Varying parameters associated with prostate－specific antigen（PSA） level in prostate cancer cases and controls from three geographical regions．

Nishi Karunasinghe ${ }^{1 *}$ ，Tsion Zewdu Minas ${ }^{2}$ ，Bo－Ying Bao ${ }^{3}$ ，Arier Lee ${ }^{4}$ ，Alice Wang ${ }^{1}$ ，Shuotun Zhu ${ }^{1}$ ，Jonathan Masters ${ }^{5}$ ，Megan Goudie ${ }^{6}$ ， Shu－Pin Huang ${ }^{7,8}$ ，Frank J．Jenkins ${ }^{9}$ and Lynnette R Ferguson ${ }^{1,10}$

1－Auckland Cancer Society Research Centre，Faculty of Medical and Health Sciences（FMHS），University of Auckland（UOA），New Zealand；2－Laboratory of Human Carcinogenesis，National Cancer Institute，NIH，Bethesda，USA；3－Department of Pharmacy，China Medical University，Taichung，Taiwan；4－School of Population Health，UoA， New Zealand；5－Urology Department，Whangarei Hospital，New Zealand；6－Urology Department，Auckland City Hospital，New Zealand；7－Department of Urology，Kaohsiung Medical University Hospital，Kaohsiung，Taiwan；8－Center for Cancer Research，Kaohsiung Medical University，Kaohsiung，Taiwan；9－University of Pitstsurgh Medical Center，Hillman Cancer Center，Pittsburgh，USA；10－Emeritus Professor，FMHS，UoA，New Zealand，＊－n．karunasinghe＠auckland．ac．nz

Background

It is still being debated whether prostate－specific antigen （PSA）－based screening effectively reduces prostate cancer mortality in men．Some of the uncertainty could be related to existing deficiencies in the age－based PSA thresholds that are currently used in prostate cancer screening，without consideration of other factors that may alter PSA levels independently of the disease．Our previous work with a prostate cancer patient cohort from Auckland has shown that age－based PSA increase is restricted to those carrying the aldo－keto reductase 1C3（AKR1C3）rs $12529 \mathrm{G}^{2}$ allele ${ }^{1}$ ．We have also recorded that NZ men carrying this allele and ever－ tobacco smoking lifestyle show a delayed diagnosis of high－ risk prostate cancer compared to US cohorts ${ }^{2}$ ．The current analyses is to understand the association of PSA with factors including this genotype in PSA outcomes in case and control cohorts from three geographical locations．

Methods

2781 men with prostate cancer and 1606 men without a cancer diagnosis，recruited for various studies in New Zealand（NZ），United States of America（US－EA－European Americans and US－AA－African Americans）and Taiwan （TW1－advanced，and TW2－localised prostate cancer groups respectively）were considered in this analysis．Potential effects of demographic，lifestyle，clinical characteristics（for cases only），and the aldo－keto reductase 1C3（AKR1C3） rs12529 genetic polymorphisms on PSA level were considered in this evaluation．Prognostic stage criteria for cases were from D＇Amico et al 1998^{3} as recorded before ${ }^{1 \& 2}$ Statistical analysis
－Analysis of continuous variables－Kruskal－Wallis One Way Analysis of Variance on Ranks test．
－Analysis of categorical variables－Chi Square test． －Combined overall PSA data were right skewed，and were \log transformed．
－Multiple linear regression analysis was carried out to test the association of PSA with ethnicity，BMI，AKRIC3 rs12529 genotype，tobacco smoking status，alcohol consumption status，age at recruitment（for controls），age at diagnosis（for cases），disease prognostic stage（for cases）， Gleason sum score（for cases）and the interaction effects． －The Spearman Rank Order Correlation was used to analyse the correlation between age and log PSA for all cohorts with and without genetic stratification．
－Of the NZ patient cohort，only 17 （3．3\％）are non－ Caucasian．Therefore，non－Caucasian New Zealand patients were excluded from all analysis with ethnicity effect．

Results

Age and PSA（at diagnosis for cases and at recruitment for controls），BMI，proportion of men who are ever－smokers， Gleason sum score and prognostic stage groups（for cases） were significantly different between cohorts（Tables 1\＆2）

