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Abstract 

 

The digital twin (DT) is one of Industry 4's enabling technologies, aiming to improve the 

performance of physical entities through the use of a virtual counterpart. DT is a real-time 

representation of a system or physical entity that can adapt to operational changes in real time 

by using data and information gathered online to predict the physical twin's future. Despite 

all the advancements in both the industrial and academic sectors, there are still challenges for 

which DT adaptation requires more investigation. DT has been developed and used for three 

major purposes: service, design, and manufacturing for general industrial purposes. To 

develop DT to achieve all three major purposes is not realistic since different industries have 

different implementation orders of DT depending on their hardware/software level, and 

maturities of service, design and manufacturing. In this project, we will focus on DT virtual 

entity development purposes based on their own situations to implement. Therefore, this 

research will focus on developing virtual entities for the identified gaps in industry 

application. 

Full implementation of ‘proper’ DT requires twinning between the virtual and physical 

entities. However, this is complicated by computational effort, limitation of online 

measurements, and process complexity. This work introduces new approaches for processes 

in which mechanistical methods alone are incapable of providing DT virtual entities. The 

processes addressed are cream cheese fermentation and PCM energy storage, in the dairy and 

renewable energy industries respectively. These processes pose distinct challenges, 

necessitating novel approaches that combine data-driven and mechanistical methods. 

Process design has advanced significantly in dairy industry as a result of the high global 

demand for dairy products; however, process operations (manufacturing) require further 

improvements in order to increase product throughput while maintaining consistent quality. 

DT can become an important tool toward improving the online process operation in the dairy. 

However, proper virtual representations of systems using DT introduces a significant 

challenge in the dairy industry due to the complexity of mechanisms, raw material variations, 

and the limitations of online measurements. These factors reduce the fidelity of current 

industry and academic models. 

Additionally, developing DT for new renewable energy technologies is one of the most 

critical gaps. Online solutions can help improve the economic viability of such technologies, 
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by improving energy management during operation. The DT application for improving online 

operations necessitates a real time solution. However, this is challenging due to the 

complexity and nonlinearity of the systems involved in renewable energy technologies. 

Two DT virtual entity development directions for the aforementioned industries are 

investigated in this study. The results can aim in energy savings in New Zealand which is 

necessary for achieving Zero Carbon Act objectives. The first is in the dairy industry, which 

is vital to New Zealand's economy and consumes a significant amount of energy. A cream 

cheese production unit including fermentations vats is studied. DT virtual entity needs to 

optimize the energy while meeting the quality standards by providing online scheduling of 

the vats. The second process involves using energy storage and solar air collectors as 

renewable energy sources. This system is well suited to New Zealand's temperate climate. 

However, this system's economic viability must be improved while meeting energy demands. 

DT can optimise the economical design of solar collectors and energy storages. DT can also 

provide an optimal control solution, allowing the system to save even more energy and cost. 

In the cream cheese fermentation unit, the batch duration variation is the main challenge 

of optimizing the vats scheduling since mechanistic modelling of the dynamics of the 

fermentation process is difficult and includes many time-varying parameters. The other case 

introduced a different challenge, the mechanistic model of the system is available for active 

phase change material (PCM) systems; however, its complexity makes the optimization using 

that model computationally infeasible. To provide solutions, combination of data-driven and 

mathematical modelling as well as optimization were applied. The detailed virtual entity 

developments for the two industries are introduced in the following paragraphs. 

The first process investigated the scheduling of cream cheese fermentation vats. The 

scheduling of fermentation vats was complicated by batch duration variations and the 

limitations of online measurements. For the first time in this work, a DT virtual entity was 

developed to schedule the cream cheese fermentation vats. The scheduling framework was 

twined with the fermentation vats for filling and draining them using the information for 

predicting the batch durations required for reaching the quality. The pH predictive models 

were studied because pH is an important quality indicator. Novel grey and black box models 

were developed for pH prediction. It was possible to create grey and black box models that 

could use available online measurements to improve pH prediction. Only one fermentation 

had a large error of 34.09 %, and the average network percentage relative error was less than 
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14 %. However, the results showed that the pH prediction at the final point matches the 

experimental data in all the test fermentations. 

The pH predictive models were applied in a scheduling framework. The scheduling 

challenge is due to the inability to predict batch durations from the fermentation start time. 

This causes batches interferences during draining, resulting in higher energy consumption 

and waste. The new DT virtual entity for scheduling presented a mathematical programming 

optimization that was formulated to solve this problem by assuming an initial default batch 

duration at the start time and updating the batch duration later based on the pH prediction 

model later when enough measurements were available. The 12 hours initial batch duration 

led to the best results in reducing idle time, energy consumption, and waste. 

In the second process, an energy storage was coupled with a solar air collector for 

supplying heat to a hut in Auckland. The model of the entire system plays an important role 

for achieving DT virtual entity. The entire system's first principles models were developed 

and validated using experimental data for this purpose. The results confirmed the dynamics 

model's reliability, with an average mean square error of 4°C between measured and 

predicted hut temperatures over 11 days. The validated model was used for designing. For 

the first time in this research, economical designing of the system was carried out for various 

application scenarios in Auckland. The results showed that the optimum surface area of the 

solar collector was the same at 1 square meter for all the scenarios; however, the optimum 

amount of PCM mass for service, domestic, and office scenarios was 35 kg, 20 kg, and zero, 

respectively. 

The model was also used for developing a virtual entity for optimal control of the system. 

The desired optimal control should provide online solutions despite the system complexity 

coming from the nonlinearity and existence of binary variables. A novel optimal control was 

developed using reinforcement learning (RL). For addressing the approach advantages, it was 

compared with a model predictive control (MPC), as a classical approach. RL as a data driven 

optimal control can be trained offline and provide real time solutions. A novel formulation 

was proposed that allowed for the adjustment of a reward to prioritise between thermal 

comfort and energy cost savings. By prioritizing the cost saving, 97% more cost was saved 

compared to prioritizing thermal comfort case, however, the offset from the desired 

temperature was 54% less. A balance between energy cost savings and thermal comfort was 

achieved by adjusting the reward. 
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1.1. Background 

 
1.1.1. Digital twin definition 

 

Over the last few decades, digitalisation has resulted in significant advances in the industry. 

Technologies such as computers, simulation tools, and internet can be used to create virtual 

representations of physical objects. As a result, plans and operations have become more 

effective and efficient [1-4]. 

The integration and interaction of the physical and digital worlds have created numerous 

opportunities [5]. This can be achieved using digital twin (DT) models, which represent the 

properties of the actual process [6]. To connect the real system with its virtual representation, 

DT employs models, sensors, and data. 

The evolution of Industry 4.0 [7], which enabled technologies such as machine learning, 

cloud service, and multi-physics simulation [8], has made it possible to synchronize physical 

and virtual objects. DT is defined as a three-part system: a physical space, a virtual 

representation of that space, and data flow from the physical to the virtual representation [9]. 

The information might also be passed to the real space. Twining refers to the data flow cycle 

that occurs between virtual and physical spaces. The virtual space can include subspaces for 

different applications such as modelling, optimization, etc. 

Some virtual spaces are not connected to the physical space and require manual input, 

whereas others are entirely integrated into the physical space. DT classification was proposed 

in [10]. The authors' classification of DT based on the degree of integration between physical 

and virtual environments is shown Fig. 1.1. 

According to their definition, the digital model has no automated data exchange with the 

plant. Models can be built using manual data, but changes in the state of the physical object 

have no direct impact on the digital entity and vice versa. There is an automated one-way data 

flow between the real and digital objects in the digital shadow. When the physical object 

changes, the digital object changes as well, but not the other way around. 
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Fig. 1.1. From left to right: digital model, digital shadow and digital twin data flows. Dashed and solid 

lines represent the manual and automatic data flows respectively [7]. 

 

 
If the data flow between an existing physical object and a digital object is fully integrated 

into both directions, it is referred to as a Digital Twin. The digital object could also act as a 

controlling instance of the physical object in this scenario. Other physical and digital objects 

may also cause changes in the digital object's state. A change in the physical object's state 

causes a change in the digital object's state and vice versa. 

Therefore, the main parts of a digital twin are [24]: 

a) a model of the object 

b) an evolving set of data relating to the object, and 

c) a means of dynamically updating or adjusting the model in accordance with the data. 

        Parts b and c are the features of digital twin that makes it different from the traditional 

process models. Because the digital twin approach uses evolving data, one of its main 

advantages is that it accurately describes objects that change over time. A digital twin can 

extend the use of a validated model to timescales over which the object and its behaviour will 

change significantly. For instance, parameters in the model of the prototype would be updated 

using test data from the prototype, the updated model would be used to forecast performance 

in use, and finally the design would be updated. Furthermore, real-time operation can be 

improved using digital twin. For example, a digital twin of a machine tool would be able to 

simulate the mechanical and thermal processes involved in milling metal in real time and 

update knowledge about tool wear based on real-time measurements of part temperature and 

shape, enabling proactive and effective plant maintenance. 

1.1.2. Digital twin applications 

 

DT with various levels of integrity has been used in the industry. DT applications were 

identified at various stages of the lifecycle [11]. Design, manufacturing, and service were the 

three categories of DT's industrial applications. According to their findings, DT is currently  
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being used the most in production. 

The majority of DT's production applications are process control and process optimisation. 

The process systems must run continuously with acceptable quality regardless of disturbances 

such as raw material composition changes. On the other hand, most control systems are 

designed at steady state regions [2] that ignore the system's dynamics in all the operating 

conditions. To improve the system's performance, DT combines a dynamic model of the system 

with real-time data from the actual system. Another advantage of DT is the ability to optimise 

processes in real time. 

Although proper process design is critical, variations in operating conditions may be 

overlooked during the design phase [12]. Models that interact with the physical system can be 

used to optimise processes [13]. To achieve the best possible result, economic, safety, resource 

conditions, market demand, and other factors can all be considered.  

DT concepts have been implemented partially in the industry before. Model predictive 

control, computer-integrated manufacturing, and virtual manufacturing systems are just a few 

examples [14]. Model predictive control (MPC) has been used exclusively in oil companies 

[15] and petrochemical plants [16] for a long time. The virtual model in MPC [17] uses 

measurements from the physical process to forecast future states of the process and control it 

properly. Scheduling and optimisation have also been developed with virtual models. RTO 

(real-time optimisation) is a process optimisation framework that includes process 

measurements [18]. The measurements solve model mismatch and disturbances [19], which 

can make implementing model-based optimal inputs impractical. Smart scheduling was also 

achieved by combining production scheduling with cyber-physical systems [20]. 

1.1.3. Digital twin challenges 

 

Although different researchers [21] have defined different architectures for DT, DT's 

general and standard architecture includes a physical space, a virtual space, and the connection 

between them, as defined for the first time in [9]. 

The difficulties of employing DT have been discussed in some review publications. The 

following sections discuss these difficulties and challenges. 

 



Chapter 1. Introduction 

6 

 

 

 

1.1.3.1. DT application contexts 

 

DT should be able to incorporate with other digital twins and humans [22]. Standardisation  

and interoperability of virtual entities are essential for establishing communication between 

them to achieve this goal [15]. 

1.1.3.2. Data related challenges 

 
In DT, data must be transformed in real-time or near real-time. On the other hand, the data 

often has a large volume, a high velocity, and a wide variety, making it difficult and expensive 

to send to DT via a cloud server. Data-related technologies such as data collection, mapping, 

processing, and data transmission are required to address these issues. 

1.1.3.3. Technical implementation 

 
The authors in [14] highlighted the high reliance of DT on existing technologies such as 

5G, IoT, etc. On the other hand, these technologies were developed independently of the DT. 

Although using these technologies in DT saves money, the question of whether they are 

optimised for DT applications and industrial challenges remains. 

1.1.3.4. Lifecycle 

 
The DT lifecycle begins with the prototype phase and continues throughout the lifecycle 

[22]. There are, however, only a few DT applications that support the entire supply chain. 

Integrating DT from different phases, such as design, production, and service, is one of the 

most difficult tasks [14]. 

1.1.3.5. Perceived benefits 

 
A lack of understanding about the benefits of DT was one of the challenges mentioned in 

the perceived benefits section. Considerations such as potential costs and infrastructure 

constraints should be investigated and compared to the expected return on investment before 

recommending DT to an industry. 

1.1.3.6. Virtual entity requirements 

 
According to the authors [14], the level of fidelity is one of the most important factors 

because the higher the fidelity, the better the virtual object can mimic the physical object.  
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Processing power limits and network speed, on the other hand, play a significant role in 

achieving a high-fidelity DT. The optimal level of accuracy is determined by taking into 

account these parameters and physical object dynamics to maximize benefits while reducing 

costs and implementation challenges. The models should correctly reflect reality, but, given  

the complexity of real-world systems, it is difficult to construct models for DTs using 

traditional methods such as mechanistic modelling [22]. New developments in machine 

learning have led to using data for building data-driven solutions such as grey box and black 

box models which provide solutions to the mentioned issues by using power of data for 

modelling [23]. 

In [11] model is mentioned as the core of DT. The physical object's complexity should be 

reflected in the simplified virtual models. According to the authors, a balance between 

computing effort and model correctness should be achieved for each component of the system, 

which is dependent on the impact of that component on the system's functionality. Simulation 

was mentioned as another important feature of DT. The virtual model can interact with the 

physical object in real-time through simulation. This sets DT apart from traditional simulations, 

which is possible thanks to the Internet of Things' real-time data collection and recording 

capabilities. However, the authors do point out that most existing research only flows data in 

one direction, from physical to virtual objects, and that more research is needed to develop 

models that can be used to run digital twin simulations. This was also discussed in [24], where 

the authors looked at the differences between a model and DT. The DT model should be able 

to update, or change based on the measured data. In addition, the model should be sufficiently 

quick to run and reach the decision considering the timescale of the system. 

1.1.4. Virtual representation challenges in this thesis 

 

As mentioned in Section 1.1.3.6, virtual entity development is one of the challenges of DT 

development. Despite significant advances in DT in both academic and industrial 

environments, more research is still needed in some industries. Full implementation of ‘proper’ 

DT requires twinning between the virtual and physical entities. However, this is complicated 

by computational effort, limitation of online measurements and process complexity. Therefore, 

this research will focus on the development of virtual representations for the identified gaps in 

industry application. 
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The food and renewable energy industries are two areas that require further investigation. 

DT virtual entity in food industry is required for improving the operating condition of the food  

production processes. Also, DT can aim in increasing the economic viability of new renewable 

energy technologies by enhancing their design and operation. 

Difficulties of applying DT in the food industry were summarized in [39]. Using such 

technologies in the food industry is difficult, despite the fact that the food industry has a long 

history. This is due to the complexity and variability of raw materials, specialised equipment, 

processing rigidity, raw material and product shelf-life limitations, and the importance of 

quality. Developing a DT virtual entity necessitates the creation of models that can be used in 

real-time process equipment scheduling, which is extremely difficult. 

The renewable energy industry has gotten a lot of attention in recent years as a result of 

international agreements like the Paris Agreement, which aim to reduce CO2 emissions 

globally. The building sector has a lot of potential for implementing renewable energies since 

reducing energy consumption in this sector is one of the critical components for meeting the 

carbon reduction commitments. However, to achieve a reasonable payback time, moving to 

carbon low/zero alternatives necessitates proper design and operation of renewable solutions. 

DT has the potential to make a significant contribution to this goal. There are obstacles in the 

way of achieving this goal. For example, determining the best energy management control for 

a building can result in complex optimisation problems that can take a long time to solve which 

makes developing a DT virtual entity challenging. 

1.2. Research objectives 

 
The main objectives of this project are to develop DT virtual entities by combining data- 

driven and mechanistic approaches. DT tools require virtual representations that take advantage 

of online measurements to find real-time solutions. There are gaps in describing processes and 

obtaining real-time solutions for the industries studied in this project. 

This work introduces new approaches for processes in which mechanistical methods either 

cannot represent the process or are costly for online computations. In the cream cheese 

fermentation unit, the batch duration variation is the main challenge of optimizing the vats 

scheduling since mechanistic modelling of the dynamics of the fermentation process is difficult 

and include many time-varying parameters. The other case introduced a different challenge,  
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the mechanistic model of the system is available for active PCM systems; however, its 

complexity makes the optimization using that model computationally infeasible. These 

processes pose distinct challenges, necessitating novel approaches that combine data-driven 

and mechanistical methods. 

Novel research objectives were targeted that are listed below: 

 
1. DT virtual entity for scheduling is achievable, which takes advantage of online 

measurements in data-driven approaches for determining the batch duration. 

2. Data-driven approaches that are trained offline provide a feasible solution to the optimal 

control problem in real time which is necessary for DT virtual entity development. 

1.3. Applications in food and renewable energy industries 

 
New Zealand's gas emissions must be reduced by 30% below 2005 by 2030, according to 

the country's energy efficiency and conversion policy 2017-2022 [26]. Two of the four priority 

areas in New Zealand's energy strategy are the development of renewable energies and the 

efficient use of energy. In this thesis, these two areas were targeted by studying the 

digitalization opportunities in the dairy and energy storage industries. 

Although digital twin tools in these two industries are new, their histories are vastly 

different. The dairy industry is a long-established industry that has evolved over many decades. 

Machine-assisted operations have replaced complete manual processes in this industry [27]. 

New sensors and measuring equipment have also improved product quality and operation 

control [28]. On the other hand, energy storage systems are a relatively new technology that 

has gotten a lot of attention in the last decade. Although there have been numerous academic 

studies, commercial implementations of such systems are still in the early stages. Such systems 

have been accelerated by global concerns about environmental issues such as climate change 

and global warming. 

Dairy industries also include large plants with multiple units. The plant would benefit from 

strategies like DT but identifying these benefits and calculating the return on investment is 

difficult. These factors make decision-making difficult and time-consuming, necessitating 

agreement among managers at various levels. The technology is easier to implement in the case 

of energy storage, PCM for buildings. Energy storage systems can be used during the design 

and construction of buildings and as a retrofit to existing structures. Because the system scale  
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is smaller, the decision-making process would be more straightforward. However, other 

technologies on the market, such as heat pumps, compete with energy storage systems. This 

makes the optimum design and operation of such systems important. 

In addition, the mechanisms at work in these two industries are vastly different. Dairy 

plants work with raw materials with a short shelf life and a diverse composition. Furthermore, 

the presence of bacteria increases the complexity of biochemical mechanisms in the processes. 

As a result, plants with batch and continuous operation units emerge, posing challenges in 

maintaining consistent throughput and quality. Although the system operates continuously in 

the energy storage case, finding the system's optimal operation presents a new challenge due  

to the system's rigorous mathematical models. 

Finally, the dairy industry's online measurements are more limited than those available in 

the energy storage case. Lactate, for example, can be measured online during cream cheese 

fermentation, but lactose requires HPLC equipment, and biomass concentration measurements 

take more than a day. Aside from that, some critical final product quality parameters, such as 

sensory properties, are not automated. As a result, process modelling is a difficult task. 

Temperature and radiation measurements are easily obtained in the energy storage case, which 

would aid in the development of better mechanistic models. 

 

1.3.1. Dairy industry 

 

The dairy industry in New Zealand contributes significantly to the country's economy. 

Dairy exports have increased from NZ$2 billion per year to nearly $20 billion in the last 30 

years [29]. In 2016, the dairy industry consumed 28.4 PJs of energy to generate process heat. 

In New Zealand, the 28.4 Petajoules (PJ) of fuel burned resulted in 2.1 million tonnes of CO2 

emissions [30]. Despite decades of research into the benefits of automation in the dairy industry 

[31], the food industry is not considered high-tech in general. New digitalisation and Industrial 

4.0 breakthroughs may result in new industry movements [32]. 

 
Fermented dairy products are an important and widely consumed food around the world. 

In recent decades, the market for these products has been rapidly expanding [33]. To compete 

in the global market, products must have consistent quality and be reasonably priced. However,  
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achieving these objectives is difficult. This is due to the use of batch and semi-continuous 

processes in the dairy industry. Also, the procedures are extremely complicated. For example, 

biochemical mechanisms are involved in fermentation processes as a result of microorganisms, 

resulting in batch duration variation in the plant. This has an impact on product throughput and 

quality. Furthermore, the variability in the composition of milk as a raw material, as well as 

measurement limitations, add to the processes' complexity. The mentioned difficulties make 

dairy plants' modelling and scheduling complex tasks. The previous research for modelling and 

scheduling fermented production plants are reviewed in the following sections. 

1.3.1.1. Modelling of fermentation 

 
Milk fermentation is accomplished through the use of bacteria to produce lactic acid. 

Lactose is one of the substrates consumed by the bacteria. However, fermentation is not limited 

to the dairy industry; alcohol, amino acids, antibiotics, enzymes, single-cell protein (SCP),  

 

citric and acetic acid, and beer [34] are all produced on a large scale around the world. As a 

result, models for the fermentation process in various industries have been developed. The 

models can be categorized into white box models (first-principles models), black box models 

and grey box models. 

1.3.1.1.1. First principles models 

 
There are two types of first principles models: structured and unstructured. Details of the 

involved mechanisms, such as cell structure and composition, are considered in the structured 

models [35, 36]. This complicates the mathematical models, making them unsuitable for use in 

DT online applications. For describing fermentation, the unstructured models use kinetic 

models. However, kinetic modelling is difficult due to the complexity of biochemical 

mechanisms. They contain a large number of variables that change during process runs and 

across different stages of the same experiment, demonstrating the difficulty of using these 

models in real time. For instance, in [37], authors studied the effect of pH on the flavor and 

specific growth rates of lactic acid fermentation by Lactococcus lactis ssp. lactis biovar. 

diacetylactis. They showed that the pH acts indirectly by changing the proportion of the non- 

dissociated lactic acid. Generalized models were presented in which the effect of pH was 

included. 
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1.3.1.1.2. Black box models 

 

Data-driven models are derived from data and require less physical system knowledge [38]. 

