

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

Biophysical and Institutional Challenges to Management of Dairy Shed Effluent and Stream Management Practices on New Zealand Dairy Farms

Paula Elizabeth Blackett

Thesis submitted for the degree of Doctor of Philosophy University of Auckland, New Zealand February 2004

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that due acknowledgement is made where appropriate and that the author's permission is obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the collection of another prescribed library on request from that Library; and

1. I agree that this thesis may be photocopied for supply to any person in accordance with the provisions of Section 56 of the Copyright Act 1994

Or

2. This thesis may not be photocopied other than to supply a copy for the collection of another prescribed library.

(Strike out 1 or 2)

Signed: aufa blow Inff. Date: 6th July 2004

Abstract

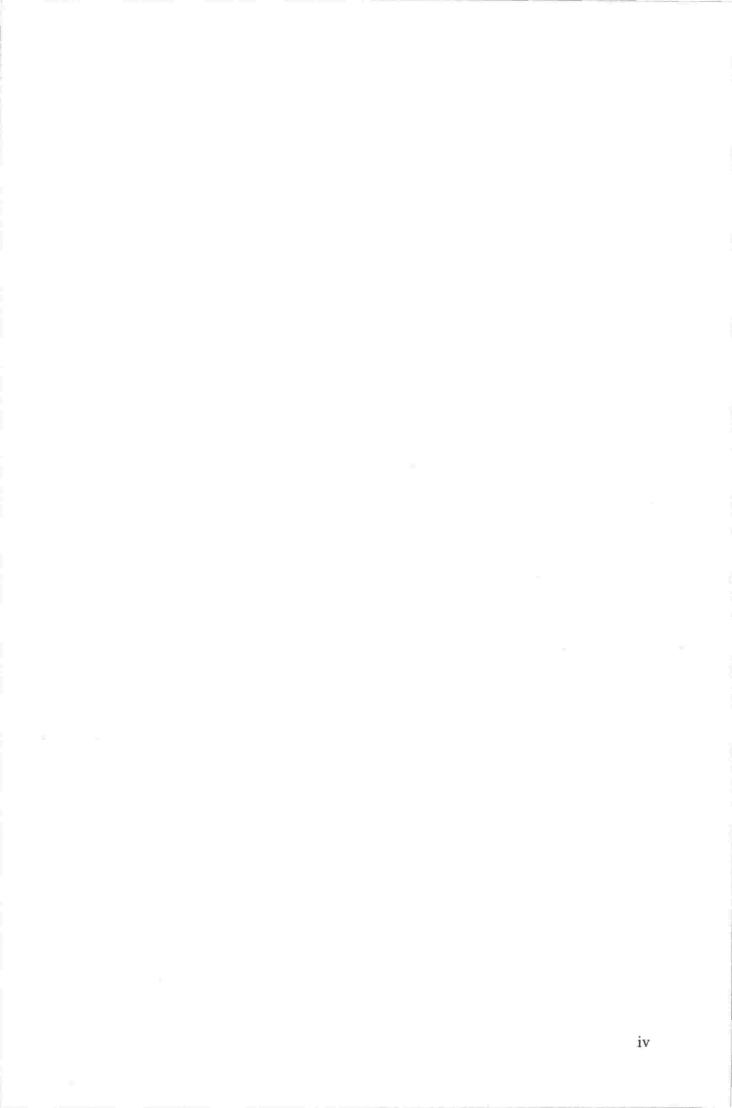
New Zealand dairy farmers have been accused in a national 'dirty dairying' campaign of 'selfishly destroying the community's natural water resources' (Fish & Game 2001, pg 1) through a combination of point and diffuse source pollution and habitat modification. The dirty dairying debate in response to Fish & Game's campaign is about the conflicts that arise through differing values of rural water resources in New Zealand. That farming practices affect freshwater ecosystems is broadly recognised but poorly understood. The problems encountered in New Zealand's dairy sector, however, are exacerbated by the nature of relationships between dairy industry actors, gaps in information and provision of environmental advice to farmers.