	${ }_{(1)}^{N+5}$	（N＝645）	${ }_{(N=643)}$	（ $\mathrm{C}=489$	（N＝487）		When data from all controls cohorts were considered together in						
nicand firesyle c		Asian	100\％As	${ }_{\text {a }}^{100 \%}{ }_{\text {Afican }}$			multiple line associated	ar regres	on anal	lysis，the f	actors	significa	ly
Bill（kg／m）（median，inter	27.0	24.2	24.7	27.7	27.5	<0.001	status compared to never－smoking（ $\mathrm{P}=0.036$ ）．When data from all controls cohorts were considered independently in multiple linear regression analysis，each cohort was presented with unique features significantly associated with PSA outcomes						
	（25．0，				（25．1），								
	$30.0)$ $1512]$	${ }_{[137]}$	［379］	${ }^{1488}$	${ }_{\text {［487］}}$								
Everabacrasmokng	${ }_{287}(56)$	NA	NA	353 （72）	299 （61）	0.0000							
\％holcon	366 （7）	NA	NA	418	43		（Table 6）． independently．	ation of \log PSA with tested parameters in controls cohorts analysed					
mber and ${ }^{\text {m }}$						0.00001							
	66	73		63	${ }_{(60,71)}$	＜0．001				Afitcan American		$\xrightarrow[\text { Parameter }]{\text { NE ETropean }}$ Pr＞	
ter quarilie rans		$\underset{\substack{(67,78) \\ 66451}}{ }$	${ }_{\substack{(617,7) \\[643}}^{\text {a }}$				Parameer		Pri＞F	Parameer Est．	Pr＞F		
nol／m at atil	${ }_{8.6}$	44.0	10.9			＜0．001	Parameter			0.05	＜． 0001		$\begin{aligned} & \text { Pr>F F } \\ & <.0001 \end{aligned}$
（mendian，inter quarit	（5．8，15．0）	（15．7）	（7．0，18．4）	$\begin{aligned} & (5.2,1,2.9) \\ & {[4841]} \end{aligned}$	$\begin{aligned} & (4.6,9,9) \\ & {[481]} \\ & {[481]} \end{aligned}$		BMI		0.0480.072	-0.03-0.25	${ }^{0.008} 0$	-0.010.04	0.20390.6255
		［622］					Eve	－0．02					
Son	$(6,7)$ ［515］ 262 （51）				$\begin{aligned} & (6,77) \\ & 12321 \\ & 126(54) \end{aligned}$	<0.001	Ever－alcohol neve alcohol consumer）	${ }_{\substack{-0.18}}^{-0.18}$	0.389	0.09		－0．19	
Cuarile erane，number）													
Prognosit stage \le high－													
							Model						

	${ }_{(1)=572)}^{\mathrm{Nz}}$	（ $\mathrm{N}=486$		Pralue
BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$（median，inter quartile	$\left.{ }_{(24,29)}^{26} \times 547\right]$	$\begin{aligned} & 29 \\ & (26,33)(486] \end{aligned}$	$\begin{aligned} & 27.74 \\ & 24,5,31(548] \end{aligned}$	＜0．00
Ever－tobacco smoking（number and \％）	195 （34）	$302(62)$	324（59）	<0.00001
Ever－alcohol consumption	492 （86）	379 （78）	479 （84）	＜0．0001
Age（y）at recruitment（median inter quartile range，numbe	${ }_{(44,64)}^{54}$［572］	${ }_{(59,69)}^{64}{ }_{(486]}$	${ }_{(60,73)}^{66}(548]$	＜0．001
$\begin{aligned} & \text { (median, inter quartile range } \\ & \text { number) } \end{aligned}$	0.9 $\left.\begin{array}{l}0.9 \\ (0.6,1.9)\end{array}\right]$	0.4 $0.2,0.8)[412]$	0.4 $(0.2,0.8)[476]$	＜0．001

NZ Māori／Pacific／Asian cases record similar AKRIC3 rs12529 G allele frequencies（ $85-88 \%$ ）to TW cases．All other cohorts recorded a G allele frequency between $38-45 \%$ ．
Table 3．Comparison of the AKRIC3 rs12529 genotype frequencies among cohorts．

	cc	CG	GG	G allele \％	HW equilibrium statistics／P value
	N ${ }^{\circ}$	N \％）	N （\％）		
NZNZ controls Euroan	181 （40）	202 （44）	71 （16）	38	$\begin{aligned} & 1.36 \\ & P>0.05 \\ & \hline \end{aligned}$
NZ European cases	121 （33）	162 （44）	83 （23）	45	$\begin{aligned} & 4.04 \\ & P<0.05 \end{aligned}$
NZ Maori／Pacific A Asian cases		4 （31）	9 （69）	85	－
US－AA cases	58 （29）	105 （52）	39 （19）	45	$\begin{aligned} & 0.48 \\ & P>0.05 \end{aligned}$
US－EA cases	69 （30）	115 （49）	48 （21）	45	${ }_{\text {P }} \times 0.05$
Taiwan cases－TW1	8 （1）	133 （22）	477 （77）	88	$\begin{aligned} & 0.14 \\ & P>0.05 \end{aligned}$
Taiwan cases－Tw2	6 （1）	150 （23）	487 （76）	87	2.27