Data-driven models take the place of first-principles models that cannot characterise complex 

systems due to a lack of engineering knowledge [39]. As a result of recent advances in cyber- 

physical systems, smart factories, and the industrial internet of things (IIoT), a large amount of 

process data is now available, making the application of more sophisticated data-driven 

approaches, such as machine learning, neural networks, and deep learning, in the industry 

viable [23]. As an alternative to first-principles models, researchers have used black box 

models. Applying data-driven models, however, comes with its own set of challenges and 

considerations. This was addressed in [40], which looked at two industrial cases. One of the 

case studies was the fermentation process in craft breweries. In this process, yeast is used to 

convert sugar to ethanol. The fermentation is complete when the desired ethanol concentration 

and flavour are achieved. In ideal conditions, the fermentation period should be consistent 

across all batches; however, batch duration varies due to ingredients and process temperature 

differences. Furthermore, alcohol measurements are not available online and are taken every  

 

4-10 hours, resulting in overfermentation and a reduction in product quality. The amount of 

ethanol produced was predicted using ultrasonic and temperature measurements taken during 

the fermentation. Artificial neural networks were used to map the ethanol concentration 

prediction to the data (ANNs). The relationship between process variables was complex and 

nonlinear, which could be determined using data-driven methods. The most important factors 

to consider when designing a data-driven model for processes were discussed. It is critical to 

define the model's goal as well as the challenges that must be overcome. The application of the 

model determines the model's level of complexity. It will be more complicated than simply 

fitting the data if it is used to make predictions. The model's complexity is also influenced by 

the required model accuracy, which should be defined in light of the product specification, 

regulations, economic value, and safety criteria. When defining the boundaries of the process 

manufacturing system, manufacturers should take into account the availability and 

unpredictability of industrial data. 

Other studies also looked at applying data-driven methods in fermentation. A static 

feedforward neural network was developed for modelling the continuous biodegradation of  
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phenol [41]. The continuous biodegradation of phenol was modelled using a static feedforward 

neural network [41]. In general, the authors came to the conclusion that the ANN outperformed 

a nonlinear Multiple Regression Analysis (MRA) model. Cui et al. [88] proposed a rolling-  

prediction approach based on ANN, in which training data was taken from historical batches 

as well as the batch of current interest. With different prediction horizons, the approach 

predicted the product formation process. For an 8-hour prediction, the average error of the 

product formation prediction from testing batches was 3.01 %. An ANN model for online 

optimisation was used to boost the productivity of a wheat beer fermentation [87]. As soon as 

12 hours of process data were collected, the model was used to predict the fermentation course. 

The temperature trajectory of the process was optimised and fed to the controller using this 

information and the model, resulting in a 20% reduction in processing time. The authors of 

[90] proposed a static neural network for predicting the final time of the acidification step, 

followed by the addition of rennet. Because milk powder was used to make the milk in their 

study, the system inputs were the initial solid amounts, the starter culture addition ratio, and 

the pH at 0, 20, 40, and 60 minutes after inoculation. As the network's output, the final 

acidification process time was determined. The authors used industrial data to test their method, 

and they were able to make accurate predictions. For pH dynamics prediction, RNN models 

with lab-scale data were used. 

1.3.1.1.3. Grey box models 

 
Grey box models can also be created by combining first-principle and ANN models. This 

type of model benefits from the incorporation of prior knowledge from first-principle models 

into neural networks, reducing the neural networks' sole reliance on data. 

A fed-batch fermentation of a foreign protein production unit was determined using grey 

box models [45]. For the five critical parameter functions of growth rate, glucose consumption 

rate, oxygen consumption rate, acetate production rate, and protein production rate, neural 

networks were discovered. The parameters were then used in the first principle equations of 

the conservation equations. The neural network parameters accurately predicted dynamic 

response data in simulations. The fermentation of ricotta cheese whey for the production of 

ethanol was investigated in [46]. Neural networks are combined with mass balance equations 

for lactose, ethanol, and biomass in the grey box model. The model predicted the biomass,  
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lactose, and ethanol concentration profiles with an average error percentage less than 10%. 

Black box and grey box models were developed for online estimation of the biomass 

concentration in a PHB fed-batch fermentation process [47]. The authors used a grey box model 

that included mass balance equations and either a feedforward or RFBN network. The grey box 

model performed better than the other approaches, according to the findings. 

 

1.3.1.2. Scheduling 

 
Unlike the chemical industry, the dairy sector uses batch and semi-continuous processes, 

making optimisation and scheduling of these operations difficult. Previous research focused on 

the dairy factories' plant-wide scheduling. The authors of [48] developed a scheduling 

algorithm for the filling line that fills the cups with yogurt, cream, and other items. By pre- 

empting production, scheduling helps clean the filling line between the filling of two items 

rather than at a specific time. The filling line's non-productive time was reduced as a result. 

A combined optimization and constraint programming approach was used for optimal 

scheduling of a batch milk/yogurt powder process in [49]. The scheduling constraints were 

defined using a model that took into account the production process and available machines. 

The fermentation time of yogurt batches was assumed a constant value. The model was used 

in an optimization formulation with the objective of meeting the customers deadlines, while 

taking into account the efficiencies and costs of the available alternative machines. 

A mixed-integer programming (MIP) algorithm was developed for scheduling an ice-cream 

manufacturing facility that produced eight different flavours [50]. The scheduling formula took 

into account all stages of processing, including the process line, aging vessels, and packing 

lines. The aging and cleaning durations, as well as the maximum shell life of materials, were 

included. The objective function minimized the makespan (the time point at which all product 

demands are met). 

Optimal scheduling of the yogurt packaging lines was investigated in [51]. The yoghurt 

manufacturing unit produces a wide range of products with various characteristics. The 

problem of parallel machine scheduling with sequence-dependent setup times and costs arose 

as a result. A MILP model was used to solve the scheduling problem. The yoghurt fermentation 

batch time was assumed to be constant. The authors concluded that the method had a low 

computational cost and that its production decisions could significantly improve plant  
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operations by lowering setup and labour costs. 

Batch and semi-batch production units are used in other process plants, such as those 

in the beverage and pharmaceutical industries. The scheduling of a penicillin bioprocess plant 

was studied in [102]. To solve the scheduling problem, forecasts of process productivity and 

completion times for the tertiary stages of industrial penicillin fermentations were combined 

 with a genetic algorithm. The authors, on the other hand, ignored batch variation and used a 

nominal batch processing time in their scheduling formula. In [53], a scheduling solution for a 

beverage plant in the brewing industry was presented. The authors used a constant fermentation 

time that was significantly longer than the mean scheduling time. The variation in fermentation 

time, on the other hand, was not addressed. The throughput of the process was significantly 

reduced as a result of their schedule. The fermented liquid product could also be stored in tanks 

for several days. 

The aforementioned studies did not take into account the batch duration variation in 

fermentation processes. It has a significant impact on the unit's operation. In dairy units, the 

process operation can change from batch to batch. This is because raw materials such as milk 

can vary from season to season and farm to farm. In addition, microorganisms are involved in 

the processes, which adds biochemical complexity to the system. These uncertainties result in 

varying batch durations in dairy operations, making scheduling difficult. Predicting batch 

duration applying models and using it to schedule fermentation vats can improve the unit 

operation. 

1.3.1.1. Cream cheese plant 

 
Cream cheese is a soft, fresh, acid-coagulated cheese. It is made from a mixture of milk 

and cream, cream, or skim milk [54]. Cream cheese is a dairy product with increasing economic 

importance in the food industry, with a projected global cheese market size of ~$8.3 billion 

USD by 2026 [55]. 

The cream cheese manufacturing process contains multiple continuous and batch units. Fig. 

1.2 shows the discrete unit of a cream cheese plant owned by Fonterra. The upstream flow 

contains a mixture of homogenized milk and bacteria culture, which is passed to fill up the vats. 

During the fermentation process, bacteria consume lactose, and pH decreases. There are upper  
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and lower limits for curd pH at the end of fermentation which defines the desired bound. This 

process continues until the desired pH bound is reached. Then, the batch is drained to the 

continuous section. The curd is heated up in a cooker to kill the bacteria, which stops the 

acidification. 

 
 

Fig. 1.2. Cream cheese production unit 

 

 
It is essential to achieve consistency in the pH of batches since it strongly affects the quality 

[60]. However, achieving this consistency is difficult since the pH dynamics of batches and 

their durations vary in the plant. This causes variation between batch heating of the product 

curds, leading to over-acidification of some batches and, consequently, poor-quality product. 

The continuous section has limited capacity. Therefore, in the event of batch drainage 

interference, the curd is bypassed to a cooler, where bacteria activity is reduced as a result of 

cooling. The cooled curd is then temporarily stored in the buffer tank before being transferred 

to the continuous section. The acidification process is not stopped by batch cooling, but it is 

slowed. Furthermore, if more than two batches reach the desired pH at the same time, one will 

be wasted. It's also worth noting that cooling consumes a lot of energy and should be avoided 

whenever possible. 
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Fig. 1.3. Variation of batch duration in an industrial unit 

 

 
Batch duration varies in the plant, as shown in Fig. 1.3. The lower and upper limits for curd 

pH are shown in red. The majority of batches exceed this limit, owing to poor batch filling 

scheduling, which causes interferences during drainage to the continuous section and draining 

delays. Another reason is the difficulty in determining the drainage start time, which should be 

chosen so that the batches reach the desired pH after 2 hours of draining. 

More consistent curds can be produced by reducing batch interferences during draining. 

This can be achieved by improving the scheduling of fermentation vats. In this work, a digital 

twin entity was developed for online scheduling of the fermentation vats. Using data-driven 

approaches, pH prediction models were developed to predict the batch duration using the 

available measurements. The model predictions were then used to schedule the fermentation 

vats filling, draining and cleaning using optimisation programming. 

1.3.2. Renewable industry 

 

Renewable energy sources currently supply around 40% of the total energy demand in New 

Zealand [57]. Increasing this share is critical to meeting our international obligations and the 

Zero Carbon Act's 2050 net-zero target of reducing glasshouse gas emissions [58]. In recent 

years, this has increased the deployment of renewable energy sources. 

Wind, hydro, solar, geothermal, biomass, and ocean energy are examples of renewable 

energy sources. The majority of these energy sources, on the other hand, are variable and 

partially unpredictable. For example, on days when there is little wind, and the sky is cloudy, 

renewable energy sources would be insufficient to meet the energy demand. Energy storage 
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 systems increase renewable energy sources' reliability, affordability, and long-term viability. 

Governments have used dams to store water and use it as batteries on a national scale. This is 

a method of meeting varying power demands. 

On the other hand, demand-side energy management is critical in the transition to 100 

percent renewable energy. Energy storage improves energy management on the demand side, 

just as it does on a national scale. Solar energy, for example, is available when most members 

of the household are at work and energy demand is low. Solar power and heat are stored in 

energy storage systems during the day and then used at night. Furthermore, the less expensive 

energy generated during off-peak hours can be stored and used during the more expensive on- 

peak hours. Because of its moderate climate, this technology could be especially useful in New 

Zealand. 

Buildings consume a huge amount of energy. This industry accounts for 30% of global 

glasshouse gas emissions and 40% of total energy consumption [59]. One of the technologies 

that have piqued the interest of many researchers is thermal energy storage (TES) [60]. Phase 

change materials (PCMs) are among the most applicable energy storage systems in buildings 

among the various TES approaches [61]. During their phase transition from liquid to solid and 

vice versa, PCMs absorb and release a large amount of energy. PCMs are simple to use, have 

a high energy storage density, and are durable and stable [62]. Buildings have been equipped 

with PCM for cooling, heating, or hybrid applications [63]. PCMs can be incorporated into 

buildings, either passively or actively [64]. In the passive approach, PCMs can be incorporated 

into the building envelope as an integrated material into building walls, roofs, floors, slabs, 

shading systems, fenestrations, insulation, and façades. Unlike the passive approach, active    

systems incorporate PCM as a storage medium in heat exchangers, tanks, etc. 

Many researchers are interested in combining solar collectors with PCM storage. This is 

due to the fact that solar energy is intermittent, resulting in a mismatch between energy 

availability and actual demand. This problem could be solved by combining thermal energy 

storage (TES) with solar heat sources. However, the initial cost of such a system makes this 

technology economically unviable. DT can help improve the design and operation of such 

systems, resulting in greater energy and cost savings when PCM technology is used. The 

following section summarises previous research on modelling, design optimisation, and 

optimal control of systems that combine solar collectors and PCM storage. 
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1.3.2.1. Modelling 

 
In [65], the authors numerically investigated a PCM-based cascaded energy storage unit 

with a solar air collector. Three paraffin-based materials (RT50, RT65, and RT80) were used 

as PCM for the energy storage unit. The thermal energy storage unit and the solar collector 

were modeled. The model was validated by the experimental data with high accuracy (R- 

squared was equal to 0.94). 

In another research, simulation of net-zero energy (NZE) was first developed using 

TRNSYS [66]. The authors investigated the energy flexibility and performance of NZE houses 

using a solar-assisted heating, ventilation, and air conditioning (HVAC) system with thermal 

energy storage (TES), PVT collector, and demand-side management (DSM) strategies. 

A simulation system of the NZE house was developed using TRNSYS to evaluate its 

performance under various conditions. The major components of the system, such as PVT 

collector and air-based PCM storage, were modeled and validated individually [67, 68]. In 

particular, the air-based PCM storage model was developed [67] to represent the thermal 

dynamics of the storage for cooling purposes in summer using the free ambient cooling at night 

to solidify PCM. 

A novel solar thermal heater coupled with an active PCM heat storage wall was proposed 

in [69]. Hot water heated by the parabolic trough solar collectors flowed through the copper 

tube to discharge the cool load stored in the PCM wallboard. Also, the excess heat could be 

stored in the PCM wallboard to meet the indoor thermal demand when solar energy is 

insufficient. The transient model of the active PCM storage was combined with the TRNSYS 

model, which included the hut model. The indoor hut temperature was used to validate the 

accuracy of the model. The RSME during seven days of operation was 0.7oC. Despite past 

studies on modeling solar collectors with PCM storage, it appears that a model that integrates 

the solar air collector, and PCM storage, and building models has not been previously reported. 

1.3.2.2. Economical design optimization 

 
Design optimization was investigated by applying optimization algorithms for obtaining 

the optimum design variables for the system coupling solar collectors and PCM units. In [70] 

a multi-objective optimization was carried out for TES systems, including PCMs for solar air 

systems in a lab-scale test rig. Thermal storage design variables such as the number of the air  
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channels and the number of PCM bricks were optimized. The optimum values increased the 

average heat transfer effectiveness and effective PCM charging time of the system. 

In [71], a two-level model-based strategy was used to optimize a system including a 

Photovoltaic/thermal (PVT) collector with a centralized PCM thermal energy storage. The 

electrical and thermal performance of the system was increased by obtaining the optimum air 

flow rate, and optimum slope and orientation of the PVT collector. The design of a PVT with 

a passive PCM was optimized in [72]. PCMs were embedded into the building envelopes, while 

the heated air from the PVT collector was used for heating the building. The Taguchi-Fibonacci 

search method was used for the optimization. The optimized variables were PCM air flow rate, 

PCM type, PCM layer thickness, and additional wall insulation. The objective function 

maximized the signal-to-noise ratio of the coefficient of the thermal performance enhancement 

(CTPE) of the building simulated in TRNSYS. 

In the above studies, the design optimization was focused only on improving the system's 

technical performance. However, ignoring the initial cost of solar collectors and PCM energy 

storage could lead to designing systems with long payback times, which could lead to 

unfeasible economical systems. For instance, in [73], parametric analysis was used for 

designing a solar heating air system, including an air vacuum tube solar collector and a 

concentric-tube latent heat thermal energy storage. The design of the energy storage system 

was optimized regarding the air outlet temperature of the storage and peak shift of the heat 

supply. The results showed that the optimal mass of PCM was 150-200 kg/m2. This amount of 

PCM introduces a high initial cost that leads to a very long payback time. 

The cost of implementing PCM is needed to be compared against the benefits of using such 

systems before making decisions [74]. The importance of economic factors was also mentioned 

in [75]. The optimal design of a solar collector integrating PCM thermal storage was carried 

out in this study. A front and back solar air collector (SAC) with a PCM-based absorber plate 

was considered. The objective function minimized the root mean square error between the solar 

air collector and the set temperature. The thickness of PCM in the absorber plate, the phase 

change temperature, and a parameter in the effective heat capacity curve were used as the 

optimization design variables. The objective function considered thermal performance 

parameters, but the authors concluded that the techno-economic constraints need to be added 

in future studies. The authors of [76] studied the optimal design of a renewable cooling and 

heating system that included a desiccant wheel, PVT, and a thermal storage unit was carried  
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out. The objective function was a twenty-year life cycle cost which included PVT price, PCM  

price, electricity purchase price, and electricity sale price. The results showed that the 

optimized design decreased the system's life cycle cost by 32.4% and 31.2% compared to two 

other design cases. It was found the electricity sale price had a significant influence on the 

optimization results. However, the results cannot be used in designing solar air collectors 

without PV panels, which only generate heat. Economical design optimization of systems 

including the coupling of solar air collectors and PCM energy storage, which minimize the 

system cost could facilitate increased deployment of such systems. 

1.3.2.3. Optimal control 

 
Optimal control strategies can help PCM technologies reach their full potential and, as a 

result, reduce payback time. In previous studies, researchers devised optimal control strategies. 

MPC was applied for optimal control of a solar assisted HVAC system in [77]. A PVT 

collector and a PCM unit were integrated into a heat pump as part of the HVAC system. High 

and low-level controllers are used in the MPC formulation. For the high-level and low-level 

controllers, prediction horizons of 24 hours and 1 hour were considered, respectively. In the 

high-level controller, PCM was charged and discharged. At the lower level, the continuous air 

flow rate through the PCM storage and heat pump regulation were determined. 

The MPC formulation's objective functions were defined as minimizing energy [78], 

minimizing energy cost [79], and maximizing PCM performance [80]. The authors of [79], for 

example, combined passive (on walls) and active PCM (PCM heat exchanger) systems with an 

HVAC system. A hierarchical, centralized energy management strategy was developed based 

on controlling active and passive PCM in the slow and fast time scales, respectively. The longer 

time horizon (up to 24 hours) associated with daily weather changes and energy price 

fluctuations contributed to the slow time scale. The short time horizon (a few minutes) 

associated with the occupancy and ambient conditions contributed to the fast time scale. 

The MPC formulation leas to a mixed-integer non-linear problem which is due to the PCM 

heat capacity calculation. Solving this complex problem in real-time is challenging and needs 

specific solvers [81]. 

As an alternative, machine learning-based approaches such as Reinforcement Learning 

(RL) can be applied as an optimal control approach. Pre-computing the optimal solutions  
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through offline RL training overcomes the high online computational effort of MPC [82]. 

1.3.2.3.4.    RL 

 
Machine learning advancements have enabled not only modelling but also process control 

through reinforcement learning (RL) [83]. An agent learns to complete a task through repeated 

interactions with its surroundings in RL [84]. The repeated interactions are a trial-and-error 

search, leading to finding the optimal policy. Policy leads to mapping the states which describe 

the environment to the actions. Applying each action to the environment at each state has a 

reward signal which aims to learn the optimal policy. RL has some advantages over the 

classical optimal control methods such as model predictive control (MPC). The low cost of 

online computation is one of the key advantages of RL. In other words, the RL training process 

is done offline, which solves one of MPC's problems: high online computational requirements 

[85]. 

Furthermore, the system's uncertainties are unknown and non-stationary, whereas, for only 

some operational regions or scenarios in MPC, the uncertainty can be summarised by mean and 

variance [86]. RL finds the best strategy by accounting for system stochasticity, making it more 

practical for specific systems [87]. Additionally, RL can replace the combination of RTO and 

MPC. In [88], the combination of RTO and MPC was compared to RL, with RTO providing 

the best steady-state set point and MPC calculating the input trajectory to get to the set point. 

Economic MPC is similar to RL in that it combines RTO and MPC into a single framework.  

RL has been used in a variety of cases and fields. In [88], RL was used to fine-tune the PI 

controller parameters. Traditional controllers have tuning parameters that must be adjusted 

based on the process conditions. Tuning, on the other hand, is a difficult and time-consuming 

task. Most industrial controllers are tuned using the Ziegler-Nichols technique; however, if the 

controllers are not re-tuned properly and on time, their performance will be less than ideal. For 

tuning traditional controllers, RL can provide an automatic and optimal solution. Parameters 

of a PI-controller were tuned dynamically using RL [89]. The controller controlled a stirred 

tank heater. RL was trained using a model and implemented on the tank. RL led to better 

performance compared to internal model control tuning methods by rejecting disturbances and 

tracking the set points. There are types of RL that can be useful for cases where accurate 

deriving models of a system is not possible. In another research, RL was applied to cool a data  
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centre [90]. As modelling of this process is very difficult, RL was used to find an optimal policy 

for controlling the system by interacting with it online. When compared to model-based 

methods, RL saved 22% more power. An adiabatic plug flow reactor was controlled using J- 

learning and Q-learning types of RL [91]. The reactor model was simulated and used as a virtual 

plant. RL showed the best control performance compared to two different PIDs and three 

different MPCs. 

In a recent study [92], RL was used to determine the optimal operating condition of a 

hydrocracking unit. The operating condition was constantly changing due to changes in raw 

materials and production requirements. To achieve the highest efficiency in terms of both 

quality and cost, quick response optimisation methods were required. The optimisation process 

was optimised using actor-critical reinforcement learning instead of first-principles models, 

which has a high computational cost. RL was trained with a deep neural network model based 

on a mathematical model that had been validated. The proposed RL determined the optimal 

operating conditions of the process with a minimum accuracy of 95%. 

1.3.2.1.   Active PCM system for Auckland 

 
Active systems incorporate PCM as a storage medium in heat exchangers, tanks, and solar- 

assisted PCM systems. Fig. 1.4 shows the active system implemented in Auckland. It shows 

that the air was flowed in different pathways by manipulating the ON/OFF valves and fans. 

 

 

  
 

Fig. 1.4. The active PCM system set up in Auckland 
 

Although better control and heat transfer performance is achievable using active systems 

[93], the capital cost of active systems is higher which makes them economically unviable.  
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Improving the economic design of such systems is carried out in this thesis for the first time. 

This is accomplished by developing a model representing the dynamics of the entire system 

which is obtained by interacting the system components. 

Additionally, better performance of the active systems is due to better control comparing 

to the passive systems. This was shown in [93], where a comparison was made between passive 

and above active systems in the same situation in Auckland. Their results showed that active 

systems had greater energy-saving (22% less energy consumption) and more efficient peak 

load shifting (32% less electricity cost) compared to the passive approach. These conclusions 

were achieved by applying ON/OFF control for the above active system. Although the ON/OFF 

base controllers are cheaper and easily implemented, their algorithms do not consider the 

building dynamics. Dynamic behaviour is important for time-delayed processes like 

temperature dynamics in buildings [95]. Furthermore, because active systems require a higher 

initial investment, proper control is required to achieve the maximum potential for energy and 

cost savings [96]. Control performance can be improved by using optimal control strategies 

that include hut dynamics. 

To improve the control performance, the application of MPC was investigated for the same 

active system numerically [97]. The objective was to minimize electrical energy consumption. 

