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Abstract: Epigenetics refers to the DNA chemistry changes that result in the modification of gene
transcription and translation independently of the underlying DNA coding sequence. Epigenetic
modifications are reported to involve various molecular mechanisms, including classical epigenetic
changes affecting DNA methylation and histone modifications and small RNA-mediated processes,
particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected.
They are recognised to play a critical role as mediators of gene regulation, and any alteration in these
mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic
predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status,
are identified to interact with the human epigenome, highlighting the importance of epigenetic
factors as underlying processes in the aetiology of various diseases such as MetS. This review
will reflect on how both the classical and microRNA-regulated epigenetic changes are associated
with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of
epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic
drugs, epigenome editing tools and miRNA-based therapies.
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1. Introduction

The burden of non-communicable diseases (NCDs) or chronic diseases is increasing
globally at an alarming rate and is currently the leading cause of mortality worldwide [1],
with NCDs presently accounting for more than 70% of all deaths, most of which are pre-
ventable [2]. These diseases include cardiovascular diseases (CVD), chronic respiratory
disease, cancer and type 2 diabetes (T2DM) [3]. The main risk factors underpinning these
diseases involve aberrant changes in an individual’s metabolic and physiological profile
that eventually result in the development of metabolic syndrome (MetS). MetS is defined
as a multifactorial condition consisting of several inter-related anthropometric and bio-
chemical features, including increased visceral adiposity, high fasting blood glucose, high
blood pressure, low high-density lipoprotein-cholesterol (HDL-C) and high triglycerides,
with further immune and vascular alterations [4]. The risk profile of MetS underlies the
progressive development of diseases, including CVD and T2DM [5]. Complex interactions
between environmental factors, including dietary and lifestyle, with the genetic and epige-
netic makeup of an individual, are reported to be responsible for the pathophysiology of
MetS [3,6,7]. However, the exact aetiology underpinning the development of MetS remains
to be fully established [5].

Recent advances in the rapidly evolving field of epigenetics have revealed a com-
plex network of shared interconnections between epigenetic machinery and human dis-
eases [8–11]. Epigenetic modifications are reversible, differ across cell types and potentially
lead to increased disease susceptibility by producing long-term changes in gene transcrip-
tion [12,13]. Due to their key roles as mediators of gene regulation, epigenetic modifications
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may play a crucial role in developing pathological conditions [13]. Understanding the epi-
genetic machinery underlying MetS and how such epigenetic processes can provide utility
in the development of diagnostic tools (i.e., biomarkers) and therapies is fundamental in im-
proving the quality of life in individuals affected by MetS. Epigenetic changes can either be
inherited or accumulated throughout a lifetime but, unlike genetic changes, are reversible
and can therefore provide potential targets for MetS prevention and intervention [11].
Epigenetic patterns can also be altered under different developmental processes, dietary
alterations, lifestyles or metabolic status, thus highlighting the importance of epigenetic
factors as underlying processes in the aetiology of metabolic diseases [13–15].

This review will reflect on the classical epigenetic changes frequently associated with
the pathophysiology of MetS, including DNA methylation and histone modifications.
In addition to these mechanisms, we will then describe how miRNAs contribute to the
epigenetic machinery of MetS by considering, firstly, how epigenetic mechanisms regulate
miRNA expression and function and, secondly, how miRNAs reciprocally regulate the
classical epigenetic mechanisms of DNA methylation and histone modifications. Finally,
we will focus on epigenetic-based strategies used to modify MetS outcomes, including
epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.

2. The Classical Epigenetic Mechanisms in MetS

Epigenetics refers to the DNA chemistry changes that result in gene transcription
modification and translation independently of the underlying DNA coding sequence. Epi-
genetic changes are increasingly thought to be of importance both in normal physiological
processes and disease conditions [13]. The “classic” epigenetic mechanisms encompass
DNA methylation and histone modifications, both of which can reduce or prevent RNA
transcription and may be heritable [13,16,17]. Growing evidence has reported the function
of classic epigenetic mechanisms in the regulation of gene expression [11,18,19]. However,
the role of epigenetic marks in the development and progression of MetS is not clearly
understood. Thus, exploration of epigenetic changes in the setting of the MetS may provide
a deeper understanding of the molecular mechanisms and pathways involved. In this
section, we focus on these classic epigenetic processes associated with the pathophysiology
of MetS.

2.1. DNA Methylation

DNA methylation refers to a covalent and reversible transfer of a methyl group from
S-adenosyl methionine (SAM) to the pyrimidine C5 position of the cytosine residues
on genomic 5′-C-phosphate-G-3′ (CpG) dinucleotides, resulting in the formation of 5-
methylcytosine (5-mC) [20]. A group of specific enzymes known as DNA methyltrans-
ferases (DNMTs) function as catalysers to inscribe the methylation marks on the genomic
DNA. DNMTs are categorized into either maintenance DNMTs (DNMT1, DNMT2) that
are involved in restoring the existing pattern of DNA methylation during cell replication,
or de novo DNMTs (DNMT3a, DNMT3b and DNMT3L) responsible for catalysing new
methylation of genomic DNA during embryonic development [21]. These DNMTs work in
coordination to maintain a methylation pattern that supports a balanced transcriptional
control over the genome. Methylation patterns within the promoter sequences of the
DNA results in the downregulation of gene expression, while it has been reported that
DNA methylation within the gene upregulates its expression. In contrast, the ten-eleven
translocation (TET) family of enzymes, through their methylcytosine dioxygenase activity,
assist in the removal of existing methylation marks by causing the conversion of 5-mC to
5-hydroxymethylcytosine (5-hmC) [20].

