
SOFTWARE TOOL ARTICLE

Building a search tool for compositely annotated entities 

using Transformer-based approach: Case study in 

Biosimulation Model Search Engine (BMSE) [version 1; peer 

review: awaiting peer review]

Yuda Munarko 1, Anand Rampadarath 1,2, David Nickerson1

1Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand 
2The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand 

First published: 10 Feb 2023, 12:162  
https://doi.org/10.12688/f1000research.128982.1
Latest published: 10 Feb 2023, 12:162  
https://doi.org/10.12688/f1000research.128982.1

v1

 
Abstract 
The Transformer-based approaches to solving natural language 
processing (NLP) tasks such as BERT and GPT  are gaining popularity 
due to their ability to achieve high performance. These approaches 
benefit from using enormous data sizes to create pre-trained models 
and the ability to understand the context of words in a sentence. Their 
use in the information retrieval domain is thought to increase 
effectiveness and efficiency. This paper demonstrates a BERT-based 
method (CASBERT) implementation to build a search tool over data 
annotated compositely using ontologies. The data was a collection of 
biosimulation models written using the CellML standard in the 
Physiome Model Repository (PMR). A biosimulation model structurally 
consists of basic entities of constants and variables that construct 
higher-level entities such as components, reactions, and the model. 
Finding these entities specific to their level is beneficial for various 
purposes regarding variable reuse, experiment setup, and model 
audit. Initially, we created embeddings representing compositely-
annotated entities for constant and variable search (lowest level 
entity). Then, these low-level entity embeddings were vertically and 
efficiently combined to create higher-level entity embeddings to 
search components, models, images, and simulation setups. Our 
approach was general, so it can be used to create search tools with 
other data semantically annotated with ontologies - biosimulation 
models encoded in the SBML format, for example. Our tool is named 
Biosimulation Model Search Engine (BMSE).
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Introduction
Many natural language processing (NLP) tasks have seen significant performance improvements since the introduction of
the Transformer1 and the derived technology such as BERT2 and GPT.3,4 The Transformer is an encoder-decoder
structure andwas originally designed for natural multi-language translation. Its advantages lie in the attentionmechanism
and position coding to memorise long source sentences and carry out training efficiently in parallel. Then, GPT explores
the decoder section by creating pre-training models from extensive data using unsupervised learning to further fine-tune
the models for specific NLP tasks using supervised learning. BERT works on a similar fine-tune concept but specifically
uses the encoder section to train in parallel and recognise the context of words bidirectionally. These positive attributes
draw our attention to implement the Transformer, specifically BERT, in developing a search tool for data compositely
annotated using ontologies.

Biosimulation models are examples of data that are largely annotated using ontologies, e.g. those written using the
CellML5,6 and Systems Biology Markup Language (SBML)7 standards. Structurally, the biosimulation model is
composed of constant or variable that form more complex entities such as mathematical equations, components or
reactions and in overall represent the model. To give expressive and complete descriptions, it is recommended to provide
semantic annotations even compositely with multiple ontology instances.8 Now, entities can be rediscovered for various
purposes, such as new model composition, initial variable search, and model verification. Furthermore, this way of
annotation is encouraged by theComputationalModeling in BIologyNETwork (COMBINE) community as a standard to
ensure interoperability and sharing between different platforms.9,10

SPARQL helps to find entities and has been recommended as a standard by W3 Community. However, creating
SPARQL is difficult as it requires good knowledge of annotation structure, syntax, and ontology terms. Tools to help
generating SPARQL from natural languages, such as NLIMED,11 are helpful. Still, it is more suitable for experts who
already know the target entity, not for those doing exploratory searches like using commercial search engines.
Furthermore, annotations are mainly for the lowest and highest entities; as in biosimulation models, there are rarely
component and image annotations. Consequently, finding these unannotated entities using SPARQL is impossible.

