methods are employed to produce LMG-based models that can successfully decode five distinct gestures, vali-
dating the effectiveness of the LMG technique and proposed armband. Additionally, the armband’s ability to 
perform LMG-based force decoding during clenching was evaluated by training and validating the performance 
of appropriate regression models.

The rest of this paper is organized as follows: Section II presents the design of the LMG sensing modules, 
Section III presents the design of the proposed LMG armband, Section IV presents the experimental results and 
discussions, while Section V concludes the paper.

Methods and design considerations
In this section, we present the methods and the design considerations necessary for developing an efficient 
Lightmyography-based gesture and force decoding framework. Each LMG sensor combines emitters, photo-
detectors, and silicone layers that are used in between the LEDs and the human skin. The effect of each of these 
components on the sensor’s performance is investigated. Then, based on the results of these experiments, we 
design an LMG armband to perform gesture prediction and force decoding. Figure 1 illustrates the working 
principle of LMG, while Table 1 summarizes the LMG sensing module components tested in this section and 
presents the key findings.

Experimental investigation of the effect of the LMG design parameters. Many parameters can 
affect the performance of a single LMG sensing module. We conducted experiments to understand the effect 
of wavelength, silicone color, silicone thickness, silicone stiffness, and surface reflection. These are the initial, 
proof-of-concept experiments that we did to conceptualize the idea and understand the working principles. In 
all of these experiments, one module is placed on the posterior forearm of a human subject at the intersection 
of the extensor digitorum and extensor carpi ulnaris muscles. The subject then performs a power grasp gesture 
in pronation configuration. To make sure that the location of the modules is the same between different experi-
ments, a location mark was placed on the forearm of the subject. In addition, to minimize the effect of environ-
mental lighting, all experiments were conducted in a dark room. Figure 2 shows the results of these experiments.

Effect of wavelength. The wavelength of the emitted light plays an important role in the performance of the 
device. Changes in the wavelength can significantly change the way emitted light interacts with the skin, and can 
significantly affect light absorption and reflection. Optical characteristics of human skin have been investigated 
in numerous  studies27–30. Most of these studies suggest that, by increasing the wavelength in the range of 300 nm 
to 1000 nm, the reflectance coefficient of the human skin increases as well.

Although the reflectance changes with different skin pigmentation, in a research by Baranoski et al.31 it was 
shown that the reflectance of both lightly pigmented and darkly pigmented skins change in almost the same man-
ner. To investigate the effect of various wavelengths, we decided to use three different levels: 550 nm, 630 nm, and 
850 nm. To detect the reflected light, we use Texas Instruments’ OPT101 Monolithic Photodiode and Amplifier, 
an all-in-one package with maximum responsivity at 850 nm. These wavelengths were chosen to represent a green 
(550 nm), a red (630 nm), and an infrared (850 nm) source of light. Figure 3 shows the relationship between the 
photodiode responsivity and wavelength. It also shows the specifications of the LEDs. Since the sensor responsiv-
ity is different at different wavelengths we can’t directly compare the readings in Fig. 2. The same logic applies to 
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Figure 1.  Working principle of the Lightmyography. (a) shows a simple module with one LED and one 
photodiode. (b) shows the developed modules of the proposed armband that are equipped with two 
photodiodes and a single photodetector. (c) shows the proposed armband worn on the upper half of a human 
forearm. Finally, (d) shows the working principle of the Lightmyography method, where different lights of 
different wavelengths penetrate the skin in different depths and get reflected on the tissue before they travel back 
to the skin surface to be captured by the photodetector. Muscle contractions become tissue deformations that 
affect the light luminosity that gets captured by the photodetector, and thus can be easily detected.

Figure 2.  Exemplar graphs of the experiments conducted. (a), presents a comparison between the acquired 
data using three different light wavelengths: 530 nm, 633 nm, and 880 nm. (b), presents a comparison 
between the acquired data using three different flexible reflective surfaces: green, red, and shiny. (c), presents 
a comparison between the acquired data using three different colors for the silicone medium: green, red, and 
transparent. Finally, (d), presents a comparison between the acquired data using two different stiffness levels for 
the silicone layer.
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the luminosity of the LEDs. To be able to compare the signal values of the experiments, independently from the 
sensor responsivity and LEDs luminosity, we define the performance index I, which is calculated by

where Rp is the photodiode responsivity at the LED dominant wavelength, �v is the luminosity of the LED, and 
�S is given by

where S̄g is the mean value of the signal during gesture and S̄r is the mean value of the signal during rest. The cor-
responding I values are 0.024, 0.153, and 0.39 for 880 nm, 633 nm, and 550 nm, respectively. It can be concluded 
from these results that, although the signal magnitudes are higher with red and IR LEDs, the value of the signal 

(1)I =
�S

�v · Rp
,

(2)�S =
∣

∣S̄g − S̄r
∣

∣,

Figure 3.  Characteristics of the analyzed LEDs and  photodiode34.