The association between aberrant DNA methylation and disease state has been stud-
ied across various disorders, including CVDs, autoimmune disorders and various can-
cers [22,23]. In recent years, epigenome-wide association studies (EWASs) have identified
global and locus-specific epigenetic changes potentially involved in the pathophysiological
mechanisms responsible for the development of MetS (Table 1) [24,25]. For example, an
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EWAS study performed in individuals with MetS demonstrated decreased methylation
of CPT1A, a gene with a key role in regulating mitochondrial fatty acid oxidation (FAO),
to be correlated with the increased metabolic risk and overall MetS phenotype [25]. In a
recent EWAS study in African American adults, MetS was consistently associated with
increased methylation in the ABCG1, a gene that encodes a protein in the ATP-binding
cassette transporter family and is involved in intra- and extra-cellular signalling and lipid
transport [24,26]. Additionally, it has been shown that marked differences exist in the
prevalence of MetS and that of the DNA methylation patterns among middle-aged African
Americans and white individuals diagnosed with MetS [25].

Further, with the acknowledged role of adipose tissue in the maintenance of metabolic
homeostasis and altered adipogenesis associated with the MetS, studies have been un-
dertaken to understand better the role of epigenetic processes in regulating the adipocyte
function in the setting of such metabolic disorders [23,27,28]. A recent study by Daniel
et al. [23] identified global DNA methylation of LINE-1 to be associated with metabolic
deterioration and glucose metabolism in visceral adipose tissue of individuals with and
without MetS. Strong associations between methylation of specific genes involved in sub-
strate metabolism (LPL and PPARA) and inflammation (TNF) with that of MetS status
was also observed in these individuals [23]. Besides, it has been identified that alterations
in dietary patterns could modulate the methylation patterns of key metabolic genes and
hence their expression [29,30]. For example, it has been demonstrated that dietary total
antioxidant capacity is positively correlated with the global DNA methylation of LINE-1
levels in individuals with MetS after an 8-week hypocaloric diet [31]. Taken together, it is
evident that DNA methylation has an important role to play in MetS development and pro-
gression; however, most of these studies only report associative effects and not cause–effect
relationships. Of note, a potential limitation of observations to date is that many studies
utilise analysis on whole tissues with mixed cell populations, thus, changes in methylation
patterns observed may be due to tissue or cell population heterogeneity [32]. Furthermore,
only small changes in methylation (1–10%) have been associated with complex diseases,
and these observed differences in methylation profiles could arise as a result of variations
in cell populations within the same tissue [33]. However, the functional consequences
of such small absolute changes in methylation patterns in the setting of MetS cannot be
discounted.

Table 1. Human studies showing associations between aberrant DNA methylation and features of
metabolic health.

Disease Differentially Methylated Genes Sample Type Ref

MetS CPT1A CD4+ T cells [34]
MetS ABCG1 Blood (buffy coat) [26]
MetS LINE-1 Visceral adipose tissue [23]

T2DM PPARGC1A Pancreatic islets [35]
T2DM TXNIP Leucocytes [36]

Hypercholesterolemia TNNTI Blood [37]

2.2. Histone Modifications

Classical epigenetic mechanisms also involve post-translational modifications of his-
tone proteins by specialized histone-modifying enzymes, resulting in changes to chromatin
architecture and gene expression regulation [38]. There are several post-translational
modifications of histone proteins, with acetylation, phosphorylation, methylation and
ubiquitination of histones being the most commonly observed [39]. Methylation of histones
could result in either an either an increase or decrease in gene expression. For example,
methylation of histone H3 at lysines 9, 27, and 36 would reduce gene expression, while
methylation of histone H3 at lysines 4 and 79 and methylation of histone H4 at lysine 20
would generally result in an increase in proximal gene expression [40]. The dynamics
underlying these changes are mediated through histone methyl transferases that place
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methyl groups and histone demethylases that remove methylation [39]. Similarly, acetyla-
tion of lysines on histones H3 and H4 is associated with increased transcription of nearby
genes. Acetyl groups are placed by histone acetyl transferases and removed by histone
deacetylases (HDAC). Histone phosphorylation is less well studied but is suggested to
increase gene expression in combination with H3K56ac [9]. Histone variants such as H2A.Z
and H3.3 have been demonstrated to play specific roles in regulating chromatin structure
and function by influencing transcription of nearby genes [15].

