
Formal veri�cation of biologically

inspired computing models

Yezhou Liu

A thesis submitted in ful�lment of the requirements for the degree of
Doctor of Philosophy in Computer Science,

The University of Auckland, 2022.

In memory of my grandfather (Xuesheng Liu, 12 Jan 1931 - 23 Jul 2020).

3

Abstract

As a recently proposed biologically inspired computing model, cP systems can

solve computationally hard problems in polynomial � often linear or sublinear �

time. Similar to other membrane computing models, cP systems work in an ideal

way, having unlimited space and computing power. This thesis discusses the formal

veri�cation of cP systems.

cP systems support labelled multiset-based terms and generic rewriting rules.

To apply a rule, variable terms in its lhs (left-hand-side) and promoters need to be

uni�ed against system terms. Although several �rst-order uni�cation algorithms

were proposed in previous work, none of them can be readily applied to cP sys-

tems due to the use of labelled and nested multisets. In order to solve the issue,

we formally de�ned the uni�cation problem for labelled multisets and proposed

a corresponding algorithm, namely LNMU. This can solve well-formed labelled

multiset uni�cation problems in linear time.

To verify cP systems, both model checking and interactive theorem proving

are considered in this thesis. By using formal tools including PAT3, ProB, and

Coq, several cP systems were veri�ed including two NPC solutions proposed in

this study. These are: ΠSSP � a cP system that solves the subset sum problem in

linear time, and ΠSudoku � a cP system that solves Sudoku (m×m) in sublinear

time. In order to automate the veri�cation process, we proposed several mapping

guildlines, which can be used to transform cP system notation into modelling

languages including CSP#, B, and Gallina automatically.

Using existing general purpose formal tools to verify cP systems often requires

human intervention. Furthermore, it is extremely hard to completely model cP sys-

tems with complex generic rules in third-party veri�ers. In order to overcome these

limitations, we designed and implemented a domain-speci�c formal framework for

cP system simulation and veri�cation, namely cPV. By implementing LNMU in

an optimised way, cPV can e�ciently simulate and verify cP systems. System

5

6

properties including deadlockfreeness, con�uence, termination, determinism, and

goal reachability can be automatically veri�ed in cPV.

We also presented a new research direction: using cP systems as a theorem

proving tool. A cP system that can e�ciently perform equational deduction was

proposed. Using certain cP system friendly encodings and the power of maximal

parallelism, the cP system can be exponentially faster than traditional rewrite

systems when proving equational theories.

Keywords: Bio-inspired computing, cP systems, formal veri�cation, auto-

mated deduction, uni�cation.

Acknowledgements

First and foremost, I would like to thank my PhD supervisors, Associate Professor

Jing Sun and Doctor Radu Nicolescu for their excellent supervision and support.

Their guidance and advice carried me through all the stages of my study.

I would like to thank other lecturers and students at the University of Auck-

land, including, but not limited to, Doctor Michael J Dinneen, Doctor James

Cooper, Doctor Alec Henderson, Doctor Nacha Chondamrongkul, Doctor Cheng-

hao Cai, Professor Jim Warren, TN Chan, and James Shi for their help and sup-

port.

My greatest gratitude goes to my wife, Yang Yang (Yvonne), for her love, un-

derstanding, and unconditional support. I am thankful to my parents and grand-

parents, for their encouragement and their care of my tortoise during these years.

I would also thank my dear hippos, Amy and Xibo, who bring happiness to my

family everyday.

I would also like to thank The Unviersity of Auckland, for the scholarships,

awards, and grant during my period of study. Some of my �nest memories are

from my time at The University of Auckland.

1

Contents

Contents 3

List of Figures 5

List of Tables 9

1 Introduction 11

1.1 Outline . 12

1.2 Key results and publications . 14

1.3 Summary . 17

2 Background and Related Work 19

2.1 Background . 20

2.2 Related work . 29

2.3 Summary . 32

3 An efficient labelled multiset unification algorithm 35

3.1 De�nitions . 36

3.2 LNMU � an e�cient labelled multiset uni�cation algorithm 39

3.3 Analysis of LNMU . 45

3.4 Well-formed labelled multiset uni�cation 48

3.5 Worked examples . 49

3.6 Summary . 51

4 Model Checking of cP systems 53

4.1 cP system solutions to SSP and Sudoku 54

4.2 Modelling cP systems in ProB and PAT3 61

4.3 Model checking results and disscussion 67

4.4 Summary . 69

3

4 Contents

5 Deductive Verification of cP systems 71

5.1 Modelling cP systems in Coq . 72

5.2 Case studies . 75

5.3 Discussion . 82

5.4 Summary . 83

6 cPV � a Formal Verification Framework for cP Systems 85

6.1 Automatically verifying ground cP systems using PAT3 and ProB . 86

6.2 cPV � a simulation and formal veri�cation framework for cP systems 96

7 Evaluation of cPV 111

7.1 A case study . 111

7.2 Evaluation of cPV . 115

7.3 Comparison to related work . 124

7.4 Summary . 126

8 Towards Automated Deduction in cP systems 129

8.1 Equational deduction . 130

8.2 cP system encodings . 131

8.3 cP system rulesets for equational deduction 135

8.4 A case study . 142

8.5 Discussion . 147

8.6 Summary . 149

9 Conclusion 151

9.1 Contributions . 151

9.2 Future work . 153

A Transforming ground cP systems into cP-Coq models 1

Bibliography 3

List of Figures

2.1 A membrane structure . 21

2.2 cP system syntax (lhs = left-hand-side, rhs = right-hand-side, α = rule

application model) . 23

3.1 The grammar of labelled multisets and multiset-based terms 37

3.2 LNMU � a nondeterministic uni�cation algorithm 40

3.3 Partial view of T (LNMU(P)), three branches. P = {f(X)XY ⊂ f(a)ab} 46

4.1 The ruleset of ΠSSP . 55

4.2 A Sudoku puzzle, m = 4 . 56

4.3 Ruleset (1) of ΠSudoku: generating row candidates 57

4.4 Ruleset (2) of ΠSudoku: generating matrix templates 58

4.5 Number con�icts in a matrix template 58

4.6 Ruleset (3) of ΠSudoku: �ltering matrix templates by columns 59

4.7 Checking if two cells are in the same block 59

4.8 Ruleset (4a) of ΠSudoku: creating block checking supporting terms . . . 60

4.9 Ruleset (4b) of ΠSudoku: �ltering matrix templates by blocks 60

4.10 Ruleset (5) of ΠSudoku: matching matrix templates to a Sudoku instance 60

4.11 The CSP# translation of R1 in ΠSSP 62

4.12 The CSP# translation of R2 in ΠSSP 63

4.13 The CSP# translation of R3 in ΠSSP 63

4.14 The CSP# translation of R4 in ΠSSP 64

4.15 The B translation of R1 in ΠSSP . 65

4.16 The B translation of R2 in ΠSSP . 65

4.17 The B translation of R3 in ΠSSP . 66

4.18 The B translation of R4 in ΠSSP . 66

5.1 Representing cP system components in Coq 73

5.2 Modelling cP system rules in Coq . 74

5

6 List of Figures

5.3 The ruleset of Πmin . 75

5.4 The cP-Coq representation of R1 and R2 76

5.5 A Coq simulation of Πmin . 76

5.6 A correctness proof of Πmin with two initial terms 77

5.7 Proving Πmin terminates in two steps 77

5.8 The ruleset of ΠSSP . 78

6.1 A cPVJ example of a cP system which describes the Euclidean algorithm 88

6.2 Object classes for internally modelling cP systems 88

6.3 The core function of the B-translator 90

6.4 An example of a B-machine generated by the B-translator 90

6.5 The core function of the CSP-translator 92

6.6 An example CSP# �le generated by the CSP-translator 93

6.7 The result of verifying the deadlockfree property of a cP system in ProB 94

6.8 The result of verifying the terminating property of a cP system in ProB 95

6.9 The design of cPV . 97

6.10 Pseudocode of the LNMU implementation 99

6.11 The core function to perform rule application in the computing engine 102

6.12 The function APPLY_G_RULES . 103

6.13 The core veri�cation algorithm in cPV 104

6.14 The statespace reduction pseudocode for rule uni�cation 106

6.15 A cPV screenshot of verifying a cP system that solves the Hamiltonian

cycle problem . 107

7.1 The ruleset of ΠHCP . 112

7.2 A cPVJ example of the cP solution to HCP 112

7.3 The input graph of the cP system . 113

7.4 A screenshot of simulating ΠHCP system in cPV 113

7.5 The deadlock veri�cation result of ΠHCP 114

7.6 The veri�cation result of ΠHCP (other system properties) 115

7.7 The cPVJ representation of Π1 . 116

7.8 The cPVJ representation of Π2 . 117

7.9 The cPVJ representation of Π3 . 117

7.10 The cPVJ representation of Π5 . 118

7.11 The cPVJ representation of Π6 . 118

7.12 The Church-Rosser property veri�cation result of Π3 120

7.13 A comparison P system simulators and veri�ers that are in development125

List of Figures 7

7.14 A comparison of di�erent formal tools for verifying cP systems 126

8.1 The standard completion . 131

8.2 The left group theory . 132

8.3 For t = −x+ x, (i) is tree(t), (ii) is the expression tree of t, (iii) shows

the IDs in tree(t) . 132

8.4 Transforming −x+ (x+ y) between its tree and linear forms 135

8.5 The cP-rules to perform reduction on the left group theory 142

List of Tables

3.1 How transformations in LNMU a�ect |GP | 45

3.2 A comparison between well-formed and NOT well-formed labelled mul-

tiset uni�cation problems . 49

3.3 Solving the labelled multiset uni�cation problem: aXg(Y) = a1g(c) . . 50

3.4 Solving the labelled multiset uni�cation problem: a(XY c(Z)) b(Xd(ZW)) ⊂
a(ghc(h)) a(gjc(j)) b(fd(jk)) b(gd(jk)) 50

4.1 A mapping guideline for transforming cP systems into CSP# models . 62

4.2 A mapping guideline for transforming cP systems into B machines . . 64

4.3 Model checking results of ΠSSP . 67

4.4 Model checking results of ruleset (1) and (2) in ΠSudoku 69

5.1 A comparison of verifying cP systems in di�erent formal tools 82

7.1 The veri�cation results of cP systems in D1 119

7.2 Simulation time of cP systems in D2 121

7.3 Property veri�cation time of cP systems in D2 123

9

Chapter 1

Introduction

Natural Computing is the �eld of research that mainly investigates three classes

of methods. These include: (1) human-designed computing inspired by nature,

(2) computing that happens in nature, and (3) using natural materials to perform

computations. Both biology-based and physics-based approaches and algorithms

are aspects of natural computing.

Bio-inspired computing, short for biologically inspired computing, is a sub�eld

of natural computing, which focuses on solving computer science problems by

using biological models relating to connectionism, social behavior, and emergence.

Inspired by the structure of living cells, Membrane computing was proposed as a

branch of bio-inspired computing [1].

Membrane systems (P systems) are a parallel and distributed computational

model, which have one or multiple membranes arranged in a hierarchical way, and

multisets of objects in di�erent regions delimited by these membranes. The ob-

jects are represented by symbols (atoms) from a given alphabet, which can evolve

according to evolution rules associated with the regions. The rules are applied

non-deterministically in a maximally parallel manner. Membranes in P systems

can be divided repeatedly, where 2n �processors� and exponential memory space

can be obtained in n steps [2].

P systems with complex objects (cP systems) are a variant of P systems,

which supports complex symbols (labelled multiset-based terms) and generic rules

(rules that may contain variables) [3]. By representing membrane structures using

complex symbols, cP systems only have evolution rules for top-level membranes.

Using a �xed constant number of generic rules, cP systems can solve several NP-

complete (nondeterministic polynomial-time complete, NPC) problems in linear

11

12 Introduction

or sublinear time. This can include the subset sum problem [4], Hamiltonian cycle

problem [5], travelling salesman problem [5], and Sudoku [6].

After designing a cP system that solves a certain problem, a validation is

required to check if the cP system is reliable and behaves as expected. Formal

veri�cation is a mathematical way to achieve this validation. By describing a

cP system as an abstract mathematical model, its properties can be proven or

disproven using formal methods. Using complex symbols to represent membrane

structures with objects, and generic rules to describe the logic of term rewriting,

cP systems have a strong representational power. However, the design of cP sys-

tems also makes them hard to model, simulate, or verify using third-party formal

tools.

As the �rst cP system formal veri�cation study, this thesis veri�es several

cP systems using di�erent approaches, this includes model checking and deduc-

tive veri�cation. We1 proposed multiple cP systems that solve NPC problems,

and veri�ed their system properties. A major challenge of simulating and verify-

ing cP systems is to handle the uni�cation of rules. In order to solve this issue,

we formally de�ned the labelled multiset uni�cation problem, and proposed a cor-

responding algorithm. We discussed the advantages and disadvantages of using

third-party general purpose formal tools to model and verify cP systems. In order

to overcome the limitations, we designed and implemented a cP system-speci�c

simulation and formal veri�cation framework named cPV, and evaluated its per-

formance. Compared to using general purpose formal tools to verify cP systems,

which requires human intervention, cP systems can be veri�ed in cPV fully auto-

matically. The following research questions are answered in this thesis:

� How can formal veri�cation of cP systems be conducted?

� What are the advantages and disadvantages of using di�erent formal tools

to verify cP systems?

� Compared to existing formal tools, can we design and implement a better

domain-speci�c software tool for cP system formal veri�cation?

1.1 Outline

This thesis proceeds as follows. Chapter 2 introduces the syntaxes of P systems

and cP systems, formal veri�cation and tool support, and related work. The way
1The use of �we� throughout this thesis is by purpose, it is used to involve the reader of the

thesis, as recommended by Knuth. Nonetheless, the thesis is the sole work of the author.

Outline 13

cP systems work will be explained in detail, and the formal methods and tools

used in this study will be introduced. cP systems not only extend traditional

P systems by supporting complex symbols and generic rewriting rules, but also

apply multiple rules following a top-down weak priority order. Thus, cP systems

are a variant rather than a superset of traditional P systems.

Chapter 3 discusses labelled multisets and the corresponding uni�cation prob-

lem, which is fundamental to generic rewriting rules in cP systems. A formal

de�nition of labelled multiset uni�cation is given, and an e�cient uni�cation al-

gorithm named LNMU is proposed [7]. LNMU always terminates, and can �nd

all the uni�ers to a labelled multiset uni�cation problem. By carefully selecting

transformation rules in LNMU, well-formed labelled multiset uni�cation problems

can be solved in linear time.

Chapter 4 discusses how to verify cP systems via model checking [4]. Two

cP systems are proposed, which can solve the subset sum problem in linear time [8],

and solve Sudoku in sublinear time [6]. Several system properties of the two cP sys-

tems are formally veri�ed using the model checkers PAT3 and ProB. To automate

the veri�cation process, two mapping guidelines are proposed, which can be used

to transform cP systems into CSP# models and B machines. The performances of

verifying cP systems using PAT3 and ProB are compared. A major limitation of

model checking is state explosion � cP systems may have a large statespace with

exponential states.

As a complementary approach, Chapter 5 introduces how to use the Coq proof

assistant to verify cP systems [9]. Using mathematical induction, several properties

of cP systems can be proven or disproven without expanding the entire statespace.

A library named cP-Coq is designed and implemented in Gallina, to help people

verify cP systems in Coq. Using cP-Coq, several cP systems are successfully ver-

i�ed. Similar to the model checking approach, multiple mapping guidelines are

introduced to help people model cP systems in Coq. A major limitation of this

approach is that human intervention is needed in modelling cP systems, specifying

the system properties, and proving the theorems. There is no guarantee that all

the theorems can be proven.

Chapter 6 introduces our own software implementations on cP system formal

veri�cation. Multiple translators are implemented following the mapping guide-

lines proposed in previous chapters, which can automatically transform certain

cP systems into di�erent models. By integrating the translators with third-party

formal tools, several cP systems can be veri�ed fully automatically. However, not

14 Introduction

all the cP systems can be automatically modelled and veri�ed using existing formal

tools due to the lack of language features. To solve this issue, a cP system-speci�c

formal veri�er, namely cPV, is implemented, whose functionalities include lan-

guage parsing, system simulation, veri�cation algorithms, reduction techniques,

counterexample generation, and a graphical user interface (GUI). System prop-

erties, including deadlockfreeness, con�uence, termination, determinism, and goal

reachability of any valid cP system can be automatically veri�ed in cPV. As a

modularised and extensible framework, multiple interfaces are provided in cPV,

where custom features can be easily added into corresponding modules as needed.

Chapter 7 includes the functional and performance evaluation of cPV. To il-

lustrate the cP system simulation, a case study is introduced. Two benchmark

cP system datasets are created and veri�ed in cPV, which can also be used in

future studies. By implementing LNMU in an optimised way, cPV is the �rst soft-

ware framework that can e�ectively handle generic rules and compound terms in

cP systems.

Chapter 8 explores a future direction of cP system research which uses cP sys-

tems to perform automated deduction [10]. A cP system is proposed, which can

compute all critical pairs among multiple axioms in logarithmic time. To reduce

a term of size m to a normal form, the cP system can be O(2m) times faster than

traditional rewrite systems. In the future, if a �meta cP system� can be properly

designed by encoding other cP systems as input data, the approach can be used

to verify cP systems.

Chapter 9 concludes the thesis, and introduces several future directions for

cP system formal veri�cation research.

1.2 Key results and publications

The key results of this thesis are presented from Chapter 3 to Chapter 8, which

are listed as follows:

� Chapter 3: An e�cient labelled multiset uni�cation algorithm

� Results:

* The uni�cation problem of labelled multisets is formally de�ned.

* An e�cient labelled multiset uni�cation algorithm, namely LNMU,

is proposed.

* The �rst cP system simulator, namely cPSim, is implemented.

Key results and publications 15

� Publications:

* Y. Liu, R. Nicolescu, and J. Sun, An e�cient labelled nested

multiset uni�cation algorithm. Journal of Membrane Comput-

ing, vol. 3, no. 3, pp. 194-204, 2021.

* Y. Liu, R. Nicolescu, and J. Sun, Multiset uni�cation and

cP system simulation, in The International Conference on Mem-

brane Computing 2020, Vienna, Austria, 2020.

� Chapter 4: Model checking of cP systems

� Results:

* A linear cP system solution to the subset sum problem is proposed,

which includes 5 rules.

* A sublinear cP system solution to Sudoku (m × m) is proposed,

which includes 16 rules.

* Two mapping guidelines to transform cP systems into CSP# mod-

els and B machines are proposed.

* The formal veri�cation of cP systems via model checking is con-

ducted and discussed.

� Publications:

* Y. Liu, R. Nicolescu, J. Sun, and A. Henderson, A sublinear

Sudoku solution in cP systems and its formal veri�cation.

Computer Science Journal of Moldova, vol. 85, no. 1, pp. 3-28,

2021.

* Y. Liu, R. Nicolescu, and J. Sun, Formal veri�cation of cP sys-

tems using PAT3 and ProB. Journal of Membrane Computing,

vol. 2, pp. 84-90, 2020.

* Y. Liu, R. Nicolescu, and J. Sun, Formal approach to cP sys-

tem veri�cation, in The 8th Asian Conference on Membrane

Computing (ACMC2019), p. 232, 2019.

� Chapter 5: Deductive veri�cation of cP systems

� Results:

* A Gallina library, namely cP-Coq, is proposed and implemented.

16 Introduction

* Two mapping guidelines to transform cP system components and

rules into Gallina are proposed.

* The formal veri�cation of cP systems via interactive theorem prov-

ing is conducted and discussed.

� Publications:

* Y. Liu, R. Nicolescu, and J. Sun, Formal veri�cation of cP sys-

tems using Coq. Journal of Membrane Computing, vol. 3, no. 3,

pp. 205-220, 2021.

� Chapter 6: cPV � a Formal Veri�cation Framework for cP Systems

� Results:

* A domain-speci�c language for cP systems, namely cPVJ, is pro-

posed.

* Several translators to transform cP systems (described in cPVJ)

into CSP# models, B machines, and Gallina models are imple-

mented.

* The CSP-translator and B-translator are integrated with PAT3 and

ProB, which can be used to verify certain cP systems automatically.

* A simulation and formal veri�cation framework for cP systems,

namely cPV, is proposed and implemented.

� Chapter 7: Evaluation of cPV

� Results:

* The functional and performance evaluation of cPV is conducted.

* Two benchmark cP system datasets are proposed.

� Chapter 8: Towards automated deduction in cP systems

� Results:

* A cP system that can perform equational deduction is proposed.

� Publications:

* Y. Liu, R. Nicolescu, and J. Sun, Towards automated deduc-

tion in cP systems. Information Sciences, vol. 587, pp. 435-449,

2022.

Summary 17

� Other publications:

� R. Nicolescu, M. J. Dinneen, J. Cooper, A. Henderson, and Y. Liu,

Logarithmic SAT solution with membrane computing. Axioms,

vol. 11, no. 2: 66, 2022

1.3 Summary

This chapter includes a brief introduction and an outline of the thesis. Motiva-

tions and major contributions of this study are introduced, and corresponding

publications are listed.

In the next chapter, the background of P systems, cP systems, and formal

veri�cation will be introduced. A literature review will also be presented, which

covers most of the studies that are related to this work.

Chapter 2

Background and Related Work

Most P systems and P system variants share two attractive properties, these are

computational completeness and e�ciency. P systems are equivalent in power to

Turing machines. Using unlimited computational resources, P systems can solve

NPC problems in polynomial time [2].

Extended from P systems, an early prototype of cP systems was introduced

in [11], which was used to model several distributed algorithms. Using the proto-

type, solutions to the Boolean satis�ability problem (SAT) [12] and parallel image

thinning problem [13] were proposed. cP systems were formally de�ned in [14],

then further introduced in [3, 15].

Several real world or computationally hard problems can be solved in polyno-

mial time using cP systems, these include: the seeded region growing problem [16],

the Byzantine agreement problem [17], the most common words problem [18], the

Travelling Salesman Problem (TSP) [5], the Hamiltonian Path Problem (HPP) [5],

the Hamiltonian Cycle Problem (HCP) [5], the Subset Sum Problem (SSP) [8, 4],

Sudoku [6], satis�ability of quanti�ed propositional formulas (QSAT) [19], and

SAT [20].

The formal veri�cation of cP systems is a brand new research area, however,

several P system models were veri�ed in previous studies via model checking. The

rest of this chapter is organised as follows. Section 2.1 introduces the background

of P systems, cP systems, and formal veri�cation. Section 2.2 presents work related

to this thesis, and Section 2.3 concludes the chapter.

19

20 Background and Related Work

2.1 Background

In the structure of living cells, membranes play an essential role; separating the

cytoplasm and nucleus from the environment. Membrane computing formalises

the membrane structure to a nondeterministic and parallel computing model.

Several P system variants are proposed in previous studies. These include:

(1) tissue P systems [21], which processe symbol-impulses in a net of cells; (2) spik-

ing neural P systems [22], which are a class of neural-like P systems in which the

spiking time of neurons plays an essential role; (3) kernel P systems [23], which

support structure changing rules with guards which are responsible for changing

a system's topology; and (4) cP systems [3], which share the fundamental features

of cell-like (tree-based) and tissue (graph-based) P systems, and support complex

symbols and generic rules. As a newly proposed P system variant, cP systems are

more expressive than other P system variants which only support ground rules

(rules that do not contain any variables). cP system solutions to computationally

hard problems often only contain a �xed constant number of generic rules, and

halt in polynomial steps.

To validate cP systems that perform certain computation tasks, formal veri�-

cation techniques can be applied. Given a cP system Π, we can either exhaustively

check if Π holds certain system properties by applying model checking, or mathe-

matically prove Π will always behave in an expected way by performing theorem

proving.

2.1.1 P systems

A membrane structure is shown in Fig. 2.1, which consists of �ve membranes

that are hierarchically arranged and labelled with natural numbers. The outmost

membrane is called the skin membrane, which separates, and hence protects, the

internal space of the cell from the environment. Multiple inner membranes can be

placed inside the skin membrane. Regions are delimited by membranes, which may

contain symbol objects. Using strings of labelled matching parentheses, the mem-

brane structure shown in Fig. 2.1 can be represented as: [1 [2 [3]3 [4]4]2 [5]5]1.

Background 21

Figure 2.1: A membrane structure

De�nition 1. A P system is a construct of the form [24]:

Π = (O,C, µ, ω1, ω2, . . . , ωm, R1, R2, . . . , Rm, io),

where:

1) O is the �nite and non-empty alphabet of objects;

2) C ⊂ O is the set of catalysts;

3) µ is a membrane structure, consisiting ofmmembranes labelled with 1, 2, . . . ,m;

4) ω1, ω2, . . . , ωm are strings over O representing the multisets of objects present

in the regions 1, 2, . . . ,m of the membrane structure;

5) R1, R2, . . . , Rm are �nite sets of evolution rules associated with the regions

1, 2, . . . ,m of the membrane structure;

6) io indicates the output region, which is either one of 1, 2, . . . ,m or 0 � which

indicates the environment.

Rules in P systems are of the form u → v, where u ∈ O+, v ∈ (O × Tar)∗,

and Tar = {here, in, out}. The multiplicities of symbols are represented as super-

scripts, for example, a2 ≡ aa and b3 ≡ bbb. Empty multiset is denoted by λ. For

example, the rule a → bc consumes a and produces b and c; the rule a2 → (a, out)2

sends 2 copies of a to the environment (outside the system). Catalysts can be used

in the rules, for instance, in the rule ca → cb, c is a catalyst that is required by

the rule, which will not evolve or move to other regions.

Consider the following P system [2]:

Π1 = (O, λ, µ, ω1, ω2, R1, R2, io),

with the following components:

O = {a, b, c},
µ = [1 [2]2]1,

ω1 = a2,

22 Background and Related Work

ω2 = λ,

R1 = {a → a(b, in2)(c, in2)
2, a2 → (a, out)2},

R2 = ∅,
io = 2.

The system starts with two copies of a in region 1. Since both the two rules

in R1 are applicable, in each computational step, one of them will be randomly

applied. If a → a(b, in2)(c, in2)
2 is applied, which processes a copy of a; another

copy of a in region 1 must also be processed by the same rule due to the maximal

parallelism. The rule reproduces a copy of a in region 1, and sending a copy of b

and two copies of c to region 2. Another rule a2 → (a, out)2 sends two copies of a

to the environment. In Π1, after applying a2 → (a, out)2, the computation halts.

Membrane 2 is the output membrane with no rule applicable. Suppose a2 →
(a, out)2 is applied at step n, region 2 will contain the objects b2nc4n. Thus, the

computation result of Π1 is: N(Π1) = {6n | n > 0}.
More examples of P systems with di�erent membrane structures and evolution

rules can be found in [25, 2, 24].

2.1.2 cP systems

cP systems share the fundamental features of cell-like and tissue P systems. Mem-

branes and objects in a top-level cell are represented as labelled nested multiset-

based terms, and top-level cells can be organised in graph networks. Each top-

level cell has evolution rules, and sub-cells are only used to represent local data.

In this study, we will focus on cell-like cP systems, i.e., each cP system has only

one top-level cell. cP systems with multiple top-level cells are introduced in [3].

Theoretically, many cP systems with multiple top-level cells can be simulated by

single top-level cell cP systems using generic rewriting rules to model intercellular

communications.

The grammar of cP systems is shown in Fig. 2.2. The basic vocabulary of

cP systems is simple term, which consists of atom and variable. Lowercase letters

are used to represent atoms and uppercase letters are variables. For instance, a,

b, c are atoms and X, Y , Z are variables. As a special atom, unity symbol 1 is

used to represent Peano natural numbers. For example, the natural number 1 is

represented as 1, 2 is represented as 11 or 12, 3 is represented as 111 or 13, and

so on. Underscores () are used to denote anonymous variables. λ refers to the

empty multiset.

Background 23

< term > ::= < simple-term > | < compound-term >
< multiset > ::= < term > ...
< simple-term > ::= < atom > | < variable >
< compound-term > ::= < functor > (< multiset >)
< functor > ::= < atom >
< state > ::= < atom >
< l-state > ::= < state >
< r-state > ::= < state >
< rule > ::= < lhs >→α< rhs >< promoters >
< lhs > ::= < l-state >< multiset >
< rhs > ::= < r-state >< multiset >
< promoters > ::= | < multiset >

Figure 2.2: cP system syntax (lhs = left-hand-side, rhs = right-hand-side, α =
rule application model)

Compound terms are recursively built by terms with functors, where functors

are atoms. For example, f(1), a(b), a(b(cX)d(e)) are compound terms. Com-

pound terms can be used to represent cells, for instance, a cell with label a that

contains the two atoms b and c can be presented as a(bc).

Compound terms are multiset-based, the writing order of their elements does

not matter. For example, a(bbc) and a(cbb) are identical, both of them represent

a cell with the label a, which contains three atoms b, b and c.

Top-level cells in cP systems have evolution rules. A rule consists of lhs, rhs,

promoters and an application model (α). Both a rule's lhs and rhs contain a state

and a multiset of terms. For example, s1 a →1 s2 bc is a rewriting rule, whose

l-state is s1, r-state is s2, and application model is 1. Atom a is a term in its lhs,

atoms b and c are terms in its rhs. This rule consumes a term a and produces two

terms b and c. In other words, it rewrites a as bc.

Each cell-like cP system contains a number of terms alternatively named sys-

tem terms, and has a state named system state. States are atoms, to distinguish

them with terms, it is conventional to write them as atom s with subscripts of

natural numbers, such as s1, s2 and s3.

A rule is applicable if and only if its l-state matches the system state, and

its lhs terms and promoters exist in the system (can be un�ed againist system

terms). After applying the rule, terms matching its lhs will be consumed, and terms

appearing in its rhs � by applying the substitution obtained from the matching of

the lhs terms and promoters with system terms � will be produced. The system

state will then be changed to the rule's r-state.

24 Background and Related Work

For generic rules with variable terms such as a(X), b(), cP systems sup-

port a one-way uni�cation (pattern matching). After successfully unifying a rule's

variable terms against systems terms, it can be applied.

Suppose that a cP system (at s1) has two terms a(1), a(11) and a generic

rule s1 a(X) →1 s2 b(X). The variable term a(X) in the rule's lhs can be uni�ed

against system terms a(1) and a(11). Two uni�ers can be obtained here, which are

ϑ1 = {X 7→ 1} and ϑ2 = {X 7→ 11}. Since the application model of this rule is

�exactly-once�, it will only be applied once. cP systems are nondeterministic, thus

one of ϑ1 and ϑ2 will be randomly selected. Suppose ϑ1 is selected, the rule will

apply ϑ1, and obtain a ground rule s1 a(1) →1 s2 b(1). By applying it, the system

will consume a(1) and produce b(1).

Two major application models are supported in cP systems, these are �exactly-

once (1)� and �max-parallel (+)�. As mentioned, in the exactly-once model, a rule

will only be applied once. However, in the max-parallel model, all the system terms

that can apply a rule will apply it simultaneously.

Suppose a cP system (at s1) has three system terms a(12), a(13), a(13) and a

rule s1 a(1X) →α s2 a(X). By unifying the variable term a(1X) in the rule with

the system terms, three ground rules can be obtained. These are: s1 a(11) →α

s2 a(1), s1 a(112) →α s2 a(1
2) and s1 a(11

2) →α s2 a(1
2), where the variable X is

mapped to 1, 12 and 12, respectively. When the application model is exactly-once

(α = 1), the system will non-deterministically choose one ground rule to apply.

The computation result can be a(1), a(13), a(13) or a(12), a(12), a(13). When the

application model is max-parallel (α = +), the system will apply all the ground

rules, and the computation result will be a(1), a(12), a(12).

Given a rule in the max-parallel model, ground rules (obtained by unifying its

variable terms with system terms) that can be applied together are called com-

patible. Suppose a cP system (at state s1) has four system terms a(c), a(d), b(e),

b(f), and a rule s1 a(X) b(Y) →+ s1 g(XY). By unifying a(X) and b(Y) against

the system terms, the following ground rules can be obtained: r1 : s1 a(c) b(e) →+

s1 g(ce), r2 : s1 a(c) b(f) →+ s1 g(cf), r3 : s1 a(d) b(e) →+ s1 g(de), and

r4 : s1 a(d) b(f) →+ s1 g(df). The four ground rules r1, r2, r3, and r4 will be

non-deterministically applied. Suppose the system applies r2, the system terms

a(c) and b(f) will be locked by r2, and be rewritten as g(cf). The only free terms

in the system are a(d) and b(e), which can be used in r3. Thus, r2 and r3 can be

applied together � they are compatible. Similarly, r1 and r4 are compatible. In

the max-parallel model, the system will non-deterministically choose r2, r3 or r1,

r4 to apply.

Background 25

Rules in cP systems are applied following a weak priority order � i.e., rules are

sequentially considered in a top-down order. The �rst applied rule commits the

target state, and any subsequent rule that indicates a di�erent target state is then

disabled. This way, the weak priority order can be used to simulate if-then-else

structures of traditional programming.

Suppose a cP system (at s1) has two system terms a(c), b(d) and three rules:

r1 : s1 a(X) →1 s2 o(XX), r2 : s1 b(X) →1 s3 p(X), and r3 : s1 b(X) →1

s2 q(XXX). The system will �rst check r1, which is applicable. Thus, by applying

r1, the target state will be committed to s2. Since r2 commits to a di�erent target

state s3, it is not applicable. r3 commits to s2, and it is compatible with r1, so

it will be applied with r1 together in the same step. The computational result of

the system will be o(cc), q(ddd).

In each step, newly generated terms will be temporarily put into a �virtual

product membrane�, which will not be available until the next step. Suppose a

cP system (at s1) has two system terms a(c), b(d) and two rules r1 : s1 a(X) →1

s2 b(X) and r2 : s1 b(X) →+ s2 c(X). r1 and r2 will be applied in the same step.

The term b(c) generated by r1 will be sent to the virtual product membrane, which

will not be consumed by r2 in the same step. After applying the two rules, the

system state will be changed to s2, then no rule is applicable. The computational

result of the system will be b(c), c(d).

To apply a rule with promoters, they must exist in the system and must not

be consumed. Suppose a cP system (at s1) has two system terms y(16), z(14), and

a rule s1 →1 s2 x(X) | y(XZ) z(Z). By unifying y(XZ) and z(Z) with y(16) and

z(14), a ground rule can be obtained: s1 →1 s2 x(12) | y(16) z(14). By applying

it, a term x(12) will be generated. y(16) and z(14) are promoters, they will be

checked by the rule, but will not be consumed.

2.1.3 A cP system in use

Given the two natural numbers y and z, a cP system (at s0) with the following

ruleset can compute their product (x = y × z).

s0 →1 s2 x(λ) | z(λ) (R1)
s0 →1 s1 x(λ) w(Y) | y(Y) (R2)
s1 x(X) w(λ) →1 s2 x(X) (R3)
s1 x(X) w(Y 1) →1 s1 x(XZ) w(Y)) | z(Z) (R4)

26 Background and Related Work

The rule R1 checks the promoter z, if z = 0, by applying R1, the system will

change its state to s2, and generate a term x(λ) which indicates that x = 0. Since

no rule's l-state matches s2, no rule is applicable, therefore, the system halts.

R2 generates a term x(λ), assigns the value of y(Y) to w(Y), and changes the

system state to s1.

When w(λ) appears in the system, which means w = 0, R3 changes the system

state to s2, reproduces x(X), then the system will halt.

If w(Y 1) is in the system, which means w > 0, R4 adds the value of z(Z) to

x(X), creates a new terms x(XZ), consumes the existing term x(X), and subtracts

one from w(Y 1) by rewriting it as w(Y).

After applying the ruleset a number of times, the system will eventually halt,

and the term x() in the �nal system con�guration will indicate the computation

result of y × z.

Suppose y = 3 and z = 6, which are encoded as two system terms y(13) and

z(16). Following the top-down order, R1 will be considered �rst, however, since

z(λ) cannot be found in the system, R1 is not applicable, and the system will

consider R2 instead.

R2 is applicable, and by unifying y(Y) to y(13), a mapping {Y 7→ 13} can be

obtained. By applying the mapping to w(Y), the system generates two the terms

x(λ) and w(13), and changes its state to s1. Since no other rule would change the

system state from s0 to s1 (the same to R2), the �rst computational step is over.

In the second step, the ruleset will be applied again. The system �rst considers

R1 and R2, which are not applicable because their l-states do not match the

system's current state (which is s1). R3 is also not applicable, since there is no

w(λ) in the system. R4 is applicable, and by applying it, the system consumes

x(λ) and w(13), and produces x(16) and w(12) from the mapping {Z 7→ 16}; which
was obtained by unifying z(Z) in R4 with the system term z(16).

In the third step, R1, R2, and R3 are still not applicable. By applying R4, the

system consumes x(16) and w(12), and produces x(112) and w(1). In the fourth

step, the system will still apply R4, consumes x(112) and w(1), and produces

x(118) and w(λ).

Finally, in the last computational step, since there is a term w(λ) in the system,

R3 is applicable, this will be considered before R4. By applying R3, the system

consumes w(λ), reproduces x(118), and changes its state to s2, then halts. In the

�nal system con�guration, the term x(118) indicates that x = 18 = y× z = 3× 6.

Background 27

2.1.4 Formal veri�cation and tool support

Formal veri�cation is the process of proving or disproving whether a system satis-

�es certain formal speci�cations or properties. This uses formal methods of math-

ematics. Two major approaches of formal veri�cation are model checking and de-

ductive veri�cation.

By modelling a system as a �nite graph, model checking uses an exhaustive

search procedure to determine if certain speci�cations are satis�ed by the sys-

tem [26]. Two major approaches are commonly used in system modelling, these

are Kripke structures and Labelled Transition Systems (LTS) [27]. Temporal log-

ics are designed for expressing system properties, which include linear-time and

branching-time logics such as Linear Temporal Logic (LTL) [28] and Computation

Tree Logic (CTL) [29].

Deductive veri�cation generates a set of proof obligations from a system and its

speci�cations. It also uses proof assistants or automated theorem provers such as

Satis�ability Modulo Theories (SMT) solvers to prove the obligations. Compared

to model checking, which can be performed automatically, deductive veri�cation

requires human knowledge on system modelling, property speci�cation, and theo-

rem proving.