The EnergyPlus model and system components such as the PCM heat exchanger were very 

nonlinear and rigorous, making the real-time computational cost expensive. EnergyPlus 

simulation determined the heating demand offline, and the values introduced to the 

optimization problem in MPC. However, for implementing such a control strategy, the real- 

time measurement from the building, as feedback, plays a very important role in reconciling 

the states and covering the mismatch between the model and the building. This is one of the 

advantages of DT. Besides that, the airflow rate was considered a continuous variable in the 

proposed MPC. However, the actual system includes ON/OFF valves that drive the air at a 

constant flow rate in the pathways. This leads to binary variables in the optimization problem, 

which makes the real-time implementation of MPC even harder. 

DT virtual entity was developed for economical design optimization and optimal control 

of this system using dynamic models of the entire system. First, a validated dynamic model of 

the system was first obtained. Then, the model was used for economical design optimization.  
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It was also used for energy management by training a data-driven control approach, RL, which 

could deal with the complexity of finding an online solution for the system suitable for applying 

in DT. 

1.4. Thesis framework 

 
Fig. 1.5 shows a summary of the thesis framework. A literature review about DT has been 

given in the introduction chapter. Also, the two industries studied in this work have been 

introduced, and the challenges of developing DT tools have been addressed. Fig. 1.5 also shows 

the chapters allocated to each industry. Chapters 2 and 3 are about the cream cheese 

fermentation, and Chapters 4 and 5 present the energy storage research. 

Each chapter begins with an introduction that covers the most recent and relevant works, 

followed by sections on study methods, results, discussion, and conclusion. An outline of each 

chapter published in this thesis is as follows: 

 

 
 

Fig. 1.5. Thesis structure 

 

 

Chapter 2 

 
The complexities of modelling the cream cheese fermentation process are discussed in this 

chapter. The literature was evaluated, and several types of fermentation model used in various  
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industries were summarised. Cream cheese fermentation dynamics were studied using white, 

grey, and black-box models. Each type of model was explored in terms of its benefits and 

drawbacks. The model's capability was assessed using data from laboratory fermentation. The 

performance of the model for pH dynamics prediction was tested using lab and industrial data, 

and a neural network model based on pH data was built. This research work has been published 

in the Journal of Food and Bioprocess Products, 2021, Pages 81-89. 

Chapter 3 

 
This chapter provides a cream cheese fermentation scheduling framework that combines 

mathematical programming optimisation with data-driven pH prediction. The scheduling 

formula took into account the constraints encountered during filling, draining, and cleaning in 

the actual Fonterra cream cheese unit. One of the most difficult aspects of scheduling the cream 

cheese unit is determining when to fill the vats so that there are no interferences while draining 

the batches. This is since the duration of the batches varies from batch to batch. The framework 

deals with this problem by updating the schedule using the pH model prediction information 

as soon as enough measurements for model prediction are available. In addition, an adaptive 

grey model was proposed, and the benefits of using measurements to improve prediction 

accuracy were demonstrated. This work has been published in Computer Aided Chemical 

Engineering, Vol. 49. Elsevier, 2022. 541-546.  

Chapter 4 

 
This chapter aims to develop a reliable model for an active PCM system that provides heat 

to a hut on Auckland's Ardmore campus. The system included a solar collector and a PCM heat 

exchanger, modelled in MATLAB. EnergyPlus was used to simulate the hut dynamics, and an 

interface was used to connect the entire system. The system model was validated using 

experimental data from winter 2020. The results showed the reliability of the model. The model 

was then used to optimally design the active system components for the same hut with different 

applications. The design was carried out while a proper control was applied to ensure using the 

full potential of the PCM heat exchanger, providing thermal comfort and minimizing system 

payback time. This work has been published in the Journal of Applied Thermal Engineering, 

216 (2022): 119002.  
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Chapter 5 

 
This chapter presents an optimal control strategy for the PCM active system of the previous 

chapter. Although a reliable mechanistic model was obtained, classical optimal approaches 

based on mathematical programming optimization were not suitable due to the model's 

complexity and the inclusion of binary variables. This was addressed by developing MPC for 

the system, and the obstacles of implementing it were addressed. Then reinforcement learning, 

a data-driven optimal control strategy, was adopted to the system. A novel reward formulation 

was proposed, prioritizing control based on achieving thermal comfort or increasing energy 

cost savings. A part of this work has been accepted in the 7th International Symposium on 

Advanced Control of Industrial Processes, Vancouver, Canada. 
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Foreword 

 

The mechanism of cream cheese fermentation has a complex, which makes its modelling a 

challenging task. Researchers have proposed different approaches to modelling the 

fermentation process. The developed models can be categorized into white, grey, and black 

box models. In this paper, we studied these models and investigated their application by using 

lab and industrial scale data which were obtained in the presence of disturbances. The results 

showed that using the states of the white box model for predicting pH is challenging because 

of the complexity of the cream cheese compound. Although this problem was solved in the 

grey box model, there were difficulties in applying both white and grey box models mainly due 

to the lack of online measurements of states. Unlike white and grey box models, a black box 

model, an ANN model, was developed based on pH data, which are measured online. Using 

the experimental pH data, ANN model configurations with optimal feedback and time intervals 

were used to predict industrial fermentation pH dynamics. The ANN model provided reliable 

pH predictions at both lab and industrial scales. This chapter has been published in the Journal 

of Food and Bioprocess Products and has been included in the thesis. 

1.5. Introduction 

 
Fermented products such as alcohol, amino acids, antibiotics, enzymes, single- cell protein 

(SCP), citric and acetic acid, and beer [34] are produced globally on a large scale. These 

products should be produced to a consistently high quality with low costs to compete globally. 

In other words, products with high quality should be achieved along with reducing the 

processing time. 

One product of such a process is cream cheese. Cream cheese is a soft, fresh, acid- 

coagulated cheese that is produced from a standardized, homogenized, and pasteurized mixture 

of milk and cream [98]. The cream cheese manufacturing process contains multiple continuous 

and batch units. The batch section of a cheese plant is dedicated to the fermentation of milk to 

curds using bacteria. As a result, lactic acid is produced, and acidity increases, which lowers 

the pH [99]. After reaching the desired pH, the bacteria are killed by heating the curd, 

consequently stopping the acidification process. It is essential to achieve consistency in the pH 

of batches since it strongly affects the quality [56]. However, achieving this consistency is 

challenging since the pH dynamics of batches, and consequently, their duration varies in the 
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plant due to the disturbances entering the system. For instance, the milk composition varies 

between species of cows, the cows’ diet, the time of year for milking, and weather conditions. 

The variation of batch duration causes variation between batch heating of the product 

curds, which leads to over-acidification of some batches and consequently, poor-quality 

products. Better scheduling of batches can decrease their variation by reducing possible 

interferences between batches due to variation of their duration. To achieve better batch control 

and therefore scheduling, models for predicting pH dynamics can play an important role. 

Many first-principle models have been developed for the production of lactic acid from 

lactose and other substrates [35, 36, 100, 101, 37, 102, 103]. These models can be classified as 

structured and unstructured. Structured first-principle models consider some basic features of 

the cell structure, function, and composition [35, 36, 100]. However, these models are too far 

detailed for industrial use. Unstructured first-principle models consist of equations with 

physical sense and sufficient biological significance [101]. In unstructured first-principle 

models, kinetic parameters are used to describe the growth, substrate utilization, maintenance, 

and product formation, which are all intimately related. However, the complexity of the 

biochemical fermentation process makes kinetic modelling difficult. This complexity mainly 

comes from interactions between cells, lactose, and pH. To describe these interactions, the 

models include many parameters that change during process runs and even across different 

stages of the same experiment, shown in many studies. Cachon and Divines [37] studied the 

effect of pH on the flavor and specific growth rates of lactic acid fermentation by Lactococcus 

lactis ssp. lactis biovar. diacetylactis. They showed that the pH acts indirectly by changing the 

proportion of the non-dissociated lactic acid. Generalized models were presented in which the 

effect of pH was included. The effect of pH and substrate on the lactic acid fermentation by 

Lactobacillus plantarum was studied in [102]. In [103], the authors showed that pH affects the 

cell growth rate and lactic acid production. The death rate was also affected by pH and lactic 

acid, and it increases with increasing lactic acid concentration. 

In addition to parameter variation in kinetic models, interesting process variables such as 

the biomass, substrate lactose, and the product lactic acid cannot be measured directly. The 

concentration of substrate lactose and lactic acid can be determined offline using High- 

Performance Liquid Chromatography (HPLC). The biomass measurements can be provided by 

cells two days after the sample has been taken. All these make the online estimation of 

parameters based on the measurements very challenging. 
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In summary, first-principle models can be used to describe many systems or processes 

based on prior knowledge and fundamental theories. However, the complexity of the biological 

raw materials, use of living organisms, lack of reliable online measurements, and complexity 

of first-principle models are the reasons for searching for alternative approaches for modelling 

fermentation quality [104]. Data-driven models such as artificial neural networks (ANN) are 

alternatives to first-principle models. Complex physical phenomena that are not fully 

understood can be represented by nonlinear data-driven models using data. ANN modelling 

has been proven to be a reliable, useful, and powerful tool in different areas of chemical 

engineering [105, 106, 107, 108, 109]. 

ANN has also been applied to the modelling of bioprocesses. ANN models have been 

developed for steady-state and dynamic modelling and optimization of different fermented 

processes. A static feedforward neural network was developed for modelling the continuous 

biodegradation of phenol [41]. In general, they concluded that the ANN’s performance was far 

better than a nonlinear Multiple Regression Analysis (MRA) model. A moving window ANN 

was used for dynamic modelling and online estimation of unmeasurable state variables such as 

consumed sugar, cell mass, and product concentration in L-lysine fed-batch culture [110]. The 

authors concluded that with a certain degree of substrate variation, the estimator could give a 

satisfactory estimate of the critical fermentation variables. Online optimization was carried out 

using an ANN model in [43]. The productivity of a wheat beer fermentation was increased 

using an ANN model for online optimization. The model was used to predict the fermentation 

course as soon as 12 hours of process data was collected. Using this information and the model, 

the temperature trajectory of the process was optimized and fed to the controller, which led to 

a reduction of processing time of up to 20%. 

For the aim of scheduling, Cui et al. [42] proposed a rolling-prediction approach based on 

ANN in which data from historical batches and the batch of the current interest was used as 

training data. The approach predicted the product formation process with different prediction 

horizons. The average error of the prediction of the product formation from testing batches was 

3.01% for 8h ahead prediction. To schedule the lactic acid fermentation by lactose, a static 

neural network and a recurrent neural network for pH prediction were developed [111]. The 

static neural network was developed for pure culture and the recurrent neural network (RNN) 

for mixed cultures of lactic acid bacteria for yogurt production. The authors’ results showed 

that this strategy predicts pH dynamics well. However, the experiments were carried out only 
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at different temperatures, and other variables were held constant, as the temperature was 

considered the main disturbance affecting the pH dynamics. In [44] authors proposed a static 

neural network to predict the final time of the acidification step, followed by rennet addition. 

In their study, milk powder was used to prepare milk, so the system inputs were the initial solid 

amounts, the addition ratio of the starter culture, and the pH at 0, 20, 40, and 60 min after 

inoculation. The final acidification process time was obtained as the output of the network. The 

authors applied the approach to industrial data, and successful predictions were achieved. RNN 

models with the lab-scale data were used for pH dynamics prediction. 

The combination of first-principle and ANN models also can be applied as hybrid models. 

This type of models takes advantages of using prior knowledge of first-principle models into 

neural networks which reduces the dependency of neural networks only on the data. Some 

examples of hybrid models can be found in [112, 45, 46, 113, 47]. 

In this work, pH prediction of cream cheese fermentation was studied. Unlike the afore- 

mentioned works, the effect of significant disturbances on the pH profile was analysed by 

adding different initial concentrations of substrate, starter culture, and lactic acid to the 

fermentation. Furthermore, pH dynamics of industrial cream cheese fermentations were used 

in this work. 

The objective of this investigation was to build a model that can predict the pH dynamics 

of cream cheese fermentation using online measurements and in the presence of disturbances. 

Such a model is necessary for scheduling purposes. In this content, three types of models; 

white, grey, and black box were studied. A first-principle model was applied as a white box 

model. For the grey box model, a hybrid model including a first-principle model and an ANN 

was considered. Then, the challenges of applying white and grey box models were investigated. 

Next, a black box model based on an autoregressive neural network with different 

configurations was studied, and its optimal configurations were obtained. 

The paper is organized as follows. First, the lab experiment and disturbance details were 

described. Then, these experiments were used to calibrate the first principle models’ parameters 

and training of the ANN model. Next, the results of the models were presented and discussed. 

Finally, the ANN model configurations obtained by using lab data were applied to predict the 

pH dynamics of an industrial cream cheese plant. 
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1.6. Materials and methods 

 
1.6.1. Experiments 

 

A mixture of 1.5 kg of milk (weight percentage of protein, carbohydrate, fat, and calcium 

are 3.32%, 4.76%, 3.40%, and 0.18%, respectively) and 0.5 kg of cream (weight percentage 

1% protein and 37% fat) was prepared for cream cheese production. The mixture was added to 

a New Brunswick BioFlo 3000 fermenter in which both temperature and pH were measured. 

The mixture was heated up to 37 oC, while the stirring rate was set to 150 rpm. Next, the starter 

culture was added (Mesophilic Culture 72998 batch number 5693, which contains two main 

bacteria, Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. Lactic). Five 

minutes after adding the starter culture, which was enough for thorough mixing, a first sample 

was taken. Measurements were then taken every 1.5 hours for determining the biomass, lactose, 

and lactic acid concentrations. At the same time, temperature and pH measurements were 

recorded. The fermentation experiments were stopped as soon as pH reached 4.6 [114]. 

1.6.2. Models 

 

Three types of models were applied for cream cheese pH prediction. The white box model, 

which is a first principle model, a grey model which is a hybrid model including a combination 

of a first principle model and an ANN model. Finally, a black box model was developed which 

is an ANN model based on the pH measurements. 

1.6.2.1. White box model 

 
An unstructured first-principle model was used in which biomass, lactose, and lactic acid 

concentrations are their states. After predicting the lactic acid concentration over time, the pH 

can be determined using these predictions. The model details are presented in the following. 

This model structure was developed in [115], in which kinetics of the Lacto-coccus lactis 

strain on the M17 broth was studied. The model is based on the Luedeking-Piret equation, and 

the inhibiting effect of substrate, product, and high initial concentration of lactose is considered. 

Equations (2.1)-( 2.3) describe the model: 
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         Where, X, S, P are the concentrations of biomass, lactose and lactic acid (g L-1), 

respectively, µmax is the maximum specific growth rate (h-1), qp,max is the maximum specific 

lactic acid production rate (g g-1 h-1), qs,max is the maximum specific lactose utilisation rate (g 

g-1 h-1), KS is the Monod constant or substrate saturation constant (g L-1), Pi is the threshold 

lactic acid concentration (g/L), Pm is the maximum lactic acid concentration (g/L), Ki is the 

product inhibition constant (g/L) and α is the growth associated product form coefficient. 

The model considers the limitation of the lactose in a non-competitive way, which is the 

same as the Monod equation. For the lactic acid’s inhibiting effect, Pi is introduced as the initial 

value when the inhibiting effect occurs, and Pm is the maximum inhibitory value. The authors 

[88] tested the model on several batch fermentations with different initial lactose values. The 

correlation coefficient values (R2) were all greater than 0.998, which shows an accurate 

representation of the model concerning the fermentation system. 

1.6.2.1.1. Parameter estimation 

 
To obtain a kinetic model based on the available experimental data, the parameters of both 

models should be estimated. A weighted least-squares minimization was used with an objective 

function as follows:

RSS = W (X − X )2 + W (P  − P )2 + W (S − S )2 
 

(2.4) 

In the above objective function, RSS stands for the residual sum of squares, the subscript 

”e” represents the experiment, ”m” represents the model calculated value, and ”i” represents 

each experimental result. Wx, Wp and Ws represent the weights for biomass, lactic acid, and 

lactose respectively. The following values were used for weights: Wx and Ws were set equal to 

one, and was set to fifty. The different weight values used were chosen due to the greater 
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accuracy of Wp measuring lactic acid and lactose than biomass. Additionally, lactic acid 

concentration is important since it can be linked to thermal conductivity and pH. In industrial 

plants, pH measurement is used as an indication of fermentation proceeding. Using this 

approach, the parameters were estimated using MATLAB 2018. MATLAB’s Ode45 function 

was applied for solving the differential equations. The objective function was minimized using 

the fmincon optimization function. 

1.6.2.2. Grey box model 

 
In this type of model, a combination of a white and black box models was applied for cream 

cheese pH prediction [116]. The black box model was used for correlating the states of the 

white box model to pH. This correlation is complex in cream cheese fermentation due to its 

complex compound. To predict the pH and the fermentation end-time consequently, a regressed 

white box model was used to generate biomass, lactose and lactic acid concentration over time. 

The state variables from the white box model were then used for predicting the pH. 

Fig. 2.1 shows the structure of the hybrid model. The initial biomass, lactose and lactic acid 

concentration (X0, P0, S0) were used as inputs to the kinetic model. The kinetic model predicted 

the dynamics of the states in the next hours (Xi, Pi, Si). The predicted states were fed to a black 

box model (Long Short-Term Memory (LSTM) network) and pH values were obtained as the 

outputs. The white box model and LSTM are explained below. Please refer to the paper [116] 

for more details. 

 

 

 
 

 

Fig. 2.1. Hybrid model structure. 

 

 
1.6.2.2.1. Kinetic model 

 
The white model explained in section 2.2.2.1 was used as the kinetic model. The parameters 

were estimated for different data sets detailed in section 0. The average values of the estimated 

parameters were considered in the model. 
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1.6.2.2.2. LSTM (long short-term memory network) 

 
LSTM is a machine learning approach that was used for correlating the inputs and the 

outputs. It was chosen for its memory capacity and stability. At each time step, the inputs were 

the biomass, lactose, and lactic acid concentration, and the output was pH. LSTM aimed in 

correlating the states of the kinetic model to the pH without domain-specific information about 

the underlying biological-chemical process. To train the LSTM network, the data sets given in 

section 2.2.3, along with the measured pH data, were used. The number of hidden neurons was 

set to be 200. The solver chosen was Adam in MATLAB, with the initial learning rate set to 

0.01 and the gradient threshold set to 1 by default. 

 
1.6.2.3. Black box model 

 
While the use of first-principle models is commonplace for chemical processes, such 

models’ performance can be weak when applied to biochemical processes, as shown in the 

results section. Black box models can help with building models without detailed 

characteristics of the process. To achieve this in the cream cheese fermentation process, we 

applied a nonlinear autoregressive neural network, which was coded in MATLAB 2018. Fig. 

2.2 shows the architecture of the network. The inputs to the system are a sequence of past pH 

measurements from time “t” to time “t − N” where “N” is called the feedback delay size. The 

hidden layer has “j” neurons with the sigmoid function as the response function to capture the 

nonlinearities of pH dynamics. The output layer uses a linear function to predict the pH at time 

“t + 1”. 

 

Fig. 2.2. Neural network architecture 

 

 
The autoregressive model can predict the pH in future time steps based on the previous 

measurements or previous outputs of the network, by capturing the relationships between the 
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pH values in a time series. Unlike the first-principle models, which use biomass, lactose, and 

lactic acid as states to predict the pH, the neural network was de- signed to predict the pH 

dynamics using the past pH measurements directly. This was based on the assumption that all 

the effects of disturbances were embedded in the pH measurements. It should be noted that the 

fermentation pH measurements are available online and even manual measurements of pH are 

relatively straightforward and inexpensive, subject to the usual maintenance protocols around 

such measurements. However, the lactose and lactic acid measurements are measured offline 

by HPLC, and biomass measurement takes two days. 

The network was trained using Levenberg-Marquardt optimization for fitting the weights 

of the network. To avoid overfitting during the training, the early stopping technique [117] was 

applied. In this technique, the training set is used to computing the gradient and update the 

network biases and weights, whereas the validation set is used to monitor the training progress. 

At the beginning of the training, both the validation and training set errors decrease; however, 

the validation error increases when overfitting occurs. The training is stopped, and the 

parameter values at the minimum validation error are considered the optimum values. 

 
1.6.3. Data sets 

 

Three different types of data sets were used in this study. Data sets including biomass, 

lactose and lactic acid concentration measurements were used for white and grey box models. 

For black box model data sets including lab and industrial pH data were applied. 

1.6.3.1. Data sets of biomass, lactose and lactate 

 
Cream cheese fermentation is affected by various disturbances. Milk composition is one of 

the significant disturbances which varies across different farms and seasons of the year. 

Additionally, bacteria’s activity is an unpredictable and uncontrollable variable that affects the 

lactic acid production and, consequently, the pH dynamics. Seven experiments with different 

initial conditions were carried out in the lab. In the first four experiments, lactose, lactic acid, 

and biomass concentration were measured during the fermentation, which was used for 

parameter estimation and validation of first-principle models. These experiments represent the 

effect of the three major components on the cream cheese fermentation. Data set 1 is considered 

the normal initial condition, containing natural biomass, lactose, and lactic acid concentrations 

in the milk and cream mixture. In the data set, two double biomass is considered. High lactose 

concentration in data set 3 is provided by adding 100 ml of sterilized 125g/L α-lactose  



Chapter 2. Cream cheese pH prediction modelling 

40 

 

 

 

monohydrate. 50ml of sterile 42.5g/L lactic acid was added to the natural amount of lactic acid 

to provide the high initial lactic acid concentration in data set 4. Table 2.1 shows the initial 

concentration of different components in g/L. 

 

Table 2.1 Initial concentrations of components in the seven data sets. X, S, and P represent biomass, lactose and lactic 

acid respectively. 
 

Component 1 2 3 4 5 6 7 

(g/L) (2X,S,P) (X,S,P) (X,S,highP) (X,high S,P) (X,S,P) (X,high S, highP) (1.5X, S, P) 

Biomass 0.123 0.035 0.053 0.038 0.034 0.042 0.060 

Lactose 40.937 40.346 38.523 43.164 40.035 44.789 40.451 

Lactic acid 0.024 0.012 0.472 0.026 0.027 0.450 0.072 

 

 
1.6.3.2. Data sets for pH 

 
To train and test the neural network, seven different experiments were carried out, and pH 

measurements were recorded as previously discussed in Section 2.2.3.1. The initial conditions 

of the experiments can be found in Table 2.2. Fig. 2.3 shows the pH dynamics of the 

experiments. It shows the modelling challenge of cream cheese fermentation. For instance, data 

sets 2, 4, 5 and 7 had different initial conditions; however, their pH dynamics during the first 2 

hours were similar, making the fermentation duration prediction a difficult task. 