Alterations in histone modifications are identified as essential components of epi-
genetic networks, controlling energy homeostasis and altering adipocyte thermogenesis,
thereby contributing to the pathogenesis of MetS (Table 2) [28,41]. For example, a study
involving mice deficient in histone demethylase, HDM2a, an enzyme responsible for H3K9
demethylation, reported the development of adult-onset obesity, hypertriglyceridemia and
hypercholesterolemia, as well as insulin resistance (IR), in the deficient mice as compared
to the wild type [41]. Additionally, histone modifications are also reported to interact
with pathways related to the development of IR and inflammation, important hallmarks
of MetS [42]. Consistent with this notion, IR has been shown to positively correlate with
HDAC3 activity and HDAC3 mRNA levels in peripheral blood mononuclear cells of T2DM
patients [43]. Moreover, sirtuins (SIRT, a class of HDACs) are reported to act as metabolic
regulators of glucose homeostasis and IR-associated inflammation [44,45]. A lack of SIRT1-,
SIRT2- and SIRT6-dependent deacetylation and activation of specific adipose gene pro-
grams have been shown to contribute to the development of metabolic disorders, including
obesity andT2DM [46,47], thus further suggesting a role for histone modifications in the
aetiology of metabolic disorders.

Table 2. Human studies showing associations between histone modifications and features of
metabolic health.

Condition Histone
Modification Sample Type Ref

Insulin resistance and inflammation HDAC3 Peripheral blood mononuclear cells [43]
Glucose metabolism HDAC9 Liver [48]

Vascular dysfunction and T2DM Set7 Peripheral blood mononuclear cells [49]
Obesity and T2DM SIRT1 Visceral adipose tissue [46]

Glucose metabolism Swi/Snf Pancreatic islet beta cells [50]

3. Epigenetics and miRNAs in MetS

While growing evidence has demonstrated an important role of classical epigenetic
mechanisms, including DNA methylation and histone modifications, it is important also
to consider factors outside of the nucleotide sequence that could affect gene expression.
These factors alter the gene expression by affecting underlying mechanisms responsible for
how transcription factors and other proteins bind to DNA, thus changing gene expression,
which affects metabolism. In the context of such factors, there is increasing recognition
of the role of small RNA molecules, particularly microRNA (miRNA), in the epigenetic
regulation of gene expression [13,19,51].

miRNAs are evolutionary conserved, short non-coding RNA molecules of size ~18–
24 nucleotides and are known to be involved in post-transcriptional and transcriptional
regulation of gene expression and protein synthesis [52]. More than 2500 mature miRNA
species have been discovered in the human genome [53]. It has been reported that >60%
of protein-coding genes in the human genome are targeted by miRNAs [54], with a single
miRNA being able to target and regulate several thousand mRNAs [55]. miRNAs function
by binding to complementary sequences on the 3′-untranslated region (3′UTR) of the target
messenger RNA (mRNA), thereby decreasing its stability and translation efficiency [56].
Dysregulation in the expression of miRNAs has been shown to modulate pathological
pathways involved in the development of various diseases [57], such as T2DM [58,59],
cancer [60,61] and CVD [62,63], and therefore have utility as potential biomarkers or
diagnostic tools for both normal physiological and disease states [64].
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Interestingly, the interaction of miRNAs with their gene targets is dynamic and de-
pendent on various factors, such as their subcellular location, including mitochondria,
endoplasmic reticulum and multivesicular bodies, their abundance, target mRNAs and
the affinity of the miRNA–mRNA interaction [65]. Emerging studies to date have not only
established the role of miRNAs in key physiological processes, including cell proliferation,
DNA repair, cellular differentiation, insulin secretion, aging, metabolism and apoptosis of
the host cell [66,67], but have shown them to be secreted into extracellular fluids and trans-
ported to target cells via vesicular bodies, such as exosomes, microvesicles or by binding to
Argonaute (Ago) proteins (25) acting as the cell to cell mediators, thereby regulating their
gene expression in a paracrine or endocrine manner [68,69].

In addition to their post-transcriptional functions, miRNAs are also reported to be
involved in transcriptional gene regulation by binding to specific sequences of epigenetic
events on DNA [70]. For example, miRNAs control the expression of various epigenetic reg-
ulators, such as DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) [71].
Similarly, DNA methylation and histone modifications can regulate the expression of some
miRNAs. Taken together, miRNAs and epigenetic regulators cooperate to modulate the
expression of mutual targets by forming a feedback loop. Therefore, although not strictly
considered epigenetic factors, miRNAs contribute to gene expression modulation through
epigenetic mechanisms. Any disruption of this complex regulation may participate in the
development of different diseases, including MetS.

3.1. Epigenetically-Regulated miRNAs in MetS

Previous studies investigating the pathophysiology of MetS have revealed a complex
network of reciprocal interconnections between those of miRNAs and the classic epige-
netic machinery of DNA methylation and histone modifications [19,51,72]. In addition to
regulating structural genes by the classical mechanisms, they have an important role in
regulating miRNA expression [51,73]. DNA methylation regulates miRNA transcription
either by hyper- or hypo-methylation of the promoter regions of miRNA genes [74]. Indeed,
around 50% of the miRNAs are associated with CpG islands [75], and methylation of these
sites on miRNA promoters can result in their modified expression [73,76]. For instance,
it has been observed that pancreatic-β cells of individuals with T2DM have a cluster of
miRNAs that are epigenetically regulated by hypermethylation of the DLK1–MEG3 locus
on chromosome 14q32 [77]. A study by Wang et al. [78] examining expression levels and
DNA methylation of miR-375, one of the most abundant miRNAs in the human pancreatic
β cells, identified hypermethylation of its promoter and downregulated expression in the
plasma of individuals with impaired glucose tolerance compared to those with normal
glucose tolerance. Further, methylation of CpG sites located in the coding regions of
miR-1203, miR-412 and miR-216a is responsible for their differential expression in obese
children’s peripheral blood compared to non-obese children [79].