Table 1.  Summary of each tested LMG sensing module component, showing the best and worst option for 
each property. A comprehensive description of the findings is also included. Significant values are in [bold].

LMG module property

Performance

FindingsBest Mid Worst

Wavelength (nm) 530 633 880
The 530 nm LED showed the highest performance index. Low wavelengths have low tissue  
penetration depth, reflecting cleanly on the skin surface. Higher penetration depth provides additional 
information on the muscle contraction and tissue deformation

Silicone colour - green LED None Green Red The most distinguishable signal was noted with transparent silicone, as the medium does not signifi-
cantly absorb or reflect light

Silicone stiffness (Shore hardness) - green LED 00-30 00-10 N/A The stiffer silicone performed better compared to the softer silicone, as the softer silicone reached its 
maximum compression before the gesture execution

Silicone thickness - green LED (mm) 5 3 7 The 5 mm silicone provided the best thickness for the photodetector as 3 mm is too close for a distin-
guishable signal and 7 mm is too far for getting adequate luminosity

Silicone thickness - IR LED (mm) 0 3 5 Due to the properties of IR LEDs, closer skin proximity resulted in better skin penetration and less 
environmental lighting noise

Reflective surfaces - green LED Shiny Green Red A shiny reflective surface performed best - as expected - since most light is reflected rather than 
absorbed
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during the gesture and at rest, is more distinguishable with the green LED. These results are in agreement with 
other studies in which authors investigated the effect of wavelength in photoplethysmography  devices32,33. This 
is probably due to the lower tissue penetration depth achieved by smaller wavelengths. This suggests with its 
higher penetration, IR light can give us information additional to what we get with green LEDs (e.g., configura-
tion information of deeper tissue underneath the skin).

Discussion of the effect of silicone properties. In this section, we discuss the effect of the different silicone proper-
ties based on the results provided in Fig. 2.

Silicone Color Initially, we analysed the effect of silicone medium color on the quality of signal. In this experi-
ment we compared a light green silicone, a light red silicone, and a transparent silicone. These colors were chosen 
to investigate if there was any difference in the signal when the silicone color matches the LED color compared 
to a different color or a transparent medium. For all of these experiments, we used a green 530 nm LED. The 
green LED performed better with the green silicone medium compared to the red silicone medium. However, 
a noticeable improvement in signal to noise ratio is not evident in any of them, and a clear transparent silicone 
medium provides the most distinguishable signal, as shown in Fig. 2.

Silicone Stiffness Compression and decompression of the silicone medium during the execution of a gesture 
is a function of its stiffness. To investigate this, we created two different modules with silicone Shore hardnesses 
of 00-10 and 00-30 and tested them using a 530 nm green LED. The stiffer silicone (00-30) shows a better signal 
response with a performance index (I) of 0.272 compared to the softer silicone (00-10) with I of 0.161. This is 
probably because, with softer silicone (00-10), since initially the circuit board is compressed into the silicone 
medium, the medium reaches its maximum achievable compression before the gesture starts, and no more 
compression can occur during the gesture. Thus, the softer silicone is not the best option for green LED.

Silicone Thickness To investigate the effect of silicone layer thickness, we tested modules with silicone thick-
nesses of 3 mm, 5 mm, and 7 mm. During the experiments we noticed that, with green LEDs, a certain dis-
tance from the skin (5 mm) was necessary to get the best results. It seems that the effect of silicone thickness is 
dependent on the wavelength of the LED. With the green LED, silicone of 5 mm thickness offered the most easily 
distinguishable rest and gesture periods in the LMG signal. With the IR LED, the thinnest silicone provided 
better signals compared to the other two silicones. Best results for the IR LED were obtained when the sensors 
were placed directly on the human skin.