 

              Table 2.2 Data sets used for neural network training, validation and testing. 
 

Case data sets for training and validating data set for testing 

A (2,3,4,5,6,7) 1 

B (1,3,4,5,6,7) 2 

C (1,2,4,5,6,7) 3 

D (1,2,3,5,6,7) 4 

E (1,2,3,4,6,7) 5 

F (1,2,3,4,5,7) 6 

G (1,2,3,4,5,6) 7 
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1.6.3.3. Industrial pH data 

Fig. 2.3. pH dynamics for data sets 

 

 

Industrial pH data of a cream cheese manufacturing unit from a Fonterra plant was also 

used in this work. In this process, a flow contains a mixture of homogenized milk and bacteria 

culture, which is used to fill up the fermentation vats. During the fermentation process, bacteria 

consume lactose, and the pH decreases. This process lasts until the desired pH is reached when 

the batch is drained to the continuous downstream processing. In order to avoid over- 

acidification, the curd is heated up in the cooker where bacteria are killed. A complete 

description of the process can be found in [118]. 

1.7. Results and discussion 

 
1.7.1. White box model 

 

The biomass, lactose, and lactic acid concentration for each data set were measured every 

1.5 hours until the end of fermentation when pH reached around 4.6. The available data were 

separated into training and test groups. As mentioned in Section 2.2.3.1, biomass, lactose, and 

lactic acid concentration were measured in the first four data sets. Three sets of data were used 

for parameter estimation (training) and one of them for testing. Table 2.3 shows the A to D 

cases with estimation and test data sets. Table 2-4 summarizes the validation results via the 

averages of the relative errors for the different cases. 

 

p
H
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Table 2.3 Estimation and testing data sets for the four cases using the white box model. 
 

Case Data sets for estimation Data set for testing 

A (1,2,3) 4 

B (1,2,4) 3 

C (1,3,4) 2 

 D  (2,3,4)  1  

 

 
Table 2.4 White box model average percentage relative prediction errors of components. 

 

Case Biomass Lactic acid lactose 

A 46.53 5.14 5.97 

B 165.24 40.5 6.34 

C 240 44.03 4.40 

 D  270.14  78.77  4.68  

 

 
pH is used as an indication for stopping the fermentation in industry. Although pH is not a 

state of the white box model, it can be correlated to the model states, which are predicted over 

time. Lactic acid concentration can be used for pH calculation as showed in the following 

equation: 

( )  ( )10 10

( )
log log

112.8

p t
pH t H

+  
= − = −  

 
                                                                                        (2.5) 

The lowest error, 5.14, was obtained for case A. The concentrations of lactic acid for this 

case were used in Equation (2.5) to calculate the pH values. As Table 2.5 shows that pH cannot 

simply correlated to lactic acid concentration in cream cheese. pH measurement is complex 

during fermentation, as the process not only produces acid that lowers its value overtime, but 

also interacts with other compounds such as fats and proteins. At the same time, the 

undissociated lactic acid might also inhibit the fermentation. The difference between the 

calculated states using the white box model and the measured values (shown in Table 2.3) can 

also be explained. 

Table 2.5 Calculated and measured pH values for case A along the fermentation. 
 

Time 1.5 hrs 3 hrs 4.5 hrs 6 hrs 

Model 2.29 2.11 1.82 1.53 

Experiment  6.49  6.22  5.58  4.77  

 

 
The bacteria of cream cheese fermentation is different from M17 broth, which were used 

to develop the model. The complex mixture of milk and cream, which happens in cream cheese 
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fermentation, is different from the case authors in [115] used for developing the model; hence 

some errors are expected. 

Additionally, the model was developed in a fixed pH which is different from the cream 

cheese manufacturing where pH changes during the fermentation. The model includes many 

parameters that could change during process runs and even across different stages of the same 

experiment, shown for instance in [93] which considered the effect of pH on the cell growth 

for Lactic acid production from lactose by lactobacillus plantarum. 

Moreover, it should be noted that there are many parameters involved in white box models, 

which usually makes the estimation problem a nonlinear optimization. The optimum points are 

the local minimums, which are highly dependent on the initial estimates and the constraints. 

Additionally, the measurements of states which are initial points for differential equations are 

not available online. 

1.7.2. Grey box model 

 

In [116] authors applied same data sets for evaluating the performance of their model. Their 

results showed that the hybrid model can give reasonable pH predictions. LSTM aimed in 

correlating the kinetic model states to the pH value, which is complex in cream cheese mixture. 

As explained in the previous section, because of the mixture complexity pH cannot be 

correlated to the states such as lactic acid concentration by simple correlations such as Equation 

(2.5). 

Although this model could predict the pH value reliably, however there are many 

parameters involved in LSTM plus first-principle model combination. Training such a model 

requires big data of biomass, lactose and lactic acid concentrations along the fermentation 

which are difficult to be measured. Additionally, as kinetic model is used in the grey model, 

similar to first-principle model, providing initial measurement of states would be a challenge 

since they are not available online. Lactic acid and lactose measurements are available offline 

via HPLC and biomass measurements can be provided by cells two days after the sample has 

been taken. 
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1.7.3. Black box model 

 

A neural network with one hidden layer and five neurons was chosen. The number of 

neurons was obtained after comparing the network performance using 3, 5, and 7 neurons. For 

example, Table 2.6 shows the summation of absolute mean error for all cases using different 

numbers of neurons and feedback delays. This was obtained from averaging several trials for 

each case. It shows that 5 neurons led to less prediction error when comparing to other numbers 

of neurons. Higher error of the network with 7 neurons could be due to overfitting the weights 

to the training and validating data sets which led to poor prediction of the testing data set 

consequently. 

Table 2.6 Summation of pH prediction errors using different number of neurons in the hidden. 
 

Feedback delay size 3 neurons 5 neurons 7 neurons 

2 0.51 0.28 0.49 

3 0.35 0.11 0.18 

 

 

 
Fig. 2.4 represents a sample of the network training results, which shows a good fit between 

the neural network output and the experimental values for both training and validation cases. 

To achieve the best performance from the network, the effect of time step size, feedback delay 

size, and time series start time on the prediction by the network was studied. 

 

 

 

Fig. 2.4. A sample of the network training results. Output is the neural network prediction of pH, and 

Target is the experimental pH data. 
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1.7.3.1. Time step 

 
The pH data was available every second. However, using all this data to train the network 

would increase the network size unduly. Additionally, this data would add more measurement 

error to the network and might overfit it. Three different time steps, 15, 30, and 60 minutes 

were chosen. To test the network performance, initial pH measurements should be provided. 

Measurements of the fermentation’s first 60 minutes were specified. These measurements 

meant 5,3 and 2 data points for time series with time steps of 15, 30, and 60 minutes, 

respectively. Given the initial data points, the network predicted the pH dynamics until the end 

of fermentation. Table 2.7 shows the prediction error using different time steps. It presents the 

average of the absolute percentage relative error of sampling points for each case and the 

summation of them in total using different time steps. To have a consistent comparison, errors 

were calculated each hour from the second-hour data point until the end of fermentation. The 

total prediction error results show that the 60 minutes time step gives the best predictions in 

total. The network for this time step was further analysed in the following sections. It should 

be pointed out that higher time steps led to no improvement in the results. Additionally, high 

time steps could not capture the fermentation dynamics especially at the end of the fermentation 

which led to missing the desired pH. 

Table 2.7 Percentage relative prediction errors using time steps of 15, 30 and 60 minutes. 
 

Timestep 
(min) 

case A case B case C case D case E case F case G summation 

15 5.84 3.01 2.96 5.16 3.73 2.6 1.91 25.25 

30 1.93 1.58 2.26 1.4 3.7 3.36 0.37 14.60 

60 1.67 2.8 1.52 0.51 4.75 1.38 0.47 13.12 

 

1.7.3.2. Feedback delay 

The feedback delay size is the number of past pH data points used to predict the next pH. 

These data points are the inputs to the network, as shown in Fig. 2.5 the pH (t-N) data point is 

the Nth past data point at time t, and N is the feedback delay size, which is also the number of 

inputs. 
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Fig. 2.5. pH versus time (min) for all cases. The blue, orange and grey lines represent the experimental 

data, prediction with feedback delay of sizes 2 and 3 respectively. 

 
The network’s pH prediction with a time step of 60 minutes was studied by applying 

feedback delay sizes, including 2 and 3 data points. Further increase of the feedback delay is 

equivalent to more time for providing the initial data points and running the model, which 

would make it impractical for batch scheduling. For feedback delay of size 2, the initial pH 

measurement and measurement at the first hour were given, and for the feedback of size 3, pH 

measurement at the second hour was also added. To have a consistent comparison, prediction 

errors were calculated at each hour from the third-hour data point until the end of fermentation 

Table 2.8 summarizes the prediction error results. They show that the feedback delay of size 3 

decreases the prediction error by approximately 4 percent. 

Table 2.8 Percentage relative prediction errors using feedback delay of sizes 2 and 3 and time step of 60 minutes. 
 

Feedback delay size case A case B case C case D case E case F case G summation 

2 1.97 3.3 1.74 0.62 5.55 1.66 0.57 15.44 

3 0.37 3.51 0.38 1.68 4.29 0.55 0.26 11.08 

 

 
1.7.3.3. Time series start time 

 
The fermentations’ pH plots show that there are two primary behaviours in the dynamics— 

a slow dynamic in the first few hours, followed by a faster dynamic. To avoid the similarities 

of fermentation dynamics in the few first hours, the time series start time was shifted from time 

0 to 60 minutes. The impact of this change was studied by a comparison between two 

architectures called I and II. These two architectures have 3 and 2 inputs, respectively, also 

different starting points. Architecture I is the feedback delay of size three, as used in the 

previous section. It includes data points at time 0, 60 minutes, and 120 minutes as the initial  
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data points. Architecture II has a feedback delay of size 2, starts from the 60 minutes data 

point, and its initial data points include 60 and 120 minutes data points. Table 2.9 shows the 

prediction error of both architectures. Architecture II reduced the prediction error, mainly due 

to the better predictions for cases B and E. Architecture I considers all the data from the 

fermentation start time where the dynamic is very slow, and the similarities between 

fermentations are very high. This affects the training and consequently, the prediction. Apart 

from data sets 3 and 6, the rest of the data sets have similar dynamics in the first hours. After 

that, differences between data sets 2 and 5 with the rest of fermentation increased. In 

architecture II, this part of the dynamics is used for prediction. Shifting or delaying the start 

time of the prediction helped to improve the result. For predicting data set 2 (case B), this led 

to the identification that data set 5 was the most similar dynamic case. The same happened for 

case E, where data set 2 used for training and data set 5 was predicted. This was not apparent 

when the prediction start time was not delayed. Lower prediction error was obtained which is 

shown in Fig. 2.6. 

 

Table 2.9 Percentage relative prediction errors for architectures I and II. 
 

Architecture case A case B case C case D case E case F case G summation 

I 0.37 3.51 0.38 1.68 4.29 0.55 0.26 11.08 

II 0.55 1.17 0.57 1.14 1.7 0.67 0.7 6.52 

 

 

 

 

Fig. 2.6. pH versus time (min) for all cases. the blue, orange and grey lines represent the experimental data, 

architecture I and architecture II results respectively. 
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1.7.3.4. Industrial pH prediction 

 
As discussed in sections 2.3.1 and 2.3.2, applying white and grey box models is challenging 

in industrial cases. However, pH is measured online and also can be manually sampled from 

vats. The accuracy of the network prediction in section 2.3.3 was high, and it was applied to 

industrial fermentations, as presented in this section. A set of 50 fermentations was selected 

from industrial data in which 70% of data used for training (35 fermentations), 15% for 

validating (8 fermentations) and 15% for testing (8 fermentations) the network performance. A 

network of 1 hidden layer with ten neurons was used. The feedback delay of size three and a 

time step of 60 minutes was chosen based on sections 2.3.3.1 and 2.3.3.2. It should be noted 

that all the numbers in this section were normalized due to confidentiality of industrial data. 

Fig. 2.7 shows the prediction of the network. Qualitatively, the models appear to predict the 

pH curves well, particularly their endpoints. Apart from fermentation run 4 the prediction 

model dynamics are slightly faster than those of the plant, especially for fermentation test run 

2 and 1, 5, and 8. Quantitatively, Table 2.10 shows the relative prediction errors as percentages 

for all 8 fermentation test runs. The average of network percentage relative error is less than  

                 14%, and only fermentation 2 has a large error of 34.09%. However, as the results show, the   

                 pH prediction at the final point matches the experimental data in all the test fermentations 

                 (Table 2.11) which can be due to the similarities between fermentations dynamic at the end  

                 of batches. 

 

 
Fig. 2.7. pH versus time (hours) for all fermentations, blue and orange lines represent experimental and 

prediction data respectively. 
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Table 2.10 Percentage relative prediction errors for fermentations. 

 

Fermentation test 1 2 3 4 5 6 7 8 

Error (%) 12 34 5.4 3.7 17.3 11.5 8.8 18.1 

 
Table 2.11 Percentage relative prediction error at the final data point for fermentations. 

 

Fermentation test 1 2 3 4 5 6 7 8 

Error (%) 0.5 1.8 0.2 1 0.2 0.9 1.5 1 

 
This is important because it shows that the fermentation dynamics in the first hours can be 

linked to the pH at the end of fermentation, which strongly affects the quality of the final 

product. Therefore, applying such a model for scheduling purposes can increase the throughput 

and quality of the final product. 

1.8. Conclusion 

 
In this work, an investigation was carried out on developing a model for predicting the pH 

dynamics of cream cheese fermentations at both lab and industrial scales. To consider the effect 

of disturbances on the model performance, different concentrations of milk components and 

bacteria were added to the fermentation. The data was used for studying different types of 

models. A black box ANN model was developed and compared with white and grey box 

models. Results showed that applying white box model is challenging for cream cheese 

fermentation since the complex mechanisms involved in the cream cheese fermentation need 

many parameters, which could change along with the fermentation and also pH cannot be 

simply correlated to the model states such as lactic acid concentration. The grey box model 

solved the pH calculation issue by correlating the kinetic model states to the pH. However, as  

 

both white and grey box models use kinetic models; they require a considerable amount of data 

not available online and challenging to measure. Unlike the white and grey box models, the 

black box model (an ANN model) was developed using the pH data measured online, which 

also can be measured manually by operators. Therefore, the large amount of data needed for 

training the ANN model can be found. Lab- scale data was also employed to help in 

determining the feedback delay size and proper time step for the ANN model. The 

configuration obtained was then applied to industrial cases, which illustrated the reliable 

performance of the model. 
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Foreword 

 

Maintaining high throughput with consistent quality is challenging in industrial cream 

cheese plants since batch fermentation time varies. However, determining the batch duration 

right from the batch start time is challenging. This makes the scheduling of this plant difficult. 

The characteristics of the plant, the main process challenges, and the resulting framework, 

which included adaptive modelling and scheduling, are presented. This chapter has been 

accepted in the International Congress of Process System Engineering in Kyoto, Japan and has 

been included in the thesis. 

1.9. Introduction 

 
Fermentation batches are challenging to schedule due to the high inherent biological 

variability. Batch fermentations are common in various industries such as food, chemical, and 

pharmaceutical processing; therefore, much work has been carried out to schedule such 

systems. In [119], the authors worked on scheduling a copper plant. Raw materials variation 

affected the reaction time, which made the plant operation challenging. Reaction modelling 

with raw material changes was used in a mixed-integer formulation for scheduling of the 

overall production process. Scheduling of penicillin fermentation was studied in [52]. 

However, the authors did not consider the batch variation, and a nominal batch processing time 

was used in their scheduling formulation. A scheduling solution was presented for a beverage 

plant in the brewing industry in [53]. They use a constant fermentation time which is much 

longer than the mean values for the scheduling time, however the fermentation time variation 

was not addressed. Their schedule significantly reduced the process throughput. Additionally, 

the fermentation liquid product could be stored in tanks for several days. 

In cream cheese plants the variation of batch duration affects the downstream continuous 

production rate and quality. Furthermore, the fermentation curds cannot be stored for a long 

time since over acidification degrades the quality. To avoid batch interferences during cooking, 

engineers in industry set up the fermentation scheduling with a long buffer time between two 

fermentation vats. This assures quality; however, the production rate is reduced significantly. 

Better scheduling of batches can decrease their variation by reducing possible interferences 

between batches due to variations of their duration. A new framework is presented in this work 

that provides a primary schedule with updating each batch durations predicted by a 

fermentation model at each time step. This schedule was updated in real-time by using an 
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adaptive model that predicted the batch duration along with the fermentation when enough 

measurements were available. A mixed-integer linear (MILP) programming optimization was 

formulated for real-time scheduling of the vats filling and draining. The constraints of the plant 

regarding the filling, draining, and cleaning of the vats were considered. The best configuration 

for scheduling was determined to minimize the cost and waste and improve the continuous 

operation of the plant. 

1.10. Methodology 

 
1.10.1. pH prediction model 

 

In Chapter 2, the application of white, black, and grey box models for cream cheese pH 

prediction was studied. A reliable pH prediction model was achieved by applying neural 

networks to pH dynamics. Additionally, a grey box model developed by [116] was discussed. 

Further improvements of the grey box model prediction by introducing online measurements 

are introduced as follows. 

An updated version of the model presented in [116] is presented in this work. The model 

maps the biomass, lactose and lactate concentration to pH.  

The main drawback of the hybrid model is that biomass concentration measurements will 

be available only two days after the sampling. Unlike biomass concentration, lactose and lactate 

concentrations can be measured online during the fermentation process. Also, the lactate and 

lactose concentration measurements are more reliable than biomass concentration 

measurement. For these reasons, in the parameter estimation of the white box model, higher 

weights were considered for lactate and lactose measurements. As shown in Fig. 3.1, the 

initially measured biomass (X0), lactate and lactose (P0 and S0) concentrations at initial point 

are used as inputs to the kinetic model. The simulated outputs are the inputs to the LSTM 

model. When new measurements of lactate and lactose are available (Pm and Sm), the kinetic 

model is simulated from that point, and the outputs of the kinetic model are used as the inputs to 

LSTM. This approach reconciles the states using the measured data and can reduce the 

deviations of the outputs coming from disturbances in the system. 
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Fig. 3.1. Updating the grey model using the measurements. 

 

 

 

1.10.1.1. Data sets 

 
Cream cheese fermentation is affected by various disturbances. Milk composition is one of 

the significant disturbances which varies across different farms and seasons of the year. 

Additionally, bacteria’s activity is an unpredictable and uncontrollable variable that affects the 

lactic acid production and, consequently, the pH dynamics. Details of the experiments can be 

found in Chapter 2. Table 3.1 shows the initial concentration of different components in g/L. 

 

 

Table 3.1 Initial concentrations of components in the seven data sets. X, S, and P represent biomass, lactose and 

lactic acid respectively. 
 

Component 
(g/L) 

1 
(X,S,P) 

2 
(2X,S,P) 

3 
(X,highS,P) 

4 
(X,S,highP) 

5 
(X,highS,highP) 

6 
(X,S,P) 

7 
(1.5X,S,P) 

Biomass 0.035 0.123 0.038 0.053 0.042 0.034 0.06 

Lactose 40.346 40.937 43.146 38.523 44.789 40.035 40.451 

Lactate 0.012 0.024 0.026 0.472 0.45 0.027 0.072 

 

 
Table 3.2 Datasets used for hybrid model training, validation and testing 

 

Case Datasets for hybrid model training and validation Datasets for testing 

A (1,3,4,5,6,7) 2 

B (1,2,4,5,6,7) 3 

C (1,2,3,5,6,7) 4 

 

 
Biomass, lactate and lactose concentrations were measured along with pH data for these 

seven. experiments. Table 3.2 shows the defined cases used for training and testing the hybrid 
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model. It should be noted that dataset 1 was used only for training as the pH dynamics was 

significantly different from other data sets. 

1.10.2. Scheduling framework 

 

As Fig. 3.2 shows, the downstream and upstream units connected to vats are ideally in 

continuous operation. The objective is to schedule vats to maintain continuous operation while 

considering filling, draining, and cleaning constraints, and varying batch duration. As shown 

in the figure, only one vat can be drained or filled at any time due to the draining and filling 

line architecture. Both filling and draining take 2 hours. After reaching the desired pH, batches 

should be cooked immediately to stop the fermentation. If one batch’s pH reaches the desired 

value and the draining line is used by another vat, the batch can be cooled in the buffer tank 

and drained later. However, this will cause more energy consumption and extra cost for the 

plant. Therefore, interference between batches, as explained in the above example, should be 

avoided. These are two significant constraints that are considered in the optimization 

formulation. After the batch is drained, it should be cleaned for future usage. Dairy plants use 

the Cleaning in Place (CIP) term for cleaning. The CIP time also varies since it is monitored 

online and can be stopped based on CIP measurements. For this study we used a constant CIP 

value that was suggested by the plant. 

 

 

 
Fig. 3.2. Process flow diagram (a). Unit operation details (b). Vat filling is shown by . Vat draining is 

shown by patterns . CIP is shown by  . This is the ideal scenario. Fermentation time 

in vats is shown by . 

 

 
The batch duration (the time required to reach the desired pH from the beginning of the 

batch) varies due to disturbances such as milk components changing from season to season due 

to cow nutrition and weather conditions. This makes the scheduling of vats a challenging task. 
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A mixed-integer optimization has been applied for solving this scheduling problem. The 

scheduling routine is shown in Fig. 3.3. When all vats are available, scheduling is carried out 

for all of them. The key problem is what batch duration time should we use? As mentioned 

before, batch duration varies. To deal with this problem, a default value is used first as the 

initial batch duration. The default value can be defined by engineers based on historical batch 

duration data. Different default values may impact the scheduling performance. Therefore, 

three default values, 12, 13 and 14 (hours), are investigated in this paper. After filling up the 

first batch, measurements from the batch beginning up to a specific time can be used in the pH 

prediction model to estimate the time for reaching the desired pH. This is important in the plant 

as the desired pH should be obtained at the end of batch draining, affecting the quality of the 

end-product. The updated batch duration will be used to reschedule the batches. Rescheduling 

will be repeated whenever enough data is available for determining the duration for each batch. 

The time needed to collect enough data for the pH prediction model and predict the actual batch 

duration can consequently affect the scheduling performance. The optimal estimate of the 

initial value of the batch duration is determined by evaluating the scheduling performance 

discussed in section 3.3. 