BERT is a cross-encoder that takes a pair of sentences as input and generates a classification embedding and a set of token
embeddings. The classification embedding is used to calculate the probability that the last sentence is a continuation of the
first sentence. Although the implementation for information retrieval has high accuracy, its efficiency is low because it
has to generate embeddings of pairs of a query to all sentences. Reducing the number of embedding creations, several
studies have used BERT as a re-ranker by initially retrieving sentences using traditional methods such as bag of word; the
top n results are considered as relevant.12–14 However, the formation of one embedding that represents each sentence will
be more convenient, resulting in more efficient computation and simpler data management. BERT can receive a sentence
and then output token embeddings. The average of token embedding is considered as a sentence embedding. Still, the
results are not satisfactory, because the BERT paradigm is a cross-encoder for the next sentence prediction task.
Therefore, Sentence-BERT implements a siamese architecture to train language models using BERT so it can generate
sentence embedding.15 Sentence-BERT is a bi-encoder that does not preserve the query context in the target sentence. It is
much more efficient, although its effectiveness may be lower than other approaches implementing a cross-encoder. The
poly-encoder modify BERT to maximise performance by accommodating both encoders and tweaking the cross-
encoder.16 Although it is more efficient than original BERT, it is still not comparable to Sentence-BERT. Then,
ColBERT uses a polling approach by calculating the similarity of each query token embedding with each sentence
token embedding.17 The maximum scores are taken and then summed, and the sentences with the higher total score are
given a higher rank. Due to the simplicity of Sentence-BERT, Composite Annotation Search Using BERT (CASBERT)
uses it to represent ontology classes and predicates in composite annotations.18 The composite annotations are converted
into embeddings representing entities in biosimulation models.

In this paper, we demonstrate the practical use of a Transformer-based approach to build a search tool on a biosimulation
model stored in the Physiome Model Repository (PMR)19 using CASBERT. There are five entity levels in ascending
order: variables/constants, components, models (CellML), images, and simulation setups (SED-ML). Initially, we
created embeddings for variables/constants where most of the composite annotations are available. Variables/constants
are the fundamental entities that make up the components and further form the model, while at the same time, images and
simulation setups can be equivalent tomodels. Therefore, combining embeddings from the lowest to the highest level will
form embeddings at each entity level. The availability of text-based annotations that are unique to an entity, such as the
model authors and filename, are also useful to make the embedding more distinctive. Further, we also used these text-
based annotations to create high-level entity embedding whose constituent entities are not annotated. Now the entity
search simply converts the query to an embedding using CASBERT and then calculates its similarity against embeddings
organised by level and displays the results in order. The search tool we created is named Biosimulation Model Search
Engine (BMSE).
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Accessing SBML models from the BioModels database20 to BMSE is possible due to the similar annotation procedures
and data formats, and this will be our future work. Other domains with semantic annotations such as gene experiments in
the ArrayExpress21 and food microbiology models in ComBase22 could similarly implement our approach in their
searching tools.

Our implementation, dataset, indexes, and source code are publicly available [1].

Methods
We developed a search tool to find entities in the PMR19 organised by entity levels. The PMR primarily consists of
biosimulation models encoded in the CellML format.5,6 Composite annotations explaining entities in the CellML were
extracted and converted to entity embeddings using CASBERT.18 Then, entity embeddings weremanaged by their levels
in a list-like structure to simplify the creation, replacement, update, and deletion (CRUD) processes. Our tools are built in
a modular manner to improve reusability and to help aid sustainability by making maintenance easier.

CellML
CellML is a standard format for encoding mathematical models related to biological systems.5 Structurally, a model
is composed of components which are the smallest units that can be reused to form other models.23 The component
contains one or more mathematical equations composed of variables or constants. Then, all these entities together with
supplemental or derived entities, e.g. schematic diagrams or simulation plots, are needed for various purposes such as
checking initial values of variables, reuse of constants, model composition, and reproduction of experiments. Here, we
used entities consisting of 4652 variables/constants, 1987 components, 980 models, 295 simulation setups and
980 images. Our approach allows for inexpensive addition and modification of entities and will be described in the next
subsection.

Figure 1 shows the example of composite annotations in the model of brain energy metabolism24 encoded using CellML
model available in the PMR [2]. There are two components, GAPg and F6Pn, where each component having four
variables, and structurally is similar. Concerning GAPg, three variables, i.e. GAPg_GAPg, GAPg.Vg_Pgk, and GAPg.
Vg_Pfk, are annotated to Ontology of Physics for Biology (OPB),25 Foundational Model of Anatomy (FMA),26 and
Chemical Entities of Biological Interest (ChEBI).27 GAPg_GAPg is themain variable and is the output of the component,
providing information about the rate of glyceryldehyd-3-phosphate concentration change in an astrocyte. To give a
complete and expressive description, this variable is compositely annotatedwithOPB_00340:Concentration of chemical,
FMA:54537:Astrocytes, and CHEBI:17138:glyceryldehyd-3-phosphate complete with relationship predicates such as
isVersionOf, isProperyOf, and isPartOf. Other variables are the input arguments obtained from the other components and
annotated with OPB_00593: Chemical concentration flow. A similar annotation pattern is performed for most other
CellML files where primarily at the variable/constant entities. At the same time, other annotations are mainly for model
entities as descriptive metadata such as title, abstract, and author (see Figure 1).