2.1.4.1 Model checkers

Since model checking has emerged as a powerful approach to automatic system

veri�cation, several model checkers were proposed and implemented. These in-

clude, but are not limited to: (1) Berkeley Lazy Abstraction Software veri�cation

Tool (BLAST) [30], which is an automatic veri�cation tool for checking tempo-

ral safety properties of C programs; (2) CPA checker [31], which is a veri�cation

framework that aims to achieve easy integration of new veri�cation components;

(3) NuSMV [32] and NuSMV 2 [33], where NuSMV is a symbolic model checker

based on binary decision diagrams (BDDs), and NuSMV 2 is an extended ver-

sion of NuSMV that combines BDD-based model checking with SAT-based model

checking; (4) PRISM [34], which is a symbolic model checker that was developed

for the analysis of probabilistic systems; (5) SPIN [35], which is a software tool for

verifying the correctness of concurrent systems; and (6) UPPAAL [36], which is an

integrated tool suite for modelling and veri�cation of Real-Time Systems (RTS).

In this thesis, two general purpose model checkers are used to verify cP sys-

tems. These are Process Analysis Toolkit 3 (PAT3) [37] and ProB [38, 39]. An early

version of Process Analysis Toolkit was presented in [40], which was designed to

28 Background and Related Work

verify event-based compositional system models speci�ed in Communicating Se-

quential Processes (CSP). PAT3 is the latest version of PAT, which supports

several system modelling options such as Communicating Sequential Programs

(CSP#), Probability CSP, RTS, LTS, and timed automata. PAT3 can verify sys-

tem properties including deadlockfreeness, con�uence, termination, determinism,

goal reachability, and other properties speci�ed in LTL. Re�nement checking can

also be performed in PAT3. Making use of processes and events, PAT3 can po-

tentially model both intercellular communications and object manipulations in

cP systems.

ProB is a validation toolset for the B-method [41]. A model checker and a

re�nement checker are contained by ProB, which can be used to detect design

errors in B speci�cations. As a modelling language, B makes heavy use of set

theory, this can potentially bene�t the modelling of certain cP systems. Two main

proof activities in ProB are consistency checking and re�nement checking. Here

consistency checking monitors if the invariants are preserved during operations,

and re�nement checking is used to check if a machine is a re�nement of another. In

addition to B, the latest version of ProB also supports other modelling languages

including Event-B, CSP-M, TLA+, and Z.

2.1.4.2 Proof assistants

A proof assistant, or interactive theorem prover, is a software tool that helps peo-

ple to write formal proofs. Existing proof assistants include, but are not limited

to: (1) A Computational Logic for Applicative Common Lisp (ACL2) [42], which

was implemented in Common Lisp, and supports automated reasoning in inductive

logical theories; (2) Agda [43], which is a proof assistant based on the propositions-

as-types paradigm; (3) F* [44, 45], which is a functional programming language

in development, aimed at software and hardware veri�cation; (4) Higher Order

Logic (HOL) [46], which includes a family of LCF (Logic for Computable Func-

tions) theorem proving systems for higher-order logic; (5) Isabelle [47], which is

also a LCF-style higher-order logic theorem prover; and (6) Mizar [48, 49], which

consists of a formal language and a theorem prover based on �rst-order logic and

Tarski�Grothendieck set theory.

In this study, the Coq proof assistant [50, 51] is used to verify cP systems. Coq

is an interactive theorem prover designed for both �rst-order logic and higher-order

logic. It supports a system speci�cation language named Gallina, and a tactic lan-

guage called the Calculus of Inductive Constructions (CIC) [50]. Programs written

Related work 29

in Gallina always terminate, which satisfy the weak normalisation property. Coq

was successfully applied to several problematic domains including compiler veri-

�cation [52], data structure veri�cation [53], and mathematical theorem proving

such as Feit�Thompson theorem [54] and four color theorem [55].

2.2 Related work

This section includes previous studies related to this thesis. Three major topics

will be included in this section, which are �rst-order uni�cation algorithms, for-

mal veri�cation of di�erent membrane computing models, and the Knuth-Bendix

completion.

Di�erent from other P system variants, the hierarchical membrane structures

with objects in cP systems are represented by labelled (and nested) multiset-based

terms. Compared to other P system variants, which typically use a uniform or semi-

uniform family of rulesets to solve a speci�c instance of a NPC problem, cP systems

can provide a simpler solution with a �xed constant number of generic rules that

covers all the instances of a problem. To simulate or verify a cP system with

generic rules, �rst-order uni�cation plays an essential role. Terms in a rule's lhs

and promoters need to be uni�ed against system terms, and the uni�ers obtained

from the uni�cation need to be applied to the rule's rhs terms.

Although there is no previous work focusing on the formal veri�cation of

cP systems, multiple variants of P systems were successfully veri�ed using for-

mal tools. Since membrane computing was proposed, model checking became the

most popular and successful formal approach to verifying P system models. Vari-

ous general purpose model checkers and domain speci�c veri�ers (built on top of

existing model checkers) were used to conduct formal veri�cation of P systems.

These include SPIN, NuSMV, ProB, UPPAAL, MeCoSim [56, 57] and kPWork-

bench [58].

In addition to model checking, this thesis also introduces how to verify cP sys-

tems by performing interactive theorem proving. It also discusses an ambitious fu-

ture direction: using cP systems to construct an automated theorem proving tool

and using this to verify other cP systems. Equational logic is a common denomina-

tor among several di�erent logics [59], and equational deduction is fundamental to

automated theorem proving. Using the Knuth-Bendix completion algorithm [60],

a set of equations (axioms) over terms can be transformed into a con�uent rewrite

system, which can be use to derive new equations (theorems).

30 Background and Related Work

2.2.1 First-order unifcation algorithms

Uni�cation identi�es two symbolic expressions by �nding variable substitutions. In

�rst-order uni�cation (or syntactic uni�cation of �rst-order terms), variables can-

not map to function symbols. In other words, higher-order variables, i.e., variables

for functions, are not allowed.

Classical �rst-order uni�cation algorithms were surveyed by Baader and

Snyder [61], and several studies analysed the complexity of uni�cation prob-

lems [62, 63, 64, 65, 66, 67]. Robinson �rst proposed an algorithm to compute

most general uni�ers (mgu) of well-formed expressions in a set. This was based on

substituting variables in the lexical ordering of the disagreement sets [68, 69]. The

notions of uni�cation and mgu were also reinvented by Knuth and Bendix as tools

for computing critical pairs of equational theories [60]. Zilli described a simpli�ed

version of Robinson's algorithm and discussed its complexity [70], and Paterson

and Wegman introduced a linear uni�cation algorithm, which can deal with simple

terms (represented by directed trees) on the rhs of multiequations [71].

A well-known nondeterministic �rst-order uni�cation algorithm is Martelli and

Montanari's algorithm [72]. A strategy of e�ciently selecting multiequations was

also introduced by the authors. The algorithm was proven to be e�cient in several

extreme cases.

Dovier et al. discussed uni�cation algorithms for several data structures includ-

ing sets, multisets, and compact lists [73]. Dantsin and Voronkov also described a

uni�cation algorithm for sets, multisets and trees [74].

Other �rst-order uni�cation algorithms include, but are not limited to: Jaf-

far's nondeterministic algorithm, which can deal with in�nite terms without com-

plex data structures [75]; Dwork et al.'s parallel term matching algorithm [76];

Rydeheard and Burstall's categorical uni�cation algorithm [77], and Huet's algo-

rithm [78].

2.2.2 Formal veri�cation of membrane computing models

One of the earliest studies of verifying P systems was conducted by Pérez-Jiménez

and Sancho-Caparrini [79]. Here the properties of a P system generating squares

of natural numbers were proven manually by the authors without using any soft-

ware tools. Later, Kefalas et al. described an approach to modelling P systems as

communicating X-machines, this aimed to facilitate future formal veri�cation of

P systems [80].

Related work 31

Since formal tools were introduced to verify P systems, model checking became

the most dominant approach. By modelling P systems in Maude, which is an

implementation of rewriting logic, Andrei et al. showcased how to specify and

verify properties of P systems using a model checker [81]. Various P systems and

their model checking problems were investigated by Dang et al., where SPIN was

used to conduct the experiments. Ipate et al. introduced a testing methodology for

P systems based on model checking, which was implemented in NuSMV [82]. A

comparison between P system veri�cation using SPIN and NuSMV was presented

in [83], and a guideline for specifying P systems in Process or Protocol Meta

Language (PROMELA) was proposed.

An approach to verifying P systems using ProB and Rodin was proposed

in [84], where the authors introduced how to represent P systems as Event-B

models. An automated approach to transform P systems from P-Lingua [56, 57]

into Promela was proposed by Lefticaru et al., where the generated models can be

veri�ed using SPIN [85]. An algorithm for transforming spiking neural P systems

into timed automata was propose by Aman and Ciobanu, this can be veri�ed using

UPPAAL [86].

Multiple domain-speci�c tools including MeCoSim and kPWorkbench were

also used to simulate and verify certain P system models. For example, Gheorghe

et al. simulated and veri�ed a kernel P system that solves the 3-colouring prob-

lem using MeCoSim and SPIN [87]. Lefticaru et al. introduced an approach to

mapping certain classes of spiking neural P systems to equivalent kernel P system

representations, this can be veri�ed in kPWorkbench [88].

2.2.3 Automated deduction and Knuth-Bendix completion

Automated deduction studies how mathematical theorems can be proven by com-

puter programs. Many early implementations of automated deduction were based

on a Herbrand's theorem, which describes how to build a sound and complete

deduction procedure [89]. A notable milestone was Robinson's resolution method,

this provided a refutation technique for sentences in propositional logic and �rst-

order logic [68]. Another breakthrough on automated theorem proving was Knuth

and Bendix's work, this described a superposition procedure that can be used to

obtain a convergent system from a set of axioms, namely completion [60]. Prop-

erties of convergent systems, the superposition algorithm, and the Knuth-Bendix

theorem were further formalised by Huet and Oppen [90].

32 Background and Related Work

Term rewriting provides a forward chaining method for automated deduc-

tion [91, 92]. This can also be seen as a subgoal-reduction strategy with a linear

input [93]. A potential issue of this approach is combinatorial explosion, however

by only computing necessary critical pairs and applying simpli�cation techniques

in equational deduction, the issue can be alleviated. Rewriting rules or equations

can be used to simplify each other, i.e., after obtaining a new rule, it will be used

to reduce existing rules, then redundant rules can be deleted.

The Knuth-Bendix completion does not guarantee success: it may either be

non-terminating (trying to generate an in�nite number of new axioms), or fail

to handle unorientable equations. By relaxing the problem to con�uent rewrite

systems, which are not necessarily convergent, Huet proposed a completion al-

gorithm which applies to left-linear rewrite systems [94]. Peterson and Stickel

introduced an extended version of Knuth and Bendix's algorithm to handle con-

cepts such as commutativity (non-terminating rewrite relations) [95]. Bachmair

et al. proposed an �unfailing� extension of the classic Knuth-Bendix completion

procedure, which is refutationally complete for theorem proving in equational

theories. [96]. Other studies related to completion include, but are not limited

to: [97, 98, 99, 100, 101, 102].

2.3 Summary

This chapter introduces the notation of P systems and cP systems, formal veri�-

cation, existing formal veri�cation tools, and related work (on uni�cation, formal

veri�cation of P systems, and automated deduction).

Previous studies on classic �rst-order uni�cation were reviewed, and several fa-

mous uni�cation algorithms, including Robinson's algorithm, Paterson and Weg-

man's linear uni�cation algorithm, and Martelli and Montanari's nondeterministic

uni�cation algorithm, were introduced.

To verify P systems, model checking was considered as an e�ective method.

Several P systems were veri�ed using di�erent model checkers including SPIN,

NuSMV, ProB, and UPPAAL, which were introduced in this chapter.

Automated deduction is a sub�eld of automated reasoning and mathematical

logic, which studies how to use computer programs to write formal proofs. Rewrite

systems can be used as e�cient tools to perform automated deduction. cP systems

can be seen as a type of maximally parallel rewrite systems, which can perform

automated deduction more e�ciently than traditional rewrite systems. As a core

Summary 33

algorithm and a milestone of automated deduction, the Knuth-Bendix completion

and its extensions were introduced.

In the next chapter, we will formally de�ne the uni�cation problem of labelled

multisets, introduce a corresponding uni�cation algorithm, and analyse the com-

plexity of the algorithm.

Chapter 3

An e�cient labelled multiset

uni�cation algorithm

cP systems support complex symbols and generic rules. Terms in cP systems are

based on labelled multisets, which are often nested, and can be used to represent

membrane structures with objects. Generic rules may contain �rst-order variables,

where ��rst-order� indicates that variables in a rule can only be mapped to a

multiset of objects (cell content) rather than functors (cell or subcell labels).

To apply a generic rule in cP systems, the most important process is to

unify the rule's lhs terms and promoters against system terms. Uni�cation solves

equations between symbolic expressions by �nding variable substitutions [61].

Suppose we have two terms t1 = f(a, Y) and t2 = f(X, b), where f is a

functor, a, b are atoms, and X, Y are variables. By applying the substitution

ϑ := {X 7→ a, Y 7→ b}, we have t1ϑ = f(a, b) = t2ϑ. Thus, ϑ is said to be a uni�er

for t1 = t2.

In this chapter, we will extend the �rst-order uni�cation problem to la-

belled (and nested) multisets, and introduce a corresponding algorithm, namely

LNMU [103, 7]. The transformations in LNMU will be discussed one by one, and

we will introduce how to e�ectively select transformations. LNMU can solve well-

formed (de�ned in Section 3.4) labelled multiset uni�cation problems in linear

time.

The rest of the chapter is organised as follows. Section 3.1 de�nes the labelled

multiset uni�cation problem. Section 3.2 introduces the LNMU algorithm. Sec-

tion 3.3 shows the analysis of LNMU. Section 3.4 discusses the well-formedness

of labelled multiset uni�cation. Section 3.5 shows two worked examples of the

algorithm, and Section 3.6 concludes the chapter.

35

36 An e�cient labelled multiset uni�cation algorithm

3.1 De�nitions

Multisets are unordered set-like collections, where multiplicities of their elements

matter. For labelled multisets, each of their elements can be an atom, a variable

symbol or another labelled multiset.

Similar to the term de�nition in cP systems (Fig. 2.2), we consider functors

as labels of multisets. For example: f(abc) is a multiset labelled with f , which

contains three atom a, b, and c. Similarly, f(g(h)) is a multiset labelled with f ,

which contains a submultiset with the label g, which contains an atom h. Multisets

are unordered collections, for instance, both f(aab) and f(baa) can be used to

represent a multiset labelled with f , which contains three atoms a, a, and b.

Function symbols discussed in other studies are di�erent from functors de-

�ned in this study. In traditional �rst-order uni�cation, to unify f1(a, b) with

f1(X,Y), the only uni�er is ϑ := {X 7→ a, Y 7→ b}. Since f1 is a function symbol,

the order of its parameters matters: f1(a, b) ̸= f1(b, a). In the labelled multiset

uni�cation, since multisets are unordered, to unify f2(ab) with f2(XY), we can

get four uni�ers, these are ϑ1 := {X 7→ a, Y 7→ b}, ϑ2 := {X 7→ b, Y 7→ a},
ϑ3 := {X 7→ λ, Y 7→ ab}, and ϑ4 := {X 7→ ab, Y 7→ λ}. The functor f2 is a

multiset label, and λ represents the empty multiset.

Apparently �arities� or �ranks� do not matter in labelled multiset uni�cation.

For instance, it is possible to unify f(XY) with f(abc) to �nd eight uni�ers includ-

ing ϑ1 := {X 7→ λ, Y 7→ abc}, ϑ2 := {X 7→ a, Y 7→ bc}, ϑ3 := {X 7→ b, Y 7→ ac},
ϑ4 := {X 7→ c, Y 7→ ab}, ϑ5 := {X 7→ ab, Y 7→ c}, ϑ6 := {X 7→ ac, Y 7→ b},
ϑ7 := {X 7→ bc, Y 7→ a}, and ϑ8 := {X 7→ abc, Y 7→ λ}.

In the rest of this section, we will formally de�ne labelled multisets and their

uni�cation problem.

3.1.1 labelled multisets and multiset-based terms

labelled multisets and multiset-based terms are de�ned by the grammar given in

Fig. 3.1. The pre�x �g� refers to �ground� and �v� means �variable�. Multisets or

terms that do not contain variables are called ground. We use lowercase letters

to represent atoms, and uppercase letters to represent variables. For example: a,

b, c are atoms, and X, Y , Z are variables. The unity symbol 1 is de�ned as a

special atom, and � � is used to denote an anonymous variable. As mentioned,

the symbol λ refers to an empty multiset.

De�nitions 37

< multiset > ::= < g-multiset > | < v-multiset >
< term > ::= < g-term > | < v-term >
< functor > ::= < atom >

< g-multiset > ::= < g-term > . . .
< g-term > ::= < simple-g-term > | < compound-g-term >
< simple-g-term > ::= < atom >
< compound-g-term > ::=

< functor > (< g-multiset >) | < functor > {< g-multiset >}

< v-multiset > ::= < v-term > . . .
< v-term > ::= < simple-v-term > | < compound-v-term >
< simple-v-term > ::= < atom > | < variable >
< compound-v-term > ::=

< functor > (< v-multiset >) | < functor > {< v-multiset >}

Figure 3.1: The grammar of labelled multisets and multiset-based terms

A ground multiset (g-multiset) contains zero or more ground terms (g-terms).

A g-term can either be a simple-g-term or a compound-g-term. Simple-g-terms

are atoms, such as: 1, a, b and c. Compound-g-terms are recursively built by

g-multisets and functors, where functors are atoms. For example: f(a), g{a13}
and f(g(h{ab})) are compound-g-terms. Superscripts are used to denote term

multiplicities, for example, 13 ≡ 111 and a2 ≡ aa.

Multisets with round parentheses �(� and �)" are complete multisets. For in-

stance, a(b) is a multiset labelled with a, which only contains an atom b. Curly

braces �{� and �}� denote partial multisets, for example, a{b} is a multiset labelled
with a that contains an atom b, which may also contain something else.

Variable multisets (v-multisets) contain zero or more variable terms (v-terms),

where v-terms can be simple-v-terms or compound-v-terms. Simple-v-terms can

be atoms or variables, for instance: a, X, and Y . Compound-v-terms are built by

v-multisets and functors, for example, f(X), g{XY 2} and f(g{1}h(aX)).

The grammar only includes �rst-order variables. Terms such as X(), Y (ab),

Z(X{rs}) are invalid.

3.1.2 labelled multiset uni�cation

A traditional de�nition of uni�cation is: a process that solves equations between

symbolic expressions by �nding variable substitutions. In this study, we extend

38 An e�cient labelled multiset uni�cation algorithm

the de�nition to solve equations and inclusion relations for labelled multisets.

This design facilitates the use of LNMU in cP systems, which always match

v-terms in a rule with a subset of system terms (g-multiset). Theoretically, an

inclusion relation can be equivalently transformed into an equation by adding

one anonymous variable. For example, f(X) ⊂ f(a)g(b) can be transformed into

f(X) = f(a)g(b).

We de�ne the labelled multiset uni�cation problem as one-way, which is also

known as a matching problem. This problem de�nition can be extended to two-way

as needed, and we can slightly modify the algorithm to solve it.

Let Σ = {1, a, b, c, . . .} be the alphabet of atoms, and V = {X,Y, Z, . . .} be

the alphabet of variables. Let MΣ be the collection of all g-multisets, and MΣ∪V

be the collection of all v-multisets.

A substitution ϑ is a mapping from variables to g-multisets: ϑ = {X1 7→
m1, X2 7→ m2, . . . , Xn 7→ mn}, where X1, X2, . . . , Xn ∈ V , and m1, m2, . . . , mn

∈ MΣ.

Given a labelled multiset equation or inclusion relation which may contain vari-

ables, labelled multiset uni�cation solves it by �nding variable substitutions. For

one-way uni�cation, the equation or inclusion relation is in the form of mv
=⊂ mg,

where mv ∈ MΣ∪V , and mg ∈ MΣ. Both mv and mg contain �nite numbers of

symbols.

The appearance of the metasyntactic symbol =⊂ in Fig. 3.2 actually de�nes

two transformations: where =⊂ can either be uniformly replaced by �=� or �⊂�. For
example, the transformation GROUND can either be interpreted as G∪ {mmv =

mmg} =⇒ G ∪ {mv = mg},m ̸= λ, mv ∩ mg = ∅, or G ∪ {mmv ⊂ mmg} =⇒
G ∪ {mv ⊂ mg},m ̸= λ, mv ∩mg = ∅.

A substitution ϑ that contains bindings for all the variables that appear in mv

is called a uni�er for mv
=⊂ mg, if by applying it we have mvϑ =⊂ mg, where mvϑ

represents ϑ's application to the multiset mv.

Suppose mv = f(X)Y and mg = 1f(a)f(b), to solve the inclusion relation

mv ⊂ mg, eight uni�ers can be found. These are: ϑ1 = {X 7→ a, Y 7→ λ}, ϑ2 =

{X 7→ a, Y 7→ 1}, ϑ3 = {X 7→ a, Y 7→ f(b)}, ϑ4 = {X 7→ a, Y 7→ 1f(b)},
ϑ5 = {X 7→ b, Y 7→ λ}, ϑ6 = {X 7→ b, Y 7→ 1}, ϑ7 = {X 7→ b, Y 7→ f(a)}, and
ϑ8 = {X 7→ b, Y 7→ 1f(a)} . By applying these uni�ers, we can get mvϑi ⊂ mg,

where 1 ≤ i ≤ 8. For example, mvϑ1 = f(a) ⊂ mg, mvϑ4 = f(a)1f(b) ⊂ mg,

and mvϑ7 = f(b)f(a) ⊂ mg.

The notion of the most general uni�er (mgu), mentioned by Robinson [68, 69],

is not applicable to matching problems. For a two-way uni�cation problem, for

LNMU � an e�cient labelled multiset uni�cation algorithm 39

instance, to unify f(X) with f(Y), we can get in�nite uni�ers such as σ = {X 7→
Y }, ϑ = {X 7→ a, Y 7→ a}, ω = {X 7→ b, Y 7→ b}. We can get ϑ or ω by further

substituting a or b for both X and Y in σ; thus, we say σ is more general than

ϑ and ω, thus it is an mgu. For a matching problem, its uni�ers do not contain

mappings from a variable to other variables (e.g. {X 7→ Y }, {X 7→ ZW}); thus,
the uni�ers can not be further substituted � none of them is more general than

the others.

3.2 LNMU � an e�cient labelled multiset uni�cation

algorithm

The nondeterministic algorithm we proposed in this study is called Labelled (and

Nested) Multiset Uni�cation algorithm (LNMU), Fig. 3.2). This algorithm can

solve labelled multiset uni�cation problems.

For a labelled multiset uni�cation problem P = {mv
=⊂ mg}, mv ∈ MΣ∪V ,

mg ∈ MΣ, we use LNMU(P) to denote �using LNMU to solve P�. The collection
of all branches corresponding to all possible executions form a tree called the

computation tree, which is denoted by T (LNMU(P)).
GP is the goal set which may contain equations, inclusion relations, and vari-

able bindings. At the beginning of uni�cation, GP contains mv
=⊂ mg. During the

uni�cation, GP will successively transform into other forms, which may include

variable bindings.

We use E to denote the collection of all labelled multiset equations and in-

clusion relations. We use m,mv,m
′
v,mg,m

′
g to represent labelled multisets, where

mv,m
′
v ∈ MΣ∪V , and m,mg,m

′
g ∈ MΣ. The symbol □ denotes �success�, and ⊥

denotes �stop with failure�. φ(mg) is a set which contains all the functors (labels)

of mg's �rst-level compound terms, for example, φ(a1f(b)g(h(c))) = {f, g}.
Before immediately diving into the transformations of LNMU, we will �rst

introduce the size measures of P and GP .

We use |ms| to denote the size of a labelled multiset ms. This refers to the

total number of atoms, functors and variable symbols in ms. For example, |λ| = 0;

|1| = |a| = |f(λ)| = 1; |aa| = |a(b)| = |f(X)| = 2; |a3| = |f(1X)| = |f(g{h(λ)})|
= 3.

The size of an equation or inclusion relation mv
=⊂ mg, denoted by |mv

=⊂ mg|,
is de�ned as |mv| + |mg| + 1. For example, |λ = λ| = 0 + 0 + 1 = 1, |λ ⊂ a| =
0 + 1 + 1 = 2, and |g(X) ⊂ g(b)g(c)| = 2 + 4 + 1 = 7.

40 An e�cient labelled multiset uni�cation algorithm

1. SUCCESS

GP ∩ E = ∅ =⇒ □, ϑ = GP

2. DELETE-1

GP = G ∪ {λ =⊂ λ} =⇒ G′
P = G

3. DELETE-2

GP = G ∪ {λ ⊂ m} =⇒ G′
P = G, m ̸= λ

4. GROUND

GP = G∪{mmv
=⊂ mmg} =⇒ G′

P = G∪{mv
=⊂ mg}, m ̸= λ, mv∩mg =

∅

5. FAIL-1

GP = G ∪ {mmv
=⊂ mg} =⇒⊥, m ̸⊂ mg

6. FUNCTOR (nondeterministic)

GP = G ∪ {f(m′
v)mv

=⊂ f(m′
g)mg} =⇒ G′

P = G ∪ {mv
=⊂ mg} ∪ {m′

v =
m′

g}

7. FAIL-2

GP = G ∪ {f(m′
v)mv

=⊂ mg} =⇒⊥, f /∈ φ(mg)

8. VARIABLE (nondeterministic)

GP = G ∪ {Xnmv
=⊂ mnmg} =⇒

G′
P = GϑX ∪ {mvϑX

=⊂ mg} ∪ ϑX , ϑX = {X 7→ m}, X ∈ V, n ∈ N∗

Figure 3.2 LNMU � a nondeterministic uni�cation algorithm

For P = {mv
=⊂ mg}, we use |P| to denote the size of P, where |P| =

|mv
=⊂ mg|.
Suppose GP contains k equations and inclusion relations mvi

=⊂ mgi (i =

1, 2, . . . , k), the size of GP , denoted by |GP |, is de�ned as
∑k

i=1 |mvi
=⊂ mgi |.

The sizes of variable bindings in GP are de�ned as zeros. For example, if

GP = {λ ⊂ f(a)} ∪ {g(X) ⊂ g(b)g(c)} ∪ {Y 7→ d}, then |GP | = |λ ⊂ f(a)|
+ |g(X) ⊂ g(b)g(c)| + |{Y 7→ d}| = 3 + 7 + 0 = 10.

We use GP
T
=⇒ G′

P to denote that �by applying the transformation T, GP

will be transformed into G′
P �.

1. SUCCESS: When GP ∩E = ∅, LNMU succeeds and outputs a substitution

LNMU � an e�cient labelled multiset uni�cation algorithm 41

ϑ.

After solving all the equations and inclusion relations in GP (reducing them

to λ =⊂ λ or λ ⊂ m and deleting them), GP will only contain variable bind-

ings ϑX1 , ϑX2 , . . . ϑXn . LNMU will collect these bindings as a substitution ϑ.

We will prove that ϑ is a uni�er for P in Theorem 3.3.2 .

Lemma 3.2.1. If |GP | = 0, then LNMU will succeed.

Proof. |GP | = 0 ⇐⇒ GP ∩ E = ∅ =⇒ □, ϑ = GP .

2. DELETE-1: If GP contains λ =⊂ λ, then we can delete it from GP .

Example: to solve GP = {λ = λ} ∪ {X = a}, we can delete {λ = λ} from

GP , then we only need to solve X = a.

Lemma 3.2.2. If GP
DELETE-1
=======⇒ G′

P and ϑ uni�es G′
P , then ϑ uni�es

GP .

Proof. (Any substitution uni�es λ =⊂ λ) =⇒ (ϑ uni�es λ =⊂ λ).

(ϑ uni�es G′
P = G) ∧ (ϑ uni�es λ =⊂ λ) =⇒ (ϑ uni�es G ∪ {λ =⊂ λ} =

GP).

Lemma 3.2.3. If GP
DELETE-1
=======⇒ G′

P , then |G′
P | = |GP | − 1.

Proof. (|G′
P | = |G|) ∧ (|GP | = |G|+ |λ =⊂ λ| = |G|+1) =⇒ (|G′

P | = |GP | −
1).

3. DELETE-2: If GP contains λ ⊂ m, m ̸= λ, then we can delete it from GP .

Example: to solve GP = {λ ⊂ a} ∪ {X = a}, we can delete {λ ⊂ a} from

GP , then we only need to solve X = a.

Lemma 3.2.4. If GP
DELETE-2
=======⇒ G′

P and ϑ uni�es G′
P , then ϑ uni�es

GP .

Proof. Similar to Lemma 2, any substitution uni�es λ ⊂ m (λ is included in

any multiset).

Lemma 3.2.5. If GP
DELETE-2
=======⇒ G′

P , then |G′
P | = |GP | − (|m|+ 1).

42 An e�cient labelled multiset uni�cation algorithm

Proof. (|G′
P | = |G|) ∧ (|GP | = |G| + |λ ⊂ m| = |G| + (|m| + 1)) =⇒

(|G′
P | = |GP | − (|m|+ 1)).

4. GROUND: mmv
=⊂ mmg in GP can be transformed into mv

=⊂ mg, where

m ̸= λ, mv ∩mg = ∅.

The transformation GROUND simpli�es an equation or inclusion relation

by deleting m from both its lhs and rhs.

Example: to solve g(a)f(X) ⊂ g(a)f(b), we can eliminate g(a) from its lhs

and rhs, and transform it into f(X) ⊂ f(b).

Lemma 3.2.6. If GP
GROUND
======⇒ G′

P and ϑ uni�es G′
P , then ϑ uni�es GP .

Proof. Since mmv
=⊂ mmg ⇐⇒ mv

=⊂ mg, GP and G′
P are semantically

equal.

Lemma 3.2.7. If GP
GROUND
======⇒ G′

P , then |G′
P | = |GP | − |m| × 2.

Proof. (|G′
P | = |G|+ |mv

=⊂ mg| = |G|+ (|mv|+ |mg|+ 1))

∧ (|GP | = |G|+ |mmv
=⊂ mmg| = |G|+ (|m|+ |mv|+ |m|+ |mg|+ 1))

=⇒ (|G′
P | = |GP | − |m| × 2).

5. FAIL-1: If GP contains mmv
=⊂ mg, m ̸⊂ mg, then LNMU terminates with

failure.

Example: af(X) =⊂ f(1) is unsolvable. No matter what multisets we substi-

tute for X, f(1) does not contain a.

Lemma 3.2.8. If GP = G ∪ {mmv
=⊂ mg}, m ̸⊂ mg, then no substitution

uni�es GP .

Proof. Since m and mg are ground, no substitution uni�es mmv
=⊂ mg, m ̸⊂

mg. Thus, no substitution uni�es GP = G ∪ {mmv
=⊂ mg}, m ̸⊂ mg.

6. FUNCTOR: f(m′
v)mv

=⊂ f(m′
g)mg in GP can be transformed into

mv
=⊂ mg and m′

v = m′
g.

The transformation FUNCTOR eliminates functors in an equation or inclu-

sion relation. For example, Xf(Y c) = af(bc) can be transformed into two

distinct equations: X = a and Y c = bc.

LNMU � an e�cient labelled multiset uni�cation algorithm 43

FUNCTOR is nondeterministic, which can randomly choose di�erent sub-

terms with the same functor. For instance, Xf(Y) = af(b)f(c) can either

be transformed into {X = af(b), Y = c} or {X = af(c), Y = b}.

Lemma 3.2.9. If GP
FUNCTOR
=======⇒ G′

P and ϑ uni�es G′
P , then ϑ uni�es

GP .

Proof. (ϑ uni�es G′
P) =⇒ (ϑ uni�es G) ∧ (mvϑ =⊂ mg) ∧ (m′

vϑ = m′
g)

=⇒ (ϑ uni�es G) ∧ (f(m′
vϑ)mvϑ =⊂ f(m′

g)mg)

=⇒ (ϑ uni�es G) ∧ ((f(m′
v)mv)ϑ =⊂ f(m′

g)mg) =⇒ (ϑ uni�es GP).

Lemma 3.2.10. If GP
FUNCTOR
=======⇒ G′

P , then |G′
P | = |GP | − 1.

Proof. (|G′
P | = |G| + |mv

=⊂ mg| + |m′
v = m′

g| = |G| + (|mv| + |mg| + 1) +

(|m′
v|+ |m′

g|+ 1)) ∧ (|GP | = |G|+ |f(m′
v) mv

=⊂ f(m′
g) mg| = |G|+ (1 +

|m′
v|+ |mv|+ 1 + |m′

g|+ |mg|+ 1)) =⇒ (|G′
P | = |GP | − 1).

7. FAIL-2: If GP contains f(m′
v)mv

=⊂ mg, f /∈ φ(mg), then LNMU termi-

nates with failure.

The transformation FAIL-2 shows that if an equation or inclusion relation's

lhs contains a compound term f(m′
v), whose functor f is not in φ(mg), it is

unsolvable.

Example: f(X)Y =⊂ g(a)h(b) is unsolvable, since f /∈ {g, h} � no matter

what multisets we substitute for X and Y , g(a)h(b) can not contain f(X).

Lemma 3.2.11. If GP = G ∪ {f(m′
v)mv

=⊂ mg}, f /∈ φ(mg), then no sub-

stitution uni�es GP .

Proof. Similar to Lemma 8, no substitution uni�es f(m′
v)mv

=⊂ mg, f /∈
φ(mg).

8. VARIABLE: Xnmv
=⊂ mnmg, X ∈ V, n ∈ N∗ in GP can be transformed

into mvϑX
=⊂ mg, where ϑX is a binding {X 7→ m}. After choosing ϑX , it

will be applied to all the equations and inclusion relations in GP .

The transformation VARIABLE reduces equations and inclusion relations

by �nding variable bindings nondeterministically.

44 An e�cient labelled multiset uni�cation algorithm

For example, to unify XY =⊂ af(b), VARIABLE can save the binding ϑX =

{X 7→ a} into GP , and reduce XY =⊂ af(b) to Y =⊂ f(b). VARIABLE is

nondeterministic, so other bindings may also be chosen, these include ϑX =

{X 7→ λ}, ϑX = {X 7→ f(b)} and ϑX = {X 7→ af(b)}; then XY =⊂ af(b)

can be reduced to Y =⊂ af(b), Y =⊂ a and Y =⊂ λ, respectively.

When a binding ϑx is chosen, in addition to saving it into GP , ϑx will be

applied to all the equations and inclusion relations in GP . For example, if

ϑX = {X 7→ a} is chosen and GP contains another equation f(XZ) = f(ac),

it will then apply ϑX and transform it into f(aZ) = f(ac). VARIABLE will

be applied only once for each variable in G.

The multiplicity n of X is considered in VARIABLE. For example, to solve

X3f(Y) =⊂ 14a3f(b), VARIABLE can �nd di�erent bindings for X, which

include ϑX = {X 7→ λ}, ϑX = {X 7→ 1}, ϑX = {X 7→ a} and ϑX = {X 7→
1a}. By choosing di�erent bindings, X3f(Y) =⊂ 14a3f(b) can be transformed

into f(Y) =⊂ 14a3f(b), f(Y) =⊂ 1a3f(b), f(Y) =⊂ 14f(b), and f(Y) =⊂ 1f(b),

respectively.

Lemma 3.2.12. If GP
VARIABLE
========⇒ G′

P , ϑ uni�es G′
P , and ϑ′ = ϑ \ ϑX ,

then ϑ′ϑX uni�es GP .

Proof. (ϑ uni�es G′
P) =⇒ (ϑ′ uni�es GϑX) ∧ (mvϑ

′ϑX
=⊂ mg) =⇒ (ϑ′ϑX

uni�es G) ∧ ((Xnmv)ϑ
′ϑX

=⊂ mnmg) =⇒ (ϑ′ϑX uni�es GP).

Lemma 3.2.13. If GP
VARIABLE
========⇒ G′

P , then |G′
P | = |GP | − |m| × (n −

k1 − k2)− (n+ k1 + k2), where k1 and k2 denote the number of occurrences

of X in G and mv, respectively.

Proof. |GϑX | = |G|+ (|m| − 1)× k1.

|mvϑX | = |mv|+ (|m| − 1)× k2.

|G′
P | = |GϑX |+ |mvϑX |+ |mg|+ 1 = |G|+ (|m| − 1)× k1 + |mv|+ (|m| −

1)× k2 + |mg|+ 1 = |G|+ |mv|+ |mg|+ (|m| − 1)× (k1 + k2) + 1.

|GP | = |G|+ n+ |mv|+ |m| × n+ |mg|+ 1.

(|G′
P | − |GP | = (|m| − 1) × (k1 + k2) − (|m| + 1) × n) =⇒ (|G′

P | = |GP | −
|m| × (n− k1 − k2)− (n+ k1 + k2)).

Analysis of LNMU 45

3.3 Analysis of LNMU

For P = {f(X)XY ⊂ f(a)ab}, a part of its computation tree T (LNMU(P)) is
shown in Fig. 8.3. LNMU fails in the �rst and the third branch, and successfully

�nds a uni�er ϑ = {X 7→ a, Y 7→ b} in the second branch.

If LNMU only explores one branch of T (LNMU(P)), it may either succeed or

fail. To avoid early failure, a simple strategy to select transformations from LNMU

is to follow their indices. In each uni�cation step, if there are λ =⊂ λ or λ ⊂ m,

we can delete them from GP (DELETE-1 or DELETE-2). For any equation or

inclusion relation which cannot be deleted, we use GROUND to eliminate the

shared g-multiset of its lhs and rhs. If they contain functors, we use FUNCTOR

to transform them into simpler equations or inclusion relations. When transfor-

mations including DELETE-1, DELETE-2, GROUND and FUNCTOR cannot be

applied anymore, we use VARIABLE to nondeterministically �nd a binding for one

of its variables, and apply it to all the equations and inclusion relations in GP . This

strategy can be slightly optimised in the following way: if by applying GROUND

or FUNCTOR, GP contains any equation in the form of X = m, it should imme-

diately apply VARIABLE, transform into λ = λ, save ϑX = {X 7→ m} into GP ,

and apply ϑX to GP . By doing this, LNMU can prune some failing branches such

as GP = {X = a} ∪ {X = b}.
Actually, all variable bindings can be found by �rst applying FUNCTION

and VARIABLE (before any other transformations). Summing up the lemmas in

Section 3, we have:

Table 3.1: How transformations in LNMU a�ect |GP |

Transformation |G′
P | − |GP | LNMU terminates

SUCCESS ✓
DELETE-1 -1
DELETE-2 −(|m|+ 1) < 0

GROUND −(|m| × 2) < 0

FAIL-1 ✓
FUNCTOR -1
FAIL-2 ✓

VARIABLE −|m| × (n− k1 − k2)− (n+ k1 + k2)

Theorem 3.3.1. LNMU(P) terminates, i.e., all branches of T (LNMU(P)) are
�nite.