 

 
Fig. 3.3. Scheduling framework 

 
1.10.2.1. Scheduling formulation 

 
The operating conditions of the batch units were defined by two variables Wu,t and Yu,t as 

shown in Table 3.3. The processing (fermentation) duration was defined between filling start 

time and the end of CIP. Variables Bu,t, Eu,t, Fu,t, Du,t and Gu,t were used for distinguishing 

different occasions. The formulation and the details of the variables are given below. 

, , 1 ,u t u t u tC C W−= +                                0, :u U t T t t                                                          (3.1)         

, , 0 ,( )(1 )u tt u t F u tC C T T B−  − −            , , ( 1)...min( 1, )u Fu U t T tt t t P T      + + −             (3.2) 
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, ,FDu t t u tF B+ =                                                 ,u U t T                                                                   (3.7)

, ,BDu t u tE B=                                                    ,u U t T                                                                   (3.8) 

, ,DDu t u tD E=                                                  ,u U t T                                                                   (3.9)

, ,CIPDu t u tG D=                                                  ,u U t T                                                                  (3.10)
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=

+ =                                              ,u U t T                                                                  (3.11) 

, ,

1

( ) 1
U

u t u t

u

E D
=

+ =                                                               ,u U t T                                                                                             (3.12)       

T : start of the solution horizon 

 
T : end of the solution horizon 

 
u : batch unit number 

 

t : time at any instant 

P : batch duration for batch unit u in U 

Bu,t = 1: if batch unit starts filling a batch u at time t, 0 otherwise (Boolean variable) 

U : domain of batch units 1…number of batch units 

T : total time horizon from T0 to TF 

Fu,t = 1: if batch unit starts filling a batch u at time t, 0 otherwise (Boolean variable) 

Eu,t = 1: if batch unit starts filling a batch u at time t, 0 otherwise (Boolean variable)  

Gu,t = 1: if batch unit starts filling a batch u at time t, 0 otherwise (Boolean variable) 

Cu,t = 1: if batch unit starts filling a batch u at time t , 0 otherwise (Boolean variable) 

Du,t = 1: if batch unit starts filling a batch u at time t, 0 otherwise (Boolean variable) 

Equation’s explanation: 
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Equation (3.1): At any time, t, if a batch starts on a batch unit, u, or the unit is idle, a counter 

is incremented 

Equations (3.2)-(3.3): Batch cycles times must be longer than the specified value 

 
Equations (3.4)-(3.6): Boolean relationships for ensuring the feasibility (Table 3.3 condition) 

Equation (3.7): Batch filling time duration specification; tFD is the filling duration 

Equation (3.8): Batch complete time (from start time to reaching the desired pH) 

Equation (3.9): Batch draining time duration specification; tDD is the draining duration 

Equation (3.10): Batch cleaning time duration specification; tCIPD is the cleaning duration 

Equation (3.11): Batches filling constraint; only one vat can be filled at any time 

Equation (3.12): Batches draining constraint; only one vat can be drained at any time 

The objective function maximizes the started vats which is equivalent to maximizing Y and 

W for all u vats at any time t. 

 
U  TF 

MAX W
u ,t 

+ Y
u ,t 

u =1 t =T0 

(3.13) 

 

Table 3.3 Operating condition of a batch unit 
 

Variable Start filling a batch Processing a batch Unit is idle Infeasible 

𝑊𝑢,𝑡 

𝑌𝑢,𝑡 

1 

1 

0 

1 

1 

0 

0 

0 

 

 

1.11. Results 

 
The batch duration varies in the industrial case due to disturbances such as milk 

composition variation and bacteria activity. Since the batch duration cannot be predicted at the 
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beginning of the batch, a default initial batch duration was assumed to schedule the vats. Three 

default batch durations (12, 13 and 14 hours) were selected for testing the impact of default 

batch duration on the scheduling performance. As soon as enough data was measured, the 

scheduling would be updated by the predicted fermentation time from the pH prediction model 

discussed in section 3.1.1. The effect of updating time on the scheduling was tested by 

considering the pH prediction model output availability 5 and 8 hours after the batch start time. 

1.11.1. pH prediction model 

 

A LSTM network in MATLAB was used. The network has two layers, and the inputs are 

biomass, lactose, and lactate concentrations which are the kinetic model outputs, with data 

frequency of ten minutes. The network training and hyper parameters values are provided in 

[116]. 

The initial biomass concentration and lactose and lactate initial concentrations were used 

as inputs to run the kinetic model. The lactose and lactate concentrations measurements at 1.5, 

3, and 4.5 hours after the batch start time were used to reconcile the predicted states by the 

kinetic model. Fig. 3.4 (b,c) does not show a significant difference by using the measurements 

along the batch process. The end-point pH prediction error was -2.41% and -2.14 % for cases 

B and C. This is since almost similar initial conditions were seen during the training of network 

which helped the network extrapolation. 
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Fig. 3.4. pH prediction using the estimated initial biomass and measurements. The blue line represents the 

measured pH. Black represents the prediction only with the initial measurements. Grey is the prediction using 

the first and second online measurements, and orange is the prediction using the first, second and third online 
measurements 

 

Fig. 3.4 (a) also shows the predictions for case A. The circles show the improvement in 

prediction by introducing the lactose and lactate measurements after the batch start time. Table 

3.4 shows that by introducing more measurements, the end-point prediction improves. In case 

A, the testing data set has the highest amount of initial biomass, making the pH dynamics faster 

than the other data sets. 

Table 3.4 pH prediction using measurements for case A 
 

Number of online Measurements Relative error (%) 

1 8.01 

2 6.55 
 3  3.42  

p
H

 
p

H
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This initial condition was different from other data sets. As similar pH dynamics were not 

seen during the parameter estimation and training of the network, initial biomass estimation 

and pH prediction were more challenging than the other cases. 

1.11.2. Industrial scale scheduling 

 

Batch duration data from a real cream cheese plant was used for testing the scheduling 

framework performance. The duration times of 20 batches in the sequence were used, which 

took approximately 70 operating hours in the plant. As shown Fig. 3.3, when all the vats are 

available, scheduling was carried out for all the vats. 

As mentioned in previous sections, the batch duration cannot be determined before batches 

start. The initial batch duration in the scheduling algorithm was assumed to be a fixed value at 

the beginning of all batches run. For obtaining the best initial value, scheduling was applied to 

the industrial batch duration data. Scheduling was carried out by considering the default batch 

duration as 12, 13, and 14 hours. The initial batch duration was updated by the predictions from 

the pH prediction model. The pH model prediction output was assumed to be available 8 hours 

after the batch start time. The updated batch duration was used to update the scheduling of the 

vats. 

Table 3.5 summarizes the scheduling results with different initial batch durations for five 

vats. The performance of the scheduling framework was studied by comparing three indicators 

- idle time, number of cooled batches, and number of waste batches. Idle time is the summation 

of hours in which the draining line is not in operation. This time should be minimized in the 

plant as continuous operation and consequently high throughput is desired. The number of 

cooled batches represents the draining interference of two batches when one is cooled and 

drained later. Wasted batches happen when more than two batches draining coincidence 

happens. One of the batches can be cooled at such a time, but the other one is wasted. 

 

 

Table 3.5 Scheduling results with different initial default batch duration 
 

Batch duration Idle time (h) Cooled batches Wasted batches 

12 22 3 1 

13 20 4 1 

14 24 4 2 
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Table 3.6 Scheduling results with different update availability 
 

Update availability Idle time Cooled batches Wasted batches 

At 5 h 17 2 0 

At 8 h 22 3 1 

 

 
Table 3.5 shows that the 12 hours initial batch duration led to less cooled and wasted 

batches. This means that more energy and money are saved in the plant. However, the draining 

line idle time is more than 13 hours batch duration. The selection between the initial batch 

duration options should be made based on the plant’s production, economic, and quality 

objectives. Without rescheduling, the idle time, number of cooled and wasted batches were 24 

h, 4 and 3 respectively which shows the importance of rescheduling in improving the 

performance. 

Fig. 3.5 shows an example of the scheduling framework performance for the five vats with 

an initial batch duration of 12 hours. The top part of the figure indicates the results for an initial 

batch duration of 12 hours for all vats at the batch start time. The scheduling update was carried 

out after determining the batch duration by pH prediction model. The bottom part of the figure 

shows the actual batch duration. The vat filling time was updated after time step 13 according 

to the actual batch duration determined by the pH prediction model. 

Scheduling performance can be improved by providing the batch duration prediction 

earlier. This has been studied by providing the batch predictions 5 and 8 hours after the batches 

start scheduling with the initial batch duration estimate of 12 hours. Table 3.6 shows that the 

earlier update of the scheduling using the pH prediction model outputs can decrease the idle 

time, and the number of cooled and wasted batches. This will improve the scheduling 

performance in terms of energy, economy, and quality. 
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Fig. 3.5. Scheduling of vats before (top) and after (bottom) the update. Yellow colour is the initial batch 

duration, black colour is the actual batch duration, pink colour is the filling, green colour is draining, blue 

colour is CIP. 

 
1.12. Conclusion 

 
Scheduling cream cheese fermentation is challenging since batch duration varies. This 

work presented a scheduling framework that included an online pH prediction model along 

with MILP formulation. Online lactose and lactate measurements improved the pH prediction, 

which was achieved by reconciling the states. The formulation used the model output to 

reschedule the primary schedule, which was obtained by assuming a default initial batch 

duration. The framework performance was tested by scheduling 20 batches in sequence. 

Results showed that using 12 h as the default initial batch duration with batch prediction 

updating 5 hours after the fermentation started led to the minimum wasted and cooled batches. 
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Economical design optimisation of a phase change material active 

system equipped with a solar collector
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Foreword 

 

Coupling solar air collectors and active systems of phase change materials is an efficient 

approach for improving building heating supply. Through design optimization, such a system 

can become economical and energy-efficient in different climates and for different types of 

buildings. However, previous works have not paid much attention to the economic feasibility 

of such systems during designing. In this paper, economical design optimization of a system 

including a solar collector and a PCM heat exchanger was explored. For this purpose, a model 

that integrated the solar collector, PCM storage, and hut dynamics was developed for the first 

time. The average mean square error between the measured and predicted hut temperatures 

over 11 days was 4 °C. The validated model was then used for the design optimization of the 

system for three different scenarios: office, domestic, and service, with different schedule times 

and comfort temperatures in the cold season of Auckland. Design optimization determined the 

optimum PCM amount and area of the solar collector while ensuring thermal comfort for each 

building by applying a corresponding control strategy. The results showed that the optimum 

surface area of the solar collector was the same at 1 square metre for all the scenarios; however, 

the optimum amounts of PCM mass for service, domestic, and office scenarios were 35 kg, 20 

kg, and zero, respectively. This chapter has been submitted to the Journal of Applied Thermal 

Engineering and is under review. 

1.13. Introduction 

 
Buildings were responsible for almost 36% of energy consumption and nearly 40% of 

annual global greenhouse gas emissions in 2017 [120]. This is mainly due to the improvement 

of living standards and occupants’ comfort demands, which has led to more cooling and heating 

in buildings [121]. Total energy consumption in the sector is expected to rise 3% annually in 

the foreseeable future [122]. 

Solar energy has been recognized as one of the reliable energy sources for supplying the 

global energy demand. However, solar energy is intermittent, which would cause a mismatch 

between the availability of the energy and the actual demand. Integrating thermal energy 

storage (TES) with the solar sources of heat could solve this issue. For decades, researchers 

have been interested in TES to reduce building energy consumption and improve thermal 

comfort [123]. TES can be used for storing energy in the storage medium, which can be 

released on demand, reducing the mismatch between supply and demand. TES can be applied 
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using four different methods: sensible heating, latent heat storage, thermo-chemical (reversible 

reactions), and physical absorption/adsorption. Latent heat storage using phase change 

materials (PCMs) can be applied easily and provides reasonable energy storage density at an 

almost constant temperature [124]. 

Design optimization of the systems, including solar collectors and PCM-based energy 

storage, can make them more economical and energy-efficient. Design optimization of such 

systems has been studied in different research. In [125], design optimization of heat pipe 

evacuated solar tube collectors with PCMs was carried out in two different modes of operation: 

normal and on-demand. Numerical models were used to simulate the system and determine the 

best design for improving the system's thermal performance. Heat pipe position in the glass 

tube and PCM were the design variables for enhancing the thermal energy storage of the 

system. An efficient and optimized PCM storage unit for a collector storage water heater system 

was explored in [126]. The storage unit was a multichannel flat tube and rectangular fins as 

heat exchanger elements. The theoretical analysis method was used for optimizing the storage 

unit by studying the influence of structural parameters of rectangular fins, as the design variable, 

on the charge/discharge process. The above research obtained the best design by analyzing the 

numerical models, which would not lead to the optimum solution. 

Design optimization was also investigated by applying optimization algorithms for 

obtaining the optimum design variables. In [70] a multi-objective optimization was carried out 

for TES systems, including PCMs for solar air systems in a lab-scale test rig. Thermal storage 

design variables such as the number of the air channels and the number of PCM bricks were 

optimized. The optimum values increased the average heat transfer effectiveness and effective 

PCM charging time of the system. In [71], a two-level model-based strategy was used to 

optimize a system including a Photovoltaic/thermal (PVT) collector with a centralized PCM 

thermal energy storage. The electrical and thermal performance of the system were increased 

by obtaining the optimum air flow rate, and optimum slope and orientation of the PVT 

collector. The design of a PVT with a passive PCM was optimized in [72]. PCMs were 

embedded into the building envelopes, while the heated air from the PVT collector was used 

for heating the building. The Taguchi-Fibonacci search method was used for the optimization. 

The optimized variables were PCM air flow rate, PCM type, PCM layer thickness, and 

additional wall insulation. The objective function maximized the signal-to-noise ratio of the 
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coefficient of the thermal performance enhancement (CTPE) of the building simulated in 

TRNSYS. 

In the above studies, the design optimization was focused only on improving the system's 

technical performance. However, ignoring the initial cost of solar collectors and PCM energy 

storage could lead to designing systems with long payback times, which could lead to infeasible 

economical systems. For instance, in [114], parametric analysis was used for designing a solar 

heating air system, including an air vacuum tube solar collector and a concentric-tube latent 

heat thermal energy storage. The design of the energy storage system was optimized regarding 

the air outlet temperature of the storage and peak shift of the heat supply. The results showed 

that the optimal mass of PCM was 150-200 kg/m2. This amount of PCM introduces a high 

initial cost that leads to a very long payback time. The cost of implementing PCM is needed to 

be compared against the benefits of using such systems before making decisions [74]. The 

importance of economic factors was also mentioned in [75]. The optimal design of a solar 

collector integrating PCM thermal storage was carried out in this study. A front and back solar 

air collector (SAC) with a PCM-based absorber plate was considered. The objective function 

minimized the root mean square error between the solar air collector and the set temperature. 

The thickness of PCM in the absorber plate, the phase change temperature, and a parameter in 

the effective heat capacity curve were used as the optimization design variables. The objective 

function contained thermal performance parameters, but the authors concluded that the techno- 

economic constraints need to be added in future studies. The authors of [76] studied the optimal 

design of a renewable cooling and heating system that included a desiccant wheel, PVT, and a 

thermal storage unit. The objective function was a twenty-year life cycle cost which included 

PVT price, PCM price, electricity purchase price, and electricity sale price. The results showed 

that the optimized design decreased the system's life cycle cost by 32.4% and 31.2% compared 

to two other design cases. It was found the electricity sale price had a significant influence on 

the optimization results. However, the results cannot be helpful in designing solar air collectors 

without PV panels, which only generate heat. Economical design optimization of systems 

including the coupling of solar air collectors and PCM energy storage, which minimize the 

system cost could facilitate the deployment of such systems. 

For design optimization purposes, a validated model that integrates the dynamics of the 

whole system, including solar collector, PCM storage, and the building, is needed. In [65], the 

authors numerically investigated a PCM-based cascaded energy storage unit with a solar air 
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collector. Three paraffin-based materials (RT50, RT65, and RT80) were used as PCM for the 

energy storage unit. The thermal energy storage unit and the solar collector were modeled. The 

model was validated by the experimental data with high accuracy (R-squared equal to 0.94). In 

another research, simulation of net-zero energy (NZE) was first developed using TRNSYS 

[66]. The authors investigated the energy flexibility and performance of NZE houses using a 

solar-assisted heating, ventilation, and air conditioning (HVAC) system with thermal energy 

storage (TES), PVT collector, and demand-side management (DSM) strategies. A simulation 

system of the NZE house was developed using TRNSYS to evaluate its performance under 

various conditions. The major components of the system, such as PVT collector and air-based 

PCM storage, were modeled and validated individually [67, 68]. In particular, the air-based 

PCM storage model was developed [68] to represent the thermal dynamics of the storage for 

cooling purposes in summer, using the free ambient cooling at night to solidify PCM. A novel 

solar thermal heater coupled with an active PCM heat storage wall was proposed in [69]. Hot 

water heated by the parabolic trough solar collectors was flown through the copper tube to 

discharge the cool load stored in the PCM wallboard. Also, the excess heat could be stored in 

the PCM wallboard to meet the indoor thermal demand when solar energy was insufficient. 

The transient model of the active PCM storage was combined with the TRNSYS model, which 

included the hut model. The indoor hut temperature was used to validate the accuracy of the 

model. The RSME during seven days of operation was 0.7oC. Despite there being studies on 

modeling solar collectors with PCM storage, it appears that a model that integrates the solar air 

collector, and PCM storage, and building models has not been previously reported. 

An economical design optimization was developed in this paper for the first time, for a 

heating system with a solar air collector and a PCM heat exchanger, supplying heat to an office- 

size hut. The optimization was carried out using an integrated model representing the whole 

system's dynamics and interactions. The model was validated by the experimental data of a 

winter season in Auckland, New Zealand. The validated model was controlled by applying an 

algorithm tested experimentally. Using the controlled virtual system, the optimum solar 

collector area and amount of PCM used were obtained by using the hut under different 

application scenarios such as office, domestic, and service. The objective function was defined 

by considering the energy cost saving of the system during the cold season of New Zealand, 

which was penalized by both the system capital and operating costs. 
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1.14. Methods 

 
A hut heated by a solar collector and a PCM heat exchanger was considered in this work. 

The PCM heat exchanger could store diurnal solar energy for the later demand. The 

experimental setups and dynamic model are described in the next sections. Model validation 

was carried out by using two sets of experimental data from the winter of 2020. 

1.14.1. Experimental set up 

 

The setup includes an experimental hut equipped with a solar collector and a PCM heat 

exchanger, as shown in Fig. 4.1. It is located near Ardmore airport in Auckland (37.0314° S, 

174.9724° E), New Zealand. The hut’s external dimensions are 2.7 m x 2.7 m x 2.7m, and have 

a single-glazed window (0.8 m x 0.8 m) facing north. Polystyrene foam was used to insulate 

the floor, while glass wool was used to insulate the walls and ceiling. 

 

 

 

Fig. 4.1. Experimental set up including a PCM heat exchanger (A) inside a hut equipped with a solar 

collector. 

 

 
The hut includes fans, and control valves for directing the heated air, as shown in Fig. 4.2. 
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Fig. 4.2. Hut set up details. The arrows show different pathways. Air flow is adjusted by adjusting valves 

and fans. 

 

 

 
The equipment's specifications can be found in Table 4.1. 

 

Table 4.1 List of equipment used in the experimental hut. 
 

Equipment Description Operating conditions Electric power (W) 

Solar air heater 1 m2 flat plate - Maximum: 550 

Fan 100 mm Plastic Duct Booster Inline Fan Flowrate: 130 m3/h 12 

Valve PVC Fully open/fully closed - 

 

 
A PCM heat exchanger is also integrated with the solar collector in the hut. The PCM heat 

exchanger was made up of 19 sets of aluminum macro-encapsulated PCM panels (0.45 m x 

0.30 m x 0.01 m) filled with 9.5 kg RT25HC (manufactured by Rubitherm GmbH). A side view 

of the heat exchanger unit is shown in Fig. 4.3. There was a 5 mm gap between the trays. Air 

enters the duct from one side and flows parallel to the trays, exchanging heat with the PCM in 

this configuration. To ensure a uniform flow, a distributor was made and installed in the pipe 

leading to the heat exchanger. A 20 mm layer of PVC/NBR black rubber foam was used to 

insulate the entire assembly from the environment (thermal conductivity of about 0.037 

W/m·K). More details can be found in [127]. 
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Fig. 4.3. Schematic side view of the heat exchanger unit with one magnified metal container [127]. 

 
Temperatures from the hut, solar collector, and PCM heat exchanger were fed into a 

temperature controller. The temperatures were measured using T-type thermocouples 

calibrated against a reference thermometer. The air velocity in pipes was measured using a 

digital anemometer. In pipes with a diameter of 10 cm, the air velocity was 3 m/s. A 

pyranometer was used to measure solar radiation. Table 4.2 shows the different types of 

measurement instruments and their accuracy. 

Table 4.2 Measurement instrumentation. 
 

Instrument Accuracy range Operating range Model 

Thermocouples 0.45 oC 0-50 oC T-type 

Reference thermometer 0.02 oC 0-50 oC Ebro TFX430 

Digital anemometer (  2% + 0.2 m/s) 0.4-30 m/s AM-4201 

Pyranometer <10 W/m2 0-2000 W/m2 VAEQ08E 

 

 
The data was logged using a Compact Reconfigurable (CompactRIO) Data Acquisition 

System (NI Crio-9012, National Instruments, USA) and LabVIEW software. The system 

analog inputs received the temperatures and returned the decisions on the solar collector and 

PCM heat exchanger operation via analog outputs. These decisions were applied by 

manipulating valves and fans based on an ON/OFF control algorithm as described below. 

There are three possible pathways for supplying heat, which are controlled through three 

valves (V1, V2, V3) shown in Fig. 4.4. 
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Fig. 4.4. Schematic view of the heating control. The temperatures of solar air collector, hut and heat 

exchanger are the inputs, and the three valves, and three fan settings are the outputs of programmable 

logic controller (PLC). 

 
Pathway 1 (V1 and V3 open, V2 closed), heating the hut using solar energy: the solar 

collector sucks the hut air in and then sends the heated air back to the hut, using an electricity- 

driven fan (Fan 1 in Fig. 4.4). 

Pathway 2 (V1 and V2 open, V3 closed), charging the PCM: the air heated by the solar 

collector is sent to the PCM heat exchanger before sending it back to the hut. This circulation 

was done by an electricity-driven fan, Fan 2, installed at the outlet of the PCM heat exchanger. 