Epigenetic regulation of miRNA expression cannot be represented by DNA methy-
lation alone but also involves histone post-translational modifications [80,81]. While the
impact of alterations in the histone modifications on miRNA expression has not been exten-
sively investigated in MetS per se, limited studies to date have implicated a regulatory role
of histone-modified epigenetic regulations on miRNA expression during various patho-
physiological mechanisms responsible for MetS development. Among these modifications,
chromatin structures have been associated with the biogenesis and post-transcriptional reg-
ulation of miRNAs [82]. Several miRNAs related to metabolism are shown to be regulated
by a repressive chromatin structure involving H3K27me3 mediated by an epigenetic regu-
lator enhancer of zester homolog 2 (EZH2) [83,84]. Expression of miR-101-3p, a pancreatic
islet-enriched miRNA with a role in insulin secretion and β cell functioning [85], is demon-
strated to be regulated by H3K27me3 modification in EZH2. Moreover, epigenetically
regulated alterations in miRNAs induced by suboptimal maternal nutrition or endocrine
factors are also reported to be responsible for altered gene expression and to promote
offspring and adult MetS phenotypes [86,87]. Altogether, these studies provide evidence
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for a functional link between classical epigenetic regulations of miRNA underpinning
pathophysiological processes characterised as causal factors in the development of MetS.

3.2. miRNA-Induced Epigenetic Regulation in MetS

miRNAs are reported to reciprocally regulate the classical epigenetic processes and
play an essential role in the pathophysiological mechanisms of various diseases, such as
cancer and T2DM [88]. Numerous studies provide insights into miRNA contributing to the
pathophysiology of metabolic-related diseases through the regulation of DNA methyla-
tion [78,89]. miRNAs are shown to regulate the expression of key DNA methyltransferases
(DNMTs), including DNMT3a and DNMT3b and methylation-related proteins involved in
de novo methylation [90]. For instance, miR-148, an identified circulatory biomarker of
MetS [91], targets DNMT3b at the penultimate exon of their coding regions [92]. Similarly,
members of the miR-29 family are shown to target DNMT3a and DNMT3b [87] directly.
Dysregulation in the expression levels of miR-29 has been linked to impaired metabolic
function, including altered insulin sensitivity and glucose metabolism, thus contributing to
the pathogenesis of MetS [93,94]. In addition, a study involving a model of obesity in the
mouse identified hepatic miR-29b to regulate DNMT3a and the hormone-encoding gene
energy homeostasis-associated (Enho) in modulating insulin sensitivity [93].

It is well known that miRNA-mediated epigenetic changes induce obesity-associated
adipose tissue inflammation, a significant factor responsible for developing IR and T2DM [95].
For example, it has been shown that obese adipocyte-derived exosomes have an increased
expression of miR-29a. When transferred into adipocytes, myocytes and hepatocytes, these
exosomes could result in IR both in in vitro and in vivo models [96]. Furthermore, SIRT1, a
class-III histone deacetylase with an essential role in inflammation and metabolic home-
ostasis, has been identified to be regulated by miRNAs in the adipose tissue of individuals
with obesity [44,97]. For instance, miR-377, an important regulator of adipogenesis, has
been shown to target the 3’-UTR of SIRT1 mRNA directly, and downregulate its protein
abundance, thereby promoting obesity-induced inflammation and IR [98]. Decreased
insulin sensitivity, an important hallmark of MetS, has also been reported to be affected
by miRNA-induced epigenetic alterations, partly through suppression of SIRT1 [47]. For
example, miR-221, an miRNA known to affect adipocyte differentiation, metabolic home-
ostasis and insulin signalling [99], has been shown to promote adipose tissue inflammation
by negatively regulating SIRT1 and decreasing adipose tissue insulin sensitivity [100]. miR-
NAs are also reported to suppress the differentiation of preadipocytes in a mouse model of
obesity by involving the interaction of miR-138-5p with the 3’UTR of EZH2 [101]. Addi-
tionally, miR-22-3p acts as an inhibitor of adipogenic differentiation by suppressing histone
deacetylase-6 (HDAC6) in human adipose tissue-derived mesenchymal stem cells [102].
Considering the evidence to date, these findings provide a framework for miRNAs in
regulating the epigenetic machinery underlying the pathophysiological mechanisms linked
to MetS development and progression.

4. Epigenetic Strategies for MetS Prevention/Reversal

The epigenome is in constant feedback with both the genotype and phenotype of an
organism, and it has a profound effect on the pathophysiology of MetS [42]. Moreover, it
has been reported that environmental factors, including diet and nutrition, can trigger the
change in epigenetic regulation responsible for the pathophysiology of MetS. Therefore,
developing interventions to modify the epigenetic alterations would enable ameliorating
MetS and related metabolic disorders. These epigenetic-based strategies would include
pharmacological interventions, epigenetic-based diets, editing tools for modifying the
epigenome and miRNA-based therapeutics and diagnostic tools.