This thesis examines aspects of the debate through scientific and social frameworks using three strongly interrelated investigations situated in the laboratory, field and social environment. Each investigation adds further levels of complexity providing potential biophysical solutions as well as insights into the challenges facing those seeking to manage the effects of dairy farming practices. Investigations focused mainly on dairy effluent and stream ecology in the Waikato and Taranaki areas.

The research showed that both dairy shed effluent (DSE) dilution in stream flow and stream management practices, particularly riparian shading, were important in reducing the effects of discharges to stony stream communities. In some situations, diffuse inputs from stream management practices had already degraded stream communities, making them less sensitive to discharges. However, significant adverse effects on stream benthic invertebrates were observed for oxidation pond discharges at 338-fold and below, but not at 1000-fold dilution.

Significant improvements in rural water and habitat quality are unlikely to be achieved under the regulatory regime in place at the time of the interviews carried out in this research. DSE discharges are controlled through statutory regulation, but in many cases the permitted dilution rates are too low. Controls on diffuse pollution and habitat modification are voluntary, and undertaken by some farmers. Improvements in rural water and habitat quality are constrained by a lack of clear understanding by farmers on the importance of DSE treatment and stream management practices and a lack of impetus to act. Contributing to this is limited availability, transfer and often misalignment of information between dairy industry actors involved in environmental management. However, enhanced information provision alone is unlikely to lead to improved rural water and habitat quality and Fonterra's Clean Stream Accord (May 2003), while contentious, represents a potentially effective way forward for stream management in New Zealand. Success of this Accord depends on all dairy industry actors (including farmers) working together and combining their strengths in order to generate useful, practical information and solutions to achieve improvements in rural water and habitat quality.

Acknowledgments


There are many people who I would like to thank for their contributions to this thesis. In particular, my supervisors Dr John Quinn (NIWA), Professor Richard Le Heron and Dr Brad Coombes (University of Auckland) for helping me negotiate the challenging path towards merging freshwater biology and geography in a single piece of work. The assistance of many other NIWA staff cannot go unthanked including Dr Bob Wilcock (for many helpful comments), Dr Chris Hickey (for experimental design ideas on Chapter 3) Lisa Golding, Mike Martin, Helen Ray (for help with laboratory methods), James Sukias (for collecting effluents), Glenys Croker and Brian Smith (for helping with invertebrate identification). I would not have been able to find field study sites or contact interviewees (for Chapter 6) without the help of Chris Fowles and Kimberley Dunning (Taranaki Regional Council) and Environment Waikato staff, particularly Andrew Taylor.

Thank you to my many field assistants Ken Blackett, Randall Watson, Shirley Nichols, Steve Blackett, Teresa Brown, and Sally Gaw who still turn up to lend a hand despite full knowledge of my tendencies to work with things that smell bad.

To Norma Blackett and Shirley Nichols thank you for all the proof reading, perhaps one day I will learn to put full stops at the end of paragraphs.

A huge thank you to my friends and family for just 'being there' through what has been an interesting and challenging few years.

This study was funded through the River Ecosystems and Land Use Interactions Programme (Contract C01X0022) funded by the New Zealand Foundation for Research, Science and Technology (FRST). Student costs and stipend were provided by NIWA's Non-Specific Output Funds from FRST. Environment Waikato contributed towards the laboratory study (Chapter 3) water quality analysis costs.