Discussion of the effect of reflective surfaces. To avoid having to cope with the individual-specific variations 
of human skin characteristics, such as reflectance, roughness, pigmentation, etc., it is possible to use reflective 
materials embedded in the sensing module. To investigate this, we compared flexible green and red surfaces with 
moderate reflectiveness, and a shiny aluminum tape with much higher reflectiveness. For this experiment, we 
used a green 530 nm LED, and transparent silicone material. As expected, the red surface reflected little of the 
emitted green light and had a very poor performance. With the shiny surface, the value of the signal response 
was much higher than the other two surfaces, with active and rest regions easily distinguishable. Please see Fig. 2 
for more details.

Armband design. Based on the experiments performed in investigating the effect of various design param-
eters, a complete LMG armband was designed and developed to collect data from different muscle groups of the 
human upper forearm. The proposed armband consists of five LMG sensing modules. Additional modules may 
be added or removed, however, five modules were used in this study to comfortably fit around the participants’ 
forearms, limited by forearm size. In order to collect data from different tissue depths above each muscle group, 
we employ two LEDs of different wavelengths in each sensing module, one green and one IR, with the photo-
diode amplifier located at the center of the sensing module. The green LED stays at a 5 mm distance from the 
skin while the IR directly touches the human skin. We then turn these LEDs on and off consecutively with an 
interval of 125 ms, while constantly reading the light measured by the photodetector. This allows us to interpret 
the acquired data that is relevant to each individual LED. The light from the green LED doesn’t penetrate the skin 
further than the epidermis. On the other hand, the IR light with a longer wavelength can reach all the way to the 
subcutaneous tissue. The IR light also interacts with other layers such as the dermis when passing through them.

Fig. 1 shows the components of a single sensing module and the LMG working principle. We use a silicone 
cover to pretension the sensing components so as to ensure that the transparent silicone and IR LED achieve good 
contact with the human skin. The material for this cover is a silicone with Shore A hardness of 10. We also use 
silicone pigmentation to dye this part black so as to avoid environmental lighting from reaching the photodiode 
amplifier, affecting the measured signals. For the transparent silicone, we use a different silicone with Shore A 
hardness of 15. Elastic bands made out of the same material as the silicone cover are used to connect the modules 
together and form a complete LMG armband.

Experiments
In order to experimentally validate the performance of the proposed LMG armband, we performed a set of exper-
iments to collect data from ten participants and perform LMG-based gesture classification and force decoding.

Comparison of lightmyography and electromyography in gesture glassification. In order to 
perform a comprehensive comparison of Electromyography and Lightmyography, the proposed LMG armband 
and a commercial EMG bioamplifier were used simultaneously for data collection during the execution of spe-
cific hand gestures. Participants performed the five gestures shown in Fig. 4 during data acquisition. We then 
used three machine learning techniques to train different classifiers and to predict the intended gesture of the 
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user. The study was approved by the University of Auckland Human Participants Ethics Committee (UAHPEC), 
reference number #019043. All experiments were performed in accordance with relevant guidelines and regula-
tions. Prior to the study, participants provided written and informed consent to the experimental procedures.

Data collection. For the gesture classification and recognition experiments, ten subjects participated in the data 
collection process. During data collection, the participants were asked to perform five different gestures: pinch, 
tripod, power, finger extension, and rest. These gestures were selected based on the frequent grasps identified 
by Bullock et. al.35. Figure 4 depicts these five gestures and provides an example of LMG and EMG recordings 
acquired during the execution of the gestures. Each session of data acquisition started with 15 seconds of rest 
followed by 15 seconds of gesture execution. This was repeated 6 times for each gesture. All the participants 
employed their dominant hand to execute the gestures. To develop machine learning models using supervised 
learning schemes, a software trigger was sent to the data recording script to label the gesture and rest phases. 
Similar  to36, the LMG armband was worn on the upper half of the forearm, where the majority of the muscle 
groups involved in digit movement (extensor digitorum, flexor digitorum superficialis, flexor digitorum profun-
dus, and flexor pollicis longus) are  located37. In order to compare the performance of the LMG with state-of-the-
art EMG, measurements from five bipolar EMG channels placed beside each LMG module were acquired at the 
same time as data from the armband using g.tec’s g.USBamp bioamplifier.

Data preprocessing. In this section, we present the data preprocessing steps required for the LMG and EMG-
based gesture classification.

• Sliding Window: We employed a sliding window of 200 ms with a stride of 20 ms to extract samples from the 
LMG and EMG data collected. The sliding window was chosen to be larger than 125 ms to avoid high biases 
and  variance38 and smaller than 300 ms due to real-time constraints of prosthetic control  systems39.