CASBERT
Weused CASBERT to create variable/constant embeding. CASBERT18 is a tool for converting the composite annotation
of an entity into an embedding by applying Sentence-BERT.15 Sentence-BERT is used to convert textual properties
related to ontology classes (e.g. CHEBI:17138, OPB_00340) and predicates (e.g. isPropertyOf, isVersionOf) to
embeddings. Then, the embeddings is merged to create an embedding representing variable/constant.

Technically CASBERT can implement other approaches such as ColBERT17 and poly-encoder16 with the increase in
computational and indexing complexity; the use of Sentence-BERT is preferred because of its practicality while still
providing good performance. Other alternatives are Onto2Vec28 and OPA2Vec29 which useWord2Vec30 to translate the
words in the ontology class to embeddings, and thenmerge them as an ontology embedding. However, a word embedding
approach only considers word co-occurrence in the training data, so the embedding of a particular word will be the same
for all sentences. Moreover, it does not consider the context of the sentence.

Hierarchical search for biosimulation models
Here we describe our approach to build a search tool for biosimulation models encoded using CellML in the PMR. The
tools consists of hierarchical entity embedding collection where the entity embeddings are organised based on their level.
Query evaluation was carried out to determine the ranking of entities according to level based on their similarity to the
query.

1https://github.com/napakalas/bmse/
2https://models.physiomeproject.org/workspace/5af/
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Hierarchical entity embedding collection

Entity embeddings are grouped vertically, and collectively called a hierarchical entity embedding collection. With this
grouping, users can search for entities specific to their level and possibly get a better searching experience. Figure 2 shows
the process of creating the collection, starting from the lowest-level entity, variable/constant, and then combined to
gradually create higher-level entity embeddings, i.e. constant, model (CellML), simulation setup (SED-ML), and image.
Initially, CASBERT converts the composite annotations of the variables/components, resulting in the variable/constant
embeddings. Then, one or more variable/constant embeddings are combined to form component embedding. Combining
embeddings can be done by concatenation or merging. Concatenation can represent the combined embedding well,
while merging may reduce information. However, merging is advantageous for the uniform embedding size, making it
easier to measure similarity. Moreover, Coates and Bollegala31 demonstrated that merging by averaging could retain
most information because high-dimensional embeddings are considered nearly orthogonal; therefore, we used this
approach. We implemented Equation 1 for averaging by removing duplication and dividing the sum of embeddings E by
the number of embeddings |E|. Using this averaging, SED-ML plot embeddings were also created; nevertheless, the
generated entities are few and therefore, BMSE did not include them.

h¼
P

E

jEj ,whereE¼ e1,…,enf g (1)

Model (CellML) embeddings are created based on the component embeddings and additional metadata describing the
model. The metadata mostly contains the reference article information such as filename, title, authors, and abstract. The
short metadata, i.e. filename, title, and authors, are converted directly to embeddings; in contrast, the long metadata, i.e.
abstract, is summarised first by taking the important phrases using SciSpacy.32 These phrases are put together as one text
and then converted into embedding. The summarisation is to overcome the BERT input limit of 512 tokens. Tokens are
generated using WordPiece33 so abstracts with a maximum of 250 words will likely have more than 512 tokens. Then,
all metadata embeddings are merged, and the result is combined with the merged component embeddings, all using
Equation 1 (see Figure 3). Image and simulation setup (SED-ML) embeddings are the same as model embeddings;
however, an image usually has a caption. Therefore, the image embedding is a combination of caption embedding and
model embedding. More than half of CellML files in the PMR are not annotated, leading to incomplete results when
searching on model semantics alone. With metadata embeddings, most unannotated models can be represented.

Figure 1. The example of an CellML file with its entities, including models, components, and variables, along
with composite annotations describing themodels and variables. Themodel is about brain energymetabolism;
the two components, GAPg and F6Pn, are related to glyceraldehyde-3-phosphate and fructose-6-phosphate,
consecutively.24
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Figure 3. The process of combining embeddings to create model (CellML), simulation setup (SED-ML), and
image embeddings. Model and image embeddings are enriched with metadata embeddings. The metadata
includes title, author, filename, abstract summary, and image caption.