Table of Contents

List of	f Tables	xiii
List of	f Figures	xvii
List of	f Plates	xxi
		1
Chapt	er 1: Dirty Dairying in New Zealand?: An Introduction to	
the Cl	allenges of Point Source and Diffuse Freshwater Pollution	
from l	Dairy Farming Practices	
1.1	The dirty dairying debate – an introduction	1
1.2	The contribution of this thesis	4
1.3	Dirty dairying debate as a threat to the dairy export industry	5
1.3.1	'Market Focused' as a first step towards industry wide environmental	
	guidelines.	7
1.3.2	The Clean Streams Accord	9
1.4	The current approach to management of dairy shed effluent and stream	
	management practices: Are they adequately protecting rural water and	
	habitat quality?	11
1.5	How have dairy shed effluent and stream management practices been	
	managed?	13
1.5.1	Is dairy farming affecting water and habitat quality? Scientific	
	evidence, conflicts and uncertainties	17
1.5.2	Future regulation: alternatives and conflicting opinions	20
1.6	Organisation of this thesis	22

V

Chapter 2: Evolution of Dairy Shed Effluent and Stream Management Practices as Prominent Biophysical and Governance Issues.

2	2.1	Dairy farming from a historical perspective	28
	2.1.1	Pre-refrigeration era (1814-1882)	30
	2.1.2	Post-refrigeration (1882-1930)	31
	2.1.3	Period of slow increase (1930-1990)	33
	2.1.4	Expansion and intensification (1990 to present)	35
2	2	Environmental issues associated with dairy farming	38
	2.2.1	Dairy shed effluent issues	39
	2.2.2	Diffuse pollution: Land and stream management issues on dairy farms	41
2	.3	Why are dairy farming practices a biological issue?	44
	2.3.1	Dissolved oxygen	45
	2.3.2	Biological oxygen demand (BOD)	48
	2.3.3	Inorganic suspended solids	48
	2.3.4	Temperature	49
	2.3.5	pH	51
	2.3.6	Phosphorus	52
	2.3.7	Nitrogen	52
	2.3.8	Response of micro-organisms, algae and invertebrates to organic	
		discharges	53
	2.3.9	Subsidy-stress effect	54
	2.3.10	Cumulative impacts of organic discharges	55
2	.4	Managing the effects of dairy farming practices	55
	2.4.1	Statutory regulation of dairy farmers	55
	2.4.2	Management of diffuse pollution from dairy farming practices	67
	2.4.3	Criticisms of point source and diffuse pollution management on New	
		Zealand dairy farms	70
2	.5	Conclusions	71

Chapter 3: Influences of Dairy Shed Effluent Treatment Technology and Dilution on Stream Periphyton and Invertebrates: a Microcosm Study.

3.1	Introduction	73
3.1.1	Influences of organic discharges on stream communities	73
3.1.2	Dairy shed effluent management in New Zealand	74
3.1.3	Dilution and treatment technology as means to reduce effects of dairy	/
	shed effluent discharges	75
3.2	Methods	76
3.2.1	Wastewater sources	77
3.2.2	Experimental microcosm set up	78
3.2.3	Wastewater processing	79
3.2.4	Benthic metabolism and periphyton biomass	80
3.2.5	Snail experiment	80
3.2.6	Invertebrate community experiment	81
3.2.7	Statistical procedures	83
3.3	Results	83
3.3.1	Wastewater quality characteristics	00
5.5.1	1 million of the second s	83
3.3.2	Water quality within the chambers	83 87
3.3.2	Water quality within the chambers	87
3.3.2	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism	87
3.3.2 3.3.3	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass	87 90
3.3.23.3.33.3.4	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass Effects of effluent type and dilution on snail growth	87 90 95
3.3.23.3.33.3.43.3.5	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass Effects of effluent type and dilution on snail growth Effects on invertebrate in the community experiment	87 90 95 96
3.3.2 3.3.3 3.3.4 3.3.5 3.4	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass Effects of effluent type and dilution on snail growth Effects on invertebrate in the community experiment Discussion	87 90 95 96 99
3.3.2 3.3.3 3.3.4 3.3.5 3.4 3.4.1	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass Effects of effluent type and dilution on snail growth Effects on invertebrate in the community experiment Discussion Wastewater quality	87 90 95 96 99 99
3.3.2 3.3.3 3.3.4 3.3.5 3.4 3.4.1 3.4.2	Water quality within the chambers Effects of wastewater type and dilution rate on benthic metabolism and periphyton biomass Effects of effluent type and dilution on snail growth Effects on invertebrate in the community experiment Discussion Wastewater quality Microcosm wastewater assimilation	87 90 95 96 99 99 101

Chapter 4: The Effects of Dairy Shed Oxidation Pond Effluent Discharges and Stream Management Practices on Water Quality, Periphyton and Benthic Invertebrates in Taranaki Streams.