• Data Balancing: The data was balanced to guarantee that we have the same number of samples for each of 
the five gestures so as to avoid bias toward a particular class.

• Data Type: The models were trained using raw LMG data without feature engineering. In contrast to EMG, 
the LMG data does not need to be filtered during acquisition. We also rely on the ability of the deep learning 

Figure 4.  Normalised LMG and EMG measurements during pinch, tripod, power, and extension gesture. (a) 
shows the activation values for the LMG sensors, (b) shows the raw EMG activations, while (c) shows a feature 
extracted value (Root Mean Square - RMS value) of the EMG signals.
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methods to automatically learn discriminative features from raw data, even with noisy signals. The EMG data 
was filtered using a 5 Hz and 500 Hz Butterworth bandpass filter. Eight time domain features were extracted 
from the raw EMG signals, namely: root mean square value, waveform length, zero crossings, mean absolute 
value, integrated EMG, Willison amplitude, variance of the EMG signal, and the log detector value. Details 
regarding the features can be found  in40. The use of batch normalization layers within the deep learning 
models incorporates normalization into the architecture, increasing training speed and eliminating the need 
for normalization during preprocessing  steps41.

Classification methods and models. In order to compare the performance of the LMG armband with the EMG 
bioamplifier, we trained appropriate models (shown in Fig. 5), employing three different machine learning tech-
niques:

• Random Forest (RF): RF is an ensemble classification method based on a combination of multiple decision 
trees. In this classic ML technique, the output is the most popular class among the decisions of individual 
 trees42,43. RF models offer good predictive performance and are fast to train, at the cost of not being as robust 
as most deep learning techniques. In this paper, the RF model was used with 150 trees.

• Convolutional Neural Network (CNN): CNNs are employed in several applications due to their ability to 
extract spatial characteristics and identify patterns of a given input data. CNNs represent the state-in-the-
art in tasks ranging from classification to  regression44–47. The CNN used in this paper comprises three con-
volutional blocks, four fully-connected layers, and a final softmax layer to predict the hand gestures. Each 
convolutional block is composed of convolutional, batch normalization, and  dropout48 layers.

• Temporal Multi-Channel Vision Transformer (TMC-ViT): This is a novel deep learning technique. The TMC-
ViT49 is a Transformer-based model that adapts the Vision  Transformer50 to process temporal data with 

Figure 5.  Temporal Multi-Channel Vision Transformers, Convolutional Neural Network, and Random Forest 
models developed to decode human hand gestures.
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multiple channels, e.g. LMG signals as input, employing convolutional and max-pooling layers to reduce 
the input dimension and extract its embeddings. Two convolutional layers are used before the data is sup-
plied to a ViT that extracts 2× 2 patches and provides the output to a Transformer encoder composed of 
four Multi-head Attention  layers51 with four heads each. The ViT processes the multi-channel signals with 
a linear projection of the flattened patches, whose components indicate low-dimensional correlations in the 
patches, and the Multi-Head Attention mechanism aggregates signal information across all layers.

These three machine learning techniques were chosen based on their results in our previous classification and 
regression works involving EMG and LMG  signals49,52–54, as well as those found in the  literature45,55. While RF and 
CNN are well-established machine learning techniques that can perform well, the TMC-ViT has been achieving 
outstanding results. The results obtained by these models will be compared in this work.

Training and evaluation. Our models were developed in Python using Tensorflow and Keras. The experiments 
were performed on the New Zealand eScience Infrastructure (NeSI) high-performance computing facilities that 
are equipped with appropriate GPUs. The classifiers were trained and validated using the 5-fold cross-validation 
method. During the training of each deep learning model, the loss function was the sparse categorical cross-
entropy. Optimization was done using  Adam56, with the efficiency of the trained model being assessed using 
accuracy. One model was trained for each dataset and subject examined.

Lightmyography based force estimation. To further evaluate the potential applications of the pro-
posed LMG armband, we focus on LMG-based grasping force estimation using the muscle contractions of the 
human upper forearm and collecting data from ten participants. The subjects selected to perform the force esti-
mation experiment are not exactly the same as the ones that participated in the gesture classification experiment 
as separate sessions were held to avoid long duration of trials and therefore avoid muscle fatigue. This dataset was 
employed to train three regression models using raw LMG signals as input.