Figure 2. The process of creating a hierarchical entity embedding collection starts by converting the com-
posite annotations of variables/constants, continues with components, then SED-ML plots and models
(CellML), and finally, simulation setups (SED-ML) and images.
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Query evaluation

The query used to search for entities is converted to embedding using CASBERT. The process in CASBERT involves
both macro embedding and micro embedding. Macro embedding is the entire query text converted to embedding,
whereas micro embedding is a combination of phrase embeddings. Then the addition of macro and micro embeddings
forms a query embedding.

Figure 4 shows the hierarchical entity search process, where a query embedding is measured against each entity
embedding at each hierarchical level. The measurement uses cosine similarity,34 which is suitable for non-normalised
Sentence-BERT-based embedding. The results are displayed based on the hierarchical levels, so it helps users to find
entities by types, such as initial values for variables, reaction formulas, and model images.

BMSE implementation
Hierarchical entity embedding collection enables modular data management andwe further developed the search tool in a
modular fashion. This modularity speeds up the development, deployment, and maintenance processes where the
modules created have a consistent interface, so algorithm and data changes do not affect other modules.

Data organisation

We defined the embeddings and other related data for each entity level in EntityEmbeddings and EntityData objects,
respectively. The EntityEmbeddings is a two-dimensional tensor created using PyTorch35 where each element is an
embedding representing an entity. This tensor, along with PyTorch, is efficient in calculating and sorting the similarities
of query embedding to each entity embedding. Data organisation, i.e.CRUD, are quite fast because the tensor data format
is simple and resembles a list. CRUD operation in the high entity level should not affect the lower level but not the other
way around. To facilitate entities propagation when there is a CRUD operation in lower level entity, pointers to the higher
level entities are encoded in EntityData. In addition to pointers, EntityData stores other information according to its level,
for example at the variable/constant level there are initial values and equations, while at the model level there are
workspace links and other related models. Furthermore, the EntityEmbeddings and EntityData of each entity level are
stored in the form of files so that they are easy to implement and deploy on different platforms.

Modular development

BMSE modularity is generally divided into frontend and backend. The frontend implements a JavaScript Framework
providing an interface for interactive use of BMSE in the web browser. Users can search for entities by keywords; then,

Figure 4. Query evaluation to compare a query to the hierarchical entity embedding collection. The query is
converted to embedding using CASBERT; then, the similarity is measured against the embedded entities at each
level. The results are presented in order and displayed by level.
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with the search results, they can perform advanced activities such as comparing entities, searching for images and
dependent equations, and copying LaTeX code for equations. Results presented by the frontend are provided by the
backend performing tasks such as query processing, similarity measurement, entity retrieval, and data formatting.
Accessing the backend is standardised, as are the return formats, so there is a guarantee that changes to the backend do not
interfere with the frontend. Regarding the CRUDprocesses of EntityEmbeddings and EntityData, the backendwill not be
affected as the processes can be done without shutting down the service.

Model cluster

We found a large number of structurally similar models in the PMR due to model composition and modification. They
differ in completeness of information, e.g. images, titles, annotations, and some low-level entity details. Sharing
information in such a model can provide a more comprehensive description. To do this, we extracted three types of
structures from each CellML file, namely the XML document as a whole (all-structures), the entity as a whole (deep-
structure), and the path from the entity root to the leaf (wide-structure). Then, these structures are converted into a term
frequency (TF) and Inverse Document Frequency (IDF) matrix and finally clustered using hdbscan.36

Operation
BMSE requires Docker 20.10.x for deployment on a local machine or cloud instance. The local machine does not need
specific specifications; however, the cloud instance should be Linux based, where we use Ubuntu, with 4 VCPUs and
8GB RAM. We provide the BMSE pipeline in the GitHub repository [3] and the archive in Zenodo [4].

Experiments and results
In this section, we present Biosimulation Model Search Engine (BMSE), a web-based search tool, to find model entities
(variables/constants, components, models, simulation setups, and images) in the Physiome Model Repository (PMR).
Queries in BMSE are keywords consisting of phrases, abbreviations, and formulas, so it provides flexibility of search
expression and effortless refinement.

Entity discovery
Users search for entities by submitting queries as keywords, and then BMSE presents results organised by level. Using
keywords allows users to access information just like in a commercial search engine. Keywords are structured intuitively
and can be modified by generalisation, specification or reformulation. Later, users can customise the results, such as
displaying at a certain level only, sorting by attributes, and filtering based on ontology classes. The customised results
then are ready for knowledge extraction, e.g., the variable initial values, simulation plots, entity comparison, and model
authors. Hence, different information needs may lead to different workflows which users freely describe.