Pathway 3 (V2 and V3 open, V1 closed), heating the hut using PCM discharging: the hut 

air is circulated into the PCM heat exchanger and sent back to the hut, using the electricity- 

driven fan, Fan 3. 

The desired lower and upper temperature bounds for the huts were set to be 19oC and 25oC, 

respectively. These desired bounds were maintained by adjusting air flow through the valve 

opening. If the temperature of hut was lower than the air coming from the solar collector, then 

the valve was opened, and the fan switched on to circulate the solar collector air to the hut and 

provide heating. The fan was switched off after reaching the desired upper bound (25oC), and 

none of the pathways were used in this case. If after providing heating through Pathway 1, the 

hut temperature exceeded the desired upper bound, the air was circulated through Pathway 2 
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for melting PCM (charging). The stored heat was released later (discharging) during the cooler 

hours (hut temperature lower than 19oC) through sucking the hut air via Pathway 3. 

1.14.2. Dynamic model 

 

Individual numerical sub-models describing system components make up the dynamic 

model, coded in either MATLAB or EnergyPlus software. In EnergyPlus, PCM can be defined 

as a layer on the building envelopes that is suitable for passive applications. Heat exchangers 

containing PCM materials, on the other hand, cannot be defined in EnergyPlus. To compensate 

for EnergyPlus's lack of flexibility in this case, the PCM heat exchanger was modelled in 

MATLAB and linked to EnergyPlus, via an EnergyPlus Co-simulation Toolbox interface that 

controlled data flow between the two software systems. The sub-models for the solar collector, 

heat exchanger, and hut interact together as shown in Fig. 4.5. 

 
 

 
Fig. 4.5. Dynamic model structure. Dashed lines show the alternative heat supply pathways. 

 

 
The models for hut, solar collector and PCM heat exchanger were named Sub-model 1, 2 

and 3 respectively. The solar collector and PCM heat exchanger were modelled in MATLAB, 

while the hut was simulated using EnergyPlus (E+ in Fig. 4.5). Sub-model 1, 2 and 3 are fully 

interacted through an interface for exchanging the data between MATLAB and EnergyPlus 

software. In this case, the dynamic model operated under four different regimes as described 

below. 
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The first regime was when the PCM was charged, and the hut air was calculated in Sub- 

model 1 and passed from EnergyPlus to MATLAB via the interface. The hut temperature was 

introduced to Sub-model 2 along with the ambient temperature and solar radiation data. The 

calculated solar collector outlet temperature (blue dashed line) was sent back to the hut models 

in EnergyPlus through the interface code. This is the heat supply Pathway 1 described in 

Section 2.1. 

The second regime (charging) was when the PCM was charged, and the hut air was 

calculated in Sub-model 1 and passed from EnergyPlus to MATLAB via the interface code. 

The hut temperature was introduced to Sub-model 2 along with the ambient temperature and 

solar radiation data. The calculated solar collector outlet temperature was the inlet to the heat 

exchanger. In Sub-model 3, the outlet temperature was the output which was sent back to 

EnergyPlus through the interface code. This cycle continued until the end of the charging phase. 

This is the heat supply Pathway 2 described in Section 2.1. 

In the third regime (discharging), the hut air was circulated through the PCM heat 

exchanger to discharge the PCM without going through the solar collector. Therefore, the hut 

temperature determined from EnergyPlus was directly introduced to Sub-model 3 which is 

shown by the black dashed line in Fig. 4.5. The rest of the data flow was the same as for the 

charging regime. This is the heat supply Pathway 3 described in Section 2.1. 

The fourth regime is when neither charging nor discharging happens. In this case, the heat 

supply was stopped, and the hut simulation was carried out using EnergyPlus. 

The start and end times of the charging and discharging regime periods were determined 

from the experimental data and applied to the simulation. Due to the stability problems, the 

simulation time step was considered one minute. 

1.14.2.1. Weather conditions 

 
The ambient weather conditions were measured using the BRANZ [128] weather station. 

The measurements included dry bulb temperature, relative humidity, pressure, wind speed, 

solar radiation, and dew point temperature. The information was used in the weather file using 

the Elements software [129] which is an open source software tool for creating and editing 

custom weather files for building energy modeling. 
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Cloud cover data were recorded from the satellite information which was available on the 

Meteorological Service of New Zealand Ltd.’s weather forecast website [130]. As only global 

radiation was measured, the normal and diffuse solar radiation were calculated using cloud 

cover data for estimating the clearness index [131]. The sky condition was defined based on 

the cloud coverage data, which aimed to determine the clearness index as shown in Table 4.3. 

For every sky condition, a linear function correlated the opaque cloud coverage and clearness 

index ranges. 

Table 4.3 Clearness index according to cloud cover. 
 

Sky condition Opaque cloud coverage Clearness index (kT) 

Cloudy 88-100% kT < 0.35 

Partially cloudy 6-87% kT ≥ 0.35 and kT ≤ 0.65 

Clear sky 0-5% kT > 0.65 

 

 
Table 4.4 shows how the calculated clearness index was used to determine the fraction of 

the hourly radiation (I) on a horizontal plate which is diffuse (𝐼𝑑) [132]. After introducing 

diffuse and global solar radiation, normal radiation was calculated in the Elements software. 

 

 

Table 4.4 Fraction of diffuse radiation according to clearness index. 
 

𝐼𝑑 

𝐼 
Clearness index (kT) 

1 – 0.09kT kT ≤ 0.22 

0.9511 – 0.16kT + 4.388kT 
2 -16.638 kT

3 +12.336kT
4
 0.22 < kT ≤ 0.8 

0.165 kT > 0.8 

 

 

 
1.14.2.2. Solar collector model 

 
The input to this model was the hut temperature, and the output either went to the hut 

(Pathway 1) or PCM heat exchanger (Pathway 2). The thermal dynamics of the collector were 

modeled in MATLAB using the following equation: 
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SC in in out out sol

dh
M F h F h Q

dt
= − +                                                                                               (4.1) 

 
Where F is the air mass flow rate in the collector and M is the solar collector mass. h is the enthalpy and 

subscripts “sc”, “in”, and “out” refer to collector, collector inlet and outlet air streams respectively. 

These enthalpies were calculated based on the following equations: 

                 
in in inh T CP=                                                                                                                                (4.2) 

 

                   
out out outh T CP=                                                                                                                                                      (4.3) 

                SC SC SCh T CP=                                                                                                                             (4.4)  

Where T is the temperature and Cp is the specific heat capacity. As an approximation, the 

collector temperature was assumed to be equal to the average inlet and outlet temperature. 𝑄𝑠𝑜𝑙 

is the heat gain from the solar radiation on the collector which was calculated by Equations 

(4.5) and (4.6). 

 

        in a
o

T T
p

G
 

−
= −                                                                                                                                               (4.5) 

                    
solQ GA=                                                                                                                                                            (4.6) 

  Where 𝜂 is the efficiency of the collector and subscript “a” refers to the ambient 

temperature, G is the solar radiation and A is the collector surface area. 𝜂0 is the intercept 

(maximum) efficiency and lc (W/m2 oK) is the first order loss coefficient.                                                                      

 

1.14.2.3. PCM heat exchanger 

 
The model inputs came from the hut (Pathway 3) or the solar collector (Pathway 2). The 

output passed to the hut model. 

A two-dimensional explicit finite difference model was used to model the heat exchanger 

in MATLAB [127]. Non-linear algebraic equations describing the heat transfer medias, which 

include PCM, metal container, and air, were solved using the finite differences method. Nodal 

distribution of the model is shown in Fig. 4.6. The nodal counts in the x and y directions are 

denoted by i and j, respectively. Δx refers to nodal discretization in x direction and Δy 

in y direction. dp and dc show half of PCM thickness and metal container thickness,  

https://www.sciencedirect.com/topics/engineering/discretization
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respectively. L is the length of the metal container in the flow direction. Tp,centre represents PCM 

temperature in the center of the PCM layer in x and y directions. PCM behaviour was studied 

using the enthalpy method, which simplifies the heat transfer process during the phase change 

[133]. The enthalpy information was provided by Rubitherm GmbH [134]. 

 
 

 

 

Fig. 4.6. Nodal distribution in the 2-D system of current study [127]. 

 

 
During the model's development, a number of assumptions were taken into account. The 

air between the metal containers was assumed to be distributed evenly. The heat transfer 

between the air and the containers was modeled in two dimensions in PCM and containers, but 

the airflow direction was taken into account for the heat transfer between the air and the 

containers. Additionally, the air density was assumed to be unchanged during the air flow in 

the ducts. 

The advantage of this comprehensive model over previous models is the inclusion of 

natural convection in the melted PCM, the thermal mass of the PCM container’s wall, and the 

effect of PCM volume expansion. The model was validated at the lab scale with a good 

agreement of less than 8% average deviation between the model, and experimental temperature 

measurements of PCM and air [127]. 

The inlet air flow rate and temperature were introduced to the heat exchanger model. The 

PCM initial temperature was measured prior to charging. In the discharging phase, the PCM 

initial temperature was set to be the same as the temperature reached at the end of the charging  
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      phase.  

1.14.2.4. Hut model 

 
The model input either came from the solar collector model (Pathway 2) or the PCM heat 

exchanger model (Pathway 3). EnergyPlus was used to model the huts. More details about the 

model equations can be found in the software documentation [135]. The details of hut envelope 

materials and their properties were similar to the hut used in [136]. 

To consider the heat supply from the PCM heat exchanger, a 

“ZoneHVAC:IdealLoadsAirSystem” object was defined in EnergyPlus. This object’s air flow 

rate and temperature were introduced from the PCM heat exchanger model in MATLAB to 

EnergyPlus via the MATLAB-E+ interface code. 

Inside the hut was a heat exchanger and its connections to the solar collector, which could 

store heat during the day and release it during the cooler hours. This would have an impact on 

the hut's temperature dynamics. As a result, the mass of the equipment inside the hut was 

defined using EnergyPlus' "InternalMass" object. 

A curtain was draped across the north side of the hut's window. This had a significant 

impact on heat gain from solar radiation. The "WindowMaterial:Shade" object was used to 

define the window shade materials' properties, which represented the radiation transmission 

and reflection through the curtain. 

The hut is near other structures that provide shade to the outside walls. This is particularly 

important on the hut's east external wall, which impacts the heat gained through radiation. The 

sun exposure of the east external wall was defined using the "BuildingSurface:Detailed" object. 

The air infiltration through the door was also added as a 

“ZoneInflitration:EffectiveLeakageArea” object. This model is based on Sherman and 

Grimsrud’s work [137] which needs the effective air leakage area. The other parameters were 

set based on the default values in EnergyPlus. 

1.14.2.5. Interface model interface 

 
The interface exchanged data between MATLAB and EnergyPlus. On one side of the 

interface, the hut temperature came from the hut model in EnergyPlus, and on the other side of 

the interface, either the solar collector or PCM heat exchanger outlet temperature was fed to  
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the hut model in EnergyPlus. The interface employed between MATLAB and EnergyPlus was 

the EnergyPlus Co-simulation Toolbox [138]. The air temperature and air mass flow rate of the 

“ZoneHVAC: IdealLoadsAirSystem” object was defined as three variables exchanged between 

MATLAB and EnergyPlus. The exchange of these variables was built by defining 

“EnergyManagementSystem: Actuator” and “ExternalInterface: Actuator” objects in 

EnergyPlus. These two objects were linked together by programming using the 

“EnergyManagementSystem: program” object. 

4.3. Modelling results and discussion 

 
Two sets of data were considered for validating the model performance. The first set of 

data was collected from the 5th to the 10th of July 2020. During this period, the integrated 

model components, and individual models of the solar collector, PCM heat exchanger, and hut 

were compared with experimental data. To further analyse the system integrated model, 

validation was carried out from 13th to 17th of July 2020 by comparing the measured 

temperatures with those predicted by the hut models. The outside temperature and solar 

radiation for the first and second data sets are shown in Fig. 4.7, respectively. Solar radiation 

varied from early morning to late afternoon and reached a maximum of 700 (W/m2). The lowest 

temperature was close to 2 oC, in data set 2, and the maximum temperature was around 18 oC. 

 
 

Fig. 4.7. Solar radiation and ambient temperature from the 5th to the 10th (first row) and from the 13th to 

the 17th (second raw) of July 2020. 



Chapter 4. Modelling and design optimization of an active PCM system 

83 

 

 

 

 

4.3.1. Solar collector model 

 

For simulating the solar collector outlet temperature, the air inlet flow rate and temperature 

along with solar radiation were introduced to the solar collector model. The air inlet 

temperature was generated from the hut simulation in EnergyPlus. The values of parameters 

𝜂0 and lc in Equation (4.5) were estimated as 0.42 and 2.3, respectively. These values were 

obtained by fitting a line to Equation (4.5), where the solar collector supplied heat was 

calculated by the heat transferred to the air. The solar collector validation was carried out by 

comparing simulation results and experimental data, which are presented for the 7th and 9th of 

July when the solar collector provided heat from early morning to late afternoon. Fig. 4.8 shows 

the comparison for the 9th of July. In fact, the collector efficiency was expected to be higher 

since the heat loss was not considered in the model. The heat loss was mainly in the pipeline 

between the hut and the collector inlet that was exposed to the ambient temperature, which 

could decrease the inlet temperature to the collector. The root mean square errors between the 

model output and the solar collector outlet temperature for the 7th and 9th of July were 2.89 oC 

and 2.75 oC, respectively. 

 
Fig. 4.8. Solar collector outlet temperature for 9th of July 2020. The root mean square errors is 2.75oC. 

 

 
The results show that the model can simulate the gross dynamic behaviour of the solar 

collector. The difference between experimental measurements and simulation results may be 

firstly due to the mismatch between the specified inlet air temperature obtained from 

EnergyPlus and the experimentally measured hut air temperature. Secondly, the solar collector 

was composed of different materials with different heat capacities. Considering the imprecise 

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Te
m

p
e

ra
tu

re
 (

C
)

Time (hour)

Exp Simulation



Chapter 4. Modelling and design optimization of an active PCM system 

84 

 

 

 

thermal mass of these individual components in the model could affect the overall heat capacity 

of the collector and consequently its thermal dynamics, leading to the observed mismatches. 

This also caused a slight time lag between the measurements and simulation in Fig. 4.8. This 

time lag is of the order of 5-10 minutes. 

4.3.2. PCM heat exchanger model 

 

The heat exchanger model was simulated during both charging and discharging phases for 

hut 2. During charging, the inlet air temperature to the heat exchanger was set equal to the 

outlet temperature of the solar air collector, while discharging, the hut air was circulated 

through the exchanger. Heat exchanger simulation was carried out for 4 days from the 5th to 

the 8th of July. PCM was not charged for the 9th and the 10th of July since the solar heat was not 

enough to melt the PCM. The solar collector outlet was only introduced to the hut during these 

two days. Fig. 4.9 shows the simulation results for day 1. 

 
Fig. 4.9. PCM temperature and heat exchanger outlet temperature during charging (left column) and 

discharging (right column) phases for day 1. 

 

 
Fig. 4.9 illustrates the non-linear evolution of the PCM temperature, which is mainly due 

to the absorbing and releasing of the latent heat during the charging and discharging phases. 

Fig. 4.9 shows a good agreement between the simulated and measured PCM temperature during 

both charging and discharging phases. The heat exchanger outlet temperature was very similar 



Chapter 4. Modelling and design optimization of an active PCM system 

85 

 

 

 

to PCM temperature since the PCM temperature was measured at the end of the plate which 

was close to the heat exchanger outlet. 

During the charging phase, the highest error is less than 1.5 oC, which happened in the 

charging phase of day 1. The root mean square error between the measured PCM temperature 

and the model output was 1.17 oC, the highest error (Table 4.3). Although there was a mismatch 

between simulation and experimental PCM temperature during charging, the PCM temperature 

at the end of the charging phase on day 1 was less than 1 oC. The PCM temperature at the end 

of the charging phase is important because it determines the amount of stored heat available 

during the discharging phase. 

During the discharging phase, the hut air was the inlet to the heat exchanger. The highest 

mean square error was 1.2 oC which occurred during day 2 (Table 4.5). The difference between 

simulated hut temperature and the experimental data was the main reason for the mismatch 

between the simulated and experimental heat exchanger temperatures. 

Table 4.5 Simulation root mean square error (oC) for four days. 
 

 
Day 

PCM during 

charging 

Heat exchanger 

during charging 

PCM during 

discharging 

Heat exchanger 

during discharging 

1 1.17 1.11 0.2 0.13 

2 0.18 0.13 1.21 1.17 

3 0.13 0.1 0.23 0.31 

4 0.008 0.85 0.013 0.12 

 

 
The simulated hut temperature during days 1 and 3 was higher than the experimental 

temperature right from the beginning of the discharging phase (as shown in Fig. 4.9), which 

led to a higher inlet air temperature to the heat exchanger and consequently higher outlet 

temperature. During day 2, the heat exchanger outlet temperature was lower than the 

experimentally measured temperature since the inlet air temperature from hut 2 was lower than 

that measured experimentally. During day 4, however, hut air temperature was very close to 

the measured value which resulted in a good match between the simulated and experimental 

heat exchanger temperatures. 

Furthermore, it should be noted that the non-uniform distribution of the air inside the 

exchanger could lead to non-uniform heat transfer between the exchanger surface and the air. 

Moreover, the PCM temperature was only measured from a plate at the end of the exchanger 
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which was considered the initial temperature for all plates that could have led to observed 

simulation errors. 

4.3.3. Hut model 

 

As described in the methodology section, the above models were coupled with the hut 

model of EnergyPlus through the E+ Co-simulation toolbox interface. 

4.3.3.1. First data set 

 
Fig. 4.10 shows the capability of the dynamic model in simulating the huts’ temperature 

dynamics. The root mean square error between the huts’ temperatures and the models’ outputs 

was 1.53 oC. The maximum mismatch is around 2 oC, which happened at noon and early 

morning, as shown by the rectangular and circle shapes in Fig. 4.10. 

4.3.3.2. Second data set 

 
For further validation, a comparison was made between the dynamic model hut 

temperatures and the measured data using the second data set. Fig. 4.11 shows these results. 

As Fig. 4.9 shows, the hut temperature reached below the melting point of PCM (22 oC), which 

indicates that PCM was fully melted to provide the required heat to the hut. 

 

Fig. 4.10. Hut temperature from 5th to 10th of July 2020. 

 

 

 
The root mean square error between the hut temperatures and the model outputs was 2 oC. 

The rectangular shapes in Fig. 4.11 show the maximum temperature difference between the 

simulation and experimental data, which happened at noon. 
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Fig. 4.11. Hut temperature from 13th to 17th of July 2020. 

 

 

4.3.3.3. Discussion 

 
In both data sets, the maximum mismatch happened during the midday and early morning. 

The mismatch may be due to the solar radiation and sky temperature data which are related to 

the cloud cover. However, the cloud cover data are not measured online but are predicted based 

on the satellite information, which is not updated online. Additionally, the cloud cover was 

used for clearness index calculation which determined the diffuse fraction of hourly radiation. 

The correlation between the fraction of hourly radiation, which was diffuse, and the clearness 

index is well established but approximate, which can be another source of mismatch. 

Moreover, another reason for mismatches was the way solar radiation data are defined in 

EnergyPlus. This data is provided via a weather file every hour, and solar radiation is 

interpolated at each simulation time step. This causes differences between real and interpolated 

solar radiation, which is expected to contribute to the hut’s error in the solar heat gain. The 

higher difference between the real and interpolated solar radiation happens on partially cloudy 

days when solar radiation changes considerably. For instance, Fig. 4.12 shows the solar 

radiation variation on days 13th to 15th of July. The solar radiation variation for July 15th is 

smoother than July 13th, which was a partially cloudy day. On July 14th, a significant change 

in solar radiation happened between 12 pm and 1 pm, as indicated by the orange circle in Fig. 

4.12, which interpolated data cannot be represented. 
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Fig. 4.12. Solar radiation variation for three days. 

 

 
4.4. Design optimization 

 
The validated model was applied for the design optimization of the system. Three types of 

scenarios were considered to simulate office, domestic, and service buildings. The control 

strategy was defined to maintain the temperature at comfort ranges. The design optimization 

was formulated to minimize the cost of the system while a control strategy was applied. The 

optimal design was obtained for the weather conditions of the cold season in Auckland, which 

was averaged over four years. The data flow between the optimization and simulation 

environments can be found in Fig. 4.13. 

 

Fig. 4.13. Data flow for design optimization. 

 

 
4.4.1. Control system 

 

The schedules for the three types of buildings are different. The schedule represented the 

time of day that HVAC system needed to operate to maintain the space temperature at a comfort 

range. Table 4.6 depicts the details of the schedules applied in the simulation. 
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Table 4.6 Buildings schedule times and comfort temperatures [97]. 

 

 

 

 

 
 

The upper and lower temperatures were set for the control system. According to the PCM, 

hut, and solar collector temperatures, the control logic forced air flow in different pathways to 

keep the hut temperature in a specific range. The control logic is different from the control 

strategy in Section 2.1 since the backup heater is also added to the system. Fig. 4.14 shows the 

control algorithm. For each scenario, the control was applied considering the period shown in 

Table 4.6. 

A solar air collector, an electric heater, and a PCM heat exchanger unit supplied heat to the 

hut. The air was circulated from the solar collector to the hut so long as the hut temperature 

was within the comfort level and stopped once it reached the upper bound of thermal comfort. 

On the other hand, the backup heater would be started when the hut temperature dropped below 

the lower bound of the thermal comfort range. Hut received energy from the solar collector and 

stored it in PCM so long as the hut temperature was within comfort level. 

The energy stored in PCM was supplied the heat to the hut in the following cooler hours. 

The backup heater would be used when the hut temperature dropped below the comfort level. 

Once the hut temperature reached the upper bound of the thermal comfort, all energy sources 

were stopped. If the hut temperature exceeded the upper bound of comfort temperature and the 

PCM temperature was lower than the hut temperature, then the PCM heat exchanger units 

collected the extra heat from the hut through Pathway 3. Fig. 4.14 shows the flowchart of the 

control strategy used in the hut. 

Building Comfort temperature range (o C) Schedule time 

Service 20-25 24 h 

Office 20-24 8 am – 4 pm 

Domestic 20-24 6 pm – 12 am 
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Fig. 4.14. Control algorithm for heating the hut [93]. 

 

 
4.4.2. Objective function 

 

The optimization problem minimizes the objective function in Equation (4.7), which is the 

summation of the minimized cost over the New Zealand cold season from May until the end of 

August. 