4.1. Epigenetic–Pharmacological Interventions

Epigenetic modifications are potentially reversible, and therefore pharmacological
interventions targeted at these modifications hold great potential for the prevention, diag-
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nosis, treatment and prognosis of MetS [22]. Drugs targeting epigenetic changes are termed
either “epigenetic drugs” or “epidrugs”. Possible epidrugs would involve therapies that
can alter DNA methylation, histone/chromatin modifications or miRNA expression [103].
Epidrugs mainly act as inhibitors for most of their targets but can also potentially activate
them. Currently, several drugs targeting the enzymes necessary for undergoing modifica-
tions and nucleoside and non-nucleoside analogues of epigenetic changes are undergoing
preclinical and clinical trials [14].

Since aberrant methylation of metabolic gene promoters and overexpression of DN-
MTs has been established as one of the major key players in the pathophysiology of
MetS, demethylating agents such as DNMT inhibitors appear to offer promise as potential
therapeutic targets for MetS. DNMT inhibitors function by blocking the key methylation
enzymes such as DNMT1, DNMT3a and DNMT3b, which subsequently blocks DNA methy-
lation. For instance, 5-azacitidine, a structural analogue of cytosine, when incorporated
into DNA, is methylated by covalently bound DNMT3a, eventually inhibiting the enzyme
activity [104]. A study by You et al. [105] utilizing insulin-resistant 3T3-L1 adipocytes iden-
tified an increased percentage of insulin-stimulated glucose uptake upon treatment with
5-azacitidine [105]. Another study employing a rat model of obesity observed that DNA
hypermethylation was associated with reduced insulin sensitivity [106]. Using insulin-
resistant rat hepatocytes, the authors observed that treatment with 5-azacitidine could
restore insulin sensitivity [106].

One other class of epidrugs would involve modulators of histone acetylation, i.e.,
inhibitors of histone acetyltransferase (HATi) and inhibitors or activators of histone deacety-
lase (HDAC) [107]. For instance, tannic acid (TA), a plant-derived hydrolysable tannin
polyphenol and a novel HATi, is reported to potentially attenuate lipid accumulation and
ameliorate the development of non-alcoholic fatty liver diseases via inhibition of HAT
activity [108]. Evidence from several preclinical and clinical trials suggests that other
HDACis, including valproic acid (VPA), sodium phenylbutyrate (PBA) and trichostatin A
(TSA), could have beneficial roles in reducing fat accumulation, IR, inflammation and glu-
coneogenesis, thus exerting anti-diabetic effects [109–113]. A different category of epidrugs
would include regulators of SIRTs [114]. For example, fluvastatin, an inhibitor of 3-hydroxy-
3-methylglutaryl-coenzyme A reductase (HMG CoA), is reported to act as the activator
of SIRT6 in liver cell models via phosphorylation of the AMPKα and SREBP-1 pathway,
thereby maintaining cholesterol regulation [115]. Apart from acting as an activator, small
molecules, such as 2,4-dioxo-N-(4-(pyridin-3-yloxy) phenyl)-1,2,3,4-tetrahydroquinazoline-
6-sulfonamide, are identified to act as Sirt6 inhibitors in mice models of T2DM [116]. This
molecule was identified to improve glucose tolerance in the mice by increasing the glucose
transporters GLUT1 and GLUT1 and reducing insulin, triglycerides and cholesterol levels.

Epidrugs have the potential to provide novel therapeutic agents for various diseases,
including MetS. However, there are still challenges remaining for implementing epigenetic-
based approaches in the clinic [14]. In particular, to achieve the promise of reversing
epigenetic alterations by genome-wide-acting epidrugs, a comprehensive understanding
of their mechanism of action and specificity in relation to a specific disease and tissue is
required [117].

4.2. Epigenetic Diets

Dietary factors play a significant role in human health, with dietary bioactive com-
pounds reported to act as key mediators of epigenetic reprogramming [15,118]. The diets
or dietary compounds identified to mediate metabolic programming through epigenetic
modifications are termed “epigenetic diets”. Epigenetic diets not only modify the classic
epigenetic mechanisms of DNA methylation and histone modifications, but they have
also been identified to interact with miRNAs and are therefore involved in the dynamic
regulation of gene expression, controlling cellular phenotypes linked to both the prevention
and progression of disease phenotypes [119].
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Growing evidence involving human clinical and dietary intervention studies supports
the importance of individual nutrients, whole foods and dietary patterns in preventing and
managing metabolic disorders by altering the epigenetic modifications [118,119]. Among
such diets, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown
to have anti-obesity effects by modulating epigenetic mechanisms responsible for the un-
derlying pathophysiology, including lipid metabolism adipokine regulation, adipose tissue
inflammation and adipogenesis. Several animal and human studies have also reported con-
sumption of n-3 PUFAs to modulate the expression of miRNAs involved in key metabolic
pathways, such as lipid metabolism and inflammation [120]. Likewise, Mediterranean diets,
due to their abundant source of phytochemicals, are reported to have positive health ef-
fects by modulating the epigenomic mechanisms regulating processes related to metabolic
homeostasis and pathophysiological pathways involved in metabolic disorders [121,122].
An example of one of the essential components found in the Mediterranean diet would
be that of sulforaphane, an isothiocyanate known to reduce hepatic glucose production
and improve glucose control in individuals with obesity and T2DM [123,124]. Based on
the molecular mechanism of action of sulforaphane, epigenetic control of histone deacety-
lase (HDAC) and DNA methylation activity could be a possible mechanism underlying
the observed changes in glucose control [125]. Both acute and long-term Mediterranean
dietary patterns have also been shown to modulate miRNA expression associated with
the pathogenesis of MetS, such as inflammatory gene regulation, atherogenic mechanisms
and adipogenesis [126–129]. For example, a study analysing the expression of miRNAs
in response to 8 weeks of intake of a hypocaloric Mediterranean diet in individuals with
MetS reported an altered expression of miRNAs (decreased miR-155 and increased let-7b)
that are involved in the pathogenesis of CVD [127].