Data collection. To avoid experiencing fatigue while collecting adequate data, participants were asked to per-
form a single maximum force clench. They were then instructed to ramp up their clench force to half of the 
recorded maximum and reduce it back to rest during a 15-second period, following a 15 seconds period of rest-
ing. The 15-second periods were repeated 10 times and the force readings were simultaneously recorded with 
the LMG readings.

Data preprocessing. In this section, we present the data preprocessing steps required for the LMG-based force 
estimation.

• Sliding Window: Once again, for the reasons mentioned in the previous subsection, a sliding window of 
200 ms with a stride of 20 ms was employed.

• Data Balancing: Only periods in which force was applied to the sensor were used to train and test the models.

Machine learning regression models. Three ML models were trained to perform force prediction: an RF regres-
sion model, a CNN, and the TMC-ViT. The model structure is the same as in Section 3.1.3, except for the last 
layer of the deep learning models. In order to perform regression, a dense layer with one neuron and linear 
activation function were employed.

Training and evaluation. The regression models were trained and validated using 10-fold cross-validation 
using one separated repetition for testing per fold. The mean squared error (MSE) loss function was employed 
during the training of each deep learning model. The efficiency of the trained regression models is assessed using 
the Pearson correlation coefficient and the percentage of the normalized mean square error (NMSE) represent-
ing accuracy in comparing the predicted and the actual force. The NMSE value of 0% denotes a bad fit, whereas 
the NMSE value of 100% denotes that the two trajectories are identical. The NMSE value is derived as follows

where ‖.‖ indicates the 2-norm of a vector, xr is the actual reference motion, and xp refers to the predicted force.

Results and discussion
In this section, we discuss the findings from the experiments conducted with the proposed LMG armband. More 
precisely, we compare the gesture decoding accuracies of the LMG armband with the accuracies provided by the 
models trained with the EMG data collected using a commercially available EMG bioamplifier. Furthermore, we 
also evaluate the performance of the LMG armband in decoding continuous grasping forces by measuring the 
contractions of the muscles of the human upper forearm.

LMG and EMG gesture classification comparison. The gesture classification accuracies of the models 
trained with the data collected with the LMG armband and the EMG bioamplifier for the three ML classifiers 
examined are all presented in Table 2. It can be seen that all the tested ML techniques presented better gesture 
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decoding accuracies when LMG data was used as input, except for the models trained using subject 9 data and 
two models using subject 10 data. To validate the significance results, an analysis of variance (ANOVA) was per-
formed, comparing the accuracies of the models developed using LMG data and EMG data. The null hypothesis 
of ANOVA was that there is no difference between the results achieved by the LMG and EMG-based models. A 
p-value of 0.0381 was achieved, rejecting the null hypothesis and therefore showing that the results are statisti-
cally significant (p-value< 0.05). Moreover, the CNN and TMC-ViT LMG-based models show a smaller standard 
deviation than those trained using feature extracted EMG, indicating more consistent and robust results among 
the tested subjects. It is worth noting that raw LMG signals are directly supplied to the models, unlike the myoe-
lectric activations, which need to go through feature engineering steps. Eliminating additional feature extraction 
steps that require a certain amount of computational power is of paramount importance, especially in real-time 
applications where minimizing sample processing time is critical. Moreover, considering the bioamplifier size 
and weight, feature extracted EMG is not a suitable solution for portable applications, while the LMG armband 
provides an ideal solution for such applications due to its simple components, small size, lightweight, and low 
cost.

The female participants achieved an average accuracy of 98.98% for the TMC-ViT model using LMG sig-
nals as input, against 98.05% achieved by the male participants. When analyzing the handedness, left-handed 
participants achieved an accuracy of 98.24% against 98.17% for right-handed participants. Based on the results, 
variables such as handedness and gender of the participant do not seem to interfere with the results obtained by 
the LMG armband. However, future work will systematically assess these variables with a more extensive and 
diverse group of participants.

As can be seen in Fig. 6, the TMC-ViT achieved the highest accuracy values for all tested subjects, followed 
by the CNN and the RF, respectively. The results achieved by the models for LMG signals are higher in terms of 
accuracy and more consistent in terms of standard deviation when compared to EMG. The TMC-ViT achieves 
a classification accuracy of up to 99.11% for raw LMG data (see Table 2).