The first two terms in Equation (4.7) are PCM and solar collector capital costs. The third 

term is the fan usage cost which is the cost of circulating the air in the PCM heat exchanger. 

 

           
n

pcm pcm SC SC
fan ele save ele

k o pcm SC

M P A P
OF E P E P

Lf Lf=

= + + −                                                                    (4.7)  

The last term is the saved energy cost through using the PCM heat exchanger and solar 

collection. The saved energy was calculated by summating the heat energy supplied by the 

solar collector and the PCM heat exchange. 
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The weight parameters were considered for obtaining the objective function value annually. 

The last two terms were calculated for one cold season which leads to an annual amount. To 

consider the annual amount for the first two terms, the capital cost of PCM and solar collectors 

was divided by their lifetimes. 

The design variables are the amount of PCM, M pcm, and the area of the collector, ASC
, 

which are presented in detail in Table 4.7. The upper and lower bounds for the constraints were 

specified based on our knowledge from the hut’s experimental data. The lower bound for solar 

collector area is one, by assuming that solar collector is certainly a component of the system. 

Details of the parameters in the objective function are given in Table 4.8. E is the total energy 

supplied by the solar collector and PCM heat exchanger. 

 
Table 4.7 Optimization design variables details. 

 

Symbol Design variable Type Domain Unit 

𝑀𝑃𝐶𝑀 Amount of PCM Continuous [0, 100] Kg 

𝐴𝑆𝐶 Area of collector Continuous [1,5] m2 

 

 
The values were obtained from quotes of prices requested from commercial vendors. Based 

on some of these large values, one may be skeptical, however, they were quoted from the 

manufacturers, and it is out of the scope of this study to challenge them. It should be noted that 

PPCM is the cost of the PCM material plus the heat exchanger body, which was estimated per 

kilogram of PCM material on a commercial production scale basis. The wholesale price of a 

PCM with a melting point of 23oC was asked from a PCM manufacturing company in the USA. 

The freight cost to New Zealand was also included in the price. The heat exchanger wholesale 

price was estimated by asking the heat exchanger containers and body price from 

manufacturers. It should be mentioned that the plastic containers were considered in the design 

that is more economical than the aluminum containers used in the experiments. 

 

E fan is the electricity consumed for circulating the air through the solar collector and PCM 

heat exchanger. It is calculated by equation: 

 

              fan air

fan

p
Q Q




=                                                                                                                           (4.8) 
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Qair is the air volume flow rate and is system overall pressure drop which is calculated 

using Darcy’s Law for parallel plates in the PCM heat exchanger and the pressure drop equation 

as follows: 

Table 4.8 Objective function parameter details. 
 

Symbol Parameter Value Unit 
𝑃𝑃𝐶𝑀 PCM storage price 15 USD/kg 
𝑃𝑆𝐶 Solar collector price 800 USD/m2 
𝐿𝑓𝑃𝐶𝑀 PCM lifetime 100 Years 

𝐿𝑓𝑆𝐶 Solar collector lifetime 30 Years 
  𝑃𝑒𝑙𝑒  Electricity price  0.22  USD/kwh  

              

                
2

tfL v
p

dH


 =                                                                                                                             (4.9)  

 

         Where f is the Darcy friction factor, L is the length of the plate containg the PCM,  is 

the air density, 
tv  is the air velocity and dH is the hydraulic diameter. p  changes by the 

amount of PCM (
pcmM ) as the number of plates changes accordingly to fit the PCM amount, 

as per Equation (4.10). 

 

N = 
M 

pcm 

M 
pl 

 

       (4.10) 

In which N is the number of plates and M pl is the mass of the PCM in each plate.
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4.4.3. Optimization method 

 

The objective function was minimized using fminsearch, in MATLAB. This free derivative 

method was chosen as the hut model equations in EnenrgyPlus were not explicitly available. 

The objective function was calculated by applying the control system to the simulation 

environment given in Fig. 4.14. The simulation was carried out for the cold season which 

begins in May and finishes at the end of August in Auckland. The ambient condition for this 

period was obtained by averaging four years of weather data.  

4.4.4. Results and discussion 

 

The computational time needed for finding the optimum points was 3 hours using a Corei5- 

7600 CPU computer with 16GB RAM. The optimum values of design variables for different 

scenarios are given in Table 4.9. 

 

Table 4.9 Optimum value of the design variables. 
 

Building type 𝑀𝑃𝐶𝑀 (kg) 𝐴𝑆𝐶 (m
2) 

Service 35 1 

Office 0 1 

 Domestic  20  1  

 

 
The optimum mass of PCM for service type building is higher than the other types of 

building use, since the bigger saved energy during the day can be used at any time during the 

day. However, a lower amount of PCM is needed in the domestic building type as the stored 

energy is only required from 6 pm to 12 am. In the office scenario, the PCM heat exchanger is 

not needed as the scheduled time is from 8 am to 4 pm, when the solar collector can provide 

the heat directly to the hut. The solar collector area was one square meter (variable lower limit) 

for all types of building use, which is due to the high capital cost of the solar collector. This 

shows that the solar collector capital cost is one of the barriers toward increasing the deployment 

of such systems. 

Aside from schedule differences, the number of people in the hut for various scenarios 

would vary. This may affect the internal load and the ventilation rate, which would 

consequently change the optimum design variables. The hut occupancy in the EnergyPlus 

model was not taken into account because the validation data was gathered in an unoccupied  
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situation. Additionally, including occupancy by adding the different numbers of people for the 

small hut of this study would not be realistic. EnergyPlus, on the other hand, allows users to 

specify the number of people and their activities for the hut model. 

Furthermore, the optimum values of the variables were obtained considering a fixed price 

for electricity all day long. These values can change for regions where the on-peak and off- 

peak electricity prices can be different. In that case, heaters can be used to charge the PCM heat 

exchanger with a lower price and release that in cold on-peak hours with a higher price. 

Although the price of sole air collectors is unlikely to change, the price of PCM is likely to 

fall as more commercial production is anticipated in the future. This would have an impact on 

the objective function's weight parameters as well as the optimum design values. 

4.5. Conclusion 

 
This paper presents the dynamic modeling and economical design of a system, including 

an active PCM storage system and a solar collector in an office-sized hut. An integrated model 

was obtained by coupling EnergyPlus with MATLAB via an EnergyPlus Co-simulation 

Toolbox interface. Experimental validation of the integrated model proved the reliability of the 

model in representing the dynamics of the systems. The importance of accurate measurements 

of influencing variables such as solar radiation on the mismatch between the model and 

experimental data was discussed. The validated model was used for economical design 

optimization of the system equipment. The highest amount of PCM mass (35 kg) was obtained 

for a service type building use and the lowest (zero) for office building use. This was due to 

the higher heating demand for service building use (24 hours) compared to office building use 

where heat is needed only during the daytime (8 am - 4 pm). However, the optimum value of 

the solar collector area was the same at one square meter for all the building types due to the 

high price of solar collectors. This demonstrates that the capital cost of solar collectors is one 

of the barriers to the deployment of more of these systems. The results also indicate that an 

economic analysis based on the building application is essential for designing solar collector 

systems with PCM storage. The results were obtained by considering a fixed electricity price, 

however PCM potential for peak load shifting could increase the system cost saving for varying 

electricity prices during the day. In future research, design optimization will be investigated for 

a system controlled by a price-based control to add the potential of PCM for peak load shifting. 
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Chapter 5. Optimal control of an active PCM system 

 

Foreword 

Optimal control of systems, including solar collector and phase change material (PCM), 

can increase thermal comfort and cost savings. This work presents an optimal control solution 

for a system including a PCM heat exchanger, a solar air collector, and a backup heater. The 

rigorous models involved make it difficult to achieve optimal control of buildings equipped 

with such systems. Aside from nonlinear models, the problem is complicated by binary 

variables such as PCM heat capacity calculations and fixed airflow rates through pathways. 

First, a model predictive control formulation was created, and the challenges of implementing 

this system control strategy were discussed. The results showed that MPC was unable to fully 

utilise the PCM heat exchanger's storage and release capabilities. For the first time, a deep Q-

learning network (DQN) reinforcement learning was used to address the complexity of the 

optimal control formulation for the studied system. DQN includes deep neural networks and 

can map binary actions to continuous states. Simulating a validated model of the entire system 

was used to train and test DQN. A novel formulation was proposed, which allowed prioritizing 

thermal comfort and energy cost savings by adjusting a reward. By prioritizing the cost-

savings, 97% more cost was saved than in the thermal comfort case; however, the offset from 

the desired temperature was 54% less. By adjusting the reward, a balance between energy cost 

savings and thermal comfort was achieved. A part of this chapter has been submitted in the 7th 

International Symposium on Advanced Control of Industrial Processes, Vancouver, Canada 

and has been included in the thesis. 

1.14.3. Introduction 

The building sector accounts for 30% of greenhouse gas emissions and 40% of total energy 

consumption [59]. The energy demand in this sector increases at an annual rate of 2.3% [139]. 

These two facts highlight the need for energy-saving strategies in the building sector. 

Phase change materials (PCMs) have been considered energy storage in buildings to reduce 

or shift the profile of energy demand by changing the thermal inertia of the system. PCM 

systems can be classified into active or passive systems according to how thermal energy is 

delivered to PCM. Heat is exchanged using fluid, circulated, or electric heaters in active 

systems, but mechanical equipment is not required in passive systems.  
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The full potential of PCM benefits in buildings can be realized with more effective control 

of active systems. A comparison was made between an active and a passive system with the 

same energy storage capacity [93]. The results showed that active systems have greater energy-

saving (22% less energy consumption) and more efficient peak load shifting (32% less 

electricity cost) than the passive approach. These conclusions were achieved by applying 

ON/OFF control for a system including a solar thermal heater, PCM heat exchanger, and 

backup heater. 

The authors of [97] demonstrated that applying model predictive control to the same active 

system can result in further improvements. Simulation-based optimization was applied by 

considering the heating demand of the building and low-cost night-time electricity. Diurnal 

solar thermal energy was stored in the active PCM system and released on demand to reduce 

energy cost and consumption. The energy demand of the building was simulated in EnergyPlus 

and provided offline via Excel for optimization. The rationale behind this approach is that 

rigorous models such as those using EnergyPlus lead to complex nonlinear systems [140]. 

Therefore, the optimization problem takes much computational effort and time, possibly 

making them impractical for real-time applications. 

However, it is essential to consider the building condition stated in the MPC formulation. 

This is because implementing MPC relies on the readily available states from the system 

measurements [141]. A requisite of implementing MPC is for the controller to exchange data 

with the building. This communication is required because the building's feedback measures 

can aid in reconciling the model states to the actual building states and compensating for the 

model mismatch. 

Although the offline calculation of demand aimed at lowering the computational effort, the 

problem in [97] was a mixed-integer non-linear problem due to the PCM heat capacity 

calculation. Solving this complex problem in real-time is challenging and needs specific solvers 

[81]. 

As an alternative, machine learning-based approaches such as Reinforcement Learning 

(RL) can be applied as an optimal control approach. Pre-computing the optimal solutions 

through offline RL training overcomes the high online computational effort of MPC [82].    

Although RL has been applied to energy management in buildings [142, 143], there have 

not been many studies related to energy storage control in buildings using RL [144]. In [145], 
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the authors applied the SARSA algorithm of reinforcement learning for controlling a ventilated 

façade with PCM. The façade was used for cooling purposes in summer by solidifying the 

PCM placed in the chamber during the night and absorbing the heat during peak hours. RL 

controlled the charging and discharging of PCM, considering a simple isothermal model for 

PCM and weather conditions. The authors extended their work in [146], where three different 

objective functions were considered based on cost-savings, energy reduction, and CO2 

mitigation. The energy-saving, cost-saving, and CO2 mitigation averages were 4.3%, 7.8%, 

and 16.7%, respectively.  

The classical RL, which was applied in the early works, included tables and simple 

functions for representing the state-action pairs. The more powerful version of RL is called 

Deep reinforcement learning (DRL), which has raised attention due to including deep neural 

networks (DNN). DNN has added the power of increasing the dimension of action-state pairs, 

which can describe the dynamics of complex systems with high nonlinearity. 

Deep reinforcement learning was used for controlling a HVAC system in a building with 

PCM on the walls [147]. The authors adopted a model-free actor-critic on-policy reinforcement 

learning method based on deep deterministic policy gradient (DDPG) which did not have 

access to the full dynamics of the building. DDPG could learn from interacting with the 

building using the actor-critic feature. DDGP was compared with approximate dynamic 

programming (ADP) approach which used a simple RC model for representing the system 

thermal dynamics. For this passive system, the authors concluded that ADP had slightly better 

performance than DDPG. In another work [148], an innovative complex hybrid energy storage 

was operated using DRL as a high-level control. The system integrated different subsystems 

such as photovoltaic (PV) panels, Fresnel solar thermal collector, a sorption chiller connected 

with a reversible heat pump, and energy storage in electrical and thermal forms. The objective 

was to reduce the energy demand for heating, cooling, and domestic hot water (DHW) of a 

standard single-family residential building. The thermal dynamics of the building was not 

included in DRL and the building demand profile for cooling, heating and DHW were 

specified. The results showed that DRL can reduce the operating cost up to 50% compared to 

rule-based control.  

This work considered an active system including PCM storage, solar collector, and a 

backup heater that supplied heating for an office-sized hut. The problem of finding an optimal 

control solution for the system was investigated. The system included ON/OFF valves and 
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fixed airflow rate, which led to a representation of the system in terms of binary variables in 

the optimal control formulation. The challenges of using MPC, such as the difficulty of online 

computation and the problem of local optimum, were investigated. Deep Q-learning (DQN) 

reinforcement learning, which can deal with problems with binary actions and continuous 

states, was used to solve these problems. Unlike previous research, hut dynamics such as 

temperature were considered as states in RL, allowing for the use of hut feedback 

measurements. In addition, a new method for defining the control system's objectives was 

presented. Using this method, the controller can be set to prioritise either energy savings or 

thermal comfort. 

1.15. Methodology 

A hut heated by a solar collector, a PCM heat exchanger and a backup heater was studied 

in this work. The PCM heat exchanger can store diurnal solar energy for later use. Below are 

descriptions of the experimental setups and control strategies. In terms of energy cost savings 

and providing thermal comfort, a new control method based on reinforcement learning was 

developed, and the results were compared to a traditional optimal control strategy, model 

predictive control. 

1.15.1. Experimental set up 

The setup includes a hut located near Ardmore airport in Auckland (37.0314° S, 174.9724° 

E), New Zealand. The huts' external dimensions are 2.7 m x 2.7 m x 2.7m, and it has a single-

glazed window (0.8 m x 0.8 m) facing north. As shown Fig. 5.1, the hut was equipped with a 

solar collector, fans, and control valves for directing the heated air. In addition, the hut contains 

a PCM heat exchanger, integrated with the solar collector. The PCM heat exchanger was 

composed of 19 sets of macro-encapsulated PCM panels made of aluminium and filled with 

9.5 kg RT25HC (manufactured by Rubitherm GmbH). The design of the PCM heat exchanger 

is explained in detail in [127].  

The hut temperature was controlled using measured temperatures from the hut, solar 

collector, and PCM heat exchanger. The manipulated variable was the air flow and the final 

control elements were valves and fans. There were four possible pathways for supplying heat, 

which were controlled through three valves (V1, V2, V3) and fans as shown in Fig. 5.1. 
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Fig. 5.1. Hut set up details. The arrows show different pathways. Air flow is adjusted by adjusting valves 

and fans. 

 

Table 5.1 shows the valves and fans operating conditions for each pathway. 

Table 5.1 Valves and fans operating conditions. 

Pathway V1 V2 V3 Fan (solar collector) Fan (PCM heat exchanger) Back-up heater 

1 ON OFF ON ON OFF OFF 

2 ON ON OFF OFF ON OFF 

3 OFF ON ON OFF ON OFF 

4 OFF OFF OFF OFF OFF ON 

No heating OFF OFF OFF OFF OFF OFF 

 

1.15.2. Model predictive control (MPC) 

MPC is an optimization-based strategy for control decisions based on model predictions 

over a specified receding horizon. The key element for an MPC application is a dynamic model 

of the system, allowing the calculation of future states from the values of manipulated variables 

and disturbances. Several types of constraints may be added to the optimization problem, such 

as bounds on manipulated or process variables, physical limitations, and of course the system 

model itself. An objective function must be chosen to define what is the goal of the control 

system, for instance the distance to a given set point or an economic cost. The solution of this 

optimization problem is a vector of control actions. Only the first element of the control vector, 

corresponding to the current time step, is applied as the system input, and the remainder are 

discarded. The entire process is repeated in the next time step. The following equations describe 

a general formulation of MPC. 

Pathway 1: Indoor room is circulated 

through the solar collector. 

Pathway 2: Solar collector output is sent to 

PCM heat exchanger. 

Pathway 3: The hut air is circulated into 

PCM heat exchanger and sent back to the 

hut. 

Pathway 4: The hut receives heating from 

a back-up heater 
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Where l is the objective function, N is the prediction horizon and control horizon, n

kx  is 

the state and  m

ku   is the control input. kX  and kU define the state and input constraints 

respectively.  

System model, physical limitations, manipulated and controlled variables range are the 

constraints. The objective function can be defined based on power consumption, energy cost, 

demand cost, for example. 

An MPC formulation was developed for a similar system in [97] which was used here with 

modifications. The authors in [97] considered a system with variable airflow rates, which led 

to continuous variables in the optimization formulation. However, the valves are either fully 

open or closed in the actual design, and fan flow air was at a fixed rate. This configuration 

added binary variables to the optimization problem, resulting in a case of Mixed-Integer 

Nonlinear Programming (MINLP). Although this class of problems is much harder to solve 

than the continuous problems often used in MPC, it is applied to a system with slow dynamics 

and large sampling time, which allows its online solution without further issues.  

The objective function used in this study is the energy cost of heating (NZD), which 

includes the electricity cost of back-up heater ( )BHQ and fans ( )fQ .   
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( ) ( ) ( ) ( )k SAC Room k HE Room k BH kDemand Q Q Q− −= + +                                                                                    (5.5) 

( ) ( ) ( ) 1SAC HE k SAC Room k HE Room kd d d− − −+ +                                                                                                   (5.6) 

 
( ) ( ) ( )k SAC HE k SAC Room kActive d d− − +                                                                                                          (5.7) 

  ( ) ( ) , ( ) ( )( )SAC Room k SAC Room k out SAC k Room kQ md T T− −= −                                                                                  (5.8) 

( ) ( ) , ( ) , ( )( )SAC HE k SAC Room k out SAC k out HE kQ md T T− −= −                                                                                     (5.9) 

 ( ) ( ) , ( ) ( )( )HE Room k HE Room k out HE k Room kQ md T T− −= −                                                                                    (5.10) 

20 60PCMC T C                                                                                                                                     (5.11) 

( )0 HE kQ  & ( )BH kQ  demand                                                                                                                 (5.12) 

(0)PCMT is the initial temperature of the PCM. In Equation (5.5), Demand is the hut’s heating 

demand calculated offline using EnergyPlus.  ( )SAC HE kQ − is the heat amount and subscripts SAC 

and HE represent solar collector and heat exchanger, respectively.  

Equations (5.6) and (5.7) describe the physical limitations of the system. In the 

experimental set-up, airflow can be driven in one pathway at any time which is described in 

Equation (5.6). Variables d are used to show the binary variables. They show the airflow in 

pathways 1, 2, and 3. In Equation (5.7), Active is a binary parameter that shows the availability 

of solar collector airflow at any time. The Active parameter and solar collector output 

temperature ( , ( )out SAC kT ) values were specified at any time.  

Equations (5.8)-(5.10) describe the heat flow through pathways 1-3, where m is the air 

mass flow rate, which is a fixed value.  Equations (5.11) and (5.12) are the operating range of 

variables. In [97] authors expressed .p PCMC  for different temperature ranges.  
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The mathematical representation of 
.p PCMC is modified here to facilitate the numerical 

calculation. 
.p PCMC  was defined in [97] using the following equation: 

,
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where 
,p PCMC is specific heat capacity, LH is heat of fusion, and 

mT is an arbitrary small value 

representing the range of phase change temperature. Subscripts s, l, and m represent the solid 

phase, liquid phase, and melting conditions of PCM. 
,p lC  and 

,p sC are 2 ( )
.

kJ

kg K
and 

PCMLH is 

230 ( )
kJ

kg
. 

The authors of [97] defined Equation (5.13) in the optimisation formulation using if-

conditional statements. However, this slows down the real-time computational process of 

finding solutions. The Big-m formulation was used to define 
,p PCMC values according to the 

PCM temperature in order to reduce computational time. Appendix A contains more 

information on the new formulation. 

1.15.3. Reinforcement learning 

Reinforcement learning is a framework for the learning of an agent to perform actions, in 

a sequential decision-making process [84]. A Markov decision process is generally used as a 

mathematical formalization of the process, where the environment is modelled as a set of states’ 

S, which can be continuous or discrete, and the agent can decide to execute one of a set of 

actions A at each state. Once the agent executes an action, the environment changes into a new 

state value and produces a scalar reward r to the agent, which the agent can use for feedback 

and learning. After the agent has been trained, it can be used in new instances of the 

environment without the reward signal. 
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MATLAB and Python software was used in this work. A deep Q-network (DQN) was 

trained in Python, utilizing TensorFlow, and the system dynamics simulation was carried out 

in MATLAB using EnergyPlus. The data flow between Python and MATLAB is shown in Fig. 

5.2. 

 

Fig. 5.2. Data flow between MATLAB and Python for building RL 

 

1.15.3.1. States 

Sets of states, actions, and rewards must be defined for the DQN algorithm. In this 

application, thirteen elements were considered in the state vector. They include temperatures 

and electricity prices, which can be used to describe the system's status from the comfort and 

economic viewpoints, as can be seen in Table 5.2. 

The first five elements of the state vector are hut, PCM, ambient temperature, solar 

collector output temperatures, and electricity price. The next four state vector elements are 

predictions of ambient temperature in the next 12 hours, with each value corresponding the 

average of a period of 3 hours. Finally, the same procedure was applied for summarizing the 

electricity price in the next 12 hours. 

Table 5.2 State vector elements 

State Size Normalization factor 

Hut temperature 1 40 

PCM temperature 1 40 

Ambient temperature 1 20 

Solar collector output temperature 1 50 

Electricity price 1 1 

Future ambient temperature 4 20 

Future electricity price 4 1 

 

State elements were normalized by dividing the original values by the corresponding factor 

given in Table 5.2. The normalization procedure keeps the states between 0 and 1, conveying 
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an optimization problem with better numerical properties, which is essential for the training 

problem. 