Another example of dietary-derived HATi would involve curcumin, a polyphenolic
compound in turmeric. Curcumin is reported to decrease hyperglycaemia-induced cytokine
production in monocytes via reducing HAT activity [15,130]. Among activators of histone
deacetylase, resveratrol, a small polyphenolic compound, has been identified to improve
hepatic gluconeogenesis under IR conditions by acting via translocation of HDAC4 from the
nucleus to the cytoplasm, thereby modulating the energy metabolism pathway [131,132].
Subsequently, several human clinical trials have shown positive health effects of resveratrol
supplementation in individuals with obesity, NAFLD or T2DM [133–135]. In addition,
resveratrol supplementation is also identified to modulate the expression of inflammation-
related miRNAs [136,137]. For instance, a study by Carneriro et al. reported that a daily
intake of grape extract and resveratrol-containing supplement resulted in the upregula-
tion of miR-21, miR-181b, miR-663 and miR-30c and the downregulation of miR-155 in
peripheral blood mononuclear cells of T2DM and hypertensive patients with coronary
artery disease [138]. Moreover, the authors also showed an inverse relationship between
the upregulated miRNAs and inflammatory cytokine gene expression [138].

Additionally, natural phenolic compounds, including catechin, epicatechin and their
oligomers proanthocyanidin and epigallocatechin-3-gallate (EGCG), are considered biolog-
ical modulators of MetS [30,139]. In both human and animal models of obesity, catechins
are shown to attenuate dyslipidaemia and IR and reduce concentrations of inflammatory
cytokines [140–142]. It has been reported that catechins mediate these effects, in part, by
modulating epigenetic mechanisms such as DNMT inhibition, increasing HDAC activity or
by inhibition of HAT activity [143,144]. Further, polyphenols are also reported to modulate
miRNA expression involved in regulating genes and pathways underlying MetS [145].
For example, using a high-fat diet-fed mice model, it was shown that following intake of
green tea for 12 weeks, mice showed a decrease in adipose miR-335 with an increase in
energy expenditure and a reduction in adipose tissue inflammation and IR-associated gene
expression [146].

Another class of epigenetic diets would include diets that are involved in the modu-
lation of one-carbon metabolism. One-carbon metabolism comprises a complex network
of pathways involved in transferring and utilising one-carbon units necessary for nucleic
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acid biosynthesis, amino acid metabolism and methylation processes [147,148]. Growing
evidence has suggested important links of one-carbon metabolism with insulin sensitivity
pathways, fat deposition and energy homeostasis [149–151]. These diets would involve
nutrients containing methyl donors such as choline, betaine and folate that serve functional
roles across the body through their metabolic, epigenetic and immunomodulatory prop-
erties [152–154]. Based on the fact that one-carbon metabolism involves methyl donors
for epigenetic reactions and that miRNA has an important role to play in the modulation
of these mechanisms, this might suggest a bi-directional association between one-carbon
metabolites and miRNA profiles [155,156].

Collectively, epigenetic diets may act as important adjuncts to the management of
MetS. Supplementation of epigenetic diets would help enhance metabolic homeostasis by
ameliorating processes involved in the pathophysiology of MetS, including inflammation,
obesity, glucose intolerance and insulin insensitivity. Understanding the molecular targets
of epigenetic diets in relation to maintaining metabolic homeostasis and the pathophysiol-
ogy of metabolic disorders could help discover novel and effective therapeutic targets.

4.3. Epigenome Editing Tools

Changes in epigenetic patterns can ultimately alter an entire metabolic pathway, and
these epigenetically disturbed pathways could serve as key targets for the treatment of
various metabolic diseases, including MetS. Given the reversible nature of epigenetic
modifications, developing tools to regulate gene expression by modifying these epigenetic
states could be of significant importance [157,158]. The widely used epigenetic editing tools
include the zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs) and
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-deactivated nuclease
CRISPR-associated Cas9 protein system (dCas9) [159,160]. ZFPs and TALEs are modular
DNA-binding proteins that form specific interactions between amino acid side chains of the
DNA-binding domain and the nucleotides of target DNA sequences [157,161]. In contrast,
the CRISPR-dCas9 targets DNA by enabling RNA:DNA base pair complementarity [160].
These tools, combined with epigenetic enzymes such as DNA methyltransferases, histone
lysine/methyltransferases and histone deacetylases/demethylases, enable the reversibility
of epigenetic modifications in a gene-specific manner.