46 An e�cient labelled multiset uni�cation algorithm

f(X)XY ⊂ f(a)ab

VARIABLE

f(X)X ⊂ f(a)b
Y 7→ a

VARIABLE

f(b) ⊂ f(a)
Y 7→ a
X 7→ b

FAIL-1
⊥

FUNCTOR
XY ⊂ ab
X = a

VARIABLE
aY ⊂ ab
X 7→ a
λ = λ

DELETE-1
aY ⊂ ab
X 7→ a

GROUND
Y ⊂ b
X 7→ a

VARIABLE
Y 7→ b
λ ⊂ λ
X 7→ a

DELETE-1
Y 7→ b
X 7→ a

SUCCESS
□
ϑ = {X 7→ a, Y 7→ b}

VARIABLE

f(X)X ⊂ ab
Y 7→ f(a)

FAIL-2
⊥

Figure 3.3 Partial view of T (LNMU(P)), three branches. P = {f(X)XY ⊂ f(a)ab}

Proof. P = {mv
=⊂ mg}, at the beginning, |GP | = |P|.

Since the number of variables in GP is �nite, VARIABLE can only be applied

in a �nite number of steps. After that, GP will not contain any variables; thus,

VARIABLE will not be applicable any more � other transformations must be

Analysis of LNMU 47

chosen.

Following Lemmas 3.2.1, 3.2.3, 3.2.5, 3.2.7, 3.2.8, 3.2.10, and 3.2.11, all the

LNMU's transformations except VARIABLE will either strictly decrease |GP | or
terminate the algorithm (Table 3.1).

Thus, after a �nite number of steps, LNMU(P) will either terminate with

failure, or decrease |GP | to 0, and then succeed (Lemma 3.2.1).

Theorem 3.3.2. If ϑ is a substitution appearing at the end leaf of a successful

branch of T (LNMU(P)), then ϑ is a uni�er for P.

Proof. Assume that GP = P contains n variables, and consider the transforma-

tions along a branch that end with success. Let us highlight the places where VARI-

ABLE is applied: V1, V2, . . . , Vn, respectively generating bindings θ1, θ2, . . . , θn. All

transformations that do not involve VARIABLE are represented by stars (*):

GP
*
=⇒ GP ′

1

V1==⇒ GP1

*
=⇒ GP ′

2

V2==⇒ GP2 · · · GPn−1

*
=⇒ GP ′

n

Vn==⇒ GPn

*
=⇒ GP ′ ,

where GP ′ ∩E = ∅. Consider the sequence of substitutions ϑk = θkθk+1 · · · θn, for
k = n + 1, n, . . . , 1. Obviously, θn+1 = ∅ (the empty substitution), ϑ = GP ′ =

θ1θ2 · · · θn = θ1.

Using Lemmas 3.2.2, 3.2.4, 3.2.6, 3.2.9, and (critically) 3.2.12, a straightfor-

ward induction shows that θn+1 uni�es GP ′ and GPn , θ
n uni�es GP ′

n
and GPn−1 ,

. . . , and �nally θ1 uni�es GP ′
1
and GP .

Thus, ϑ uni�es GP = P.

Theorem 3.3.3. If ϑ is a uni�er for P, then ϑ is a substitution appearing at the

end leaf of a successful branch of T (LNMU(P)).

Proof. Assume P = {mv
=⊂ mg}. Let X1, X2, . . . , Xn be the variables in mv, and

let ϑ = ϑX1ϑX2 · · ·ϑXn , where mi = Xiϑ, ϑXi = {Xi 7→ mi}, for i = 1, 2, . . . , n.

The proof runs by induction on n.

Consider ϑ1 = ϑ \ ϑX1 = ϑX2ϑX3 · · ·ϑXn . Without loss of generality, since

multisets are unordered, we can write mv = f1(f2(· · · fj(Xk
1 m

′
v) · · ·) · · ·), with

j ≥ 0, k ≥ 1, where dots (· · ·) represent multisets not directly relevant here.

As ϑ is a uni�er for P, by applying it to mv we obtain:

mvϑ = mvϑX1ϑ1

= f1(f2(· · · fj(mk
1 m

′
vϑX1) · · ·) · · ·)ϑ1

=⊂ f1(f2(· · · fj(mk
1 m

′
g) · · ·) · · ·) = mg.

48 An e�cient labelled multiset uni�cation algorithm

Thus, by systematically applying FUNCTOR j times, as indicated above, we

can obtain the equation Xk
1 m

′
v = mk

1 m
′
g, which generates the binding ϑX1 , and

adds it to the current goal set. One of the equations will contain X2, and we

can repeat the same procedure. Thus, an induction on the remaining variables,

X2, X3, . . . , Xn, will show that bindings ϑX2 , ϑX3 , . . . , ϑXn will also be successively

added. Finally, ϑ will appear at the end of a successful branch.

3.4 Well-formed labelled multiset uni�cation

For GP = P = {mv
=⊂ mg}, the number of variables in GP is no more than |mv|,

and |mv|+ |mg|+ 1 = |P|. From Table 3.1 we know that VARIABLE is the only

transformation that may increase GP .

Suppose that after applying an arbitrary number of transformations, GP con-

tains mvi
=⊂ mgi (i = 1, 2, . . . , k), for any of them we would then have |mgi | ≤ mg.

For variables in mvi , by applying VARIABLE, three kinds of uni�ers result:

(1) ϑX = {X 7→ λ}, (2) ϑX = {X 7→ x}, x ∈ Σ, (3) ϑX = {X 7→ m}, m ∈ MΣ

and |m| > 1.

For (1), |mviϑX | < |mvi |; for (2), |mviϑX | = |mvi |; for (3), |mviϑX | > |mvi |.
Only (3) may increase mvi , which is bounded by |mg| − 1 (mg is used to rewrite

one variable of mvi , which is actually impossible).

During the uni�cation, GP ≤ |mv|+ |mg| × 2 + 1 < |P| × 2. As discussed, the

number of variables in GP is no more than |mv|, so VARIABLE at most can be

applied for |mv| steps, which is less than |P|. After that, any transformation will

either terminate LNMU or strictly decrease GP . Since GP < |P|×2, we have: ∀P,
after |mv|+ |P| × 2+ 1 steps, LNMU terminates. Considering |mv| < |P|, LNMU

is linear (exploring one branch).

To guarantee that LNMU can �nd one or all uni�ers of P, we may need to

traverse multiple branches of T (LNMU(P)), which may take exponential time.

We de�ne a well-formed labelled multiset uni�cation problem Pw as: multisets

that, during the uni�cation in one equation or inclusion relation of GPw , each

contain, at most, one variable that is not deterministically uni�able by another

equation or inclusion relation of the same goal. Pw can be solved in linear time

by carefully selecting transformations where only one of the successful branches

of T (LNMU(Pw)) is traversed.

Pw = {a(XY)b(X) = a(11)b(1)} is well-formed. By applying FUNCTOR

twice, we can get two equations, which are X = 1 and XY = 11. Both of them

Worked examples 49

only contain one variable that is not uni�able by other equations. By applying

VARIABLE, GROUND and DELETE-1, we can easily get a uni�er ϑ = {X 7→
1, Y 7→ 1}.

P = {a(XY)b(AB) = a(11)b(cd)} is NOT well-formed. By applying FUNC-

TOR twice we can get two equations: XY = 11 and AB = cd. Both of them

contain two variables that are not uni�able by other equations. All of their vari-

ables can bind with several di�erent g-multisets � in this example, 12 uni�ers can

�nally be found.

We implemented LNMU in our cP system simulator cPSim1, and tested several

labelled multiset uni�cation problems in a Windows PC with an Intel Core i5-

8500 processor and 16 GB memory (Table 3.2). The implementation traverses all

branches of T (LNMU(P)) and can �nd all the uni�ers. In the experiment, each of

the well-formed labelled multiset uni�cation problems only have one uni�er. For

NOT well-formed multiset uni�cation problems, the uni�cation time and number

of uni�ers drastically increases with their problem sizes or number of variables.

Table 3.2: A comparison between well-formed and NOT well-formed labelled
multiset uni�cation problems

Well-formedness Equation to solve Number of uni�ers Running time

✓ f(X)g(Y) ⊂ a1f(b)g(c) 1 1ms
✓ a(XY c(Z)) b(Xd(ZW)) ⊂ 1 6ms

a(ghc(h))a(gjc(j)) b(fd(jk))b(gd(jk))

✗ a(XY)b(AB) = a(11)b(cd) 12 7ms
✗ a(XY Z)b(ABC) = a(111)b(cdef) 810 605ms
✗ a(WXY Z)b(ABCD) = a(111)b(17) 43680 12447ms

3.5 Worked examples

A simple example of labelled multiset uni�cation is to unify aXg(Y) = a1g(c).

By applying GROUND, we can delete the shared atom a from both the equa-

tions' lhs and rhs, and transform the equation into Xg(Y) = 1g(c). Then we can

apply FUNCTOR, to get two equations: X = 1 and Y = c. For X = 1, by ap-

plying VARIABLE, a binding {X 7→ 1} will be added to GP , and X = 1 will

be transformed into λ = λ, which can be deleted by DELETE-1. For Y = c, by

applying VARIABLE, {Y 7→ c} will be added to GP , and Y = c will be trans-

formed into λ = λ, which can be deleted by DELETE-1, too. After solving all the

1https://github.com/YezhouLiu/cPSim-version1

https://github.com/YezhouLiu/ cPSim-version1

50 An e�cient labelled multiset uni�cation algorithm

equations in GP , GP ∩E = ∅. Then GP can apply SUCCESS and output a uni�er

ϑ = GP = {X 7→ 1, Y 7→ c}. The example is shown in Table 3.3.

Table 3.3: Solving the labelled multiset uni�cation problem: aXg(Y) = a1g(c)

GP Transformation to apply Step

aXg(Y) = a1g(c) GROUND 0
Xg(Y) = 1g(c) FUNCTOR 1
X = 1, Y = c VARIABLE 2

λ = λ, Y = c, X 7→ 1 DELETE-1 3
Y = c, X 7→ 1 VARIABLE 4

λ = λ, X 7→ 1, Y 7→ c DELETE-1 5
X 7→ 1, Y 7→ c SUCCESS 6

□ uni�er: ϑ = {X 7→ 1, Y 7→ c}

As mentioned, choosing transformations in a di�erent order may bring a dif-

ferent result. For aXg(Y) = a1g(c), if LNMU �rst applies VARIABLE and non-

deterministically �nds a binding {X 7→ a}, the equation will be transformed into

ag(Y) = 1g(c), which is unsolvable.

Table 3.4: Solving the labelled multiset uni�cation problem:
a(XY c(Z)) b(Xd(ZW)) ⊂ a(ghc(h)) a(gjc(j)) b(fd(jk)) b(gd(jk))

GP Transformation to apply Step

a(XY c(Z)) b(Xd(ZW)) ⊂
a(ghc(h)) a(gjc(j)) b(fd(jk)) b(gd(jk))

FUNCTOR 0

b(Xd(ZW)) ⊂ a(ghc(h)) b(fd(jk)) b(gd(jk)),
XY c(Z) = gjc(j)

FUNCTOR 1

λ ⊂ a(ghc(h)) b(fd(jk)), Xd(ZW) = gd(jk),
XY c(Z) = gjc(j)

DELETE-2 2

XY c(Z) = gjc(j), Xd(ZW) = gd(jk) FUNCTOR 3
Xd(ZW) = gd(jk), XY = gj, Z = j VARIABLE 4
Xd(jW) = gd(jk), XY = gj, Z 7→ j, λ = λ DELETE-1 5
Xd(jW) = gd(jk), XY = gj, Z 7→ j FUNCTOR 6
X = g, jW = jk, XY = gj, Z 7→ j VARIABLE 7
X 7→ g, λ = λ, jW = jk, gY = gj, Z 7→ j DELETE-1 8
X 7→ g, jW = jk, gY = gj, Z 7→ j GROUND 9
X 7→ g, jW = jk, Y = j, Z 7→ j GROUND 10
X 7→ g, W = k, Y = j, Z 7→ j VARIABLE 11
X 7→ g, W = k, Y 7→ j, λ = λ, Z 7→ j DELETE-1 12
X 7→ g, W = k, Y 7→ j, Z 7→ j VARIABLE 13
X 7→ g, W 7→ k, λ = λ, Y 7→ j, Z 7→ j DELETE-1 14
X 7→ g, W 7→ k, Y 7→ j, Z 7→ j SUCCESS 15
□ uni�er: ϑ = {W 7→ k,X 7→ g, Y 7→ j, Z 7→ j}

Summary 51

Another example is to unify a(XY c(Z)) b(Xd(ZW)) ⊂ a(ghc(h)) a(gjc(j))

b(fd(jk)) b(gd(jk)), which is shown in Table 3.4. According to the strategy

of selecting transformations, described in Section 3.3, we �rst apply FUNC-

TOR, match a(XY c(Z)) with a(gjc(j)), and transform G into b(Xd(ZW)) ⊂
a(ghc(h)) b(fd(jk)) b(gd(jk)) and XY c(Z) = gjc(j). By applying FUNCTOR,

we can eliminate another fuctor b, match b(Xd(ZW)) with b(gd(jk)), and trans-

form G into λ ⊂ a(ghc(h)) b(fd(jk)), Xd(ZW) = gd(jk), and XY c(Z) = gjc(j),

where λ ⊂ a(ghc(h)) b(fd(jk)) can be deleted by DELETE-2. Having a simpler

G which only contains XY c(Z) = gjc(j) and Xd(ZW) = gd(jk), we can continue

to apply FUNCTOR to eliminate the functions c and d, and then apply other

transformations. After 15 steps, LNMU can �nd an uni�er ϑ = {W 7→ k,X 7→
g, Y 7→ j, Z 7→ j} to the problem.

3.6 Summary

In P system variants such as cP systems, labelled multisets are widely used to

represent membrane structures with objects. By supporting compound terms and

generic rules, cP systems have great representational power (compared to other

P system variants). However, the uni�cation of labelled multisets is a challenge.

Previous studies discussed several �rst-order uni�cation algorithms, but none of

them can be readily applied to labelled multisets.

In this chapter, we formally de�ned the �rst-order one-way uni�cation problem

for labelled multisets, and proposed a corresponding algorithm named LNMU.

Multiple examples were used to illustrate the application of LNMU, and a software

implementation was provided.

LNMU is proven to be terminating, and can �nd all the uni�ers to a labelled

multiset uni�cation problem. We further showed that LNMU can solve well-formed

labelled multiset uni�cation problems in linear time.

LNMU can help researchers to implement, simulate, and verify cP systems

in real life. In Chapter 6, we will introduce a cP-speci�c simulation and formal

veri�cation framework with LNMU fully implemented. Before that, we will �rst

discuss how to use existing general purpose model checkers to model and verify

cP systems in the next chapter.

Chapter 4

Model Checking of cP systems

Model checking is a formal method for verifying whether a system meets certain

speci�cations, it explores all possible system states in a brute-force manner. Dif-

ferent modelling and (property) speci�cation languages are supported by di�erent

model checking tools (model checkers). Usually, a modelling language is often used

to describe how a system behaves, and a speci�cation language is used to specify

what the system should do.

To verify a cP system Π using a model checker which supports a modelling

language Lm and a speci�cation langauge Ls, the following general process can be

considered:

� Modelling: model Π using Lm, and formalise the property to be checked

using Ls.

� Running the model checker: check the validity of the property in the system

model.

� Analyse the results: if a property is satis�ed, we can move to check the next

property. Otherwise, we can analyse the counterexample generated by the

model checker, and re�ne the cP system design.

In this chapter, we will introduce two cP systems, namely ΠSSP and ΠSudoku.

These can e�ciently solve the subset sum problem (SSP) and Sudoku respectively.

We will verify the system properties of ΠSSP and ΠSudoku using two general pur-

pose model checkers PAT3 and ProB [8, 4, 6].

We propose two mapping guidelines to transform cP systems into veri�cation

problems in CSP# and B. As an example, we illustrate how to apply the mapping

guidelines to ΠSSP , and transform it into a CSP# model and a B machine.

53

54 Model Checking of cP systems

This chapter is organised in the following way. Section 4.1 introduces the two

cP systems which solve SSP and Sudoku respectively. Section 4.2 and 4.3 discuss

how to translate cP systems to CSP# and B. Section 4.4 shows the veri�cation

results of the two cP systems. Section 4.5 summarises the chapter.

4.1 cP system solutions to SSP and Sudoku

A problem is NPC if and only if it is both in NP and NP-hard, where NP is

an abbreviation for �nondeterministic polynomial time�. For a NP problem, each

of its inputs should be associated with a set of solutions of polynomial length,

which can be validated in polynomial time. A problem P is said to be NP-hard,

if everything in NP can be transformed in polynomial time into P, even though

P may not be in NP. The class NPC includes the hardest problems in NP, both

SSP and Sudoku are NPC problems.

We propose two cP systems ΠSSP and ΠSudoku, where ΠSSP solves SSP in

linear time, and ΠSudoku solves Sudoku in sublinear time. Both of ΠSSP and

ΠSudoku work under the hypothesis of unlimited processors and memory, which do

not break the Church�Turing barrier.

4.1.1 A cP system that solves SSP in linear time

The subset sum problem is de�ned as follow.

INSTANCE: a set S = {i1, i2, ..., in}, where ix ∈ Z+, x ∈ [1, n] and a target

integer T .

QUESTION : is there a subset A ⊆ S such that
∑

x∈A x = T ?

Our cP systems ΠSSP has a ruleset with �ve rules (Fig. 4.1) that describes

a layer-by-layer searching algorithms. If there exists a subset A that satis�es∑
x∈A x = T , the system will halt at s2 and output the elements in A. Other-

wise, after all the subsets of S have been generated and checked, the system will

halt at s3 and output a term o(λ).

In the ruleset, m() denotes the original set S; t() denotes the target integer

T ; o() is the �nal output of the system; and p() refers to a �path�, which stores

the used or visited elements u(), unused or unvisited elements n(), and the sum

of used elements s().

cP system solutions to SSP and Sudoku 55

s0 →1 s1 p(u(λ) n(M) s(λ)) | m(M) (R1)
s1 →1 s2 o(X) | p(u(X) s(T)) t(T) (R2)
s1 →1 s3 o(λ) | p(n(λ)) (R3)
s1 →+ s1 p(u(Xm(Y)) n(Z) s(SY)) | p(u(X) n(m(Y)Z) s(S)) (R4)
s1 p() →+ s1 (R5)

Figure 4.1: The ruleset of ΠSSP

The initial state of the system is s0. By applying R1 once, the system creates

a path term for the original set S, which contains u(λ), n(M) and s(λ). Thus, all

elements in S are marked as unused, and the sum of the path is 0. After applying

R1, the state of the system will be changed to s1, then the rest of rules will be

activated.

R2 describes an expected termination of the cP system. If the cP system can

�nd a path (subset), whose sum of elements equals T , the system will change its

state to s2 and output the elements in the subset.

R3 describes another termination. After checking all the subsets of S, if the

cP system cannot �nd any subset A satisfying
∑

x∈A x = T , the system will apply

R3, output o(λ), and halts at s3.

Rules R4 and R5 commit to the same state s1, which can be applied in the

same step. By applying R4, the cP system creates new path terms by moving one

element from u() to n() and recomputing the sum s(). Since R4 works in the

max-parallel model, all the combinations of elements in S will be considered. The

path generated by R4 will be sent to the virtual product membrane, which will

be activated in the next step. In the same step, after R4 is applied, R5 will clean

all path terms in the system except newly generated ones which are still in the

virtual product membrane.

ΠSSP is a linear solution to SSP. The worst number of running steps is n+ 2,

when
∑

x∈S x = T or ∄A,A ⊆ S,
∑

x∈A x = T .

4.1.2 A cP system that solves Sudoku in sublinear time

Sudoku is a number-placement puzzle designed for a single player, which hasm×m

cells divided into m blocks. A solvable Sudoku puzzle may have one or multiple

solutions. In a valid Sudoku solution, each row, column and block contains exactly

one of each number from 1 to m. For all the classic 9 × 9 Sudoku puzzles, there

are approximately 6.67× 1021 valid solutions [104].

56 Model Checking of cP systems

Our cP system ΠSudoku solves Sudoku in sublinear time. The main strategy of

ΠSudoku is to generate all possible solutions (matrices), eliminate invalid ones, and

�lter them by comparing them to the input numbers. For an m×m Sudoku, the

cP system will �rst generate all valid m-size row candidates, where each candidate

is an arrangement of [1..m]. Then the system will use the row candidates to build

templates of m ×m matrices. After getting all the matrix templates, the system

will �lter them by columns and blocks. After this, it will contain all the valid

m ×m Sudoku solutions. Then the system can match the matrix templates to a

puzzle instance with certain input numbers, and �nd its solutions.

The cP system starts at state s1 with terms p(λ), t(λ), s(S), a(1), a(2),...,

a(m), n(n), m(m), and l(1). The term p() is used to build and store the row

candidates, t() is used to store matrix templates, and s() is the cP encoding of

a Sudoku puzzle instance. Terms a(1), a(2) ..., a(m) store the numbers from 1 to

m, which can be used to �ll the blank cells of the puzzle. n(n) stores the block

size and m(m) stores the problem size of the puzzle, where m = n2. The system

uses l() as a counter.

A simple Sudoku puzzle (m = 4) is shown in Fig. 4.2. We use two terms m(4)

and n(2) to represent its problem size and block size. Four numbers a(1), a(2),

a(3) and a(4) can be used to solve the puzzle. The puzzle instance is encoded as

s(r(1)(c(3)(2), c(4)(4)), r(2)(c(1)(2), c(2)(4), c(4)(3)), r(3)(c(2)(1)),

r(4)(c(3)(3))). In the encoding, the term s stores all the existing numbers of the

puzzle, here the subterm labels r and c refer to �row� and �column� respectively.

The subterm r(2)(c(1)(2), c(2)(4), c(4)(3)) can be interpreted as �the value in row

2 column 1 is 2, in row 2 column 2 it is 4, and in row 2 column 4 it is 3�.

Figure 4.2: A Sudoku puzzle, m = 4

4.1.2.1 Generating row candidates

ΠSudoku �rst generates all the row candidates. Each row candidate contains all

the numbers from 1 to m, and each number only appears once. A ruleset with

cP system solutions to SSP and Sudoku 57

four rules can be used to generate row candidates in a column by column manner

(Fig. 4.3).

s1 l(M1) →1 s2 l(1) | m(M) (R1)
s1 →+ s1 p(X, c(L)(V)) | l(L), a(V), p(X), (c()(V) ⊈ X) (R2)
s1 p() →+ s1 (R3)
s1 l(L) →1 s1 l(L1) (R4)

Figure 4.3: Ruleset (1) of ΠSudoku: generating row candidates

The rule R1 uses a counter l() to track the progress of generating row candi-

dates. If the cP system is at s1 and the value of l(M1) is greater than the puzzle

size m(M), R1 is applicable, which means all the row candidates have been suc-

cessfully generated. By applying R1, the system resets the counter to l(1), changes

its state to s2 and moves to the next ruleset. R1 is the �rst rule in Ruleset (1),

thus it will always be tested before R2, R3, and R4.

R2 works in the max-parallel model, thus all the compatible uni�ers will be

applied. R2 adds a number V at column L to each row candidate p(X). The

relation c()(V) ⊈ X guarantees the number V has not been used in the same row

candidate. At the beginning the computation, p() was empty. By applying the

ruleset once, R2 will create m di�erent terms, which are p(c(1)(1)), p(c(1)(2))...,

p(c(1)(m)). By applying the ruleset again, R2 will generate m × (m − 1) terms

including p(c(1)(1), c(2)(2)), p(c(1)(1), c(2)(3))..., p(c(1)(m), c(2)(m − 1)). After

applying the ruleset m times, the cP system will eventually generate all the m!

row candidates, which contains all the arrangements of [1..m].

R3 is another max-parallel rule, which cleans the out-of-date p() terms in

the system. The rules R2, R3, and R4 commit to the same target state, which will

be applied in the same step. Thus, p() terms newly generated by R2 will not be

immediately consumed by R3.

R4 increases the counter l() by one in each step. The old counter l(L) will

be consumed by R4, and a new counter l(L1) will be produced.

To generate all the row candidates for m×m Sudoku, the ruleset needs to be

applied m+ 1 times, then the system state will be changed from s1 to s2.

4.1.2.2 Generating matrix templates

The ruleset to build matrix templates is shown in Fig. 4.4. Using the previous

generated row candidates, ΠSudoku builds matrix templates row by row.

58 Model Checking of cP systems

s2 l(M1) →1 s3 l(1) | m(M) (R5)
s2 →+ s2 t(X, r(L)(P)) | l(L), p(P), t(X), (r()(P) ⊈ X) (R6)
s2 t() →+ s2 (R7)
s2 l(L) →1 s2 l(L1) (R8)

Figure 4.4: Ruleset (2) of ΠSudoku: generating matrix templates

The counter l() is used to track the working row. R5 will be applicable once

all the m rows of matrix templates are �lled with row candidates � when l(M1)

is greater than m(M). R5 changes the system state to s3, and resets the counter

to l(1).

R6 generates matrix templates row by row. In each step, the system adds

exactly one row candidate p(P) at row L to each matrix template t(X). After m

steps, the system will �nish generating all m!!/(m! − m)! matrix templates. R7

cleans out-of-date t() terms, and R8 increases the counter l() by one in each

step.

Ruleset (2) takes m + 1 steps in total. The matrix templates generated by

ruleset (2) do not contain any number con�icts in each row since every row can-

didate is an arrangement of [1..m]. However, they may contain number con�icts

in columns and blocks (Fig. 4.5).

Figure 4.5: Number con�icts in a matrix template

4.1.2.3 Filtering matrix templates by columns

To delete the matrix templates with number con�icts in columns, ΠSudoku needs

one max-parallel rule (Fig. 4.6). The rule works as a �lter, which is applied to all

the matrix templates simultaneously. In a matrix template t(), if there are two

cells in the same column � row A column C and row B column C � share the

same value V , the template will be consumed (deleted). R9 only needs one step

to run. After applying it, all the matrix templates left in the system do not have

any number con�icts in rows and columns.

cP system solutions to SSP and Sudoku 59

s3 t(r(A)(c(C)(V)), r(B)(c(C)(V)),) →+ s3 (R9)

Figure 4.6: Ruleset (3) of ΠSudoku: �ltering matrix templates by columns

4.1.2.4 Filtering matrix templates by blocks

To check if matrix templates have number con�icts in blocks, we need to create

some supporting terms to indicate the relationship among rows, columns and

blocks. For example, when m = 9, we can build terms b(1)(1), b(2)(1), b(3)(1),

b(4)(2), b(5)(2), b(6)(2), b(7)(3), b(8)(3) and b(9)(3) in the cP system. To check if

two Sudoku cells are in the same block, we only need to compare their rows and

columns with the supporting terms. Suppose we want to check if two cells � row

4 column 3 and row 6 column 1 � are in the same block (Fig. 4.7). First, we check

terms b(4)(A) and b(6)(B) in the supporting terms, as a result we can �nd A = 2

and B = 2. Then we check b(3)(X) and b(1)(Y), and �nd that X = 1 and Y = 1.

If A = B and X = Y , the two cells are in the same block; otherwise they are not.

In this example, row 4 column 3 and row 6 column 1 are in the same block.

Figure 4.7: Checking if two cells are in the same block

The ruleset we use to build the supporting terms is shown in Fig. 4.8. R10

creates two terms v(1) and k(N), and changes the state to s4. Term v(V) holds

a value to �ll in current supporting term b()(), and k(K) tracks the boundary

of blocks. R11 monitors the progress of building supporting terms. When l(M1)

is greater than m(M), the system has �nished creating all the supporting terms,

thus, it changes the state to s5. R12 creates a supporting term b(L)(V) based

on the counter l(L) and value v(V). R13 updates terms v() and k() after the

counter l() has moved to the next block. R14 increases the counter l(L) by one

in each step.

60 Model Checking of cP systems

s3 →1 s4 v(1), k(N) | n(N) (R10)
s4 l(M1) →1 s5 | m(M) (R11)
s4 →1 s4 b(L)(V) | l(L), v(V) (R12)
s4 k(K), v(V) →1 s4 k(KN), v(V 1) | n(N), l(K) (R13)
s4 l(L) →1 s4 l(L1) (R14)

Figure 4.8: Ruleset (4a) of ΠSudoku: creating block checking supporting terms

In having the supporting terms in the system, R15 can �lter the matrix tem-

plates by blocks (Fig. 4.9). If the system detects a matrix template t() has two

cells (row X column A and row Y column B) in the same block that share the

same value V , it will consume the template. R15 runs in the max-parallel model,

which can �lter all the matrix templates in 1 step.

s5 t(r(X)(c(A)(V)), r(Y)(c(B)(V)),) →+

s5 | b(X)(W), b(Y)(W), b(A)(C), b(B)(C) (R15)

Figure 4.9: Ruleset (4b) of ΠSudoku: �ltering matrix templates by blocks

Ruleset (4a) and (4b) take m + 3 steps in total. After applying them, all the

matrix templates that remain in the cP system are valid Sudoku solutions; and

all the valid solutions are contained in the cP system!

4.1.2.5 Matching matrix templates to a Sudoku instance

One max-parallel rule can be used to match the matrix templates to a Sudoku

instance (Fig. 4.10). R16 compares all matrix templates t() to the instance s(S).

If the system �nds any con�icts between a matrix template t() and s(S), it

deletes the template. R16 takes one step. After applying it, the t(T) terms in the

system are solutions to the instance. A Sudoku instance may have multiple valid

solutions, regardless, the cP system is guaranteed to �nd all of them at the same

step.

s5 t(r(R)(c(C)(V))) →+ s5 | s(r(R)(c(C)(U))), U ̸= V (R16)

Figure 4.10: Ruleset (5) of ΠSudoku: matching matrix templates to a Sudoku
instance

Modelling cP systems in ProB and PAT3 61

ΠSudoku has 16 rules in total, which can solve any m × m Sudoku instances

in 3m + 7 steps. Considering that the input size of a Sudoku puzzle is m2, the

complexity of the solution is sublinear (square root time).

4.2 Modelling cP systems in ProB and PAT3

As an extensible model checker, PAT3 supports multiple speci�cation languages

and a user friendly editing environment. Compared to several other model check-

ers including SPIN, UPPAAL, and PRISM, the performance of PAT3 is quite

competitive 1. PAT3 provides a modelling language named CSP# (Communi-

cating Sequential Programs), which combines high-level modelling operators and

programmer-favored low-level constructs.

Along with PAT3, we will also model and verify cP systems using ProB, which

is an e�cient constraint solver and model checker for the B-Method. B features

such as non-deterministic operations, arbitrary quanti�cation, sets, sequences,

functions, and lambda abstractions are supported by ProB, which is particularly

useful for modelling cP systems.

4.2.1 Transforming cP systems into CSP# models

PAT (Process Analysis Toolkit) is a general purpose model checker that was pro-

posed in 2008 [40], which aims to analyse event-based compositional systems.

The latest version of PAT is PAT3, which has four layers including modelling,

abstraction, intermediate representation, and an analysis layer [37]. A modelling

language named CSP# is supported by PAT3, which is an extended version of

communicating sequential processes (CSP).

To transform cP systems into CSP# models, rules can be represented as pro-

cesses, and multisets can be modelled as arrays of integers. States of cP systems

can be modelled as global variables. Terms can be modelled as global or local

variables, macros, or integer arrays. Promoters can be modelled as conditions. A

mapping guideline is shown in Table 4.1.

Following the guideline, the rules of ΠSSP (Fig. 4.1) can be translated to

CSP#. In the translation, we use arrays to model multisets in cP systems. The

CSP# translation of R1 is shown in Fig. 4.11, notably, a process named S0 is used

to describe the rewriting of R1. At the beginning of the computation, the system

checks if the cP state is s0, then generates the rhs terms of R1. After applying

1https://www.comp.nus.edu.sg/~pat/system/

https://www.comp.nus.edu.sg/~pat/system/

62 Model Checking of cP systems

Table 4.1: A mapping guideline for transforming cP systems into CSP# models

cP System cP System CSP# Example

Component Notation Expression

ground term t(10) macro #de�ne t 10;
variable term a(X) variable var a;
multiset, set a(1, 1, 2, 3) array var a = [1,1,2,3];

state S1 global variable var state = 1;
promoter | x(X) y(X) condition if(x = = y)
rewriting →1 x(Y Z) | y(Y) z(Z) statement x = y + z;

R1, all numbers from the original set m(M) are available, none of them are used,

the sum of the subset is 0, and the cP state will be changed to s1. Since arrays

in CSP# must have a �xed size, an array [-1,-1,-1,-1] is used to represent λ (the

problem size n = 4). Two supporting variables �p_u_last� and �p_n_size� are

declared, these will be used to track the elements in the term u(U) and n(N).

#de�ne N 4 // problem size
var m = [1,2,3,4]; // original set S: m(M)
var t = 10; // target number: t(T)
var out[N]; // system output
var state = 0;
var lambda = [=1,=1,=1,=1];
var p_u[N];
var p_n[N];
var p_s;
var p_u_last;
var p_n_size;
S0() = rule1 {

if (state = = 0) {
p_u = lambda; // u(λ)
p_u_last = 0;
p_n = m; // n(M)
p_n_size = N;
p_s = 0; // s(λ)
state = 1;

}
} => S1_1();

Figure 4.11: The CSP# translation of R1 in ΠSSP

In the translation of R2 (Fig. 4.12), PAT3 checks if the sum of the subset

(p_s) is equal to the target number t when the system's cP state is s1. The CSP#

grammar requires events in a process to be atomic, so we split the rule into two

Modelling cP systems in ProB and PAT3 63

processes, namely S1_1 and S2. Once the system �nds that p_s is equal to t, it

changes the cP state to s2, outputs the elements in p_u and terminates.

S1_1() = rule2 {
if(state = = 1 && p_s == t) {

state = 2;
}

} => if(state = = 2) { S2() };
S2() = rule2 {

out = p_u;
} => Skip;

Figure 4.12: The CSP# translation of R2 in ΠSSP

Similar to R2, we split R3 to two processes, S1_1 and S3 (Fig. 4.13). The

system checks the size of the set p_n which stores unused elements. If p_n is

empty � which means all the possible subsets of the original set have already been

checked � the system changes its cP state to s3, outputs lambda and halts.

S1_1() = rule3 {
if (state = = 1 && p_n_size = = 0) {

state = 3;
}

} => if (state = = 3) { S3() };
S3() = rule3 {

out = lambda;
} => Skip;

Figure 4.13: The CSP# translation of R3 in ΠSSP

The CSP# translation of R4 in ΠSSP is shown in Fig. 4.14. The process S1_1

performs a state check, and S1_2 moves exactly one element from p_n to p_u

to produce new subsets and recompute p_s. In the second line of the translation,

the system creates processes using CSP# notation []i:0..(N-1)@ rule4..., which is

a syntax sugar of P(0) [] P(1) [] ... P(N-1), where [] is the choice operator. The

translation means either P(0) or P(1)... or P(N-1) may execute, which simulates

the non-deterministical generation of path terms in the cP system.

R5 in Fig. 4.1 does not need to be explicitly translated into PAT3, which uses

processes to manage the statespace. After all the events in a process have been

processed, PAT3 will move to execute the next process. Each process contains its

own copies of variables, thus, the terms contained by previous processes do not

need to be manually deleted.

64 Model Checking of cP systems

S1_1() = if (state = = 1) { S1_2() };
S1_2() = [] i:{0..(N=1)} @ rule4 {

state = 1;
if (p_n[i] != 0) {

p_u[p_u_last] = p_n[i];
p_n[i] = 0;
p_s = p_s + p_u[p_u_last];
p_u_last++;
p_n_size==;

}
} => S1_1();

Figure 4.14: The CSP# translation of R4 in ΠSSP

4.2.2 Transforming cP systems into B machines

The ProB model checker supports several modelling languages including B, Event-

B, and CSP [39]. B language has a rich set of built-in operations, which is partic-

ularly helpful for modelling cP systems. The mapping guideline for transforming

cP systems into B machines is shown in Table 4.2.

Table 4.2: A mapping guideline for transforming cP systems into B machines

cP System cP System B Expression Example

Component Notation

ground term t(10) constant CONSTANT t
variable term a(X) variable VARIABLES a

multiset a(1, 1, 2, 3) sequence variable a := [1,1,2,3];
set a(1, 2, 3, 4) set variable a := {1,2,3,4};
state S1 integer variable state := 1;

promoter | x(X) y(X) precondition PRE x = y
rewriting →1 x(Y Z) | y(Y) z(Z) statement x := y + z;

In the mapping guideline, ground simple terms can be modelled as constants,

and other simple terms can be modelled as variables in B. States can be modelled

as variables of integers, and can be checked as preconditions. Promoters can be

modelled as preconditions.

Multiset-based compound terms in cP systems such as a(11bbc) can be mod-

elled as sequences in B. Several sequence operations are pre-implemented in B,

which include prepend element (E->s), append element (s<-E), reverse (rev(s)),

�rst (�rst(s)), and last (last(s)).

Modelling cP systems in ProB and PAT3 65

Set-based compound terms such as a(bcd) can be modelled as sets in B. Several

set operations including cardinality (card(S)), Cartesian product (S*T), union

(S\/T), intersection (S/\T), di�erence (S−T), element of (E:S) and subset of

(S<:T) are provided by B.

Following the mapping guideline, the rules of ΠSSP (Fig. 4.1) can be translated

to B. In the translation of R1 (Fig. 4.15), the system state and the promoter m(M)

are checked as preconditions. If the system's state is s0 and m(M) exists, it copies

all elements from m(M) to p_n, sets p_u as empty and p_s to zero, and changes

the system state to s1.

CONSTANTS
m, t

PROPERTIES
m = {1,2,3,4} & // original set S: m(M)
t = 10 // target number: t(T)

VARIABLES
state, p_s, p_u, p_n
p_u: seq(m) &
state: 0..3 &
p_u: seq(m) &
p_n: POW(m) &
p_s >= 0

INITIALIZATION
state, p_s, p_u, p_n := 0,0,[],{}

OPERATIONS
rule1 =

PRE state = 0 & card(m) > 0
THEN p_n := m; // n(M)
p_u := []; // u(λ)
p_s := 0; // s(λ)
state := 1
END;

Figure 4.15: The B translation of R1 in ΠSSP

out2 <== rule2 =
PRE state = 1 &
p_s = t
THEN out2 := p_u;
state := 2
END;

Figure 4.16: The B translation of R2 in ΠSSP

66 Model Checking of cP systems

The translation of R2 is shown in Fig. 4.16. If the state check is passed, and

the sum of a subset (p_s) is equal to the target number t, the system will change

its state to s2 and outputs the elements in p_u. Otherwise, R2 is not applicable.

out3 <== rule3 =
PRE state = 1 &
p_s /= t &
card(p_n) = 0
THEN out3 := [=1];
state := 3
END;

Figure 4.17: The B translation of R3 in ΠSSP

The translation of R3 describes another termination of the system (Fig. 4.17).