1.15.3.2. Actions 

Five discrete actions, including no air flow, Pathway 1, Pathway 2, Pathway 3 and Pathway 

4, were considered (details given in Table 5.1). The details of the actions and their 

corresponding pathways are given in Table 5.3. The actions were introduced to the hut model 

at every 15 minutes. 

Table 5.3 Action’s description 

Action Air flow condition 

0 No air flow 

1 Pathway 1 

2 Pathway 2 

3 Pathway 3 

4 Pathway 4 

 

1.15.3.3. Rewards 

Rewards were defined based on the state and action pairs. They were used to balance 

between thermal comfort and energy saving by defining when to charge or discharge PCM and 

use the back-up heater. Rewards were defined as per the following equations: 

If  & 3PCM RoomT T Action = then Reward = -1                                                                          (5.14) 

If , & 1out SAC RoomT T Action = then Reward = -1                                                                         (5.15) 

If 
, & 2out SAC PCMT T Action = then Reward = -1                                                                        (5.16) 

If 22 & 0o

RoomT C Action = then Reward = -1                                                                          (5.17) 

If 22 &( 1o

RoomT C Action = or 3Action = or 4Action = ) then Reward = -1                         (5.18) 
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If ,22 & & 1o

Room out SAC RoomT C T T Action  =  then Reward = ES                                                (5.19) 

If 22 & & 3o

Room PCM RoomT C T T Action  = then Reward = ES – K(20 – TRoom)                       (5.20) 

Equations (5.14) and (5.15) ensure that the PCM and solar collector output temperatures 

are greater than the hut temperature when Pathways 1 and 3 are taken. Equation (5.16) shows 

that PCM charging starts once the solar collector output temperature is higher than PCM 

temperature.  

Equations (5.17) and (5.18) indicate that Pathways 1, 2 and 3 would not supply heat if hut 

temperature exceeds 22°C. Otherwise, heating is required.  

Equations (5.19) and (5.20) are used to determine how to manage solar energy. Solar 

energy can either heat the hut or charge the PCM used to heat the hut later during the night. 

Reward values were chosen between -1 and 1 in equations (5.14)-(5.18). Additionally, reward 

values in Equations (5.19) and (5.20) is the saved energy cost that is for a 15-minute time step 

is between 0 and 1. The reward values in combination with states normalization helps with the 

numerical conditioning of the training problem. If the solar collector output is used directly for 

heating the hut, the reward is calculated by the amount of saved energy cost (ES) using the 

following equation: 

pES Q E=                                                                                                                                                   (5.21) 

In which Q  is the amount of supplied heat (KJ) and 
pE ( )

NZD

KJ
is the electricity price.  

If solar energy is stored in PCM and discharged later through pathway3, the reward is 

calculated based on energy saving (ES) and the offset of hut temperature from 20 oC. ( )
o

NZD
K

C
 

is the parameter used for trading-off between economic saving and reaching the comfort 

temperature. If the hut temperature drops below 20 oC, ES would be penalized. The high value 

of K would make the reward negative for discharging the PCM heat exchanger. In this case, 

the back-up heater would be used rather than PCM discharge to reach the comfort temperature. 

If the state and action pair condition was not in any of the previous condition the reward 

was set to zero. 
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1.15.3.4. System model 

The solar air collector and PCM storage were modelled in MATLAB, while the hut was 

modelled in EnergyPlus. The model's configuration is shown in Fig 5.3. The models were 

integrated together to represent the system described in Fig. 5.1. Experimental data from 

Auckland's winter season was used to validate the integrated model. The results showed that it 

can represent the hut and system dynamics reliably. Chapter 4 contains more information about 

the model. The model was used as a virtual plant in this study to train and validate the RL 

performance. 

 

Fig 5.3. Dynamic model structure. The Orange, yellow, and blue colours show MATLAB, EnergyPlus (E+) 

and the E+ Co-simulation Toolbox interface code, respectively. Dashed lines show the alternative heat supply 

pathways. 

 

1.15.3.5. Deep Q-Learning 

DQN [149] is one of the first Deep Reinforcement Learning algorithms, and it was initially 

used to play ATARI games at super-human performance. It is an extension of Q-Learning with 

a neural network function approximator for Q-values. These values are defined as the reward 

obtained on state s and taking action a and then behaving optimally until the end state. Q-values 

can be estimated by solving the Bellman equation: 

( , ) ( , ) ( , , ) max ( , )
a

s S

Q s a R s a T s a s Q s a




  − +                                                                                   (5.22) 

Selection of actions during training is made through an  -greedy exploration policy, where the 

action that maximizes the Q-value is selected, but with probability   a random action is chosen. 
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DQN uses the following loss, which performs regression of the Q-values, enabling 

simultaneous learning of the Q-function with only partial information obtained by interacting 

with EnergyPlus. 

2( ) ( ( , ; ))i i i iL E y Q s a  − −                                                                                                                 (5.23) 

1max ( , ; )i i
a

y r Q s a  −

−


 − +                                                                                                                     (5.24) 

Where ( , , )s a r  is the experience tuple obtained from interacting with EnergyPlus via 

MATLAB at each timestep during training. An experience replay buffer is used that includes 

the last M experience tuples collected, and a mini-batch of size B is sampled to train the network 

during each step. 

 
1i −

−
 denotes the target network weights, which define the values used to compute the target 

during training. The target network weights are kept fixed and only copied from the training 

network i every C steps. This technique is used to stabilize the convergence of Q-values. 

The network is trained using the Adam optimizer with a learning rate   = 0.001 for 10000 

episodes using a batch size B = 440 and replay buffer of M = 10000 experience tuples. 

 Once the network that estimates the Q-values is trained, at inference time, a forward pass 

is made giving a state as input, and a vector of Q-values is produced as output, one value for 

each possible action. An action is selected by taking the one with maximum Q-value. The 

process is repeated with the new state after the action is executed in MATLAB, until the end 

state is reached. 

1.16. Results and discussion 

The system was controlled using the two strategies described in the Methodology section. 

Control strategies performance was determined with respect to cost and thermal comfort in 

four days of winter. For training RL, twelve winter days were considered when variation of 

disturbances such as ambient conditions happened. Four consecutive typical winter days were 

chosen for testing the control strategies and their performance is reported in the following 

sections. The ambient temperature and solar radiation during these days are shown in Fig. 5.4. 

During these consecutive four days, ambient temperature experienced a reasonable change 

that happens during winter in Auckland. The lowest ambient temperature was 7 oC which 
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happened in the early hours of the last day and the highest temperature was 16 oC which 

happened at the midday of the second day. The solar radiation is the lowest in the first day and 

almost similar in the rest of the days. 

 

 

Fig. 5.4. Ambient conditions for the test days. Orange and blue lines represent ambient temperature and 

solar radiation respectively. 

 

The electricity price profile for a typical day in winter in shown in Fig. 5.5. The electricity 

price profile indicates two main peaks: morning and evening. The desired control system can 

manipulate the pathways to store the solar energy during the day and use it during the early 

evening peak hours for heating the hut. 

 

 

Fig. 5.5. Electricity price for a typical day. 
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1.1.1. MPC 

MPC formulation was applied for the same period. The decision time step and number of 

prediction horizon were 15 minutes and 90 respectively. As explained in the Methodology 

section, the heating requirement of the hut was calculated offline. The calculated demand was 

saved and used in the MPC. The demand was the heating required to keep the hut temperature 

above 20 °C.  

As explained in Equation (5.5), the required demand could be provided by back-up heater, 

solar energy or PCM heat exchanger. The back-up heater in the MPC formulation did not have 

any limit constraint in providing heat. However, the objective function tried to minimize the 

back-up heater power consumption cost.  

The total cost of heating was 10 NZD. The heating demand was mainly provided by the 

back-up heater. Fig. 5.6 shows the amount of heating energy that the back-up heater supplied. 

 

Fig. 5.6. Hut demand (blue) and back-up heater supplied energy (orange) 

 

As Fig. 5.6 shows, almost all the demand was supplied by the back-up heater. However, 

this happened when the PCM heat exchanger could supply a part of the heating demand. Fig. 

5.7 shows the PCM temperature during the simulation. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

1
2

2
4

3
6

4
8

6
0

7
2

8
4

H
ea

ti
n

g 
(K

W
)

Time (hours)



113 

Chapter 5. Optimal control of an active PCM system 

 

 

Fig. 5.7. PCM temperature during the test days. 

 

The PCM temperature decline shows that it was discharged for supplying the demand. 

However, the large amount of energy was stored as the latent heat between 23 oC and 27 oC  

which was not used.  

MPC formulation is a nonlinear optimization problem with binary variables. There are 

many local optimal solutions to this problem. Although there could be better solutions to the 

problem, finding the global optimum for such a problem is very difficult.  

Furthermore, heating demand is calculated offline and provided to the MPC formulation. 

Using this approach, the computational effort of the optimization decreases as hut model is not 

included in the optimization. However, this formulation would not work in practice since 

perfect model of the hut would not be available. In MPC feedback of the plant plays very 

important role in reconciling the states and decreasing the drawbacks of the mismatch between 

the model and the real plant. 

Additionally, the formulation assumed that the back-up heater has unlimited capacity to 

supply the required demand. This assumption was necessary for respecting the equality 

constraint in Equation (5.5). However, in practice, the back-up heater has a specified capacity 

that would not supply the required demand. 

Performance of MPC was compared with an ON/OFF control strategy described in [93]. 

Fig. 5.8 shows the hut temperature simulation.  
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Fig. 5.8. Hut temperature using an ON/OFF control strategy. 

 

Fig. 5.8 shows that the hut temperature fell below 20 oC in some periods. This is because 

the back-up heater could not supply enough heat, and the controller did not consider models 

for controlling the temperature. PCM temperature is shown in the Fig. 5.9. Like MPC, the full 

capacity of PCM was not used. PCM was charged however the stored energy was not used for 

heating which would add extra operating cost for running fans. This is because PCM was used 

in the control algorithm when the temperature was higher than 20 oC. By decreasing this 

threshold, PCM would be used more for supplying heat but in expense of more offset from 20 

oC since the back-up heater supplies more heat than PCM storage. It should be mentioned that 

the ON/OFF control decisions were only based on the thermal comfort, since the energy cost 

dynamics could not be calculated in the algorithm.  

 

 

Fig. 5.9. PCM temperature using ON/OFF control. 
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5.3.2.       RL 

Reinforcement learning was trained and tested using data of 16 days in winter. To train the 

networks, a simulation of the first 12 days was considered. RL performance was as tested using 

same four days that used for testing MPC. Fig. 5.10 shows the learning curve of the RL 

networks. 

 

 

Fig. 5.10. Reward improvement during the training process. 

 

After four epochs, the training was stopped to avoid overfitting the training data. The RL 

performance was validated using four days of simulations, and reward values were monitored. 

Each epoch included 12 simulation days. The reward is the summation of rewards during a 

whole day of simulation and is shown in Fig. 5.10. The timestep in the simulation was 15 

minutes, so the total number of rewards in each day was 96. As explained in section 1.5.5, the 

selection of actions during training was made through an  -greedy exploration policy. Using 

this policy, the number of random actions at the beginning of training is high and it decreases 

as training proceeds while networks learn by training. Fig. 5.10 indicates that the reward value 

was low at the beginning of training. Over time, it increased as the networks’ parameters were 

adjusted during the training and the agent took more actions using the networks rather than 

merely random actions. 

The RL performance was tested on the same days used for testing MPC control scheme. 

The trained networks were tested using the 4 days. Fig. 5.11 shows the simulation results for 

the testing period. 
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Fig. 5.11. RL performance with K = 0.25 during the test days. The circles show the heating time during the 

same 4 test days. Taken actions (above). Blue colour shows the ambient temperature and orange shows 

electricity price (below). 

 

In Fig. 5.11, circles show the periods  after the midnight when heating was started. The K 

value which determines the balance between thermal comfort and cost saving in Equation 

(5.20) was considered to be 0.25 in this case. The higher the value of K,  the more cost saving 

will be penalized by the offset from the desired temperature. It can be seen that Pathways 3 and 

4 were applied during this period. Whenever electricity price and ambient temperatures were 

low, the back-up heater supplied heat. This is since with the low electricity price cost saving 

through pathway 3 was low. At the same time the ambient tempearture decreased which means 
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more heat was required to make up the offset from the desired temperature. The back-up heater 

was used since electricity price was low, also the back-up heater could provide more heating 

eenergy comparing to the PCM heat exchanger.  

The PCM temperarture during the test days is shown in Fig. 5.12. It shows that the PCM 

heat exchanger was charged during the day and discharged during the night time for supplying 

the required heating. 

 

Fig. 5.12. PCM temperature during the test days. 

 

The value of K can be used for prioritizing either cost saving or thermal comfort. If low 

values of K chosen, the reward from action 3 would increase as costs are saved by using the 

stored solar energy. In contrast, if K increases, the offset from the comfort temperature would 

penalize the pathway 3 reward and action 4 would be taken. This is shown in Fig. 5.13.  

 

Fig. 5.13. Hut temperature for different K values. Blue, orange, and grey colours show the results for K 

values of 0, 0.25, and 1 respectively. Yellow line shows the MPC result. 
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As Fig. 5.13 shows, hut temperature during the heating period (midnight to early morning) 

for K = 1 was higher than the other cases since the back-up heater was used for heating the hut. 

For K = 0, the PCM heat exchanger was dischared for supplying heat since cost saving was not 

penalized with thermal comfort. As Fig. 5.13 showed, with K = 0.25 both pathways were used 

for heating since both cost saving and thermal comfort played important roles in calculating 

the rewards of pathway 3. Fig. 5.13 also includes the MPC result. As stated in the previous 

section, MPC provided the required demand for keeping the hut temperature above 20 °C. This 

led to minimun offset, however more energy was consumed which was mostly supplied by the 

back-up heater. 

Table 5.4 shows the cost saving and offset from 20°C which is the root square mean error 

for different values of K. The highest cost saving is for K = 0 since PCM was discharged in this 

case more than the other values. However, the correspoding thermal comfort is the worst. In 

contrast, K =1 led to the least offset, which means the highest thermal comfort. A balance 

between these two factors was achieved by using K = 0.25. 

Table 5.4 Summary of cost saving and thermal comfort for different values of K 

K value Cost saving (NZD) Offest (C) 

0 0.97 2.38 

0.25 0.52 1.64 

1 0.03 1.1 

 

Fig. 5.14 summarizes the effect of K value on the control performance. Lower values of K 

leads to more cost saving however it is obtained in expense of more offset from the desired 

temperature.  

 

Fig. 5.14. Effect of K value on cost saving and offset from the desired temperature. 
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1.17. Conclusion 

A study was conducted to determine the best control strategy for energy management in a 

system that included a solar collector, PCM heat exchanger, and backup heater. The challenges 

of implementing MPC as an optimal control strategy were discussed by developing a 

formulation for the studied system, which resulted in a nonlinear mixed-integer problem. 

Although the MPC optimisation problem could be solved, the results showed that local 

optimum solutions did not fully utilise the PCM heat exchanger storage and release capabilities. 

The DQN reinforcement learning technique was shown to be capable of dealing with the 

problem's complexity. We were able to include hut dynamics, current and future ambient 

conditions, and electricity price as states using deep neural networks. The results showed that 

DQN could solve the optimal control problem in real time. By adjusting a parameter in the 

reward definition, a trade-off between thermal comfort and energy cost savings could be 

achieved. 
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6.1.        Conclusion 

 
       Two of the four priority areas in New Zealand's energy strategy toward Zero Carbon Act are 

the development of renewable energies and the efficient use of energy [25]. In this thesis, these 

two areas were targeted by studying the digitalization opportunities in the dairy and renewable 

energy industries. The literature review showed that the DT entity for the processes studied in this 

research has not been developed. Combinations of data-driven and mechanistic methods were 

used to develop virtual entities for improving online operation. 

The remarkable conclusions and findings and possible future work are discussed in this chapter. 

In the first process, mechanistic models include many parameters and could not provide 

reliable online predictions of the fermentation pH dynamics. Data-driven models were used in 

combination of optimization formulation to build a virtual entity. 

• Data-driven based models were able to represent the pH dynamics of cream cheese 

fermentation. ANN reliably predicted the pH dynamics using the pH data as inputs on both 

lab and industrial scales. Additionally, the hybrid model prediction was improved using the 

in-line measurements along with the fermentation. Both models performed well in predicting 

the batch duration of cream cheese fermentation using the available measurements. 

• A DT virtual entity was developed by using optimization formulation for online scheduling 

of the fermentation vats, considering the unit constraints. It used the developed data-driven 

model’s outputs. The results showed that using the models to update the batch duration 

prediction improved the unit operation by saving energy, reducing waste, and reducing the 

idle time of the fermentation vats. 

• Although mechanistic models could represent the system dynamics in the second process, the 

online optimization was not achievable due to its high computational cost. A virtual entity for 

optimal control was achieved by using the mechanistic models for offline training of a data- 

driven method. 

• Dynamic modelling and economical design optimization of an active PCM system equipped 

with a solar air collector in Auckland were investigated. The experimental data were used to 

validate a model coupling the sub-models representing the dynamics 
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of the system's components. Results revealed the reliability of the model. The economical design 

optimisation for three scenarios using the dynamics model revealed different amounts of PCM 

for each scenario. The solar collector surface area, on the other hand, was 1 metre at its lowest 

point, indicating that the capital cost of solar collectors is one of the barriers to the cost-effective 

design of such systems. 

• A DT virtual entity was developed for optimal control of the active PCM system using the 

developed dynamic model. As a classical optimal control approach, MPC was not able to 

provide an online solution and use the full potential of the system to save energy and cost. 

Reinforcement learning was trained offline using the dynamic model. It showed better 

performance by providing an online solution that could be prioritized for temperature comfort 

or cost-saving. 

6.2. Recommendations for future work 

 
        The developed DT entities showed reliable solutions for both processes. However, more 

research is necessary for implementing the DT tools. 

• Data-driven models for predicting cream cheese fermentation pH dynamics can be improved 

using more industrial pH data, measured manually in the plant. These measurements can be 

used to verify the sensor's data which could be unreliable. Furthermore, lactose and lactate 

measurements in the plant can be taken more frequently in order to test the hybrid model 

using industrial data. 

• The DT for scheduling the fermentation vats can be used as a digital model or shadow to test 

its performance. This could show the challenges of using the developed tool before using 

that as a DT tool interacting with the plant. 

• Economical design optimization can be extended to bigger buildings. Additionally, some 

details, such as occupancy data, can be added to the building model to account for internal 

gain in various building application scenarios. This additional information would have an 

impact on the building's optimal design. 

• DT tools for optimal control of the active PCM system can be implemented in the facilities 

of Ardmore Campus. The Data Acquisition system is already available, which can receive the 

optimal control actions for manipulating the valves and fans. 
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Appendix A 

 

 
Two binary variables (E1(k) and E2(k)) with the if-conditional function were used to determine 

the 
,p PCMC value based on the PCM temperature as follows: 

If 
1( ) 1kE = ,  

( ) 27PCM kT  . Else, 
( ) 27PCM kT  +                                                                               (A.1) 

If 
2( ) 1kE = , 

( ) 23PCM kT  . Else, 
( ) 23PCM kT  −                                                                                (A.2) 

is an arbitrary small value. 

Therefore, there are three possible situations in terms of temperature: 

If 
( ) 1( ) 2( )23 1, 0PCM k k kT E E −  = =                                                                                                 (A.3) 

If 
( ) 1( ) 2( )23 27 1, 1PCM k k kT E E   = =                                                                                               (A.4) 

If ( ) 1( ) 2( )27 0, 1PCM k k kT E E +  = =                                                                                                 (A.5) 

Replacing the values of E1(k) and E2(k) the equation to calculate 
pC for each of these situations, 

  , ( ) 1( ) 2( ) 1( ) 2( ) ,min 1( ) 2( ) ,max( 2 ) / ( ) /p PCM k k k k k p k k pC E E E E C E E C= + − +                                             (A.6) 

If ( )

, ( ) ,min

1 1
23PCM k

p PCM k p

T
C C

 −  =                                                                                                (A.7) 

If ( )

, ( ) ,max

1 1
23 27PCM k

p PCM k p

T
C C

   =                                                                                             (A.8) 

If  ( )

, ( ) ,min

1 1
27PCM k

p PCM k p

T
C C

 +  =                                                                                               (A.9) 

 

The above approach for calculating ,p PCMC includes if else statements and multiplication of 

binary variables which makes the computational effort very heavy. 
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In this work, the above approach was replaced by Big-M formulation to facilitate the 

optimization problem. Three possible temperature zones (i = 1,2,3) and three binary variables, 
( )i kY  

were defined. 
( )i kY  is 1 if temperature is at zone i and 0 otherwise. In other words, the PCM 

temperature zone separation will be: 

Temperature zone 1: If 
( ) 1( )23 1PCM k kT Y −  = (and 0 for others)                                               (A.10) 

Temperature zone 2: If 
( ) 2( )23 27 1PCM k kT Y   = (and 0 for others)                                            (A.11) 

Temperature zone 3: If 
( ) 3( )27 1PCM k kT Y +  = (and 0 for others)                                              (A.12) 

The if statements of the original formulation were replaced by the following equations in the 

optimization formulation: 

1( ) 2( ) 3( ) 1k k kY Y Y+ + =                                                                                                                                     (A.13) 

1( ) 2( ) 3( )

, ( ) ,min ,max ,min

1 1 1 1
k k k

p PCM k p p p

Y Y Y
C C C C

= + +                                                                                 (A.14) 

  
( ) 1( )23 (1 )PCM k kT M Y− +  −                                                                                                                  (A.15) 

    ( ) 2( )23 (1 )PCM k kT M Y−  −                                                                                                                       (A.16) 

   ( ) 2( )27 (1 )PCM k kT M Y−  −                                                                                                                        (A.17) 

Equation A.13 is a logic constraint which ensures that the PCM temperature is at only one 

temperature zone defined in equations A.10-A.12 at any time. 
,p PCMC is calculated as a function 

of current temperature zone using Equation A.14. Since Equation A.13 forces only one Yi to be 

non-zero at any given time, this value is the one assigning the value to ,p PCMC .  In Equation A.15, 

for values under 23 − , 1( ) 1kY = and M is taken as a large value in this case 20oM C= was chosen. 

The last two constraints (Equations A.16 and A.17) are used to detect when the PCM temperature 

is at the second temperature zone (equation A.11). There is no need for a zone constraint 

regarding 3( )kY , since it will be the default case when 1( )kY and 2( )kY  are zero. 
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