The use of epigenetic editing tools for MetS is still in its infancy, although there is grow-
ing interest in using these tools for other related metabolic diseases, such as T2DM [162].
Since the loss of insulin-secreting β-cells is characteristic of the diabetes pathophysiology
and because these cells do not proliferate readily, expanding the source of these cells
remains a challenge. To enhance the rapid proliferation of human β-cells, a study by Ou
et al. [163] utilized epigenetic editing tools to promote the proliferation of human β-cells in
a diabetic, immune-compromised mice model. The authors used in situ human β-cells to
target demethylation of imprinting control region 2 (ICR2) using a transcription activator-
like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) and repressed
expression of p57 (cell cycle inhibitor). Further, transplantation of these epigenetically
edited β-cells into diabetic immune-compromised mice reduced blood glucose levels. An-
other example includes epigenetically modified expression of Pcsk9, a gene responsible
for regulating circulating cholesterol levels [157]. Systemic administration of a dual-vector
adeno-associated viral 8 system (AAV8) system expressing dCas9 fused to the Krüppel-
associated box epigenetic repressor motif (dCas9KRAB) and a Pcsk9-targeting guide RNA
(gRNA) in the liver of adult mice resulted in reductions in the levels of both circulating
Pcsk9 and cholesterol. Taken together, these studies establish the potential of epigenetic
editing tools for dissecting gene regulation mechanisms, understanding the pathophysio-
logical mechanism of MetS and modulating gene expression for therapeutic applications.

4.4. miRNA-Based Therapy and Diagnostics

Growing evidence has established dysregulated miRNA expression as a molecular
signature in MetS. Like classical epigenetic mechanisms, targeting miRNAs is considered
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a potential method for developing novel therapeutic targets for MetS. miRNA-based
therapeutics rely on inhibition of the upregulated miRNAs (antagomiRs) or the restoration
of downregulated miRNAs (mimics). Moreover, because miRNAs are stably present in
human bio-fluids and are disease- and tissue-specific, quantifying their abundance in blood
samples has gained significant attention given their potential utility as biomarkers of MetS
diagnosis, prognosis and response to treatment.

4.4.1. miRNA Therapeutics

Considering that miRNAs are involved in regulating multiple pathophysiological
pathways with relevance to different components of MetS, there is a growing interest in
establishing miRNA-based therapeutics [164,165]. miRNA therapeutics can be either in
the form of miRNA mimics that amplify the impact of a specific depressed miRNA, or
antagomiRs that suppress a specific overexpressed miRNA expression. To date, several
miRNAs are in different phases of preclinical and clinical trials to be classified as novel
therapeutics for several diseases [166,167]. An example of an miRNA-based therapeutic for
cardio-metabolic diseases is MGN-9103, a locked nucleic acid (LNA)-modified antisense
oligonucleotide (ASO) by Viridian Therapeutics, formerly known as miRagen Therapeu-
tics [168]. MGN-9103 is an antagomiR designed against miR-208, a cardiac-specific miRNA
with known benefits for cardiac function and has a therapeutic potential in improving sys-
temic insulin sensitivity and glucose tolerance that contribute to MetS. Another antagomiR
includes anti-miR-33, developed by Regulus Therapeutics, which is currently in preclinical
stages of development. The use of anti-miR-33 on atherosclerosis regression in diabetic
mice was shown to overcome the deleterious effects of T2DM [169].

Although the development of miRNA-based therapeutics could represent a novel
treatment approach for various diseases, several challenges remain, including their stability
and mode of delivery [170,171]. Commercially prepared miRNA molecules are quite
unstable, therefore natural and chemically modified molecules such as 2′-O-methyl (2′-
OMe) or LNA are used to stabilize and reduce their high reactivity [170]. Secondly, accurate
delivery of these therapeutics to the desired tissue for treatment specificity remains a
challenge. Approaches undertaken for the precise delivery of these miRNA therapeutics
involve using designed nanoparticles or liposome-like particles incorporating miRNAs
that can be targeted to different organs, or combining miRNA with a specific molecule that
will bind to the cells of interest and enhance endocytosis [168].