When the system state is s1, p_s is not equal to t, and the size of p_n is zero.

This means the system has already checked all the subsets of m(M) and did not

�nd any valid solutions to the problem, thus, the system will change its state to

s3 and output o(λ). [-1] is used to represent o(λ) in the B translation. Since no

rule in ΠSSP starts at s3, the system will halt after applying R3.

rule4(y) =
PRE state = 1 &
y:p_n // m(Y)
THEN p_u := y => p_u;
p_n := p_n = {y};
p_s := p_s + y;
state := 1
END;

Figure 4.18: The B translation of R4 in ΠSSP

The B translation of R4 describes the generation of the subsets (Fig. 4.18). In

the B operation rule4(y), the parameter y is an element of p_n, which is added to

p_u, and removed from p_n. The sum of the subset p_s will also be recomputed.

All the possible values of y (y ∈ p_n) will be considered that can be used to

simulate the max-parallel application of R4.

Similar to the CSP# translation, the term consuming rule � R5 in Fig. 4.1

� does not need to be translated. When we use ProB to verify ΠSSP , duplicate

terms will not be generated.

Model checking results and disscussion 67

4.3 Model checking results and disscussion

By modelling ΠSSP in both PAT3 and ProB2, and ΠSudoku in PAT33, we veri�ed

several system properties of the two cP systems. A desktop PC with i5-8400 CPU

(2.80 GHz, 6 cores) and 8-GB memory was used to conduct the experiments.

4.3.1 Model checking results of ΠSSP

The PAT3 and ProB veri�cation results of ΠSSP are shown in Table 4.3. Properties

of ΠSSP including deadlockfreeness, termination, determinism, goal reachability,

divergencefreeness, invariant violation, and other LTL properties were veri�ed.

Table 4.3: Model checking results of ΠSSP

Problem instance n = 4 n = 7 n = 10
S = {1, 2, 3, 4} S = {1, 2, 4, 55, 56, 57, 119} S = {1, 2, 4, 55, 56, 57, 119, 235, 244}
T = 10 T = 295 T = 777

Tool PAT3 ProB PAT3 ProB PAT3 ProB
Expected goal ✓ ✗ ✗

Goal ✓ 0.001s ✓

<0.5s

✗ 0.419s ✗

4.333s

✗ 572.4s ✗

3124s
Deadlockfreeness ✓ 0.002s ✓ ✓ 0.413s ✓ ✓ 469.0s ✓

Invariant violation - ✗ - ✗ - ✗

New errors ✗ ✗ ✗

Termination ✓ 0.002s - ✓ 0.002s - ✓ 0.003s -
Divergencefreeness ✓ 0.003s ✓ 0.676s ✓ 891.9s
Nondeterminism ✓ 0.001s ✓ 0.002s ✓ 0.002s
Reachability: S2 ✓ 0.002s ✗ 0.413 ✗ 493.2s
Reachability: S3 ✗ 0.001s ✓ 0.001 ✓ 0.005s

In cP systems, a deadlock is a system con�guration that does not have any

outgoing edge, which is also not an expected halting con�guration. Badly designed

rules may cause deadlocks. For example, if R1 in ΠSSP is miswritten as: s0 →1

s4 p(u(λ) n(M) s(λ)) | m(M), by applying it, the cP system will be stuck at s4,

since no rule in ΠSSP 's ruleset can be applied at s4.

A process is divergent if it does not terminate or terminates in an exceptional

state. Self-looping rules in cP systems can make the system diverge, which is often

undesired. Most cP systems are non-deterministic: during the uni�cation of the

rules, multiple uni�ers can be randomly selected. However, for certain cP systems,

if each of their rule uni�cations have only one uni�er, they are deterministic.

Suppose we have a cP system ΠNAT , which starts at s1 with a term a(1) and

has a rule RNAT : s1 a(X) →1 s1 a(X1). Since ΠNAT only has one system term

during the computation, when RNAT is applied only one uni�er can be found, this

2https://github.com/YezhouLiu/cP-subset-sum
3https://github.com/YezhouLiu/cP-Sudoku

https://github.com/YezhouLiu/cP-subset-sum
https://github.com/YezhouLiu/cP-Sudoku

68 Model Checking of cP systems

makes ΠNAT deterministic. ΠNAT can generate all the natural numbers, thus it is

also non-terminating.

Invariant violation is a general property for ProB, where multiple variable

constraints can be written as invariants. During the veri�cation, ProB will keep

tracking the constraints to make sure they are satis�ed. Once a constraint is

violated, ProB will raise a counterexample for the violation. �New errors� for ProB

refers to errors and warnings that are generated by the Prolog error manager.

Since SSP is NP-complete, the model checking statespace grows signi�cantly

with the problem size. For instance, ProB's statespace contains 18743 states when

n = 7, and 13492904 states when n = 10. Checking NPC solutions with large

problem sizes is often time consuming. To check all the system properties that are

shown in Fig. 4.1, when n = 10, the running time of PAT3 is around 2300s and

with ProB it is more than 3000s.

Deadlockfreeness and divergencefreeness checking is often slower than the

checking of other properties, since more internal states and transitions need to

be checked. For example, to guarantee a system is deadlockfree, a model checker

often needs to check the entire statespace.

The system properties can be veri�ed in PAT3 and ProB are slightly di�erent,

while both of them show that ΠSSP is deadlockfree, terminating, and can reach

the expected goal. From the PAT3 veri�cation results we can also �nd that ΠSSP

is divergencefree, which means ΠSSP is both con�uent and terminating.

Modelling cP systems in PAT3 and ProB have di�erent advantages. In CSP#,

�xed-size array is one of the most important data structures, which can be used to

represent (non-nested) multisets in cP systems. For cP systems that solve set-based

problems, it is often easier to model them in B language. By using set operations

provided by ProB, the behaviour of cP systems can be described brie�y.

There is no con�ict between the veri�cation results of PAT3 and ProB, how-

ever, the performance of PAT3 is generally better than ProB. For example, when

n = 10, to verify properties such as goal reachability or deadlockfreeness, PAT3 is

approximately �ve times faster than ProB. Thus, to verify a cP system that has

a large statespace such as ΠSudoku, PAT3 would be a better option compared to

ProB.

4.3.2 Model checking results of ΠSudoku

The statespace of ΠSudoku is larger than factorial, thus it is practically impossible

to verify the entire solution in any model checker. We veri�ed the two core rulesets

Summary 69

(1) and (2) of ΠSudoku in PAT3.

Table 4.4 shows the model checking results. As expected, the two rulesets in

ΠSudoku are deadlockfree, divergencefree, terminating, non-deterministic, and can

reach the expected goal.

Table 4.4: Model checking results of ruleset (1) and (2) in ΠSudoku

Ruleset Problem size Deadlockfreeness Divergencefreeness Terminating Deterministic Goal reachability

(1) 4 True True True False True
(1) 9 True True True False True
(2) 4 True True True False True

A major limitation of applying model checking to cP systems is state explo-

sion, the veri�cation of ΠSudoku is a great example of this. To verify the two

rulesets of ΠSudoku, we chose two problem sizes which are m = 4 and m = 9.

When m = 9, PAT3 encountered a memory explosion issue. To verify ruleset (1),

PAT3 generated 9! = 362880 row candidates and successfully checked the states-

pace. However, to verify ruleset (2), PAT3 needed to generate of the 9!!/(9!− 9)!

matrix templates, which is impossible in practice. Even though PAT3 implements

abstraction algorithms and can generate its statespace on the �y, the statespace

is too intense to check.

Because of the combinatorial explosion and limited languages features sup-

ported by PAT3, max-parallel �ltering rulesets, including ruleset (3), (4a), (4b),

and (5) in ΠSudoku, are not suitable to be veri�ed via model checking. There is no

straightforward way to manually release memory space of terms in model checkers,

such as PAT3, to emulate term consumptions in cP systems.

4.4 Summary

In this chapter, we proposed two cP systems, ΠSSP and ΠSudoku, which can solve

SSP and Sudoku in linear and sublinear time, respectively. Making use of generic

rules in cP systems, ΠSSP only has 5 rules, and ΠSudoku only has 16 rules.

We used two model checkers � PAT3 and ProB � to verify ΠSSP and ΠSudoku.

Several system properties including deadlockfreeness, termination, determinism,

goal reachability, divergencefreeness, and invariant violation were successfully ver-

i�ed.

To model cP systems in PAT3 and ProB, we proposed two mapping guidelines

to transform cP systems into CSP# models and B machines. To automate the

transformation process, following the mapping guidelines, we implemented a B-

70 Model Checking of cP systems

translator and a CSP-translator for ground cP systems, which will be discussed

in Chapter 6.

A major limitation of verifying cP systems using model checkers is combina-

torial explosion. Theoretically, an arbitrary number of cP system rules can be ap-

plied in the same step, which can create exponential terms in one step. For certain

cP systems, to exhaustively traverse their statespaces is impossible in practice.

Existing model checkers often only support low-level languages, which only

have limited built-in data structures. To properly model cP systems into the model

checkers requires human intervention. It is not guaranteed that all the cP systems

can be completely modelled in existing model checkers. For example, modelling

cP systems that contain multiple highly nested compound terms in PAT3 and

ProB is non-trivial.

In the next chapter, we will discuss deductive veri�cation, and introduce how

to verify cP systems using the Coq proof assistant.

Chapter 5

Deductive Veri�cation of cP

systems

In addition to model checking, another approach of formal veri�cation is deduc-

tive veri�cation. Using proof assistants (interactive theorem provers) or automatic

theorem provers (which include satis�ability modulo theories (SMT) solvers), we

can model a cP system, specify its properties as a set of proof obligations, and

prove the proof obligations manually or automatically.

In this chapter, to formally verify cP systems, we consider the Coq proof

assistant[50], which is not an automated theorem prover but supports a set of

automatic theorem proving tactics. Coq supports a speci�cation language called

Gallina. Code written in Gallina has a weak normalisation property, which has to

be terminating.

To verify a cP system Π using Coq, the following process can be considered:

� Model Π using Gallina.

� Specifying the properties of cP systems as proof obligations.

� Prove the proof obligations using certain tactics.

We propose an open source library named cP-Coq, which describes cP system

components and includes a number of basic theorems that support veri�cation [9].

Two modelling guidelines are introduced, which can be used to transform cP no-

tation into Gallina. cP systems including ΠSSP are used as examples to illustrate

the approach.

The chapter is organised as follows. Section 5.1 introduces how to model cP sys-

tems in Gallina. Section 5.2 includes two case studies and shows how to prove

71

72 Deductive Veri�cation of cP systems

certain proof obligations. Section 5.3 discusses the pros and cons of the approach,

and Section 5.4 concludes the chapter.

5.1 Modelling cP systems in Coq

cP systems are not only Turing complete, but also more e�cient than many ex-

isting computing systems theoretically. Rules in cP systems can work in a non-

deterministic max-parallel way, which is hard to fully simualte in Coq. Although

non-terminating computations are not allowed in Gallina, we can still model sev-

eral cP systems and verify their properties. In this study, we implemented a Coq

library to assist the modelling of cP systems, namely cP-Coq1.

5.1.1 Modelling cP system components

In cP-Coq, atoms are de�ned as lowercase letters and variables are uppercase

letters. Functors � labels of terms (cells) � are de�ned as atoms. Ground terms are

recursively de�ned as a labelled and nested multiset (of ground terms). A state is

de�ned as a constructor s with a natural number.

Inductive atom := | a | b | c | d | e | f | g | h .

Inductive variable := | X | Y | Z | W | U | V.

De�nition functor := atom.

Inductive g_term :=

| Num (n1: nat)

| Atom (a1: atom)

| Term (label : functor) (b1: bag g_term).

Inductive state := s (n : nat).

A cP system computation consists of a sequence of transitions between di�erent

system con�gurations. A system is terminated when it reaches a con�guration with

no rule applicable. In cP-Coq, an inductive type called �cPsystem_conf� is de�ned

to represent cP system con�gurations. Each cP system con�guration has a state,

and contains a multiset of ground terms (system terms).

Inductive cPsystem_conf := cP_sys (s1: state) (terms: g_multiset).

In order to facilitate the representation of cP terms with large numbers, we

consider natural numbers to be ground terms. For example, a(b(c)d(11931)) can be

1https://github.com/YezhouLiu/cP-Coq

https://github.com/YezhouLiu/cP-Coq

Modelling cP systems in Coq 73

represented as: Term a [Term b [Atom c]; Term d [Num 1931]]. This design can

also help us to inductively prove cP system properties related to natural numbers.

Polymorphic lists are used to represent multisets/bags. Several comparators

and sorting functions are provided in cP-Coq, which can be used to keep lists of

terms sorted. Thus, standard library functions such as eq can be directly used

when necessary. Fig. 5.1 shows how to represent cP system components and con-

�gurations in Coq.

cP system

component

cP system

representation

cP-Coq

type

cP-Coq

example

atom a atom a
variable V variable V
functor f functor f
simple term a, X, or 13 atom, variable, nat a, X, or 3

compound term a(a(12)b) Term, Num, Atom
Term a [Term a [Num 2];
Atom b]

g-multiset a b a bag g-term [Atom a; Atom b; Atom a]
state s1 state s 1

system con�guration
a cP system
at s1
with no term

cPsystem_conf cP_sys (s 1) nil.

Figure 5.1: Representing cP system components in Coq

5.1.2 Modelling cP system rules

Rules in cP systems are de�ned as types in cP-Coq. By applying a rule, a cP system

will transit from one con�guration to another.

De�nition cP_rule : Type := cPsystem_conf => cPsystem_conf.

De�nition cP_ruleset : Type:= list cP_rule.

Since there is no straightforward way to implement the uni�cation of labelled

multiset based-terms in Gallina, human intervention is needed for representing

generic rules. A set of system operations is provided by cP-Coq, which can be

used to construct cP rules (Fig. 5.2).

A recommended way to represent a generic cP rule is by using a group of func-

tions f1, f2, ..., fn to describe its rewriting logic, and using higher-order functions

� such as map or �lter � to apply f1, f2, ..., fn to all the system terms.

To simulate the behaviour of a cP system, we can either apply a rule or ruleset

to a cP system con�guration as one step, or we can keep applying a ruleset until

the system terminates. In the code, a looping limit is introduced to guarantee the

�xpoint function eventually terminates.

74 Deductive Veri�cation of cP systems

Rules
cP system

notation

Operations

in cP-Coq

cP-Coq

example

producing terms → ab ProduceTerms ProduceTerms [a;b] sys
consuming terms ab → ConsumeTerms ConsumeTerms [a;b] sys
checking
a promoter

| p TermInSystemB TermInSystemB p sys

changing
system state

s1... → s2... ChangeState ChangeState s2 sys

rewriting s1... → s2m2 NewConf NewConf (s 2) m2

Figure 5.2: Modelling cP system rules in Coq

Fixpoint ApplyARuleset (sys: cPsystem_conf) (rs: cP_ruleset) : cPsystem_conf :=

match rs with

| h1 :: t1 => ApplyARuleset (h1 sys) t1

| _ => sys

end.

Fixpoint RunUntilTerminated (sys: cPsystem_conf) (rs: cP_ruleset) (limit1: nat) :

cPsystem_conf :=

match limit1, SystemIsTerminatedRSB sys rs with

| O, _ => sys

| _, true => sys

| S n', false => RunUntilTerminated (ApplyARuleset sys rs) rs n'

end.

A variety of strategies and tactics can be selected in Coq, the most common

ones include mathematical induction and case analysis. A common way to prove a

theorem is to recursively break its proof obligations (goals) into simpler subgoals,

and then to prove each subgoal one by one. In addition to performing backward

reasoning, tactics such as �apply� can conduct forward reasoning, which suits cer-

tain cases. As an interactive theorem prover, all the proofs need to be written

manually in Coq.

As a supplementary approach, we implemented several functions in cP-Coq to

perform model checking. System properties including deadlockfreeness, termina-

tion, loopingfreeness and rule validation can bechecked in cP-Coq.

Case studies 75

5.2 Case studies

We modelled and veri�ed several cP systems using cP-Coq. This include simple

cP systems which perform minimum �nding and gcd �nding, and complex cP sys-

tems that solve NP-complete problems. In this section we will discuss the formal

veri�cation of two cP systems.

5.2.1 Verifying a minimum �nding cP system using Coq

Suppose a cP system Πmin (at state s1) contains n terms a(X1), a(X2), ..., a(Xn).

The following ruleset (Fig. 5.3) can �nd the minimum of X1, X2, ..., Xn in two

max-parallel steps.

s1 →+ s2 b(X) | a(X) (R1)
s2 b(XY 1) →+ s3 | a(X) (R2)

Figure 5.3: The ruleset of Πmin

R1 produces b(Xk) for each a(Xk), k ∈ [1..n] and changes the system state

from s1 to s2. R2 consumes b(Xi) if there exists a(Xj), Xj < Xi, i, j ∈ [1..N]. By

applying R2, the system state will be changed to s3, then no rule is applicable,

and the system will terminate.

The Coq representation of R1 and R2 is shown in Fig. 5.4. The rewriting

logic of R1 and R2 is manually intepreted as functions including MakeB, R1,

BIsNotGreaterThanA, and R2.

To represent R1, a function MakeB is de�ned, which can produce a term b(X)

from a(X). By applying MakeB to all the system terms using the map function,

R1 can model R1 in a sequential way.

For R2, a function BIsNotGreaterThanA is implemented to represent the pro-

moter (condition). By applying BIsNotGreaterThanA to all the system terms us-

ing the �lter function, R2 can properly represent R2. After calling R2, if a b term

is greater than any a term in the system, it will be consumed; otherwise it will be

kept. A Coq simulation of the minimum �nding cP system is shown in Fig. 5.5,

where the term �b @num 3� in the halting con�guration indicates that the min

value of {3, 7, 6, 8} is 3.

Using a pre-de�ned min function, we can specify the correctness property of

the system, when it contains two initial terms a(X1) and a(X2) (Fig. 5.6).

76 Deductive Veri�cation of cP systems

De�nition MakeB (t1: g_term) : g_term :=
match t1 with
| a @num x1 => b @num x1
| _ => Atom e
end.

De�nition R1 (sys:cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 1) terms => NewConf (s 2) ((map MakeB terms) ++ terms)
| _ => sys
end.

Fixpoint BIsNotGreaterThanA (m1: g_multiset) (t1: g_term) : bool :=
match t1, m1 with
| b @num x1, a @num x2 :: t2 => if x1 <=? x2 then (BIsNotGreaterThanA t2 t1) else

false
| _, _ :: t3 => BIsNotGreaterThanA t3 t1
| _, _ => true
end.

De�nition R2 (sys:cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 2) terms => NewConf (s 3) (�lter (BIsNotGreaterThanA terms) terms)
| _ => sys
end.

Figure 5.4: The cP-Coq representation of R1 and R2

Notation "f @num x" := (Term f [Num x]) (at level 50).
De�nition cPsys1 := cP_sys (s 1) [a @num 3;a @num 7;a @num 6;a @num 8].
De�nition cPsys2 := R1 cPsys1.
De�nition cPsys3 := R2 cPsys2.
Compute cPsys1.
Compute cPsys2.
Compute cPsys3.

Output:
cP_sys (s 1) [a @num 3; a @num 7; a @num 6; a @num 8] : cPsystem_conf
cP_sys (s 2) [b @num 3; b @num 7; b @num 6; b @num 8; a @num 3; a @num 7; a @num 6; a

@num 8] : cPsystem_conf
cP_sys (s 3) [b @num 3; a @num 3; a @num 7; a @num 6; a @num 8] : cPsystem_conf

Figure 5.5: A Coq simulation of Πmin

In Lemma SystemCorrectness, GetB is a function which can extract the re-

sulting natural number from the halting con�guration. In the proof, LETriv-

ial1, LETrivial2, LETrivial3, and MinTrivial1 are simple lemmas that are pre-

de�ned and proved in cP-Coq. In performing a case analysis on x1 <=? x2 and

x2 <=? x1, we separated the proof obligation into several subgoals and proved

Case studies 77

Lemma SystemCorrectness: forall (x1 x2: nat),
GetB (R2 (R1 (cP_sys (s 1) [a @num x1; a @num x2])) = min x1 x2.

Proof.
intros. destruct (x1 <=? x2) eqn: e1. try simpl.
try rewrite LETrivial1; try rewrite LETrivial2;
try rewrite e1. apply MinTrivial1 in e1. rewrite <= e1. re�exivity.
destruct (x2 <=? x1) eqn: e2; try simpl.
repeat(try rewrite LETrivial1; try rewrite LETrivial2;
try rewrite e1; try rewrite e2). rewrite Nat.min_comm.
apply MinTrivial1 in e2. rewrite <= e2. re�exivity.
rewrite LETrivial3 in e1. discriminate e1.
rewrite e2. re�exivity.

Qed.

Figure 5.6: A correctness proof of Πmin with two initial terms

them separately. Similar strategies can be applied to Πmin with more than two

initial terms.

Πmin is expected to terminate in two steps (by applying R1 and R2 once)

despite the number k of a(Xk) terms. The speci�cations and proof of this system

property is shown in Fig. 5.7, where functions such as SystemIsTerminatedRS and

ApplyARuleset are pre-de�ned in cP-Coq.

Lemma SystemTerminatesInTwoSteps: forall (sys: cPsystem_conf),
SystemIsTerminatedRS (R2 (R1 sys)) [R1; R2].

Proof.
unfold SystemIsTerminatedRS. unfold ApplyARuleset. destruct sys. destruct s1.
repeat (destruct n; try re�exivity; try discriminate).

Qed.

Figure 5.7: Proving Πmin terminates in two steps

Other system properties can be speci�ed and proven as needed. For the cP sys-

tem Πmin, both its correctness and complexity are proven for all the valid instances

of Πmin.

5.2.2 Verifying ΠSSP using Coq

As mentioned in Chapter 4, ΠSSP is a cP system that solves SSP in linear time

(n + 2 steps). Five rules are included in ΠSSP , which are shown in Fig. 5.8. In

the ruleset, we modi�ed certain term labels (compared to the ruleset shown in

Fig. 4.1) to �t the functor de�nition in cP-Coq, where the algorithm remains the

same.

78 Deductive Veri�cation of cP systems

s0 a(M) →1 s1 b(c()d(M)e()) (R1)
s1 →1 s2 g(X) | b(c(X) e(T)) f(T) (R2)
s1 →1 s2 g(λ) | b(d(λ)) (R3)
s1 →+ s1 b(c(Xa(Y))d(Z)e(SY)) | b(c(X)d(a(Y)Z)e(S)) (R4)
s0 b() →+ s1 (R5)

Figure 5.8: The ruleset of ΠSSP

The system initially contains two terms: a(a(i1)a(i2)...a(in)) and f(T). The

�rst term a(a(i1)a(i2)...a(in)) represents the original multiset S, and f(T) stores

the target integer T . The initial state of the system is s0, by applying R1, it

consumes a(a(i1)a(i2)...a(in)), produces a new term b(c()d(a(i1)a(i2)...a(in))e()),

and changes its state to s1. In cP-Coq, R1 can be directly modelled using the

operation NewConf.

De�nition R1 (sys: cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 0) [Term a x1; t1] => NewConf (s 1) [t1; Term b [Term c nil; Term d x1 ; e

@num 0]]
| _ => sys
end.

Each occurrence of the term b(c(X)d(Y)e(Z)) in the cP system describes a

subset of S. X includes elements of the subset, Y stores unused elements (com-

pared to S), and Z stores the sum of the elements in X.

R2 and R3 describe two terminating states of the system. If a target subset

(whose sum of elements equals T) is found, the system generates a goal term g(X),

which contains that subset and changes its state to s2. Otherwise, if all subsets

have already been checked and none of them have a sum of elements which equals

T , the system generates an empty goal term g(λ) and changes its state to s2.

Fixpoint MakeG2 (t1: g_term) (m1: g_multiset) : g_term :=
match t1, m1 with
| f @num v1, Term b [Term c c1; _; e @num v2] :: t2 => if v1 =? v2 then Term g c1 else

MakeG2 t1 t2
| _, _ :: t2 => MakeG2 t1 t2
| _, _ => Atom e
end.

Case studies 79

De�nition R2 (sys: cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 1) (t1 :: terms) => match MakeG2 t1 terms with

| Atom e => sys
| x1 => NewConf (s 2) (x1 :: t1 :: terms)
end

| _ => sys
end.

To represent R2, a recursive function named MakeG2 is implemented to gen-

erate the output g(X) term. By comparing the sum of the elements in each subset

of S with the target integer T , MakeG2 can output a solution to the problem.

The function R2 applies MakeG2 to all the system terms, which simulates the

rewriting logic of R2.

A similar design can be used to represent R3, which is shown as follows. In

the code, the recursive function MakeG3 checks the set of unused elements d().

If the length of the set equals zero, which means the set is empty, MakeG3 will

generate a term g(λ) as a system output. R3 applies MakeG3 to all the system

terms, which represents the rewriting logic of R3 .

Fixpoint MakeG3 (m1: g_multiset) : g_term :=
match m1 with
| Term b [_; Term d d1; _] :: t1 => if (length d1) =? 0 then Term g nil else MakeG3 t1
| _ :: t1 => MakeG3 t1
| _ => Atom e
end.

De�nition R3 (sys: cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 1) terms => match MakeG3 terms with

| Atom e => sys
| x1 => NewConf (s 2) (x1 :: terms)
end

| _ => sys
end.

R4 describes the core algorithm of the cP system. In each step, it moves

exactly one element a(Y) from d() to b(λ), and recomputes the sum e(λ) of

the subset. Running R4 in max-parallel model can generate all subsets of S in a

layer-by-layer manner. Additionally, R5 runs together with R4, which can clean

out-of-date terms and save system memory.

Multiple supporting functions are implemented to represent R4 and R5. The

function MakeB is designed to move one element from d() to b(λ). MakeBAll

80 Deductive Veri�cation of cP systems

is used to simulate the max-parallel generation of all the subsets, which applies

MakeB to a multiset.

Fixpoint MakeB (t1: g_term) (m1: g_multiset) : g_multiset :=
match t1, m1 with
| _, nil => nil
| Term b [Term c c1; Term d d1; e @num e1], (a @num x1) :: t2 => if TermInBagB (a

@num x1) d1 then [Term b [Term c (c1 ++ [a @num x1]); Term d (RemoveATerm (a
@num x1) d1); e @num (e1 + x1)]] ++ (MakeB t1 t2) else MakeB t1 t2

| _, _ :: t2 => MakeB t1 t2
end.

Fixpoint MakeBAll (m1: g_multiset) : g_multiset :=
match m1 with
| h1 :: t1 => (MakeB h1 (GetUnused h1)) ++ (MakeBAll t1)
| _ => nil
end.

Since R4 and R5 commits to the same target state, they will apply in the

same step, which means they can be modelled in the same Gallina function. R4n5

describes the rewriting logic of R4 and R5, which applies NotB and MakeBAll to

all the system terms, where NotB is a function which checks if a term's label is

not b.

De�nition NotB (t1: g_term) : bool :=
match t1 with
| Term b _ => false
| _ => true
end.

De�nition R4n5 (sys: cPsystem_conf) : cPsystem_conf :=
match sys with
| cP_sys (s 1) terms => NewConf (s 1) ((�lter NotB terms) ++ (MakeBAll terms))
| _ => sys
end.

To prove the correctness of ΠSSP in Coq is non-trivial. The subset sum problem

is NP-complete, in other words, we cannot guarantee solving it without checking

all the subsets of S. Although cP systems are assumed to have unlimited computa-

tional resources, the real life implementations may run out of memory. In cP-Coq,

we bound the problem when verifying certain system properties. By de�ning the

system's validity, its correctness can be proven (the detailed proof can be found

in cP-Coq's veri�cation examples).

Case studies 81

Lemma SystemCorrectness: forall (sys: cPsystem_conf), ValidSystem sys = true =>
GetFValue (RunNSteps sys rs (psize+2)) = SetSum (GetG (RunNSteps sys rs (psize+2))).

Similarly, the system's complexity can be veri�ed. By proving SystemTermi-

natesInNPlusTwoSteps, we can verify that the worst time complexity of the system

is: psize (problem size) + 2 steps.

Lemma SystemTerminatesInNPlusTwoSteps: forall (sys: cPsystem_conf), ValidSystem sys =
true =>
SystemIsTerminatedRS (RunNSteps sys rs (psize+2)) rs.

When the problem size increases, the subset sum cP system may take a large

amount of memory. We can write a lemma to specify and prove an upper bound

of the memory usage.

Lemma SystemMemoryUse: forall (sys: cPsystem_conf) (n1: nat), (ValidSystem sys = true)
/\ (0 <? n1 = true) =>
SystemMemory (RunNSteps sys rs n1) <=? pow 2 (n1 + 1) = true.

Some system properties can be proven without bounding the problem. For

example, we can prove that the system terminates at s2.

Lemma SystemTerminatesAtS2: forall (sys: cPsystem_conf),
SystemState sys = s 2 => SystemIsTerminatedRS sys rs.

Proof.
intros. destruct sys. destruct s1.
repeat (try destruct n; try discriminate H; try re�exivity).

Qed.

Model checking can also be used to verify the system. For example, we can

verify the properties of an instance of ΠSSP as follows.

Lemma SystemTerminated: SystemIsTerminatedRS cPsys6 rs.
Lemma SystemTerminatedAtS2: SystemState cPsys6 = s 2.
Lemma Loopingfreeness: LoopingCheckB cPsys1 rs 6 = false.
Lemma Deadlockfreeness: DeadlockCheckB cPsys1 rs 5 = false.

By grouping several problem instances together, we can verify their properties

at once. Other lemmas and proofs of the system can be found in cP-Coq's example

�les.

82 Deductive Veri�cation of cP systems

5.3 Discussion

In using Coq we can either conduct theorem proving or model checking on cP sys-

tems. For certain system properties, we can prove them for all the problem in-

stances using mathematical induction. For other properties, we can prove them

by setting di�erent upper bounds, or by conducting model checking instead.

Properties of cP systems can be veri�ed in a divide-and-conquer manner. We

can describe complex properties as multiple theorems or lemmas, prove them one

by one, and then combine the results together. cP-Coq includes a number of

basic theorems on cP systems' data structures and operations that can be used to

construct proofs.

Compared to the model checking approach, which veri�es system properties

of certain cP system instances, in Coq we can verify certain properties for all the

instances of a cP system. For example, we proved that the complexity of ΠSSP is

linear in Coq, which is hard to verify by only checking a few instances of ΠSSP .

A comparison of verifying cP systems in Coq, PAT3 and ProB is shown in

Table 5.1. A check mark in the �gure indicates that certain properties can be

veri�ed by the corresponding tool. A cross mark indicates that some properties

cannot be straightforwardly veri�ed by the tool.

Table 5.1: A comparison of verifying cP systems in di�erent formal tools

Properties Coq PAT3 ProB

Correctness ✓ ✓ ✓

Deadlockfreeness ✓ ✓ ✓

Invariant violation ✓ ✗ ✓

Terminating ✓ ✓ ✓

Nondeterministic ✗ ✓ ✗

Complexity ✓ ✗ ✗

Veri�cation objects All the instances A small number of instances

To e�ectively and e�ciently simulate cP systems in modern computers is a

long-term challenge. cP systems can solve NPC or even PSPACE-complete prob-

lems in linear time by trading memory for time. Thus, memory explosion is a

common issue for all the cP system implementations in real life. By using cP-Coq,

certain system properties can be veri�ed by conducting theorem proving, which

does not require the entire statespace of a cP system to be explored.

Modelling cP systems in Gallina requires human intervention, which is a major

limitation of this work. Representing cP systems in di�erent ways may signi�cantly

Summary 83

a�ect the di�culty of proving theorems, and the representations themselves also

need to be certi�ed.

To completely simulate non-deterministic cP systems with max-parallel rules in

the current version of Coq is extremely di�cult. Fortunately, many well-designed

cP systems are suggested to be con�uent, so non-deterministic properties are often

undesired for cP systems.

Model checking and interactive theorem proving are two complementary formal

veri�cation approaches, which can be combined together. Model checkers can be

used to verify a cP system that has a relatively small statespace. Proof assistants

can be used to mathematically prove certain properties of a cP system with a

large or even unlimited statespace.

5.4 Summary

Deductive veri�cation aims to verify a system's properties by conducting logical

inference. In this chapter, we introduced how to formally verify cP systems using

Coq proof assistant. To model cP systems in Gallina, we implemented a library

named cP-Coq, and proposed two mapping guidelines to help transform cP sys-

tems into Gallina models. Compared to model checking, we can verify certain

cP system properties for all of a system's instances without encountering memory

explosion.

This study demonstrates the great potential of verifying membrane systems

using interactive theorem provers. Following the mapping guidelines, we imple-

mented a Gallina translator, which can be used to transform ground cP systems

into cP-Coq models (Appendix A).

In the next chapter, we will introduce our software implementation of a cP-

speci�c simulation and veri�cation framework, which can simulate and verify

cP systems in a natural way.

Chapter 6

cPV � a Formal Veri�cation

Framework for cP Systems

To formally verify cP systems, three major approaches are considered in this study.

These include:

� Manually modelling and verifying cP systems using existing formal veri�ers.

� Automately translating cP systems to modelling languages supported by

existing formal veri�ers, and then obtaining the veri�cation results.

� Designing and implementing a domain-speci�c formal veri�er for cP systems.

The �rst approach was discussed in Chapters 4 and 5. By using general purpose

veri�ers including PAT3, ProB, and Coq, system properties of several cP systems

were successfully veri�ed. In this chapter, we will discuss the other two approaches

and introduce the software tools we built for each of them.

In order to fully automate the cP system formal veri�cation process, we im-

plemented the second approach with multiple translators, which can translate

cP systems into certain modelling languages, and invoke existing formal veri�ers

in the backend to get veri�cation results. To properly represent cP models in the

tool, a corresponding domain-speci�c language (DSL) for cP systems was pro-

posed. The implementation of translators follows the mapping guidelines that are

proposed in Chapter 4.

In addition to using existing formal veri�ers, we designed and implemented the

third approach of a cP system-speci�c simulation and formal veri�cation frame-

work, namely cPV. cPV includes functionalities such as language parsing, system

85

86 cPV � a Formal Veri�cation Framework for cP Systems

simulation, veri�cation algorithms, reduction techniques, counterexample gener-

ation, and di�erent display options including a graphical user interface (GUI).

Several important cP system properties including deadlockfreeness, con�uence,

termination, determinism, and goal reachability can be veri�ed in cPV1.

The chapter is structured as follows. Section 6.1 introduces the Python soft-

ware tool, which can achieve fully automated cP system veri�cation using existing

formal veri�ers. Section 6.2 presents the design and implementation of cPV. Sec-

tion 6.3 concludes the chapter and discusses its contributions.

6.1 Automatically verifying ground cP systems using

PAT3 and ProB

Manually verifying cP systems using existing formal tools requires in-depth under-

standing of formal veri�cation techniques. This actually prevents many membrane

computing experts from successfully applying formal veri�cation to their cP mod-

els. To solve this issue, we implemented a software tool that is integrated with

multiple existing formal veri�ers that can automatically verify certain cP systems

without human intervention.

6.1.1 cPVJ � a DSL for cP systems

In order to represent cP systems in computers, we de�ned a DSL named cPV-

JSON (cPVJ for short) by extending cP systems' syntax, this is fully supported

by our implementations. Major di�erences between cPVJ and cP systems' syntax

include:

� Delimiters in terms such as commas and whitespaces, which have frequently

been accepted in previous cP studies, are not supported in cPVJ. For exam-

ple, f(g(a), b) and f(g(a) b) in cPVJ must be written as f(g(a)b).

� cPVJ supports natural numbers rather than the symbol 1. For example,

a(1), b(11), and c(17) need to be written as a(1), b(2), and c(7) in cPVJ.

� cPVJ does not support the use of superscripts or subscripts in terms. For

example, the term f(a2b3) needs to be written as f(aabbb).

1The implementations mentioned above can be found in the project https://github.
com/YezhouLiu/cP-Verifier.

https://github.com/YezhouLiu/cP-Verifier
https://github.com/YezhouLiu/cP-Verifier

Automatically verifying ground cP systems using PAT3 and ProB 87

� States in cPVJ can be written as any string beginning with the letter �s'.

Furthermore, as a convention, using �s� with a natural number to represent

states is highly recommended, for example, �s0�, �s1�, or �s2�.

� Underscores are not supported in cPVJ, variables can only be represented as

uppercase letters. Using the variable �A� to represent anonymous variables

is suggested.

� The symbol λ is not supported in cPVJ. However, a label with a pair of

empty parentheses can be used to represent an empty labelled multiset,

such as f() or g().

� In cPVJ, a optional �name� �eld is added for each cP system to describe its

behaviours, this can be an arbitrary string.

A cP system in cPVJ is represented as a JSON object with four items (key-

value pairs), these are �terms�, �state�, �ruleset� and �name�.

The item �terms� stores a dictionary, which describes the system terms of a

cP system and their multiplicities. Suppose a cP system has four system terms:

a, b(13), b(13), and f(g(1)k(1)), these would be represented as "terms": {"a": 1,

"b(3)": 2, "f(g(1)k(1))"}. Similar to cP systems' syntax, the order of terms and

their subterms are irrelevant.

The item �ruleset� stores the rules of a cP system. A rule with the application

model exactly-once is written as lhs − > 1 rhs, and a max-parallel rule is written

as lhs − > + rhs. Note that the application models are not written as subscripts

and there is no whitespace between the arrow (− >) and �1� or �+�. States, terms,

arrows with application models (− > 1 or − > +), and the promoter symbol (|)
in a rule need to be seperated by whitespaces, for example, s1 a(XY1) − > + s1

a(Y1) | a(X).
A cPVJ example is shown in Fig. 6.1, which describes a cP system that can �nd

the greatest common divisor (GCD) of the two natural numbers 144 and 88. The

cP system is named as �GCD cP system�, and it starts at state s1, contains two sys-

tem terms a(1512) and a(1144), and has two rules: s1 a(XY 1) →+ s1 a(Y 1) | a(X)

and s1 a(X) a(X) →1 s2 b(X). Note that the order of rules in a cP system

matters � as mentioned, rules in cP systems are sequentially considered in the

top�down order.