LMG based force estimation. The correlation and accuracy achieved by the RF, CNN, and TMC-ViT 
models for predicting the clenching force are shown in Table 2. The TMC-ViT achieved the highest correlation 
and accuracy and lowest standard deviation between the tested machine learning techniques, followed by the 
CNN and the RF, as expected for being a deeper and more complex model. The RF, a classic machine learning 
technique, presented the worst performance among the tested machine learning methods. Deep learning meth-
ods could achieve better correlation and accuracy, demonstrating their robustness with the availability of large 
datasets. The regression results validate that the clenching force can be decoded employing only raw LMG data 
as input. With the proposed LMG armband, the force decoding accuracies achieved were as high as 98.09% while 
the correlation of the decoded and actual forces was as high as 99.15%, demonstrating the outstanding perfor-
mance of the LMG armband in decoding clenching forces. In Fig. 7, we show the decoded and true clenching 
force of two different trials as decoded by the TMC-ViT model.

LMG armband design considerations. Based on the results of the experiments presented in Section 2.1, 
it can be concluded that the main factors that affect the signal quality of each module are wavelength of the 
LEDs and the distance of the LED from the skin. Shorter wavelengths penetrate the skin less, resulting in better 
reflection, leading to a more sensitive response. On the other hand, longer wavelengths can penetrate the skin 
deeper and provide complementary data that can be beneficial for decoding the user’s intention. With longer 
wavelengths, it is also possible to acquire some health information, which can be a potential advantage of light-
based myography over classic EMG  techniques57. The distance of the LED from the skin also changes the signal 
response noticeably. Shorter wavelengths require a minimum distance from the skin to maximize the reflection 
area, to effectively capture the skin displacements. However, with a longer wavelength, it is better for the source 
to be as close as possible to the skin or in contact with the skin to achieve better penetration. As colored sili-

Figure 6.  Decoding accuracy, in percentage, achieved by the TMC-ViT, CNN, and RF models. The accuracy 
achieved by the LMG-based models is shown on the left, and the EMG-based models are shown on the right.
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cone may absorb or reflect light, a transparent silicone medium is more suitable between the light sources and 
the skin, however environmental lighting should be blocked out. Furthermore, flexible reflective surfaces can 
improve the signal when short wavelengths (e.g., when using green light) are used, but they cannot be used with 
longer wavelengths (e.g., when using IR), since they don’t allow the light to penetrate the skin.

Table 2.  Gesture decoding and force estimation results.

HMI LMG EMG Subj. Info

Model RF CNN TMC-ViT RF CNN TMC-ViT Sex Age Hand

Accuracy, in percentage, for the three gesture decoding models using LMG and EMG data for each subject (Subj.). The HMI with the 
higher accuracy is highlighted in bold.

Subj. 1 96.10± 3.35 96.91± 2.63 97.88± 1.79 93.57±2.39 95.73±1.81 96.15±2.01 M 33 R

Subj. 2 97.24 ± 0.74 98.15± 0.53 98.19± 0.51 96.17±1.70 96.30±2.54 96.25±1.09 M 23 R

Subj. 3 98.68± 0.49 98.88± 0.37 99.11± 0.39 97.07±1.16 96.04±1.21 97.87±0.38 F 22 R

Subj. 4 97.87 ± 2.62 98.78± 0.42 98.79± 0.61 96.23±0.70 98.24±0.70 98.26±0.80 M 22 R

Subj. 5 96.31± 1.83 97.46± 1.70 97.98± 0.71 94.83±2.52 96.40±1.63 97.64±0.27 M 26 R

Subj. 6 98.76± 0.34 98.81± 0.18 98.88± 0.31 98.46±0.79 98.53±0.58 98.58±0.49 M 25 R

Subj. 7 96.56± 0.56 96.51± 0.87 97.50± 0.37 94.01±3.00 95.95±1.62 96.18±1.14 M 31 R

Subj. 8 97.45± 1.12 98.32± 0.55 98.37 ± 0.58 97.32±2.01 97.52±0.71 97.64±0.49 M 30 R

Subj. 9 95.56±1.29 96.13±0.79 96.85±0.49 98.24 ± 0.85 98.27 ± 0.56 98.03± 0.54 M 23 R

Subj. 10 95.19±4.76 98.41±0.37 98.81± 0.28 97.98± 1.42 98.85± 0.86 97.65±1.96 F 23 L

AVG 96.97 ± 1.71 97.84 ± 0.84 98.24 ± 0.60 96.39± 1.65 97.18± 1.23 97.42± 0.92

Model RF CNN TMC-ViT Subj. Info

Metric C A C A C A Sex Age Hand

Correlation (C) and accuracy (A), in percentage, for the three force regression models using LMG for each subject.