When data from all cases cohorts were considered together in multiple linear regression analysis，the factors significantly associated with PSA were ethnicity，prognostic stage，Gleason sum score，age at diagnosis，BMI and ever－smoking status（Table 4）．Age at diagnosis interacting with ethnic group also had a significant association on PSA outcomes（ $\mathrm{P}=0.007$ ）．

Table 4．Summary of multiple linear regression analysis for testing impacts on log PSA for
cases chorts considered together．

When data from all cases cohorts were considered independently in multiple linear regression analysis，each cohort was presented with unique features significantly associated with PSA outcomes （Table 5）．
Table 5．The ass
independenty．

When data from all controls cohorts were considered together in multiple linear regression analysis，the factors significantly ， recruitment（ $\mathrm{P}<0.000$ ），BMI（ $\mathrm{P}=0.002$ ）and ever－smoking status compared to never－smoking（ $\mathrm{P}=0.036$ ）．When data from linear re unique features significantly associated with PSA outcomes （Table e）． independently．

Univariate analysis showed that NZ，US－AA and US－EA controls have an overall PSA correlation with age．This correlation remained significant despite stratification of NZ controls by the AKRIC3 rs12529 genotypes．All cases except for the US－EA cases also showed a significant correlation between age and PSA with univariate analyses．However upon stratification，significant correlation was seen among cases carrying the GG genotype for NZ，TW1 and TW2 cases，CG genotype for NZ and US－AA cases and CC genotype for the US－AA cases
Table 8．Spearman correlation statistics between age（age at diagnosis for cases and age at
recruitment for controls）and log PSA stratified by ethnicity，case，control status and the recruitment for controls）
AKRIC3 $\mathbf{~ s 1 2 5 2 9}$ genotyp

NZ controls		All			
	r	0.556	0.517	0.519	0.616
	p	2E－07	2E－07	2E－07	2．3E－09
	n	498	181	202	71
NZ cases	r	0.303	0.129	0.287	0.426
	－	6．7E－011	0.160	2．3E－04	．4E－05
	n	449	120	161	82
US－AA controls	r	0.344			
	p	1．1E－12			
	n	410			
US－AA cases	r	0.243	0.312	0.239	0.153
	p	5．0E－04	0.017	0.014	0.349
	n	202	58	105	39
US－EA controls	r	0.213			
	P	2．9E－06			
		475			
US－EA cases	r	0.0244	0.113	－0．063	0.110
	p	0.711	0.352	0.504	0.457
	n	232	69	115	48
TWl cases	r	0.119	0.500	－0．00108	0.140
	P	0.003	0.182	0.990	0.002
		622	${ }^{8}$	133	477
TW2 cases	r	0.113	0.0286	0.103	0.121
	P	0.005	1.000	0.217	0.008
		622	6	144	472

Discussion

The well－known PSA association with age（age at diagnosis for cases and age at recruitment for controls）was reproduced in pooled cohort analyses with multiple linear regression in both cases and controls．However，upon analyses of independent case cohorts，this was reproduced only among NZ－European cases． Among controls，PSA was significantly associated with age in all tested cohorts with independent as well as pooled multiple regression analyses as well as in univariate analyses．This indicates that changes have taken place impacting general PSA increase with age upon cancer presentation in some cohorts． Association of PSA with BMI and tobacco smoking，even at the expense of age in US cohorts could be indicating a changing paradigm of parameters associated with PSA since this test was established for prostate cancer screening in 1994．Genetic impact on age and PSA correlation recorded with univariate analysis may have value in establishing stratified PSA thresholds．Overall，our data suggests an insufficiency of universal age－based PSA thresholds for prostate cancer screening．This also suggests that PSA thresholds for prostate cancer screening need refreshing in different ethnicities，in different geographical locations，at different time points for its better utility．However，it is too early to know whether the current findings on variable factors affecting PSA outcomes in different cohorts are unique only to the current cohorts assessed or whether they can be generalised to these ethnicities from different geographical locations．Current findings require further validation with extended cohorts that will provide better statistical power for stratified analyses based on genotype， BMI and lifestyle factors．We have plans to carryout NZ－wide extended studies to assess the reproducibility of the current findings，and we welcome you to join us in our endeavour．

References

1．Karunasinghe N，Symes E，Gamage A et al．（2019）PLoS ONE 14：e0217373 2．Karunasinghe N，Ambs S，Wang A et al．（2018）PLoS ONE 13，e0199122．

Acknowledgements

Stefan Ambs，from the Laboratory of Human Carcinogenesis，National Cancer Institute，NIH，Bethesda，USA is sincerely acknowledged for his support in organising the US prostate cancer cases and controls data for this analysis
the US p
vese f A
隹安量（1）