88 cPV � a Formal Veri�cation Framework for cP Systems

{"ruleset": ["s1 a(XY1) =>+ s1 a(Y1) | a(X)",
"s1 a(X) a(X) =>1 s2 b(X)"],
"terms": {"a(512)": 1, "a(144)": 1},
"state": "s1",
"name": "GCD cP system"}

Figure 6.1: A cPVJ example of a cP system which describes the Euclidean
algorithm

6.1.2 An internal representation of cP systems

In having cP systems described in cPVJ, our tool can parse them into internal

representations. Several object classes are implemented to represent and process

cP systems, these include CPSystem, Term, and Rule (Fig. 6.2).

Figure 6.2: Object classes for internally modelling cP systems

In the implementation, atoms and variables in cP systems are de�ned as strings

such as �a� and �X �. The class Term is used to represent compound terms, this

is recursively de�ned. Four member variables are de�ned in Term, these are label,

atoms, variables, and subterms. Multisets of terms are de�ned as dictionaries of

Term objects.

The class CPSystem is used to represent cP system con�gurations, this includes

several member variables that describe the system's name, state, system terms,

rules, and some other tokens such as is_committed and detail_level.

Rule objects are used to represent cP system rules, this includes six member

variables including l_state (left state), r_state (right state), lhs, rhs, pmt (pro-

moters), and model (application model).

Automatically verifying ground cP systems using PAT3 and ProB 89

For cP systems described in cPVJ, several parsers including SystemParser,

TermParser, and RuleParser are implemented. These can parse a cPVJ object

into a CPSystem object that contains a number of Term and Rule objects.

In addition to member variables, each class contains a rich set of methods,

which are used to validate cP systems, simulate their behaviours, and perform

formal veri�cation.

6.1.3 B-translator

To automatically verify cP systems using ProB, following the transformation

guideline shown in Table 4.2, we implemented a B-translator, which can trans-

late certain cP systems from internal representations (mentioned in the above

section) into B machines. B machines that are built by the B-translator consist of

the following components:

� Machine headers to specify cP systems' names.

� Machine sections which include VARIABLES, INVARIANT, and INITIAL-

ISATION.

� Operations to represent cP system rules.

The B-translator works for all cP systems that contain ground rules (similar

to classical P systems). The machine name can be obtained from the cP system's

name. Terms of the cP system will be collected and translated into variables in B.

For a term variable, the B-translator will also generate an invariant clause to guar-

antee its multiplicity is non-negative. After collecting all terms in the cP system,

the B-translator will instantiate all the terms following their multiplicities.

For cP system rules, each rule is translated into an operation, with the name

�r� plus an integer identi�er. The state and lhs term check of the rules are written

as preconditions (in PRE-clauses) of the operation. State change, term production,

and term consumption are written in THEN clauses.

The core function of the B-translator (cPtoB) is to generate the string content

of a B-machine(Fig. 6.3). Another function named CreateBFile is implemented to

transform the string content into a B-machine with a �.mch� extension.

An example of a B-machine automatically generated by the B-translator is

shown in Fig. 6.4. The B-machine represents a cP system (at s1) named �simplecp�,

which contains 10 copies of term a and has two rules s1 a2 →1 s1 b and s1 b
2 →1

s1 c d
2.

90 cPV � a Formal Veri�cation Framework for cP Systems

def cPtoB(str_ruleset, system_terms, system_state, system_name):
atoms = set()
ruleset = []
for str_rule in str_ruleset:
rule = ParseRule(str_rule)
ruleset.append(rule)
for a1 in rule.LHS(): atoms.add(a1)
for a2 in rule.RHS(): atoms.add(a2)
for a3 in rule.PMT(): atoms.add(a3)

B_�le = 'MACHINE ' + system_name + '\nVARIABLES state'
for ch in atoms: B_�le += ',' + ch
B_�le += '\nINVARIANT state >= 0'
for ch in atoms: B_�le += ' & ' + ch + ' >= 0'
B_�le += '\nINITIALISATION state := ' + system_state[1:]
for ch in atoms:
if ch in system_terms: B_�le += '; ' + ch + ' := ' + str(system_terms[ch])
else: B_�le += '; ' + ch + ' := 0'

B_�le += '\nOPERATIONS\n'
i = 1
for rule in ruleset:
B_�le += 'r' + str(i) + ' = PRE state = ' + rule.LState()[1:]
LP = lnmu.MultisetUnion(rule.LHS(), rule.PMT())
for atom in LP:
B_�le += ' & ' + atom + ' >= ' + str(LP[atom])

B_�le += ' THEN '
for atom in rule.LHS():
B_�le += atom + ':=' + atom + '=' + str(rule.LHS()[atom]) + ';'

for atom in rule.RHS():
B_�le += atom + ':=' + atom + '+' + str(rule.RHS()[atom]) + ';'

B_�le += 'state := ' + rule.RState()[1:] + ' END;\n'
i += 1

B_�le = B_�le[:=2]
B_�le += '\nEND'
return B_�le

Figure 6.3 The core function of the B-translator

MACHINE simplecp
VARIABLES state,d,b,a,c
INVARIANT state >= 0 & d >= 0 & b >= 0 & a >= 0 & c >= 0
INITIALISATION state := 1; d := 0; b := 0; a := 10; c := 0
OPERATIONS
r1 = PRE state = 1 & a >= 2 THEN a := a = 2; b := b + 1;
state := 1 END;

r2 = PRE state = 1 & b >= 2 THEN b := b = 2; c := c + 1;
d := d + 2; state := 1 END

END

Figure 6.4 An example of a B-machine generated by the B-translator

Automatically verifying ground cP systems using PAT3 and ProB 91

As discussed in Chapter 2, rules in cP systems are sequentially considered fol-

lowing a weak-priority order. If there exist multiple rules that commit to the same

target state, they can be applied in the same step. However, in ProB, operations

(cP system rules) will be considered independently. Thus, cP system properties

related to number of steps cannot be properly veri�ed via this approach.

Several veri�cation functions such as ProBMC, ProBMCCustom, ProBM-

CBreathFirst, and ProBMCTimeout are implemented, these can be used to verify

a cP system's properties in di�erent manners using ProB.

6.1.4 CSP-translator

Similar to the B-translator, we implemented a CSP-translator following the trans-

formation guideline shown in Table 4.1, which can translate ground cP systems

to CSP#. As mentioned, CSP# is a language extension of CSP which supports

shared variables, asynchronous communication channels and event associated pro-

grams.

CSP# code generated by the CSP-translator consists of global variables and

processes. Here each global variable represents a ground term or state, and each

process is used to model a rule. Names of cP systems will be written as comments.

A token named applied is used in the CSP# code to simulate the cP system

rule applications. If a rule is succesfully applied, the system will commit to a new

state, and all other rules which commit to di�erent states will be disabled in the

same step.

Ground terms in cP systems (global variables) will be declared with the applied

token and system state, and will be initiated in a process named P0. The values

of terms indicate their multiplicities.

A process generated by the CSP-translator will be named as �r� plus an integer

identi�er corresponding to a rule's index in the cP system. In the body of a pro-

cess, both the state and lhs check will be placed in IF-clauses. Term consumption

and production, state change, and token manipulation are written as statements.

The core fuction of the CSP-translator is shown in Fig. 6.5, two extra processes

P_CHECK and P_NEXT are implemented to loop rules in the cP system.

Fig. 6.6 shows an example CSP# �le that is automatically generated by the

CSP-translator, which also describes the cP system �simplecp�. In the CSP# �le,

P0 is the entry process, assertions such as#assert P0() nonterminating or#assert

P0() deadlockfree can be used to verify the cP system's properties.

92 cPV � a Formal Veri�cation Framework for cP Systems

def cPtoCSP(str_ruleset, system_terms, system_state, system_name):
atoms = set()
ruleset = []
for str_rule in str_ruleset:
rule = ParseRule(str_rule)
ruleset.append(rule)
for a1 in rule.LHS():
atoms.add(a1)

for a2 in rule.RHS():
atoms.add(a2)

CSP_�le = '//' + system_name + '\nvar applied = false; \n'
for ch in atoms:
CSP_�le += 'var ' + ch + ';\n'

CSP_�le += 'var state = ' + system_state[1:] + ';\n\n'
CSP_�le += 'P0() = cp_init{\n'
for ch in atoms:
if ch in system_terms:
CSP_�le += ch + ' = ' + str(system_terms[ch]) + ';\n'

else:
CSP_�le += ch + ' = 0;\n'

CSP_�le += '}=> P1();\n'
i = 1
for rule in ruleset:
pn = str(i)
CSP_�le += 'P' + pn + '() = r' + pn + '{\n'
CSP_�le += 'if (state == ' + rule.LState()[1:]
for atom in rule.LHS():
CSP_�le += ' && ' + atom + ' > 0'

CSP_�le += '){\napplied = true;\n'
for atom in rule.LHS():
CSP_�le += atom + '=' +atom+ '=' +str(rule.LHS()[atom])+ ';\n'

for atom in rule.RHS():
CSP_�le += atom + '=' +atom+ '+' +str(rule.RHS()[atom])+ ';\n'

CSP_�le += 'state = ' + rule.RState()[1:] + ';\n'
if i < len(ruleset):
CSP_�le += '}\n}=> P' + str(i + 1) + '();\n'

else:
CSP_�le += '}\n}=> P_CHECK();\n'

i += 1
CSP_�le += 'P_CHECK() = if(applied == true){P_NEXT()}else{Skip};\n'
CSP_�le += 'P_NEXT() = {applied = false;}=> P1();\n'
return CSP_�le

Figure 6.5 The core function of the CSP-translator

Di�erent from the code generated by the B-translator, in using the applied

token, PAT3 can simulate cP systems in a desired way. Thus, cP system properties

related to number of steps can be properly veri�ed in PAT3.

Multiple veri�cation functions such as PAT3MC and PAT3MCCustom are

included in the implementation. These can be used to verify prede�ned system

properties and custom LTL or CTL properties.

Automatically verifying ground cP systems using PAT3 and ProB 93

//simplecp
var applied = false;
var b;
var d;
var a;
var c;
var state = 1;

P0() = cp_init{
b = 0;
d = 0;
a = 10;
c = 0;

}=> P1();
P1() = r1{
if (state == 1 && a > 0){
applied = true;
a = a = 2;
b = b + 1;
state = 1;

}
}=> P2();

P2() = r2{
if (state == 1 && b > 0){
applied = true;
b = b = 2;
c = c + 1;
d = d + 2;
state = 1;

}
}=> P_CHECK();

P_CHECK() = if(applied == true){P_NEXT()} else {Skip};

P_NEXT() = {applied = false;}=> P1();

Figure 6.6 An example CSP# �le generated by the CSP-translator

6.1.5 Connecting to back-end veri�ers

The model checkers ProB and PAT3 are integrated in our tool. Files generated by

the B-translator or CSP-translator can be directly sent to ProB and PAT3, and

the veri�cation results can be obtained by running the two model checkers at the

back-end.

To use ProB as a back-end veri�er, a ProB client with version 1.10.x or higher

needs to be installed and con�gured as an environment variable of the operating

system. For each veri�cation task, a subprocess will be created to run the exe-

cutable command probcli. Suppose veri�cation commands are collected and stored

94 cPV � a Formal Veri�cation Framework for cP Systems

in a list object prob_commands, the following line of code could then be used to

obtain the ProB veri�cation results of a cP system:

result = subprocess.run(prob_commands, stdout=subprocess.PIPE)

In the implementation, several frequently-checked properties including dead-

lockfreeness, invariant violations and new errors can be quickly veri�ed using the

ProBMC function. Custom properties can be checked via the ProBMCCustom

function, this function collects custom commands, parameters, and other veri�ca-

tion options from users and passes them onto ProB. The veri�cation result will be

formatted, displayed, and output as a �le named �prob_veri�cation_result.txt�.

Suppose there a cP system (at s1) named �simplecp2� that has 100 copies of

term a, 90 copies of b, and two rules R1 : s1 a3 b →1 s1 b and R2 :s1 b →1 s1 a.

The result of verifying �simplecp2' using ProBMC is shown in Fig. 6.7. In the

example, a deadlock is detected after applying the rule R2.

CompletedProcess(args=['probcli', 'simplecp2.mch'],
returncode=0, stdout=b'
Deadlock reached after 154 steps (after r2).
(state=1 & a=1 & b=0)
% Runtime for =execute: 78 ms (with gc: 78 ms, walltime: 82 ms);
time since start: 3901 ms')

Figure 6.7 The result of verifying the deadlockfree property of a cP system in ProB

To automately verify cP systems using PAT3, a console version of PAT3 (ver-

sion 3.5 or higher) needs to be installed and properly con�gured. Similar to the

ProB approach, a subprocess will be created for each veri�cation task.

Four frequently-checked properties including deadlockfreeness, termination, di-

vergencefreeness, and determinism are prede�ned in the PAT3MC function, which

can be directly veri�ed. Custom properties can be speci�ed and veri�ed with the

PAT3MCCustom function. By default, PAT.Console.exe will run in verbose mode

in PAT3MC and PAT3MCCustom. The following line of code can be used to obtain

the PAT3 veri�cation results of a cP system. This will be formatted, displayed,

and output as a �le named �pat3_veri�cation_result.txt�.

result = subprocess.run(['PAT3.Console.exe', '=csp', '=v', �le_path,

output_path], stdout=subprocess.PIPE)

An example of the veri�cation result of �simplecp2� using PAT3 is shown in

Fig. 6.8, this shows that �simplecp2� is terminating.

Automatically verifying ground cP systems using PAT3 and ProB 95

Assertion: P0() nonterminating
********Veri�cation Result********
The Assertion (P0() nonterminating) is NOT valid.
The following trace leads to a terminating situation.
<init => cp_init => r1 => r2 => [if((applied == true))]
... => r1 => r2 => ... => terminate>
********Veri�cation Setting********
Admissible Behavior: All
Search Engine: First Witness Trace using Depth First Search
System Abstraction: False
********Veri�cation Statistics********
Visited States:365
Total Transitions:365
Time Used:0.0256232s
Estimated Memory Used:9019.608KB

Figure 6.8 The result of verifying the terminating property of a cP system in ProB

6.1.6 Discussion

cP systems can be veri�ed using di�erent formal tools. However, it is often time-

consuming for cP system experts to learn di�erent third-party formal veri�cation

tools and their corresponding language syntaxes. To properly model a cP system

in a general purpose veri�cation tool is also non-trivial. The tool introduced in

this section alleviates the aforementioned issues by providing a one-stop solution

for cP system formal veri�cation. It also demonstrates that the transformation

guidelines proposed in Section 4 and 5 are feasible.

By having the translators, cP systems can be automatically translated from

cPVJ to di�erent modelling languages including B and CSP#. The models gener-

ated by the translators can be automatically veri�ed by back-end veri�ers. Users

can verify cP systems' properties directly without spending too much time learning

the grammar syntaxes of back-end veri�ers' modelling languages.

In addition to model checkers, a Gallina-translator (Appendix A) is also in-

cluded in the tool, this can translate cPVJ �les to Gallina (following the mapping

guideline introduced in Chatper 5). By having the cP-Coq library properly in-

stalled and con�gured, �les generated by the Gallina-translator can be veri�ed

in Coq. Since Coq is an interactive proof assitant, the veri�cation tasks (proof

obligations) need to be speci�ed and proven manually.

A major challenge of using existing general purpose formal veri�cation tools to

verify cP systems is that existing formal veri�ers are usually insu�cient for fully

modelling cP systems. This is due to the lack of language features. For example,

ProB requires all deferred sets to be given a �nite cardinality, and integers can only

96 cPV � a Formal Veri�cation Framework for cP Systems

be enumerated within MININT to MAXINT. Data structures such as trees are

only supported by the String type. CSP# does not support generic containers,

only integer arrays can be used to model terms. Additionally, compound terms

can only be indirectly modelled using multiple integer arrays. Other limitations of

the approach include: 1) cP systems are highly parallel and distributed, thus to

manually describe and specify some of their properties in LTL or CTL could be

time-consuming or error-prone; 2) the one-way uni�cation supported by cP system

rules is extremely hard to totally represent in existing tools.

To solve the issues mentioned above, we designed and implemented a

cP system-speci�c formal veri�er named cPV. This can verify several safety and

fairness properties of cP systems. In the next subsection, we will introduce the

design and implementation of cPV.

6.2 cPV � a simulation and formal veri�cation

framework for cP systems

cPV is an open-source cP system simulation and formal veri�cation framework in

Python. It includes functionalities such as language parsing, system simulation,

veri�cation algorithms, reduction techniques, counterexample generation, and dif-

ferent display options including a graphical user interface (GUI). For valid cP sys-

tems, their properties including deadlockfreeness, con�uence, termination, deter-

minism, and goal reachability can be veri�ed in cPV.

6.2.1 Overall architecture

cPV is highly modularised, it contains several independent and interchangeable

modules. The overall design of cPV is shown in Fig. 6.9.

cPV accepts cPVJ as its data input language. Having a proper cP system

written as a cPVJ �le means that the parser module in cPV can interpret it and

cooperate with the system module to produce an internal represtation, then send

it to the simulation or veri�cation module. Both the simulation and veri�cation

module contains multiple submodules including engines and algorithm implem-

tations. By performing computing on the internal represtation, the simulation or

veri�cation results can be obtained, this can be displayed by the display engine.

The object classes CPSystem, Term, and Rule introduced in the previous sec-

tion are included in the system module of cPV. Labelled nested multisets in cP sys-

tems are implemented by nested hybrid dictionaries. A set of comparators and

cPV � a simulation and formal veri�cation framework for cP systems 97

Figure 6.9: The design of cPV

hash functions are implemented for each class to make it a valid key for dictio-

naries. Although multisets are unordered theoretically, cPV continuously sorts all

the dictionaries by keys to �gure out identical terms and reduce the statespace.

The parser module in cPV contains several parsing, translating, and validation

functions. At the beginning of the simulation or veri�cation, valid cPVJ �les will be

transformed into a CPSystem object, then they will be passed onto the simulation

or the veri�cation module.

For simulation rule applications, a core algorithm is LNMU, this was intro-

duced in Chapter 3. In the uni�cation engine, LNMU is implemented in a sequen-

tial way, which can e�ciently �nd all the uni�ers between two multisets of terms.

As one of the most important components of cPV, the uni�cation engine is shared

by both the simulation and veri�cation modules.

In the simulation module, computation needs such as rule validation, term

validation, the weak priority order of rules, virtual ground rules, nondeterministic

rule application, virtual product membrane, and application models are handled

by the computing engine. Additionally, an evaluation engine is implemented to

track the simulation information such as running time and memory usage.

cP systems will be transformed into labelled transition systems (LTS) in the

veri�cation module. A fundamental data structure for cP system veri�cation is

CPNode, which includes terms of the cP systems, state, a set of labels, and a list

of visted nodes (trace). Since rules in cP systems cannot be dynamically changed,

the veri�cation engine only stores one copy of the rules, rather than repeatedly

storing them in every node.

98 cPV � a Formal Veri�cation Framework for cP Systems

Transitions in the LTS are (potential) virtual ground rule applications. Com-

pared to the simulation engine which randomly selects a group of uni�ers for

nondeterministic rules, the veri�cation engine considers all the compatible uni�er

groups. Several search methods are implemented in cPV to traverse its statespace,

which includes breadth-�rst search (BFS), depth-�rst search (DFS), and heuristic

search.

Multiple important properties of cP systems are prede�ned in the veri�cation

module, this includes both safety and liveness properties such as deadlockfreeness,

the Church�Rosser property (con�uence), termination, determinism, and reacha-

bility properties. By specifying the expected terminating states of a cP system,

deadlocks (nodes without outgoing edges) can be detected by cPV. As nondeter-

ministic computing models, the Church�Rosser property is expected to be held by

most cP systems. cPV performs the con�uence check by comparing all the possible

halting con�gurations of a cP system. Some cP systems may be non-terminating,

this can be identi�ed by setting a running time/steps limit. A uni�er check can

be used to verify if a cP system is deterministic. Reachability properties of states

and terms are important for some cP models, which can be checked by searching

the corresponding statespace.

Basic veri�cation and statespace reduction algorithms are implemented in the

veri�cation module. cP systems can work both in a synchronized and asynchro-

nized manner. By applying reduction techniques, the orderings in interleaved tran-

sitions will be ignored. Similar to several existing formal veri�ers, the statespace

of cPV will be generated on the �y.

For instance, to verify a cP system, if a safety property is not held by a

con�guration, the counterexample generator will save the corresponding node and

its trace, then send them to the display module. Several detail levels are de�ned to

display the full or compressed simulation/veri�cation information. A simple GUI

for windows is provided, this is implemented using the PyQt5 library.

Several example �les including ADD, SUB, MUL, GCD, the subset sum, and

Hamiltonian cycle are provided in cPV. Users can either modify these cP models

to achieve di�erent computation tasks, or simply use them to get familiar with

the syntax of cPVJ.

As an extensible framework, multiple interfaces are provided in cPV, new

features can also be added into corresponding modules as required.

cPV � a simulation and formal veri�cation framework for cP systems 99

6.2.2 The uni�cation engine

To simulate rule applications in cP systems, one of the most challenging tasks is

to handle the cP-style uni�cation. In the uni�cation engine of cPV, the LNMU

algorithm is implemented in an optimised way (Fig. 6.10).

#G: all equations; S: one subtitution; SS: all substitutions.
DEF LNMU(G, S, SS):
FOR equation IN G:
equation = GROUND(equation)
IF FAIL1(equation) OR FAIL2(equation):
return False

IF DELETE(equation):
G = G \ equation

IF len(G) == 0: #success, all the equations are solved
return True

#handle one equation in G
(mv, mg) = G[0]
IF HAS_FUNCTOR(mv): #apply FUNCTOR
succ = False
FOR t1 IN mv:
FOR t2 IN mg:
IF label(t1) == label(t2) AND mv[t1] <= mg[t2]:
(mv',mg') = (mv,mg)
mg'[t2] == mv[t1]
G1 = [(content(t1), content(t2))] + G[1:]
G1.append((mv', mg'))
LNMU(G1, S, SS)
succ = True

break #handle one compound term at a time
return succ

ELSE: #apply VARIABLE
FOR v1 IN mv:
all_comb = []
FOR t2 IN mg:
IF mg[t2] >= mv[v1]:
multiplicity = int(mg[t2] / mv[v1])
term2_mappings = []
FOR i = 0; i <= multiplicity; i++:
bag = {}
if i > 0:
bag[t2] = i

term2_mappings.append(bag)
all_comb.append(term2_mappings)

expanded = expand_combinations(all_comb)
FOR binding1 IN expanded:
S' = S + {var => binding1}
G' = []
succ = False
FOR equation IN G:
lhs = apply_binding(equation[0], S')
rhs = equation[1]
G'.append((lhs, rhs))

IF (LNMU(G', S1, SS)):
succ = True

return succ

Figure 6.10: Pseudocode of the LNMU implementation

100 cPV � a Formal Veri�cation Framework for cP Systems

By properly selecting the order of operations in LNMU (which are unordered

and nondeterministic), cPV can �nd all the uni�ers of nested multisets e�ciently.

For each equation in set G, cPV �rst applies the operation GROUND: Gp =

G ∪ {mmv = mmg} =⇒ G′
p = G ∪ {mv = mg}, which can eliminate the shared

ground multiset m from both the lhs and rhs of the equation. For instance, by

applying GROUND, the equation abXf(Y) = abcf(a)f(b) will be reduced to

Xf(Y) = cf(a)f(b). Equations that satisfy DELETE: Gp = G ∪ {λ = λ} =⇒
G′

p = G will be deleted from G.

After reducing all the equations in G, cPV checks if there exists any equation

that satis�es the operation FAIL1: Gp = G ∪ {mmv = mg} =⇒⊥, m ̸⊂ mg or

FAIL2: Gp = G ∪ {f(m′
v)mv = mg} =⇒⊥, f /∈ φ(mg). Here φ(mg) is the set

which contains all the functors of mg's �rst-level compound terms, for example,

φ(a1f(b)g(h(c))) = {f, g} . If FAIL1 or FAIL2 is applicable, which means the two

multisets are not uni�able, cPV terminates the uni�cation process immediately,

and generate an empty output.

For equations which contain compound terms, the operation FUNCTOR:

Gp = G ∪ {f(m′
v)mv = f(m′

g)mg} =⇒ G′
p = G ∪ {mv = mg} ∪ {m′

v = m′
g} will

be applied. Compared to LNMU's design, where FUNCTOR is nondeterministi-

cally applied once, cPV applies FUNCTOR multiple times to get all possible new

equations. For example, to solve the equation f(X)Y = f(a)f(b)f(c), all possible

bindings for the variable X including X 7→ a, X 7→ b, and X 7→ c will be found by

cPV. Here corresponding bindings for Y are Y 7→ f(b)f(c), Y 7→ f(a)f(c), and

Y 7→ f(a)f(b), respectively.

For equations that do not contain compound terms, cPV applies VARIABLE:

Gp = G ∪ {Xnmv = mnmg} =⇒ G′
p = GϑX ∪ {mvϑX = mg} ∪ ϑX , ϑX = {X 7→

m}, X ∈ V, n ∈ N∗. Similar to the implementation of FUNCTOR, all possible

bindings of each variable will be found.

The LNMU implementation is used in both the simulation and veri�cation

module, and is closely linked to several system properties. For example, a cP sys-

tem is deterministic if and only if one uni�er at most can be found for each rule

application.

If a cP system is nondeterministic, all the uni�ers found by cPV will be further

computed until the system halts. If only one halting con�guration can be found,

the system is said to be con�uent; otherwise, it is NOT con�uent.

In having the optimised LNMU implementation, cPV can completely simulate

rule applications of cP systems. Most existing cP systems contain well-formed

cPV � a simulation and formal veri�cation framework for cP systems 101

rules (de�ned in Section 3.4), which means cPV can unify rules against system

terms in linear time using limited memory.

In addition to the uni�cation algorithm implementation, other necessary func-

tions such as binding application, multiset manipulation, and comparators are also

included in the uni�cation engine. These functions are also frequently called by

other modules of cPV.

6.2.3 The simulation module

The simulation module contains two major engines and a set of supporting func-

tions. cP systems' rule application and the validation of CPSystem, Term, and

Rule objects are performed in the computing engine. System information collec-

tion, such as running time and memory usage tracking, is done by the evaluation

engine.

Fig. 6.11 shows the core function of the simulation engine, which is used to

perform rule application. The function APPLY_RULE is recursively de�ned. To

apply a rule it will �rst perform the state check, if the rule's left state is di�erent

from the cP system's state, the rule application will be terminated.

If before applying a rule, the system is already committed to a target state,

APPLY_RULE will compare the rule's right state with the committed state. The

rule will only be applied if its right state is identical to the committed state.

After passing the state check, if a rule does not contain any lhs terms or

promoters, the rule will be directly applied and the rhs terms of the rule will be

produced in the product membrane, since no uni�cation is needed.

If the rule is ground, APPLY_RULE will perform the term check and apply

it. A rule in the exactly-once model will be applied only once, and max-parallel

rules will be applied as many times as possible.

For variable rules, APPLY_RULE will call LNMU function from the uni�ca-

tion engine to get all valid uni�ers, it will then handle them in di�erent application

models. If multiple groups of compatible uni�ers exist, following the nondetermin-

ism of cP systems, only one group will be randomly selected.

In the code, the function APPLY_G_RULES is a stateless and looping version

of APPLY_RULE, which is de�ned in Fig. 6.12. APPLY_G_RULES is only used

to handle the ground rules that are generated by a group of compatible uni�ers.

In having the simulation module implemented, all valid cP systems can be ef-

fectively simulated in cPV. Di�erent from modelling and simulating cP systems in

102 cPV � a Formal Veri�cation Framework for cP Systems

DEF APPLY_RULE(cP_system, r1, is_committed = False):
IF r1.LState() != cP_system.state: return False
ELIF is_committed AND r1.RState() != cP_system.committed_state:
return False

ELIF len(r1.LHS()) == 0 AND len(r1.PMT()) == 0:
cP_system.ProduceMultiset(r1.RHS())
return True

ELIF r1.IsGround():
IF r1.Model() == '1':
ms_to_check = lnmu.MultisetUnion(r1.PMT(), r1.LHS())
IF lnmu.MultisetIn(ms_to_check, cP_system.terms):
cP_system.ConsumeMultiset(r1.LHS())
cP_system.ProduceMultiset(r1.RHS())
return True

ELSE: return False
ELSE: #model = '+'
ms_to_check = lnmu.MultisetUnion(r1.PMT(), r1.LHS())
ms_to_check_2 = deepcopy(ms_to_check)
mult = 1
WHILE lnmu.MultisetIn(ms_to_check_2, cP_system.terms) DO:
mult += 1
ms_to_check_2 = lnmu.MultisetTimes(ms_to_check, mult)

IF mult == 1: return False
ELSE: mult == 1
cP_system.ConsumeMultiset(lnmu.MultisetTimes(r1.LHS(), mult))
cP_system.ProduceMultiset(lnmu.MultisetTimes(r1.RHS(), mult))
return True

ELIF not is_committed
OR (is_committed AND r1.RState() == cP_system.committed_state):

ms_to_process = lnmu.MultisetUnion(r1.PMT(), r1.LHS())
G = []
G.append((ms_to_process, cP_system.terms, 'in'))
SS = [] #the set of uni�ers
S = {}
lnmu.LNMU(G, S, SS)
IF len(SS) == 0: return False
ELIF: r1.Model() == '1': #exact=once model
num_g_rules = len(SS)
rd_rule = rd.randint(0, num_g_rules = 1)
uni�er = SS[rd_rule]
lhs2 = lnmu.ApplyBindingMultiset(r1.LHS(), uni�er)
rhs2 = lnmu.ApplyBindingMultiset(r1.RHS(), uni�er)
pmt2 = lnmu.ApplyBindingMultiset(r1.PMT(), uni�er)
r2 = Rule(r1.LState(), r1.RState(), '1') #a uni�ed, ground rule
r2.SetLHS(lhs2)
r2.SetRHS(rhs2)
r2.SetPMT(pmt2)
IF r2.IsGround(): return APPLY_RULE(cP_system, r2)
ELSE: return False

ELSE: #max=parallel model
rd.shu�e(SS) #no need to keep original SS
ruleset = []
FOR uni�er IN SS:
lhs2 = lnmu.ApplyBindingMultiset(r1.LHS(), uni�er)
rhs2 = lnmu.ApplyBindingMultiset(r1.RHS(), uni�er)
pmt2 = lnmu.ApplyBindingMultiset(r1.PMT(), uni�er)
r2 = Rule(r1.LState(), r1.RState(), '+') #a uni�ed, ground rule
r2.SetLHS(lhs2)
r2.SetRHS(rhs2)
r2.SetPMT(pmt2)
IF r2.IsGround(): ruleset.append(r2)
return APPLY_G_RULES(cP_system, ruleset)

Figure 6.11: The core function to perform rule application in the computing
engine

third-party tools which requires human intervention, cPV can perform cP system

simulation fully automatically.

cPV � a simulation and formal veri�cation framework for cP systems 103

DEF APPLY_G_RULES(cP_system, ruleset):
succ = False
FOR r1 IN ruleset:
IF APPLY_RULE(cP_system, r1): succ = True

return succ

Figure 6.12: The function APPLY_G_RULES

6.2.4 The veri�cation module

cP systems are modelled as LTS. However in cPV, the labels in the LTS models

are not atomic � string, list, and even nested labelled multisets are used as labels

of CPNode objects. This design guarantees the information of cP con�gurations

are completely kept, while also creating a huge number of potential branches and

a large statespace, which exactly describes how computations are performed in

cP systems.

Following the design of cP systems, the trasitions in the LTS models are virtual

ground rule application attempts. A generic rule in cP systems can be uni�ed to an

arbitrary number of virtual ground rules depending on the terms in the system. In

the max-parallel model, a group of compatible virtual ground rules will be applied

sequentially, the order of applying these virtual ground rules is unimportant. To

reduce the size of the statespace, an algorithm which is inspired by partial order

reduction is implemented in the veri�cation module.

6.2.4.1 The core veri�cation algorithm of cPV

cP systems can either be used to perform sequential computations, or describe par-

allel systems. Several safety and liveness properties are prede�ned in cPV, these

can be veri�ed using corresponding veri�cation algorithms. Fig. 6.13 describes

the core veri�cation algorithm in cPV, notably checking functions for di�erent

system properties such as deadlockfreeness and goal reaches are placed in the

CHECK_HOLD() function. By using di�erent search strategies, the statespace

can be checked exhaustively. Using a node list or heap, common graph traversal

algorithms such as BFS, DFS, and heuristic search can be applied. Di�erent heuris-

tics can be implemented in the HEAPIFY() function as needed. In the actually

implementation, the function names and organisations may be slightly di�erent

from the pseudocode.

For a certain node, if the CHECK_HOLD() function returns FALSE, which

means a safety propety is not held by the node, the VERIFY() function will

104 cPV � a Formal Veri�cation Framework for cP Systems

DEF VERIFY:
c = CPNode object for the initial con�guration
node_list = [c]
WHILE NOT node_list = empty DO:
IF BFS or Heuristic search:
current_node = node_list.�rst()
ELIF DFS:
current_node = node_list.last()
node_list.pop()
IF NOT CHECK_HOLD(current_node, property):
return FALSE, current_node //counterexample with trace
ELSE:
succ = SUCCESSORS(current_node) //by performing uni�cation
FOR s IN succ:
node_list.push(s)
IF Heuristic search:
HEAPIFY(node_list)

return TRUE

DEF SUCCESSORS(node):
r = ruleset[node.next_rule]
successors = []
STATE_CHECK()
uni�ers = LNMU(r.lhs union r.promoters, node.terms)
cu = COMPATIBLE_UNIFIERS(uni�ers)
cu = REDUCTION(cu)
FOR u IN cu:
v_g_rule = APPLY_BINDINGS(r, u)
succ_node = APPLY_RULE(v_g_rule, node)
successors.push(succ_node)
return successors

Figure 6.13: The core veri�cation algorithm in cPV

terminate and return FALSE with a counterexample. Otherwise, after the entire

statespace has been searched, the VERIFY() function will return TRUE, which

indicates the property is held by the system. For example, to detect deadlocks, in

the CHECK_HOLD() function, cPV checks if there exists any rule that can be

applied to the current node (cP system con�guration). If none of the rules can be

successfully uni�ed against system terms in the node or match the node's cP state

� which indicates a node without any outgoing edge in the LTS � cPV will collect

the node as a counterexample and return a deadlock.

Similar to safety properties, liveness properties can also be checked exhaus-

tively. Prede�ned properties in cPV include the veri�cation needs mentioned in

previous cP system studies, furthermore, new properties can also be de�ned and

added to the framework easily. For example, if we expect that a cP system always

contains a term f(1), we can add a few lines of code in the CHECK_HOLD()

cPV � a simulation and formal veri�cation framework for cP systems 105

function. Additionally, if a node's system terms contains f(1), cPV will go to

check the next node; otherwise, it will collect the node as a counterexample and

return the veri�cation result.

6.2.4.2 Reducing the statespace of cP systems

As one of the P variants, cP systems trade memory for time. Many cP systems

can generate exponential terms in each computational step, and during the com-

putation, each rule application may generate exponential groups of uni�ers.

For example, to apply a simple max-parallel rule s1 a(X)a(Y) →+ s2 b(XY)

with four terms a(c), a(d), a(e), a(f), the system will �rst unify the rule

against terms where C2
4 ground rules can be obtained: s1 a(c)a(d) →+ s2 b(cd),

s1 a(c)a(e) →+ s2 b(ce), s1 a(c)a(f) →+ s2 b(cf), s1 a(d)a(e) →+ s2 b(de),

s1 a(d)a(f) →+ s2 b(df), and s1 a(e)a(f) →+ s2 b(ef). Following this a compati-

ble group of the ground rules will be randomly selected and applied.

A naive approach to �nding all the groups of compatible uni�ers can be di-

rectly obtained by following the design of cP systems. Suppose that for a rule

application, k uni�ers can be found, this means we can generate the permutations

(arrangements) of {1, 2, . . . , k} including [1, 2, . . . , k− 1, k], [1, 2, . . . , k, k− 1], . . .,

and [k, k − 1, . . . , 2, 1]. For cP system simulation, one of the arrangements will

be selected and applied; for veri�cation, all of them need to be checked. For each

arrangement of uni�ers, a group of corresponding ground rules will be applied

following the top-down priority order.

The naive approach works properly, however, its space complexity is factorial,

since P k
k = k!. In cPV, we optimised this approach by eliminating the internal

orders. When k uni�ers ϑ1, ϑ2, . . ., ϑk are applied, the order of applying the

corresponding ground rules is actually irrelevant. In other words, it is important

to know the truth that s1 a(c)a(d) →+ s2 b(cd) and a(e)a(f) →+ s2 b(ef) are

compatible and will be applied. However, we do not need to know which of them

will be applied �rst.

Thus, for each rule application, we use binary numbers to label the uni�ers:

each of them can be chosen (labelled as 1) or ignored (labelled as 0). For k uni-

�ers, we will have at most 2k groups of uni�ers. The pseudocode is shown in

Fig. 8.5. By looping all the uni�er labels from total (2k − 1) to 0, the system can

check compatible uni�ers from larger sets to smaller sets. If a set of uni�ers is

successfully applied, all of its subsets can be skipped. For example, if a set of uni-

106 cPV � a Formal Veri�cation Framework for cP Systems

�ers {ϑ1, ϑ2, ϑ3} is compatible, we do not need to recompute its subsets {ϑ1, ϑ2},
{ϑ1, ϑ3}, . . ., {ϑ3} as they must be compatible, too.

DEF MAX_PARALLEL_RULE():
total = pow(2, len(SS)) = 1
applied_uni�ers = []
FOR x IN range(total,=1,=1):
needed = True
FOR x1 IN applied_uni�ers:
IF self.IsSubset(x, x1):
needed = False
break

IF not needed: continue
...
uni�er_ids = []
position = len(SS) = 1
WHILE position >= 0:
IF x % 2 == 1: uni�er_ids.append(position)
position == 1
x = int(x / 2)

all_applied = True
FOR i IN uni�er_ids:
...
IF can_be_applied(i): apply(i)
ELSE:
all_applied = False
break

IF all_applied:
applied_uni�ers.append(x)
...

DEF ISSUBSET(child, parent):
IF parent < child: return False
ELIF parent == child: return True
IF parent % 2 == 0 and child % 2 == 1: return False
ELSE: return self.IsSubset(int(child / 2), int(parent / 2))

Figure 6.14: The statespace reduction pseudocode for rule uni�cation

In having the reduction function, for max-parallel rules, as opposed to the

original cP system design, cPV can reduce the statespace from O(n!) to O(2n).