Subj. 1 89.82±3.45 78.14±5.52 95.52± 2.36 89.79±4.22 96.16±3.66 92.32±6.72 M 33 R

Subj. 2 90.76±4.09 75.65±8.22 96.81± 0.80 90.56±4.57 98.07±0.72 94.26±2.26 M 23 R

Subj. 3 83.27±5.39 56.87±25.79 94.18±4.60 88.03±8.00 95.52±3.99 88.08±8.51 F 22 R

Subj. 4 94.17±7.03 88.51±12.94 98.77±0.74 87.14±1.57 99.15±0.33 98.09±0.72 M 22 R

Subj. 5 82.89±11.7 71.71±16.12 89.68±4.39 78.40±6.47 92.22±4.14 83.34±8.10 M 28 L

Subj. 6 87.36±4.44 71.07±5.53 94.29±3.79 88.48±7.39 95.36±1.61 90.65±2.95 M 25 R

Subj. 7 94.51±4.11 87.02±3.72 96.90±1.21 91.40±3.05 96.96±0.74 92.43±3.33 M 25 L

Subj. 8 96.25±2.85 90.37±7.61 97.22±2.45 94.30±4.21 98.46±0.37 96.79±0.45 M 30 R

Subj. 9 79.45±8.40 62.96±12.58 83.01±6.51 72.19±7.88 89.88±4.59 74.06±5.89 M 26 R

Subj. 10 96.15±2.00 84.82±14.65 97.14±1.02 93.52±2.09 97.48±1.01 94.56±2.39 F 23 L

AVG 89.47 ± 5.71 76.71± 10.68 94.35± 4.47 88.38± 7.18 95.93± 2.75 90.46± 6.80

Figure 7.  Two examples of decoded clenching force vs the actual clenching force using the LMG data. The 
forces were decoded using the TMC-ViT model. True force is shown in blue and decoded force is shown in red.
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Conclusion
In this work, we introduced a new muscle-machine interfacing method called Lightmyography (LMG). LMG 
employs light that travels through elastic media and human tissue, and measures the changes in light luminosity 
so as to detect muscle movement and the deformations of the surrounding tissue that affect light absorption and 
reflection. Similar to another muscle-machine interface called Forcemyography, LMG detects muscle contrac-
tion through tissue deformation and skin displacements. In this study, we systematically explored the effects of 
the different light wavelengths and LMG module configurations on gesture classification and force decoding 
performance. In particular, the use of a silicone layer between the light source and the skin was considered and 
the effect of the silicone layer thickness, stiffness, and colour was studied. Based on our analysis, we derived 
the light wavelength, distance of the sensor from the skin, silicone layer thickness, and silicone stiffness that 
produce the best results. An LMG armband that consists of five sensing modules was developed to facilitate 
data collection. Each LMG module has one green LED, one IR LED, and one photodiode in conjunction with 
an operational amplifier unit. The efficiency of the proposed LMG armband has been experimentally validated, 
comparing the performance of machine learning models trained with the data collected using the LMG armband 
with that of models trained with data collected by a commercially available EMG bioamplifier. Three different 
machine learning techniques (RF, CNN, and TMC-ViT) were employed to develop the motion, intention, and 
force decoding models, achieving gesture classification accuracies of up to 98.24% (for the TMC-ViT model) and 
force decoding accuracies of up to 90.46% (again for the TMC-ViT model), using LMG data. Thus, it was shown 
that the LMG-based models could successfully discriminate between five different gestures that are commonly 
used in everyday life scenarios and can efficiently estimate the exerted grasping forces. It was also demonstrated 
that models developed using LMG data outperformed the models trained with EMG data for every machine 
learning technique examined. It should also be noted that the LMG armband is lighter, smaller, and cheaper to 
produce compared to commercially available EMG bioamplifiers, making it more attractive for wearable applica-
tions that require portability of the system.

In future studies, we plan to explore the applicability of LMG in health monitoring (e.g, detection of heartbeat, 
blood oxygen level, etc.). We also plan to integrate inertial measurement units (IMUs) in the armband so as to 
improve both gesture recognition and force decoding in various arm orientations, triggering configuration-
specific models. Finally, we plan to further investigate the effect of fatigue on the motion, intention, and force 
decoding performance.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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