4.1	Introduction	109
4.1.1	Objectives of the study	110
4.2	Method	111
4.2.1	Study location and sites	111
4.2.2	Wastewater quality	112
4.2.3	Stream surveys	113
4.2.4	Statistical analysis	116
4.2.5	Stream management index	116
4.3	Results	118
4.3.1	Site physical attributes	118
4.3.2	Wastewater quality	121
4.3.3	Influences of dairy shed effluent discharges on stream water quality	
	and wastewater assimilation	121
4.3.4	Influences of wastewater discharges on stream periphyton	131
4.3.5	Influences of dairy shed effluent discharges on stream invertebrate	
	communities	133
4.3.6	Predicting MCI and QMCI using a stream management index	139
4.4	Discussion	142
4.4.1	Influences on upstream water quality, periphyton biomass and	
	invertebrate communities	142
4.4.2	Dairy shed effluent discharge	146
4.4.3	Effects of dairy shed effluent wastewater discharges on stream water	
	quality, invertebrates and periphyton	146
4.4.4	The stream management index	149
4.5 Co	nclusions	150

Chapter 5: Governance Strategies as a Means to Resolve Social Dilemmas Inherent in Environmental Debates: A Review.

5.1	Introduction	153
5.2	Statutory regulation as a means to resolve environmental debates	154
5.3	Economic instruments and incentives as a means to resolve	
	environmental debates	156
5.4	Voluntary regulation as a means to resolve environmental debates	158
5.4.1	Voluntary regulation via the information deficit approach	159
5.4.2	Information dissemination	161
5.4.3	Self regulation and voluntary associations as a means to resolve	
	environmental debates	168
5.4.4	The importance of social capital (or action competence) to voluntary	
	initiatives	171
5.4.5	Challenges of participation and collective action	172
5.4.6	Criticisms of participation and collective action	174
5.4.7	Industry self regulation	177
5.5	Conclusions	178

Chapter 6: Tensions and Interactions of Dairy Industry Actors Regarding Knowledge and Governance of Point and Diffuse Freshwater Pollution Issues.

6.1	Introduction	181
6.2	Methods	182
6.3	Perspectives on dairy shed effluent and stream management	183
6.3.1	Dairy shed effluent and stream management from the dairy farmers	
	perspective	183
6.3.2	Dairy shed effluent and stream management from a regional council	
	perspective	188
6.3.3	Dairy shed effluent and stream management from Fonterra's	
	perspective	191

6.3.4	Dairy shed effluent and stream management from Dexcel's	
	perspective	193
6.3.5	Dairy shed effluent and stream management from Federated Farmers	
	perspective	194
6.3.6	Dairy shed effluent and stream management from Fish & Game's	
	perspective	195
6.3.7	Dairy shed effluent and stream management from agricultural	
	consultants perspective	197
6.3.8	Research Institutions	198
6.3.9	Main themes of the interviews	198
6.4	Information flow within the dairy industry	198
6.5	Tensions and perspectives on dairy shed effluent and stream	
	management regulation	204
6.5.1	Perspectives on Statutory Regulation	206
6.5.2	Perspectives on economic instruments	208
6.5.3	Perspectives on voluntary regulation	208
6.5.4	Reconciling governance tensions	218
6.6	Conclusions	219

Chapter Seven: Dealing with Point Source Pollution and Diffuse Impacts From Dairy Farming Practices: Future Management Concerns.