This can drastically boost the speed of cP system veri�cation.

6.2.5 Display module

cPV includes a GUI and a set of display functions. Here the GUI was implemented

using the PyQt5 library, which has a main display window with multiple interactive

components.

The display module loads the system modules to read and write cPVJ �les,

it also loads other modules during the cP system initialization, simulation and

veri�cation.

cPV � a simulation and formal veri�cation framework for cP systems 107

The GUI provides several cP system simulation and veri�cation options, and

custom properties can be manually input via interactive textboxes.

cP systems including ADD, SUB, MUL, GCD, the subset sum, and Hamilto-

nian cycle can be quickly imported from the menu button. Users can also de�ne,

save, and load their own cP systems with custom rules using the textboxes and

menu buttoms provided by the GUI.

By selecting di�erent detail levels, cP systems' simulation and veri�cation

results will be displayed di�erently.

Fig. 6.15 shows a screenshot of cPV, this shows a veri�cation result of the

Church�Rosser property of a cP system that solves the Hamiltonian cycle prob-

lem. Since the cP system does not satisfy the Church�Rosser property, a coun-

terexample is displayed.

Figure 6.15: A cPV screenshot of verifying a cP system that solves the
Hamiltonian cycle problem

6.2.6 Summary

Di�erent from other P variants, cP systems support complex symbols and generic

rules. This signi�cantly increases its representational power, whilst also making

them more di�cult to simulate or verify. Most cP systems proposed in previous

studies were not formally veri�ed � the evaluation and veri�cation of the cP sys-

tems were often done by performing manual system simulation during case studies.

108 cPV � a Formal Veri�cation Framework for cP Systems

Our previous work (Chapter 4 and 5) introduced how to verify particular cP sys-

tems using ProB, PAT3 and Coq, however, these approaches are done manually

and require human intervention. In this section, we introduced two di�erent imple-

mentations of cP system formal veri�cation: (1) a software tool which is integrated

with existing formal tools, and (2) a cP system-speci�c simulation and veri�cation

framework (cPV).

cP systems that solve NPC problems or model parallel and/or distributed al-

gorithms are often expected to satisfy several important system properties. These

include deadlockfreeness, con�uence, termination, and goal reachability. cP sys-

tems that model parallel and/or distributed systems are expected to be deadlock-

free. For a cP system that performs sequential computing, terminal states may

occur as a natural phenomenon; thus apart from the expected terminal states,

the rest of the system still needs to be deadlockfree. Most cP systems are nonde-

terministic, to make sure they can consistently solve certain problems correctly,

furthermore, they are highly recommended to be con�uent. Similarly, to make sure

problem solving cP systems can always generate outputs, they are expected to be

terminating. All the system properties described above can be easily veri�ed in

cPV automatically.

cPV includes functionalities such as language parsing, system simulation, ver-

i�cation algorithms, reduction techniques, counterexample generation, and di�er-

ent display options including a simple GUI. As a highly modularised extensible

framework, di�erent modules in cPV are loosely coupled, new functionalities and

algorithms can be easily added to cPV to meet di�erent veri�cation requirements.

Major contributions of this chapter follow.

� The intergrated tool proves that the cP system formal veri�cation ap-

proaches and transformation guidelines proposed in our previous studies

are feasible.

� As the �rst e�ective cP system simulator and veri�er, cPV supports the

automated analysis of all valid cP systems.

� A domain speci�c language for cP systems (cPVJ) is proposed, which is fully

supported by cPV.

� cPV can be easily extended to meet di�erent veri�cation requirements.

� The entire approach introduced in this chapter can be adopted by other

veri�cation frameworks.

cPV � a simulation and formal veri�cation framework for cP systems 109

In the next chapter, we will conduct both quantitative and qualitative eval-

uations of the cPV framework, and compare it with other membrane computing

software implementations.

Chapter 7

Evaluation of cPV

Having the cPV framework implemented, we can simulate cP systems' behaviours

and verify their properties. In this section, we will �rst conduct a case study, to

illustrate the cP system modelling and simulation in cPV, and then evaluate cPV

from both functional and performance aspects.

In the case study, a cP system that solves the Hamiltonian cycle problem

(HCP) will be represented as a cPVJ �le and then will be simulated in cPV.

In the evaluation of cPV, two benchmark cP system datasets will be created

and veri�ed, these can also be used in future studies. The experiment result shows

that it is feasible to correctly verify cP systems' properties including deadlockfree-

ness, con�uence, termination, determinism, and goal reachability using cPV.

The chapter is organised as follows. Section 7.1 shows the modelling, simula-

tion, and veri�cation of a cP system in cPV; Section 7.2 introduces the evaluation

of cPV; Section 7.3 compares cPV to other P system simulation and veri�cation

implementations; and Section 7.4 summarises the chapter.

7.1 A case study

HCP is long-standing, well-known computationally hard problem, it is a special

case of the travelling salesman problem (TSP), which determines whether a Hamil-

tonian cycle exists in a given graph.

A cP system ΠHCP was proposed in [5], it consists of �ve rules, and solves HCP

in linear time (Fig. 7.1). In ΠHCP , all the vertices in a graph are represented as a

term v(v(X), v(Y), v(Z), . . .), where X, Y , and Z are unique IDs of the vertices.

An arc from vertex I to vertex J is encoded as e(f(I)t(J)), and the initial state

of the system is s1.

111

112 Evaluation of cPV

s1 v(v(R)Y) →1 s2 s(r(R)u(Y)p(h(R)p())) (R1)
s2 s(r(R)u()p(h(F)p(P))) →+ s3 z(p(h(R)p(h(F)p(P)))) | e(f(F)t(R)) (R2)
s2 →+ s2 s(r(R)u(Z)p(h(T)p(h(F)p(P)))) (R3)

| s(r(R)u(v(T)Z)p(h(F)p(P))) e(f(F)t(T))
s2 s() →+ s2 (R4)
s3 →1 s4 p′(P) | z(p(P)) (R5)

Figure 7.1: The ruleset of ΠHCP

R1 selects an arbitrary vertex R from v(v(R)Y) to become the starting point

of the cycle, and create a term s(r(R)u(Y)p(h(R)p())). The subterm u(Y) stores

the remaining unexplored vertices in the graph, and p(h(R)p()) tracks the cycle's

path so far.

The term z(p(h(R)p(h(F)p(P)))) in R2 is used to store the Hamiltonian path,

and R3 generates all the valid paths from current vertex following existing edges

e(f(F)t(R)) in the system. As max-parallel rules, all the valid paths will be gen-

erated by R2 and R3.

In each step, R4 consumes s() terms which are already expanded. R5 termi-

nates the cP system and outputs a Hamiltonian cycle. When multiple Hamiltonian

cycles can be found by the ruleset, one of them will be randomly selected. In total,

the cP system can �nd a Hamiltonian cycle of a graph in n+ 3 steps.

An example cPVJ representation of ΠHCP is shown in Fig. 7.2. In the example,

the input graph contains 6 vertices and 7 edges, which is shown in Fig. 7.3.

{"ruleset": ["s1 v(v(R)Y) =>1 s2 s(r(R)u(Y)p(h(R)p()))",
"s2 s(r(R)u()p(h(F)p(P))) =>+ s3 z(p(h(R)p(h(F)p(P)))) | e(f(F)t(R))",
"s2 =>+ s2 s(r(R)u(Z)p(h(T)p(h(F)p(P)))) |

s(r(R)u(v(T)Z)p(h(F)p(P))) e(f(F)t(T))",
"s2 s(A) =>+ s2",
"s3 =>1 s4 q(P) | z(p(P))"],
"terms": {"e(f(1)t(2))": 1, "e(f(2)t(5))": 1,
"e(f(5)t(4))": 1, "e(f(3)t(4))": 1,
"e(f(4)t(3))": 1, "e(f(3)t(6))": 1,
"e(f(6)t(1))": 1, "v(v(1)v(2)v(3)v(4)v(5)v(6))": 1},
"state": "s1",
"name": "HCP"}

Figure 7.2: A cPVJ example of the cP solution to HCP

As mentioned, in the cPVJ representation, no anonymous variable is allowed,

thus the s() in R4 is replaced by s(A). Each rule of the cP system is written

as a string object in the �eld �ruleset�, and initial system terms are stored in the

A case study 113

Figure 7.3: The input graph of the cP system

�terms� �eld. The cP system starts at s1, and a string name �HCP� is given to the

system.

By saving the example cPVJ as a JSON �le, cPV can read, simulate, and

verify it. A screenshot of simulating ΠHCP in cPV is shown in Fig. 7.4

Figure 7.4: A screenshot of simulating ΠHCP system in cPV

Since the cP system is non-deterministic, di�erent computation results can be

obtained by simulating the cP systems multiple times. In the example, a Hamil-

tonian cycle 5 → 2 → 1 → 6 → 3 → 4 → 5 is found, which is indicated by the

term q(h(5)p(h(2)p(h(1)p(h(6)p(h(3)p(h(4)p(h(5)p()))))))).

By choosing the detail level 2 in cPV, system information including con�gu-

rations, rule attempts, rule uni�cations, and the production and consumption of

114 Evaluation of cPV

terms will be tracked and displayed in cPV. In having n = 6 vertices, the system

found the Hamiltonian cycle in 9 steps, which is n+ 3.

In having speci�ed the target state s4 in cPV, it can verify the system's

deadlock property. The screenshot in Fig.7.5 shows that the system is deadlock

free. To perform simulation, only one random branch of the computation tree

needs to be expanded; and to conduct veri�cation, all possible applications of

non-deterministic rules need to be veri�ed. Thus, the running time of cP system

veri�cation is often longer than simulation.

Figure 7.5: The deadlock veri�cation result of ΠHCP

The veri�cation results of other system properties is shown in Fig.7.6. The

system is terminating, nondeterministic, and the expected halting state s4 is

eventually reached. For the Church�Rosser property, since it is not held by the

system, a counterexample is given by cPV, this includes two Hamiltonian cy-

cles starting from di�erent vertices: 1 → 2 → 5 → 4 → 3 → 6 → 1 and

2 → 5 → 4 → 3 → 6 → 1 → 2.

Throughout the case study, we can �nd that it is feasible to simulate and

verify complex cP systems such as ΠHCP using cPV. By specifying the expected

target state or goal terms, several cP system properties can be e�ectively veri�ed.

When a cP system does not hold certain properties such as the Church�Rosser

property, counterexamples will be found and displayed. In the next section, we

will introduce how to evaluate the performance of cPV.

Evaluation of cPV 115

The cP system is NOT con�uent!
Di�erent halting con�gurations can be found!

Halting con�gurations:
=======================

State: s4
Terms: ...
z(p(h(1)p(h(6)p(h(3)p(h(4)p(h(5)p(h(2)p(h(1)p())))))))): 1
=======================

State: s4
Terms: ...
z(p(h(2)p(h(1)p(h(6)p(h(3)p(h(4)p(h(5)p(h(2)p())))))))): 1

The cP system is terminating!
The cP system is nondeterministic!
The target state s4 is reachable!
The target state s4 is eventually reached!

Figure 7.6: The veri�cation result of ΠHCP (other system properties)

7.2 Evaluation of cPV

We evaluate cPV from both functional and performance aspects. cP systems are

theoretically computationally e�cient. However, in the actual implementation of

cP systems, without having unbounded memory, simulation and veri�cation can be

slow. This is due to di�erent reasons, such as generation of a large number of terms,

production of highly nested terms, or exponential uni�ers found by uni�cation

processes.

By conducting the evaluation, the following two questions will be answered:

� Can cPV e�ectively verify existing cP systems' properties including dead-

lockfreeness, con�uence, termination, determinism, and goal reachability?

� How e�ective is the performance of simulating di�erent cP systems and

verifying their properties?

Two cP system datasets are constructed to evaluate cPV. These cover di�erent

aspects of cP systems, such as cP systems that solve NPC problems, cP systems

producing highly nested terms, and cP systems which generate exponential terms

in each step.

For cP systems in each dataset, we verify several major properties that were

emphasised in multiple previous cP system studies. Most published cP systems are

designed to solve certain problems, these are usually expected to be deadlockfree,

terminating, con�uent, and able to reach the expected goal states.

116 Evaluation of cPV

7.2.1 Experiments setup

In order to answer the evaluation questions, we constructed two cP system datasets

D1 and D2, which are used for functionality and performance evaluation, respec-

tively. The two datasets include several cP systems published in previous studies,

and two cP systems which were particularly created for the evaluation.

In this study, a laptop with an Intel i7-7700HQ CPU (2.80GHZ, 2.81GHZ)

and 16G RAM will be used to conduct the evaluation.

7.2.1.1 Dataset for the functionality evaluation

The �rst dataset D1 includes the following four cP systems, which are used to

perform the functionality evaluation.

� Π1: a cP system that computes GCD of two natural numbers using only

ground rules [105].

� Π2: a cP system that computes GCD of two natural numbers using generic

rules.

� Π3: a cP system that solves SSP [4].

� Π4: ΠHCP .

In D1, Π1 computes GCD of two natural numbers, these are represented as

multiplicities of two atoms a and b, for instance, a144 and b88. The cPVJ represen-

tation of Π1 is shown in Fig. 7.7. Two max-parallel ground rules s1 ab →+ s1 b

and s1 b →+ s1 a are included in the system, these describe the Euclidean algo-

rithm. In Π1, neither compound terms nor generic rules are used. Thus, it can be

easily transformed into a traditonal P system.

{"ruleset": ["s1 a b =>+ s1 b",
"s1 b =>+ s1 a"],
"terms": {"a":144, "b":88},
"state": "s1",
"name": "GCD1"}

Figure 7.7: The cPVJ representation of Π1

Π2 shows a cP system version of the Euclidean algorithm. The cPVJ repre-

sentation of Π2 is shown in Fig. 7.8. Using the generic rules s1 a(XY 1) →1

s1 a(Y 1) | a(X) and s1 a(X) a(X) →1 s2 b(X), only two compound terms are

Evaluation of cPV 117

needed in the system. The �rst rule computes the di�erence of the two numbers,

and uses the di�erence to overwrite the larger number. The system halts when the

two numbers in the cP system are the same, then the second rule will generate

the computation result. To compute the GCD of 144 and 88, as opposed to Π1

which needs 144 copies of a and 88 copies of b in the system, Π2 only needs two

compound terms a(1144) and a(188) in its initial con�guration.

{"ruleset": ["s1 a(XY1) =>1 s1 a(Y1) | a(X)",
"s1 a(X) a(X) =>1 s2 b(X)"],
"terms": {"a(144)": 1, "a(88)": 1},
"state": "s1",
"name": "GCD2"}

Figure 7.8: The cPVJ representation of Π2

Π3 is the cP solution to SSP that is mentioned in Chapter 4. As a NPC

solution, an exponential number of terms can be generated in every step, this is

a challenge to implement the cP system in real life. Compound terms with �xed

nesting depths are used in Π3, the cPVJ representation of the cP system is shown

in Fig. 7.9.

{"ruleset": ["s0 =>1 s1 p(n(M)s()u()) | m(M)",
"s1 =>1 s2 o(X) | p(As(T)u(X)) t(T)",
"s1 =>1 s3 o() | p(An())",
"s1 =>+ s1 p(n(Z)s(SY)u(Xm(Y))) | p(n(Zm(Y))s(S)u(X))",
"s1 p(A) =>+ s1"],
"terms": {"m(m(1)m(2)m(3))":1, "t(6)":1},
"state": "s0",
"name": "SSP1"}

Figure 7.9: The cPVJ representation of Π3

Π4 is the solution to HCP (Fig. 7.2). Compound terms in Π4 can be highly

nested, which challenges the simulation and veri�cation speed of cPV. Since the

number of terms that can be generated for a complete graph is extremely large,

to evaluate cPV, we choose graphs with random edges (arcs).

7.2.1.2 Dataset for the performance evaluation

The second dataset D2 is designed for the performance evaluation of cPV, which

also includes four cP systems. D2 also includes Π3 and Π4, which are published

cP system solutions to NPC problems. The search space of SSP is O(2n), and the

worst-case search space of HCP is O(n!).

118 Evaluation of cPV

� Π3.

� Π4.

� Π5: a cP system which generates exponential terms in each step.

� Π6: a cP system which generates highly nested terms.

To evaluate the performance of cP system simulation, we choose problem sizes

n = 4, 6, 8 for Π3, and n = 3, 4, 5 for Π4. Complete graphs are considered for Π4.

To conduct the evaluation of cP system veri�cation, we choose problem sizes

n = 3, 4, 5 for both Π3 and Π4. Instead of complete graphs, randomly connected

graphs are chosen.

Π5 is a �cell division� cP system � given a natural number n, it can generate 2n

terms in n steps (Fig. 7.10). The system term a() is used to generate exponential

new terms, and b() is used to indicate the problem size. For the simulation of

Π5, we choose b = 15, 20, 25; and for the veri�cation, we choose b = 10, 15, 20.

{"ruleset": ["s1 b(X) =>1 s2 o(X) | a(XY) ",
"s1 a(X) =>+ s1 a(X1) a(X1) "],
"terms": {"a(1)":1, "b(10)":1},
"state": "s1",
"name": "EXP1"}

Figure 7.10: The cPVJ representation of Π5

Π6 can generate compound terms with arbitrary nesting depths (Fig. 7.11).

The �rst rule s1 b(X) c(X) →1 s2 o(X) terminates the computation when the

nesting depth reaches the limit b(X). Otherwise, the cP system will apply the

second rule s1 a(X) c(Y) →+ s1 a(a(X)) c(Y 1) and increase the nesting depth

by one. For the simulation of Π6, we choose b = 5, 10, 15; and for the veri�cation,

we choose b = 10, 11, 12.

{"ruleset": ["s1 b(X) c(X) =>1 s2 o(X) ",
"s1 a(X) c(Y) =>+ s1 a(a(X)) c(Y1) "],
"terms": {"a(1)":1, "c(1)":1, "b(10)":1},
"state": "s1",
"name": "NES1"}

Figure 7.11: The cPVJ representation of Π6

Given a cP system in D2, the corresponding LTS in cPV may contain a large

number of nodes depending on the system's rules. Furthermore, each node may

Evaluation of cPV 119

contain an exponential or factorial number of compound terms. By increasing

the problem sizes of the cP systems in D2, the memory usage will be increased

drastically, which is ideal for the performance evaluation.

7.2.2 Evaluation results

To perform the functionality evaluation of cPV, we verify properties of cP systems

in D1, and manually check the correctness of the experiment results.

To conduct performance evaluation, we simulate and verify cP systems in D2,

analyse the experiment results, and discuss each cP system in detail.

7.2.2.1 Functionality evaluation result

For each cP systems in D1, we choose three instances and verify their properties.

These include deadlockfreeness, con�uence, termination, determinism, and goal

reachability. Counterexamples displayed by cPV will be checked manually.

The functionality evaluation is shown in Table 7.1. Π1 describes the Euclidean

algorithm, which is expected to be terminating. The system should halts at s1

with a multiset of goal terms ax, where x is the GCD of the two input numbers.

If the two numbers are coprime, the goal term will be a. Since the system only

contains ground rules with a top-down priority order, it is deterministic. During

the computation of GCD, the system should not include any rules which may cause

a deadlock. The veri�cation results of Π1 meets our expectations, which shows that

Π1 is deadlockfree, con�uent, terminating, deterministic, and can eventually reach

the goal state.

Table 7.1: The veri�cation results of cP systems in D1

Systems deadlockfree con�uent terminating deterministic goal reachability
Π1 ✓ ✓ ✓ ✓ ✓

Π2 ✓ ✓ ✓ ✓ ✓

Π3 ✓ ✗∗ ✓ ✗ ✓

Π4 ✓ ✗∗ ✓ ✗ ✓

(*): counterexample displayed

Although Π2 uses generic rules, the system only contains two compound terms,

and the rules' uni�cation should generate unique uni�ers. Thus, the system is

expected to be deterministic. The system should halts at s2 with a goal term

o(), which indicates the GCD of the two input numbers. If the two numbers

are coprime, the goal term will be o(1). As in the description of the Euclidean

algorithm, Π2 should be terminating. For each pair of input natural numbers, there

120 Evaluation of cPV

only exist one GCD, thus, Π2 is supposed to meet the Church�Rosser property.

The veri�cation result also meets our expectations � Π2 is deadlockfree, con�uent,

terminating, deterministic, and can eventually reach the goal state.

Π3 is the solution to SSP. If multiple subsets A1, A2, . . . Am of an original set

S satisfy Σx∈Aix = T, i ∈ [1,m], where T is the target number; Π3 will �nd all

these subsets and keep them as p() terms in the system. Since all the instances

of Π3 we chose for the experiment have at least two solutions in the same layer, Π3

should not be con�uent (Fig. 7.12). The system is not expected to be deterministic,

since the uni�cation of its rules can generate di�erent groups of mappings during

the computation. However, it has to be deadlockfree and terminating � it should

eventually halt at s2 or s3, and generates a goal term o(). The experiment results

shows that Π3 is deadlockfree, con�uent, terminating, nondeterministic, and can

eventually reach one of the goal states, this ful�ls our expectations.

Figure 7.12: The Church-Rosser property veri�cation result of Π3

Π4 does not hold the Church�Rosser property. If multiple Hamiltonian cycles

can be found in a graph, it will randomly select one of them. Thus, goal terms

generated by Π4 can be di�erent. The system is nondeterministic since multiples

rules in Π4 process random terms in the system. However, as a problem solution,

Π4 is still expected to be deadlockfree and terminating. If a Hamiltonian cycle can

be found, the system will halt at s4, otherwise it will halt at s2. The evaluation

results correctly veri�es all the aforementioned properties.

Evaluation of cPV 121

In conclusion, all the system properties of cP systems shown in D1 were cor-

rectly veri�ed in cPV. For properties which are not held by certain cP systems,

counterexamples were correctly found and displayed.

7.2.2.2 Performance evaluation result

Using cPV, we simulated all the cP systems in D2. The running time is shown

in Table 7.2. In the experiment, worst-case scenarios were considered for each

cP system. For example, we chose problems instances of Π3 with zero solutions,

and chose complete (fully-connected) graphs for Π4.

As NPC solutions, the simulation time of Π3 and Π4 drastically increases with

the problem sizes. For Π5 and Π6, the simulation becomes relatively slow when the

cP system attempts to generate around 225 terms in one step, or generate terms

with a nesting depth of 15.

Table 7.2: Simulation time of cP systems in D2

Systems Problem Size Simulation Time (s)
Π3 n=4 0.6234
Π3 n=6 7.7435
Π3 n=8 233.8670
Π4 n=3 0.5562
Π4 n=4 7.3641
Π4 n=5 264.8018
Π5 b=15 0.1908
Π5 b=20 5.2841
Π5 b=25 189.0755
Π6 b=5 0.0185
Π6 b=10 2.6434
Π6 b=15 674.2326

If multiple groups of uni�ers are found in a rule application, the simulation

module of cPV will non-deterministically select one of them. Thus, only one branch

of the computation tree will be explored during the system simulation. However,

when a cP system generates exponential or highly nested terms, a large amount of

memory is required, thus the running time signi�cantly increases with the problem

sizes.

For cP system veri�cation, the following random instances of cP systems in

D2 were chosen:

� Π3, n = 3, S = {1, 2, 3}, T = 6.

� Π3, n = 4, S = {1, 2, 3, 4}, T = 9.

� Π3, n = 5, S = {1, 2, 3, 4, 5}, T = 14.

122 Evaluation of cPV

� Π4, n = 3, a complete graph.

� Π4, n = 4, E = {1 → 2, 1 → 3, 1 → 4, 2 → 1, 2 → 3, 2 → 4, 3 → 1, 3 →
2, 4 → 3}.

� Π4, n = 5, E = {1 → 2, 1 → 3, 1 → 4, 1 → 5, 2 → 1, 2 → 3, 2 → 4, 3 →
1, 3 → 2, 4 → 3, 5 → 4}.

� Π5, b = 10, 15, 20.

� Π6, b = 10, 11, 12.

The property ver�cation result is shown in Table 7.3, where the search method

�Priority� was chosen. Using di�erent search method such as BFS or DFS may

a�ect the veri�cation time for certain properties, but the worst-case scenario will

remain the same. For example, to verify a cP system which holds a safety property,

since no counterexample can be found, the entire statespace needs to be traversed

despite the search strategy.

For the instances of Π3, we can �nd that the number of internal nodes (poten-

tial rule applications) drastically increases with the problem size. This is due to

the uni�cation of max-parallel rules. For example, if k uni�ers ϑ1, ϑ2, . . . , ϑk can

be found for a max-parallel rule, the total groups of possible compatible uni�ers

are 2k, this includes g1 = {ϑ1}, g2 = {ϑ2}, . . . , g2k = {ϑ1, ϑ2, . . . ϑk}. All the uni-
�er groups gi, i ∈ [1, 2k] need to be veri�ed exhaustively, thus, cPV may need to

verify exponential internal nodes for each max-parallel rule application. Even for

the problem size n = 5, the number of internal nodes generated by the cP sys-

tem exceeded the statespace limit of cPV, which is 1000000. The experiment also

shows why cP systems can solve NPC problems in a small number of steps; be-

cause in every step, exponential memory and �processors� will be used to perform

the computation parallelly.

To verify Π4, cPV needs to process an exponential number of highly nested

terms such as z(p(h(2)p(h(1)p(h(6)p(h(3)p(h(4)p(h(5)p(h(2)p())))))))). Since the

worst-case scenario for HCP is factorial, considering Π4 uses multiple max-parallel

rules, it is impossible to verify complete graphs with a large number of vertices.

We used graphs with around n ∗ (n − 1)/4 edges to conduct the evaluation, and

found that processing highly nested terms is much slower than handling compound

terms with a nesting depth of 1, 2, or 3. Highly nested terms are not friendly to

cPV's nested object structures.

Evaluation of cPV 123

Table 7.3: Property veri�cation time of cP systems in D2

Systems deadlockfree con�uent terminating deterministic goal reachability
Π3 (n=3) ✓ ✓ ✓ ✗ ✓
Time (s) 0.2245 0.2282 0.2291 0.0191 0.2220
Nodes visited 129 139 139 14 129
Π3 (n=4) ✓ ✓ ✓ ✗ ✓
Time (s) 0.7555 0.6787 0.6777 0.0309 0.6551
Nodes visited 8321 8331 8331 14 8321
Π3 (n=5) ✓ ✓ ✓ ✗ ✗
Time (s) 8.1454 8.2526 8.2834 0.0555 8.2281
Nodes visited 1048267∗ 1048267∗ 1048267∗ 14 1048267∗

Π4 (n=3) ✓ ✗ ✓ ✗ ✓
Time (s) 3.7566 6.8857 7.6740 0.0076 4.9720
Nodes visited 136 182 226 1 161
Π4 (n=4) ✓ ✗ ✓ ✗ ✓
Time (s) 15.3510 16.9211 17.7229 0.0125 15.3904
Nodes visited 297 315 337 1 294
Π4 (n=5) ✓ ✗ ✓ ✗ ✓
Time (s) 72.6052 80.0983 85.2717 0.0277 72.3948
Nodes visited 781 798 831 1 777
Π5 (b=10) ✓ ✓ ✓ ✗ ✓
Time (s) 0.0714 0.0697 0.0675 0.0053 0.0693
Nodes visited 161 165 165 8 161
Π5 (b=15) ✓ ✓ ✓ ✗ ✓
Time (s) 0.2369 0.2478 0.2513 0.0054 0.2716
Nodes visited 2342 2346 2346 8 2342
Π5 (b=20) ✓ ✓ ✓ ✗ ✓
Time (s) 0.9713 1.0872 0.9681 0.0054 0.9758
Nodes visited 65835 65839 65839 8 65835
Π6 (b=10) ✓ ✓ ✓ ✓ ✓
Time (s) 3.0985 3.2475 3.2507 3.3566 2.9663
Nodes visited 31 35 35 35 31
Π6 (b=11) ✓ ✓ ✓ ✓ ✓
Time (s) 9.3661 10.6740 9.9801 9.9602 8.9828
Nodes visited 34 38 38 38 34
Π6 (b=12) ✓ ✓ ✓ ✓ ✓
Time (s) 27.7904 33.4176 32.2899 33.0137 27.0599
Nodes visited 37 41 41 41 37

(*): exceeding cPV's default statespace limit (1000000)

Π5 and Π6 cover the two major challenges of cP system veri�cation sepa-

rately: (1) an exponential number of system terms, and (2) highly-nested com-

pound terms. From the experiment results we can �nd that cPV can e�ciently

verify cP systems with around 220 terms (around 1 second). However, to verify

terms with a nesting depth of 12, cPV was relatively slow, which needs around 30

seconds to verify a system property.

In the results, the veri�cation of the deterministic property can often terminate

early. Following the de�nition of cP systems, if one generic rule can be uni�ed

against multiple groups of terms, one group will be randomly selected, which

will make the cP system nondeterministic. For example, in Π4, the �rst rule will

randomly select a vertex from a graph as a starting point of a path, which makes

the system nondeterministic. By checking one rule, cPV already knows that Π4 is

124 Evaluation of cPV

nondeterministic, thus it can terminate early and output the veri�cation result.

The experiment results shows that it is feasible to use cPV to correctly verify

di�erent cP systems' properties. cPV can check more than 1000000 internal states

within 9 seconds, or verify properties of cP systems that contain terms with a

nesting depth of 12 within 34 seconds. As the �rst cP system-speci�c framework,

both the simulation and veri�cation experiment results ful�l our expectations.

7.3 Comparison to related work

After P systems was proposed as a theoretical computational model, researchers

considered multiple software approaches to implement, simulate, or verify P sys-

tems in real life. One of the earliest simulation works in P systems was conducted

by Malit,a (2000) [106], here they used Prolog to simulate transition P systems

(the implementation was named ProMem 0.1). Later, several P system simula-

tion studies were published, this includes: (1) Balbontín et al. (2002) proposed

a MzScheme implementation of transition P systems [107]; (2) Baranda et al.

(2001) simulated transition P systems using Haskell [108], which was further ex-

tended by Arroyo et al. (2002) [109]; (3) Syropoulos et al. (2003) proposed a

distributed Java simulation of transition P systems in the NOP2(coo, tar) fam-

ily [110]; (4) Nepomuceno-Chamorro (2004) proposed a Java simulator, which

can simulate basic transition P systems with dissolution and priority rules [111];

(5) Cordón-Franco et al. (2004) proposed a Prolog simulator for deterministic

P systems with active membranes [112]; and (6) Gutiérrez-Naranjo et al. (2005)

implemented a simulator for con�uent P systems [113].

In addition to the standard version of P systems, the simulation work of other

P system variants such as tissue P systems, spiking neural P systems, and kernel

P systems include: (1) Bianco and Castellini (2007) designed and implemented

a simulation tool for metabolic P systems (MP systems), namely Psim [114];

(2) Castellini and Manca (2008) proposed a software architecture called Meta-

Plab for MP systems [115]; (3) Pérez-Hurtado et al. (2010) proposed MeCoSim,

which is a generic P system simulator that supports a P system DSL named P-

Lingua [56, 57]; (4) Martínez-del-Amor et al. (2010) proposed a simulator for tissue

P systems based on P-Lingua [116]; (5) Macías-Ramos et al. (2011) proposed a

simulator for spiking neural P systems; (6) Buiu et al. (2011) developed a soft-

ware tool named SNUPS for modelling and simulating numerical P systems [117],

this was further re�ned by Arsene et al. (2011) [118]; (7) Pérez-Hurtado et al.

Comparison to related work 125

(2014) proposed a P-Lingua based simulator for tissue P systems with cell separa-

tion [119]; (8) Guo et al. (2019) implemented UPSimulator for cell-like, tissue-like

and neural-like P systems [120], and (9) Konur et al. (2020) developed kPWork-

bench, which is a simulation and veri�cation framework of kernel P systems [58].

For P system formal veri�cation, model checkers were widely used in previous

studies. These include Omega [121], SPIN [121, 83, 85, 87, 122], NuSMV [122, 82,

123], ProB [84], UPPAAL [86], and PRISM [123]. For cP system veri�cation, we

used model checkers including PAT3 [8, 4, 6] and ProB [8, 4], and the Coq proof

assistant [9] to verify several cP systems.

In addition to directly modelling and verifying P systems using third-party

formal veri�ers, kPWorkbench is an intergrated veri�cation framework for Kernel

P systems [123, 122, 58]. Two model checkers SPIN and NuSMV are integrated

in the veri�cation module of kPWorkbench, these can be used as back-end ver-

i�ers. The design of kPWorkbench enables the automated veri�cation of Kernal

P systems, however, developers are not able to modify or optimise the veri�cation

algorithms that are implemented in SPIN or NuSMV.

Implementation P System Variant Simulation Veri�cation DSL Comment
MeCoSim [56, 57] P systems ✓ ✗ P-Lingua
MetaPlab [115] MP systems ✓ ✗ MP store

UPSimulator [120] P systems
tP systems ✓ ✗ UPLanguage

SN P systems
kPWorkbench [58] kP systems ✓ ✓ kP-Lingua intergrated with SPIN and NuSMV
cPV (this work) cP systems ✓ ✓ cPVJ built-in formal veri�er

Figure 7.13: A comparison P system simulators and veri�ers that are in
development

Major P system software simulators or veri�ers that are in development are

listed in Fig. 7.13. cPV is not only the �rst P system veri�cation framework that

has its own veri�er with corresponding algorithms, but also the only software

framework which can e�ectively handle generic rules and compound terms. Exist-

ing P veri�cation frameworks such as kPWorkbench use translators to transform

P models into modelling languages of certain model checkers, where behaviours of

complex P systems can only be partially modelled. In other words, the translation

from cP syntax to third-party modelling languages is often incomplete. By sup-

porting cPVJ, cPV can completely model cP systems and their behaviours. For

cP system veri�cation, since cPV has a built-in veri�er, all the veri�cation and

reduction algorithms are tailored and optimised for cP systems. This signi�cantly

improves the running speed of cPV.

To verify a complex cP system using PAT3 or ProB, the system needs to be

manually translated to CSP# or B, this is time consuming and error prone. To

126 Evaluation of cPV

Formal Veri�cation Automated Automated Requirement of
Tool Objects Translation Veri�cation cP Systems

PAT3 [8, 4, 6] a cP system instance ✗ ✓ term nesting depth ≤ 2
ProB [8, 4] a cP system instance ✗ ✓ term nesting depth ≤ 2
Coq [9] all the instances of a cP system ✗ ✗ deterministic cP systems

cPV (this work) a cP system instance ✓ ✓ no special requirement

Figure 7.14: A comparison of di�erent formal tools for verifying cP systems

prove the equivalence of the translated model and the orginal cP system is also a

challenge. Using Coq to verify a cP system is even harder as the system needs to be

manually modelled in Gallina, and the properties need to be speci�ed and proven

manualy. Nondeterministic properties of cP systems cannot be directly veri�ed in

Coq.

Compared to previous studies which used third-party tools to conduct cP sys-

tem formal veri�cation, cPV can verify all the cP systems without any special

requirements. Both the translation from cP system to internal models and formal

veri�cation can be done automatically.

7.4 Summary

The case study and evaluation that were introduced in this section illustrate that

it is feasible to model and simulate complex cP systems, and verify their properties

in cPV. By choosing proper problem sizes, cPV can work e�ciently on di�erent

cP systems that solve NPC problems.

Given a cP system represented in cPVJ, its system properties including dead-

lockfreeness, con�uence, termination, determinism, and goal reachability can be

e�ectively veri�ed using cPV.

We built two datasets D1 and D2 for the evaluation of cPV, these can be used

as benchmark datasets for cP-speci�c simulation and veri�cation tools. D1 and

D2 cover several aspects of complex cP systems including nondeterminism, max-

parallelism, large numbers of terms, highly nested terms, and di�cult uni�cations.

Membrane systems such as cP systems can perform computation much more

e�ciently than traditional computers, whose e�ciency is often obtained by trading

memory for time. Thus, to simulate or verify membrane systems in real life often

requires a large amount of memory. We implemented several statespace traversing

and reduction algorithms in cPV which signi�cantly improved its running speed.

As the �rst cP system simulation and veri�cation framework, cPV can e�ec-

tively help researchers to study, design, and verify cP systems. Using cPV, domain

Summary 127

experts in membrane computing can verify cP systems without in-depth under-

standing of formal veri�cation tools, techniques, and algorithms. All the model

transformations are automatically handled by cPV, which also prevents incom-

plete translations from cP systems to other modelling languages. The design and

implementation of cPV was inspired by several existing general purpose and do-

main speci�c formal tools including PAT3, ProB and Coq.

Chapter 8

Towards Automated Deduction

in cP systems

Automated deduction examines how computer programs can help people prove

formal theorems. Deduction in equational theory is fundamental in many research

areas including automated theorem proving, formal veri�cation, symbolic com-

putation, and logic programming [124]. Emphasised in several studies, many in-

teresting and important logics are built on top of equational logic, and all the

computable functions and data structures can be de�ned in equational logic [125].

Introduced by Knuth-Bendix [60], equational theories can be proven by gen-

erating canonical rewrite systems. If a rewrite system is convergent, then using it

to perform equational deduction is sound and complete.

In this chapter, we propose a cP system Πd to perform automated deduction

on equational logic [10]. Given a set of axioms, Πd can compute all the critical

pairs among the axioms in logarithmic time. To reduce a term of size m to a

normal form, Πd can be O(2m) times faster than traditional rewrite systems. By

slightly modifying the rules of Πd, it can be extended to reason about equational

theories with n-ary operators in the same time complexity.

To distinguish with terms and rules in equational theories, in the rest of the

chapter we will add a �cP-� pre�x to terms, rules, rulesets, states, and steps in

cP systems. For example, in a cP system, a compound term f(ab) will be called

as a �cP-term�, and the rule s1 a(X) →+ s1 b(X) is a �cP-rule�.

The chapter is organised in the following way. Section 8.1 introduces equational

deduction. Section 8.2 presents the cP system encoding to the problem. Section

8.3 explains the cP-rulesets of Πd. Section 8.4 includes a case study, to illustrate

129

130 Towards Automated Deduction in cP systems

how Πd works. Section 8.5 provides a further discussion on Πd, and Section 8.6

summarises the chapter.

8.1 Equational deduction

Let F and V be two disjoint sets, which include function symbols and variables.

Suppose the collection of all terms is denoted by T , and a term can either be

a variable v, v ∈ V or an expression f(t1t2 . . . tk), f ∈ F , t1, t2, . . . , tk ∈ T .
Furthermore, each function symbol has an arity, and nullary function symbols are

also called constants. A term s is said to be a subterm of a term t if: (1) s = t, or

(2) t = f(t1t2 . . . tk) and s is a subterm of ti, i ∈ [1 . . k]. A subterm s of t is said

to be proper i� (if and only if) s ̸= t.