Figure 5 is an example of the results at the variable/component level for the query ‘concentration of triose phosphate in
astrocytes’where triose phosphate is the synonym of glyceryldehyd-3-phosphate. Variable/constant entities are arranged
based on similarity values and are described with the name, initial value, type, unit, and mathematical equation attributes.
For the query example, GAPg/GAPgwith glyceryldehyd-3-phosphate is correctly presented in the top position, followed
by G6Pg/G6Pg with Robison ester, both of which are about the chemical concentration in astrocytes. Expanding entities
can access detailed information about these chemical compounds, images, and models. At the component level, the top-
ranking entities are usually those containing the top variables at the variable/constant level. Most components present
mathematical equations representing the variables that carry out the process or reaction. The results at the model level are
quite different, where models with higher ranking variables or components can be in a lower order. However, this
makes sense because the sample query is suitable for low-level entity search. Models can contain many variables and
components with various annotations; thus, queries require more general keywords such as article authors and title.
Simulation setup and image levels follow the model level. The simulation setup shows the resulting plot with the initial
values of the associated variables. Due to caption embedding, image level results may differ slightly from model level.

Entity comparison
Biosimulationmodels in the PMR aremainly based on published articles. These articles may discuss the same object with
different assumptions and approaches and present new biosimulation models combining the available models. Therefore,
there are many similar entities at all levels; they differ in the content of particular attributes such as initial variable values,
formulas, authors, and approaches used. BMSE provides an interface to compare entities and spot differences so that
users can select the suitable entities.

3https://github.com/napakalas/bmse/
4https://doi.org/10.5281/zenodo.7549557
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Suppose a user is looking for the initial value of voltage-gated sodium channels and then makes a query ‘sodium channel
voltage’. Of the entities shown, the variable ENa in the fast_sodium_current component is the suitable one and is
described with the voltage-gated sodium channel activity (GO:0005248) and complex (GO:0001518). However, there
are nine variations of ENa initial value, all of them with the same mathematical formula, type, and units, found in models
from five articles.37–41 Even the same variable from the same article may have a different initial value such as 62.748mV,
62.904mV, 70.495mV, and 55.377mV inRef. 41. The user can further analyse these variations by comparing themodel,
image, and mathematical equation attributes (see Figure 6) and then selecting one of the initial values.

Entity reuse
Now with BMSE, it is possible to reuse entities over a broader range of physiology. Entities in different models can be
found and presented together with the relevant information. Tools such as the Epithelial Modeling Platform (EMP)42,43

can use the BMSE web service to explore candidate entities and ensure their compatibility quickly and accurately. The
EMP is used to assemble a new model using public entities, and compatibility checks are essential in guaranteeing a
plausible newmodel. For the ENa variable in the previous subsection, for example, if the assembled model is mammalian
with sodium overload-induced, the variable in Ref. 41 might be the most appropriate.

Discussion
Wehave demonstrated a practical approach to building a search tool using a Transformer-based approach for compositely
annotation entities in models in the PMR. Here we discuss the advantages of using Transformer and the potential use of
the developed search tool (BMSE). The last subsection examines limitations and future works for BMSE.

The advantage of using transformer
Our approach to using CASBERT offers the organisation of entity embeddings vertically and modularly. Creating
embeddings is incremental from the lowest to the highest level, so it is simple and fast. Then, the embeddings are
organised in a simple data structure, assuring efficient management without compromising system performance when
performing CRUD operations. Each embedding at different levels is arranged in a modular manner, allowing for the
application of modular designs when developing the tool. While not mandatory, separating data, models, and views is
suitable for future continuous tool development.

Figure 5. The example of a search for variable/constant entities with the keywords ‘concentration of triose
phosphate in astrocytes’. The results show entities with variable initial values, types, units, and mathematical
equations. Each entity is expandable to getmore detailed information such as related images,models, and ontology
classes.
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The use of BMSE
In the biosimulation model community, there are standards and tools to describe models and entities using composite
annotations, e.g., SemGen.44 The tools make the annotation consistent, and consequently the number of the annotated
entities are increased. The consistent annotation was demonstrated to be valuable for newmodel compositions such as in
the Epithelial Modelling Platform (EMP)43 and bond-graph based hierarchical composition.45 Here, BMSE can be an
intermediary tool serving entities for further reuse, and facilitate the FAIR data principles in the biosimulation model
domain.