4.4.2. miRNA Biomarkers

Emerging research into the identification of reliable and sensitive biomarkers for the
progression and development of different diseases have supported the use of circulatory
miRNAs [52,172]. Any deviation from normal miRNA-mediated regulatory networks
appear to be a common characteristic of various disease pathogenesis, including cancer,
CVDs and other metabolic diseases, thus suggesting circulatory miRNAs could be essential
components in the disease pathobiology [173,174]. Circulatory miRNAs in clinical samples
are reported to be highly stable, and they can withstand unfavourable physiological
conditions, such as variations in pH and storage [175]. Moreover, the diagnosis of diseases
with similar aetiologies remains a significant challenge [176]. The abundance of circulatory
miRNAs is reproducible with disease and tissue specificity [177]. Since miRNAs meet most
of the required criteria for being a biomarker, including accessibility, high specificity and
sensitivity, there is an increasing interest in the utility of circulatory miRNAs as potential
biomarkers for diagnosis, as well as markers of disease progression [178]. It has to be also
highlighted that the therapeutical modulation of distinct miRNAs is gaining importance
for the management of patients with MetS features, particularly for T2DM; for instance,
it has been recently shown that novel anti-diabetic agents may exert a direct epigenetic
effect in T2DM patients, regulating miRNAs involved in the maintenance of endothelial
cell homeostasis, and that this effect is independent of the metabolic control [179].
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Although several diagnostic measures, including body mass index (BMI), total body
fat and blood levels of glucose, HbA1c, lipids and pro-inflammatory cytokines, are available
as markers of metabolic health, diagnosis is usually missed in the early stages of these
diseases as these markers are generally only detectable upon disease progression [180].
On the other hand, miRNAs have gained increasing attention as a possible means to
provide insights into the complex gene regulatory mechanisms involved both in normal
physiology and in pathophysiological processes by acting as mediators (and markers) of
disease [181]. It has also been reported that variations in miRNA expression profiles can
be seen as the body’s integrative response to genetic susceptibility and environmental
effects, hence with potential as predictive, diagnostic and prognostic markers [182]. While
studies performed both in in vitro and in vivo experimental models have highlighted the
associations between altered circulatory miRNA abundances and the dysregulation of
contributory factors related to cardio-metabolic diseases [183,184], little is known about
the relationship between circulatory miRNAs and the early stages of MetS prior to the
development of overt T2DM or CVD.

In relation to miRNAs as biomarkers of MetS, we have previously reported the circu-
latory miRNAs miR-15a-5p and miR-17-5p as predictive biomarkers of MetS [4]. Both of
these miRNAs have an identified role in regulating molecular mechanisms underlying the
pathophysiology of metabolic derangements, including β-cell apoptosis, IR and central
obesity, which is well known [185,186]. We also observed miR-15a-5p and miR-17-5p abun-
dance to significantly correlate with individual MetS components, including BMI, waist
circumference, plasma HDL, plasma glucose and blood pressure. Since MetS represents a
complex pathophysiology, correlations of these miRNAs with more than one component
suggest that the identified miRNAs might be involved in regulating complex metabolic
pathways responsible for the development and progression of MetS. Further, it has been
identified that different miRNAs can regulate different components of MetS (Table 3) [187].
One such example would include an increased abundance of miR-221 and let-7g in the cir-
culation of an Asian cohort with MetS [187]. The abundance of both miRNAs was observed
to increase with an increasing number of MetS components presented, with let-7g and
miR-221 abundance increasing in individuals with more than four components of MetS.

Table 3. Human studies reporting association between circulatory miRNAs and features of metabolic
health.

Disease miRNA Sample Type Ref

MetS/Atherosclerosis/Obesity miR-15a-5p ↓ Plasma [4,188]

MetS/Obesity miR-17-5p ↓ Serum/Plasma [4,189]

MetS
Chronic Heart Disease with T2DM miR-21-3p ↓ Plasma

↑ Plasma [190]

Obesity/Chronic Heart Disease miR-29a-5p ↑ Plasma [191]

T2DM let-7 family ↑ Plasma [192]

Obesity/T2DM miR-122-5p ↑ Plasma [193]

Atherosclerosis/T2DM miR-126-5p ↓ Plasma [194]

Obesity miR-143-5p ↓ Plasma [195]

T2DM miR-144-5p ↑ Plasma [196]

Obesity/T2DM miR-221-3p ↓ Plasma [197]

Obesity miR-222-3p ↑ Plasma [198]

T2DM/Obesity miR-320a ↑ Plasma [199]

T2DM/Diabetic Cardiomyopathy miR-370-3p ↑ Plasma [200]

T2DM miR-375 ↑ Serum [201]

Diabetic Cardiomyopathy miR-186-5p ↑ Plasma [202,203]
↓ indicates decreased abundance compared to controls; ↑ indicates increased abundance compared to controls.
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Nonetheless, research into the use of miRNAs as biomarkers for MetS is still in its
infancy. To date, the findings generally lack reproducibility, with examples of inconsistent
reporting across groups that have analysed the same disease pathology [204,205]. Some of
this discordance can be overcome by the use of standardized protocols controlling for both
pre-analytical conditions, including sample handling (collection, transport and storage),
population under investigation (healthy or diseased) and analytical factors including
abundance quantification platforms involving qPCR, high throughput sequencing (HTS),
microarray and data normalization strategies (endogenous and exogenous normalizers).

5. Conclusions

Considering the metabolic diversity of MetS, together, both classical and miRNA-
regulated epigenetic modifications likely act as determining factors for its underlying
pathophysiology, and thus may constitute another level of regulation in mediating disease
risk. While studies have implicated putative roles for DNA methylation, histone modifi-
cations and miRNA regulation on the pathophysiology of MetS, there remains a gap to
determine the cause-and-effect relationship between these epigenetic mechanisms and
MetS. Therefore, future studies on the dysregulation of the classical miRNA epigenetics
machinery in MetS would enable a deeper understanding of MetS pathophysiology. From
a therapeutic standpoint, both classical and miRNA-based epigenetic drugs and diets are,
in this regard, a flourishing scope for future research directions in the setting of MetS.
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