A substitution ϑ is a mapping from variables to terms. The application of ϑ

to a term t is denoted by tϑ. The composition of two substitutions ϑ and τ is

denoted by ϑτ . For two terms s and t, if there exists a substitution ϑ that satis�es

sϑ = tϑ, ϑ is called a uni�er of s and t. If σ uni�es s and t, and for any other

uni�er ω, there exists a uni�er τ , such that ω = στ , we call σ an mgu of s and

t. Several uni�cation algorithms were proposed to compute an mgu of two terms,

such as [68, 71, 72].

An equation is written as s = t, where s, t ∈ T . Given a set of equations

E, E ⊨ s = t denotes s = t is true for every model in E. The Rewrite relation

induced by E is denoted by →E . For instance, s →E t indicates s rewrites to t.

The equational theory induced by E is the symmetric-transitive-re�exive closure

↔∗
E of →E . Terms s and t are equivalent in E i� s ↔∗

E t.

The following �ve properties are held by equations, these can be used to deduce

new equations from old ones [59, 126]:

� Re�exivity : s = s.

� symmetry : if s = t then t = s.

� transitivity : if r = s and s = t then r = t.

� congruence: if si = ti for i ∈ [1 . . n] then f(s1, s2, . . . , sn) = f(t1, t2, . . . , tn).

� substitutivity : if s = t, then sϑ = tϑ for all substitutions ϑ.

Directed equations such as s → t are called axioms or Rewriting rules. A

Rewrite system contains a set of axioms. The binary relation → is con�uent or

cP system encodings 131

Church-Rosser i� for all s = t, there exists a term r such that s →∗ r and t →∗ r.

Terminating con�uent relations are also called convergent [127].

Terms are in normal forms or irreducible forms if they cannot be rewritten any

further. A rewrite system R is said to be Reduced i� all the terms in its axioms

are in normal forms (irreducible by R).

Rewrite systems are one of the most e�ective tools to reason about equations.

In a convergent rewrite system, an equation s = t is valid i� s and t can be

rewritten to an identical normal form. Proofs that consist of a chain of rewritings

which gradually transforms an expression into another are called equational proofs.

A completion procedure aims to build a convergent rewrite system from a set of

equations or axioms, which can also be seen as a process of simplifying equational

proofs [91]. The complexity of an equational proof can be reduced by axioms

in a corresponding convergent rewrite system, and the normal-form proof of the

equational proof is called a Rewrite proof.

The classical Knuth-Bendix completion procedure was reformulated by Bach-

mair as the standard completion [127], this is shown in Fig. 8.1. E and R denote

the set of equations and the set of axioms. The symbol ≻ refers to the reduction

ordering, and ▷ is the encompassment ordering: s ▷ t means a subterm of s is an

instance of t.

DELETE: (E ∪ {s = s};R) ⊢ (E;R)
COMPOSE: (E;R ∪ {s→ t}) ⊢ (E;R ∪ {s→ u}) if t→R u
SIMPLIFY: (E ∪ {s = t};R) ⊢ (E ∪ {s = u};R) if t→R u
ORIENT: (E ∪ {s = t};R) ⊢ (E;R ∪ {s→ t}) if s ≻ t
COLLAPSE: (E;R ∪ {t→ s}) ⊢ (E ∪ {u = s};R) if l→ r ∈ R, t→{l→r} u, t ▷ l
DEDUCE: (E;R) ⊢ (E ∪ {s = t};R) if s←R u→R t

Figure 8.1: The standard completion

8.2 cP system encodings

Our cP system-based deduction approach works for general equational theories,

the cP-rulesets will be slightly di�erent for each theory. For illustration purposes,

in this chapter we will focus on the well-known left group theory whose corre-

sponding convergent set contains ten axioms.

The left group is closed under an associative binary operation (+) with a left

inverse (−) and a left identity element e (Fig. 8.2). Lowercase letters x, y, and z

132 Towards Automated Deduction in cP systems

represent variables. The unary operator (−) is assumed to have a higher precedence

than (+), so the expression −x+−y has the same meaning as (−x) + (−y).

(1) e+ x→ x
(2) −x+ x→ e
(3) (x+ y) + z → x+ (y + z)

Figure 8.2: The left group theory

Given an axiom s → t (or an equation s = t), its terms s and t in s → t will be

encoded in two di�erent ways in cP systems. These two ways include tree forms

and linear forms. Tree forms are used to process terms in a layer-by-layer manner,

and linear forms are used to model axioms (rewriting rules) in equational theories.

The two forms can be transformed between each other as needed.

8.2.1 The tree form of a term

To represent terms in a tree-like structure, two kinds of nodes (cP-terms) are

needed, these are: internal nodes � n(ID)(Content), and leaves � l(ID)(Content).

In the tree form of a term, internal nodes represent operators and leaves represent

variables.

Each node has a content object and an ID which indicates its path from the

root. For example, to represent −x + x in tree form, two internal nodes and two

leaves are needed, these are n(a)(+), n(a(a))(−), l(b(a))(x), and l(a(a(a)))(x)

(Fig 8.3 (i)). The shape of a term's tree form is similar to the term's binary

expression tree (Fig 8.3 (ii)). Given the term t, we use tree(t) to denote its tree

form in cP systems.

(i)

n(a)(+)

n(a(a))(−)

l(a(a(a)))(x)

l(b(a))(x)

(ii)

+

−

x

x

(iii)

a

a(a)

a(a(a))

b(a)

Figure 8.3 For t = −x+ x, (i) is tree(t), (ii) is the expression tree of t, (iii) shows the IDs in
tree(t)

cP system encodings 133

Actual contents in cP systems are cP-terms. Arcs that appear in Fig 8.3 (i)

are only virtual, these can be indicated by matching node IDs using particular

cP-rules.

The node IDs are represented as nested cP-terms (Fig. 8.3 (iii)). The root of

a tree has an ID a. For each node with ID K, its �rst child has an ID a(K) and

its second child has an ID b(K). For instance, a node or leaf with an ID b(a(a)) is

the second child of the �rst child of the root.

A node stores its parent's ID, but not vice versa. cP-rule fragments such as

n(a(X))() → X or l(b(X))() → X can be used to extract the parent ID of a

child node.

8.2.2 The linear form of a term

In addition to tree forms, equational terms also need to be represented in a linear

way in cP systems. Technically, the linear form of a term is one single leaf-like

node containing the linear contents of tree(t). By traversing tree(t) in pre-order,

we can obtain the linear form of t, denoted linear(t).

The operator symbols + and − are atoms in cP systems, which can be used

as cP-term functors (labels). For example, +(x)(y) is a cP-term labelled + which

has two subterms x and y.

The linear form of a term � l(ID)(LinearContent) � is similar to a leaf node,

but with linear content. For example, given the term −x+(x+ y), its linear form

is l(a)(+(−(x))(+(x)(y))). In the linear form of its subterm −x is l(a(a))(−(x)),

the ID a(a) indicates that −x is the �rst child (subterm) of the root (−x+(x+y)).

Similarly, the linear form of (x + y) is l(b(a))(+(x)(y)) � the ID b(a) shows that

(x+ y) is the second child of −x+ (x+ y).

8.2.3 Transforming terms between tree and linear forms

Consider the term t and suppose its tree form � tree(t) � is given. cP-rules R1 and

R2 describe a bottom-up approach, which can transform tree(t) into linear(t).

s1 l(a(K))(X), l(b(K))(Y), n(K)(+) →+ s1 l(K)(+(X)(Y)) (R1)
s1 l(a(K))(X), n(K)(−) →+ s1 l(K)(−(X)) (R2)

Given linear(t), cP-rules R3 and R4 describe a top-down approach, which

can transform linear(t) into tree(t).

134 Towards Automated Deduction in cP systems

s1 l(K)(+(X)(Y)) →+ s1 n(K)(+), l(a(K))(X), l(b(K))(Y)) (R3)
s1 l(K)(−(X)) →+ s1 n(K)(−), l(a(K))(X) (R4)

An example of transforming t : −x + (x + y) between tree(t) and linear(t)

is shown in Fig. 8.4. Starting from tree(t), a cP system (at s1) has two cP-rules

R1 and R2, and contains six system terms n(a)(+), n(a(a))(−), l(a(a(a)))(x),

n(b(a))(+), l(a(b(a)))(x), and l(b(b(a)))(y). Since R1 and R2 commit to the same

target state s1, they can be applied in the same step.

In the �rst step, by applying R1, n(b(a))(+), l(a(b(a)))(x), and l(b(b(a)))(y)

will be consumed, and a new leaf l(b(a))(+(x)(y)) will be generated. By applying

R2, n(a(a))(−) and l(a(a(a)))(x) will be consumed and l(a(a))(−(x)) will be

produced.

In the second step, by applying R1, n(a)(+), l(a(a))(−(x)), and

l(b(a))(+(x)(y)) will be consumed and l(a)(+(−(x))(+(x)(y))) will be pro-

duced. As a result neither R1 nor R2 is applicable and the system halts. The

cP-term l(a)(+(−(x))(+(x)(y))) left in the cP system is linear(t).

Starting from linear(t), a cP system (at s1) has two cP-rules R3 and R4, and

contains a system term l(a)(+(−(x))(+(x)(y))). In the �rst step, R3 is applicable,

this consumes l(a)(+(−(x))(+(x)(y))) and produces three new cP-terms n(a)(+),

l(a(a))(−(x)), and l(b(a))(+(x)(y)).

When committing to the same target state, R3 and R4 can be applied in

the same step. In the second step, R3 will consume l(b(a))(+(x)(y)) and pro-

duce n(b(a))(+), l(a(b(a)))(x), and l(b(b(a)))(y). Furthermore, R4 will consume

l(a(a))(−(x)) and produce n(a(a))(−) and l(a(a(a)))(x). So far neither R3 or R4

is applicable, thus the cP system halts and tree(t) is obtained, which contains

six cP-terms n(a)(+), n(a(a))(−), l(a(a(a)))(x), n(b(a))(+), l(a(b(a)))(x), and

l(b(b(a)))(y).

Lemma 8.2.1. Suppose a term t contains m symbols. If tree(t) is balanced, then:

using R1−R4 to transform t between tree(t) and linear(t) takes O(logm) steps.

Proof. Let the depth of tree(t) be d, since tree(t) is balanced, d is O(logm).

We use t′ to denote the working tree, which includes the cP-terms during the

transformations. The depth of t′ is denoted by d′.

To transform tree(t) into linear(t), at the beginning, t′ = t and d′ = d. When

d′ > 1, at least one of R1 or R2 is applicable. The leaves with the longest path

cP system rulesets for equational deduction 135

n(a)(+)

n(a(a))(−)

l(a(a(a)))(x)

n(b(a))(+)

l(a(b(a)))(x) l(b(b(a)))(y)

R1, R2 ↓ ↑ R3, R4

n(a)(+)

l(a(a))(−x) l(b(a))(+(x)(y))

R1 ↓ ↑ R3

l(a)(+(−(x))(+(x)(y)))

Figure 8.4 Transforming −x+ (x+ y) between its tree and linear forms

(whose IDs are the deepest nested) in the tree must be consumed by R1 or R2.

In other words, when d′ > 1, in each step, R1 or R2 will strictly decrease d′ by

1. When d′ = 1, neither R1 or R2 is applicable, the system halts and linear(t) is

obtained. Thus, to transform t from tree(t) to linear(t) takes d− 1 steps, which

is O(logm).

To transform linear(t) into tree(t), d′ starts from 1. When d′ < d, in each

step, R3 and R4 will attempt to generate children for all the linear leaves in a

maximally parallel manner, where d′ is exactly increased by one. When d′ = d,

the transformation is �nished and tree(t) is obtained. Thus, to transform linear(t)

into tree(t) also takes d− 1 steps, which is O(logm).

8.3 cP system rulesets for equational deduction

Given an equational theory, we propose a cP system Πd, which can deduce new

axioms from existing ones by performing completion. After obtaining a convergent

136 Towards Automated Deduction in cP systems

set of axioms, the cP system can prove equations by reducing their lhs and rhs

terms to normal forms and comparing them.

Our cP completion procedure is similar to the standard completion shown in

Fig. 8.1. While the rules COMPOSE, SIMPLIFY, and COLLAPSE are covered by

a term reduction cP-ruleset, these need not be handled explicitly. If an equational

theory can be represented as a convergent system, given a proper ordering (e.g. a

weight function), the cP procedure will succeed. Several studies discussed how to

choose weights for the Knuth-Bendix completion procedure [128, 96, 129].

In this study, we assume a well-founded ordering function called ORD(t1,t2) is

given. Suppose ORD() accepts two cP-terms t1 and t2 as parameters. If t1 has a

larger weight than t2, ORD(t1,t2) will return a positive number; otherwise it will

return a negative number. For the left group theory, ORD() can be Knuth-Bendix

order [60].

For illustration purposes, the cP-rulesets that appear in this section may be

represented in a relatively simple way. To practically combine the cP-rules to-

gether, some of them may need to be slightly modi�ed.

8.3.1 The superposition process

Given a set of axioms, by superposing an axiom onto itself or another axiom, a

new term can be generated. By reducing the new term using di�erent axioms or

using one axiom in di�erent ways a critical pair (new equation) can be obtained.

8.3.1.1 Computing compound subterms of a term

Terms containing at least one operator symbol are called compound terms. For

example, x + y, −z, and −x + −y are compound terms. A term that does not

contain any operator symbol is called a simple term. For instance, x, y, and z are

simple terms. Given a term −x+(y+z), its compound subterms are −x+(y+z),

−x, and y + z; and its simple subterms are x, y, and z.

Given the linear form of a term t, R5 and R6 can generate subterms of t

in a layer-by-layer manner. Compound subterms of t will be stored as cP-terms

s()(), and simple subterms of t will be ignored.

s2 l(K)(+(X)(Y)) →+ s2 l(a(K))(X), l(b(K))(Y), s(K)(+(X)(Y)) (R5)
s2 l(K)(−(X)) →+ s2 l(a(K))(X), s(K)(−(X)) (R6)

cP system rulesets for equational deduction 137

If the outermost operator symbol of a subterm (leaf) is (+), R5 will save

the leaf l(K)(+(X)(Y)) as a compound subterm s(K)(+(X)(Y)), consume

l(K)(+(X)(Y)), and produce its children (subterms) l(a(K))(X) and l(b(K))(Y)

as new leaves.

Similarly, if the outermost operator symbol of a leaf is (−), R6 saves the leaf

l(K)(−(X)) as a compound subterm s(K)(−(X)), consumes l(K)(−(X)), and

produces its subterm l(a(K))(X) as a new leaf.

After d − 1 steps (d is the depth of tree(t)), all the compound subterms of t

will be generated and saved. Leaves without any operator, such as l(b(a))(e) or

l(a(a(a)))(x), will be ignored by R5 and R6.

R5 and R6 work in a destructive way, thus linear(t) will be consumed af-

ter generating all the subterms of t. By using a set of cP-terms (w()) to track

the working nodes, R5 and R6 can be modi�ed to R7 and R8 which are non-

destructive.

s2 w(K) →+ s2 l(a(K))(X), l(b(K))(Y), s(K)(+(X)(Y)), w(a(K)), w(b(K)) (R7)
| l(K)(+(X)(Y))

s2 w(K) →+ s2 l(a(K))(X), s(K)(−(X)), w(a(K)) (R8)
| l(K)(−(X))

In having an initial working node w(a), R7 and R8 use l(K)(+(X)(Y)) and

l(K)(−(X)) as promoters � all the linear forms for t's subterms will be kept in

the system. In every step, R7 and R8 check all the working nodes parallelly. If

a working node with an ID K has operator symbols, R7 and R8 will store it

as a compound subterm s(K)(), consume w(K), and add its children to work-

ing nodes (by generating w(a(K)), w(b(K))). If some working nodes are simple

subterms of t, they will be ignored by R7 and R8.

In addition to generating all the compound subterms of t from linear(t), R7

and R8 will also generate linear forms of all the (compound and simple) subterms

of t which can be used later. The complexity of R7 and R8 (running steps) is

exactly the same to R5 and R6.

Lemma 8.3.1. Suppose a term t contains m symbols. Given linear(t), if tree(t)

is balanced, then: using R7 and R8 to generate linear forms of all the subterms of

t takes O(logm) steps.

Proof. Let the depth of tree(t) be d, since tree(t) is balanced, d is O(logm).

138 Towards Automated Deduction in cP systems

If t is a simple term, then neither R7 nor R8 is applicable, and the cP system

is terminated.

If t is a compound term, then at least one of R7 or R8 is applicable. In every

step, R7 or R8 will store the compound subterms of t in one layer, and expand

their children in the next layer. After d − 1 steps, all the nodes in tree(t) are

generated, all the compound subterms of t are stored, and linear forms of all the

subterms of t are generated.

Thus, to compute all the subterms of t takes d−1 steps, which is O(logm).

8.3.1.2 The uni�cation process

Uni�cation plays an essential role in the superposition process. Given a set of m

axioms si → ti, i = 1, 2, . . . ,m, if sj (j ∈ [1 . .m]) can be successfully uni�ed

with a compound subterm of sk (k ∈ [1 . .m]), then an mgu σ can be found. By

applying σ to sk, a superposed term skσ can be obtained. By using sj → tj and

sk → tk to reduce skσ in di�erent ways, a critical pair will be generated. In the

superposition process, j = k is allowed, this means an axiom can superpose onto

itself.

For an axiom −x+ (x+ y) → y, its lhs term −x+ (x+ y) can be successfully

uni�ed with its lhs subterm x+y (an mgu: σ = {x 7→ −x, y 7→ x+y}). A new term

can be obtained by applying σ to (−x+(x+ y)), which is −−x+(−x+(x+ y)).

By reducing the new term using the axiom in two di�erent ways, we can get a

critical pair < x+ y,−− x+ y >.

To process or manipulate axioms in equational theories in cP systems, their

variables such as x, y, z are actually encoded as atoms � only generic cP-rules

may contain variables, and system terms must be ground. Thus, using cP systems

to unify terms in equational theories is actually non-trivial.

For axioms si → ti and sj → tj , suppose ssi is a compound subterm of si,

and all the m subterms of sj are ssj1, ssj2, . . . ssjm. Given tree(ssi), tree(sj),

linear(ssj1), linear(ssj2),. . ., linear(ssjm) (linear forms of all the subterms of sj
can be obtained by R7 and R8), suppose nodes in tree(ssi) are labelled as ni and

li; nodes in tree(sj) are labelled as nj and lj ; nodes in linear(ssj1), linear(ssj2),

. . . linear(ssjm) are labelled as l′j ; the root ID of tree(ssi) is adjusted to a; and IDs

of all the other nodes of tree(ssi) are also adjusted according to their parent-child

relationships; cP-rules R9 − R16 can compute an mgu of ssi and sj .

cP system rulesets for equational deduction 139

s3 w(K) →+ s3 w(a(K)), w(b(K)) | ni(K)(+), nj(K)(+) (R9)
s3 w(K) →+ s3 w(a(K)) | ni(K)(−), nj(K)(−) (R10)
s3 w(K) →+ s3 m(X)(Y) | li(K)(X), l′j(K)(Y) (R11)

s3 →1 s4 w() (R12)
s3 →1 s5 (R13)
s5 m(X)(Y) →+ s5 | m(X)(Y) (R14)
s5 m(X)(Y), m(X)(Z) →1 s4 (R15)
s5 →1 s6 (R16)

The working nodes are tracked by cP-terms w(K). The initial working node is

w(a), which refers to the root ID of tree(ssi) and tree(sj). R9 and R10 compare

the contents X and Y of the (internal) working nodes ni(K)(X) and nj(K)(Y). If

they are the same (X = Y = + or X = Y = −), R9 or R10 will consume w(K),

and set its children w(a(K)), w(b(K)) as new working nodes. If X ̸= Y , neither

R9 or R10 is applicable, and w(K) will be kept in the cP system (ssi and sj are

not uni�able).

If a leaf li(K)(X) is reached, R11 will create a variable mapping m(X)(Y) for

X, by checking the linear form of the sj 's subterm with an ID K.

Since R9, R10, and R11 commit to the same target state (which do not change

the system state), they will be applied together as many times as possible, before

the cP system considers R12 and R13.

If neither R9, R10, or R11 is applicable, the system will check R12, too see

if there are c(K) cP-terms left in the system. Unhandled c(K) cP-terms indicate

mismatches between ssi and sj . If the cP system has at least one c(K) cP-term,

it will apply R12 and change its state to s4, which means the two terms are not

uni�able. If R12 is not applicable, the system will apply R13 and change its state

to s5, this indicates all the variable mappingsm(X)(Y) are successfully generated.

In having all the variable mappings in the cP system, R14 can be used to

eliminate duplicated copies of the variable mappings. For instance, if the system

contains three copies of m(x)(+(y)(z)), after applying R14, only one copy will be

left in the system.

After applying R14, if there exists di�erent mappings for the same variable

such as m(x)(+(y)(z)) and m(x)(−(w)), R15 will change the system state to s4

to indicate the failure of the uni�cation process. If R15 is not applicable, R16 will

change the system state to s6, which means the uni�cation succeeded.

Lemma 8.3.2. Suppose two terms t and t′ contain m and m′ symbols respectively.

Given linear(t) and linear(t′), if tree(t) and tree(t′) are balanced, then: using

R9− R16 to unify t with t′ takes O(log(max(m,m′))) steps.

140 Towards Automated Deduction in cP systems

Proof. Applying lemma 8.2.1, to obtain tree(t) and tree(t′) from linear(t) and

linear(t′) takes O(logm) + O(logm′) steps.

Applying lemma 8.3.1, to compute linear forms of all the subterms of t′ takes

O(logm′) steps.

Thus, the pre-computing of the uni�cation takes O(logm) + O(logm′) steps,

which is O(log(max(m,m′))).

Suppose the depth of tree(t) is d, which is O(logm). In each step, R9, R10

or R11 will check exactly one layer of tree(t), after d steps, none of them will be

applicable, and R12 or R13 will be applied .

R12, R13, R14, R15 and R16 each take one step, after applying them, the

system will terminate.

Summing up the discussion, to unify t with t′, including the pre-computing,

the cP-ruleset (R9 − R16) takes O(log(max(m,m′))) + O(logm) + O(1) steps,

which is O(log(max(m,m′))).

8.3.2 Orientation and term reduction

To apply a uni�er σ to a term t in cP systems is straightforward. Only leaves in

tree(t) contain variables, and R17 can apply σ to all the leaves of tree(t) in one

step.

s7 l(K)(X) →+ s7 l(K)(Y) | m(X)(Y) (R17)

Suppose we have two axioms s1 → t1 and s2 → t2, let s′1 be a subterm of s1.

If σ uni�es s′1 and s2, then by applying σ to s1, a superposed term s1σ can be

obtained. Then we can get a critical pair p by reducing s1σ using s1 → t1 and

s2 → t2.

For a critical pair p =< c1, c2 >, to make the rewrite system convergent,

the equation c1 = c2 needs to be added into the system. Using the well-founded

ordering function ORD(), we can orient c1 = c2 to an axiom c1 → c2 (when

ORD(c1,c2) > 0) or c2 → c1 (when ORD(c1,c2) < 0).

Only non-trivial critical pairs need to be considered. If c1 and c2 are identical,

the critical pair < c1, c2 > is said to be trivial. Adding a trivial axiom such as

x → x to a rewrite system will cause the system to be non-terminating � it is also

unnecessary to rewrite a term by itself.

An optimisation of this approach is to reduce c1 and c2 to normal forms before

considering them as a new equation. Suppose the normal form of c1 and c2 are

cP system rulesets for equational deduction 141

c′1 and c′2, if c
′
1 and c′2 are identical, we can simply delete the trivial critical pair

< c′1, c
′
2 > from the system. If c′1 and c′2 are di�erent, for instance c′1 = x+ e and

c′2 = x, we can use ORD() to orient them and add the new axiom x + e → x to

the system. In having a new axiom, the system will also use it to reduce other

existing axioms. When all the axioms are in normal forms, duplicate axioms can

be deleted.

cP systems use lowercase letters as atoms and uppercase letters as variables,

notably this can only be contained by rules. Thus, it is impossible to convert a

lowercase letter to uppercase using cP-rules. As mentioned, to manipulate axioms

in a theory, all their variables are encoded as atoms in cP systems, for example x,

y, z. There is no direct way to use these axioms as cP-rules to reduce other terms.

In addition to case converting, the current version of cP systems cannot generate

new rules at run time. Thus, to use newly generated axioms as cP-rules (to reduce

other terms), human intervention is needed.

Fig. 8.5 lists the convergent set of axioms that can be obtained from the left

group theory. The cP-rules R18−R27b represent axioms (1) - (10). When none of

the cP-rules in Fig. 8.5 are applicable, R1 and R2 can be used to fold the tree one

level up. By looping a cP-ruleset consisting of R18,R19, . . . ,R27b, R1, and R2, a

term can be reduced to a normal form. Compared to traditional rewrite systems,

for a term t of size m, the cP-ruleset can simultaneously rewrite at most O(2m)

compound subterms of t in each step.

To detect the termination of the completion process in the cP system, we can

use two counters c1() and c2(). Every time a new axiom is added to the system

we increase c1() by one; and when a (duplicated) axiom is deleted from the

system, we increase c2() by one. By applying all the cP-rules, if neither c1()

nor c2() is changed, then the completion process is terminated.

By having a convergent rewrite system, the correctness of an equation t1 = t2

can be proven or disproven by reducing t1 and t2 to normal forms and checking if

they are identical.

142 Towards Automated Deduction in cP systems

(1) e+X → X
s8 l(K)(+(e)(X)) →+ s8 l(K)(X) (R18)
(2) −X +X → e
s8 l(K)(+(−(X))(X)) →+ s8 l(K)(e) (R19)
(3) (X + Y) + Z → X + (Y + Z)
s8 l(K)(+(+(X)(Y))(Z)) →+ s8 l(K)(+(X)(+(Y)(Z))) (R20)
s8 l(K)(+(X)(+(Y)(−(Y)))) →+ s8 l(K)(X) (R20a)
s8 l(K)(+(X)(+(−(Y))(Y))) →+ s8 l(K)(X) (R20b)
(4) −X + (X + Y) → Y
s8 l(K)(+(−(X))(+(X)(Y))) →+ s8 l(K)(Y) (R21)
(5) X + e → X
s8 l(K)(+(X)(e)) →+ s8 l(K)(X) (R22)
(6) − e → e
s8 l(K)(−(e)) →+ s8 l(K)(e) (R23)
(7) −−X → X
s8 l(K)(−(−(X))) →+ s8 l(K)(X) (R24)
(8) X +−X → e
s8 l(K)(+(X)(−(X))) →+ s8 l(K)(e) (R25)
(9) X + (−X + Y) → Y
s8 l(K)(+(X)(+(−(X))(Y))) →+ s8 l(K)(Y) (R26)
(10) − (X + Y) → −Y +−X
s8 l(K)(−(+(X)(Y))) →+ s8 l(K)(+(−(Y))(−(X))) (R27)
s8 l(K)(+(−(−(X)))(Y)) →+ s8 l(K)(+(X)(Y)) (R27a)
s8 l(K)(+(X)(−(−(Y)))) →+ s8 l(K)(+(X)(Y)) (R27b)

Figure 8.5: The cP-rules to perform reduction on the left group theory

8.4 A case study

In this section, we use the left group theory as an example to demonstrate how to

deduce new axioms from existing ones.

Suppose axioms in the left group theory are encoded as cP-terms labelled a.

For instance, a(2)(l(a)(+(−(x))(x)))(l(a)(e)) represents the axiom −x + x → e

with and ID 2, whereas (l(a)(+(−(x))(x))) and (l(a)(e)) are its lhs and rhs. At

the beginning of the computation, the initial three axioms exist in the cP system.

The initial state of the cP system is s1.

state: s1
a(1)(l(a)(+(e)(x)))(l(a)(x))
a(2)(l(a)(+(−(x))(x)))(l(a)(e))
a(3)(l(a)(+(+(x)(y))(z)))(l(a)(+(x)(+(y)(z))))

The cP system needs to compute each axiom's compound subterms, here we

use a(3)(l(a)(+(+(x)(y))(z)))(l(a)(+(x)(+(y)(z)))) as an example. The system

will �rst apply s1 a(X)(Y)(Z) →+ s2 a
′(X)(Y) to make copies for all the axioms'

lhs terms. In the same step, the rule s1 →1 s2 w(a) can be applied to produce an

initial working node w(a).

A case study 143

state: s2
a(1)(l(a)(+(e)(x)))(l(a)(x))
a(2)(l(a)(+(−(x))(x)))(l(a)(e))
a(3)(l(a)(+(+(x)(y))(z)))(l(a)(+(x)(+(y)(z))))
a′(1)(l(a)(+(e)(x)))
a′(2)(l(a)(+(−(x))(x)))
a′(3)(l(a)(+(+(x)(y))(z)))
w(a)

For readability, in the rest of the section, we will only show the cP-terms

directly related to the example � axiom (3), other cP-terms in the system will be

represented as dots (. . .).

R7' : s2 w(K) →+ s2 a′(A)(l(a(K))(X)), a′(A)(l(b(K))(Y)), s(A)(K)(+(X)(Y)),
w(a(K)), w(b(K)) | a′(A)(l(K)(+(X)(Y)))
R8' : s2 w(K) →+ s2 a′(A)(l(a(K))(X)), s(A)(K)(−(X)), w(a(K))
| a′(A)(l(K)(−(X)))
R_n1 : s2 w() →+ s3
R_n2 : s2 →1 s3 w(a)

R7' and R8' are modi�ed from R7 and R8. By applying R7' once, w(a) will be

consumed and a′(3)(l(a(a))(+(x)(y)))), a′(3)(l(b(a))(z)), s(3)(a)(+(+(x)(y))(z)),

w(a(a)), and w(b(a)) will be generated.

state: s2
a′(3)(l(a)(+(+(x)(y))(z)))
a′(3)(l(a(a))(+(x)(y))))
a′(3)(l(b(a))(z))
s(3)(a)(+(+(x)(y))(z))
w(a(a)) w(b(a))
. . .

In having the new working nodes w(a(a)) and w(b(a)), the system

will apply R7' again, consume w(a(a)), and produce a′(3)(l(a(a(a)))(x))),

a′(3)(l(b(a(a)))(y))), s(3)(a(a))(+(x)(y)), w(a(a(a))), and w(b(a(a))). Then nei-

ther R7' or R8' is applicable, thus R_n1 and R_n2 will be applied. Following

this the system state will be changed to s3, and the working node will be reset to

w(a).

144 Towards Automated Deduction in cP systems

state: s3
a′(3)(l(a)(+(+(x)(y))(z)))
a′(3)(l(a(a))(+(x)(y))))
a′(3)(l(b(a))(z))
a′(3)(l(a(a(a)))(x)))
a′(3)(l(b(a(a)))(y)))
s(3)(a)(+(+(x)(y))(z))
s(3)(a(a))(+(x)(y))
w(a)
. . .

cP-terms s(3)(a)(+(+(x)(y))(z)) and s(3)(a(a))(+(x)(y)) are compound sub-

terms of the lhs of axiom (3), in short, (x+y)+z and x+y are compound subterms

of (x+ y) + z.

In having the compound subterms of axiom (3), the system will unify them

against all the axioms' lhs. Let us choose axiom (2) as an example � suppose the

system is unifying ts: s(3)(a(a))(+(x)(y)) against ta: a(2)(l(a)(+(−(x))(x))). The

system will use s3 a(X)(Y)(Z) →+ s4 a′(X)(Y) to make a copy of the lhs of

axiom (2).

state: s4
a′(2)(l(a)(+(−(x))(x)))
s(3)(a(a))(+(x)(y))
w(a)
. . .

For the compound subterm s(3)(a(a))(+(x)(y)), the system will adjust its

path to a by applying s4 s(X)()(Y) →1 s5 s(X)(a)(Y). The old path a(a) can

be stored with the axiom ID as needed, in this example we will simply omit it.

state: s5
a′(2)(l(a)(+(−(x))(x)))
s(3)(a)(+(x)(y))
w(a)
. . .

Linear forms of ta's subterms are already generated in previous steps by R7'

and R8'. The system can use a slightly modi�ed version of R3 and R4 to generate

tree forms of ts and ta.

A case study 145

state: s5
w(a)

a′(2)(l(a)(+(−(x))(x)))
na(a)(+) l′a(a)(+(−(x))(x))
na(a(a))(−) l′a(a(a))(−(x))
la(a(a(a)))(x) l′a(a(a(a)))(x)
la(b(a))(x) l′a(b(a))(x)

s(3)(a)(+(x)(y))
ns(a)(+)
ls(a(a))(x)
ls(b(a))(y)
. . .

Suppose cP-terms labelled ns and ls represent tree(ts); cP-terms labelled na

and la represent tree(ta), and cP-terms labelled l′a represent the linear forms of

ta's subterms. The following cP-ruleset can �nd an mgu of ts and ta.

R9' : s5 w(K) →+ s5 w(a(K)), c(b(K)) | ns(K)(+), na(K)(+)
R10' : s5 w(K) →+ s5 w(a(K)) | ns(K)(−) na(K)(−)
R11' : s5 w(K) →+ s5 m(X)(Y) | ls(K)(X) l′a(K)(Y)
R12' : s5 →1 s6 | w()
R13' : s5 →1 s7
R14' : s7 m(X)(Y)→+ s7 | m(X)(Y)
R15' : s7 m(X)(Y), m(X)(Z)→1 s6
R16' : s7 →1 s8

After checking the promoters ns(a)(+) and na(a)(+), the system will ap-

ply R9', consume w(a), and produce w(a(a)) and w(b(a)). For w(a(a)), R11'

is applicable, and by checking ls(a(a))(x) and l′a(a(a))(−(x)), a variable mapping

m(x)(−(x)) will be generated and w(a(a)) will be consumed. For w(b(a)), R11'

is also applicable, and by checking ls(b(a))(y) and l′a(b(a))(x) another mapping

m(y)(x) will be generated, and w(b(a)) will be consumed.

So far all the cP-terms labelled w in the system were consumed, and rules R9',

R10', R11', and R12' are not applicable. Thus, the system will apply R13' and

change its state to s7.

state: s7
a′(2)(l(a)(+(−(x))(x)))
s(3)(a)(+(x)(y))
m(x)(−(x))
m(y)(x)
. . .

146 Towards Automated Deduction in cP systems

The system does not contain con�ict or redundant mappings, thus R14' and

R15' will not be applicable. R16' will thus change the system state to s8.

The variable mappings for x and y are m(x)(−(x)) and m(y)(x), which rep-

resent an mgu σ = {x 7→ −x, y 7→ x}.
By applying σ to a′(3)(l(a)(+(+(x)(y))(z))), we can obtain a new cP-term

a′′(3)(l(a)(+(+(−x)(x))(z))). The cP-rule s8 a′′()(X) →1 s8 X can extract the

linear representation l(a)(+(+(−x)(x))(z)), and a slightly modi�ed version of R3

and R4 can transform it into a tree form. Following this the cP system can make

a copy of the tree form � suppose nodes and leaves in the copy are labelled as n′

and l′.

state: s8
n(a)(+)
n(a(a))(+)
l(b(a))(z)
n(a(a(a)))(−)
l(b(a(a)))(x)
l(a(a(a(a))))(x)

n′(a)(+)
n′(a(a))(+)
l′(b(a))(z)
n′(a(a(a)))(−)
l′(b(a(a)))(x)
l′(a(a(a(a))))(x)
. . .

The cP-rules R19', R1', and R2' are used to process cP-terms with labels n

and l; and cP-rules R20',R20a', R20b', R1�, and R2� are used to process cP-terms

with labels n′ and l′. By using them to reduce the two copies of the superposed

term l(a)(+(+(−x)(x))(z)) in di�erent ways, a critical pair can be obtained.

R19' : s8 l(K)(+(−(X))(X))→+ s8 l(K)(e)
R1' : s8 l(a(K))(X) l(b(K))(Y) n(K)(+)→+ s8 l(K)(+(X)(Y))
R2' : s8 l(a(K))(X) n(K)(−)→+ s8 l(K)(−(X))
R20' : s8 l′(K)(+(+(X)(Y))(Z))→+ s8 l′(K)(+(X)(+(Y)(Z)))
R20a' : s8 l′(K)(+(X)(+(Y)(−(Y))))→+ s8 l′(K)(X)
R20b' : s8 l′(K)(+(X)(+(−(Y))(Y)))→+ s8 l′(K)(X)
R1� : s8 l′(a(K))(X) l′(b(K))(Y) n′(K)(+)→+ s8 l′(K)(+(X)(Y))
R2� : s8 l′(a(K))(X) n′(K)(−)→+ s8 l′(K)(−(X))

Let us choose the application of R19', R1', and R2' as an example. At

the beginning, cP-terms that match l(K)(+(−(X))(X)) cannot be found in the

Discussion 147

system, so R19' is not applicable. Since R1' is also not applicable, the sys-

tem will apply R2', consume l(a(a(a(a))))(x) and n(a(a(a)))(−), and produce

l(a(a(a)))(−(x)). Then R1' is applicable, l(a(a(a)))(−(x)), l(b(a(a)))(x), and

n(a(a))(+) will be consumed, and l(a(a))(+(−(x))(x)) will be generated. In hav-

ing l(a(a))(+(−(x))(x)), R19' is applicable and will produce l(a(a))(e) and con-

sume l(a(a))(+(−(x))(x)). Then R1' is applicable, thus the system will consume

l(a(a))(e), l(b(a))(z), and n(a)(+), and produce l(a)(+(e)(z)).

In addition to axiom (2) and axiom (3), the system will also use axiom (1)

to reduce terms. Axiom (1) can be represented as R18' : s8 l(K)(+(e)(X)) →+

s8 l(K)(X). By applying R18', l(a)(+(e)(z)) will be reduced to l(a)(z).

state: s8
l(a)(z)
l′(a)(+(−x)(+(x)(z)))
. . .

Similarly, l′(a)(+(+(−x)(x))(z)) can be reduced to l′(a)(+(−x)(+(x)(z))).

Thus a critical pair z and +(−x)(+(x)(z)) will be generated by the cP system. By

orienting them, we can get an new axiom a(4)(+(−x)(+(x)(z)))(z), which refers

to −x + (x + z) → z. After axiom (4) being generated, it will be used to reduce

other existing axioms.