7.1	Introduction	221
7.2	The importance of dairy shed effluent dilution and stream	
	management practices	222
7.3	Managing dairy shed effluent disposal	226
7.3.1	Failures of an effects based system for managing current water and	
	habitat quality problems	229
7.3.2	Dairy shed effluent inspectors as a vehicle for change.	230
7.4	Managing diffuse pollution issues	231
7.4.1	Diffuse pollution control through the Clean Streams Accord	232

What needs to change?	233
The benefits of addressing aspects of the dirty dairying debate using	
ecological and social research frameworks	235
Conclusions	236
	The benefits of addressing aspects of the dirty dairying debate using ecological and social research frameworks

References

List of Tables

Table 2.1: Regional distribution of dairy cattle in New Zealand for the 2001/02 season	36
Table 2.2: Effluent characteristics of dairy shed oxidation ponds	62
Table 2.3: Median effluent characteristics of an advanced pond effluent (APS) and a parallel conventional two pond system at Hautapu, New Zealand from January 1999 to January 2001	64
Table 2.4: Water quality from two surface flow wetlands	66
Table 3.1: Analytical methodology	78
Table 3.2: Characteristics of oxidation pond (OP) advanced pond (APS), wetland(W) and irrigated field drainage (IFD) wastewater for the snail growth and invertebrate community experiments ranked on strength and compared with published data	84
Table 3.3: Differences in regression line slope and y-intercept (P < 0.05) for respiration, net photosynthesis, periphyton chlorophyll a and periphyton AFDW between OP, APS and W wastewaters in the invertebrate community experiment	92
Table 4.1: Analytical methodology	114
Table 4.2. Physical stream characteristics, dilution rate, percentage of catchment in pasture and disturbance factors at each study site. Farm no. represents the order of the farm along the stream from Egmont National Park boundary	119

xiii

- Table 4.3: Wastewater quality from ten Taranaki two pond oxidation systemscompared with published effluent equality date122
- Table 4.4: Summary of changes in eigenvalues (Figure 4.2), and presents possible reasons for the water qualities observed at the upstream and downstream sites. Note: water quality is ranked comparatively as high, moderate and poor and not based on any standards or guidelines 129
- Table 4.5: Maximum and minimum stream temperature, pH, conductivity and
dissolved oxygen upstream and downstream of the wastewater
discharges over 24 hrs and maximum and daytime average PAR130
- Table 4.6: Correlations between changes in periphyton chlorophyll a and AFDW between sites upstream and downstream of the dairy shed effluent discharge and measured increases in BOD, TKN, DOC, TP, DRP and DIN
- Table 4.7: Correlations between upstream and downstream periphytonchlorophyll a and AFDW and water quality parameters, the numberof grazers, collector-gatherers and chironomid density132
- Table 4.8: Study site grouping based on MCI, QMCI, %EPT, dominantinvertebrate species and the impact of wastewater discharges138

 Table 4.9: Comparison of water quality of upstream (a) and downstream (A)

 sites with medians from other Waikato and Westland dairy

 catchments and ANZECC default trigger guidelines for the protection

 of aquatic life
 143

Table 4A.1: Species collected during this study and MCI score 151

xiv

Table 7.1: Measured and calculated downstream increases in TKN, BOD and TP below which may not reduce downstream QMCI by more than an arbitrary 0.5 units in stony streams with initial QMCI cores of >3