Implementation for other domains
We see the potential use of our approach in other domains by applying semantic annotations such as the experimental
gene datasets in ArrayExpress21 and predictive models of food microbiology in the ComBase22 repositories. Our
approach is designed to accommodate composite annotations and hierarchical entities but is not mandatory. In the
absence of hierarchical entities, entities can also be grouped according to specific criteria independently as needed.
ArrayExpress is now equipped with Expression Atlas,46 an interface for exploring experimental results, which displays
information organised by organism, anatomy, and gene expression. The query is assisted with the autocomplete and
suggestion features. While the results are sophisticated, we thought our approach would help enable more expressive
queries.

We use CASBERT, which is Transformer-based as well as embedding-based. As an alternative, our approach allows for
adapting other embedding systems such as word-based,30,47,48 GPT-based,3,4 and other BERT-based.15–17 In the future,
we could rapidly implement a new embedding-based system with better performance; this is an essential side of our
practice.

Limitations and future works
We identify limitations in our work that, when done, may improve performance and user experience; this will be our
futurework. The Sentence-BERTmodel for converting text to embedding has not been fine-tuned formodels in the PMR.
Fine-tuning could use ontology classes involved in the composite annotation or the entire ontologies. We expect that the
fine-tuned model will allow queries using more general terms not used for existing annotations in the PMR, such as
‘macroglial’ to find entities with either of the more specific terms ‘astrocytes’ or ‘oligodendrocytes’.

Figure 6. The interface inBMSE showing the comparison of variable ENa fromRef. 41 butwith adifferent initial
values. Further differences are analysed to select the one suitable for user needs.
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We suggest that lower-level entity embedding should also store information about higher-level entity embedding, just as
variable/constant embedding should contain information about its model. This hold will allow, for example, to search for
variable/constant entities by the article author. Combining higher-level entity embedding with lower-level embedding
can use aweighted average. However, this is not covered here as we focus on the process of developing hierarchical entity
embeddings.

Currently, BMSE does not consider user intent and only treats queries equally against all entity levels. By identifying the
user intent, we could apply entity-level selection to the query (vertical selection) and customise the results by aggregating
information from multiple entities (aggregate view). To achieve this, however, data about user behaviour in searches on
BMSE is required, which is currently unavailable. In future, the data could be collected as user query logs and analysed to
find correlations between queries and information needs. Finally, the search is expected to accommodate natural language
in the form of questions and answers.

Extending BMSE to integrate with model repositories including content similar to the PMR (e.g., the BioModels
database) is possible due to the harmonised manner for annotating models compositely. The combination of these
repositories provides themost extensive biosimulationmodel collection supporting amore comprehensive range of entity
reuse and robust model verification. By integrating suitable translation tools, such as Tellurium49 for CellML to SBML
and SBML to CellML translation, it is possible to envision extending BMSE to guide the reuse of models independent of
the source model repository.

Conclusions
We have presented the use of a Transformer-based approach in building a retrieval tool for data annotated compositely.
In this case, we used biosimulation models encoded with CellML standard deposited in the Physiome Model Repository
(PMR). Each model is arranged hierarchically from the variable/constant entities to the model entity. Our efficient
approach can construct embeddings representing these entities and organise them in a simple data structure. Therefore,
this makes it possible to implement the same strategy in other domains. Our searching tool is named Biosimulation
Model Search Engine (BMSE). People in the biosimulation model community can explore entities specific to their level,
i.e. variable/constant, component, model, simulation setup, and image. Finding these entities is crucial for the following
activities: model composition, verification, and reproduction, therefore, supporting the FAIR data principles. In this
paper, we presented the necessary steps to develop the tool and have identified some opportunities for future
developments.

Data availability
Underlying data

• The PMR models indexed by BMSE: https://models.physiomeproject.org/

License: Attribution 3.0 Unported (CC BY 3.0)

• The PMR model used as an example in this manuscript: https://models.physiomeproject.org/workspace/5af/

License: Attribution 3.0 Unported (CC BY 3.0)

Extended data
• The method used, CASBERT, to convert queries and entities to embeddings and search entities: https://github.

com/napakalas/casbert/ (https://doi.org/10.5281/zenodo.7549557).50

• BMSE documentation and tutorials to implement and reproduce query examples: Figshare: BMSE Documen-
tation and Tutorials, https://doi.org/10.17608/k6.auckland.21679394.v1

Software availability
Source code available from: https://github.com/napakalas/bmse/tree/v.1.0.0

Archived source code at time of publication: https://doi.org/10.5281/zenodo.7549557.50

License: GNU GPL-3.0
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