By making use of unbounded computational resources in cP systems, we can

modify the cP-rules to consider all the combinations of axioms and their subterms

simultaneously. Using lhs terms of axioms and their subterms as promoters, they

can be shared and will not be consumed. By setting up a proper ID for each cP-

term, newly generated cP-terms can be well distinguished. For example, to unify

a′(2)(l(a)(+(−(x))(x))) and s(3)(a(a))(+(x)(y)), we can use their axiom IDs and

paths to generate a uni�cation ID i(2)(a)(3)(a(a)). By carrying this ID with the

generated terms, their uni�er will not be confused with uni�ers generated by other

pair of terms.

8.5 Discussion

The cP-rulesets of Πd shown in the previous sections are designed for the left

group theory. To handle other equational theories, some cP-rules need to be mod-

i�ed, while the general algorithm remains the same. If an equational theory can

be represented as a convergent system, and it has a well-founded ordering, the

148 Towards Automated Deduction in cP systems

cP solution will succeed. This will mean all the new equations are orientable and

only a �nite number of critical pairs will be generated.

Given an arbitrary number of axioms, suppose the size of the largest axiom

is m, here the cP system can compute all the critical pairs among the axioms in

O(logm) steps (applying lemmas 8.2.1, 8.3.1, and 8.3.2). To reduce a term t of

size m′ to a normal form, our cP system can simultaneously apply at most O(2m
′
)

rewriting rules in one step. This is signi�cantly faster than traditional rewrite

systems (which apply rewriting rules sequentially).

The cP-rules for the left group theory can be easily extended to equational

theories with n-ary operators without a�ecting the complexity of the superposition

process. This is because the cP system processes (tree forms of) terms layer-by-

layer (no matter how many subterms are in the same layer, they will be handled

parallelly). For example, given a term t with an n-ary operator f , for each parent

node with and ID K, its �rst child's ID is c1(K), its second child's ID is c2(K),

and so on. The following two cP-rules can be used to transform t between tree(t)

and linear(t).

Tree_to_linear n-ary :
s1 l(c1(K))(X1), l(c2(K))(X2), . . . , l(cn(K))(Xn), n(K)(f)
→+ s1 l(K)(f(X1)(X2) . . . (Xn))
Linear_to_tree n-ary :
s1 l(K)(f(X1)(X2) . . . (Xn))
→+ s1 n(K)(f), l(c1(K))(X1), l(c2(K))(X2), . . . , l(cn(K))(Xn)

Rewrite systems work well in many equational theories, while for non-trivial

theorems in other logics they may encounter the combinatorial explosion. This

is common for forward chaining methods. Thus, most of the practical theorem

provers are interactive and require humans to work together with machines. In

using an interactive theorem prover, a user can often reduce an intended problem

into simpler subproblems and solve them separately. However, it is often non-trivial

for a human, especially a non-expert user, to make proof guidance decisions.

Unlike traditional rewrite systems, cP systems can perform completion much

more e�ciently by using unbounded memory. Although �nding e�cient software

or hardware implementations of P system variants such as cP systems is still a

long-term challenge, our cP procedure can still be seen as an e�cient parallel and

distributed algorithm for equational deduction.

In addition to equational logic, the cP solution can also be used as a prototype

to build automated deduction cP systems for other logics. For instance, by mod-

Summary 149

elling or introducing operators negation, conjunction, and universal quanti�cation

into cP systems, we can use them to model �rst-order logic.

Limitations of this work are regarding the grammar and design of the current

version of cP systems. Atoms (lowercase letters) and variables (uppercase letters)

cannot be converted to each other in cP systems, and there is also no straightfor-

ward way to add, remove, or modify cP-rules in a cP system at runtime. Thus, to

fully execute the entire automated deduction procedure in cP systems is challeng-

ing. While in practical implementations, it is simple to perform case conversion in

many modern programming languages.

8.6 Summary

Deduction in equational theory is fundamental in many research areas including

automated theorem proving, formal veri�cation, symbolic computation, and logic

programming. Emphasised in several studies, many interesting and important log-

ics are built on top of equational logic, and all the computable functions and data

structures can be de�ned in equational logic.

In this chapter, we propose a cP system Πd to perform equational deduction.

Given a set of axioms, if each axiom contains at most m symbols, Πd can �nd

all the critical pairs among the axioms in O(logm) steps. To reduce a term t of

size m′ to a normal form, Πd can be exponentially faster than traditional rewrite

systems.

Πd can either be seen as a parallel or distributed algorithm for equational

deduction, or it can be used as a prototype to design deduction cP systems for

other logics. As discussed, by introducing meta cP systems, if a cP system can

be encoded properly its properties can be potentially proven by other cP systems

such as Πd.

Chapter 9

Conclusion

The primary focus of this thesis is the formal veri�cation of biologically inspired

computing models, particularly cP systems. This chapter recalls the contributions

of this thesis and looks to future directions.

9.1 Contributions

P systems are biologically inspired abstract computing models that are motivated

by structures and functions of living cells. cP systems are a new variant of P sys-

tems which support complex symbols and generic rules. Rules in cP systems are

applied following a weak priority order, this can simulate the if-then-else structures

of traditional programming.

By using cP systems with a �xed constant number of generic rules, several

computationally hard or real life problems were successfully solved in polynomial

time. However, none of the previous studies mentioned how to validate or verify

the proposed cP systems. This thesis discussed how to properly model, simulate,

and verify cP systems using various formal tools. It also introduced a cP system-

speci�c simulation and formal veri�cation framework.

To model and simulate rule applications in cP systems, in Chapter 3, the

uni�cation problem of labelled multisets was formally de�ned, and an e�cient

uni�cation algorithm, namely LNMU, was proposed. The well-formedness of la-

belled multiset uni�cation problems was discussed and we proved that LNMU can

solve well-formed labelled multiset uni�cation problems in linear time.

In Chapter 4, multiple cP systems that solve NPC problems were proposed

and veri�ed via model checking. These include ΠSSP � a cP system that solves

the subset sum problem in linear time, and ΠSudoku � a cP system that solves the

151

152 Conclusion

general m×m Sudoku problem in sublinear time. Model checkers including PAT3

and ProB were used to verify the cP systems. In order to help model cP systems in

PAT3 and ProB, two mapping guidelines were proposed. These guidelines can be

used to transform cP system notation into modelling languages including CSP#

and B. By analysing the performance and veri�cation results, we discussed the

advantages and disadvantages of the approach.

Chapter 5 veri�es cP systems via another approach � interactive theorem prov-

ing. Di�erent from model checking, which exhaustively traverses the statespace of

a cP system, the theorem proving approach formalises certain speci�cations and

proves that a cP system satis�es the speci�cations. An open source library was

also designed and implemented, this can be used to model cP systems in the Coq

proof assistant. We also provided a mapping guideline to help transform cP no-

tation into Gallina. Multiple cP system solutions to NPC problems were veri�ed

via this approach. To verify a cP system, model checking and interactive theorem

proving are two complementary formal veri�cation approaches, which can be used

together.

Chapter 6 introduced the implementation of multiple translators, and a for-

mal framework for cP system simulation and veri�cation, namely cPV. Following

the mapping guidelines proposed in previous chapters, multiple translators were

implemented and integrated with PAT3 and ProB. These can be used to verify

certain ground cP systems automatically. However, only cP systems with ground

rules can be veri�ed via this approach. In order to handle cP systems which may

have generic evolution rules, we implemented LNMU in an optimised way, and pro-

posed cPV, which consists of a cP system simulator and a veri�er. cPV supports a

DSL named cPVJ, which can be used to describe di�erent cP system models. Sys-

tem properties including deadlockfreeness, con�uence, termination, determinism,

and goal reachability can be automatically veri�ed in cPV. Chapter 7 evaluates

cPV from both functional and performance aspects. Two benchmark datasets were

built and veri�ed, these can also be used in future studies on cP system simulation

and veri�cation.

A new research direction for cP systems is presented in Chapter 8, which

is �using cP systems as a tool to verify other computing models�. We proposed

a cP system Πd, which can perform automated deduction on equational theories.

Using a set of complex symbols, a term in equational theories can either be mapped

to a tree form or a linear form. A set of transformation rules were proposed, which

can transform a term that contains m symbols between tree and linear forms

Future work 153

in O(logm) time. Using the cP system friendly term encodings and the power

of maximal parallelism, Πd can be exponentially faster than traditional rewrite

systems when performing equational deduction.

9.2 Future work

This thesis has explored several research areas including multiset uni�cation, for-

mal veri�cation of cP systems, and automated deduction. In addition to the afore-

mentioned contributions, we also address several promising and interesting future

directions, these are described as follows.

The interactive theorem proving approach has great potential in verifying

cP systems. Compared to model checking, using proof assistants to verify a cP sys-

tem does not requires exploration of the entire statespace. By making use of prov-

ing techniques such as mathematical induction, only a small amount of memory

is required. However, human intervention is required in this approach. It will be

promising to �nd an e�ective software or hardward implementation which can au-

tomatically model cP systems in certain languages, specify system properties as

theorems, and prove such theorems.

In cP systems, after getting all the uni�ers of a max-parallel rule, how to ef-

fectively select compatible uni�er groups is an interesting topic. To simulate a

cP system in cPV, in each rule application, only one group of compatible uni-

�ers needs to be randomly selected. This can be easily done in polynomial time.

However, for cP system veri�cation, all the groups of compatible uni�ers need to

be obtained and veri�ed. It is not hard to prove that �nding all the compatible

uni�er groups is a NPC problem. Like many other NPC problems, it is possible

to apply certain techniques such as dynamic programming (which trades space for

time) to improve the running time performance of cPV.

Inspired by metaprogramming, an interesting idea to consider is the designing

of a �meta cP system� which can process other cP systems as input data (objects).

By having a proper �cP system rule template�, a meta cP system can run, simulate,

and even verify other cP systems. It is also possible to use meta cP systems to

dynamically insert or remove rules from another cP system, this will signi�cantly

increase the power of cP systems. By modifying deduction cP systems such as

Πd into meta cP systems, it is possible to use them to verify other particular

cP systems.

Appendix A

Transforming ground cP systems

into cP-Coq models

1 def cPtocPCoq(str_ruleset, system_terms, system_state, system_name):

2 atoms = set()

3 ruleset = []

4 for str_rule in str_ruleset:

5 rule = ParseRule(str_rule)

6 ruleset.append(rule)

7 for a1 in rule.LHS():

8 atoms.add(a1)

9 for a2 in rule.RHS():

10 atoms.add(a2)

11 cPCoq_�le = '(*' + system_name + '*)\n'

12 cPCoq_�le += 'From CP Require Export operations.\n'

13 cPCoq_�le += 'From Coq Require Import Lists.List.\n'

14 cPCoq_�le += 'Import ListNotations.\n\n'

15 cPCoq_�le +=

16 'De�nition cPsys1 := cP_sys (s ' + system_state[1:] + ') ['

17 has_sys_term = False

18 for t1 in system_terms:

19 multi = system_terms[t1]

20 for i in range(multi):

21 if has_sys_term:

22 cPCoq_�le += '; Atom ' + t1

23 else:

24 has_sys_term = True

25 cPCoq_�le += 'Atom ' + t1

26 cPCoq_�le += '].\n\n'

27 i = 1

1

2 Transforming ground cP systems into cP-Coq models

28 for rule in ruleset:

29 cPCoq_�le += 'De�nition r' + str(i) +

30 ' (sys:cPsystem_conf): cPsystem_conf :=\n'

31 cPCoq_�le += 'match sys with\n'

32 cPCoq_�le += '| cP_sys (s 1) terms =>\n'

33 lhs_terms = '['

34 has_lhs_term = False

35 for t2 in rule.LHS():

36 multi2 = rule.LHS()[t2]

37 for i in range(multi2):

38 if has_lhs_term:

39 lhs_terms += '; Atom ' + t2

40 else:

41 has_lhs_term = True

42 lhs_terms += 'Atom ' + t2

43 lhs_terms += ']'

44 new_sys_terms = 'sys'

45 for t3 in rule.LHS():

46 multi3 = rule.LHS()[t3]

47 for i in range(multi3):

48 new_sys_terms =

49 '(ConsumeATerm (Atom ' + t3 + ') ' + new_sys_terms + ')'

50 for t4 in rule.RHS():

51 multi4 = rule.RHS()[t4]

52 for i in range(multi4):

53 new_sys_terms =

54 '(ProduceATerm (Atom ' + t4 + ') ' + new_sys_terms + ')'

55 cPCoq_�le +=

56 'if AtomBagIn ' + lhs_terms + ' terms then ChangeState

57 (s ' + rule.RState()[1:] + ') ' + new_sys_terms + '\n'

58 cPCoq_�le += 'else sys\n'

59 cPCoq_�le += '| _ => sys\n'

60 cPCoq_�le += 'end.\n'

61 return cPCoq_�le

Bibliography

[1] G. P un, �Computing with membranes,� Journal of Computer and System

Sciences, vol. 61, no. 1, pp. 108�143, 2000.

[2] G. Paun, Membrane computing: an introduction. Springer Science & Busi-

ness Media, 2002.

[3] R. Nicolescu and A. Henderson, �An introduction to cP systems,� in Enjoy-

ing natural computing, pp. 204�227, Springer, 2018.

[4] Y. Liu, R. Nicolescu, and J. Sun, �Formal veri�cation of cP systems using

PAT3 and ProB,� Journal of Membrane Computing, vol. 2, pp. 84�90, 2020.

[5] J. Cooper and R. Nicolescu, �The Hamiltonian cycle and travelling sales-

man problems in cP systems,� Fundamenta Informaticae, vol. 164, no. 2-3,

pp. 157�180, 2019.

[6] Y. Liu, R. Nicolescu, J. Sun, and A. Henderson, �A sublinear Sudoku solution

in cP Systems and its formal veri�cation,� Computer Science Journal of

Moldova, vol. 85, no. 1, pp. 3�28, 2021.

[7] Y. Liu, R. Nicolescu, and J. Sun, �An e�cient labelled nested multiset uni-

�cation algorithm,� Journal of Membrane Computing, vol. 3, no. 3, pp. 194�

204, 2021.

[8] Y. Liu, R. Nicolescu, and J. Sun, �Formal approach to cP system veri�ca-

tion,� in The 8th Asian Conference on Membrane Computing (ACMC2019),

p. 232, 2019.

[9] Y. Liu, R. Nicolescu, and J. Sun, �Formal veri�cation of cP systems using

Coq,� Journal of Membrane Computing, vol. 3, no. 3, pp. 205�220, 2021.

3

4 Bibliography

[10] Y. Liu, R. Nicolescu, and J. Sun, �Towards automated deduction in cP

systems,� Information Sciences, vol. 587, pp. 435�449, 2022.

[11] R. Nicolescu, �Parallel and distributed algorithms in P systems,� in Inter-

national Conference on Membrane Computing, pp. 35�50, Springer, 2011.

[12] R. Nicolescu and H. Wu, �Complex objects for complex applications,� Roma-

nian Journal of Information Science and Technology, vol. 17, no. 1, pp. 46�

62, 2014.

[13] R. Nicolescu, �Parallel thinning with complex objects and actors,� in Inter-

national Conference on Membrane Computing, pp. 330�354, Springer, 2014.

[14] R. Nicolescu, F. Ipate, and H. Wu, �Programming P systems with complex

objects,� in International conference on membrane computing, pp. 280�300,

Springer, 2013.

[15] A. Henderson and R. Nicolescu, �Actor-like cP systems,� in International

conference on membrane computing, pp. 160�187, Springer, 2018.

[16] R. Nicolescu, �Structured grid algorithms modelled with complex objects,� in

International Conference on Membrane Computing, pp. 321�337, Springer,

2015.

[17] R. Nicolescu, �Revising the membrane computing model for Byzantine agree-

ment,� in International Conference on Membrane Computing, pp. 317�339,

Springer, 2016.

[18] R. Nicolescu, �Most common words-a cP systems solution,� in International

Conference on Membrane Computing, pp. 214�229, Springer, 2017.

[19] A. Henderson, R. Nicolescu, and M. J. Dinneen, �Solving a PSPACE-

complete problem with cP systems,� Journal of Membrane Computing,

vol. 2, no. 4, pp. 311�322, 2020.

[20] R. Nicolescu, M. J. Dinneen, J. Cooper, A. Henderson, and Y. Liu, �Loga-

rithmic SAT Solution with Membrane Computing,� Axioms, vol. 11, no. 2,

p. 66, 2022.

[21] C. Martín-Vide, G. P un, J. Pazos, and A. Rodríguez-Patón, �Tissue P

systems,� Theoretical Computer Science, vol. 296, no. 2, pp. 295�326, 2003.

Bibliography 5

[22] M. Ionescu, G. P un, and T. Yokomori, �Spiking neural P systems,� Funda-

menta informaticae, vol. 71, no. 2, 3, pp. 279�308, 2006.

[23] M. Gheorghe, F. Ipate, C. Dragomir, L. Mierla, L. Valencia Cabrera, M. Gar-

cía Quismondo, and M. d. J. Pérez Jiménez, �Kernel P systems-version 1,�

Proceedings of the Eleventh Brainstorming Week on Membrane Computing,

97-124. Sevilla, ETS de Ingeniería Informática, 4-8 de Febrero, 2013,, 2013.

[24] G. P un, �Introduction to membrane computing,� in Applications of Mem-

brane Computing, pp. 1�42, Springer, 2006.

[25] G. P un and G. Rozenberg, �A guide to membrane computing,� Theoretical

Computer Science, vol. 287, no. 1, pp. 73�100, 2002.

[26] E. M. Clarke, �Model checking,� in International Conference on Founda-

tions of Software Technology and Theoretical Computer Science, pp. 54�56,

Springer, 1997.

[27] M. Müller-Olm, D. Schmidt, and B. Ste�en, �Model-checking,� in Interna-

tional Static Analysis Symposium, pp. 330�354, Springer, 1999.

[28] A. Pnueli, �The temporal logic of programs,� in 18th Annual Symposium on

Foundations of Computer Science (sfcs 1977), pp. 46�57, ieee, 1977.

[29] E. M. Clarke and E. A. Emerson, �Design and synthesis of synchronization

skeletons using branching time temporal logic,� in Workshop on logic of

programs, pp. 52�71, Springer, 1981.

[30] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, �The software model

checker BLAST,� International Journal on Software Tools for Technology

Transfer, vol. 9, no. 5, pp. 505�525, 2007.

[31] D. Beyer and M. E. Keremoglu, �CPAchecker: A tool for con�gurable soft-

ware veri�cation,� in International Conference on Computer Aided Veri�ca-

tion, pp. 184�190, Springer, 2011.

[32] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, �NuSMV: a new sym-

bolic model checker,� International Journal on Software Tools for Technology

Transfer, vol. 2, no. 4, pp. 410�425, 2000.

6 Bibliography

[33] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella, �Nusmv 2: An opensource tool for symbolic

model checking,� in International conference on computer aided veri�cation,

pp. 359�364, Springer, 2002.

[34] M. Kwiatkowska, G. Norman, and D. Parker, �PRISM: Probabilistic sym-

bolic model checker,� in International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation, pp. 200�204, Springer,

2002.

[35] G. J. Holzmann, �The model checker SPIN,� IEEE Transactions on software

engineering, vol. 23, no. 5, pp. 279�295, 1997.

[36] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, �UPPAAL-a

tool suite for automatic veri�cation of real-time systems,� in International

hybrid systems workshop, pp. 232�243, Springer, 1995.

[37] Y. Liu, J. Sun, and J. S. Dong, �Pat 3: An extensible architecture for building

multi-domain model checkers,� in 2011 IEEE 22nd international symposium

on software reliability engineering, pp. 190�199, IEEE, 2011.

[38] M. Leuschel and M. Butler, �ProB: A model checker for B,� in International

symposium of formal methods europe, pp. 855�874, Springer, 2003.

[39] M. Leuschel and M. Butler, �ProB: an automated analysis toolset for the B

method,� International Journal on Software Tools for Technology Transfer,

vol. 10, no. 2, pp. 185�203, 2008.

[40] J. Sun, Y. Liu, and J. S. Dong, �Model checking CSP revisited: introducing a

process analysis toolkit,� in International symposium on leveraging applica-

tions of formal methods, veri�cation and validation, pp. 307�322, Springer,

2008.

[41] J.-R. Abrial and A. Hoare, The B-book: assigning programs to meanings,

vol. 1. Cambridge university press Cambridge, 1996.

[42] R. S. Boyer and J. S. Moore, �A theorem prover for a computational logic,�

in International Conference on Automated Deduction, pp. 1�15, Springer,

1990.

Bibliography 7

[43] U. Norell, Towards a practical programming language based on dependent

type theory, vol. 32. Citeseer, 2007.

[44] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang,

�Secure distributed programming with value-dependent types,� ACM SIG-

PLAN Notices, vol. 46, no. 9, pp. 266�278, 2011.

[45] N. Swamy, C. Hriµcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,

K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, et al., �Dependent

types and multi-monadic e�ects in F,� in Proceedings of the 43rd annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pp. 256�270, 2016.

[46] M. J. Gordon, �HOL: A proof generating system for higher-order logic,� in

VLSI speci�cation, veri�cation and synthesis, pp. 73�128, Springer, 1988.

[47] L. Paulson, Isabelle: A generic theorem prover, vol. 828. Springer Science &

Business Media, 1994.

[48] A. Trybulec and H. A. Blair, �Computer assisted reasoning with Mizar,� in

IJCAI, vol. 85, pp. 26�28, Citeseer, 1985.

[49] R. Matuszewski and P. Rudnicki, �Mizar: the �rst 30 years,� Mechanized

mathematics and its applications, vol. 4, no. 1, pp. 3�24, 2005.

[50] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,

H. Herbelin, G. Huet, C. Munoz, C. Murthy, et al., The Coq proof assistant

reference manual: Version 6.1. PhD thesis, Inria, 1997.

[51] G. Huet, G. Kahn, and C. Paulin-Mohring, �The Coq proof assistant a

tutorial,� Rapport Technique, vol. 178, 1997.

[52] D. Kästner, J. Barrho, U. Wünsche, M. Schlickling, B. Schommer,

M. Schmidt, C. Ferdinand, X. Leroy, and S. Blazy, �CompCert: Practical

experience on integrating and qualifying a formally veri�ed optimizing com-

piler,� in ERTS2 2018-9th European Congress Embedded Real-Time Software

and Systems, pp. 1�9, 2018.

[53] S. Conchon and J.-C. Filliâtre, �A persistent union-�nd data structure,� in

Proceedings of the 2007 workshop on Workshop on ML, pp. 37�46, 2007.

8 Bibliography

[54] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L.

Roux, A. Mahboubi, R. O'Connor, S. Ould Biha, et al., �A machine-checked

proof of the odd order theorem,� in International conference on interactive

theorem proving, pp. 163�179, Springer, 2013.

[55] G. Gonthier et al., �Formal proof-the four-color theorem,� Notices of the

AMS, vol. 55, no. 11, pp. 1382�1393, 2008.

[56] D. Díaz-Pernil, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and A. Riscos-Núnez,

�A P-Lingua programming environment for membrane computing,� in In-

ternational workshop on membrane computing, pp. 187�203, Springer, 2008.

[57] M. García-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M. J.

Pérez-Jiménez, and A. Riscos-Núñez, �An overview of P-Lingua 2.0,� in

International Workshop on Membrane Computing, pp. 264�288, Springer,

2009.

[58] S. Konur, L. Mierl , F. Ipate, and M. Gheorghe, �kPWorkbench: A software

suit for membrane systems,� SoftwareX, vol. 11, p. 100407, 2020.

[59] J. Goguen, �Theorem proving and algebra,� arXiv preprint

arXiv:2101.02690, 2021.

[60] D. Knuth and P. Bendix, �Simple word problems in universal algebras,� in

Automation of Reasoning, pp. 342�376, Springer, 1983.

[61] W. Baader and F. Snyder, �Uni�cation theory,� Handbook of automated

reasoning, vol. 1, pp. 447�533, 2001.

[62] H. Yasuura, �On parallel computational complexity of uni�cation,� in Un-

known Host Publication Title, pp. 235�243, Ohmsha Ltd, 1984.

[63] D. Kapur and P. Narendran, �NP-completeness of the set uni�cation and

matching problems,� in International Conference on Automated Deduction,

pp. 489�495, Springer, 1986.

[64] H. Mannila and E. Ukkonen, �On the complexity of uni�cation sequences,�

in International Conference on Logic Programming, pp. 122�133, Springer,

1986.

[65] D. Benanav, D. Kapur, and P. Narendran, �Complexity of matching prob-

lems,� Journal of symbolic computation, vol. 3, no. 1-2, pp. 203�216, 1987.

Bibliography 9

[66] A. Itai and J. A. Makowsky, �Uni�cation as a complexity measure for logic

programming,� The Journal of Logic Programming, vol. 4, no. 2, pp. 105�

117, 1987.

[67] D. Kapur and P. Narendran, �Complexity of uni�cation problems with

associative-commutative operators,� Journal of Automated Reasoning, vol. 9,

no. 2, pp. 261�288, 1992.

[68] J. A. Robinson, �A machine-oriented logic based on the resolution principle,�

Journal of the ACM (JACM), vol. 12, no. 1, pp. 23�41, 1965.

[69] J. A. Robinson, �Computational logic: The uni�cation computation,� Ma-

chine intelligence, vol. 6, pp. 63�72, 1971.

[70] M. V. Zilli, �Complexity of the uni�cation algorithm for �rst-order expres-

sions,� Calcolo, vol. 12, no. 4, pp. 361�371, 1975.

[71] M. Paterson and M. Wegman, �Linear uni�cation,� in Proceedings of the

eighth annual ACM symposium on Theory of computing, pp. 181�186, 1976.

[72] A. Martelli and U. Montanari, �An e�cient uni�cation algorithm,� ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 4,

no. 2, pp. 258�282, 1982.

[73] A. Dovier, A. Policriti, and G. Rossi, �A uniform axiomatic view of lists,

multisets, and sets, and the relevant uni�cation algorithms,� Fundamenta

Informaticae, vol. 36, no. 2, 3, pp. 201�234, 1998.

[74] E. Dantsin and A. Voronkov, �A nondeterministic polynomial-time uni�-

cation algorithm for bags, sets and trees,� in International Conference on

Foundations of Software Science and Computation Structure, pp. 180�196,

Springer, 1999.

[75] J. Ja�ar, �E�cient uni�cation over in�nite terms,� New Generation Com-

puting, vol. 2, no. 3, pp. 207�219, 1984.

[76] C. Dwork, P. C. Kanellakis, and J. C. Mitchell, �On the sequential nature

of uni�cation,� The Journal of Logic Programming, vol. 1, no. 1, pp. 35�50,

1984.

10 Bibliography

[77] D. E. Rydeheard and R. M. Burstall, �A categorical uni�cation algorithm,�

in Category Theory and Computer Programming, pp. 493�505, Springer,

1986.

[78] G. Huet, Résolution d'équations dans des langages d'ordre 1, 2, ... w. PhD

thesis, PhD thesis, Université Paris VII, 1976.

[79] M. d. J. Pérez Jiménez and F. Sancho Caparrini, �Verifying a P system gen-

erating squares,� Romanian Journal of Information Science and Technology

(ROMJIST), 5 (1-2), 181-191., 2002.

[80] P. Kefalas, G. Eleftherakis, M. Holcombe, and M. Gheorghe, �Simulation and

veri�cation of P systems through communicating X-machines,� BioSystems,

vol. 70, no. 2, pp. 135�148, 2003.

[81] O. Andrei, G. Ciobanu, and D. Lucanu, �Executable speci�cations of P

systems,� in International Workshop on Membrane Computing, pp. 126�145,

Springer, 2004.

[82] F. Ipate, M. Gheorghe, and R. Lefticaru, �Test generation from P systems

using model checking,� The Journal of Logic and Algebraic Programming,

vol. 79, no. 6, pp. 350�362, 2010.

[83] F. Ipate, R. Lefticaru, and C. Tudose, �Formal veri�cation of P systems

using SPIN,� International Journal of Foundations of Computer Science,

vol. 22, no. 01, pp. 133�142, 2011.

[84] F. Ipate and A. Turcanu, �Modeling, veri�cation and testing of P systems

using Rodin and ProB,� Proceedings of the Ninth Brainstorming Week on

Membrane Computing, 209-219. Sevilla, ETS de Ingeniería Informática, 31

de enero-4 de febrero, 2011, 2011.

[85] R. Lefticaru, C. Tudose, and F. Ipate, �Towards automated veri�cation of P

systems using SPIN,� International Journal of Natural Computing Research

(IJNCR), vol. 2, no. 3, pp. 1�12, 2011.

[86] B. Aman and G. Ciobanu, �Modelling and veri�cation of weighted spiking

neural systems,� Theoretical Computer Science, vol. 623, pp. 92�102, 2016.

Bibliography 11

[87] M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. �urcanu, L. Va-

lencia Cabrera, M. García-Quismondo, and L. Mierl , �3-Col problem mod-

elling using simple kernel P systems,� International Journal of Computer

Mathematics, vol. 90, no. 4, pp. 816�830, 2013.

[88] R. Lefticaru, M. Gheorghe, S. Konur, I. M. Niculescu, and H. N. Adorna,

�Spiking Neural P Systems Simulation and Veri�cation,� in 18th Interna-

tional Conference on High Performance Computing and Simulation (HPCS),

(Barcelona, Spain), IEEE, 2021.

[89] A. Bundy, �A survey of automated deduction,� in Arti�cial intelligence to-

day, pp. 153�174, Springer, 1999.

[90] G. Huet and D. Oppen, �Equations and rewrite rules: a survey,� Formal

Language Theory, pp. 349�405, 1980.

[91] J. Hsiang, H. Kirchner, P. Lescanne, and M. Rusinowitch, �The term rewrit-

ing approach to automated theorem proving,� The Journal of Logic Program-

ming, vol. 14, no. 1-2, pp. 71�99, 1992.

[92] L. Bachmair and H. Ganzinger, �Rewrite-based equational theorem proving

with selection and simpli�cation,� Journal of Logic and Computation, vol. 4,

no. 3, pp. 217�247, 1994.

[93] M. P. Bonacina, �A taxonomy of theorem-proving strategies,� in Arti�cial

Intelligence Today, pp. 43�84, Springer, 1999.

[94] G. Huet, �Con�uent reductions: Abstract properties and applications to term

rewriting systems,� Journal of the ACM (JACM), vol. 27, no. 4, pp. 797�821,

1980.

[95] G. Peterson and M. Stickel, �Complete sets of reductions for some equational

theories,� Journal of the ACM (JACM), vol. 28, no. 2, pp. 233�264, 1981.

[96] L. Bachmair, N. Dershowitz, and D. A. Plaisted, �Completion without fail-

ure,� in Rewriting Techniques, pp. 1�30, Elsevier, 1989.

[97] J. Hsiang, �Refutational theorem proving using term-rewriting systems,�

Arti�cial Intelligence, vol. 25, no. 3, pp. 255�300, 1985.

12 Bibliography

[98] J. Hsiang, �Rewrite method for theorem proving in �rst order theory with

equality,� Journal of Symbolic Computation, vol. 3, no. 1-2, pp. 133�151,

1987.

[99] M. Kurihara and H. Kondo, �Completion for multiple reduction orderings,�

Journal of Automated Reasoning, vol. 23, no. 1, pp. 25�42, 1999.

[100] I. Wehrman, A. Stump, and E. Westbrook, �Slothrop: Knuth-Bendix com-

pletion with a modern termination checker,� in International Conference on

Rewriting Techniques and Applications, pp. 287�296, Springer, 2006.

[101] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp, �Multi-completion

with termination tools (system description),� in International Joint Confer-

ence on Automated Reasoning, pp. 306�312, Springer, 2008.

[102] S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara, �Multi-completion

with termination tools,� Journal of Automated Reasoning, vol. 50, no. 3,

pp. 317�354, 2013.

[103] Y. Liu, R. Nicolescu, and J. Sun, �Multiset uni�cation and cP system sim-

ulation,� in The International Conference on Membrane Computing 2020,

(Vienna, Austria), TU Wien, 2020.

[104] D. Berend, �On the number of Sudoku squares,� Discrete Mathematics,

vol. 341, no. 11, pp. 3241�3248, 2018.

[105] Y.-B. Kim, Distributed algorithms in membrane systems. PhD thesis, Re-

searchSpace@ Auckland, 2012.

[106] M. Malit,a, �Membrane computing in Prolog,� in Pre-Proceedings of The

Workshop on Multiset Processing (WMP-CdeA 2000), p. 8, 2000.

[107] D. Balbontín Noval, M. J. Pérez-Jiménez, and F. Sancho Caparrini, �A

MzScheme implementation of transition P systems,� in Workshop on Mem-

brane Computing, pp. 58�73, Springer, 2002.

[108] A. V. Baranda, F. Arroyo, J. Castellanos, and R. Gonzalo, �Towards an

electronic implementation of membrane computing: a formal description of

non-deterministic evolution in transition P systems,� in International Work-

shop on DNA-Based Computers, pp. 350�359, Springer, 2001.

Bibliography 13

[109] F. Arroyo, C. Luengo, A. V. Baranda, and L. d. Mingo, �A software simu-

lation of transition P systems in Haskell,� in Workshop on Membrane Com-

puting, pp. 19�32, Springer, 2002.

[110] A. Syropoulos, E. G. Mamatas, P. C. Allilomes, and K. T. Sotiriades, �A

distributed simulation of transition P systems,� in International Workshop

on Membrane Computing, pp. 357�368, Springer, 2003.

[111] I. A. Nepomuceno-Chamorro, �A Java simulator for membrane computing,�

J. Univers. Comput. Sci., vol. 10, no. 5, pp. 620�629, 2004.

[112] A. Cordón-Franco, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and

F. Sancho-Caparrini, �A Prolog simulator for deterministic P systems with

active membranes,� New Generation Computing, vol. 22, no. 4, pp. 349�363,

2004.

[113] M. Á. Gutiérrez-Naranjo, M. d. J. Pérez-Jiménez, and A. Riscos-Núñez, �A

simulator for con�uent P systems,� Proceedings of the Third Brainstorming

Week on Membrane Computing, 169-184. Sevilla, ETS de Ingeniería Infor-

mática, 31 de Enero-4 de Febrero, 2005,, 2005.

[114] L. Bianco and A. Castellini, �Psim: a computational platform for Metabolic

P systems,� in International Workshop on Membrane Computing, pp. 1�20,

Springer, 2007.

[115] A. Castellini and V. Manca, �MetaPlab: A computational framework for

metabolic P systems,� in International Workshop on Membrane Computing,

pp. 157�168, Springer, 2008.

[116] M. A. Martínez-del Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and

A. Riscos-Núñez, �A P-Lingua based simulator for tissue P systems,� The

Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp. 374�382,

2010.

[117] C. Buiu, O. Arsene, C. Cipu, and M. Patrascu, �A software tool for modeling

and simulation of numerical P systems,� BioSystems, vol. 103, no. 3, pp. 442�

447, 2011.

[118] O. Arsene, C. Buiu, and N. Popescu, �SNUPS-a simulator for numerical

membrane computing,� International Journal of Innovative Computing, In-

formation and Control, vol. 7, no. 6, pp. 3509�3522, 2011.

14 Bibliography

[119] I. Pérez-Hurtado, L. Valencia-Cabrera, J. M. Chacón, A. Riscos-Núnez, and

M. J. Pérez-Jiménez, �A P-Lingua based simulator for tissue P systems with

cell separation,� Romanian Journal of Information Science and Technology,

vol. 17, no. 1, pp. 89�102, 2014.

[120] P. Guo, C. Quan, and L. Ye, �UPSimulator: A general P system simulator,�

Knowledge-Based Systems, vol. 170, pp. 20�25, 2019.

[121] Z. Dang, O. H. Ibarra, C. Li, and G. Xie, �On the decidability of model-

checking for P systems,� J. Autom. Lang. Comb., vol. 11, no. 3, pp. 279�298,

2006.

[122] M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, and R. Lefticaru, �Kernel P

systems: from modelling to veri�cation and testing,� Theoretical Computer

Science, vol. 724, pp. 45�60, 2018.

[123] M. Gheorghe, S. Konur, and F. Ipate, �Kernel P systems and stochastic

P systems for modelling and formal veri�cation of genetic logic gates,� in

Advances in unconventional computing, pp. 661�675, Springer, 2017.

[124] M. Hermann, C. Kirchner, and H. Kirchner, �Implementations of term

rewriting systems,� The Computer Journal, vol. 34, no. 1, pp. 20�33, 1991.

[125] J. Bergstra and J. Tucker, �A characterisation of computable data types

by means of a �nite equational speci�cation method,� in International Col-

loquium on Automata, Languages, and Programming, pp. 76�90, Springer,

1980.

[126] J. Siekmann, �Uni�cation theory,� Journal of Symbolic computation, vol. 7,

no. 3-4, pp. 207�274, 1989.

[127] L. Bachmair, Canonical equational proofs. Springer, 1991.

[128] U. Martin, �How to choose the weights in the Knuth Bendix ordering,� in

International Conference on Rewriting Techniques and Applications, pp. 42�

53, Springer, 1987.

[129] K. Korovin and A. Voronkov, �Orienting rewrite rules with the Knuth�

Bendix order,� Information and Computation, vol. 183, no. 2, pp. 165�186,

2003.

	Co-Authorship Forms
	1 - ACMC - PAT3 ProB
	2 - JMC - PAT3 ProB
	3 - ICMC - MSU
	4 - JMC - LNMU
	5 - JMCS - Sudoku
	6 - JMC - cPCoq
	7 - IS - Deduction

	Formal verification of biologically inspired computing models
	Contents
	List of Figures
	List of Tables
	Introduction
	Outline
	Key results and publications
	Summary

	Background and Related Work
	Background
	Related work
	Summary

	An efficient labelled multiset unification algorithm
	Definitions
	LNMU – an efficient labelled multiset unification algorithm
	Analysis of LNMU
	Well-formed labelled multiset unification
	Worked examples
	Summary

	Model Checking of cP systems
	cP system solutions to SSP and Sudoku
	Modelling cP systems in ProB and PAT3
	Model checking results and disscussion
	Summary

	Deductive Verification of cP systems
	Modelling cP systems in Coq
	Case studies
	Discussion
	Summary

	cPV – a Formal Verification Framework for cP Systems
	Automatically verifying ground cP systems using PAT3 and ProB
	cPV – a simulation and formal verification framework for cP systems

	Evaluation of cPV
	A case study
	Evaluation of cPV
	Comparison to related work
	Summary

	Towards Automated Deduction in cP systems
	Equational deduction
	cP system encodings
	cP system rulesets for equational deduction
	A case study
	Discussion
	Summary

	Conclusion
	Contributions
	Future work

	Transforming ground cP systems into cP-Coq models
	Bibliography

	Blank Page