•

List of Figures

Figure 2.1: The number of dairy cattle milked, average effective area of farms (ha), average dairy herd size, milk fat produced per cow (kg), the number of dairy farms and the total export earnings for dairy products in New Zealand from 1869 to 2002	29
Figure 2.2: Conceptual model representing the effects of a continuous organic effluent on water quality and stream community composition	46
Figure 2.3: Subsidy-stress gradient, illustrated by a hypothetical performance curve	54
Figure 2.4: Conceptual model showing the relative contributions of point and diffuse pollution to the Lower Waikato River	68
Figure 3.1: Concentrations of TKN, ammonium-N, nitrate-N, BOD, TP and DRP in initial wastewater dilutions within the microcosm and after over a 24 hours on day 15 of the invertebrate community experiment	88
Figure 3.2: Influence of wastewater dilution and treatment type on periphyton metabolic rates and biomass in the invertebrate community experiment	91
Figure 3.3: Influences of wastewater dilution on autotrophic index and photosynthesis: respiration ratio in the invertebrate community experiment	93
Figure 3.4: Relationships between chlorophyll a, gross photosynthesis, respiration and initial diluted wastewater concentrations of DRP DIN and DOC for each treatment type in the invertebrate community experiment	95
Figure 3.5: Influence of wastewater dilution and treatment type on snail (Potamopyrgus antipodarum) shell growth (mm)	96

xvii

Figure 3.6: Influence of dilution and treatment type on percentage survival of Deleatidium sp. (Mayfly) and Paracalliope fluviatilis (Amphipod) in the invertebrate community experiment. None of the regression slopes are significantly different from zero 97 Figure 3.7: Influence of dilution and treatment type on growth of Pycnocentrodes sp. and Olinga feredayi over 15 days 97 Figure 3.8: Influences on chironomid densities of dairy shed effluent wastewater dilution, periphyton AFDW and chlorophyll a and wastewater BOD 98 Figure 4.1: Measured upstream and downstream water quality and calculated downstream water quality data in g/m3. ANZECC default trigger guidelines for upland and lowland streams are illustrated by dotted lines 123 Figure 4.2: Redundancy analysis (RDA) ordination of upstream and downstream water quality data overlaid with environmental significant gradients (P < 0.02). Paired sites upstream and downstream of dairy shed effluent discharges are linked by lines 128 Figure 4.3: Periphyton chlorophyll a and AFDW concentrations upstream and downstream of the dairy shed effluent wastewater discharges 131 Figure 4.4: Relationships between mean QMCI, %EPT and invertebrate density (per m2) and dilution for upstream and downstream study sites. Pollution categories for QMCI follows Stark (1993). Paired sites that differ significantly (Wilcoxon Signed Rank Test) are shown with an asterisk after the site code 134 Figure 4.5: Canonical correspondence analysis (CCA) ordination plot of invertebrate taxa density overlaid with significant environmental xviii

gradients (P < 0.02). Paired sites upstream and downstream of dairy shed effluent discharges are linked by lines 135 Figure 4.6: Functional feeding groups upstream and downstream of dairy shed effluent discharges 139 Figure 4.7: The relationship between stream management index and MCI and QMCI at sites down stream of dairy shed oxidation pond wastewater discharges 140 Figure 4.8: Measured and calculated increases in TKN, BOD and TP and downstream reduction in QMCI associated with dairy shed effluent discharge at sites with upstream QMCI > 3141 Figure 6.1: The contact and information flow between actors involved with environment al management issues in the dairy industry for the Waikato (a) and Taranaki (b) regions. Note: dashed lines represent weak interactions 201 Figure 7.1: A possible method for the selection of dairy shed effluent treatment system for stony streams based on dilution rate and following existing Regional rules 228 Figure 7.2: A possible method for the selection of dairy shed effluent treatment system based on calculated downstream increases in TKN, BOD and TP in stony stream with upstream QMCI > 3229 Figure 7.3: Current (A) and enhanced (B) relationships between dairy industry actors. Note: size of arrows represents strength of interactions 234

xix

List of Plates

- Plate 2.1: The Cardiff Dairy Factory (Est. 1891) was one of the first successful dairy co-operatives in Taranaki. This plate shows the factory as it was in 2001
- Plate 3.1: The microcosm set up utilised in the snail growth and invertebrate community experiments
- Plate 4.1: Illustrations of site A, B, C, E, F, G, H and I. Note the proximity of the race to the stream at site C and the absence of riparian fencing and protection at C, G, H and I. Dense riparian shade at site D and J meant useful photo's were not available

79

33